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ABSTRACT

A very general positive sublinear Shilkret integral type operator is given through a

convolution-like iteration of another general positive sublinear operator with a scaling

type function. For it sufficient conditions are given for shift invariance, preservation of

global smoothness, convergence to the unit with rates. Additionally, two examples of

very general specialized operators are presented fulfilling all the above properties, the

higher order of approximation of these operators is also considered.

RESUMEN

Un operador muy general positivo sublineal de tipo integral de Shilkret es dado a

través de un iteración de tipo convolución de otro operador general positivo sublineal

con una función de tipo escalamiento. Para estos operadores, se entregan condiciones

suficientes para invariancia por shifts, conservación de la suavidad global y convergen-

cia a la unidad con tasas. Adicionalmente, se presentan dos ejemplos de operadores

muy generales especializados que satisfacen todas las propiedades anteriores, también

considerando el alto orden de aproximación de estos operadores.

Keywords and Phrases: Jackson type inequality, Shilkret integral, modulus of continuity, shift

invariant, global smoothness preservation, quantitative approximation.
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1 Introduction

Let X, Y be function spaces of functions from R into R+. Let LN : X → Y, N ∈ N, be a sequence

of operators with the following properties:

(i) (positive homogeneous)

LN (αf) = αLN (f) , ∀ α ≥ 0, ∀ f ∈ X.

(ii) (Monotonicity) if f, g ∈ X satisfy f ≤ g, then LN (f) ≤ LN (g), ∀ N ∈ N,

and

(iii) (Subadditivity)

LN (f+ g) ≤ LN (f) + LN (g) , ∀ f, g ∈ X.

We call LN positive sublinear operators.

In this article we deal with sequences of Shilkret positive sublinear operators that are con-

structed, with the help of Shilkret integral ([5]). Our functions spaces are continuous functions

from R into R+. The sequence of operators is generated by a basic operator via dilated trans-

lations of convolution type using the Shilkret integral. We prove that our operators possess the

following properties: of shift invariance of global smoothness preservation, of convergence to the

unit operator with rates. Then we apply our results to two specific families of such Shilkret type

operators.

We continue with the higher order of approximation study of these specific operators, and all

results are quantitative.

Earlier similar studies have been done by the author, see [3], Chapters 10-17, and [2], Chapters

16, 17. These serve as motivation and inspiration to this work.

2 Background

Here we follow [5].

Let F be a σ-field of subsets of an arbitrary set Ω. An extended non-negative real valued

function µ on F is called maxitive if µ (∅) = 0 and

µ (∪i∈IEi) = sup
i∈I

µ (Ei) , (1)

where the set I is of cardinality at most countable, where {Ei}i∈I is a disjoint collection of sets from

F . We notice that µ is monotone and (1) is true even {Ei}i∈I are not disjoint. For more properties

of µ see [5]. We also call µ a maxitive measure. Here f stands for a non-negative measurable
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function on Ω. In [5], Niel Shilkret developed his non-additive integral defined as follows:

(N∗)

∫

D

fdµ := sup
y∈Y

{y · µ (D ∩ {f ≥ y})} , (2)

where Y = [0,m] or Y = [0,m) with 0 < m ≤ ∞, and D ∈ F . Here we take Y = [0,∞).

It is easily proved that

(N∗)

∫

D

fdµ = sup
y>0

{y · µ (D ∩ {f > y})} . (3)

The Shilkret integral takes values in [0,∞].

The Shilkret integral ([5]) has the following properties:

(N∗)

∫

Ω

χEdµ = µ (E) , (4)

where χE is the indicator function on E ∈ F ,

(N∗)

∫

D

cfdµ = c (N∗)

∫

D

fdµ, c ≥ 0, (5)

(N∗)

∫

D

sup
n∈N

fndµ = sup
n∈N

(N∗)

∫

D

fndµ, (6)

where fn, n ∈ N, is an increasing sequence of elementary (countably valued) functions converging

uniformly to f. Furthermore we have

(N∗)

∫

D

fdµ ≥ 0, (7)

f ≥ g implies (N∗)

∫

D

fdµ ≥ (N∗)

∫

D

gdµ, (8)

where f, g : Ω→ [0,∞] are measurable.

Let a ≤ f (ω) ≤ b for almost every ω ∈ E, then

aµ (E) ≤ (N∗)

∫

E

fdµ ≤ bµ (E) ; (9)

(N∗)

∫

E

1dµ = µ (E) ; (10)

f > 0 almost everywhere and (N∗)
∫
E
fdµ = 0 imply µ (E) = 0;

(N∗)
∫
Ω
fdµ = 0 if and only f = 0 almost everywhere;

(N∗)
∫
Ω
fdµ <∞ implies that

N (f) := {ω ∈ Ω|f (ω) 6= 0} has σ-finite measure;
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(N∗)

∫

D

(f+ g)dµ ≤ (N∗)

∫

D

fdµ+ (N∗)

∫

D

gdµ; (11)

and
∣

∣

∣

∣

(N∗)

∫

D

fdµ− (N∗)

∫

D

gdµ

∣

∣

∣

∣

≤ (N∗)

∫

D

|f− g|dµ. (12)

From now on in this article we assume that µ : F → [0,+∞).

3 Univariate Theory

This section is motivated and inspired by [3] and [4].

Let L be the Lebesgue σ− algebra on R, and the set function µ : L → [0,+∞], which is

assumed to be maxitive. Let CU (R,R+) be the space of uniformly continuous functions from R

into R+, and C (R,R+) the space of continuous functions from R into R+. For any f ∈ CU (R,R+)

we have ω1 (f, δ) < +∞, δ > 0, where

ω1 (f, δ) := sup
x,y∈R:

|x−y|≤δ

|f (x) − f (y)| , δ > 0,

is the first modulus of continuity.

Let {tk}k∈Z
be a sequence of positive sublinear operators that map CU (R,R+) into C (R,R+)

with the property

(tk (f)) (x) := l0
(

f
(

2−k·
))

(x) , ∀ x ∈ R, ∀ f ∈ CU (R,R+) . (13)

For a fixed a > 0 we assume that

sup
u,y∈R:

|u−y|≤a

|t0 (f, u) − f (y)| ≤ ω1

(

f,
ma+ n

2r

)

, ∀ f ∈ CU (R,R+) , (14)

where m ∈ N, n ∈ Z+, r ∈ Z.

Let ψ : R → R+ which is Lebesgue measurable, such that

(N∗)

∫a

−a

ψ (u)dµ (u) = 1. (15)

We define the positive sublinear-Shilkret operators

(T0 (f)) (x) := (N∗)

∫a

−a

(t0f) (x− u)ψ (u)dµ (u) , (16)

and

(Tk (f)) (x) :=
(

T0
(

f
(

2−k·
))) (

2kx
)

, ∀ k ∈ Z, ∀ x ∈ R. (17)
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Therefore it holds

(Tk (f)) (x) = (N∗)

∫a

−a

(

t0
(

f
(

2−k·
))) (

2kx− u
)

ψ (u)dµ (u) = (18)

(N∗)

∫a

−a

(tk (f))
(

2kx− u
)

ψ (u)dµ (u) ,

∀ x ∈ R, ∀ k ∈ Z.

Indeed here we have

(Tk (f)) (x)
(8)

≤ (N∗)

∫a

−a

∥

∥tk (f)
(

2kx− ·
)∥

∥

∞,[−a,a]
ψ (u)dµ (u)

(5)
=

∥

∥tk (f)
(

2kx− ·
)∥

∥

∞,[−a,a]

(

(N∗)

∫a

−a

ψ (u)dµ (u)

)

= (19)

∥

∥tk (f)
(

2kx − ·
)∥

∥

∞,[−a,a]
< +∞.

Hence (Tk (f)) (x) ∈ R+ is well-defined.

Let f, g ∈ M (R,R+) (Lebesgue measurable functions) where X ∈ A, A ⊂ R is a Lebesgue

measurable set.

We derive that
∣

∣

∣

∣

(N∗)

∫

A

f (x)dµ (x) −N∗

∫

A

g (x)dµ (x)

∣

∣

∣

∣

(12)

≤ (N∗)

∫

A

|f (x) − g (x)|dµ (x) . (20)

We need

Definition 3.1. Let fα (·) := f (·+ α), α ∈ R, and Φ be an operator. If Φ (fα) = (Φf)α, then Φ

is called a shift invariant operator.

We give

Theorem 3.2. Assume that

(

t0
(

f
(

2−k ·+α
))) (

2ku
)

=
(

t0
(

f
(

2−k·
))) (

2k (u+ α)
)

, (21)

for all k ∈ Z, α ∈ R fixed, all u ∈ R and any f ∈ CU (R,R+). Then Tk is a shift invariant operator

for all k ∈ Z.

Proof. We have that

(Tk (f (· + α))) (x) = (Tk (fα)) (x)
(18)
=

(N∗)

∫a

−a

(

t0
(

fα
(

2−k·
))) (

2kx− u
)

ψ (u)dµ (u) =

(N∗)

∫a

−a

(

t0
(

f
(

2−k ·+α
))) (

2kx− u
)

ψ (u)dµ (u) =
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(N∗)

∫a

−a

(

t0
(

f
(

2−k ·+α
))) (

2k
(

x− 2−ku
))

ψ (u)dµ (u)
(21)
= (22)

(N∗)

∫a

−a

(

t0
(

f
(

2−k·
))) (

2k
(

x− 2−ku+ α
))

ψ (u)dµ (u) =

(N∗)

∫a

−a

(

t0
(

f
(

2−k·
))) (

2k (x+ α) − u
)

ψ (u)dµ (u)
(18)
= (Tk (f)) (x+ α) ,

that is

Tk (fα) = (Tk (f))α , (23)

proving the claim.

It follows the global smoothness of the operators Tk.

Theorem 3.3. For any f ∈ CU (R,R+) assume that, for all u ∈ R,

|(t0 (f)) (x− u) − (t0 (f)) (y− u)| ≤ ω1 (f, |x− y|) , (24)

for any x, y ∈ R. Then

ω1 (Tkf, δ) ≤ ω1 (f, δ) , ∀ δ > 0. (25)

Proof. We observe that

|(T0 (f)) (x) − (T0 (f)) (y)| =

∣

∣

∣

∣

(N∗)

∫a

−a

(t0f) (x− u)ψ (u)dµ (u) − (N∗)

∫a

−a

(t0f) (y− u)ψ (u)dµ (u)

∣

∣

∣

∣

(20)

≤ (26)

(N∗)

∫a

−a

|(t0f) (x − u) − (t0f) (y− u)|ψ (u)dµ (u)
(by (24), (5))

≤

ω1 (f, |x− y|)

(

(N∗)

∫a

−a

ψ (u)dµ (u)

)

(15)
= ω1 (f, |x − y|) .

So that

|(T0 (f)) (x) − (T0 (f)) (y)| ≤ ω1 (f, |x − y|) . (27)

From (17), (27) we get

|(Tk (f)) (x) − (Tk (f)) (y)|
(17)
=

∣

∣

(

T0
(

f
(

2−k·
))) (

2kx
)

−
(

T0
(

f
(

2−k·
))) (

2ky
)∣

∣ ≤ (28)

ω1

(

f
(

2−k·
)

, 2k |x− y|
)

= ω1 (f, |x− y|) ,

i.e. global smoothness for Tk has been proved.

The convergence of Tk to the unit operator, as k→ +∞, k with rates follows:
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Theorem 3.4. For f ∈ CU (R,R+), under the assumption (14), we have

|(Tk (f)) (x) − f (x)| ≤ ω1

(

f,
ma+ n

2k+r

)

, (29)

where m ∈ N, n ∈ Z+, k, r ∈ Z.

Proof. We notice that

|(Tk (f)) (x) − f (x)|
(17)
=
∣

∣

(

T0
(

f
(

2−k·
))) (

2kx
)

− f (x)
∣

∣

(18)
=

∣

∣

∣

∣

(N∗)

∫a

−a

(

t0
(

f
(

2−k·
))) (

2kx− u
)

ψ (u)dµ (u) − f (x)

∣

∣

∣

∣

(15)
=

∣

∣

∣

∣

(N∗)

∫a

−a

(

t0
(

f
(

2−k·
))) (

2kx− u
)

ψ (u)dµ (u) − (N∗)

∫a

−a

f (x)ψ (u)dµ (u)

∣

∣

∣

∣

(20)

≤

(N∗)

∫a

−a

∣

∣

(

t0
(

f
(

2−k·
))) (

2kx− u
)

− f (x)
∣

∣ψ (u)dµ (u) = (30)

(N∗)

∫a

−a

∣

∣

(

t0
(

f
(

2−k·
))) (

2kx− u
)

− f
(

2−k·
) (

2kx
)∣

∣ψ (u)dµ (u)
(14)

≤

(here
∣

∣

(

2kx− u
)

− 2kx
∣

∣ = |u| ≤ a)

ω1

(

f
(

2−k·
)

,
ma+ n

2r

)(

(N∗)

∫a

−a

ψ (u)dµ (u)

)

(15)
=

ω1

(

f
(

2−k·
)

,
ma+ n

2r

)

· 1 = ω1

(

f,
ma+ n

2k+r

)

, (31)

proving the claim.

We give some applications.

For each k ∈ Z, we define

(i)

(Bkf) (x) := (N∗)

∫a

−a

f
(

x−
u

2k

)

ψ (u)dµ (u) , (32)

i.e., here

(tk (f)) (u) = f
(

u
2k

)

,

and

(t0 (f)) (u) = f (u) ,

(33)

are continuous in u ∈ R.

Also for k ∈ Z, we define

(ii)

(Γk (f)) (x) := (N∗)

∫a

−a

γfk
(

2kx− u
)

ψ (u)dµ (u) , (34)
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where

(tk (f)) (u) = γ
f
k (u) :=

n∑

j=0

wjf

(

u

2k
+

j

2kn

)

, (35)

n ∈ N, wj ≥ 0,
n∑

j=0

wj = 1,

is continuous in u ∈ R.

Notice here that

(t0 (f)) (u) = γ
f
0 (u) =

n∑

j=0

wjf

(

u+
j

n

)

(36)

is also continuous in u ∈ R.

Indeed we have

(Γk (f)) (x) = (N∗)

∫a

−a





n∑

j=0

wjf

(

(

x −
u

2k

)

+
j

2kn

)



ψ (u)dµ (u) . (37)

Clealry here we have

(Bk (f)) (x) =
(

B0

(

f
(

2−k·
))) (

2kx
)

,

and

(Γk (f)) (x) =
(

Γ0
(

f
(

2−k·
))) (

2kx
)

,

(38)

∀ k ∈ Z, ∀ x ∈ R.

We give

Proposition 3.5. Bk, Γk are shift invariant operators.

Proof. (i) For Bk operators: Here t0f = f. Hence

(

t0
(

f
(

2−k ·+α
))) (

2ku
)

= f
(

2−k2ku+ α
)

= f (u+ α) = (39)

(

t0
(

f
(

2−k·
))) (

2k (u+ α)
)

.

(ii) For Γk operators:

(t0 (f)) (u) =

n∑

j=0

wjf

(

u+
j

n

)

.

Hence
(

t0
(

f
(

2−k ·+α
))) (

2ku
)

=

n∑

j=0

wjf

(

2−k

(

2ku+
j

n

)

+ α

)

=

n∑

j=0

wjf

(

2−k

(

2k (u+ α) +
j

n

))

=
(

t0
(

f
(

2−k·
))) (

2k (u+ α)
)

, (40)

proving the claim.
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Next we show that the operators Bk, Γk possess the property of global smoothness preservation.

Theorem 3.6. For all f ∈ CU (R,R+) and all δ > 0 we have

ω1 (Bkf, δ) ≤ ω1 (f, δ) ,

and

ω1 (Γkf, δ) ≤ ω1 (f, δ) .

(41)

Proof. (i) For Bk operators: Here t0f = f, therefore

|(t0 (f)) (x− u) − (t0 (f)) (y− u)| = |f (x− u) − f (y− u)| ≤ ω1 (f, |x− y|) . (42)

(ii) For Γk operators: We observe that

|(t0 (f)) (x− u) − (t0 (f)) (y− u)| =
∣

∣γf0 (x− u) − γ
f
0 (y− u)

∣

∣ =

∣

∣

∣

∣

∣

∣

n∑

j=0

wj

(

f

(

x− u+
j

n

)

− f

(

y− u+
j

n

))

∣

∣

∣

∣

∣

∣

≤

n∑

j=0

wj

∣

∣

∣

∣

f

(

x− u+
j

n

)

− f

(

y− u+
j

n

)∣

∣

∣

∣

≤

ω1 (f, |x− y|)





n∑

j=0

wj



 = ω1 (f, |x− y|) , (43)

proving the claim.

The operators Bk, Γk, k ∈ Z, converge to the unit operator with rates presented next.

Theorem 3.7. For k ∈ Z,

|(Bk (f)) (x) − f (x)| ≤ ω1

(

f, a
2k

)

,

and

|(Γk (f)) (x) − f (x)| ≤ ω1

(

f, a+1
2k

)

.

(44)

Proof. (i) For Bk operators: Here (t0 (f)) (u) = f (u) and

sup
u,y∈R

|u−y|≤a

|(t0 (f)) (u) − f (y)| = sup
u,y∈R

|u−y|≤a

|f (u) − f (y)| = ω1 (f, a) , (45)

and we use Theorem 3.4.

(ii) For Γk operators: Here we see that

sup
u,y∈R

|u−y|≤a

|(t0 (f)) (u) − f (y)| = sup
u,y∈R

|u−y|≤a

∣

∣

∣

∣

∣

∣

n∑

j=0

wjf

(

u+
j

n

)

− f (y)

∣

∣

∣

∣

∣

∣

≤
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sup
u,y∈R

|u−y|≤a

n∑

j=0

wj

∣

∣

∣

∣

f

(

u+
j

n

)

− f (y)

∣

∣

∣

∣

≤ sup
u,y∈R

|u−y|≤a

n∑

j=0

wjω1

(

f,

∣

∣

∣

∣

u+
j

n
− y

∣

∣

∣

∣

)

≤ (46)

sup
u,y∈R

|u−y|≤a

n∑

j=0

wjω1

(

f,
j

n
+ |u− y|

)

≤





n∑

j=0

wj



ω1 (f, 1+ α) = ω1 (f, α+ 1) .

By (29) we are done.

4 Higher order of Approximation

Here all are as in Section 3. See also earlier our work [1], and [2], Chapter 16.

We give

Theorem 4.1. Let f ∈ CN (R,R+), N ≥ 1. Consider the Shilkret-sublinear operators

(Bkf) (x) = (N∗)

∫a

−a

f
(

x−
u

2k

)

ψ (u)dµ (u) ,

∀ k ∈ Z, ∀ x ∈ R. Then

|(Bkf) (x) − f (x)| ≤

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

ai

2ki
+

aN

2kNN!
ω1

(

f(N),
a

2k

)

. (47)

If f(N) is uniformly continuous or bounded and continuous, then as k → +∞ we obtain that

(Bkf) (x) → f (x) pointwise with rates.

Proof. Since f ∈ CN (R,R+), N ≥ 1, by Taylor’s formula we have

f
(

x−
u

2k

)

− f (x) =

N∑

i=1

f(i) (x)

i!

(

−
u

2k

)i

+ (48)

∫x− u

2k

x

(

f(N) (t) − f(N) (x)
)

(

x− u
2k − t

)N−1

(N − 1) !
dt.

Call

Γu (x) :=

∣

∣

∣

∣

∣

∫x− u

2k

x

(

f(N) (t) − f(N) (x)
)

(

x− u
2k − t

)N−1

(N− 1) !
dt

∣

∣

∣

∣

∣

. (49)

Next we estimate Γu (x), where u ∈ [−a, a] .

i) Case of −a ≤ u ≤ 0, then x ≤ x − u
2k . Then

Γu (x) ≤

∫x− u

2k

x

∣

∣

∣
f(N) (t) − f(N) (x)

∣

∣

∣

(

x− u
2k − t

)N−1

(N − 1) !
dt ≤
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∫x− u

2k

x

ω1

(

f(N), |t− x|
)

(

x− u
2k − t

)N−1

(N− 1) !
dt ≤

ω1

(

f(N),
|u|

2k

) ∫x− u

2k

x

(

x− u
2k − t

)N−1

(N − 1) !
dt ≤ (50)

ω1

(

f(N),
a

2k

)

(

− u
2k

)N

N!
≤ ω1

(

f(N),
a

2k

) aN

2kNN!
.

