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ABSTRACT

We prove that for certain polynomial di↵erential equations

in the plane arising from predator-prey type III models with

generalized rational functional response, any algebraic solu-

tion should be a rational function. As a consequence, limit

cycles, which are unique for these dynamical systems, are

necessarily trascendental ovals. We exemplify these findings

by showing a numerical simulation within a system arising

from zooplankton-phytoplankton dynamics.

RESUMEN

Probamos que para ciertas ecuaciones diferenciales poli-

nomiales en el plano que aparecen a partir de modelos

predador-presa de tipo III con respuesta funcional racional

generalizada, toda solución algebraica debe ser una función

racional. Como consecuencia, los ciclos ĺımite, que son únicos

para estos sistemas dinámicos, son necesariamente óvalos

trascendentes. Ejemplificamos estos resultados mostrando

una simulación numérica para un sistema que aparece en la

dinámica de zooplancton-fitoplancton.
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1 Introduction

We consider predator-prey model

u̇ = ru
⇣
1� u

K

⌘
� vp(u),

v̇ = v (�D + �p(u)) ,
(1.1)

with functional response proposed in [13]

p(u) = mun/(a+ un).

where the parameters are: the maximal feeding rate m; an a�nity constant a, related to handling

times, capture e�ciencies, etc.; and the number of encounters n � 1 a predator must have with a

prey item before becoming maximally e�cient at utilizing the prey item as a resource. According to

[13], this last parameter is derived from an analogy with Michaelis-Menten equation for enzymatic

kinetics. Here n measures the amount of ‘learning’ exhibited by the predator. For n > 1, this

functional response has Holling type III, while for n = 1 it has Holling type II, that is why this

functional is also called generalized functional response. Increasing the attack exponent 1 < n < 2

introduces the stability of simple consumer-resource population models, theoretical findings reveal

that this increases biodiversity, see [14] and references therein. By fitting parameters, it is shown

that n � 2 appear in certain models in ecology, where predator free-space is a component of the

habitat structure, see [1]. Other theoretical models of biological relevance consider the specific

attack exponent n = 2, see [15, 18].

For 1 < n < 2 existence and uniqueness of limit cycles for predator-prey system (1.1) is proved

in [16]. Existence and uniqueness for 0  n  1, n � 2 also holds true under certain conditions,

see [17]. Along this work we consider only integer values n � 2.

Existence of non-algebraic limit cycles for the Lotka-Volterra model were first exhibited by [12].

Since then, existence of trascendental ovals as limit cycles in system generalizing Lotka-Voltera

models have been proved, see for instance [9, 5, 6]. Motivated by these results we explore this

question for generalized functional responses.

Our main result is contained in Theorem 2.1 which asserts that limit cycles can not be algebraic

ovals in the case of Holing type III predator-prey models. The proof uses Puiseux series at infinity

in the variable x. We estimate the number of branches of solutions given by the Puiseux series.

We perform calculation of the leading term and prove that there exists at most one determination

or branch of such series. To see this we show how each coe�cient cn is completely specified by

the parameters of the system. Thus, we conclude that any invariant algebraic curve must have at

most degree one in y. Thus any algebraic invariant curve y(x), should be a rational function.

For related works which also apply formal and Puiseux series to planar polynomial systems see [4,

7, 8].
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2 Rational functions as invariant algebraic curves

Under a suitable change of variables, x = u, y = �v/m, and time reparametrization, ds
dt =

1/(a+ u2), system (1.1) becomes

ẋ = x
�
(r � 1/K)a+ (r � 1/K)xn + xn�1y

�
,

ẏ = y (�D + (�m�D)xn) .
(2.1)

Thus we study the algebraic system:

ẋ = x
�
a0 + anx

n + xn�1y
�
,

ẏ = y (b0 + bnx
n) , an 6= bn.

(2.2)

Notice that the axes x = 0, y = 0 are algebraic solutions of (2.1).

Take the ODE defined by system (2.1) in the complex domain

dy

dx
=

y (b0 + bnxn)

x (a0 + anxn + xn�1y)
. (2.3)

Solutions are Riemann surfaces immersed in Cx ⇥ Cy, where Cx ' C and poles of solutions

correspond to values y = 1 in the compactification Cy = Cy [ {1} ' CP1.

If we ask for the existence of algebraic solutions F (x, y) = 0 for F 2 C[x, y], of the dynamical

system (2.1). Then, such algebraic curve should be rational.

Theorem 2.1. Suppose that the following conditions hold,

a0 6= b0, an 6= bn. (2.4)

If there exists an invariant algebraic curve F (x, y) = 0 of equation (2.3) with x, y - F (x, y), then

degy F = 1. Therefore, any algebraic (possibly multivalued) solution should also be a rational

(univalued) solution, y = �(x), provided we exclude the trivial solution, y(x) ⌘ 0.

The following claim becomes of interest.

Corollary 2.2. There can not exist algebraic limit cycles of the dynamical system (2.1) as a real

vector field in R2, whenever conditions (2.4) hold true.

For the proof of Theorem 2.1 we consider the Newton-Puiseux algorithm to describe explicitly the

nature of solutions at the infinites x = 1 and y = 1. For further explanation of the Newton-

Puiseux method for ODE, see [2, 10, 11]. The crucial step of the proof is to apply the following

result.

Theorem 2.3 (Theorem 1.4 in [3]). Let G(z, w) = 0 be an invariant algebraic curve, @wG 6= 0 of

the polynomial ODE

P (z, w)
dw

dz
�Q(z, w) = 0. (2.5)
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Then degw G is at most the number of Puiseux series

w(z) = c0z
µ0 +

1X

l=1

clz
l

m0
+µ0 , (2.6)

solving (2.5), whenever the number of these series is finite. Here µ0 = l0/m0 with m0, l0 relatively

prime integers m0 � 0.

Proof of Theorem 2.1. We proceed analyzing poles and algebraic branch points according to Painle-

vé methodology, see [10, 11]. Notice that under the blow-up change of coordinates ⇠ = 1
x , equation

(2.1) yields an equation at x = 1 corresponding to ⇠ = 0

dy

d⇠
= � y(a0⇠n + an)

⇠(b0⇠n + bn + ⇠y)
, (2.7)

At infinity the trivial solution y ⌘ 0 yields a trivial solution which tends to ⇠ = 0. To find an

expansion of non-trivial solutions along ⇠ = 0, with ⇠ = 1/x, in equation (2.7), we adopt the

following Puiseux series expansion:

y(⇠) = c0⇠
µ0 +

1X

l=1

cl⇠
l

m0
+µ0 , (2.8)

where µ0 = l0/m0 and �1/µ0 is one of many possible slopes of the corresponding Newton polygon,

and l0,m0 are relatively prime integers. For equation (2.7) the Newton polygon is a right-angled

triangle whose only oblique side is the hypothenuse, see Fig. 1.

y

l

6

-

.

.

.P
P

P
P

P
P

P
PP

�

�

�

2

1

2

3

4

5

1 n ⇠

l

Figure 1: Newton polygon associated to the ODE (2.7) and used to calculate µ0. Circled vertices

correspond to monomials appearing in By0 within the expression A(⇠, y) +B(⇠, y)dyd⇠ = 0.

Therefore, the only slope to consider is �1/µ0 = 1. Accordingly, µ0 = �1 and c0(bn�an)�c20 = 0,

with two possible roots: c0 = 0, bn�an 2 C. If we make a direct substitution c0 = 0 of the Laurent

expansion,
P1

l=0 cl⇠
�1+l. This yields the trivial solution, y ⌘ 0. We claim that the remaining

value,

c0 = bn � an 6= 0 (2.9)
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gives rise to a unique Laurent series of a simple pole at x = 1, and therefore to just one branch

of the Puiseux series. Indeed, under substitution

⇠1 = ⇠, y = c0⇠
�1
1 + y1,

we obtain a Newton polygon for

(a0⇠
n
1 + bn + ⇠1y1)⇠1

dy1
d⇠1

+ (b0⇠
n
1 + an)y1 + (an � bn)(a0 � b0)⇠

n�1
1 = 0 (2.10)

which has two possible slopes and corresponding values µ1 = 1,�1/(n� 1). See Fig. 2.

n�1

l
l

6

-

.

.

.

.....

P
P

P
P
P

P
P
PP�

�

�

P
P

P
P

P
P

P
PP

�

�

�

2

1

2

3

4

5

1 n ⇠

y

l

Figure 2: Newton polygon associated to the ODE (2.10) and used to calculate µ1.

According to the algorithm given in [2], for positive slope �1/µ1, we choose as principal side,

µ1 = n� 1. We have

cn =
(an � bn)(a0 � b0)

(1� n)bn � an
. (2.11)

In the following step, we have a principal side with µ2 = 2n � 1. See the corresponding Newton

polygon used to calculate µ2 in Fig. 3.

This determines c2n. Therefore, there is a unique determination for the Puiseux-Laurent series:

y = c0⇠
�1 +

1X

k=1

ckn⇠
kn�1 + . . . . (2.12)

By direct substitution of the Puiseux-Laurent series in eq. (2.7) we can also verify that the middle

coe�cients vanish, i.e. for each k = 0, 1, 2, . . . , we have

cl = 0, 8l = kn+ 1, . . . , (k + 1)n� 1.

Theorem 2.3 implies that degy F  1.

Thus, under the hypothesis of Theorem 2.1 we conclude that y = �(x) is a rational function which

cannot contain an algebraic limit cycle because of the uniqueness of its determination with respect

to x.
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Figure 3: Newton polygon used to calculate µ2.

Remark 2.4. We have chosen Puiseux-Laurent series of the form y = y(x) because there is a

recognizable pattern in the successive Newton polygons, namely triangles with a moving low vertex.

This yields a unique side with a unique slope. Therefore a unique µk yields a unique linear relation

that allows us to compute all the coe�cients ck.

3 On the degree with respect to x

We may ask whether the degree in x for an invariant curve can be estimated with the same

methods. Notice that expression (2.12) suggests that degx F = nk for some k 2 N. We illustrate

the di�culties to calculate an upper bound for degx F using the same techniques by considering

n = 3.

If we take, x = x(y) at y = 1, then we may take the coordinate change y = 1
⌘ . Thus system (2.1)

becomes
dx

d⌘
=

a0x⌘ + anxn+1⌘ � xn�1

⌘2(b0 + bnxn⌘2)

The corresponding Newton polygon is shown in Fig. 4.

There are three posible cases for Puiseux-Laurent series

x(⌘) = c0⌘
µ0 +

1X

l=1

cl⌘
l

m0
+µ0 ,

corresponding to slopes �1/µ0 equal to 1,1,�(n � 1) which yield µ0 equal to �1, 0, 1
n�1 . No

infinite values c0 2 R arise in each case. This can be verified as follows:

(1) Case µ0 = �1. Under substitution

⌘1 = ⌘, x = c0⌘
µ0
1 + x1,
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x
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6

B

B
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B
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�
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1
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i

Figure 4: Newton polygon for x(y) at infinity used to calculate µ0 = 1
n�1 .

we regard the least degree coe�cient. There exists a unique Puiseux series where c0 is

determined by a linear relation

cn0 (c0(bn � an)� 1) = 0,

therefore there exists just one branch.

(2) Case µ0 = 0. Corresponds to the trivial solution x ⌘ 0 with c0 = 0.

(3) Case µ0 = 1
n�1 . Puiseux-Laurent series arise as c0 solve a relation:

a0c0 +
b0c0
n� 1

+ cn0 = 0,

therefore there exists n� 1 posible branches. Each branch corresponds to a (n� 1)�th root

c0 =

✓
�a0 �

b0
n� 1

◆1/n�1

.