That is, when −a ≤ u ≤ 0, then

Γu (x) ≤ ω1

(

f(N),
a

2k

) aN

2kNN!
. (51)

ii) Case of 0 ≤ u ≤ a, then x ≥ x− u
2k . Then

Γu (x) =

∣

∣

∣

∣

∣

∫x

x− u

2k

(

f(N) (t) − f(N) (x)
)

(

t− x+ u
2k

)N−1

(N− 1) !
dt

∣

∣

∣

∣

∣

≤

∫x

x− u

2k

∣

∣

∣f(N) (t) − f(N) (x)
∣

∣

∣

(

t− x+ u
2k

)N−1

(N − 1) !
dt ≤ (52)

∫x

x− u

2k

ω1

(

f(N), |t− x|
)

(

t− x+ u
2k

)N−1

(N − 1) !
dt ≤

ω1

(

f(N),
|u|

2k

) ∫x

x− u

2k

(

t− x + u
2k

)N−1

(N− 1) !
dt ≤

ω1

(

f(N),
a

2k

)

(

u
2k

)N

N!
≤ ω1

(

f(N),
a

2k

) aN

2kNN!
. (53)

That is, when 0 ≤ u ≤ a, then

Γu (x) ≤ ω1

(

f(N),
a

2k

) aN

2kNN!
. (54)

We proved that

Γu (x) ≤ ω1

(

f(N),
a

2k

) aN

2kNN!
:= ρ ≥ 0, (55)

∀ k ∈ Z, ∀ x ∈ R, |u| ≤ a.

By (48) we get that (|u| ≤ a)

∣

∣

∣f
(

x−
u

2k

)

− f (x)
∣

∣

∣ ≤

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

ai

2ki
+ ρ. (56)

We observe that

|(Bkf) (x) − f (x)| =
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∣

∣

∣

∣

(N∗)

∫a

−a

f
(

x−
u

2k

)

ψ (u)dµ (u) − (N∗)

∫a

−a

f (x)ψ (u)dµ (u)

∣

∣

∣

∣

(20)

≤ (57)

(N∗)

∫a

−a

∣

∣

∣f
(

x−
u

2k

)

− f (x)
∣

∣

∣ψ (u)dµ (u) ≤

(

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

ai

2ki
+ ρ

)

(

(N∗)

∫a

−a

ψ (u)dµ (u)

)

(15)
=

(

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

ai

2ki
+ ρ

)

· 1 = (58)

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

ai

2ki
+

aN

2kNN!
ω1

(

f(N),
a

2k

)

,

proving the claim.

Corollary 4.2. Let f ∈ C1 (R,R+). Then

|(Bkf) (x) − f (x)| ≤
a

2k

(

|f′ (x)| +ω1

(

f′,
a

2k

))

, (59)

∀ k ∈ Z, ∀ x ∈ R.

Proof. By (47) for N = 1.

We also present

Theorem 4.3. Let f ∈ CN (R,R+), N ≥ 1. Consider the Shilkret-sublinear operators

(Γk (f)) (x) = (N∗)

∫a

−a





n∑

j=0

wjf

(

(

x −
u

2k

)

+
j

2kn

)



ψ (u)dµ (u) , (60)

∀ k ∈ Z, ∀ x ∈ R. Then

|(Γkf) (x) − f (x)| ≤

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

(a+ 1)
i

2ki
+

(a+ 1)
N

N!2kN
ω1

(

f(N),
a+ 1

2k

)

. (61)

If f(N) is uniformly continuous or bounded and continuous, then as k → +∞ we obtain that

(Γkf) (x) → f (x) , pointwise with rates.

Corollary 4.4. Let f ∈ C1 (R,R+). Then

|(Γkf) (x) − f (x)| ≤
(a+ 1)

2k

[

|f′ (x)|+ω1

(

f′,
a+ 1

2k

)]

, (62)

∀ k ∈ Z, ∀ x ∈ R.

Proof. By (61) for N = 1.
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Proof. of Theorem 4.3.

Since f ∈ CN (R), N ≥ 1, by Taylor’s formula we get

n∑

j=0

wjf

(

(

x−
u

2k

)

+
j

2kn

)

− f (x) =

N∑

i=1

f(i) (x)

i!

n∑

j=0

wj

(

−
u

2k
+

j

2kn

)i

+ (63)

n∑

j=0

wj

∫(x− u

2k )+
j

2kn

x

(

f(N) (t) − f(N) (x)
)

(

(

x− u
2k

)

+ j
2kn

− t
)N−1

(N − 1) !
dt.

Call

ε (x, u, j) :=

∫(x− u

2k )+
j

2kn

x

(

f(N) (t) − f(N) (x)
)

(

(

x− u
2k

)

+ j
2kn

− t
)N−1

(N− 1) !
dt. (64)

We estimate ε (x, u, j). Here |u| ≤ a.

i) case of u ≤ j
n
, iff u

2k ≤ j
2kn

, iff x ≤ x− u
2k + j

2kn
.

Hence

|ε (x, u, j)| ≤

∫(x− u

2k )+
j

2kn

x

∣

∣

∣f(N) (t) − f(N) (x)
∣

∣

∣

(

(

x − u
2k

)

+ j
2kn

− t
)N−1

(N − 1) !
dt ≤ (65)

∫(x− u

2k )+
j

2kn

x

ω1

(

f(N), |t− x|
)

(

(

x− u
2k

)

+ j
2kn

− t
)N−1

(N− 1) !
dt ≤

ω1

(

f(N),

[

j

2kn
−
u

2k

]) ∫(x− u

2k )+
j

2kn

x

(

(

x − u
2k

)

+ j
2kn

− t
)N−1

(N − 1) !
dt ≤

ω1

(

f(N),
a+ 1

2k

)

(

j
2kn

− u
2k

)N

N!
≤ ω1

(

f(N),
a+ 1

2k

)

(a+ 1)
N

2kNN!
. (66)

For u ≤ j
n
, we hve proved that

|ε (x, u, j)| ≤ ω1

(

f(N),
a+ 1

2k

)

(a+ 1)
N

2kNN!
. (67)

ii) case of u ≥ j
n
, iff u

2k ≥ j
2kn

, iff x ≥ x− u
2k + j

2kn
.

We observe that

|ε (x, u, j)| =
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∣

∣

∣

∣

∣

∣

∣

∫x

(x− u

2k )+
j

2kn

(

f(N) (t) − f(N) (x)
)

(

t−
[

(

x− u
2k

)

+ j
2kn

])N−1

(N− 1) !
dt

∣

∣

∣

∣

∣

∣

∣

≤ (68)

∫x

(x− u

2k )+
j

2kn

∣

∣

∣f(N) (t) − f(N) (x)
∣

∣

∣

(

t−
[

(

x − u
2k

)

+ j
2kn

])N−1

(N− 1) !
dt ≤

∫x

(x− u

2k )+
j

2kn

ω1

(

f(N), |t− x|
)

(

t−
[

(

x− u
2k

)

+ j
2kn

])N−1

(N− 1) !
dt ≤

ω1

(

f(N),
u

2k
−

j

2kn

) ∫x

(x− u

2k )+
j

2kn

(

t−
[

(

x− u
2k

)

+ j
2kn

])N−1

(N− 1) !
dt ≤

ω1

(

f(N),
a+ 1

2k

)

(

u
2k − j

2kn

)N

N!
≤ ω1

(

f(N),
a+ 1

2k

)

(a+ 1)
N

2kNN!
. (69)

So when u ≥ j
n
, we proved that

|ε (x, u, j)| ≤ ω1

(

f(N),
a+ 1

2k

)

(a+ 1)
N

2kNN!
. (70)

Therefore it always holds

|ε (x, u, j)| ≤ ω1

(

f(N),
a+ 1

2k

)

(a+ 1)
N

2kNN!
. (71)

Consequently we derive

n∑

j=0

wj |ε (x, u, j)| ≤ ω1

(

f(N),
a+ 1

2k

)

(a+ 1)
N

2kNN!
:= ψ. (72)

By (63) we find

∣

∣

∣

∣

∣

∣

n∑

j=0

wjf

(

(

x−
u

2k

)

+
j

2kn

)

− f (x)

∣

∣

∣

∣

∣

∣

≤

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

(a+ 1)
i

2ki
+ ψ. (73)

Therefore we get

|(Γk (f)) (x) − f (x)| =
∣

∣

∣

∣

∣

∣

(N∗)

∫a

−a





n∑

j=0

wjf

(

(

x−
u

2k

)

+
j

2kn

)



ψ (u)dµ (u) − (N∗)

∫a

−a

f (x)ψ (u)dµ (u)

∣

∣

∣

∣

∣

∣

(20)

≤ (74)

(N∗)

∫a

−a

∣

∣

∣

∣

∣

∣

n∑

j=0

wjf

(

(

x−
u

2k

)

+
j

2kn

)

− f (x)

∣

∣

∣

∣

∣

∣

ψ (u)dµ (u)
(73)

≤
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[

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

(a+ 1)
i

2ki
+ψ

]

(N∗)

∫a

−a

ψ (u)dµ (u)
(15)
=

[

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

(a+ 1)
i

2ki
+ψ

]

· 1 =

N∑

i=1

∣

∣f(i) (x)
∣

∣

i!

(a+ 1)
i

2ki
+

(a+ 1)
N

2kNN!
ω1

(

f(N),
a+ 1

2k

)

, (75)

proving the claim.

We finish with

Corollary 4.5. Let f ∈ CN (R,R+), N ≥ 1, f(i) (x) = 0, i = 1, ..., N. Then

i)

|(Bk (f)) (x) − f (x)| ≤
aN

2kNN!
ω1

(

f(N),
a

2k

)

, (76)

and

ii)

|(Γk (f)) (x) − f (x)| ≤
(a + 1)

N

N!2kN
ω1

(

f(N),
a+ 1

2k

)

, (77)

∀ k ∈ Z, ∀ x ∈ R.

Proof. By (47) and (61).

Corollary 4.6. Let f ∈ C1 (R,R+), f
′ (x) = 0. Then

i)

|(Bk (f)) (x) − f (x)| ≤
a

2k
ω1

(

f′,
a

2k

)

, (78)

and

ii)

|(Γk (f)) (x) − f (x)| ≤

(

a+ 1

2k

)

ω1

(

f′,
a+ 1

2k

)

, (79)

∀ k ∈ Z, ∀ x ∈ R.

Proof. By (59) and (62).

In inequalities (76)-(79) observe the high speed of convergence and approximation.
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5 Appendix

Let f ∈ CU (R,R+), and the positive sublinear Shilkret operator

(M (f)) (x) := (N∗)

∫a

−a

f (x+ u)ψ (u)dµ (u) , ∀ x ∈ R. (80)

We observe the following (for any x, y ∈ R):

|(M (f)) (x) − (M (f)) (y)| =

∣

∣

∣

∣

(N∗)

∫a

−a

f (x+ u)ψ (u)dµ (u) − (N∗)

∫a

−a

f (y+ u)ψ (u)dµ (u)

∣

∣

∣

∣

(20)

≤

(N∗)

∫a

−a

|f (x+ u) − f (y+ u)|ψ (u)dµ (u) ≤

ω1 (f, |x− y|)

(

(N∗)

∫a

−a

ψ (u)dµ (u)

)

(15)
= ω1 (f, |x− y|) · 1 = ω1 (f, |x− y|) . (81)

Therefore it holds the global smoothness preservation property:

ω1 (M (f) , δ) ≤ ω1 (f, δ) , ∀ δ > 0. (82)
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1 Introduction

The nature of a Riemannian manifold depends on the curvature tensor R of the manifold. It is

well known that the sectional curvatures of a manifold determine its curvature tensor completely.

A Riemannian manifold with constant sectional curvature c is known as a real space form and its

curvature tensor is given by

R(X, Y)Z = c{g(Y, Z)X − g(X,Z)Y}.

Representation for these spaces are hyperbolic spaces (c < 0), spheres (c > 0) and Euclidean spaces

(c = 0).

The φ-sectional curvature of a Sasakian space form is defined by Sasakian manifold and it

has a specific form of its curvature tensor. Same notion also holds for Kenmotsu and cosymplectic

space forms. In order to generalize such space forms in a common frame Alegre, Blair and Carriazo

[1] introduced and studied generalized Sasakian space forms.

A generalized Sasakian space form is an almost contact metric manifold (M2n+1, φ, ξ, η, g),

whose curvature tensor is given by

R(X, Y)Z = f1{g(Y, Z)X− g(X,Z)Y} + f2{g(X,φZ)φY

− g(Y,φZ)φX + 2g(X,φY)φZ} + f3{η(X)η(Z)Y

− η(Y)η(Z)X+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ}, (1.1)

The Riemanian curvature tensor of a generalized Sasakian space form

M2n+1(f1, f2, f3) is simply given by

R = f1R1 + f2R2 + f3R3,

where f1, f2, f3 are differential functions on M2n+1(f1, f2, f3) and

R1(X, Y)Z = g(Y, Z)X − g(X,Z)Y,

R2(X, Y)Z = g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY)φZ, and

R3(X, Y)Z = η(X)η(Z)Y − η(Y)η(Z)X+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ,

where f1 = c+3
4

, f2 = f3 = c−1
4

. Here c denotes the constant φ-sectional curvature. The properties

of generalized Sasakian space form was studied by many geometers such has [2, 9, 10, 14, 17, 18,

19, 21, 26]. The concept of local symmetry of a Riemanian manifold has been studied by many

authors in several ways to a different extent. The locally φ-symmetry of Sasakian manifold was

introduce by Takahashi in [28]. De and et al generalize this to the notion of φ-symmetry and then

introduced the notion of φ-recurrent Sasakian manifold in [11]. Further φ-recurrent condition was

studied on Kenmotsu manifold [8], LP-Sasakian manifold [29] and (LCS)n-manifold [20].

In[16], Pokhariyal and Mishra have defined the W2-curvature tensor, given by

W2(X, Y)Z = R(X, Y)Z+
1

2n
{g(X,Z)QY − g(Y, Z)QX}, (1.2)
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here R and Q are the Riemanian curvature tensor and Ricci operator of Riemanian manifold

respectively.

In a generalized Sasakian space forms, the W2-curvature tensor satisfies the condition

η(W2(X, Y)Z) = 0. (1.3)

Many Geometers studied the W2 curvature tensor studied on different manifolds such has general-

ized Sasakian space forms [13], Lorentzian para Sasakian manifolds [30] and Kenmotsu manifolds

[25]

Motivated by these ideas, we made an attempt to study the properties of generalized Sasakian

space form. The present paper is organized as follows: In section 2, we review some preliminary

results. In section 3, we study W2-pseudosymmetric generalized Sasakian space form. Section

4, deals with the W2-locally symmetric generalized Sasakian space forms and it is shown that a

generalized Sasakian space form of dimension greater than three isW2-locally symmetric if and only

if it is conformally flat. Section 5, is devoted to the study of W2-locally φ-symmetric generalized

Sasakian space forms. Finally in last section, we discus the W2-φ-recurrent generalized Sasakian

space form and found to be Einstein manifold.

2 Generalized Sasakian space-forms

The Riemannian manifold M2n+1 is called an almost contact metric manifold if the following result

holds [5, 6]:

φ2X = −X+ η(X)ξ, (2.1)

η(ξ) = 1, φξ = 0, η(φX) = 0, g(X, ξ) = η(X), (2.2)

g(φX,φY) = g(X, Y) − η(X)η(Y), (2.3)

g(φX, Y) = −g(X,φY), g(φX,X) = 0 (2.4)

(∇Xη)(Y) = g(∇Xξ, Y), ∀ X, Y ∈ (TpM). (2.5)

A almost contact metric manifold is said to be Sasakian if and only if [5, 23]

(∇Xφ)Y = g(X, Y)ξ − η(Y)X, (2.6)

∇Xξ = −φX. (2.7)
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Again we know that [1] in (2n + 1)-dimensional generalized Sasakian space form:

S(X, Y) = (2nf1 + 3f2 − f3)g(X, Y)

− (3f2 + (2n − 1)f3)η(X)η(Y), (2.8)

S(φX,φY) = S(X, Y) + 2n(f1 − f3)η(X)η(Y), (2.9)

QX = (2nf1 + 3f2 − f3)X

− (3f2 + (2n − 1)f3)η(X)ξ, (2.10)

r = 2n(2n + 1)f1 + 6nf2 − 4nf3, (2.11)

R(X, Y)ξ = (f1 − f3){η(Y)X− η(X)Y}, (2.12)

R(ξ, X)Y = (f1 − f3){g(X, Y)ξ− η(Y)X}, (2.13)

η(R(X, Y)Z) = (f1 − f3){g(Y, Z)η(X) − g(X,Z)η(Y)}, (2.14)

S(X, ξ) = 2n(f1 − f3)η(X). (2.15)

Here R, S, Q and r are the Riemannian curvature tensor, Ricci tensor, Ricci operator and scalar

curvature tensor of generalized Sasakian space forms in that order.

3 W2-pseudosymmetric generalized Sasakian space forms

The concept of a pseudosymmetric manifold was introduced by Chaki [7] and Deszcz [12]. In this

article we shall study properties of pseudosymmetric manifold according to Deszcz. Semisymmetric

manifolds satisfies the condition R ·R = 0 and were categorized by Szabo in [27]. Every pseudosym-

metric manifold is semisymmetric but semisymmetric manifold need not be pseudosymmetric.

An (2n + 1)-dimensional Riemannian manifold M2n+1 is said to be pseudosymmetric, if

(R(X, Y) · R)(U,V)W = LR{((X∧ Y) · R)(U,V)W)}. (3.1)

where LR is some smooth function on UR = {x ∈ M2n+1|R − r
n(n−1)

G 6= 0 at x}, where G is the

(0, 4)-tensor defined by G(X1, X2, X3, X4) = g((X1∧X2)X3, X4) and (X∧Y)Z is the endomorphism

and it is defined as,

(X∧ Y)Z = g(Y, Z)X − g(X,Z)Y (3.2)

An (2n+1)-dimensional generalized Sasakian space formM2n+1 is said to beW2-pseudosymmetric,

if

(R(X, Y) ·W2)(U,V)Z = LW2
{(X∧ Y) ·W2)(U,V)Z}, (3.3)

holds on the set UW2
= {x ∈ M2n+1|W2 6= 0 at x}, where LW2

is some function on UW2
.

Suppose that generalized Sasakian space form is W2-pseudosymmetric.

Now the left- hand side of (3.3) is

R(ξ, Y)W2(U,V)Z−W2(R(ξ, Y)U,V)Z

− W2(U,R(ξ, Y)V)Z−W2(U,V)R(ξ, Y)Z = 0. (3.4)
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In the view of (2.12) the above expression becomes

(f1 − f3){g(Y,W2(U,V)Z)ξ − η(W2(U,V)Z)Y

− g(Y,U)W2(ξ, V)Z+ η(U)W2(Y, V)Z

− g(Y, V)W2(U, ξ)Z+ η(V)W2(U, Y)Z

− g(Y, Z)W2(U,V)ξ+ η(Z)W2(U,V)Y} = 0. (3.5)

Next the right hand side of (3.3) is

LW2
{(ξ∧ Y)W2(U,V)Z−W2((ξ∧ Y)U,V)Z

− W2(U, (ξ∧ Y)V)Z−W2(U,V)(ξ∧ Y)Z} = 0. (3.6)

By virtue of (3.2), (3.6) becomes

LW2
{g(Y,W2(U,V)Z)ξ − η(W2(U,V)Z)Y

− g(Y,U)W2(ξ, V)Z+ η(U)W2(Y, V)Z

− g(Y, V)W2(U, ξ)Z+ η(V)W2(U, Y)Z

− g(Y, Z)W2(U,V)ξ + η(Z)W2(U,V)Y} = 0. (3.7)

Using the expressions (3.5) and (3.7) in (3.3) and taking inner product with ξ, we obtain

{LW2
− (f1 − f3)}{W2(U,V, Z, Y) − η(W2(U,V)Z)η(Y)

− g(Y,U)η(W2(ξ, V)Z) + η(U)η(W2(Y, V)Z)

− g(Y, V)η(W2(U, ξ)Z) + η(V)η(W2(U,V)Z)

− g(Y, Z)η(W2(U,V)ξ) + η(Z)η(W2(U,V)Z)} = 0, (3.8)

where W2(U,V, Z, Y) = g(Y,W2(U,V)Z) and using(1.3) we get either

LW2
= (f1 − f3) or W2(U,V, Z, Y) = 0. (3.9)

Thus we have following:

Theorem 3.1. If M2n+1(f1, f2, f3) is W2-pseudosymmetric generalized Sasakian space form, then

M2n+1(f1, f2, f3) is either W2-flat, or LW2
= (f1 − f3) if (f1 6= f3).

Also in a generalized Sasakian space form, Singh and Pandey [24] proved the following,

Theorem 3.2. A (2n+1)-dimensional (n > 1) generalized Sasakian space form satisfying W2 = 0

is an η-Einstein manifolds.

In view of theorem (3.1) and theorem (3.2) we can state the following corollary.

Corolary 1. If M2n+1(f1, f2, f3) is a W2-pseudosymmetric generalized

Sasakian space forms then M2n+1 is either η-Einstein manifold

or LW2
= (f1 − f3) if (f1 6= f3).
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4 W2-locally symmetric generalized Sasakian space forms

Definition 1. A (2n+1) dimensional (n > 1) generalized Sasakian space form is called projectively

locally symmetric if it satisfies [18].

(∇WP)(X, Y)Z = 0.

for all vector fields X, Y, Z orthogonal to ξ and an arbitrary vector field W.

Analogous to this definition, we define a (2n + 1) dimensional (n > 1) W2-locally symmetric

generalized Sasakian space form if

(∇WW2)(X, Y)Z = 0,

for all vector fields X, Y, Z orthogonal to ξ and an arbitrary vector field W.

From (1.1) and (1.2), we have

W2(X, Y)Z = f1{g(Y, Z)X − g(X,Z)Y}

+ f2{g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY)φZ}

+ f3{η(X)η(Z)Y − η(Y)η(Z)X+ g(X,Z)η(Y)ξ

− g(Y, Z)η(X)ξ} +
1

2n
{g(X,Z)QY − g(Y, Z)QX}. (4.1)

Taking covariant differentiation of (4.1) with respect to an arbitrary vector field W, we get

(∇WW2)(X, Y)Z = df1(W){g(Y, Z)X− g(X,Z)Y}

+ df2(W){g(X,φZ)φY − g(Y,φZ)φX

+ 2g(X,φY)φZ} + f2{g(X,φZ)(∇Wφ)Y

+ g(X, (∇Wφ)Z)φY − g(Y,φZ)(∇Wφ)X

− g(Y, (∇Wφ)Z)φX + 2g(X,φY)(∇Wφ)Z

+ 2g(X, (∇Wφ)Y)φZ} + df3(W){η(X)η(Z)Y

− η(Y)η(Z)X+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ}

+ f3{(∇Wη)(X)η(Z)Y + η(X)(∇Wη)(Z)Y

− (∇Wη)(Y)η(Z)X− η(Y)(∇Wη)η(Z)X

+ g(X,Z)(∇Wη)(Y)ξ+ g(X,Z)η(Y)∇Wξ

− g(Y, Z)(∇Wη)(X)ξ − g(Y, Z)η(X)∇Wξ}

+
1

2n
{g(X,Z)(∇WQ)(Y) − g(Y, Z)(∇WQ)(X)}. (4.2)

where ∇ denotes the Riemannian connection on the manifold.

Differentiating (2.10) covariantly with respect to a W, one can get

(∇WQ)(Y) = d(2nf1 + 3f2 − f3)(W)Y − d(3f2 + (2n − 1)f3)(W)η(Y)ξ

− (3f2 + (2n − 1)f3)[(∇Wη)(Y)ξ+ η(Y)(∇Wξ)]. (4.3)
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In view of (4.3) and (4.2), it follows that

(∇WW2)(X, Y)Z = df1(W){g(Y, Z)X− g(X,Z)Y}

+ df2(W){g(X,φZ)φY − g(Y,φZ)φX

+ 2g(X,φY)φZ} + f2{g(X,φZ)(∇Wφ)Y

+ g(X, (∇Wφ)Z)φY − g(Y,φZ)(∇Wφ)X

− g(Y, (∇Wφ)Z)φX + 2g(X,φY)(∇Wφ)Z

+ 2g(X, (∇Wφ)Y)φZ} + df3(W){η(X)η(Z)Y

− η(Y)η(Z)X+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ}

+ f3{(∇Wη)(X)η(Z)Y + η(X)(∇Wη)(Z)Y

− (∇Wη)(Y)η(Z)X− η(Y)(∇Wη)η(Z)X

+ g(X,Z)(∇Wη)(Y)ξ+ g(X,Z)η(Y)∇Wξ

− g(Y, Z)(∇Wη)(X)ξ − g(Y, Z)η(X)∇Wξ}

+
1

2n
[g(X,Z){d(2nf1 + 3f2 − f3)(W)Y − d(3f2

+ (2n − 1)f3)(W)η(Y)ξ− (3f2 + (2n − 1)f3)[(∇Wη)(Y)ξ

+ η(Y)(∇Wξ)]} − g(Y, Z){d(2nf1 + 3f2 − f3)(W)X

− d(3f2 + (2n − 1)f3)(W)η(X)ξ

− (3f2 + (2n − 1)f3)[(∇Wη)(X)ξ+ η(X)(∇Wξ)]}]. (4.4)

Taking X, Y, Z orthogonal to ξ in (4.4) and then taking the inner product of the resultant equation

with V , followed by setting V = Z = ei in the above equation, where {ei} is an orthonormal basis of

the tangent space at each point of the manifold and taking summation over i, i = 1, 2, ......, 2n+ 1,

we get

f2{−g(φX, (∇Wφ)Y) +

n∑

i=1

g(X, (∇Wφ)ei)g(φY, ei)

+ g(φY, (∇Wφ)X) −

n∑

i=1

g(Y, (∇Wφ)ei)g(φX, ei)

+ 2

n∑

i=1

g(X,φY)g((∇Wφ)ei, ei)} = 0. (4.5)

For Levi Civita connection ∇,

(∇Wg)(X, Y) = 0,

which gives

(∇Wg)(X, Y) − g(∇WX, Y) − g(X,∇WY) = 0.

Putting X = ei and Y = φei in the above equation, we obtain

− g(∇Wei, φei) − g(ei, (∇Wφ)ei) = 0,
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which can be written as

g(ei, φ(∇Wei)) − g(ei, (∇Wφ)ei) = 0.

Thus we have

g(ei, (∇Wφ)ei) = 0. (4.6)

By the virtue of (4.5) and (4.6) takes the form

f2{−g(φX, (∇Wφ)Y) +
∑

i=1

g(X, (∇Wφ)ei)g(φY, ei)

+ g(φY, (∇Wφ)X) −
∑

i=1

g(Y, (∇Wφ)ei)g(φX, ei)} = 0. (4.7)

The above equation yields f2 = 0. It is known that a generalized Sasakian space form of dimen-

sion greater than three is conformally flat if and only if f2 = 0 [14]. Hence the manifold under

consideration is conformally flat. Conversely, suppose that the manifold is conformally flat. Then

f2 = 0. In addition, if we consider X, Y, Z orthogonal to ξ then (1.1) yields

R(X, Y)Z = f1{g(Y, Z)X− g(X,Z)Y}.

The above equation gives,

r = 2n(2n + 1)f1. (4.8)

In view of (2.11) and (4.8), we obtain f3 = 0. Hence from (4.4), we get

(∇WW2)(X, Y)Z = 0.

Therefore, the manifold is W2-locally symmetric.

Thus we have the following assertion.

Theorem 4.1. A (2n + 1) dimensional (n > 1) generalized Sasakian space form is W2-locally

symmetric if and only if it is conformally flat.

or

Theorem 4.2. A (2n + 1) dimensional (n > 1) generalized Sasakian space form is W2-locally

symmetric if and only if f1 is constant.

5 W2-Locally φ-symmetric generalized Sasakian space forms

Definition 2. A generalized Sasakian space form M2n+1(f1, f2, f3) of dimension greater than three

is called W2-locally φ-symmetric if it satisfies

φ2((∇WW2)(X, Y)Z) = 0, (5.1)

for all vector fields X, Y, Z orthogonal to ξ on M2n+1. Let us consider a W2-locally φ-symmetric

generalized Sasakian space form of dimension greater than three. Then from the definition and

(2.1), we have
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− ((∇WW2)(X, Y)Z) + η(∇WW2)(X, Y)Z)ξ = 0, (5.2)

Taking the inner product g in both sides of the above equation with respect to W, we get

− g((∇WW2)(X, Y)Z,W) + η(∇WW2)(X, Y)Z)η(W) = 0, (5.3)

If we take orthogonal to W, then the above equation yields,

g((∇WW2)(X, Y)Z,W) = 0, (5.4)

The above equation is true for all W orthogonal to ξ. If we choose W 6= 0 and not orthogonal to

(∇WW2)(X, Y)Z, then it follows that

(∇WW2)(X, Y)Z = 0 (5.5)

Hence, the manifold is W2-locally symmetric and hence by theorem 4.3, it is conformally flat.

Conversely, let the manifold is conformally flat and hence f2 6= 0. Again, for X, Y, Z orthogonal to

ξ, we have applying φ2 on both side to equation (4.4), one can get

φ2(∇WW2)(X, Y)Z = −df2(W){g(X,φZ)φX − g(Y,φZ) + 2g(X,φY)φZ}

−
1

2n
{d(3f2 − f3)(W)[g(X,Z)Y − g(Y, Z)X]}. (5.6)

if f2 = f3 = 0, the above equation yields

φ2(∇WW2)(X, Y)Z = 0

for all X, Y, Z are orthogonal to ξ, therefore the manifold is W2-locally φ-symmetric.

Now we are in a position to state the following statement,

Theorem 5.1. A (2n + 1)-dimensional (n > 1) generalized Sasakian space form M2n+1 is W2-

locally φ-symmetric if and only if it is conformally flat.

6 W2-φ-recurrent generalized Sasakian Space form

Definition 3. A generalized Sasakian space form is said to be φ-recurrent if there exists a non-zero

1-form A such that,(see[11])

φ2((∇WR)(X, Y)Z) = A(W)R(X, Y)Z,

for arbitrary vector fields X, Y, Z,W. If the 1-form A vanishes, then the manifold reduces to a

φ-symmetric manifold.



26 Venkatesha and Shanmukha B. CUBO
20, 1 (2018)

According to the definition of φ-recurrent generalized Sasakian space form, we define W2-φ-

recurrent generalized sasakian space form by

φ2((∇WW2)(X, Y)Z) = A(W)W2(X, Y)Z. (6.1)

Then by (2.1) and (6.1), we have

− (∇WW2)(X, Y)Z + η((∇WW2)(X, Y)Z)ξ = A(W)W2(X, Y)Z, (6.2)

for arbitrary vector fields X, Y, Z,W. From the above equation it follows that

− g((∇WW2)(X, Y)Z,U) + η((∇WW2)(X, Y)Z)η(U)

= A(W)g(W2(X, Y)Z,U). (6.3)

Let {ei}, i = 1, 2, ......2n + 1, be an orthogonal basis of the tangent space at any point of the

manifold. Then putting X = U = ei in (6.3) and taking summation over i, 1 ≤ i ≤ 2n + 1, we get

− (∇WS)(Y, Z) −
1

2n
[(∇WS(Y, Z)) − g(Y, Z)dr(W)]

+

2n+1∑

i=1

η((∇WW2)(ei, Y)Z)η(ei) = A(W){(∇WS)(Y, Z)

−
1

2n
[(∇WS)(Y, Z) − g(Y, Z)dr(W)]}. (6.4)

Setting Z = ξ in (6.4) then using (2.5), (2.13) and (2.7) and then replace Y by φY in (6.4), we get

S(Y,W) = 2n(f1 − f3)g(Y,W). (6.5)

Hence we can state following theorem:

Theorem 6.1. Let generalized Sasakian space forms M2n+1is W2-φ-recurrent, then it is an Ein-

stein manifold, provided (f1 − f3) 6= 0.

7 Example

In [1], generalized complex space-form of dimension two is N(a, b) and the warped product M =

R×N endowed with the almost contact metric structure is a three dimensional generalized Sasakian-

space-form whose smooth functions f1 =
a−(f

′

)2

f2
, f2 = b

f2
and f3 =

a−(f
′

)2

f2
+ f

′′

f
. Here f = f(t),

t ∈ R and f
′

indicates the derivative of f with respect to t. Suppose we set a = 2, b = 0 and

f(t) = t with t 6= 0, then f1 = 1
t2
, f2 = 0 and f3 = 1

t2
, we have from (1.2)

W2(X, Y)Z =
1

t2
{g(Y, Z)X − g(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ} +
1

2t2
{g(X,Z)Y − g(Y, Z)X

− g(X,Z)η(Y)ξ + g(Y, Z)η(X)ξ}. (7.1)
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Now differentiating covariantly with respect to W and taking X, Y, Z are orthogonal to ξ and then

apply φ2 on both side of the above equation

φ2(∇WW2(X, Y)Z) = −
3

2
d(

1

t2
){g(X,Z)Y − g(Y, Z)X}. (7.2)

By the virtue of (7.2) we can easily say generalized Sasakian space forms is W2-locally φ-symmetric

if and only if 1
t2

is constant or both f1 and f2 are constants.
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ABSTRACT

In this paper, a new class of generalized open sets in a topological space, called pre-

regular sp-open sets, is introduced and studied. This class is contained in the class

of semi-preclopen sets and cotains all pre-clopen sets. We obtain decompositions of

regular open sets by using pre-regular sp-open sets.

RESUMEN

En este art́ıculo se introduce y estudia una nueva clase de conjuntos abiertos gener-

alizados en un espacio topológico, llamados conjuntos pre-regulares sp-abiertos. Esa

clase está contenida en la clase de conjuntos semi-preclopen y contiene todos los conjun-

tos pre-clopen. Obtenemos descomposiciones de conjuntos abiertos regulares usando

conjuntos pre-regulares sp-abiertos.

Keywords and Phrases: Generalized open sets, preopen, regular open, pre-regular sp-open,

decompositions of complete continuity.
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1 Introduction

In general topology, by repeated applications of interior (int) and closure (cl) operators several

different new classes of sets are defined in the following way.

Definition 1. A subset A of a space X is said to be

i) semi-open [10] if A ⊆ cl(intA).

ii) preopen [11] if A ⊆ int(clA).

iii) semi-preopen [2] or β-open [1] if A ⊆ cl(int(clA)).

iv) α-open [12] if A ⊆ int(cl(intA)).

v) regular open [13] if A = int(clA).

vi) b-open [3] if A ⊆ cl(intA) ∪ int(clA).

vii) pre-regular p-open [9] if A = pint(pclA).

The complements of the above open sets are called their respective closed sets.

Definition 2. A subset A of a space X is called a q-set [14] or δ-set [5] if int(clA) ⊆ cl(intA).

In this paper, we introduce and study a new class of sets, called pre-regular sp-open sets using

pre-interior and semi-preclosure operators. This class is contained in the class of semi-preclopen

sets and cotains all pre-clopen sets. Moreover, we investigate the relationship between this class of

sets and other class of open sets. By using pre-regular sp-open sets, we obtain decompositions of

regular open sets. In the last section, we obtain decompositions of complete continuity. Throughout

this paper (X, τ) (briefly X) denotes a topological space on which no separation axioms are assumed,

unless explicity stated.

We recollect some of the relations that, together with their duals, we shall use in the sequel.

Proposition 1. [2] Let A be a subset of a space X. Then

i) pclA = A ∪ cl(intA) and pintA = A ∩ int(clA).

ii) spclA = A ∪ int(cl(intA)) and spintA = A ∩ cl(int(clA)).

iii) pint(spclA) = (A ∩ int(clA)) ∪ int(cl(intA)).

iv) pcl(spintA) = (A ∪ cl(intA)) ∩ cl(int(clA)).

Definition 3. A function f : X → Y is called completely continuous [4] (resp. α-continuous

[8],semi-continuous [10], q-continuous [14] ) if the inverse image of every open subset of Y is a

regular open (resp. α-open, semi-open, a q-set) subset of X.
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2 pre-regular sp-open sets

In this section, we define and characterize pre-regular sp-open sets and study some of their prop-

erties.

Definition 4. A subset A of a topological space (X, τ) is said to be pre-regular sp-open if A =

pint(spclA). The complement of a pre-regular sp-open set is said to be pre-regular sp-closed.

We denote the collection of all pre-regular sp-open (resp. preopen,

preclosed, pre-semiopen, pre-semiclosed, pre-clopen, pre-semiclopen) sets of (X, τ) by PRSPO(X)

(resp. PO(X), PC(X), PSO(X), PSC(X), PCO(X), PSCO(X)).

Theorem 2.1. Let (X, τ) be a topological space and A, B subsets of X. Then the following hold:

i) If A ⊆ B, then pint(spclA) ⊆ pint(spclB).

ii) If A ∈ PO(X, τ), then A ⊆ pint(spclA).

iii) If A ∈ SPC(X, τ), then pint(spclA) ⊆ A.

iv) We have pint(spcl(pint(spclA))) = pint(spclA).

v) If A ∈ SPC(X, τ), then pintA is a pre-regular sp-open set.

Proof. i) Suppose that A ⊆ B. Then pint(spclA) ⊆ pint(spclB).

ii) Suppose that A ∈ PO(X, τ). Since A ⊆ spclA, we have A ⊆ pint(spclA).

iii) Suppose that A ∈ SPC(X, τ). Since pintA ⊆ A, we have pint(spclA) ⊆ A.

iv) We have pint(spcl(pint(spclA))) ⊂ pint(spcl(spclA)) = pint(spclA) and pint(spcl(pint(spclA))) ⊃

pint(pint(spclA)) = pint(spclA). Hence pint(spcl(pint(spclA))) = pint(spclA).

v) Suppose that A ∈ SPC(X, τ). By (i), we have pint(spcl(pintA)) ⊆ pint(spclA) = pintA.

On the other hand, we have pintA ⊆ spcl(pintA). Therefore pintA ⊆ pint(spcl(pintA))

and hence pint(spcl(pintA)) = pintA.

Remark 2.2. The family of pre-regular sp-open sets is not closed under finite union as well as

finite intersection. It will be shown in the following example.

Example 2.3. Let X = {a, b, c, d} and τ = {∅, {a, b}, {a, b, c}, {a, b, d}, X}. Then {a} and {b} are

pre-regular sp-open sets but their union {a, b} is not a pre-regular sp-open set. Moreover, {a, c, d}

and {b, c, d} are pre-regular sp-open but their intersection {c, d} is not a pre-regular sp-open set.

Theorem 2.5 and 2.6 give the characterizations of pre-regular sp-open sets.
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Theorem 2.4. Let (X, τ) be a topological space. For a subset A of X, the following are equivalent:

i) A is pre-regular sp-open.

ii) A = spclA ∩ int(clA).

iii) A = pintA ∪ int(cl(intA)).

Proof. It follows form Proposition 1.3.

Theorem 2.5. Let (X, τ) be a topological space. A subset A of X is pre-regular sp-open if and only

if it is preopen and semi-preclosed .

Proof. LetA be pre-regular sp-open. ThenA = pint(spclA). Hence pintA = pint(pint(spclA)) =

pint(spclA) = A. Thus A is preopen. By Theorem 2.5, A = pintA ∪ int(cl(intA)) and

int(cl(intA)) ⊆ A. Therefore, A is semi-preclosed. Conversely assume that A is both preopen

and semi-preclosed. Then A = pintA and A = spclA. Now pint(spclA) = pintA = A. Hence A

is pre-regular sp-open.

Corolary 1. For a topological space (X, τ), we have PO(X) ∩ PC(X) ⊆ PRSPO(X) ⊆ SPO(X) ∩

SPC(X).

Proof. This is obvious.

Remark 2.6. The converse inclusions in Corollary 2.7 need not be true as the following examples

show.

Example 2.7. Let X = {a, b, c, d} and τ = {∅, {a}, {b}, {a, b}, {b, c}, {a, b, c}, X}.

Then {a, d} is semi-preclopen but not pre-regular sp-open.

Example 2.8. Let X = {a, b, c, d} and τ = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c},

{c, d}, {a, c, d}, {a, b, c}, {b, c, d}, X}. Then {c} is pre-regular sp-open but it

is not pre-clopen.

Theorem 2.9. In any space (X, τ), the empty set is the only subset which is nowhere dense and

pre-regular sp-open.

Proof. SupposeA is nowhere dense and pre-regular sp-open. Then by Theorem 2.5, A = pint(spclA) =

spclA ∩ int(clA) = spclA ∩ ∅ = ∅.

Remark 2.10. The notions of pre-regular sp-open sets and open sets (hence α-open sets, semi-

open sets, q-sets) are independent of each other. It is shown in [5] and [14] that every semi-open

set is a q-set, that is, a δ-set.
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Example 2.11. Let X = {a, b, c} and τ = {∅, {a, b}, X}. Then {a, b} is open hence α-open, semi-

open, a q-set but it is not pre-regular sp-open. Also, {a} is pre-regular sp-open but it is not a

q-set.

Theorem 2.12. Every regular open set is pre-regular sp-open.

Proof. Let A be regular open. Then A = int(clA). By Proposition 1.3, pint(spclA) = (spclA) ∩

int(cl(spclA)) = spclA ∩ int(cl[A ∪ int(cl(intA))]) = spclA ∩ int(clA) = spclA ∩A = A. This

shows that A is pre-regular sp-open.