If we choose µ0 = 1
n�1 , then we get the ODE,

A(⌘1, x1) +B(⌘1, x1)
dx1

d⌘1
,

with extended expression,

A(3,0)⌘
3
1 +A(1,1)⌘1x1 +A(5/2,1)⌘

5/2
1 x1

+A(1/2,2)⌘
1/2
1 x2

1 +A(2,2)⌘
2
1x

2
1 +A(0,3)x

3
1 +A(3/2,1)⌘

3/2
1 x1

+A(1,4)⌘1x
4
1

+
dx1

d⌘1
⇥ [B(1,1)⌘

2
1 +B(5/2,1)⌘

7/2 +B(2,2)⌘
3
1x1

+B(3/2,3)⌘
5/2
1 x2

1 +B(1,4)⌘
2
1x

4
1] = 0.
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whose Newton polygon is shown in Fig 5. Circled vertices correspond to monomials appearing in

Bx0
1 within the ODE.

Under the same assumptions of Theorem 2.1, if there exists an invariant algebraic curve F (x, y) = 0

of (2.3) with x, y - F (x, y), then degx F has upper bound at least n� 1, provided we exclude the

trivial solution, y(x) ⌘ 0. This would require

a0 +
b0

n� 1
6= 0. (3.1)

We still can not conclude that degx F  n� 1, since the proof of this fact would require a suitable

description of successive Newton polygons, as well as an e↵ective calculation of the number of

branches of the corresponding Puiseux-Laurent series. Two main di�culties arise: On one hand

these Newton polygons may follow a complex pattern. On the other hand, we may have several

di↵erent relations defining general coe�cients ck, k > 0 requiring enough conditions so that there

is a finite number of branches rather than a continuum.

4

l
l
ll

6

.

.

.

.

.

.

.

.

-

A

A

A
A
H
H

H
HA

A

A

A

A

A

A
A�

�

x

1 2 3 ⌘

1

2

3

l

Figure 5: Newton polygon that determines µ1 = 2 with n = 3.

In the second step we have the possibility to choose either µ1 = 2 or µ1 = 1/2. If we choose µ1 = 2.

Then, the corresponding relations arising from the least degree terms in the substitution

⌘1 = ⌘2, x1 = c1⌘
µ1
2 + x2

become,

4c1(4a0 � b0) = 8a3a
2
0 + 4a20b3 + 8a3a0b0 + 4a0b3b0 + 2a3b

2
0 + b3b

2
0,

Therefore, we would require the additional condition

4a0 6= b0 (3.2)

in order to be able to calculate c1 and thus have a finite number of branches.
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According to [2, Lemma 2], in order to have a finite number of branches, i.e. a good side of the

Newton Polygon in its terminology, it is su�cient that the following conditions hold for the high

and low vertices of such a side, (a, b), (a0, b0), respectively:

(1) B(a,b) 6= 0 and
A(a,b)

B(a,b)
/2 Q�µ1 = {q 2 Q : q � µ},

(2) A(a0,b0) + µB(a0,b0) 6= 0,

where A(a,b), B(a,b) refer to the coe�cients for the monomials in the equation A + B dx1
d⌘1

= 0

associated to the vertex (a, b).

In our concrete example, in Fig. 5 we have chosen µ1 = 2 because it corresponds to the slope

�1/µ1 of the unique good side which has vertices (a, b) = (1, 1) and (a0, b0) = (3, 0). Calculations

yield

A(1,1) =
1

8
(16a0 + 12b0), B(1,1) = �b0,

A(3,0) = �c40

✓
a0 +

b0
2

◆
, B(3,0) = 0.

Recall that under our conventions, B(3,0) = 0 is implied by the fact that the vertex (3, 0) is not

circled. Conditions for a good side which are su�cient to have a finite number of branches read as

follows:

(1) 16a0+12b0
8b0

/2 Q�µ1 = {q 2 Q : q � µ1}. That is, either

a0
b0

<
1

4
or

a0
b0

� 1

4
but

a0
b0

/2 Q. (3.3)

(2) a0 +
b0
2 6= 0. We recover condition (3.1).

Notice that condition (3.3) is stronger than (3.2).

In the following step we choose µ2 = 7/2 by considering the slopes of the Newton polygon shown

in Fig. 6 with the unique good side which has vertex (a0, b0) on the ⌘1�axis. Remark the increasing

complexity of the polygon. Thus in the step k � 2, we can always choose the good side largest

negative slope �1/µk with vertex (a0, b0) = (a0, 0) on the ⌘k�axis and vertex (a, b) = (1, 1).

But even if in each step k � 2 we achieve linear relations to determine coe�cients ck, we still can

not conclude that there is a finite number of determinations. An additional calculation needs to be

done, namely to verify that no other side in the Newton polygon, yield a continuous indetermination

ck 2 C. Those additional sides are not good. To illustrate this di�culty suppose that we do not

choose the unique good side in Fig. 5. Suppose that on the contrary we choose the side with

vertices (a, b) = (0, 3) and (a0, b0) = (1, 1) which is not good. Further calculation yields

(a0 + 2b0)c0 = 0.
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Therefore, either c0 = 0 or an indetermination c0 2 C arises whenever the following relation does

or does not hold:

a0 + 2b0 6= 0. (3.4)

x

l
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l l
ll

l l l.

.

.

.

.

-

.

. .

.
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. .
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. .
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H
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H
H

H
H

H
H

H
H

H
H

H
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1 2 3

1

2
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4

⌘4 5 6 7 8 9

l

Figure 6: Newton polygon to determine µ2 = 7/2. Notice its increasing complexity with respect

to Figs. 5 and 4.

Summarizing, if we follow the same strategy, to find an e↵ective upper bound for degx F requires

further calculations and a detailed and complete description of the conditions that allow a finite

number of branches. We leave it for a future work.

4 Zooplankton-phytoplankton dynamics

We consider the dependence of a predator’s (zooplankton) grazing rate on prey (phytoplankton)

is taken as that of Holling type III response as in [15], instead of type II as in (2.67), (2.68) in [18].

Suppose that phytoplankton grows in logistic form whereas the zooplankton predation by fish is

neglected. We then get the following system

u̇ = u (1� u)� vu2

h+ u2
,

v̇ =
�vu2

h+ u2
� �v,

(4.1)

which yields a system similar to (2.1):

ẋ = x (xy) ,

ẏ = y
�
�� + (� � �)x2

�
.

(4.2)



CUBO
23, 3 (2021)

Non-algebraic limit cycles in Holling type III ... 353

The criterion exposed in [17] for existence and uniqueness of a limit cycle adapted to system (1.1)

with m = 1 and n � 2 states that

(nD � (n� 2)�) · n

s
aD

� �D
< (pD � (p� 1)�)K,

which for (4.1) yields

2�

s
h�

� � �
< 2� � �. (4.3)

For the specific choice of parameters: � = 0.25, � = 0.35, h = 0.01, condition (4.3) holds true.

Therefore there exists a unique limit cycle. Indeed, numerical evidence for the existence of a limit

cycle is given in Fig. 7.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Figure 7: Solutions of system (4.1) with initial conditions (0.1, 0.05) and (0.2, 0.2) converge to a

limit cycle.

On the other hand, due to Corollary 2.2 this limit cycle can not be an algebraic curve. Indeed, for

an algebraic invariant curve F (x, y) = 0, there is only one branch of a simple pole at x = 1. The

corresponding Puiseux-Laurent series of this branch is

y =
1X

k=0

c2k⇠
2k�1 = c0⇠

�1 + c2⇠ + c4⇠
3 + . . . ,

where ⇠ = 1/x. A straightforward calculation of the coe�cients yields

c0 = � � � = 0.1, c2 = � = 0.25, c4 = 0 = c2k, k � 2.

Therefore, y = c0⇠�1 + c2⇠. Hence for an invariant algebraic curve, degy F = 1, and y = �(x),

should be rational with F (x,�(x)) = 0. In this example degx F = 2.
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ABSTRACT

For any a 2 R, for every n 2 N, and for n-th Wallis’ ratio

wn :=
Qn

k=1
2k�1
2k , the relative error r0(a, n) :=

�
v0(a, n) �

wa
n

�
/wa

n of the approximation wa
n ⇡ v0(a, n) := (⇡n)�a/2

is estimated as
��r0(a, n)

�� < 1
4n . The improvement wa

n ⇡
v(a, n) := (⇡n)�a/2

⇣
1� a

8n + a2

128n2

⌘
is also studied.

RESUMEN

Para cualquier a 2 R, para todo n 2 N, y para el n-

ésimo cociente de Wallis wn :=
Qn

k=1
2k�1
2k , el error re-

lativo r0(a, n) :=
�
v0(a, n) � wa

n

�
/wa

n de la aproximación

wa
n ⇡ v0(a, n) := (⇡n)�a/2 se estima como

��r0(a, n)
�� <

1
4n . También se estima la mejora wa

n ⇡ v(a, n) :=

(⇡n)�a/2
⇣
1� a

8n + a2

128n2

⌘
.
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1 Introduction

The sequence of Wallis1 ratios

wn :=
nY

k=1

2k � 1

2k
=

(2n� 1)!!

(2n)!!
= 4�n

✓
2n

n

◆
(1.1)

is often encountered in pure and applied mathematics, in physics, and in several other exact sciences

too. For example, the perimeter P (a, b) of an ellipse having semi-axes of length a and b  a is

given as

P (a, b) = 4a

Z ⇡/2

0

q
1� "2 sin2(⌧) d⌧ = 2a⇡

 
1�

1X

k=1

w2
k

2k � 1
"2k

!
(1.2)

[20], where " =
q
1� b2

a2 , the eccentricity of an ellipse.

Similarly, the period T of a simple pendulum, located in the gravitational field with the acceleration

g and having the length L and the amplitude of the oscillation ↵ 2 (0,⇡), is determined by the

formula

T = 4

s
L

g

Z ⇡/2

0

d⌧q
1� "2 sin2(⌧)

= 2⇡

s
L

g

 
1 +

1X

k=1

w2
k"

2k

!
(1.3)

[21, p. 26], where " = sin(↵/2). Not only in mechanics, but also in other parts of physics, the

Wallis ratio has several interesting roles, see for example [9] and [12].

In mathematics, the sequence of the Landau constants Gn, important in the theory of analytic

functions, see [1], is also defined by the Wallis ratios as

Gn :=
nX

k=1

w2
k (n 2 N). (1.4)

The Wallis ratio attracts mathematicians also because of its direct connections with Catalan num-

bers cn := 1
n+1

�2n
n

�
, also important objects for pure and applied mathematics [15, 29]. In fact, the

Wallis ratio, i.e. the sequence n 7! wn, was investigated by many researches, see for example the

papers [2, 3, 4, 5, 6, 7, 8, 11, 14, 16, 22, 23, 26, 27, 28, 29, 31, 33].

In 2007 was presented [33] aesthetically pleasing double inequality

1p
e⇡n

✓
1 +

1

2n

◆n� 1
12n

< wn  1p
e⇡n

✓
1 +

1

2n

◆n� 1
12n+16

, (1.5)

true for all n 2 N.

In 2013 was demonstrated [10] the estimate

r
e

⇡

✓
1� 1

2n

◆n p
n� 1

n
< wn  4

3

✓
1� 1

2n

◆n p
n� 1

n
, (1.6)

1
John Wallis, 1616 – 1703
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true for n � 2.

In 2015 was derived [11] the inequalities

✓
2

3

◆3/2✓
1� 1

2n

◆n+1/2✓
n� 3

2

◆�1/2

 wn <

r
e

⇡

✓
1� 1

2n

◆n+1/2✓
n� 3

2

◆�1/2

, (1.7)

valid for n � 2. At the same time, in [28, Theorems 4.2 and 5.2] were presented the estimates

wn >

r
e

⇡n

✓
1� 1

2n

◆n

exp

✓
1

24n2
+

1

48n3
+

1

160n4
+

1

960n5

◆
(1.8)

wn >

r
e

⇡n

✓
1� 1

2(n+ 1/3)

◆n+1/3

(1.9)

and

wn <

r
e

⇡n

✓
1� 1

2(n+ 1/3)

◆n+1/3

exp

✓
1

144n3

◆
, (1.10)

all true for n � 1.