The above disscusion can be summarized in the following diagram:

DIAGRAM

regular open ⇒ open ⇒ α-open ⇒ semi-open ⇒ q-set

⇓ ⇓ ⇓

pre-regular sp-open ⇒ preopen ⇒ b-open ⇒ semi-preopen

Remark 2.13. A q-set and a semi-preopen set are independent by Example 2.13 and the following

example.

Example 2.14. Let R be the real numbers with the usual topology. Then for each x ∈ R,

cl(int(cl{x})) = ∅ and it does not contain {x}. Hence {x} is not semi-preopen. But int(cl{x}) =

cl(int{x}) = ∅ and {x} is a q-set.

Theorem 2.15. Every pre-regular p-open set is pre-regular sp-open.

Proof. Let A be pre-regular p-open. Then A = pint(pclA) and A is preopen. Since spclA ⊆ pclA,

we have pint(spclA) ⊆ pint(pclA) = A. On the other hand, we have A ⊆ spclA. Since A is

preopen, A = pintA ⊆ pint(spclA). Hence A = pint(spclA).

Theorem 2.16. For a subset A of a space X, the following are equivalent:

i) A is regular open.

ii) A is pre-regular sp-open and a q-set.

iii) A is α-open and semi-preclosed.

Proof. i) ⇒ ii). Let A be regular open. Then, by Theorem 2.14 A is pre-regular sp-open and also

by Diagram, A is a q-set.

ii) ⇒ i). Since A is a q-set, int(clA) ⊂ cl(intA) and int(clA) ⊂ int(cl(intA))

⊂ int(clA). Therefore, we have int(clA) = int(cl(intA)). By using Theorem 2.5, we obtain

int(clA) = [A ∪ int(clA)] ∩ int(clA) = [A ∪ int(cl(intA))] ∩ int(clA) = spclA ∩ int(clA) = A.

i) ⇒ iii). Let A be regular open. Then A is open and A = int(clA) = int(cl(intA)). Therefore,

every regular open set is α-open and semi-preclosed.
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iii) ⇒ i). Let A be α-open and semi-preclosed. Then int(cl(intA)) ⊂ A ⊂ int(cl(intA)).

Therefore, A = int(cl(intA)) and hence int(clA) = int(cl(int(cl(intA)))) = int(cl(intA)) = A.

Hence A is regular open.

Corolary 2. Suppose A is pre-regular sp-open. Then the following are hold:

i) If A is open, then A is regular open.

ii) If A is closed, then A is clopen.

iii) If A is semi-open, then A is regular open.

iv) If A is semi-closed, then A is α-open and semi-preclosed.

Proof. SinceA is pre-regular sp-open, by Theorem 2.5 A = spclA∩int(clA) = pintA∪int(cl(intA)).

i) Suppose A is open. Then by Diagram, A is a q-set and by Theorem 2.18, we have A is regular

open.

ii) Suppose A is closed. Now A = spclA ∩ int(clA) = spclA ∩ intA = intA. Hence A is open

and hence clopen.

iii) Since every semi-open set is a q-set, by Theorem 2.18 A is regular open.

iv) Suppose A is semi- closed. Then int(clA) ⊆ A. This implies int(clA) ⊂ intA ⊂ cl(intA).

Hence A is a q-set and by Theorem 2.18, A is α-open and semi-preclosed.

Remark 2.17. In a partition space (X, τ), a subset A of X is preopen if and only if A is pre-regular

sp-open.

Theorem 2.18. If a space (X, τ) is submaximal, then any finite intersection of pre-regular sp-open

sets is pre-regular sp-open.

Proof. Let {Ai|i ∈ I} be a finite family of pre-regular sp-open sets. Then {Ai|i ∈ I} is a finite

family of preopen sets. Since X is submaximal,
⋂

i∈I
Ai is pre open. Therefore by Theorem 2.2

(ii),
⋂

i∈I
Ai ⊆ pint(spcl(

⋂
i∈I

Ai). On the other hand, for each i ∈ I, we have
⋂

i∈I
Ai ⊆ Ai

and by Theorem 2.2 (i) pint(spcl(
⋂

i∈I
Ai))) ⊆ pint(spclAi). Since pint(spclAi) = Ai, we have

pint(spcl(
⋂

i∈I
Ai))) ⊆

⋂
i∈I

Ai. Hence pint(spcl(
⋂

i∈I
Ai))) =

⋂
i∈I

Ai.

Theorem 2.19. If A is pre-regular sp-closed and a rare set of a space (X, τ), then A is semi-

preopen.
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Proof. Since A is pre-regular sp-closed, by Theorem 2.5 A = pcl(spintA) = spintA ∪ cl(intA).

Since A is a rare set, intA = ∅. Thus A = spintA. Hence A is semi-preopen.

Recall that a space (X, τ) is said to be an extremally disconnected if the closure of every

open subset of X is open. Moreover, it is shown in [7] (X, τ) is extremally disconnected if and only

if SPO(X) = PO(X).

Theorem 2.20. For an extremally disconnected space (X, τ), the following are equivalent:

i) A is pre-regular sp-open.

ii) A is pre-regular sp-closed.

iii) A is pre-clopen.

iv) A is semi-preclopen.

Proof. (i) ⇔ (iii). Suppose that A is pre-regular sp-open. Then by Theorem 2.6, A is preopen

and semi-preclosed. Since X is extremally disconnected, A is pre-clopen. Hence A is pre-closed.

The converse is obvious by Theorem 2.6.

(ii) ⇔ (iv). Let A be pre-regular sp-closed. Then X\A is pre-regular sp-open and by (i) ⇔ (iii)

X\A is pre-clopen. Therefore, A is semi-preclopen. The converse is obvious.

(iii) ⇔ (iv). This is obvious.

Recall that a space (X, τ) has the property Q [10] if int(clA) = cl(intA) for all subset

A of X.

Theorem 2.21. Let (X, τ) be a space with the property Q. For a subset A ⊆ X, the following

properties are equivalent:

i) A is pre-regular sp-open.

ii) A is pre-regular sp-closed.

iii) A is regular open.

iv) A is regular closed.

Proof. (i) ⇔ (iii). By Proposition 1.3, pint(spclA) = [A ∩ int(clA)] ∪ int(cl(intA)) = [A ∩

int(clA)] ∪ int(int(clA)) = int(clA). This completes the proof.

(ii) ⇔ (iv). By Proposition 1.3, pcl(spintA) = [A ∪ cl(intA)] ∩ cl(int(clA)) = [A ∪ cl(intA)] ∩

cl(cl(intA)) = cl(intA). This completes the proof.

(iii) ⇔ (iv). This is obvious.
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3 Decompositions of complete continuity

In this section, the notion of pre-regular sp-continuous functions is introduced and the decompo-

sitions of complete continuity are discussed.

Definition 5. A function f : X → Y is said to be pre-regular sp-continuous (briefly, prsp-

continuous) if f−1(V) is pre-regular sp-open in X for each open subset V of Y.

By Theorems 2.18 and Daigram, we have the following main theorem

Theorem 3.1. For a function f : X → Y, the following properties are equivalent:

i) f is completely continuous.

ii) f is prsp-continuous and continuous.

iii) f is prsp-continuous and α-continuous.

iv) f is prsp-continuous and semi-continuous.

v) f is prsp-continuous and q-continuous.

Remark 3.2. As shown by the following examples, prsp-continuity and continuity (hence α-

continuity, semi-continuity, q-continuity) are independent of each other.

Example 3.3. Let X = {a, b, c}, τ = {∅, {a}, X} and σ = {∅, {a, b}, X}. Then

i) The identity function f : (X, τ) → (X, τ) is continuous but it is not prsp-continuous since

f−1({a}) = {a} is open but it is not pre-regular sp-open.

ii) Consider the function f : (X, σ) → (X, τ) defined by f(a) = a, f(b) = c and f(c) = b. Then f

is prsp-continuous but it is not q-continuous, since f−1({a}) = {a} is pre-regular sp-open but it

is not a q-set in (X, σ).
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[7] M. Ganster and D. Andrijević, On some questions concerning semi-preopen sets, J. Inst. Math.

Comp. Sci. (Math. Ser.) 1 (2) (1988), 65-75.

[8] I. A. Hasanein, M. E. Abd El- Monsef and S. N. El-Deep, α-continuity and α-open mappings,

Acta. Math. Hungar., 41 (1983), 213-218.

[9] S. Jafari, On certain types of notions via preopen sets , Tamkang J. Math., 37 (4) (2006),

391-398.

[10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly,

70 (1963), 36-41.

[11] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak pre-

continuous mappings, Proc. Math. Phys. Soc. Egypt., 53 (1982), 47-53.

[12] O. Nj̊astad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.

[13] M. Stone, Applications of the theory of boolean ring to general topology , Trans. Amer. Math.

Soc., 41 (1937), 374.

[14] P. Thangavelu and K. C. Rao, q-sets in topological spaces , Prog of Maths., 36 (1-2) (2002),

159-165.





CUBO A Mathematical Journal
Vol.20, No

¯ 01, (41–64). March 2018
http: // dx. doi. org/ 10. 4067/ S0719-06462018000100041

Common Fixed Point Results in C∗-Algebra Valued
b-Metric Spaces Via Digraphs

Sushanta Kumar Mohanta

Department of Mathematics,

West Bengal State University,,

Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India.

smwbes@yahoo.in

ABSTRACT
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points for a pair of self-mappings defined on a C∗-algebra valued b-metric space endowed
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1 Introduction

In 1922 [5], Polish mathematician S. Banach proved a very important result regarding a contrac-

tion mapping, known as the Banach contraction principle. This fundamental principle was largely

applied in many branches of mathematics. Several authors generalized this interesting theorem

in different ways(see [1, 2, 6, 13, 18, 25, 26, 27]). In this context, Bakhtin [4] and Czerwik [11]

developed the notion of b-metric spaces and proved some fixed point theorems for single-valued

and multi-valued mappings in the setting of b-metric spaces. In 2014, Z. Ma et.al.[22] introduced

the concept of C∗-algebra valued metric spaces by using the set of all positive elements of an unital

C∗-algebra instead of the set of real numbers. In [21], the authors introduced another new concept,

known as C∗-algebra valued b-metric spaces as a generalization of C∗-algebra valued metric spaces

and b-metric spaces.

In recent investigations, the study of fixed point theory endowed with a graph plays an im-

portant role in many aspects. In 2005, Echenique [15] studied fixed point theory by using graphs.

After that, Espinola and Kirk [16] applied fixed point results in graph theory. Recently, combining

fixed point theory and graph theory, a series of articles(see [3, 8, 9, 10, 20, 24] and references

therein) have been dedicated to the improvement of fixed point theory.

The idea of common fixed point was initially given by Junck [19]. In fact, the author introduced

the concept of weak compatibility and obtained a common fixed point result. Several authors

have obtained coincidence points and common fixed points for various classes of mappings on a

metric space by using this concept. Motivated by some recent works on the extension of Banach

contraction principle to metric spaces with a graph, we reformulated some important common

fixed point results in metric spaces to C∗-algebra valued b-metric spaces endowed with a graph.

As some consequences of this study, we deduce several related results in fixed point theory. Finally,

some examples are provided to illustrate the results.

2 Some basic concepts

We begin with some basic notations, definitions and properties of C∗-algebras. Let A be an unital

algebra with the unit I. An involution on A is a conjugate linear map a 7→ a∗ on A such that

a∗∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A. The pair (A, ∗) is called a ∗-algebra. A Banach

∗-algebra is a ∗-algebra A together with a complete submultiplicative norm such that ‖ a∗ ‖=‖ a ‖

for all a ∈ A. A C∗-algebra is a Banach ∗-algebra such that ‖ a∗a ‖=‖ a ‖2 for all a ∈ A. Let H

be a Hilbert space and B(H), the set of all bounded linear operators on H. Then, under the norm

topology, B(H) is a C∗-algebra.

Throughout this discussion, by A we always denote an unital C∗-algebra with the unit I and
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the zero element θ. Set Ah = {x ∈ A : x = x∗}. We call an element x ∈ A a positive element,

denote it by x � θ, if x ∈ Ah and σ(x) ⊂ [0,∞), where σ(x) is the spectrum of x. Using positive

elements, one can define a partial ordering � on Ah as follows:

x � y if and only if y− x � θ.

We shall write x ≺ y if x � y and x 6= y.

From now on, by A+, we denote the set {x ∈ A : x � θ} and by A
′

, we denote the set

{a ∈ A : ab = ba, ∀b ∈ A}.

Lemma 2.1. [14, 23] Suppose that A is an unital C∗-algebra with a unit I.

(i) For any x ∈ A+, we have x � I ⇔‖ x ‖≤ 1.

(ii) If a ∈ A+ with ‖ a ‖< 1
2
, then I− a is invertible and ‖ a(I− a)−1 ‖< 1.

(iii) Suppose that a, b ∈ A with a, b � θ and ab = ba, then ab � θ.

(iv) Let a ∈ A
′

, if b, c ∈ A with b � c � θ, and I − a ∈ A
′

+ is an invertible operator, then

(I− a)−1b � (I − a)−1c.

Remark 2.2. It is worth mentioning that x � y ⇒‖ x ‖≤‖ y ‖ for x, y ∈ A+. In fact, it follows

from Lemma 2.1 (i).

Definition 2.3. [22] Let X be a nonempty set. Suppose the mapping d : X× X → A satisfies:

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a C∗-algebra valued metric on X and (X,A, d) is called a C∗-algebra valued metric

space.

Definition 2.4. [4] Let X be a nonempty set and s ≥ 1 be a given real number. A function

d : X× X → R+ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.
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Definition 2.5. [21] Let X be a nonempty set and A ∈ A
′

+ such that A � I. Suppose the

mapping d : X× X → A satisfies:

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � A (d(x, z) + d(z, y)) for all x, y, z ∈ X.

Then d is called a C∗-algebra valued b-metric on X and (X,A, d) is called a C∗-algebra valued

b-metric space.

It seems important to note that if A = C, A = 1, then the C∗-algebra valued b-metric spaces

are just the ordinary metric spaces. Moreover, it is obvious that C∗-algebra valued b-metric spaces

generalize the concepts of C∗-algebra valued metric spaces and b-metric spaces.

Definition 2.6. [26] Let (X,A, d) be a C∗-algebra valued b-metric space, x ∈ X and (xn) be a

sequence in X. Then

(i) (xn) converges to x with respect to A if for any ǫ > 0 there is n0 such that for all n > n0,

‖ d(xn, x) ‖≤ ǫ. We denote it by lim
n→∞

xn = x or xn → x(n → ∞).

(ii) (xn) is Cauchy with respect to A if for any ǫ > 0 there is n0 such that for all n,m > n0,

‖ d(xn, xm) ‖≤ ǫ.

(iii) (X,A, d) is a complete C∗-algebra valued b-metric space if every Cauchy sequence with respect

to A is convergent.

Example 2.7. If X is a Banach space, then (X,A, d) is a complete C∗-algebra valued b-metric

space with A = 2p−1I if we set

d(x, y) =‖ x− y ‖p I

where p > 1 is a real number. But (X,A, d) is not a C∗-algebra valued metric space because if

X = R, then | x− y |p≤| x− z |p + | z − y |p is impossible for all x > z > y.

Definition 2.8. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I.

We call a mapping f : X → X a C∗-algebra valued contraction mapping on X if there exists B ∈ A

with ‖ B ‖2< 1
‖A‖ such that

d(fx, fy) � B∗ d(x, y)B

for all x, y ∈ X.

Definition 2.9. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I.

A mapping f : X → X is called a C∗-algebra valued Fisher contraction if there exists B ∈ A
′

+ with

‖ BA ‖< 1
‖A‖+1

such that

d(fx, fy) � B [d(fx, y) + d(fy, x)]

for all x, y ∈ X.
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Definition 2.10. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I.

A mapping f : X → X is called a C∗-algebra valued Kannan operator if there exists B ∈ A
′

+ with

‖ B ‖< 1
‖A‖+1

such that

d(fx, fy) � B [d(fx, x) + d(fy, y)]

for all x, y ∈ X.

Definition 2.11. [2] Let T and S be self mappings of a set X. If y = Tx = Sx for some x in X,

then x is called a coincidence point of T and S and y is called a point of coincidence of T and S.

Definition 2.12. [19] The mappings T, S : X → X are weakly compatible, if for every x ∈ X, the

following holds:

T(Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.13. [2] Let S and T be weakly compatible selfmaps of a nonempty set X. If S

and T have a unique point of coincidence y = Sx = Tx, then y is the unique common fixed point of

S and T .

Definition 2.14. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I.

A mapping f : X → X is called C∗-algebra valued expansive if there exists B ∈ A with 0 <‖ B ‖2<
1

‖A‖ such that

B∗d(fx, fy)B � d(x, y)

for all x, y ∈ X.

We next review some basic notions in graph theory.

Let (X,A, d) be a C∗-algebra valued b-metric space. Let G be a directed graph (digraph) with

a set of vertices V(G) = X and a set of edges E(G) contains all the loops, i.e., E(G) ⊇ ∆, where

∆ = {(x, x) : x ∈ X}. We also assume that G has no parallel edges and so we can identify G with the

pair (V(G), E(G)). G may be considered as a weighted graph by assigning to each edge the distance

between its vertices. By G−1 we denote the graph obtained from G by reversing the direction of

edges i.e., E(G−1) = {(x, y) ∈ X× X : (y, x) ∈ E(G)}. Let G̃ denote the undirected graph obtained

from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat G̃

as a directed graph for which the set of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found in all graph theory

books, like [7, 12, 17]. If x, y are vertices of the digraph G, then a path in G from x to y of length

n (n ∈ N) is a sequence (xi)
n
i=0 of n + 1 vertices such that x0 = x, xn = y and (xi−1, xi) ∈ E(G)

for i = 1, 2, · · · , n. A graph G is connected if there is a path between any two vertices of G. G is

weakly connected if G̃ is connected.
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Definition 2.15. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I

and let G = (V(G), E(G)) be a graph. A mapping f : X → X is called a C∗-algebra valued G-

contraction if there exists a B ∈ A with ‖ B ‖2< 1
‖A‖ such that

d(fx, fy) � B∗d(x, y)B,

for all x, y ∈ X with (x, y) ∈ E(G).

Any C∗-algebra valued contraction mapping on X is aG0-contraction, where G0 is the complete

graph defined by (X,X × X). But it is worth mentioning that a C∗-algebra valued G-contraction

need not be a C∗-algebra valued contraction (see Remark 3.23).

Definition 2.16. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I

and let G = (V(G), E(G)) be a graph. A mapping f : X → X is called C∗-algebra valued Fisher

G-contraction if there exists B ∈ A
′

+ with ‖ BA ‖< 1
‖A‖+1

such that

d(fx, fy) � B [d(fx, y) + d(fy, x)]

for all x, y ∈ X with (x, y) ∈ E(G).

It is easy to observe that a C∗-algebra valued Fisher contraction is a C∗-algebra valued Fisher

G0-contraction. But it is important to note that a C∗-algebra valued Fisher G-contraction need

not be a C∗-algebra valued Fisher contraction. The following example supports the above remark.

Example 2.17. Let X = [0,∞) and B(H) be the set of all bounded linear operators on a Hilbert

space H. Define d : X × X → B(H) by d(x, y) =| x − y |2 I for all x, y ∈ X. Then (X,B(H), d)

is a C∗-algebra valued b-metric space with the coefficient A = 2I. Let G be a digraph such that

V(G) = X and E(G) = ∆ ∪ {(3tx, 3t(x + 1)) : x ∈ X with x ≥ 2, t = 0, 1, 2, · · · }.

Let f : X → X be defined by fx = 3x for all x ∈ X.

For x = 3tz, y = 3t(z + 1), z ≥ 2, we have

d(fx, fy) = d
(

3t+1z, 3t+1(z + 1)
)

= 32t+2I

�
9

58
32t(8z2 + 8z + 10)I

= B
[

d
(

3t+1z, 3t(z + 1)
)

+ d
(

3t+1(z + 1), 3tz
)]

= B [d(fx, y) + d(fy, x)],

where B = 9
58
I ∈ B(H)

′

+ with ‖ BA ‖< 1
‖A‖+1

. Thus, f is a C∗-algebra valued Fisher G-contraction.

We now verify that f is not a C∗-algebra valued Fisher contraction. In fact, if x = 3, y = 0,
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then for any arbitrary B ∈ B(H)
′

+ with ‖ BA ‖< 1
‖A‖+1

= 1
3
(which implies 3BA ≺ I), we have

B [d(fx, y) + d(fy, x)] = B [d(f3, 0) + d(f0, 3)]

= 90BI

= 45BA

=
5

27
(3BA)(81I)

≺ 81I

= d(fx, fy).

Definition 2.18. Let (X,A, d) be a C∗-algebra valued b-metric space with the coefficient A � I

and let G = (V(G), E(G)) be a graph. A mapping f : X → X is called C∗-algebra valued G-Kannan

if there exists B ∈ A
′

+ with ‖ B ‖< 1
‖A‖+1

such that

d(fx, fy) � B [d(fx, x) + d(fy, y)]

for all x, y ∈ X with (x, y) ∈ E(G).

Note that any C∗-algebra valued Kannan operator is C∗-algebra valued G0-Kannan. However,

a C∗-algebra valued G-Kannan operator need not be a C∗-algebra valued Kannan operator (see

Remark 3.28).

Remark 2.19. If f is a C∗-algebra valued G-contraction(resp., G-Kannan or Fisher G-contraction),

then f is both a C∗-algebra valued G−1-contraction(resp., G−1-Kannan or Fisher G−1-contraction)

and a C∗-algebra valued G̃-contraction(resp., G̃-Kannan or Fisher G̃-contraction).

3 Main Results

In this section we always assume that (X,A, d) is a C∗-algebra valued b-metric space with the

coefficient A � I and G is a directed graph such that V(G) = X and E(G) ⊇ ∆.

Let f, g : X → X be such that f(X) ⊆ g(X). If x0 ∈ X is arbitrary, then there exists an element

x1 ∈ X such that fx0 = gx1, since f(X) ⊆ g(X). Proceeding in this way, we can construct a

sequence (gxn) such that gxn = fxn−1, n = 1, 2, 3, · · ·.

Definition 3.1. Let (X,A, d) be a C∗-algebra valued b-metric space endowed with a graph G

and f, g : X → X be such that f(X) ⊆ g(X). We define Cgf the set of all elements x0 of X such that

(gxn, gxm) ∈ E(G̃) for m, n = 0, 1, 2, · · · and for every sequence (gxn) such that gxn = fxn−1.

If g = I, the identity map on X, then obviously Cgf becomes Cf which is the collection of all

elements x of X such that (fnx, fmx) ∈ E(G̃) for m, n = 0, 1, 2, · · · .
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Theorem 3.2. Let (X,A, d) be a C∗-algebra valued b-metric space endowed with a graph G and

the mappings f, g : X → X be such that

d(fx, fy) � B∗ d(gx, gy)B (3.1)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where B ∈ A and ‖ B ‖2< 1
‖A‖ . Suppose f(X) ⊆ g(X) and

g(X) is a complete subspace of X with the following property:

(∗) If (gxn) is a sequence in X such that gxn → x and (gxn, gxn+1) ∈ E(G̃) for all n ≥ 1,

then there exists a subsequence (gxni
) of (gxn) such that (gxni

, x) ∈ E(G̃) for all i ≥ 1.

Then f and g have a point of coincidence in X if Cgf 6= ∅. Moreover, f and g have a unique point

of coincidence in X if the graph G has the following property:

(∗∗) If x, y are points of coincidence of f and g in X, then (x, y) ∈ E(G̃).

Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point in

X.

Proof. Suppose that Cgf 6= ∅. We choose an x0 ∈ Cgf and keep it fixed. Since f(X) ⊆ g(X),

there exists a sequence (gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · and (gxn, gxm) ∈ E(G̃) for

m, n = 0, 1, 2, · · · .

It is a well known fact that in a C∗-algebra A, if a, b ∈ A+ and a � b, then for any x ∈ A both

x∗ax and x∗bx are positive elements and x∗ax � x∗bx[23].

For any n ∈ N, we have by using condition (3.1) that

d(gxn, gxn+1) = d(fxn−1, fxn) � B∗d(gxn−1, gxn)B. (3.2)

By repeated use of condition (3.2), we get

d(gxn, gxn+1) � (B∗)nd(gx0, gx1)B
n = (Bn)∗B0B

n, (3.3)

for all n ∈ N, where B0 = d(gx0, gx1) ∈ A+.
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For any m,n ∈ N with m > n, we have by using condition (3.3) that

d(gxn, gxm) � A[d(gxn, gxn+1) + d(gxn+1, gxm)]

� Ad(gxn, gxn+1) +A2d(gxn+1, gxn+2) + · · ·

+Am−n−1d(gxm−2, gxm−1) + Am−n−1d(gxm−1, gxm)

� A(B∗)nB0B
n +A2(B∗)n+1B0B

n+1 +A3(B∗)n+2B0B
n+2 + · · ·

+Am−n−1(B∗)m−2B0B
m−2 + Am−n−1(B∗)m−1B0B

m−1

�
m−n−1∑

k=1

Ak(B∗)n+k−1B0B
n+k−1 + Am−n(B∗)m−1B0B

m−1

=

m−n∑

k=1

Ak(B∗)n+k−1B0B
n+k−1

�
m−n∑

k=1

‖ Ak(B∗)n+k−1B0B
n+k−1 ‖ I

� ‖ B0 ‖
m−n∑

k=1

‖ A ‖k ‖ B ‖2(n+k−1) I

= ‖ B0 ‖ ‖ B ‖2n ‖ A ‖
m−n∑

k=1

(

‖ A ‖ ‖ B ‖2
)k−1

I

�
‖ B0 ‖ ‖ B ‖2n ‖ A ‖

1− ‖ A ‖ ‖ B ‖2
I, since ‖ B ‖2<

1

‖ A ‖

→ θ as n → ∞.

Therefore, (gxn) is a Cauchy sequence with respect to A. Since g(X) is complete, there exists an

u ∈ g(X) such that lim
n→∞

gxn = u = gv for some v ∈ X.

As x0 ∈ Cgf, it follows that (gxn, gxn+1) ∈ E(G̃) for all n ≥ 0, and so by property (∗), there

exists a subsequence (gxni
) of (gxn) such that (gxni

, gv) ∈ E(G̃) for all i ≥ 1.

Using condition (3.1), we have

d(fv, gv) � A[d(fv, fxni
) + d(fxni

, gv)]

� AB∗d(gv, gxni
)B+Ad(gxni+1, gv)

→ θ as i → ∞.

This implies that d(fv, gv) = θ and hence fv = gv = u. Therefore, u is a point of coincidence of f

and g.

The next is to show that the point of coincidence is unique. Assume that there is another

point of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X. By property (∗∗), we have
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(u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx)

� B∗d(gv, gx)B

= B∗d(u, u∗)B,

which implies that,

‖ d(u, u∗) ‖ ≤ ‖ B∗d(u, u∗)B ‖

≤ ‖ B∗ ‖‖ d(u, u∗) ‖‖ B ‖

= ‖ B ‖2‖ d(u, u∗) ‖ .

Since ‖ B ‖2< 1
‖A‖ ≤ 1, it follows that d(u, u∗) = θ i.e., u = u∗. Therefore, f and g have a unique

point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.13, f and g have a unique common

fixed point in X.

The following corollary gives fixed point of Banach G-contraction in C∗-algebra valued b-

metric spaces.

Corollary 3.3. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

graph G and the mapping f : X → X be such that

d(fx, fy) � B∗d(x, y)B (3.4)

for all x, y ∈ X with (x, y) ∈ E(G̃), where B ∈ A with ‖ B ‖2< 1
‖A‖ . Suppose (X,A, d,G) has the

following property:

(∗)́ If (xn) is a sequence in X such that xn → x and (xn, xn+1) ∈ E(G̃) for all n ≥ 1, then

there exists a subsequence (xni
) of (xn) such that (xni

, x) ∈ E(G̃) for all i ≥ 1.

Then f has a fixed point in X if Cf 6= ∅. Moreover, f has a unique fixed point in X if the graph G

has the following property:

(∗ ∗ )́ If x, y are fixed points of f in X, then (x, y) ∈ E(G̃).

Proof. The proof can be obtained from Theorem 3.2 by considering g = I, the identity map on

X.

Corollary 3.4. Let (X,A, d) be a C∗-algebra valued b-metric space and the mappings f, g : X →
X be such that (3.1) holds for all x, y ∈ X, where B ∈ A with ‖ B ‖2< 1

‖A‖ . If f(X) ⊆ g(X) and
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g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X. Moreover,

if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof follows from Theorem 3.2 by taking G = G0, where G0 is the complete graph

(X,X × X).

The following corollary is analogue of Banach Contraction Principle.

Corollary 3.5. Let (X,A, d) be a complete C∗-algebra valued b-metric space and the mapping

f : X → X be such that (3.4) holds for all x, y ∈ X, where B ∈ A with ‖ B ‖2< 1
‖A‖ . Then f has a

unique fixed point u in X and fnx → u for all x ∈ X.

Proof. It follows from Theorem 3.2 by putting G = G0 and g = I.

Remark 3.6. We observe that Banach contraction theorem in a complete metric space can be

obtained from Corollary 3.5 by taking A = C, A = 1. Thus, Theorem 3.2 is a generalization of

Banach contraction theorem in metric spaces to C∗-algebra valued b-metric spaces.

From Theorem 3.2, we obtain the following corollary concerning the fixed point of expansive

mapping in C∗-algebra valued b-metric spaces.

Corollary 3.7. Let (X,A, d) be a complete C∗-algebra valued b-metric space and let g : X → X

be an onto mapping satisfying

B∗d(gx, gy)B � d(x, y)

for all x, y ∈ X, where B ∈ A with ‖ B ‖2< 1
‖A‖ . Then g has a unique fixed point in X.

Proof. The conclusion of the corollary follows from Theorem 3.2 by taking G = G0 and f = I.

Corollary 3.8. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

partial ordering ⊑ and the mapping f : X → X be such that (3.4) holds for all x, y ∈ X with x ⊑ y

or, y ⊑ x, where B ∈ A and ‖ B ‖2< 1
‖A‖ . Suppose (X,A, d,⊑) has the following property:

(†) If (xn) is a sequence in X such that xn → x and xn, xn+1 are comparable for all n ≥ 1,

then there exists a subsequence (xni
) of (xn) such that xni

, x are comparable for all i ≥ 1.

If there exists x0 ∈ X such that fnx0, f
mx0 are comparable for m, n = 0, 1, 2, · · · , then f has a

fixed point in X. Moreover, f has a unique fixed point in X if the following property holds:

(††) If x, y are fixed points of f in X, then x, y are comparable.

Proof. The proof can be obtained from Theorem 3.2 by taking g = I and G = G2, where the graph

G2 is defined by E(G2) = {(x, y) ∈ X× X : x ⊑ y or y ⊑ x}.
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Theorem 3.9. Let (X,A, d) be a C∗-algebra valued b-metric space endowed with a graph G and

the mappings f, g : X → X be such that

d(fx, fy) � B [d(fx, gy) + d(fy, gx)] (3.5)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where B ∈ A
′

+ and ‖ BA ‖< 1
‖A‖+1

. Suppose f(X) ⊆ g(X) and

g(X) is a complete subspace of X with the property (∗). Then f and g have a point of coincidence

in X if Cgf 6= ∅. Moreover, f and g have a unique point of coincidence in X if the graph G has the

property (∗∗). Furthermore, if f and g are weakly compatible, then f and g have a unique common

fixed point in X.

Proof. It follows from condition (3.5) that B(d(fx, gy) + d(fy, gx)) is a positive element.

Suppose that Cgf 6= ∅. We choose an x0 ∈ Cgf and keep it fixed. We can construct a sequence

(gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · . Evidently, (gxn, gxm) ∈ E(G̃) for m,n = 0, 1, 2, · · · .

For any n ∈ N, we have by using condition (3.5) and Lemma 2.1(iii) that

d(gxn, gxn+1) = d(fxn−1, fxn)

� B[d(fxn−1, gxn) + d(fxn, gxn−1)]

= B[d(fxn−1, fxn−1) + d(fxn, fxn−2)]

� BA[d(fxn, fxn−1) + d(fxn−1, fxn−2)]

= BAd(gxn+1, gxn) + BAd(gxn, gxn−1)]

which implies that,

(I− BA)d(gxn, gxn+1) � BAd(gxn, gxn−1). (3.6)

Now, A, B ∈ A
′

+ implies that BA ∈ A
′

+. Since ‖ BA ‖< 1
2
, by Lemma 2.1, it follows that (I−BA)

is invertible and ‖ BA(I − BA)−1 ‖=‖ (I− BA)−1BA ‖< 1. Moreover, by Lemma 2.1, BA � I i.e.,

I − BA � θ. Since BA ∈ A
′

+, we have (I − BA) ∈ A
′

+. Furthermore, (I − BA)−1 ∈ A
′

+. By using

Lemma 2.1(iv), it follows from (3.6) that

d(gxn, gxn+1) � (I− BA)−1BAd(gxn, gxn−1) = td(gxn−1, gxn), (3.7)

where t = (I− BA)−1BA ∈ A
′

+.

By repeated use of condition (3.7), we get

d(gxn, gxn+1) � tnd(gx0, gx1) = tnB0, (3.8)

for all n ∈ N, where B0 = d(gx0, gx1) ∈ A+.
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We now prove that if ‖ BA ‖< 1
‖A‖+1

, then ‖ t ‖< 1
‖A‖ .

We have,

‖ t ‖ = ‖ (I− BA)−1BA ‖

≤ ‖ (I− BA)−1 ‖‖ BA ‖

≤
1

1− ‖ BA ‖
‖ BA ‖

<
1

‖ A ‖
, since ‖ BA ‖<

1

‖ A ‖ +1
.

For any m,n ∈ N with m > n, we have by using condition (3.8) that

d(gxn, gxm) � A[d(gxn, gxn+1) + d(gxn+1, gxm)]

� Ad(gxn, gxn+1) +A2d(gxn+1, gxn+2) + · · ·

+Am−n−1d(gxm−2, gxm−1) + Am−n−1d(gxm−1, gxm)

� AtnB0 +A2tn+1B0 +A3tn+2B0 + · · ·

+Am−n−1tm−2B0 +Am−n−1tm−1B0

�
m−n∑

k=1

Aktn+k−1B0, since A � I and A ∈ A
′

+

�
m−n∑

k=1

‖ Aktn+k−1B0 ‖ I

� ‖ B0 ‖ ‖ A ‖ ‖ t ‖n
m−n∑

k=1

(‖ A ‖ ‖ t ‖)k−1
I

� ‖ B0 ‖ ‖ A ‖ ‖ t ‖n
1

1− ‖ A ‖ ‖ t ‖
I

→ θ as n → ∞.

Therefore, (gxn) is a Cauchy sequence with respect to A. As g(X) is complete, there exists an

u ∈ g(X) such that lim
n→∞

gxn = u = gv for some v ∈ X. By property (∗), there exists a subsequence

(gxni
) of (gxn) such that (gxni

, gv) ∈ E(G̃) for all i ≥ 1.

Using condition (3.5), we have

d(fv, gv) � A[d(fv, fxni
) + d(fxni

, gv)]

� AB[d(fv, gxni
) + d(fxni

, gv)] +Ad(gxni+1, gv)

� ABA[d(fv, gv) + d(gv, gxni
)] +ABd(gxni+1, gv) +Ad(gxni+1, gv)

which implies that,

(I − BA2)d(fv, gv) � BA2d(gv, gxni
) + ABd(gxni+1, gv) +Ad(gxni+1, gv).
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Since ‖ BA2 ‖< ‖A‖
‖A‖+1

< 1, we have (I − BA2)−1 exists. By using Lemma 2.1, it follows that

d(fv, gv) � (I− BA2)−1BA2d(gv, gxni
) + (I− BA2)−1ABd(gxni+1, gv)

+(I− BA2)−1Ad(gxni+1, gv)

→ θ as i → ∞.

This implies that d(fv, gv) = θ i.e., fv = gv = u and hence u is a point of coincidence of f and g.

Finally, to prove the uniqueness of point of coincidence, suppose that there is another point

of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X. By property (∗∗), we have

(u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx)

� B[d(fv, gx) + d(fx, gv)]

= B[d(u, u∗) + d(u, u∗)]

� AB[d(u, u∗) + d(u, u∗)]

which implies that,

d(u, u∗) � (I −AB)−1 ABd(u, u∗).

So, it must be the case that

‖ d(u, u∗) ‖ ≤ ‖ (I−AB)−1ABd(u, u∗) ‖

≤ ‖ (I−AB)−1AB ‖ ‖ d(u, u∗) ‖ .

Since ‖ (I − AB)−1AB ‖< 1, we have ‖ d(u, u∗) ‖= 0 i.e., u = u∗. Therefore, f and g have a

unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.13, f and g have a unique common

fixed point in X.

Corollary 3.10. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

graph G and the mapping f : X → X be such that

d(fx, fy) � B [d(fx, y) + d(fy, x)] (3.9)

for all x, y ∈ X with (x, y) ∈ E(G̃), where B ∈ A
′

+ and ‖ BA ‖< 1
‖A‖+1

. Suppose (X,A, d,G) has

the property (∗)́. Then f has a fixed point in X if Cf 6= ∅. Moreover, f has a unique fixed point in

X if the graph G has the property (∗ ∗ )́.

Proof. The proof can be obtained from Theorem 3.9 by putting g = I.
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Corollary 3.11. Let (X,A, d) be a C∗-algebra valued b-metric space and the mappings f, g :

X → X be such that (3.5) holds for all x, y ∈ X, where B ∈ A
′

+ and ‖ BA ‖< 1
‖A‖+1

. If f(X) ⊆ g(X)

and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X.

Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof can be obtained from Theorem 3.9 by taking G = G0.

Corollary 3.12. Let (X,A, d) be a complete C∗-algebra valued b-metric space and the mapping

f : X → X be such that (3.9) holds for all x, y ∈ X, where B ∈ A
′

+ with ‖ BA ‖< 1
‖A‖+1

. Then f

has a unique fixed point in X.

Proof. The proof follows from Theorem 3.9 by taking G = G0 and g = I.

Remark 3.13. We observe that Brian Fisher’s theorem in a complete metric space can be

obtained from Corollary 3.12 by taking A = C, A = 1. Thus, Theorem 3.9 is a generalization of

Brian Fisher’s theorem in metric spaces to C∗-algebra valued b-metric spaces.

Corollary 3.14. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

partial ordering ⊑ and the mapping f : X → X be such that (3.9) holds for all x, y ∈ X with x ⊑ y

or, y ⊑ x, where B ∈ A
′

+ with ‖ BA ‖< 1
‖A‖+1

. Suppose (X,A, d,⊑) has the property (†). If there

exists x0 ∈ X such that fnx0, f
mx0 are comparable for m, n = 0, 1, 2, · · · , then f has a fixed point

in X. Moreover, f has a unique fixed point in X if the property (††) holds.

Proof. The proof can be obtained from Theorem 3.9 by taking G = G2 and g = I.

Theorem 3.15. Let (X,A, d) be a C∗-algebra valued b-metric space endowed with a graph G

and the mappings f, g : X → X be such that

d(fx, fy) � B [d(fx, gx) + d(fy, gy)] (3.10)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where B ∈ A
′

+ and ‖ B ‖< 1
‖A‖+1

. Suppose f(X) ⊆ g(X) and

g(X) is a complete subspace of X with the property (∗). Then f and g have a point of coincidence

in X if Cgf 6= ∅. Moreover, f and g have a unique point of coincidence in X if the graph G has the

property (∗∗). Furthermore, if f and g are weakly compatible, then f and g have a unique common

fixed point in X.

Proof. We observe that B(d(fx, gx) + d(fy, gy)) is a positive element.

Suppose that Cgf 6= ∅. We choose an x0 ∈ Cgf and keep it fixed. We can construct a sequence

(gxn) such that gxn = fxn−1, n = 1, 2, 3, · · · . Evidently, (gxn, gxm) ∈ E(G̃) for m,n = 0, 1, 2, · · · .
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For any n ∈ N, we have by using condition (3.10) that

d(gxn, gxn+1) = d(fxn−1, fxn)

� B[d(fxn−1, gxn−1) + d(fxn, gxn)]

= Bd(gxn, gxn−1) + Bd(gxn, gxn+1)

which implies that,

(I− B)d(gxn, gxn+1) � Bd(gxn, gxn−1). (3.11)

Since B ∈ A
′

+ and ‖ B ‖< 1
2
, by Lemma 2.1, it follows that B � I and (I − B) is invertible with

‖ B(I−B)−1 ‖=‖ (I−B)−1B ‖< 1. Furthermore, (I−B), (I−B)−1 ∈ A
′

+ and so, (I−B)−1B ∈ A
′

+.

Again, by using Lemma 2.1(iv), it follows from condition (3.11) that

d(gxn, gxn+1) � (I− B)−1Bd(gxn, gxn−1) = td(gxn−1, gxn), (3.12)

where t = (I− B)−1B ∈ A
′

+.

By repeated use of condition (3.12), we get

d(gxn, gxn+1) � tnd(gx0, gx1) = tnB0, (3.13)

for all n ∈ N, where B0 = d(gx0, gx1) ∈ A+.

We now prove that if ‖ B ‖< 1
‖A‖+1

, then ‖ t ‖< 1
‖A‖ .