In the mentioned formulas for the perimeter of an ellipse and the period of a simple pendulum, as

well as for the Landau sequence, see (1.2)–(1.4), we met the second powers of the Wallis ratios.

This fact initiated our desire to approximate any power of the Wallis ratio. But, all the inequalities

(1.5)–(1.10) are less suitable for estimating the power wa
n for a 2 R. Fortunately, the approximation

formula for the Wallis ratio, presented in [19], is more convenient for this task. In this contribution

we shall show the first two steps how to approximate simply and accurately the powers of the

Wallis ratios having real exponents.

2 Basic discussion

The sequence of Wallis’ ratios was estimated recently [19] as

wn =
1p
⇡ n

exp
�
� esr(n) + �r(n)

�
(n 2 N), (2.1)

where

esr(n) =
rX

i=1

(1� 4�i)B2i

i(2i� 1)n2i�1
(n, r 2 N) (2.2)

and, for any n, r 2 N, the error �r(n) is estimated as

�
��B2r+2

��
(r + 1)(2r + 1)n2r+1

< (�1)r�r(n) <

��B2r+2

��
2(r + 1)(2r + 1)(2n)2r+1

. (2.3)

Here B2 = 1
6 , B4 = � 1

30 , B6 = 1
42 , . . . are the Bernoulli numbers, defined by the identity

x
ex�1 ⌘

P1
j=0 Bj

xj

j! ( |x| < 2⇡ ).

We obtain the basic approximation by using r = 1,

wa
n = (⇡n)�a/2 exp

�
� aes1(n) + a�1(n)

�
(a 2 R, n 2 N), (2.4)
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with, for n 2 N,
es1(n) :=

1

8n
> 0 (2.5)

and

� 1

180n3
< � 1

2880n3
< �1(n) <

1

180n3
. (2.6)

Thus, due to (2.5),

aes1(n) =
a

8n
(a 2 R, n 2 N) . (2.7)

Moreover, thanks to (2.5)–(2.6), we estimate, for n 2 N,

�es1(n)±
���1(n)

�� � �es1(n)�
���1(n)

�� > � 1

8n
� 1

180n3
> � 1

7n
(2.8)

and

�es1(n)±
���1(n)

��  �es1(n) +
���1(n)

�� < � 1

8n
+

1

180n3
< � 1

9n
. (2.9)

Therefore, � a
7n < a

�
� es1(n) ± �1(n)

�
< � a

9n , for a > 0 and � a
7n > a

�
� es1(n) ± �1(n)

�
> � a

9n ,

for a < 0. Thus,

min
�
� a

7n ,�
a
9n

 
< a

�
� es1(n)±

���1(n)
��� < max

�
� a

7n ,�
a
9n

 
(a 6= 0, n 2 N). (2.10)

Hence, considering (2.4), together with the equality min(�S) = �max(S), for every S ✓ R, we
derive the following theorem.

Theorem 2.1. For a 2 Rr {0} and n 2 N, the following double inequality holds:

(⇡n)�a/2 exp
�
�max

�
a
7n ,

a
9n

 �
< wa

n < (⇡n)�a/2 exp
�
�min

�
a
7n ,

a
9n

 �
. (2.11)

Figure 1 shows2 the graphs of the function a 7! wa
2 and its approximation (dashed line) a 7!

(⇡ · 2)�a/2.

!2 !1 1 2

1

2

3

4

5

6

7

n"2

!0.10 !0.05 0.05 0.10

0.95

1.00

1.05

1.10

n"2

Figure 1: The graphs of the function a 7! wa
2 and its approximation (dashed line) a 7! (⇡ · 2)�a/2.

2
All graphics and calculations in this paper are made using the Mathematica [32] computer system.
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Example 2.2. For any n 2 N we have

(⇡n)�50 exp
�
� 100

7n

�
< w100

n < (⇡n)�50 exp
�
� 100

9n

�
,

(⇡n)50 exp
�
100
9n

�
< w�100

n < (⇡n)50 exp
�
100
7n

�
.

From Theorem 2.1 there follows the next corollary.

Corollary 2.3. For every a 2 Rr {0} and for any positive integer n � a we have

wa
n >

6

7
(⇡n)�a/2 . (2.12)

Proof. For k � a > 0, using (2.11), we obtain3 wa
k > (⇡k)�a/2 exp

�
� a

7k

�
> (⇡k)�a/2(1 �

a
7k ) �

�
⇡k)�a/2(1 � 1

7

�
= 6

7 (⇡k)
�a/2. Furthermore, for a < 0, due to (2.11), we estimate wa

k >

(⇡k)�a/2 exp
�
� a

9k

�
= (⇡k)�a/2 exp

� |a|
9k

�
> (⇡k)�a/2 · 1.

Lemma 2.4. Let real numbers ↵, �, v and w satisfy the inequalities ↵� � 0, �  1
2 , v > 0 and

e↵v < w < e�v. Then we have |v � w| < 3
2v ·max{|↵|, |�|}.

Proof. Supposing that all conditions of Lemma 2.4 are satisfied, we have only two possibilities

↵ < �  0 or 0  ↵ < �, together with the estimate

(e↵ � 1)v < w � v < (e� � 1)v.

Therefore, in case ↵  0, we have (1 � e↵)v > v � w > (1 � e�)v � 0. Thus, see Footnote 3,

|v�w| < �↵ = |↵|. Additionally, using the first order Taylor’s formula and the estimate 0  �  1
2 ,

in case ↵ � 0, we obtain, 0  (e↵� 1)v < �(v�w) < (e� � 1)v < �+ 1
2e

��2  �+ 1
2e

1/2 1
2� < 3

2�.

Hence, in both cases we have |v � w| < v ·max{|↵|, 3
2 |�|}.

Corollary 2.5 (relative error). For every a 2 R r {0} and for any positive integer n � a the

relative error r0(a, n) :=
�
wa

n � v0(a, n)
�
/wa

n of the approximation wa
n ⇡ v0(a, n) := (⇡n)�a/2

is

roughly estimated as
��r0(a, n)

�� < 1

4n
.

Proof. Thanks to Theorem 2.1 and Lemma 2.4, using the notations ↵ = �max
�

a
7n ,

a
9n

 
, � =

�min
�

a
7n ,

a
9n

 
, v = v0(a, n) = (⇡n)�a/2 and w = wa

n, we obtain

��v0(a, n)� wa
n

�� < 3

2
(⇡n)�a/2 ·max

n ��max
�

a
7n ,

a
9n

 �� ,
��min

�
a
7n ,

a
9n

 ��
o
.

Thus, according to the identity max
�
|max {x, y}| , |min {x, y}|

 
= max

�
|x|, |y|

 
, we get

��v0(a, n)� wa
n

�� < 3

2
(⇡n)�a/2 · |a|

7n
.

3
considering the well-known estimate ex > 1 + x, true for x 2 R r {0}.
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Hence, using Corollary 2.3,
��v0(a, n)� wa

n

��
wa

n

<
3

2
(⇡n)�a/2 |a|

7n
· 7
6
(⇡n)a/2 =

|a|
4n

.

Figure 2 shows, on the left – the graph of the actual relative error function a 7! r0(a, n) and on

the right – the graphs of the functions a 7! r0(a, n) and a 7! |a|
4⇥1000 (dashed line).

!10 000 !5000 !2000 2000 4000

0.1

0.2

0.3

0.4
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0.6

0.7

a

b

b"r0!a,1000"

!8 !6 !4 !2 2 4 6 8

0.0005

0.0010

0.0015

0.0020

a

b

b"r0!a,1000"

b"
a

4#1000

Figure 2: Left – the graph of the actual relative error function a 7! r0(a, 1000); Right – the graphs

of the actual relative error a 7! r0(a, 1000) and its approximation (dashed line) a 7! |a|
4⇥1000 .

3 Improvement

The relations (2.4)–(2.6) can be exploited more accurately to derive the next theorem.

Theorem 3.1. For any a 2 R and every integer n � |a|
8 , we have

wa
n = v(a, n) + "(a, n), (3.1)

where

v(a, n) := (⇡n)�a/2

✓
1� a

8n
+

a2

128n2

◆
, (3.2)

and the error "(a, n) is estimated as

��"(a, n)
��  "⇤(a, n) := (⇡n)�a/2


a2

100
+

1

18
exp

⇣
�min

n a

7n
,
a

9n

o⌘� |a|
10n3

(3.3)

 (⇡n)�a/2

✓
a2

100
+

1

18
exp

⇣ |a|
7n

⌘◆ |a|
10n3

 "⇤⇤(a, n) := (⇡n)�a/2

✓
a2 +

35

2

◆
|a|

(10n)3
. (3.4)

Proof. Using the second order Taylor’s formula, we have

exp
�
� aes1(n)

�
= exp

⇣
� a

8n

⌘
= 1� a

8n
+

1

2

⇣
� a

8n

⌘2
+R2(a, n) (3.5)
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with

R2(a, n) =
1

6
exp

⇣
�# · a

8n

⌘⇣
� a

8n

⌘3
, for some # = #(a, n) 2 (0, 1).

Therefore, for a 2 R and n � |a|
8 ,

��R2(a, n)
��  1

6
exp

✓
|a|
8n

◆
·
✓
|a|
8n

◆3

 e

6
· |a|3

512n3
 |a|3

1000n3
. (3.6)

Similarly,

exp
�
a�1(n)

�
= 1 + exp

�
# · a�1(n)

�
· a�1(n), (3.7)

for some # = #(a, n) 2 (0, 1).

Thanks to (3.7), (2.10) and (2.6), we estimate, using some ✓ = ✓(a, n) 2 (0, 1),

���exp
�
� aes1(n) + a�1(n)

�
� exp

�
� aes1(n)

�
| {z }

=�(a,n)

��� = exp
�
� aes1(n)

�
·
�� exp

�
✓ · a�1(n)

�
· a�1(n)

��

 exp
�
� aes1(n)

�
· exp

�
|a�1(n)|

�
·
��a�1(n)

��

= exp
⇣
a
�
� es1(n)± |�1(n)|

�⌘
|a|
���1(n)

��

(2.10)


(2.6)
exp

⇣
max

n
� a

7n
,� a

9n

o⌘
· |a|
180n3

. (3.8)

Consequently, according to (2.4) and (3.5), we obtain

wa
n

(2.4)
= (⇡k)�a/2

⇣
exp

�
�aes1(n)+a�1(n)

�⌘ (3.5)
= (⇡n)�a/2

⇣
1� a

8n
+

a2

128n2
+R2(a, n)

| {z }
=exp(�aes1(n))

+�(a, n)
⌘
,

where, considering (3.6) and (3.8), for a 2 R and n � |a|
8 , we estimate the error "(a, n) :=

(⇡n)�a/2
�
R2(a, n) +�(a, n)

�
as

��"(a, n)
��  (⇡n)�a/2


|a|3

1000n3
+ exp

⇣
�min

n a

7n
,
a

9n

o⌘ |a|
180n3

�

= (⇡n)�a/2


a2

100
+

1

18
exp

⇣
�min

n a

7n
,
a

9n

o⌘� |a|
10n3

 (⇡n)�a/2


a2

100
+

1

18
exp

⇣ |a|
8n

· 8
7

⌘� |a|
10n3

 (⇡n)�a/2

✓
a2

100
+

1

18
exp

⇣
1 · 8

7

⌘◆ |a|
10n3

 (⇡n)�a/2

✓
a2

100
+

7

40

◆
|a|
10n3

.

Remark 3.2. The sequence n 7! Wn := 1
2n+1

⇣Qn
k=1

2k
2k�1

⌘2
, called the Wallis sequence, is closely

connected to the sequence of the Wallis ratios wn by the identity Wn = w�2
n /(2n+1). So, Wn can

be estimated easily using Theorem 3.1, e.g. its consequence (3.14).
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Remark 3.3. According to Theorem 3.1, the constant ⇡ can be easily approximated using certain

rational functions R⌥(n). For example, from (3.14) we get, for any n 2 N,

1

n

✓
w�2

n � 1

5n2

◆✓
1 +

1

4n
+

1

32n2

◆�1

< ⇡ <
1

n

✓
w�2

n +
1

5n2

◆✓
1 +

1

4n
+

1

32n2

◆�1

.

Directly from Theorem 3.1 and Corollary 2.3, from (3.4) and (2.12), we read the next corollary.

Corollary 3.4 (relative error). For every a 2 R and for any positive integer n � |a| the relative

error of the approximation wa
n ⇡ v(a, n),

r(a, n) :=
wa

n � v(a, n)

wa
n

, (3.9)

is a priori estimated as

��r(a, n)
��  r⇤(a, n) :=

✓
a2 +

13

2

◆
7|a|

6(10n)3
. (3.10)

For any a 2 R and all integers n � |a| the rough estimate r⇤(a, n) < 8.2h holds true.

Figure 3 shows the graphs of the actual relative error functions a 7! r(a, n), for n 2 {10, 100}.

!10 !5 5 10

0.0001

0.0002

0.0003

a

b

b " r!a,10"

!100 !50 50 100

0.0001

0.0002

0.0003

a

b

b " r!a,100"

Figure 3: The graphs of the actual relative error functions a 7! r(a, n) for n 2 {10, 100} .

Figures 4–5 compare the actual relative error functions a 7! r(a, n) and their approximations

a 7! r⇤(a, n), for n 2 {1, 3, 10, 100}.

!1.0 !0.5 0.5 1.0
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0.008

n"1
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b " r!a,1"

b " r
#
!a,1"

!3 !2 !1 1 2 3

0.0005

0.0010

0.0015

0.0020

n"3

a

b

b " r!a,3"

b " r
#
!a,3"

Figure 4: The graphs of the actual relative error functions a 7! r(a, n) and their approximations

a 7! r⇤(a, n), for n 2 {1, 3} .
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b " r!a,100"

b " r
#
!a,100"

Figure 5: The graphs of the actual relative error functions a 7! r(a, n) and their approximations

a 7! r⇤(a, n), for n 2 {10, 100} .

Using a 2 {1, �1, 2, �2, 1
2 , ⇡, �2⇡} in Theorem 3.1, considering (3.1) and (3.4), we obtain several

inequalities for Wallis’ ratios, presented in the next corollary.

Corollary 3.5. For every
4
positive integer n we have

1p
⇡ n

�
1� 1

8n + 1
128n2

�
� 1

95n7/2 < wn <
1p
⇡ n

�
1� 1

8n + 1
128n2

�
+ 1

95n7/2 , (3.11)

p
⇡ n

�
1 + 1

8n + 1
128n2

�
� 1

30n5/2 <
1

wn
<

p
⇡ n

�
1 + 1

8n + 1
128n2

�
+ 1

30n5/2 , (3.12)

1

⇡ n

�
1� 1

4n + 1
32n2

�
� 1

73n4 < w2
n <

1

⇡ n

�
1� 1

4n + 1
32n2

�
+ 1

73n4 , (3.13)

(⇡ n)
�
1 + 1

4n + 1
32n2

�
� 1

7n2 <
1

w2
n

< (⇡ n)
�
1 + 1

4n + 1
32n2

�
+ 1

7n2 , (3.14)

1
4
p
⇡ n

�
1� 1

16n + 1
512n2

�
� 1

150n13/4 <
p
wn <

1
4
p
⇡ n

�
1� 1

16n + 1
512n2

�
+ 1

150n13/4 , (3.15)

1

(⇡ n)⇡/2

⇣
1� ⇡

8n + ⇡2

128n2

⌘
� 1

70n3+⇡/2 < w⇡
n <

1

(⇡ n)⇡/2

⇣
1� ⇡

8n + ⇡2

128n2

⌘
+ 1

70n3+⇡/2 , (3.16)

(⇡ n)⇡
⇣
1 + ⇡

4n + ⇡2

32n2

⌘
� 14n⇡�3 < w�2⇡

n < (⇡ n)⇡
⇣
1 + ⇡

4n + ⇡2

32n2

⌘
+ 14n⇡�3 . (3.17)

Remark 3.6. In case a > 0, the inequalities in Corollary 3.5 can be slightly improved using (3.3)

instead of (3.4). For example, due to (3.3), we have, for a 2 {1, 2},

|"(1, n)|  "⇤(1, n) = (⇡ n)�1/2
�

1
100 + 1

18 · 1
�

1
10n3 < 1

270n7/2

|"(2, n)|  "⇤(2, n) = (⇡ n)�1
�

1
25 + 1

18 · 1
�

2
10n3 < 1

164n4 .

4
For 1  n < |a| the inequalities are approved directly.



366 Vito Lampret CUBO
23, 3 (2021)

References

[1] H. Alzer, “Inequalities for the constants of Landau and Lebesgue”, J. Comput. Appl. Math.,

vol. 139, no. 2, pp. 215–230, 2002.
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ABSTRACT

Conformal (respectively, anticonformal) automorphisms of the Rie-

mann sphere are provided by the Möbius (respectively, extended

Möbius) transformations. A Kleinian group (respectively, an ex-

tended Kleinian group) is a discrete group of Möbius transforma-

tions (respectively, a discrete group of Möbius and extended Möbius

transformations, necessarily containing extended ones).

A function group (respectively, an extended function group) is a

finitely generated Kleinian group (respectively, a finitely generated

extended Kleinian group) with an invariant connected component of

its region of discontinuity.

A structural decomposition of function groups, in terms of the Klein-

Maskit combination theorems, was provided by Maskit in the middle

of the 70’s. One should expect a similar decomposition structure

for extended function groups, but it seems not to be stated in the

existing literature. The aim of this paper is to state and provide a

proof of such a decomposition structural picture.

RESUMEN

Los automorfismos conformes (respectivamente, anticonformes) de

la esfera de Riemann son dados por las transformaciones de Möbius

(respectivamente, Möbius extendidas). Un grupo Kleiniano (respec-

tivamente, un grupo Kleiniano extendido) es un grupo discreto de

transformaciones de Möbius (respectivamente, un grupo discreto de

transformaciones de Möbius y transformaciones de Möbius extendi-

das, necesariamente conteniendo extendidas).

Un grupo función (respectivamente, un grupo función extendido)

es un grupo Kleiniano finitamente generado (respectivamente, un

grupo Kleiniano extendido finitamente generado) con una compo-

nente conexa invariante de su región de discontinuidad.

Una descomposición estructural de los grupos función, en términos

de los teoremas de combinación de Klein-Maskit, fue dado por

Maskit a mediados de los 70’s. Se debiera esperar una estructura

de descomposición similar para los grupos función extendidos, pero

no parece estar enunciado en la literatura existente. El objetivo de

este art́ıculo es enunciar y dar una demostración de una tal descom-

posición estructural.
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1 Introduction

The conformal (respectively, anticonformal) automorphisms of the Riemann sphere bC = C [ {1}

are provided by the Möbius (respectively, extended Möbius) transformations, that is, transforma-

tions of the form T (z) = (az+b)/(cz+d) (respectively, L(z) = (az+b)/(cz+d)) where a, b, c, d 2 C

are such that ad � bc = 1. The group of Möbius transformations M is isomorphic to the special

projective linear group PSL2(C) and the group of Möbius and extended Möbius transformations

is bM = hM, J(z) = zi.

A Kleinian group (respectively, an extended Kleinian group) is a discrete subgroup of M (respec-

tively, a discrete subgroup of bM necessarily containing extended Möbius transformations). The

region of discontinuity of a (extended) Kleinian group K is the locus of points p 2 bC admitting

an open neighborhood p 2 U ⇢ bC such that k(U) \ U 6= ; only for finitely many elements k 2 K.

By definition, the region of discontinuity is an open set (it might be empty). The complement

of the region of discontinuity is called the limit set and it is the place where the dynamics of the

group action is chaotic. The history of Kleinian groups can be traced back to Poincaré [17] and a

classical source is the book [13].

A function group is a finitely generated Kleinian group (with a non-empty region of discontinu-

ity) admitting an invariant connected component of its region of discontinuity. Basic examples of

function groups are provided by elementary groups (Kleinian groups with finite limit set), quasi-

fuchsian groups (function groups whose limit set is a Jordan curve) and totally degenerate groups

(non-elementary finitely generated Kleinian groups whose region of discontinuity is both connected

and simply-connected). In a serie of papers, Maskit provided the following decomposition structure

of function groups, in terms of the Klein-Maskit combination theorems [7, 8, 13].

Theorem 1.1 (Maskit’s decomposition of function groups [6, 9, 10, 11]). Every function group

is constructed from elementary groups, quasifuchsian groups and totally degenerate groups by a

finite number of applications of the Klein-Maskit combination theorems. Moreover, in the con-

struction, the amalgamated free products and the HNN-extensions are realized along either (i) a

finite cyclic group (including the trivial group) or (ii) a cyclic group generated by an accidental

parabolic element.

An extended function group is a finitely generated extended Kleinian group with an invariant

connected component of its region of discontinuity. Basic examples of extended function groups

are the extended elementary groups (extended Kleinian groups with finite limit set), extended

quasifuchsian groups (finitely generated extended function groups whose limit set is a Jordan

curve) and extended totally degenerate groups (non-elementary extended finitely generated Kleinian

groups with connected and simply-connected region of discontinuity).

Note that the term “extended quasifuchsian group” used in this paper is di↵erent from the given
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by other authors in the sense that they refer it to Kleinian groups whose limit set is a Jordan curve

and contains elements permuting the two discs bounded by it.

As it is for the case of function groups, one should expect a similar decomposition result for the

extended function groups (see Theorem 1.2). It seems that such a result is missing in the literature.

The aim of this paper is to provide such an structural decomposition of extended function groups.

Theorem 1.2 (Decomposition of extended function groups). Every extended function group is

constructed from (extended) elementary groups, (extended) quasifuchsian groups and (extended)

totally degenerate groups by a finite number of applications of the Klein-Maskit combination theo-

rems. Moreover, in the construction, the amalgamated free products and the HNN-extensions are

realized along either (i) a finite cyclic group (including the trivial group) or (ii) an infinite dihedral

group generated by two reflections or (iii) a cyclic group generated by either an accidental parabolic

element or by an accidental pseudo-parabolic element (i.e., its square is accidental parabolic).

The above structure description is a consequence of Theorems 3.1 and 3.2 (which are new results);

their statements are at the beginning of section 3. Their proofs build upon a sequence of lemmas

3.5, 3.7, 3.8, 3.9, which also are not found in the literature.