We have,

‖ t ‖ = ‖ (I− B)−1B ‖

≤ ‖ (I− B)−1 ‖‖ B ‖

≤
1

1− ‖ B ‖
‖ B ‖

<
1

‖ A ‖
, since ‖ B ‖<

1

‖ A ‖ +1
.
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For any m,n ∈ N with m > n, we have by using condition (3.13) that

d(gxn, gxm) � A[d(gxn, gxn+1) + d(gxn+1, gxm)]

� Ad(gxn, gxn+1) +A2d(gxn+1, gxn+2) + · · ·

+Am−n−1d(gxm−2, gxm−1) + Am−n−1d(gxm−1, gxm)

� AtnB0 +A2tn+1B0 +A3tn+2B0 + · · ·

+Am−n−1tm−2B0 +Am−n−1tm−1B0

�
m−n∑

k=1

Aktn+k−1B0, since A � I and A ∈ A
′

+

�
m−n∑

k=1

‖ Aktn+k−1B0 ‖ I

� ‖ B0 ‖‖ A ‖‖ t ‖n
m−n∑

k=1

(‖ A ‖‖ t ‖)k−1I

� ‖ B0 ‖‖ A ‖‖ t ‖n
1

1− ‖ A ‖‖ t ‖
I

→ θ as n → ∞.

Therefore, (gxn) is a Cauchy sequence with respect to A. By completeness of g(X), there exists

an u ∈ g(X) such that lim
n→∞

gxn = u = gv for some v ∈ X . By property (∗), there exists a

subsequence (gxni
) of (gxn) such that (gxni

, gv) ∈ E(G̃) for all i ≥ 1.

Using condition (3.10), we have

d(fv, gv) � A[d(fv, fxni
) + d(fxni

, gv)]

� AB[d(fv, gv) + d(fxni
, gxni

)] +Ad(gxni+1, gv)

which implies that,

(I− AB)d(fv, gv) � ABd(gxni+1, gxni
) + Ad(gxni+1, gv).

Since ‖ AB ‖< ‖A‖
‖A‖+1

< 1, we have (I−AB)−1 exists and (I−AB) ∈ A
′

+. By using Lemma 2.1, it

follows that

d(fv, gv) � (I−AB)−1ABd(gxni+1, gxni
) + (I− AB)−1Ad(gxni+1, gv).

Then,

‖ d(fv, gv) ‖ ≤ ‖ (I−AB)−1AB ‖ ‖ d(gxni+1, gxni
) ‖

+ ‖ (I−AB)−1A ‖ ‖ d(gxni+1, gv) ‖

≤ ‖ (I−AB)−1AB ‖ ‖ t ‖ni ‖ B0 ‖

+ ‖ (I−AB)−1A ‖ ‖ d(gxni+1, gv) ‖

→ 0 as i → ∞.
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This implies that d(fv, gv) = θ i.e., fv = gv = u and hence u is a point of coincidence of f and g.

Finally, to prove the uniqueness of point of coincidence, suppose that there is another point

of coincidence u∗ in X such that fx = gx = u∗ for some x ∈ X. By property (∗∗), we have

(u, u∗) ∈ E(G̃). Then,

d(u, u∗) = d(fv, fx)

� B[d(fv, gv) + d(fx, gx)]

= θ

which implies that, d(u, u∗) = θ i.e., u = u∗. Therefore, f and g have a unique point of coincidence

in X.

If f and g are weakly compatible, then by Proposition 2.13, f and g have a unique common

fixed point in X.

Corollary 3.16. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

graph G and the mapping f : X → X be such that

d(fx, fy) � B [d(fx, x) + d(fy, y)] (3.14)

for all x, y ∈ X with (x, y) ∈ E(G̃), where B ∈ A
′

+ and ‖ B ‖< 1
‖A‖+1

. Suppose (X,A, d,G) has the

property (∗)́. Then f has a fixed point in X if Cf 6= ∅. Moreover, f has a unique fixed point in X if

the graph G has the property (∗ ∗ )́.

Proof. The proof can be obtained from Theorem 3.15 by putting g = I.

Corollary 3.17. Let (X,A, d) be a C∗-algebra valued b-metric space and the mappings f, g :

X → X be such that (3.10) holds for all x, y ∈ X, where B ∈ A
′

+ and ‖ B ‖< 1
‖A‖+1

. If f(X) ⊆ g(X)

and g(X) is a complete subspace of X, then f and g have a unique point of coincidence in X.

Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point in X.

Proof. The proof can be obtained from Theorem 3.15 by taking G = G0.

Corollary 3.18. Let (X,A, d) be a complete C∗-algebra valued b-metric space and the mapping

f : X → X be such that (3.14) holds for all x, y ∈ X, where B ∈ A
′

+ with ‖ B ‖< 1
‖A‖+1

. Then f has

a unique fixed point in X.

Proof. The proof follows from Theorem 3.15 by taking G = G0 and g = I.
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Remark 3.19. We observe that Kannan’s fixed point theorem in a complete metric space can

be obtained from Corollary 3.18 by taking A = C, A = 1. Thus, Theorem 3.15 is a generalization

of Kannan’s fixed point theorem in metric spaces to C∗-algebra valued b-metric spaces.

Corollary 3.20. Let (X,A, d) be a complete C∗-algebra valued b-metric space endowed with a

partial ordering ⊑ and the mapping f : X → X be such that (3.14) holds for all x, y ∈ X with x ⊑ y

or, y ⊑ x, where B ∈ A
′

+ with ‖ B ‖< 1
‖A‖+1

. Suppose (X,A, d,⊑) has the property (†). If there

exists x0 ∈ X such that fnx0, f
mx0 are comparable for m, n = 0, 1, 2, · · · , then f has a fixed point

in X. Moreover, f has a unique fixed point in X if the property (††) holds.

Proof. The proof can be obtained from Theorem 3.15 by taking G = G2 and g = I.

We furnish some examples in favour of our results.

Example 3.21. Let X = R and B(H) be the set of all bounded linear operators on a Hilbert

space H. Define d : X × X → B(H) by d(x, y) =| x − y |3 I for all x, y ∈ X, where I is the

identity operator on H. Then (X,B(H), d) is a complete C∗-algebra valued b-metric space with the

coefficient A = 4I. Let G be a digraph such that V(G) = X and E(G) = ∆∪{( 1
n
, 0) : n = 1, 2, 3 · · · }.

Let f, g : X → X be defined by

fx =
x

5
, if x 6=

4

5

= 1, if x =
4

5

and gx = 2x for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

If x = 0, y = 1
2n

, n = 1, 2, 3, · · · , then gx = 0, gy = 1
n

and so (gx, gy) ∈ E(G̃).

For x = 0, y = 1
2n

, we have

d(fx, fy) = d

(

0,
1

10n

)

=
1

103.n3
I

≺
1

25n3
I

=
1

25
d(gx, gy)

= B∗ d(gx, gy)B,

where B = 1
5
I ∈ B(H).
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Therefore,

d(fx, fy) � B∗ d(gx, gy)B

for all x, y ∈ X with (gx, gy) ∈ E(G̃), where B ∈ B(H) and ‖ B ‖2< 1
‖A‖ . We can verify that

0 ∈ Cgf. In fact, gxn = fxn−1, n = 1, 2, 3, · · · gives that gx1 = f0 = 0 ⇒ x1 = 0 and so

gx2 = fx1 = 0 ⇒ x2 = 0. Proceeding in this way, we get gxn = 0 for n = 0, 1, 2, · · · and hence

(gxn, gxm) = (0, 0) ∈ E(G̃) for m, n = 0, 1, 2, · · · .

Also, any sequence (gxn) with the property (gxn, gxn+1) ∈ E(G̃) must be either a constant

sequence or a sequence of the following form

gxn = 0, if n is odd

=
1

n
, if n is even

where the words ’odd’ and ’even’ are interchangeable. Consequently it follows that property (∗)

holds. Furthermore, f and g are weakly compatible. Thus, we have all the conditions of Theorem

3.2 and 0 is the unique common fixed point of f and g in X.

Remark 3.22. It is worth mentioning that weak compatibility condition in Theorem 3.2 cannot

be relaxed. In Example 3.21, if we take gx = 2x− 9 for all x ∈ X instead of gx = 2x, then 5 ∈ Cgf

and f(5) = g(5) = 1 but g(f(5)) 6= f(g(5)) i.e., f and g are not weakly compatible. However, all

other conditions of Theorem 3.2 are satisfied. We observe that 1 is the unique point of coincidence

of f and g without being any common fixed point.

Remark 3.23. In Example 3.21, f is a C∗-algebra valued G-contraction but it is not a C∗-

algebra valued contraction. In fact, for x = 4
5
, y = 0, we have

d(fx, fy) = d(1, 0)

= I

=
125

64
.
64

125
I

=
125

64
d(x, y)

≻ B∗ d(x, y)B,

for any B ∈ B(H) with ‖ B ‖2< 1
‖A‖ . This implies that f is not a C∗-algebra valued contraction.

The following example shows that property (∗) is necessary in Theorem 3.2.

Example 3.24. Let X = [0,∞) and B(H) be the set of all bounded linear operators on a Hilbert

space H. Define d : X×X → B(H) by d(x, y) =| x−y |3 I for all x, y ∈ X, where I is the identity op-

erator on H. Then (X,B(H), d) is a complete C∗-algebra valued b-metric space with the coefficient
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A = 4I. Let G be a digraph such that V(G) = X and E(G) = ∆∪{(x, y) : (x, y) ∈ (0, 1]×(0, 1], x ≥ y}.

Let f, g : X → X be defined by

fx =
x

6
, if x 6= 0

= 1, if x = 0

and gx = x
2
for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

For x, y ∈ X with (gx, gy) ∈ E(G̃), we have

d (fx, fy) =
1

27
d (gx, gy)

�
1

9
d (gx, gy)

= B∗ d(gx, gy)B,

where B = 1
3
I ∈ B(H) with ‖ B ‖2< 1

‖A‖ .

We see that f and g have no point of coincidence in X. We now verify that the property (∗)

does not hold. In fact, (gxn) is a sequence in X with gxn → 0 and (gxn, gxn+1) ∈ E(G̃) for all

n ∈ N where xn = 2
n
. But there exists no subsequence (gxni

) of (gxn) such that (gxni
, 0) ∈ E(G̃).

Example 3.25. Let X = R and B(H) be the set of all bounded linear operators on a Hilbert

space H. Choose a positive operator T ∈ B(H). Define d : X×X → B(H) by d(x, y) =| x−y |5 T for

all x, y ∈ X. Then (X,B(H), d) is a complete C∗-algebra valued b-metric space with the coefficient

A = 16I. Let f, g : X → X be defined by

fx = 2, if x 6= 5

= 3, if x = 5

and gx = 3x − 4 for all x ∈ X. Obviously, f(X) ⊆ g(X) = X.

Let G be a digraph such that V(G) = X and E(G) = ∆ ∪ {(2, 3), (3, 5)}. If x = 2, y = 7
3
, then

gx = 2, gy = 3 and so (gx, gy) ∈ E(G̃).

Again, if x = 7
3
, y = 3, then gx = 3, gy = 5 and so (gx, gy) ∈ E(G̃).

It is easy to verify that condition (3.5) of Theorem 3.9 holds for all x, y ∈ X with (gx, gy) ∈ E(G̃).

Furthermore, 2 ∈ Cgf i.e., Cgf 6= ∅, f and g are weakly compatible, and (X,B(H), d,G) has the

property (∗). Thus, all the conditions of Theorem 3.9 are satisfied and 2 is the unique common

fixed point of f and g in X.

Remark 3.26. It is observed that in Example 3.25, f is not a Fisher G-contraction. In fact,
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for x = 3, y = 5, we have

B [d(fx, y) + d(fy, x)] = B [d(2, 5) + d(3, 3)]

= 243BT

=
243

16
BAT

=
243

16 × 17
17BAT

≺ T

= d(fx, fy),

for any B ∈ B(H)
′

+ with ‖ BA ‖< 1
‖A‖+1

. This implies that f is not a Fisher G-contraction.

The following example supports our Theorem 3.15.

Example 3.27. Let X = [0,∞) and B(H) be the set of all bounded linear operators on a Hilbert

space H. Choose a positive operator T ∈ B(H). Define d : X×X → B(H) by d(x, y) =| x−y |2 T for

all x, y ∈ X. Then (X,B(H), d) is a complete C∗-algebra valued b-metric space with the coefficient

A = 2I. Let G be a digraph such that V(G) = X and E(G) = ∆∪ {(4tx, 4t(x+ 1)) : x ∈ X with x ≥

2, t = 0, 1, 2, · · · }.

Let f, g : X → X be defined by fx = 4x and gx = 16x for all x ∈ X. Clearly, f(X) = g(X) = X.

If x = 4t−2z, y = 4t−2(z + 1), then gx = 4tz, gy = 4t(z + 1) and so (gx, gy) ∈ E(G̃) for all

z ≥ 2.

For x = 4t−2z, y = 4t−2(z + 1), z ≥ 2 with B = 1
117

I, we have

d(fx, fy) = d
(

4t−1z, 4t−1(z + 1)
)

= 42t−2T

�
1

117
42t−2(18z2 + 18z + 9)T

=
1

117

[

d
(

4t−1z, 4tz
)

+ d
(

4t−1(z+ 1), 4t(z + 1)
)]

= B [d(fx, gx) + d(fy, gy)].

Thus, condition (3.10) is satisfied for all x, y ∈ X with (gx, gy) ∈ E(G̃). It is easy to verify that

0 ∈ Cgf. Also, any sequence (gxn) with gxn → x and (gxn, gxn+1) ∈ E(G̃) must be a constant

sequence and hence property (∗) holds. Furthermore, f and g are weakly compatible. Thus, we have

all the conditions of Theorem 3.15 and 0 is the unique common fixed point of f and g in X.

Remark 3.28. It is easy to observe that in Example 3.27, f is a C∗-algebra valued G-Kannan

operator with B = 16
117

I. But f is not a C∗-algebra valued Kannan operator because, if x = 4, y = 0,
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then for any arbitrary B ∈ B(H)
′

+ with ‖ B ‖< 1
‖A‖+1

= 1
3
(which implies 3B ≺ I), we have

B [d(fx, x) + d(fy, y)] = B [d(f4, 4) + d(f0, 0)]

= 144BT

=
144

3× 256
(3B)(256T)

≺ 256T

= d(fx, fy).
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ABSTRACT

We study the indexed Hermitean lattice of type 0 generated by a single element a

subjected to the relation a ≤ b⊥ ∧ bb⊥ = 0. We prove that it is finite, provided that

two crucial indices are finite. We show that index relations imply algebraic relations

and describe the lattice by means of its subdirectly irreducible factors. We finally use

the results to confirm a conjecture appeared in 2000.

RESUMEN

Estudiamos el reticulado Hermitiano finito indexado de tipo 0 generado por un solo ele-

mento a sujeto a la relación a ≤ b⊥∧bb⊥ = 0. Probamos que es finito, suponiendo que

dos ı́ndices cruciales son finitos. Mostramos que las relaciones de ı́ndices implican rela-

ciones algebraicas y describimos el reticulado a travs de sus factores subdirectamente

irreductibles. Finalmente, usamos nuestros resultados para confirmar una conjetura

aparecida el ao 2000.
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1 Introduction

The importance of lattices in infinite-dimensional orthogonal geometry was brought to attention

by the pioneering work of Herbert Gross (1936-1989): see in particular [G1] and [G2]. All examples

treated in origin are sublattices of some L(E), the subspace-lattice of an ℵ0-dimensional vector

space E over an appropriate division ring k, together with the orthogonal operation induced by

a Hermitean form φ (i.e. X 7→ X⊥ := {y ∈ E | φ(y, x) = 0 ∀x ∈ X}) and were used to study

geometric invariants, for instance dimension of quotient spaces or intersections with the subspace

E∗ of trace-valued vectors in E. The fact that E∗ 6= E only if char(k)= 2 was also playing some

role. After some time of concrete investigations with subspace lattices (see e.g. [M1]), the natural

idea to insert all considerations into an abstract setting gave rise to the following definitions (cf.

[KKW], Ch. IV):

A Hermitean lattice (HL for short) is an algebra (L, 0, 1, · , + , ⊥, b) of type 〈0, 0, 2, 2, 1, 0〉

such that

i) (L, 0, 1, · ,+) is a modular lattice with universal bounds 0 , 1;

ii) ⊥ : L → L is a unary operation with 1⊥ = 0 and

x ≤ (x⊥y)⊥ ∀ x, y ∈ L (1.1)

iii) b ∈ L is a nullary operation with

xx⊥ ≤ b ∀ x ∈ L.

In case b is explicitly not trivial (i.e. b 6= 1), the modular law in i) is sometimes replaced by

the stronger Fano identity

(w+ v)(y+ z) ≤ (w+ y)(v+ z) + (w+ z)(v+ y).

If we drop the operation “+”, then we obtain the notion of Hermitean semilattice (HSL for

short). In the present paper we will endow HL L with a so-called index function of type 0 (IF

for short), i.e a function δ from the set of quotients of L into the set of cardinals ≤ ℵo, with the

following properties:

δ(x/y) ≥ δ(xz/yz), (1.2)

δ(x/y) ≥ δ(x+ z/y+ z), (1.3)

δ(x/y) ≥ δ(y⊥/x⊥), (1.4)

δ(x/y) + δ(y/z) = δ(x/z), (1.5)

δ(x/y) = 0 ⇐⇒ x = y. (1.6)
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We will speak about indexed Hermitean lattices (IHL). By dropping (1.3), we obtain the notion

of indexed Hermitean semilattices (IHSL).

A major task of the theory of H(S)L consists in describing the free objects S[a] and F[a],

generated by a single element a in the varieties of HSL and HL, respectively. Since such objects

are infinite, a more realistic project consists in studying appropriate presentations under (index)

relations suggested by geometrical choice (see [G1], [M1], [M2] and also the bibliography in [KKW]

for many known examples). One of these options is given by the relation a ≤ b⊥, which was intro-

duced in [DM3] and gave rise to the concept of rigid H (S )L. Here we continue such investigation

and consider rigid HL with the (somewhat complementary) property bb⊥ = 0. In the above work

the HSL S := S[a;a ≤ b⊥ ∧ bb⊥ = 0] was already computed, but here we briefly reproduce its

description, without proofs, to make this paper more self-contained. Since the corresponding HL is

most probably infinite, we work with an IF δ and start our research with the following hypothesis:

δ(a⊥/d⊥

1 ) < ℵ0 ∧ δ(b⊥/c⊥

1 ) < ℵ0, (1.7)

where

c1 := d⊥e⊥, d1 := c⊥e⊥, and c := a⊥e⊥, d := b⊥e⊥, e := a⊥b⊥. (1.8)

The algebraic relations forced by the index condition (1.7) are given below in (4.4), Theorem 4.1,

and have the following important consequence:

F := F[a; (1)∧ (4.4)] is finite and has 23 subdirectly irreducible factors.

The factors are listed in Tables II, III and IV, Section 7, together with the associated critical

quotients.

We will finally use these results to confirm conjecture 2 in [M2] and to suggest an application

in orthogonal geometry.

We conclude this introduction with two more remarks:

- Without (1.7), F would be most probably infinite (cf. also the arguments given in [M2]).

Thus we can recognize the importance of the intervals [d⊥

1 , a
⊥] and [c⊥

1 , b
⊥] in the above HL.

Moreover, it is easy to prove that (1.7) is a weakening of the condition δ(1/b) < ℵ0, which has a

natural interpretation in orthogonal geometry (cf. Section 6) and was used as hypothesis in many

precedent investigations.

- S appeared naturally as substructure in other works (see [M2] and [DM2]). This important

fact was an additional motivation for the present study.

2 Preliminaries

Lemma 2.1. Any countable HL is indexable.
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Proof. Each HL admits the trivial IF, defined to have value ℵ0 on each nontrivial quotient.

Lemma 2.2. The class of IHL is closed with respect to subalgebras, homomorphic images and

countable products.

Proof. This is just a slight generalization of Proposition 21 in [KKW], Ch. IV.

Clearly, the existence of a nontrivial IF on some HL is controlled by prime quotients. Our

lattices do not present difficulties such as described in [S] because the subdirectly irreducible factors

are finite and known.

The next result represents the key to obtain algebraic relations from index relations (cf. proof

of Theorem 4.1):

Lemma 2.3. Let u/v be any finite quotient of an IHL. If v = v⊥⊥ then u = u⊥⊥.

Proof. δ(u/v) ≥ δ(v⊥/u⊥) ≥ δ(u⊥⊥/v⊥⊥) = δ(u⊥⊥/v) ≥ δ(u/v).