The idea of the proof is the following. Let K be an extended function group, with invariant

connected component �. Its index two orientation preserving half K+ = K \ M is a function

group with the same invariant component. As K
+ is finitely generated, Selberg’s lemma [19]

asserts the existence of a torsion free finite index normal subgroup G1 of K+ (which is again a

function group). Since K = hK
+
, ⌧i, where ⌧2 2 K

+, the group G = G1\ ⌧G1⌧
�1 is a finite index

torsion free normal subgroup of K. By Ahlfors finiteness theorem [1], the quotient space S = �/G

is an analytically finite Riemann surface, that is, S = bS �C, where bS is a closed Riemann surface

and C ⇢ bS is a finite set of points (it might be empty). The finite group H = K/G is a group of

conformal and anticonformal automorphisms of S. Maskit’s decomposition of function groups may

be applied to G. There are many possible decompositions, but in order to get one which can be used

to obtain a decomposition of K, we must find one which is in some sense equivariant with respect

to G. This is solved by Theorem 2.2 (equivariant theorem for function groups) obtained by Maskit

and the author in [4]. This result permits us to obtain a first decomposition structural picture (see

Theorem 3.1). In such a picture, there may appear (extended) B-groups as factors. A B-group

(respectively, an extended B-group) is a function group (respectively, an extended function group)

with a simply-connected invariant component in its region of discontinuity. A subtle modification

to Maskit’s arguments for the case of B-groups, to deal with these extended B-groups, is provided

(see Theorem 3.2).

A. Haas’s thesis [3] concerns with uniformizing groups of conformal and anticonformal automor-

phisms acting on plane domains. It leads naturally to extended function groups, but it seems that

the above decomposition does not follow immediately from it.
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2 Preliminaries

2.1 Riemann orbifolds

A Riemann orbifold O consists of a (possible non-connected) Riemann surface S (called the under-

lying Riemann surface of the orbifold), an isolated collection of points of S (called the cone points

of the orbifold) and associated to each cone point an integer at least 2 (called the cone order). A

connected Riemann orbifold is analytically finite if its underlying (connected) Riemann surface is

the complement of a finite number of points of a closed Riemann surface and the number of cone

points is also finite. We may think of a Riemann surface as a Riemann orbifold without cone points.

A conformal automorphism (respectively, anticonformal automorphism) of the Riemann orbifold

O is a conformal automorphism (respectively, anticonformal) of the underlying Riemann surface S

which preserves both its set of cone points together with their cone orders (cone points can be per-

muted but preserving their cone orders). We denote by Aut(O) (respectively, Aut(S)) the group

of conformal/anticonformal automorphisms of O (respectively, S) and by Aut+(O) (respectively,

Aut+(S)) its subgroup of conformal automorphisms.

2.2 Kleinian and extended Kleinian groups

In the following, we recall some facts on (extended) Kleinian groups. A good source on the topic

are the classical books [13, 14]. Let us start by observing that, if K1 < K2 < bM and K1 has finite

index in K2, then both are discrete if one of them is and, in the discreteness case, both have the

same region of discontinuity.

Let K < bM and set K+ := K \M. If K 6= K
+, then K

+ is called the orientation-preserving half

of K and, in this case, K is an extended Kleinian group if and only if K+ is a Kleinian group;

in which case both have the same region of discontinuity. If moreover, K is an extended Kleinian

group and K
+ is a function group, then either: (i) K is an extended function group or (ii) K+ is

a quasifuchsian group and there is an element of K �K
+ permuting both discs bounded by the

limits set Jordan curve (so K is not an extended function group).

2.3 Accidental parabolic elements

A B-group is a function group K with a simply-connected invariant component �. Let us assume

K is non-elementary (i.e., its limit set is not finite). By the Klein-Poincaré uniformization theorem

[18], there is a bi-holomorphism f : H2
! �, where H

2 denotes the hyperbolic upper-half plane.

The group � = f
�1

Kf is a group of conformal automorphisms of H2, i.e., a fuchsian group of the

first kind, in particular, a B-group with H
2 as an invariant connected component of its region of

discontinuity. In this case, H2
/� has finite hyperbolic area. It is known that f sends parabolic
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transformations to parabolic transformations, but it may send a hyperbolic transformation to a

parabolic one. A parabolic element P 2 K is called accidental if f�1
Pf is a hyperbolic transfor-

mation. In this case, the image under f of the axis of the hyperbolic transformation f
�1

Pf is

called the axis of P (in Maskit’s notation this is the true axis of P ).

If K is an extended B-group, that is, an extended function group with a simply-connected invariant

component, then we say that an element of K is accidental pseudo-parabolic if its square is an

accidental parabolic element of K+.

2.4 Klein-Maskit’s decomposition theorems

Let K be a Kleinian group with region of discontinuity ⌦ and let H be a subgroup of K with limit

set ⇤(H). A set X ⇢ bC is called precisely invariant under H in K if E(X) = X, for every E 2 H,

and T (X) \X = ;, for every T 2 K \H.

We will assume H to be either (i) the trivial group, (ii) a finite cyclic group or (iii) an infinite cyclic

group generated by a parabolic transformation. If H is a cyclic subgroup, a precisely invariant

disc B is the interior of a closed topological disc B, where B � ⇤(H) ⇢ ⌦ is precisely invariant

under H in K.

Theorem 2.1 (Klein-Maskit’s combination theorems [7, 8]).

(1) (Amalgamated free products). For j = 1, 2, let Kj be a Kleinian group, let H  K1 \ K2 be

a cyclic subgroup (either trivial, finite or generated by a parabolic transformation), H 6= Kj, and

let Bj be a precisely invariant disc under H in Kj. Assume that B1 and B2 have as a common

boundary the simple loop ⌃ and that B1 \ B2 = ;. Then K = hK1,K2i is a Kleinian group

isomorphic to the free product of K1 and K2 amalgamated over H, that is, K = K1 ⇤H K2, and

every elliptic or parabolic element of K is conjugated in K to an element of either K1 or K2.

Moreover, if K1 and K2 are both geometrically finite, then K is also geometrically finite.

(2) (HNN extensions). Let K be a Kleinian group. For j = 1, 2, let Bj be a precisely invariant

disc under the cyclic subgroup Hj (either trivial, finite or generated by a parabolic) in K, let ⌃j be

the boundary loop of Bj and assume that T (B1)\B2 = ;, for every T 2 K. Let A be a loxodromic

transformation such that A(⌃1) = ⌃2, A(B1) \ B2 = ;, and A
�1

H2A = H1. Then KA = hK,Ai

is a Kleinian group, isomorphic to the HNN-extension K⇤hAi (that is, every relation in KA is

consequence of the realtions in K and the relations A
�1

H2A = H1). If each Hj, for j = 1, 2, is

its own normalization in K, then every elliptic or parabolic element of KA is conjugated to some

element of K. Moreover, if K is geometrically finite, then KA is also geometrically finite.
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2.5 An equivariant loop theorem for function groups

Let K be a function group and � be a K-invariant connected component of its region of dis-

continuity. By the Alhfors’ finiteness theorem [1, 2], the quotient O = �/K turns out to be an

analytically finite Riemann orbifold. Let B ⇢ O be the (finite) collection of the cone points and

let G ⇢ O� B be the collection of loops which lift to loops under the natural regular holomorphic

covering ⇡ : �0
! O � B, where �0 is the open dense subset of � consisting of those points with

trivial K-stabilizer. In [5], Maskit proved the existence of a finite subcollection F ⇢ G of pairwise

disjoint loops inside O � B, each one being a finite power of a simple loop, such that the cover

⇡ is determined as a highest regular planar cover for which the loops in F lift to loops (such a

collection of loops is not unique). The collection F is called a fundamental system of loops of the

above regular planar covering. Assume that there is a finite group H < Aut(O) whose elements

lift to automorphisms of � under ⇡. Then, in [4], Maskit and the author proved that there is a

fundamental system of loops F being equivariant under H.

Theorem 2.2 (Equivariant loop theorem for function groups [4]). Let K be a function group, with

invariant connected component � in its region of discontinuity, O = �/K (which is an analytically

finite Riemann orbifold) and let B be the finite set of cone points of O. Let ⇡ : � ! O be the

natural regular branched regular covering induced by K. Let G be the collection of loops in O � B

which lift to loops in � under ⇡. If H < Aut(O) lifts to a group of automorphisms of �, then

there is a finite sub-collection F ⇢ G such that:

(1) F consists of pairwise disjoint powers of simple loops;

(2) F is H-invariant; and

(3) every loop in G is homotopic to the product of finite powers of a finite loop in F .

The collection F is called a fundamental set of loops for the pair (K,H).

Remark 2.3. The condition (3) above is equivalent to say that F is a fundamental system of

loops for ⇡. Also, if the function group K is torsion-free, then O is an analytically finite Riemann

surface and each of the loops in the finite collection F turns out to be a simple loop.

As a consequence of the above, one may write the following equivariant result for Kleinian groups.

Theorem 2.4 (Equivariant loop theorem for Kleinian groups). Let K be a Kleinian group with

region of discontinuity ⌦ 6= ;, let � be a (non-empty) collection of connected components of ⌦

which is invariant under the action of K, let O = �/K, let B be the cone points of O and let

H < Aut(O) be a finite group of automorphisms of O. Let us assume that O consists of (may be

infinitely many) analytically finite Riemann orbifolds. Fix some regular (branched) covering map

⇡ : � ! O with K as its deck group. Let G be the collection of loops in O�B which lift, with respect
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to ⇡, to loops in �. If H lifts to a group of automorphisms of �, then there is a sub-collection

F ⇢ G such that:

(1) F consists of pairwise disjoint powers of simple loops;

(2) F is H-invariant; and

(3) every loop in G is homotopic to the product of finite powers of a finite sub-collection of loops

in F .

Proof. Let us consider a maximal subcollection of non-equivalent components of� under the action

of K, say �j for j 2 J . Let Kj be the K-stabilizer of �j under the action of K. By Theorem 2.2,

on Oj = �j/Kj there is a collection of loops, say Fj , satisfying the properties on that theorem.

Clearly the collection of fundamental loops F = [j2JFj is the required one.

Remark 2.5. The condition for O = �/K to consist of analytically finite Riemann orbifolds is

equivalent, by the Ahlfors finiteness theorem, for the K-stabilizer of each connected component in

� to be finitely generated. In particular, if K is finitely generated, then O is a finite collection of

analytically finite Riemann surfaces and F turns out to be a finite collection. If, in Theorem 2.4,

we assume K to be torsion-free, then the loops in F will be simple loops.

2.6 A connection to Kleinian 3-manifolds

Let K be a Kleinian group, with region of discontinuity ⌦ ⇢ bC. There is a natural discrete action

(by Poincaré extension) of K on the upper half-space H
3 = {(z, t) : z 2 C, t 2 (0,+1)}, which is

given by isometries in the hyperbolic metric ds2 = (|dz|2+dt
2)/t2. The quotient MK = (H3

[⌦)/K

carries the structure of a 3-orbifold, its interior H
3
/K has a structure of a complete hyperbolic

3-orbifold and ⌦/K the structure of a Riemann orbifold. In the case that K is torsion free, all the

above are manifolds and we say that MK is a Kleinian 3-manifold.

A direct consequence of Theorem 2.4 is the equivariant theorem for Kleinian 3-manifolds in the case

that the conformal boundary is non-empty and it consists of analytically finite Riemann surfaces.