For the sake of precision we give also the following

Definition 2.4. S[a : a ≤ b⊥] is the initial object of the class of rigid HSL. Similarly, F[a : a ≤ b⊥]

is the initial object of the class of rigid HL.

Thus any rigid H(S)L is a homomorphic image of the initial object.

We could have been even more precise by saying that this is in fact the concept of a 1-generated

rigid H(S)L, a special case of n-generated rigid H(S)L, but of course, for the moment, all this is

not necessary.

We conclude this section by remarking that the axiom (1.1) is equivalent with the following

conditions:

(i) x ≤ x⊥⊥; (ii) x ≤ y ⇒ y⊥ ≤ x⊥.

This may facilitate some computations.

3 Description of S

Theorem 3.1. The HSL S has 18 elements and its structure is given by the diagram depicted in

Figure 1 (see Section 7).

Proof. See [DM3].
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Since we are interested in indices, we consider an IF δ on S and put

β1 := δ(a/0), β2 := δ(b/0), β3 := δ(e/0), β4 := δ(c/c1),

β5 := δ(a⊥⊥/a), β6 := δ(b⊥⊥/b), β7 := δ(c1/b
⊥⊥), β8 := δ(d1/a

⊥⊥).
(3.1)

Theorem 3.2. (Relations among indices in S)

(i) All other indices of S are determined by β1, · · · , β8 as is shown in

Figure 2, Section 7.

(ii) In particular, the following relations hold:

a) β4 6= 0 implies β1 = β2 = ℵ0;

b) β5 6= 0 implies β1 = ℵ0;

c) β6 6= 0 implies β2 = ℵ0;

d) β7 6= 0 or β8 6= 0 implies β1 = β2 = β3 = ℵ0.

Proof. See [DM3].

Remark 3.3. Using the above Theorem, we find 8 subdirectly irreducible factors of S. They are

reproduced in Tables I and II, Section 7.

4 Description of F

Remembering (1.8), let us consider the two descending chains

{a1, a2, a3} := {a⊥, d⊥

1 , d
⊥} and {b1, b2, b3} := {b⊥, c⊥

1 , c
⊥}.

For 1 ≤ i, j ≤ 3 we define

aij := ai(bj + e⊥), bij := bj(ai + e⊥), eij := e⊥(ai + bj). (4.1)

Let I1, I2 and I3 be the modular sublattices of F generated by

{a⊥, d⊥

1 , d
⊥, c, b⊥

31, b
⊥

21, b
⊥

11, b, e}∪{aij}, {b
⊥, c⊥

1 , c
⊥, d, a⊥

13, a
⊥

12, a
⊥

11, a, e}∪{bij} and {e⊥, c, c1, b, b
⊥

31, b
⊥

21, b
⊥

11, d, d1, a
⊥

13, a

{eij}, respectively.

By the main result in [DM1], I1, I2 and I3 coincide with the principal ideals of F0 :=<

I1 ∪ I2 ∪ I3 > generated by a⊥, b⊥ and e⊥ respectively. Moreover, they are distributive and

additively generate F0. We want to show that F0 = F.

To this end it will be useful to define the following indices:
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αi := βi for i = 1, 2, 3, 4, 5, 6 and further

α7 := δ(e⊥/e11), α8 := δ(c⊥/b13), α9 := δ(d⊥/a31),

α10 := δ(1/a⊥ + b⊥ + e⊥), α11 := δ(b⊥
11/b

⊥⊥), α12 := δ(a⊥
11/a

⊥⊥),

α13 := δ(d⊥
1 /a21 + d⊥), α14 := δ(c⊥

1 /b12 + c⊥), α15 := δ(b33/d1 + e),

α16 := δ(d1/a
⊥
13), α17 := δ(c1/b

⊥
31), α18 := δ(a22/a23 + a32),

α19 := δ(a⊥
12/a

⊥
11), α20 := δ(a⊥

13/a
⊥
12), α21 := δ(b⊥

31/b
⊥
21),

α22 := δ(b23/b33), α23 := δ(a32/a33).

(4.2)

Theorem 4.1. (Description of I1, I2 and I3 in F):

1) The plain structure of I1, I2 and I3 is represented by the diagrams depicted in Fig 3, Fig

4 and Fig 5 of Section 7.

2) The ideals are connected by the following relations between indices:

α4 = δ(d/d1) = δ(c/c1),

α11 = δ(b⊥

11/b
⊥⊥) = δ(b⊥/b⊥⊥

11),

α12 = δ(a⊥

11/a
⊥⊥) = δ(a⊥/a⊥⊥

11),

α15 = δ(b33/d1 + e) = δ(a33/c1 + e) = δ(e33/c1 + d1),

α16 = δ(d1/a
⊥

13) = δ(a13/a23) = δ(b13/b23) = δ(e13/e23),

α17 = δ(c1/b
⊥

31) = δ(a31/a32) = δ(b31/b32) = δ(e31/e32),

α18 = δ(a22/a23 + a32) = δ(e22/e23 + e32), (4.3)

α19 = δ(a⊥

12/a
⊥

11) = δ(b⊥

21/b
⊥

11) = δ(e11/e12 + e21),

α20 = δ(a⊥

13/a
⊥

12) = δ(a12/a13 + a22) = δ(b12/b13 + b22) = δ(e12/e13 + e22),

α21 = δ(b⊥

31/b
⊥

21) = δ(a21/a22 + a31) = δ(b21/b22 + b31) = δ(e21/e22 + e31),

α22 = δ(b23/b33) = δ(a23/c+ a33),

α23 = δ(a32/a33) = δ(b32/b33 + d) = δ(e32/d+ e33).

3) I1 ∪ I2 ∪ I3 is orthogonally closed in force of the following relations:

a11 + d⊥

1 = a⊥⊥

11, a12 + d⊥

1 = a⊥⊥

12, a13 + d⊥

1 = a⊥⊥

13,

b11 + c⊥

1 = b⊥⊥

11, b21 + c⊥

1 = b⊥⊥

21, b31 + c⊥

1 = b⊥⊥

31. (4.4)

Proof. 1) This is routine verification.

2) δ(d/d1) ≥ δ(d⊥

1 /d
⊥) ≥ δ(d⊥

1 e
⊥/d⊥e⊥) ≥ δ(c/c1) ≥ δ(c⊥

1 /c
⊥) ≥

δ(c⊥

1 e
⊥/c⊥e⊥) ≥ δ(d/d1). This shows the first equality. The second and third ones are evident.

As to the fourth, just consider the free modular lattice generated by the triple (d⊥, c⊥, e⊥). The

other equalities are proved analogously.
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3) We just show the first equality (the others follow in the same manner):

δ(a11 + d⊥

1 /d
⊥

1 ) = δ(a11/a11d
⊥

1 ) = δ(a11/a21) ≤ δ(a⊥/d⊥

1 ) < ℵ0 (by (1.7)).

Thus a11 + d⊥

1 = (a11 + d⊥

1 )
⊥⊥ by Lemma 2.3, because d⊥

1 = (d⊥

1 )
⊥⊥.

Since d⊥

1 ≤ a⊥⊥

11 (because c+ e ≤ a11), we obtain the desired equality.

The rest is easy and it follows F = F0.

Theorem 4.2. (Forced relations among indices):

i) If α7 6= 0 then α1 = α2 = ℵ0;

ii) If α8 6= 0 then α1 = α3 = ℵ0;

iii) If α9 6= 0 then α2 = α3 = ℵ0;

iv) For i ∈ {10, 11, 12, 15, 16, 17, 19}, if αi 6= 0 then α1 = α2 = α3 = ℵ0;

v) For i ∈ {13, 14, 18, 20, 21, 22, 23}, if αi 6= 0 then α1 = α2 = α3 = α4 = ℵ0;

vi) α11 + α12 + α16 + α17 + α19 + α20 + α21 < ℵ0

Proof. Each implication follows in a way as was shown in the proof of Theorem 3.2, possibly in

conjunction with Lemma 2.3.

The well known rule (x+y)⊥ = x⊥y⊥ may also be useful for computations. The last assertion

is just the translation of (1.7) in terms of the indices αi.

5 The subdirectly irreducible factors of F.

In order to discover the factors of F it is sufficient to work out I1, I2 and I3 at the same time, using

the relations given in Theorem 4.1 and Theorem 4.2.

The essence of the procedure consists in collecting all prime quotients that are connected

with a given one via the algebraic operations: this will produce automatically the corresponding

subdirectly irreducible factor, together with the associated relation.

Observe how useful are indices in this procedure: on the one hand they are associated in

natural way to congruences, on the other hand the forced relations among them give directly the

non minimal congruences in the subdirectly irreducible factors.

A little final caution is needed: there is a quotient which does not appear in the ideals, namely

1/(a⊥+b⊥+e⊥) (see the factor corresponding to α9 in Table III). Since (a⊥+b⊥)⊥⊥ = (a⊥+e⊥)⊥⊥ =

(e⊥ + b⊥)⊥⊥ = 1 this is the only exception.

The factors are labelled from 1 to 23 in Tables II, III and IV. The last table contains all non

distributive members.
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Remark 5.1. From all the above results we deduce in particular that Conjecture 2 in [M2] is true:

in fact, the finite codimensions indicated in the conjecture correspond to the ones given by (1.7).

Remark 5.2. There are plain lattice isomorphisms between different factors. Nevertheless we

chose to give explicitly all diagrams, in order to facilitate visualization. It is worth noticing that

the majority of this plain isomorphisms are induced by the map a 7→ b and b 7→ a, which defines

an involution of S that extends naturally to F. More precisely, there are eight pairs of symmetric

factors, namely (1,2), (5,6), (8,9), (11,12), (13,14), (16,17), (20,21) and (2,23), all other factors

being self symmetric.

6 Remarks concerning applications to Hermitean spaces

It is possible to prove that all factors of F are implemented by Hermitean models. Hence they can be

used to describe the congruence class of a subspace A in a Hermitean space (E,φ) of denumerable

dimension under the starting assumptions, where A,E, E∗ correspond to a, 1, b, respectively.

In general, these IHL will not suffice to build a complete set of geometric invariants, but they

constitute a very important part. Details on these aspects cannot be discussed in the present work.

7 Diagrams
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Figure 3: the ideal I1 in F
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Figure 5: the ideal I3 in F
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ABSTRACT

In this paper, we introduce anti-invariant ξ⊥-Riemannian submersions from Hyperbolic

β-Kenmotsu Manifolds onto Riemannian manifolds. Necessary and sufficient condi-

tions for a special anti-invariant ξ⊥-Riemannian submersion to be totally geodesic are

studied. Moreover, we obtain decomposition theorems for the total manifold of such

submersions.

RESUMEN

En este art́ıculo se introducen las submersiones ξ⊥-Riemannianas anti-invariantes desde

variedades hiperbólicas β-Kenmotsu sobre variedades Riemannianas. Se estudian condi-

ciones necesarias y suficientes para que ciertas submersiones ξ⊥-Riemannianas anti-

invariantes especiales sean totalmente geodésicas. Más aún, se obtienen teoremas de

descomposión para la variedad total de dichas submersiones.
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1 Introduction

The geometry of Riemannian submersions between Riemannian manifolds has been intensively

studied and sevral results has been pulished (see O’Neill [7] and Gray [4]). In [11] Waston defined

almost Hermitian submersion between almost Hermitian manifolds and in most cases he show that

the base manifold and each fiber has the same kind of structure as the total space. He also show

that the vertical and horizontal distributions are invariant. On the other hand, the geometry of

anti-invariant Riemannian submersions is different from the geometry of almost Hermitian sub-

mersions. For example, since every holomorphic map between Kahler manifolds is harmonic [2],

it follows that any holomorphic submersion between Kahler manifolds is harmonic. However, this

result is not valid for anti-invariant Riemannian submersions, which was first studied by Sahin in

[8]. Similarly, Ianus and Pastore [5] shows φ-holomorphic maps between contact manifolds are

harmonic. This implies that any contact submersion is harmonic. However, this result is not valid

for anti-invariant Riemannian submersions. In [1], Chinea defined almost contact Riemannian sub-

mersion between almost contact metric manifolds. In [6], Lee studied the vertical and horizontal

distribution are φ-invariant. Moreover, the characteristic vector field ξ is horizontal. We note

that only φ-holomorphic submersions have been consider on an almost contact manifolds [3]. It

was 1976, Upadhyay and Dube [10] introduced the notion of almost hyperbolic contact (f, g, η, ξ)-

structure. Some properties of CR-submanifolds of trans hyperbolic Sasakian manifold were studied

in [9]. In this paper, we consider a Riemannian submersion from a Hyperbolic β-Kenmotsu Mani-

folds under the assumption that the fibers are anti-invariant with respect to the tensor field of type

(1, 1) of almost hyperbolic contact manifold. This assumption implies that the horizontal distribu-

tion is not invariant under the action of tensor field of the total manifold of such submersions. In

other words, almost hyperbolic contact are useful for describing the geometry of base manifolds,

anti-invariant submersion are however served to determine the geometry of total manifold.

The paper is organized as follows: In Section 2, we present the basic information needed for

this paper. In Section 3, we give the definition of anti-invariant ξ⊥-Riemannian submersions. We

also introduce a special anti-invariant ξ⊥-Riemannian submersions and obtain necessary and suf-

ficient conditions for such submersions to be totally geodesic or harmonic. In Section 4, we give

decomposition theorems by using the existence of anti-invariant ξ⊥-Riemannian submersions and

observe that such submersions put some restrictions on the geometry of the total manifold.

2 Preliminaries

In this section, we define almost hyperbolic contact manifolds, recall the notion of Riemannian

submersion between Riemannian manifolds and give a brife review of basic facts if Riemannian

submersion.

Let M be an almost hyperbolic contact metric manifold with an almost hyperbolic contact

metric structure (φ, ξ, η, gM), where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and
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gM is a compatible Riemannian metric on M such that

φ2 = I− η⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = −1, (2.1)

gM(φX,φY) = −gM(X, Y) − η(X)η(Y) (2.2)

gM(X,φY) = −gM(φX, Y), gM(X, ξ) = η(X) (2.3)

An almost hyperbolic contact metric structure (φ, ξ, η, gM) onM is called trans-hyperbolic Sasakian

[9] if and only if

(∇Xφ)Y = α(g(X, Y)ξ− η(Y)φX) + β(g(φX, Y) − η(Y)φX) (2.4)

for all X, Y tangent to M, α and β are smooth functions on M and we say that the trans-hyperbolic

Sasakian structure of type (α,β). From the above condition it follows that

∇Xξ = −α(φX) + β(X− η(X)ξ), (2.5)

(∇Xη)Y = −αg(φX, Y) + βg(φX,φY), (2.6)

where ∇ is the Riemannian connection of Levi-Civita covariant differentiation.

More generally one has the notion of a hyperbolic β-Kenmotsu structure which be defined by

(∇Xφ)Y = β(g(φX, Y)ξ − η(Y)φX), (2.7)

where β is non-zero smooth function. Also we have

∇Xξ = β[X− η(X)ξ]. (2.8)

Thus α = 0 and therefore a trans-hyperbolic Sasakian structure of type (0, β) with a non-zero

constant is always hyperbolic β-Kenmotsu manifold.

Let (Mm, gM) and (Nn, gN) be Riemannian manifolds, where dimM = m, dimN = N and

m > n. A Riemannian submersion F : M → N is a map from M onto N satisfying the following

axioms:

(1) (S1) F has maximal rank

(2) (S2) The differential F∗ preserves the lengths of horizontal vectors.

For each q ∈ N, F−1(q) is an (m − n)-dimensional submanifold of M. The submanifold F−1(q)

are called fibers. A vector field on M is called vertical if it is always tangent to fibers. A vector

field on M is called horizontal if it is always orthogonal to fibers. A vector field X on M is called

basic if X is horizontal and F-related to a vector field X∗ on N, i.e., F∗Xp = X∗F(p) for all p ∈ M.

Note that we denote the projection morphisms on the distributions kerF∗ and (kerF∗) by V and

H, respectively.

We recall the following lemma from O’Neill [7].
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Lemma 2.1. Let F : M → N be a Riemannian submersion between Riemannian manifolds and X,

Y be basic vector fields of M. Then

(1) (1) gM(X, Y) = gN(X∗, Y∗) ◦ F.

(2) (2) the horizontal part [X, Y]H of [X, Y] is a basic vector field and corresponds to [X∗, Y∗],

i.e., F∗([X, Y]) = [X∗, Y∗].

(3) (3) [V,X] is vertical for any vector field V of kerF∗.

(4) (4) ((∇)MX Y)H is the basic vector field corresponding to ∇N
X∗

Y∗.

The geometry of Riemannian submersion is characterized by O’Neill’s tensor T and A defined

for vector fields E, F on M by

AEF = H∇HEVF+ V∇HEHF (2.9)

TEF = H∇VEVF+ V∇VEHF (2.10)

where ∇ is the Levi-Civita connection of gM. It is easy to see that a Riemannian submersion

F : M → N has totally geodesic fibers if and only if T vanishes identically. For any E ∈ (TM),

TC = TVC and A is horizontal, A = AHE. We note that the tensor T and A satisfy

TUW = TWU, U,W ∈ (kerF∗) (2.11)

AXY = −AYX =
1

2
V [X, Y], X, Y ∈ (kerF∗)

⊥ (2.12)

On the other hand, from (2.6) and (2,7), we have

∇VW = TVW + ∇̄VW (2.13)

∇VX = H∇VX+ TVX (2.14)

∇XV = AXV + V∇XV (2.15)

∇XY = H∇XY +AXV (2.16)

for X, Y ∈ (kerF∗)
⊥ and V,W ∈ (kerF∗), where ∇̄VW = V∇VW. If X is basic then H∇VX =

AXV .

Finally, we recall the notion of harmonic maps between Riemannian manifolds. Let (M,gM)

and (N,gN) be Riemannian manifolds and supposed that φ : M → N is a smooth map. Then

the differential φ∗ of φ can be viewed a section of the bundle Hom(TM,φ−1TN) → M, where

φ−1TN is the pullback bundle which has fibers (φ−1TN)p = Tφ(p)N, p ∈ M. Hom(TM,φ−1TN)
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has a connection ∇ induced from the Levi-Civita connection ∇M and the pullback connection ∇φ.

Then the second fundamental form of φ is given by

(∇φ∗)(X, Y) = ∇φ
Xφ ∗ (Y) − φ ∗ (∇M

X Y) (2.17)

for X, Y ∈ TM. It is known that the second fundamental form is symmetric. A smooth map

φ : (M,gM) → (N,gN) is said to be harmonic if trace(∇φ∗) = 0. On the other hand, the tensor

field of φ is the section τ(φ) of (φ−1TN) defined by

τ(φ) = divφ∗ =

m∑

i=1

(∇φ∗)(ei, ei), (2.18)

where {e1, .....em} is the orthogonal frame on M. Then it follows that φ is harmonic if and only if

τ(φ) = 0 (see [7]).

3 Anti-invariant ξ⊥- Riemannian Submersions

In this section, we define anti-invariant ξ⊥- Riemannian submersion from hyperbolic β-Kenmotsu

manifold onto a Riemannian manifold and investigate the integrability of distributions and obtain

a necessary and sufficient condition for such submersions to be totally geodesic map. We also

investigate the harmonicity of a special Riemannian submersion.

Definition 3.1. Let (M,gM, φ, ξ, η) be a hyperbolic β-Kenmotsu manifold and (N,gN) a Rie-

mannian manifold. Suppose that there exists a Riemannian submersion F : M → N such that ξ is

normal to kerF∗ and kerF∗ is anti-invariant with respect to φ, ie., φ(kerF∗) ⊂ (kerF∗)
⊥. Then we

say that F is an anti-invariant ξ⊥-Riemannian submersion.

Now, we assume that F : (M,gM, φ, ξ, η) → (N,gN) is an anti-invariant ξ⊥-Riemannian

submersion. First of all, from Definition 3.1, we have (kerF∗)
⊥ ∩ (kerF∗) 6= 0. We denote the

complementary orthogonal distribution to φ(kerF∗) in (kerF∗)
⊥ by µ. Then we have

(kerF∗)
⊥ = φ(kerF∗)⊕ µ, (3.1)

where φ(µ) ⊂ µ. Hence µ contains ξ. Thus, for X ∈ (kerF∗)
⊥, we have

φX = BX+ CX, (3.2)

where BX ∈ (kerF∗) and CX ∈ (µ). On the other hand, since F∗(kerF∗)
⊥ = TN and F is a

Riemannian submersion, using (3.2), we have

gN (F∗φV, F∗φCX) = 0

for any X ∈ (kerF∗)
⊥ and V ∈ (kerF∗), which implies

TN = F∗(φ((kerF∗))⊕ F∗(µ).
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Example 3.2. Let us consider a 5-dimensional manifold M̄ =
{
(x1, x2, x3, x4, z) ∈ R

5 : z 6= 0
}
,

where (x1, x2, x3, x4, z) are standard coordinates in R
5.