Corollary 2.6. Let K be a torsion free Kleinian group, with non-empty region of discontinuity

⌦, such that SK = ⌦/K is a collection (it might be infinitely many of them) of analytically

finite Riemann surfaces. Let H be a finite group of automorphismsm of the Kleinian 3-manifold

MK = (H3
[ ⌦)/K. If G is the collection of loops on SK that are homotopically nontrivial in

SK but homotopically trivial in MK , then there exists a collection of pairwise disjoint simple loops

F ⇢ G, equivariant under the action of H, so that G is the smallest normal subgroup of ⇡1(SK)

generated by F .
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Remark 2.7. Let K be a torsion free Kleinian group and let H be as in Corollary 2.6. Then

the following hold. (1) If ⇡1(M) is finitely generated, then the collection F is finite. (2) By

lifting H to the universal cover space, one obtains a (extended) Kleinian group bK containing K

as a finite index normal subgroup so that H = bK/K. Corollary 2.6 may be used to obtain a

geometric structure picture of bK, in the sense of the Klein-Maskit combination theorems, in terms

of the algebraic structure of H. (3) If MK is compact, then the result follows from Meeks-Yau’s

equivariant loop theorem [15, 16], whose arguments are based on minimal surfaces theory. If K

is not a purely loxodromic geometrically finite Kleinian group, then MK is non-compact and the

result is no longer a consequence of Meek’s-Yau’s equivariant theorem.

3 Proof of Theorem 1.2

The proof of Theorem 1.2 is a direct consequence of Theorem 3.1, which is the main step, and

Theorem 3.2 as described below. If the word “extended” is removed, the statements of these

theorems are simply Maskit’s original theorems (see [6, 9, 10, 11]).

Theorem 3.1 (First step in Maskit-type decomposition of an extended function group). Every

extended function group is constructed, using the Klein-Maskit combination theorems, as amalga-

mated free products and HNN-extensions using a finite collection of (extended) B-groups. Moreover,

the amalgamations and HNN-extensions are realized along either trivial or a finite cyclic group or

a dihedral group generated by two reflections (this last one only in the amalgamated free product

operation).

The above result asserts that every extended function group is constructed from (extended) B-

groups by applying the Klein-Maskit combination theorems. Maskit’s results provide a geometrical

decomposition of B-groups (see Theorem 3.2 below and delete the word “extended”). We now need

to take care of the extended B-groups, which is exactly what the next result is about.

Theorem 3.2 (Decomposition of extended B-groups). Let K be an extended B-group with a

simply-connected invariant component �. Then either (i) K is an elementary extended Kleinian

group or (ii) K is an extended quasifuchsian group or (iii) K is an extended degenerate group or (iv)

� is the only invariant component and K is constructed as amalgamated free products and HNN-

extensions, by use of the Klein-Maskit combination theorems, using (extended) elementary groups,

(extended) quasifuchsian groups and (extended) totally degenerate groups. The amalgamated free

products and HNN-extensions are given along axes of accidental parabolic transformations.

Remark 3.3. We note for the reader that the proof of Theorem 3.1 includes Remarks 3.4 and 3.6

and Lemmas 3.5 and 3.7 and that the proof of Theorem 3.2 includes Lemmas 3.8 and 3.9.
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3.1 Proof of Theorem 3.1

Let K be an extended function group and let � be a K-invariant connected component of its

region of discontinuity (we may assume K to be non-elementary). If there is another di↵erent

invariant connected component of its region of discontinuity, then K
+ = K \ M 6= K is known

to be a quasifuchsian group [12]; so K is an extended quasifuchsian group. Let us assume, from

now on, that � is the unique invariant connected component. By Selberg’s lemma [19], there is a

torsion free finite index normal subgroup G1 of K+. As K = hK
+
, ⌧i, where ⌧

2
2 K

+, one has

that G = G1 \ ⌧G1⌧
�1 is a torsion free finite index normal subgroup of K.

It follows that G is a function group with � as an invariant connected component of its region

of discontinuity (the same as for K). Also, � is the only invariant connected component of G;

otherwise G is a quasifuchsian group andK will have two di↵erent invariant connected components,

which is a contradiction to our assumption on K.

Let S = �/G (an analytically finite Riemann surface by Ahlfors finiteness theorem) and consider

a regular planar unbranched cover P : � ! S with G as its deck group. Set H = K/G <

Aut(S), which is a non-trivial finite group (since G 6= K). Theorem 2.2 asserts the existence of a

fundamental set of loops F ⇢ S for the pair (G,H). Such a collection of loops cuts S into some

finite number of connected components and such a collection of components is invariant under

H. The H-stabilizer of each of these connected components and each of the loops in F is a finite

group.

Remark 3.4 (Decomposition structure of H). The H-equivariant fundamental system of loops F

permits to obtain a structure of H as a finite iteration of amalgamated free products and HNN-

extensions of certain subgroups of H as follows. Let us consider a maximal collection of components

of S�F , say S1. . . , Sn, so that any two di↵erent components are not H-equivalent. Let us denote

by Hj the H-stabilizer of Sj. It is possible to choose these surfaces so that, by adding some on the

boundary loops, we obtain a planar surface S
⇤ (containing each Sj in its interior). If two surfaces

Si and Sj have a common boundary in S
⇤, then Hi \ Hj is either trivial or a cyclic group (this

being exactly the H-stabilizer of the common boundary loop). We perform the amalgamated free

product of Hi and Hj along the trivial or cyclic group Hi \ Hj. Set Sij be the union of Si, Sj

with the common boundary loop in S
⇤ and set Hij the constructed group. Now, if Sk is another

of the surfaces which has a common boundary loop in S
⇤ with Sij, then we again perform the

amalgamated free product of Hij and Hk along the trivial or cyclic group Hij \ Hk. Continuing

with this procedure, we end with a group H
⇤ obtained as amalgamated free product along finite

cyclic groups or trivial groups. For each boundary of S⇤ we add a boundary loop, in order to stay

with a planar compact surface (we are out of S in this part). If ↵ is any of the boundary loops

of S⇤, there should be another boundary loop � of S⇤ and an element h 2 H so that h(↵) = �.

By the choice of the surfaces Sj, we must have that h(S⇤) \ S
⇤ = ;. In particular, � 6= ↵. If
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there is another element k 2 H � {h} so that k(↵) = �, then k
�1

h is a non-trivial element that

stabilizes ↵ and k
�1

h(S⇤) \ S
⇤
6= ;, a contradiction. Also, if there is another boundary loop � of

S
⇤ (di↵erent from �) and an element u 2 H so that u(↵) = �, then uh

�1
2 H � {I} satisfies that

uh
�1(S⇤) \ S

⇤
6= ;, which is again a contradiction. We may now perform the HHN-extension of

H
⇤ by the finite cyclic group generated by h. If ↵1 = ↵,. . . , ↵m are the boundary loops of S⇤,

which are not H-equivalent, then we perform the HHN-extension with each of them. At the end,

we obtain an isomorphic copy of H.

We may assume the fundamental set of loops F to be minimal, that is, by deleting any non-empty

subcollection of loops from it, we obtain a collection which fails to be a fundamental set of loops

for (G,H). The minimality condition asserts that each connected component of S �F is di↵erent

from either a disc or an annulus. By lifting F to �, under P , one obtains a collection bF ⇢ � of

pairwise disjoint simple loops, so that bF is invariant under the group K. Each of the loops in bF is

called a structure loop and each of the connected components of �� bF a structure region. These

structure loops and regions are permuted by the action of K. The K-stabilizer (respectively, the

G-stabilizer) of each structure loop and each structure region is called a structure subgroup of K

(respectively, a structure subgroup of G).

If R is a structure region, then its K-stabilizer, denoted by KR, is a finite extension of its G-

stabilizer, denoted by GR. Similarly, if ↵ is a structure loop, then its K-stabilizer is a finite

extension of its G-stabilizer.

Lemma 3.5. Let ↵ be a structure loop and let R be a structure region containing ↵ on its border.

Then the KR-stabilizer of ↵ is either trivial or a finite cyclic group or a dihedral group generated by

two reflections (both circles of fixed points intersecting at two points, one inside of one of the two

discs bounded by ↵ and the other point contained inside the other disc). Moreover, the K-stabilizer

of ↵ is either equal to its KR-stabilizer or it is generated by its KR-stabilizer and an involution

(conformal or anticonformal) that sends R to the other structure region containing ↵ in its border.

Proof. Let ↵ 2 bF be a structure loop. As ↵ is contained in the region of discontinuity of K, the

K-stabilizer of ↵ is a finite group; so also its G-stabilizer is finite. Note that the K
+-stabilizer of

↵ is either trivial, a finite cyclic group or a dihedral group. Moreover, in the dihedral case, one of

the involutions interchanges both discs bounded by ↵. Let R be a structure region containing ↵

as a boundary loop. Then the K+
R
-stabilizer of ↵ is either trivial or a finite cyclic group. It follows

that the KR-stabilizer of ↵ is either trivial or a finite cyclic group or a dihedral group generated

by two reflections (both circles of fixed points intersecting at two points, one inside of one of the

two discs bounded by ↵ and the other point contained inside the other disc). The K-stabilizer of

↵ is generated by the KR-stabilizer and probably an extra involution (conformal or anticonformal)

that interchanges both discs bounded by ↵.
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Remark 3.6. We do not need this extra information for the rest of the proof, but it may help with

a clarification of the gluing process at the Klein-Maskit combination theorems. It follows, from

Lemma 3.5, that the K-stabilizer of ↵ 2 bF must be one of the following: (1) the trivial group, (2)

a cyclic group generated by a reflection with ↵ as its circle of fixed points (so it permutes both discs

bounded by ↵), (3) a cyclic group generated by a reflection that keeps invariant each of the two

discs bounded by ↵ (the reflection has exactly two fixed points over ↵), (4) a cyclic group generated

by an imaginary reflection (it permutes both discs bounded by ↵), (5) a cyclic group generated by

an elliptic transformation of order two (permuting the two discs bounded by ↵), (6) a cyclic group

generated by an elliptic transformation (preserving each of the two discs bounded by ↵), (7) a

group generated by an elliptic transformation (preserving each of the two discs bounded by ↵) and

a reflection whose circle of fixed points is ↵, (8) a group generated by an elliptic transformation

(preserving each of the two discs bounded by ↵) and an imaginary reflection (permuting both discs

bounded by ↵), (9) a group generated by an elliptic transformation of order two (permuting the

two discs bounded by ↵) and an imaginary reflection that keeps ↵ invariant (it permutes both

discs bounded by ↵), (10) a dihedral group generated by two reflections (both circles of fixed points

intersecting at two points, one inside of one of the two discs bounded by ↵ and the other point

contained inside the other disc), (11) a group generated by an elliptic transformation (preserving

each of the two discs bounded by ↵) and an imaginary reflection that keeps ↵ invariant (it permutes

both discs bounded by ↵), (12) a group generated by a dihedral group of Möbius transformations and

a reflection with ↵ as circle of fixed points, (13) a group generated by a dihedral group generated

by two reflections (both circles of fixed points intersecting at two points, one inside of one of

the two discs bounded by ↵ and the other point contained inside the other disc) and an elliptic

transformation of order two that permutes both discs bounded by ↵, To obtain the above, we use

the following fact. Let ↵ be a loop which is invariant under (i) an elliptic transformation E, of

order two that interchanges both discs bounded by it, and (ii) also invariant under an imaginary

reflection ⌧ . Then E⌧ is necessarily a reflection whose circle of fixed points is transversal to ↵.

Let R be a structure region and let ↵ 2 bF be on the boundary of R. By Lemma 3.5, the KR-

stabilizer of ↵ is some finite group; either trivial or a finite cyclic group or a dihedral group

generated by two reflections (both circles of fixed points intersecting at two points, one inside of

one of the two discs bounded by ↵ and the other point contained inside the other disc). Let D↵ be

the topological disc bounded by ↵ and disjoint from R. Clearly, the KR-stabilizer of such a disc is

contained in the KR-stabilizer of ↵ (each element of KR that stabilizes D↵ also stabilizes ↵), so

D↵ is contained in the region of discontinuity of KR. It follows that KR is a (extended) function

group with an invariant connected component �R of its region of discontinuity containing R and

all the discs D↵, for every structure loop ↵ on its boundary.
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Lemma 3.7. �R is simply-connected.

Proof. If �R is not simply-connected, then there is a simple loop � ⇢ R bounding two topological

discs, each one containing limit points of KR (so limit points of K). The projection on S of �

produces a loop e� ⇢ S which lifts to a loop under P . But, we know that e� is homotopic to the

product of finite powers of the simple loops on the boundary of the finite domain P (R) ⇢ S. It

follows that � must be homotopic to the product of finite powers of a finite collection of structure

loops on the boundary of R. As each of these boundary loops bounds a disc containing no limit

points, we get a contradiction for � to bound two discs, each one containing limit points.

We may follow the same lines as described in Remark 3.4 to obtain that K is constructed, using

the Klein-Maskit combination theorems [13, 7], as amalgamated free products and HNN-extensions

using a finite collection of the structure subgroups of KR (which, by Lemma 3.7, are extended

B-groups with invariant simply-connected component �R). By Lemma 3.5, the amalgamations

and HNN-extensions are realized along either trivial or a finite cyclic group or a dihedral group

generated by two reflections. This ends the proof of Theorem 3.1. ⇤

3.2 Proof of Theorem 3.2

We proceed to describe the subtle modifications in Maskit’s arguments in the decomposition of

B-groups [10, 11] adapted to the case of extended B-groups (see also chapter IX.H. in [13]). Let us

assume that K is an extended B-group and that it is neither an (extended) elementary group or a

(extended) quasifuchsian group or a (extended) degenerate group. Let � be the simply-connected

invariant component of the region of discontinuity of K. Every other connected component of

the region of discontinuity of K is simply-connected (see Proposition IX.D.2. in [13]). By our

assumptions on K, we have that K+ is neither elementary nor degenerate Kleinian group. It may

be, even if K is not an extended quasifuchsian, that K
+ is a quasifuchsian. But in this case, we

have that K is just a HNN-extension of a quasifuchsian group along a cyclic group. So, from now

on, we assume that K+ is neither a quasifuchsian group.

As K is non-elementary, we may consider a bi-holomorphism f : H2
! � and consider the fuch-

sian group f
�1

Kf . As it is well known that no rank two parabolic subgroup can preserve a disc

in the Riemann sphere, it follows that f
�1

K
+
f does not contain rank two parabolic subgroup,

in particular, K+ neither does contain a rank two parabolic subgroup. Theorem IX.D.21 in [13]

states that K
+ is either quasifuchsian or totally degenerate or it contains accidental parabolics.

By our assumptions on K and K
+, we note that K

+ necessarily must have accidental parabolic

transformations. Moreover, there is a finite number of conjugacy classes of primitive accidental

parabolic transformations in K
+. Let us consider a collection of accidental parabolic transforma-

tions in K
+, say P1,..., Pm, so that Pj is not K+-conjugate to P

±1
r

if j 6= r, and Pj is primitive,
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that is it is not of the form Q
a for some Q 2 K and a � 2. Let us denote by Lj ⇢ � the axis of

Pj (note that Lj is a geodesic for the hyperbolic metric of � and that Pj keeps it invariant acting

by a translation on it).

Lemma 3.8. (1) If j 6= r, then the K
+-translates of Lj do not intersect the K

+-translates of Lr.

(2) For each fixed j, any K
+-translates of Lj is either disjoint from Lj or it coincides with it.

Proof. Let us consider a Riemann map f : H2
! �, where H

2 is the upper half-plane with the

hyperbolic metric ds
2 = |dz|

2
/Im(z)2. It is well known that any two di↵erent geodesics in H

2 are

either disjoint of they intersect at exactly one point. The push-forward of the hyperbolic metric

in H
2 provides the hyperbolic metric of �. It follows that any K

+-translate of Lj and any K
+

translate of Lr (for j not necessarily di↵erent from r) are either disjoint or they intersect exactly

at one point or they are the same. Let us first prove (1), that is, we assume j 6= r. If there are

K
+-translates of Lj and Lr which are the same, as Pj and Pr are primitive parabolic, share the

same fixed point and K
+ is discrete, then Pj is conjugate to either P±1

r
, a contradiction. If there

are K
+-translates of Lj and Lr which intersect at a point, then the planarity of � asserts that

the non-empty intersection only may happen if a K
+ conjugate of Pj and a K

+-conjugate of Pr

share their unique fixed point. The discreteness of K+ asserts that K+ must contain a rank two

parabolic subgroup, a contradiction. Let us now prove (2), that is, we assume j = r. This follows

the same lines a the previous case to see that either the translates are either disjoint or equal.

Lemma 3.9. If T 2 K �K
+, then T preserves the collection of K+-translates of {L1, ...., Lm}.

Proof. T acts as an isometry on � and must permute the accidental parabolic transformations.

As the axis is unique for each accidental parabolic, we are done.

Let bLj be equal to Lj together the corresponding fixed point of Pj . Then the collection F given

by the K
+-translates of {bL1, ...,

bLm} consists of pairwise disjoint simple loops; each one is called

a structure loop for the group K. Such a collection of structure loops is still invariant for any

T 2 K �K
+ by Lemma 3.9. The structure loops cut ⌦ (the region of discontinuity of K) and �

into regions; called structure regions for K. These are di↵erent from our previous definitions of

structure loops and regions as these ones are not completely contained in the region of discontinuity.

Let ↵ 2 F be a structure loop and let R1 and R2 be the two structure regions containing ↵ in

their common boundary. Let Kj < K be the K-stabilizer of Rj , let K↵ be the K-stabilizer of

↵ and let P 2 K be the primitive accidental parabolic transformation whose axis is ↵ (which is

then K-conjugated to some of the Pj ’s). Clearly, hP i is contained in Kj , hP i < K↵ and either

(i) hP i = K↵ or (ii) hP i has index two in K↵ or (iii) hP i has index four in K↵ (this last case

means that hP i has index two inside the Kj-stabilizer of ↵). The region R3�j is contained in

a disc D3�j , whose Kj-stabilizer is equal to the Kj-stabilizer of the loop ↵; this is either the
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cyclic group generated by P or it contains it as an index two subgroup. It follows that D3�j

is contained in the region of discontinuity ⌦j of Kj and that there is an invariant connected

component �j ⇢ ⌦j containing �. Lemma IX.H.10 in [13] states that K
+
j

is a B-group, with

�j as invariant simply-connected component, without accidental parabolic transformations. It

follows that K+
j

is either elementary or quasifuchsian or totally degenerate, in particular, that Kj

is either (extended) elementary or (extended) quasifuchsian or (extended) totally degenerate. One

possibility is that K↵ is an extension of degree two of the Kj-stabilizer of ↵. In this case, there is

an element Q 2 K↵ that permutes R1 with R2 (Q is either a pseudo-parabolic whose square is P or

an involution). In this case, hK1,K2i is the HNN-extension of K1 by Q (in the sense of the second

Klein-Maskit combination theorem). The other possibility is that K↵ is equal to K1 \K2 (either

the cyclic group generated by the parabolic P or a group generated by two reflections sharing as

a common fixed point the fixed point of P ). In this case, hK1,K2i is the free product of K1 and

K2 amalgamated over K1 \K2 (in the sense of the first Klein-Maskit combination theorem).

Now, following the same ideas in [10, 11], one obtains a decomposition of K as an amalgamated free

products and HNN-extensions, by use of the Klein-Maskit combination theorems, using (extended)

elementary groups, (extended) quasifuchsian groups and (extended) totally degenerate groups. ⇤
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1 Introduction and main result

Let ⌦ be a smooth bounded open domain of Rd
, (d � 3) with Lipschitz boundary @⌦, T is a fixed

positive number, in this paper we study the existence and uniqueness of an entropy solution for

the following nonlinear parabolic problem

(P )

8
>>>>>>>><

>>>>>>>>:

@u

@t
� diva (x,ru) + b (u) = f in QT = ]0, T [⇥⌦,

a (x,ru) .⌘ = 0 on
P

T = ]0, T [⇥@⌦,

u(0, .) = u0 in ⌦,

where f 2 L
1(QT ), b : R ! R, a(x, ⇠) : ⌦⇥ Rd ! R is Carathéodory function and verifying some

assumptions which will be given later, ⌘ denotes the unit vector normal on @⌦.

The usual weak formulations of parabolic problems in the case where the initial data are in L
1 do

not ensure existence and uniqueness of solutions. For this reason, new formulations and types of

solutions are given in order to obtain existence and uniqueness. For that, three notions of solution

have been adopted: solutions named SOLA (Solution Obtained as the Limit of Approximations)

defined by A. Dall’Aglio (see [10]); renormalized solutions defined by R. DiPerna and P.-L. Lions

(see [12]); and entropy solutions defined by Ph. Bénilan et al. in [8]. In this paper, we will be

interested in the entropy formulation.

The stationary version of the problem for the problem (P ) has been already studied by Bonzi et

al. (cf. [9]), where they proved the existence and uniqueness of an entropy solution for the initial

data in L
1
.

The study of parabolic equations with variable exponents is a very active field (see [1, 2, 20, 21,

23, 27, 29]), in these papers, the authors consider the homogeneous Dirichlet boundary conditions,

which permit them to use many results in the generalized Sobolev space W
1,p(.)(⌦) and the many

results concerned the differential equation in the literature to achieve there works. In particular

in the case of p(x)-Laplace, where b ⌘ 0, Bendahmane et al. (see [6]) have proved the existence

and uniqueness of renormalized solution. We can also point out that the well-posedness of triply

nonlinear degenerate elliptic- parabolic-hyperbolic problems: b(u)t�diva(x,r�(u))+ (u) = f in

a bounded domain with homogeneous Dirichlet boundary conditions by K. H. Karlsen et al. in [3].

Unfortunately, in this paper, due to the Neumann boundary condition, we cannot use the ideas

developed in these papers and also some functional analysis results which play and important role

in the a priori estimation, in particular the famous Poincaré inequality.

To overcome these difficulties we apply a time discretization of given continuous problem by the

Euler forward scheme. Let’s recall that this method has been used in the literature for the study
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of some nonlinear parabolic problems, we refer for example to [7, 13, 16, 17] for some details. This

scheme is usually used to prove existence of solutions as well as to compute numerical approxima-

tions.

In this paper, our assumptions are the following:
8
<

:
p (.) : ⌦ ! R is a continuous function such that

1 < p�  p+ < +1,

(1.1)

where p� := ess inf
x2⌦

p(x) and p+ := ess sup
x2⌦

p(x) and

b : ⌦ ! R is a continuous, nondecreasing function, surjective such that b(0) = 0. (1.2)

Also, we assume that a(x, ⇠) : ⌦⇥ RN ! RN is Carathéodory such that:

• there exists a positive constant C1 with

|a(x, ⇠)|  C1

⇣
j(x) + |⇠|p(x)�1

⌘
(1.3)

for almost every x 2 ⌦ and for every ⇠ 2 RN
, where j is a nonnegative function in L

p0(.)(⌦) with
1

p(x)
+

1

p0(x)
= 1;

• there exists a positive constant C2 such that for every x 2 ⌦ and every ⇠1, ⇠2 2 Rd with

⇠1 6= ⇠2, the following two inequalities hold

(a(x, ⇠1)� a(x, ⇠2)) . (⇠1 � ⇠2) > 0 (1.4)

a(x, ⇠) . ⇠ � C2|⇠|p(x). (1.5)

The rest of the paper is organized as follows: after some preliminary results in Section 2, we

introduce the Euler forward scheme associated with the problem (P ) in Section 3. We analyze

the stability of the discretized problem and we study the existence of an entropy solution to the

parabolic problem (P ) in the Section 4.