We choose the vector fields

E1 = e−z ∂
∂x1

, E2 = e−z ∂
∂x2

, E3 = e−z ∂
∂x3

, E4 = e−z ∂
∂x4

, E5 = e−z ∂
∂x1

,

which are linearly independent at each point of M̄. We define g by

g = e2zG,

where G is the Euclidean metric on R5. Hence {E1, E2, E3, E4, E5} is an orthonormal basis of M̄.

We consider an 1-form η defined by

η = ezdz, η(X) = g(X, E5), ∀X ∈ TM̄.

We defined the (1, 1) tensor field φ by

φ

{
2∑

i=2

(

xi
∂

∂xi
+ xi+2

∂

∂xi+2

+ z
∂

∂z

)

}

=

2∑

i=2

(

xi
∂

∂xi+2

− xi+2
∂

∂xi

)

.

Thus, we have

φ(E1) = E3, φ(E2) = E4, φ(E3) = −E1, φ(E4) = −E2, φ(E5) = 0.

The linear property of g and φ yields that

η(E5) = −1, φ2(X) = X− η(X)E5

g(φX,φY) = −g(X, Y) − η(X)η(Y),

for any vector fields X, Y on M̄. Thus, M̄ (φ, ξ, η, g) defines an almost hyperbolic contact metric

manifold with ξ = E5. Moreover, let ∇̄ be the Levi-Civita connection with respect to metric

g. Then we have [E1, E2] = 0. Similarly [E1, ξ] = e−zE1, [E2, ξ] = e−zE2, [E3, ξ] = e−zE3,

[E4, ξ] = e−zE4, [Ei, Ej] = 0, 1 ≤ i 6=≤ 4.

The Riemannian connection ∇̄ of the metric g is given by

2g(∇̄XY, Z) = Xg(Y, Z) + Yg(Z,X) − Zg(X, Y) − g(X, [Y, Z]) − g(Y, [X,Z]) + g(Z, [X, Y]),

By Koszul’s formula, we obtain the following equations

∇̄E1
E1 = −e−zξ, ∇̄E2

E2 = −e−zξ, ∇̄E3
E3 = −e−zξ, ∇̄E4

E4 = −e−zξ,

∇̄ξξ = 0, ∇̄ξEi = 0, ∇̄Ei
ξ = e−zEi, 1 ≤ i ≤ 4

and ∇̄Ei
Ei = 0 for all 1 ≤ i, j ≤ 4. Thus, we see that M is a trans-hyperbolic Sasakian manifold

of type (0, e−z), which is hyperbolic β-Kenmotsu manifold. Here α = 0 and β = e−z.

Now, we define (1, 1) tensor field as follows

φ(x1, x2, x3, x4, z) = (−x3,−x4, x1, x3, z).

Now, we can give the following example.
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Example 3.3. Let (M1, g1 = e2zG,φ, ξ, η) be an almost Hyperbolic contact manifolds and M2 be

R
3. The Riemannian metric tensor field g2 is defined by g2 = e2z(dy1⊗dy1+dy2⊗dy2+dy3⊗

dy3) on M2.

Let φ be a submersion defined by

φ : R
5 −→ R

3

(x1, x2, x3, x4, z) (
x1 + x3√

2
, z,

x1 + x2√
2

)

Then it follows that

kerφ∗ = span {V1 = ∂x1 − ∂x3, V2 = ∂x2 − ∂x2}

and

(kerφ∗)
⊥ = span {X1 = ∂x1 + ∂x3, X2 = ∂x2 + ∂x2, X3 = z = ξ}

Hence we have φV1 = X1 and φV2 = X2. It means that φ(kerφ) ⊂ (kerφ)⊥. A straight

computations, we get φ∗X1 = ∂y1, φ∗X2 = ∂y3 and φ∗X3 = ∂y2. Hence, we have

g1(Xi, Xi) = g2(φ∗Xi, φ∗Xi), for i = 1, 2, 3.

Thus φ is a anti-invariant ξ⊥ Riemannian submersion.

Lemma 3.4. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN). Then we have

gM(CY,φV) = 0, (3.3)

gM(∇XCY,φV) = −gM(CY,φAXV) (3.4)

for X, Y ∈ ((kerF∗)
⊥) and V ∈ (kerF∗).

Proof. For Y ∈ ((kerF∗)
⊥) and V ∈ (kerF∗), using (2.2), we have

gM(CY,φV) = gM(φY − BY,φV) = gM(φY,φV) = −gM(Y, V) − η(Y)η(V) = −gM(Y, V) = 0

since BY ∈ (kerF∗) and φV, ξ ∈ ((kerF∗)
⊥). Differentiating (3.3) with respect to X, we get

gM(∇XCY,φV) = − gM(CY,∇XφV)

=gM(CY, (∇Xφ)V) − gM(CY,φ(∇XV))

= − gM(CY,φ(∇XV))

= − gM(CY,φAXV) − gM(CY,φν∇XV)

= − gM(CY,φAXV)

due to φν∇XV ∈ (kerF∗)). Our assertion is complete.



86 Mohd Danish Siddiqi and Mehmet Akif Akyol CUBO
20, 1 (2018)

We study the integrability of the distribution (kerF∗)
⊥ and then we investigate the geometry

of leaves of kerF∗ and (kerF∗)
⊥. We note it is known that the distribution (kerF∗) is integrable.

Theorem 3.5. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN). The followings are equivalent.

(1) (kerF∗)
⊥ is integrable,

(2)

gN((∇F∗)(Y, BX), F∗φV) = gN((∇F∗)(X,BY), F∗φV)

+gM(CY,φAXV) − gM(CX,φAYV)

+βη(Y)gM(X,V) − βη(X)gM(Y, V),

(3)

gM(AXBY − AYBY,φV) = gM(CY,φAXV) − gM(CX,φAYV)

+βη(Y)gM(X,V) − βη(X)gM(Y, V).

for X, Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗).

Proof. For Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗), from Definition 3.1, φV ∈ (kerF∗)

⊥ and φY ∈ (kerF∗)⊕
µ. Using (2.2) and (2.4), we note that for X ∈ (kerF∗)

⊥,

gM(∇XY, V) = gM(∇XφY,φV) − βη(Y)gM(X,V) (3.5)

−(α+ β)η(X)η(Y)η(V).

Therefore, from (3.5), we get

gM([X, Y], V) = gM(∇XφY,φV) − gM(∇YφX,φV)

= βη(X)gM(Y, V) − βη(Y)gM(X,V)

= gM(∇XBY,φV) + gM(∇XCY,φV)

−gM(∇YBX,φV) − gM(∇YCX,φV)

−βη(Y)gM(X,V) + βη(X)gM(Y, V).

Since F is a Riemannian submersion, we obtain

gM([X, Y], V) = gN(F∗∇XBY, F∗φV) + gM(∇XCY,φV)

−gN(F∗∇YBX, F∗φV) − gM(∇YCX,φV)

−βη(Y)gM(X,V) + βη(X)gM(Y, V).
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Thus, from (2.15) and (3.4), we have

gM([X, Y], V) = gN(−(∇F∗(X,BY) + (∇F∗)(Y, BX), F∗φV)

−gM(CY,φAXV + gM(CX,φAYV)

−βη(Y)gM(X,V) + βη(X)gM(Y, V).

which proves (1) ⇐⇒ (2).

On the other hand, using (2.14), we obtain

(∇F∗)(Y, BX) − (∇F∗)(X,BY) = −F∗(∇YBX−∇XBY) = −F∗(AYBX −AXBY),

which shows that (2) ⇐⇒ (3)

Corollary 3.6. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then the following are equivalent:

(1) (kerF∗)
⊥ is integrable

(2) (∇F∗)(X,φY) + βη(X)F∗Y = (∇F∗)(Y,φX) + βη(Y)F∗X

(3) AXφY + βη(X)Y = AYφX+ βη(Y)X, for X, Y ∈ (kerF∗)
⊥.

Theorem 3.7. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN). The following are equivalent:

(1) (kerF∗)
⊥ defines a totally geodesic foliation on M.

(2) gM(AXBY,φV) = gM(CY,φAXY) − βη(X)gM(X,V) − βη(X)gM(Y, V),

(3) gN((∇F∗)(Y,φX), F∗φV) = gM(CY,φAXV) − βη(X)gM(X,V) − βη(X)gM(Y, V), for X, Y ∈
(kerF∗)

⊥ and V ∈ (kerF∗).

Proof. For X, Y ∈ (kerF∗)
⊥ and V ∈ (kerF∗), from (3.5), we have

gM(∇XY, V) = gM(AXBY,φV) + gM(∇XCY,φV) − βη(Y)gM(X,V) − βη(X)η(Y)η(V)

Then from (3.4), we have

gM(∇XY, V) = gM(AXBY,φV) + gM(CY,φAXV) − βη(Y)gM(X,V) − βη(X)η(Y)η(V)

which shows (1) ⇐⇒ (2). On the other hand, from (2.12) and (2.14), we have

gM(AXBY,φV) = gN(−(∇F∗)(X,BY), F∗φV),

which proves (2) ⇐⇒ (3).
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Corollary 3.8. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then the following are equivalent:

(1) (kerF∗)
⊥ defines a totally geodesic folition on M

(2) AXφY = βη(Y)X− (α+ β)η(X)Y

(3) (∇F∗)(Y,φX) = βη(Y)F∗X− β)η(X)F∗Y

for X, Y ∈ (kerF∗)
⊥.

Theorem 3.9. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN). The following are equivalent:

(1) kerF∗ defines a totally geodesic folition on M

(2) −gN(∇F∗)(V,φX, F∗φW) = 0

(3) TVBX +ACXV ∈ (µ),

for X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗)

Proof. For X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗), gM(W,ξ) = 0 implies that from (2.4)

gM(∇VW,ξ) = −gM(W,∇Vξ) = gM(W,β(V − η(V)ξ)) = 0.

Thus we have

gM(∇VW,X) = −gM(φ∇VW,φX) − η((∇VW)η(X)

= −gM(φ∇VW,φX)

= −gM(∇VφW,φX) + gM((∇Vφ)W,φX)

= gM(φW,∇VφX).

Since F is Riemannian submersion, we have

gM(∇VW,X) = gN(F∗φW, F∗∇VφX) = −gN(F∗φW, (∇F∗)(VφX)),

which proves (1) ⇐⇒ (2).

By direct calculation, we derive

−gN(F∗φW, (∇F∗)(VφX)) = gM(φW,∇VφX)

= gM(φW,∇VBX+∇VCX)

= gM(φW,∇VBX+ [V,CX] +∇CXV).
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Since [V,CX] ∈ (kerF∗), from (2.10) and (2.12), we obtain

−gN(F∗φW, (∇F∗)(VφX)) = gM(φW, TVBX+ACXV),

which proves (2) ⇐⇒ (3).

As an analouge of a Lagrangian Riemannian submersion in [11], we have a similar result;

Corollary 3.10. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then the following are equivalent:

(1) (kerF∗)
⊥ defines a totally geodesic folition on M

(2) −(∇F∗)(V,φX) = 0

(3) TVφW = 0,

X,∈ (kerF∗)
⊥ and V,W ∈ (kerF∗).

Proof. From Theorem 3.6, it is enough to show (2) ⇐⇒ (3). Using (2.14) and (2.11), we have

−gN(F∗φW, (∇F∗)(VφX)) = gM(∇VφW,φX)

= gM(TVφW,φX).

Since TVφW ∈ (kerF∗), the proof is complete.

We note that a differentiable map F between two Riemannian manifolds is called totally

geodesic if ∇F∗ = 0. For the special Riemannian submersion, we have the following characteriza-

tion.

Theorem 3.11. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then F is a totally geodesic map if and only if

TVφW = 0, V,W ∈ (kerF∗) (3.6)

and

AXφW = 0, X ∈ (kerF⊥∗ ). (3.7)

Proof. First of all, we recall that the second fundamental form of a Riemannian submersion satisfies

(∇F∗)(X, Y) = 0 ∀ X, Y ∈ (kerF⊥∗ ). (3.8)

For V,W ∈ (kerF∗), we get



90 Mohd Danish Siddiqi and Mehmet Akif Akyol CUBO
20, 1 (2018)

(∇F∗)(X, Y) = F∗(φTVφW). (3.9)

On the other hand, from (2.1), (2.2) and (2.14), we get

(∇F∗)(X,W) = F∗(φAXφW), X ∈ (kerF⊥
∗
). (3.10)

Therefore, F is totally geodesic if and only if

φ(TVφW) = 0 ∀ V,W ∈ (kerF⊥∗ ). (3.11)

and

φ(AXφW) = 0 ∀ X ∈ (kerF⊥∗ ). (3.12)

From (2.2), (2.6) and (2.7), we have

TVφW = 0 ∀ V,W ∈ (kerF∗). (3.13)

and

AXφW = 0 ∀ X ∈ (kerF⊥
∗
).

From (2.4), F is totally geodesic if and only the equation (3.6) and (3.7) hold

Finally, in this section, we give a necessary and sufficient condition for a special Riemannian

submersion to be harmonic as an analouge of Lagrangian Riemannian submersion in [11].

Theorem 3.12. Let F be an anti-invaraint ξ⊥-Riemannian submersion from a hyperbolic β-

Kenmotsu manifold (M,gM, φ, ξ, η) onto a Riemannian manifold (N,gN) with (kerF∗)
⊥ = φ(kerF∗)⊕ <

ξ >. Then F is harmonic if and only if Trace(φTV ) = 0 for V ∈ (kerF∗).

Proof. From [5], we know that F is harmonic if and only if F has minimal fibers. Thus F is harmonic

if and only if
∑m1

i=1 Tei
ei = 0. On the other hand, from (2.4), (2.11) and (2.10), we have

TVφW = φTVW (3.14)

due to ξ ∈ (kerF⊥
∗
) for any V,W ∈ (kerF∗). Using (3.14), we get

m1∑

i=1

gM(Tei
φei, V) =

m1∑

i=1

gM(φTei
φei, V) = −

m1∑

i=1

gM(Tei
ei, φV)

for any V ∈ (kerF∗). Thus skew-symmetric T implies that

m1∑

i=1

gM(φTei
φei, V) = −

m1∑

i=1

gM(Tei
ei, φV).

Using (2.8) and (2.2), we have

m1∑

i=1

gM(ei, φTVei) = −

m1∑

i=1

gM(φei, TVei) = −

m1∑

i=1

gM(Tei
ei, φV)

which shows our assertion.
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4 Decomposition theorems

In this section, we obtain decomposition theorems by using the existence of anti-invariant ξ⊥-

Riemannian submersions. First, we recall the following.

Theorem 4.1. [10] Let g be a Riemannian metric on the manifold B = M×N and assume that

the canonical foliations DM and DN intersect perpendicular every where. Then g is the metric

tensor of

(1) (i) a twisted product M ×f N if and only if DM is totally geodesic foliation and DN is a

totally umbilical foliation.

(2) (ii) a warped product M ×f N if and only if DM is totally geodesic foliation and DN is a

spheric foliation, i.e., it is umbilical and its mean curvature vector field is parallel.

(3) (iii) a usual product of Riemannian manifold if and only if DM and DN are totally geodesic

foliations.

Our first decomposition theorem for anti-invariant ξ⊥-Riemannian submersion comes from Theo-

rem 3.4 and 3.6 in terms of the second fundamental forms of such submersions.

Theorem 4.2. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) on to a Riemannian manifold (N,gN). Then M is locally product man-

ifold if and only if

−gN((∇F∗)(Y,φX), F∗φV) = gM(CY,φAXV) − βη(Y)gM(X,V)

and

−gN((∇F∗)(V,φX), F∗φW) = 0

for X, Y ∈ (kerF⊥
∗
) and V,W ∈ (kerF∗).

From Corollary 3.5 and 3.7, we have the following decomposition theorem:

Theorem 4.3. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) on to a Riemannian manifold (N,gN) with (kerF⊥
∗
)⊕ < ξ >. Then M is

a locally product manifold if and only if AXφY = (α+β)η(Y)X and TVφW = 0, for X, Y ∈ (kerF⊥
∗
)

and V,W ∈ (kerF∗).

Next we obtain a decomposition theorem which is related to the notion of a twisted product

manifold.

Theorem 4.4. Let F be an anti-invariant ξ⊥-Riemannian submersion from a hyperbolic β-Kenmotsu

manifold (M,gM, φ, ξ, η) on to a Riemannian manifold (N,gN) with (kerF⊥
∗
)⊕ < ξ >. Then M

is locally twisted product manifold of the form MkerF⊥
∗
×f MkerF∗

if and only if
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TVφX = −gM(X, TVV) ‖V‖−2
− βη(Y)gM(φX,φV).

and

AXφY = βη(Y)X

for X, Y ∈ (kerF⊥
∗
) and V ∈ (kerF∗), where M(kerF⊥

∗
) and M(kerF∗) are integrable manifolds of the

distributions (kerF⊥∗ ) and (kerF∗).

Proof. For X ∈ (kerF⊥∗ ) and V ∈ (kerF∗), from (2.4) and (2.11), we obtain

gM(∇VW,X) = gM(TVφW,φX) = −gM(φW, TVφX)

Since TV is skew-symmetric. This implies that kerF∗ is totally umbilical if and only if

TVφX− βη(V)gM(φX,φV) = −X(λ)φV,

where λ is a function on M. By direct computation,

TVφX = −gM(X, TVV) ‖V‖−2
− βη(Y)gM(φX,φV).

Then the proof follows from Corollary 3.5

However, in the sequel, we show that the notion of anti-invariant ξ⊥-Riemannian submersion puts

some restrictions on the source manifold.

Theorem 4.5. Let (M,gM, φ, ξ, η) be a hyperbolic β-Kenmotsu manifold and (N,gN) be a Rie-

mannian manifold . Then there does not exist an anti-invariant ξ⊥-Riemannian submersion from

M to N with (kerF∗)
⊥ = φ(kerF∗)

⊥⊕ < ξ > such that M is a locally proper twisted product

manifold of the form MkerF∗
×f M(kerF∗)⊥ .

Proof. Suppose that F : (M,gM, φ, ξ, η) −→ (N,gN) is an anti-invaraiant ξ⊥-Riemannian sub-

mersion with (kerF∗)
⊥ = φ(kerF∗)

⊥⊕ < ξ > and M is a locally twisted product of the form

MkerF∗
×f M(kerF∗)⊥ .Then MkerF∗

is a totally geodesic foliation and M(kerF⊥
∗
) is a totally um-

bilical foliation. We denote the second fundamental form of M(kerF⊥
∗
) by h. Then we have

gM(∇XY, V) = gM(h(X, Y), V) X, Y ∈ ((kerF∗)
⊥, V ∈ (kerF∗). (4.1)

Since M(⊥kerF∗
) is a totally umbilical foliation, we have

gM(∇XY, V) = gM(H,V)gM(X, Y),

where H is the mean curvature vector field of M(kerF∗)⊥ . On the other hand, from (3.5), we derive

gM(∇XY, V) = −gM(φY,∇XφV) − βη(Y)g(X,V) − βη(X)η(Y)η(V). (4.2)
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Using (2.13), we obtain

gM(∇XY, V) = gM(φY,AXφV) − βη(Y)g(X,V) − βη(X)η(Y)η(V) (4.3)

= gM(Y,AXφV) − βg(X,V) − βη(X)η(V)ξ)

Therefore, from (4.1), (4.3) and (2.2), we have

AXφV = gM(H,V)φX+ η(AXφV)ξ.

Since AXφV ∈ (kerF∗),

η(AXφV) = gM(AXφV, ξ) = 0.

Thus, we have

AXφV = gM(H,V)φX.

Hence, we derive

gM(AXφV,φX) − βη(X)η(V)g(Y,φX) = −gM(H,V)
{
‖X‖2 − η2(X)

}

gM(∇XφV,φX) = −gM(H,V)
{
‖X‖2 − η2(X)

}
+ βη(X)η(V)g(Y,φX)

gM(∇XY, V) + βη(Y)g(X,V) − βη(X)η(Y)η(V)

= −gM(H,V)
{
‖X‖2 − η2(X)

}
+ βη(X)η(V)g(Y,φX).

Thus using (2.9), we have AXX = 0, which implies

βη(X)gM(X,V) = −gM(H,V)
{
‖X‖2 − η2(X)

}
+ βη(X)η(Y)[η(V) − gM(Y,φX)]

for every X ∈ ((kerF⊥∗ ), V ∈ (kerF∗). Choosing X which is orthogonal to ξ gM(H,V) ‖X‖2 = 0.

Since gM is the Riemannian metric and H ∈ (kerF∗), we conclude that H = 0, which shows kerF⊥
∗

is totally geodesic, so M is usual product of Riemannian manifolds.
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