2 Preliminaries

We define the Lebesgue space with variable exponent Lp(.) (⌦) (see [11]) as the set of all measurable

functions u : ⌦ ! R for which the convex modular

⇢p(.) (u) :=

Z

⌦
|u|p(x) dx

is finite.

If the exponent is bounded, i.e., if p+ < +1, then the expression

kukp(.) := inf
�
� > 0 : ⇢p(.) (u/�)  1
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defines a norm in L
p(.) (⌦) , called the Luxembourg norm.

The space
⇣
L
p(.) (⌦) , k.kp(.)

⌘
is a separable Banach space. Moreover, if 1 < p�  p+ < +1, then

L
p(.) (⌦) is uniformly convex, hence reflexive and its dual space is isomorphic to L

p0(.) (⌦) , where
1

p (x)
+

1

p0 (x)
= 1.

Finally, we have the Hölder type inequality
����
Z

⌦
uvdx

���� 
✓

1

p�
+

1

(p�)0

◆
kukp(.) kvkp0(.) , (2.1)

for all u 2 L
p(.) (⌦) and v 2 L

p0(.) (⌦) .

Let

W
1,p(.) (⌦) :=

n
u 2 L

p(.) (⌦) : |ru| 2 L
p(.) (⌦)

o
,

which is Banach space equipped with the following norm

kuk1,p(.) := kukp(.) + krukp(.) .

The space
⇣
W

1,p(.) (⌦) , k.k1,p(.)
⌘

is a separable and reflexive Banach space.

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by the

modular ⇢p(.) of the space L
p(.) (⌦) . We have the following result.

Proposition 2.1 (see [14, 28]). If un, u 2 L
p(.) (⌦) and p+ < 1, the following properties hold

true:

(i) kukp(.) > 1 ) kukp�
p(.) < ⇢p(.) (u) < kukp+

p(.) ;

(ii) kukp(.) < 1 ) kukp+

p(.) < ⇢p(.) (u) < kukp�
p(.) ;

(iii) kukp(.) < 1 (respectively = 1;> 1) , ⇢p(.) (u) < 1 (respectively = 1;> 1) ;

(iv) kunkp(.) ! 0 (respectively ! +1) , ⇢p(.) (un) < 1 (respectively ! +1) ;

(v) ⇢p(.)

⇣
u/ kukp(.)

⌘
= 1.

For a measurable function u : ⌦ ! R we introduce the following notation:

⇢1,p(.) (u) =

Z

⌦
|u|p(x) dx+

Z

⌦
|ru|p(x) dx.

Proposition 2.2 (see [25, 26]). If u 2 W
1,p(.) (⌦) , the following properties hold true:

(i) kuk1,p(.) > 1 ) kukp�
1,p(.) < ⇢1,p(.) (u) < kukp+

1,p(.) ;

(ii) kuk1,p(.) < 1 ) kukp+

1,p(.) < ⇢p(.) (u) < kukp�
1,p(.) ;

(iii) kuk1,p(.) < 1 (respectively = 1;> 1) , ⇢1,p(.) (u) < 1 (respectively = 1;> 1) .
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Put

p
@ (x) := (p (x))@ =

8
><

>:

(N � 1) p (x)

N � p (x)
, if p (x) < N

1, if p (x) � N.

Proposition 2.3 (see [26]). Let p 2 C
�
⌦̄
�

and p� > 1. If q 2 C (@⌦) satisfies the condition

1 < q (x) < p
@ (x) 8x 2 @⌦,

then, there is a compact embedding W
1,p(.) (⌦) ,! L

q(.) (@⌦) .

In particular, there is a compact embedding W
1,p(.) (⌦) ,! L

p(.) (@⌦) .

Following [29], we extend a variable exponent p : ⌦ ! [1,+1) to QT = [0, T ] ⇥ ⌦ by setting

p (t, x) = p (x) for all (t, x) 2 QT .

We may also consider the generalized Lebesgue space

L
p(.) (Q) =

⇢
u : Q ! R measurable such that

ZZ

Q
|u (t, x)|p(x) d (t, x) < 1

�

endowed with the norm

kukLp(.)(QT ) := inf

(
� > 0,

ZZ

QT

����
u (t, x)

�

����
p(x)

d (t, x) < 1

)
,

which share the same properties as L
p(.) (⌦) .

For a measurable set U in Rd
, meas(U) denotes its measure, Ci and C will denote various positive

constants. For a Banach space X and a < b, L
q(a, b;X) is the space of measurable functions

u : [a, b] ! X such that
 Z b

a
kukqX dt

! 1
q

:= kukLq(a,b;X) < 1. (2.2)

For a given constant k > 0 we define the cut-off function Tk : R ! R by

Tk(s) :=

8
<

:
s if |s|  k

k sign(s) if |s| > k

with

sign(s) :=

8
>><

>>:

1 if s > 0

0 if s = 0

�1 if s < 0.

Let Jk : R ! R+ defined by

Jk(x) =

Z x

0
Tk(s)ds

(Jk is a primitive of Tk). We have (see [15])
⌧
@v

@t
, Tk(s)

�
=

d

dt

✓Z

⌦
Jk(v)dx

◆
in L

1(]0, T [)
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which implies that Z t

0

⌧
@v

@t
, Tk(s)

�
=

Z

⌦
J(v(t))dx�

Z

⌦
J(v(0))dx

For all u 2 W
1,p(.) (⌦) we denote by ⌧ (u) the trace of u on @⌦ in the usual sense.

In the sequel, we will identify at the boundary, u and ⌧ (u) .

Set

T 1,p(.) (⌦) =
n
u : ⌦ ! R, measurable such that Tk (u) 2 W

1,p(.) (⌦) , for any k > 0
o
.

Proposition 2.4 (see [8]). Let u 2 T 1,p(.) (⌦) . Then there exists a unique measurable function

v : ⌦ ! RN
such that rTk (u) = v�{|u|<k}, for all k > 0. The function v is denoted by ru.

Moreover, if u 2 W
1,p(.) (⌦) then v 2

�
L
p(.) (⌦)

�N
and v = ru in the usual sense.

We denote by T 1,p(.)
tr (⌦) (cf. [4, 5, 18, 19]) the set of functions u 2 T 1,p(.) (⌦) such that there

exists a sequence (un)n2N ⇢ W
1,p(.) (⌦) satisfying the following conditions:

i) un ! u a.e. in ⌦.

ii) rTk (un) ! rTk (u) in
�
L
1 (⌦)

�N for any k > 0.

iii) There exists a measurable function v on @⌦, such that un ! v a.e. on @⌦.

The function v is the trace of u in the generalized sense introduced in [4, 5]. In the sequel, the

trace of u 2 T 1,p(.)
tr (⌦) on @⌦ will be denoted by tr (u) . If u 2 W

1,p(.) (⌦) , tr (u) coincides with

⌧ (u) in the usual sense. Moreover u 2 T 1,p(.)
tr (⌦) and for every k > 0, ⌧ (Tk (u)) = Tk (tr (u)) and

if ' 2 W
1,p(.) (⌦) \ L

1 (⌦) then (u� ') 2 T 1,p(.)
tr (⌦) and tr (u� ') = tr (u)� tr (') .

3 The semi-discrete problem

In this section, we study the Euler forward scheme associated with the problem (P ):

(Pn)

8
>>>>>>>><

>>>>>>>>:

U
n � ⌧div a (x,rU

n) + ⌧b (Un) = ⌧f
n + U

n�1 in ⌦

a (x,rU
n) .⌘ = 0 on @⌦,

U
0 = u0 in ⌦

where N⌧ = T, 0 < ⌧ < 1, 1  n  N and

fn(.) =
1

⌧

Z n⌧

(n�1)⌧
f(s, .)ds in ⌦.



CUBO
23, 3 (2021)

Entropy solutions for nonlinear parabolic problems with... 391

Definition 3.1. An entropy solution to the discretized problems (Pn) is a sequence (Un)0nN

such that U
0 = u0 2 L

1 (⌦) and U
n

is defined by induction as an entropy solution to the problem

8
>><

>>:

U
n � ⌧div a (x,rU

n) + ⌧b (Un) = ⌧fn + U
n�1

in ⌦

a (x,rU
n) .⌘ = 0 on @⌦

i.e. U
n 2 T 1,p(.)

tr (⌦), b (Un) 2 L
1(⌦), and for every k > 0

⌧

Z

⌦
a(x,rU

n).rTk(U
n�')dx+

Z

⌦
(⌧b(Un)+U

n)Tk(U
n�')dx 

Z

⌦
(⌧fn+U

n�1)Tk(U
n�')dx

(3.1)

for all ' 2 W
1,p(.)(⌦) \ L

1(⌦).

We have the following result

Lemma 3.2. Let hypotheses (1.3) � (1.5) be satisfied. If (Un)0nN is an entropy solution of

problems (Pn), then U
n 2 L

1(⌦) for all n = 1, . . . , N.

Proof. For n = 1, we take ' = 0 in (3.1), to get,

⌧

Z

⌦
a(x,rU

1).rTk(U
1)dx+

Z

⌦
(⌧b(U1) + U

1)Tk(U
1)dx 

Z

⌦
(⌧f1 + u0)Tk(U

1)dx,

which is equivalent to

⌧

Z

⌦
a(x,rTk(U

1))rTk(U
1)dx+

Z

⌦
⌧b(U1)Tk(U

1)dx+

Z

⌦
U

1
Tk(U

1)dx 
Z

⌦
(⌧f1 + u0)Tk(U

1)dx,

(3.2)

By the assumption (1.5) and the properties of the function b, we have

⌧

Z

⌦
a(x,rTk(U

1))rTk(U
1)dx+

Z

⌦
⌧b(U1)Tk(U

1)dx � 0,

then it follows that Z

⌦
U

1
Tk(U

1)dx  k⌧ kf1k1 + k ku0k1 .

Since
NX

n=1

⌧ kfnk1  kfk1 .

Then, it follows that Z

⌦
U

1
Tk(U

1)dx  k(kfk1 + ku0k1). (3.3)

Since

lim
k!0

U
1Tk(U1)

k
= |U1|.

Then dividing (3.3) by k and letting k ! 0; we deduce by Fatou’s lemma that
��U1

��
1
 (kfk1 + ku0k1) (3.4)
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Theorem 3.3. Let hypotheses (1.3) � (1.5) be satisfied. Then for all N 2 N, the problems (Pn)

have unique entropy solution U
n 2 T 1,p(.)

tr (⌦) \ L
1(⌦) for all n = 1, . . . , N.

Proof. The problem (P1) can be rewritten in the following form

�⌧diva (x,ru) + b(u) = F1 in ⌦

a(x,ru).⌘ = 0 on @⌦

with

b(s) := ⌧b(s) + s, F1 := ⌧f1 + u0.

From the assumption (H2), we have F1 2 L
1(⌦), and using the properties of b, we obtain b is a

continuous, nondecreasing function, surjective such that b(0) = 0. Hence, using [9, Theorem 4.3],

we have the existence of unique entropy solution U
1 2 T 1,p(.)

tr (⌦), b
�
U

1
�
2 L

1(⌦).

Thanks to Lemma 3.2, by induction, we deduce that for n = 2, . . . , N, the problem

u� ⌧diva (x,ru) + ⌧↵ (u) = ⌧fn + U
n�1 in ⌦

a (x,ru) .⌘ = 0 on @⌦,

has an unique entropy solution U
n 2 T 1,p(.)

tr (⌦) \ L
1(⌦), b (Un) 2 L

1(⌦).

4 Stability

This section is devoted to the a priori estimates for the discrete entropy solution (Un)1nN . These

result are essentials for the study of the convergence of the Euler forward scheme.

Theorem 4.1. Let hypotheses (1.3)�(1.5) be satisfied. Then there exist positive constants C(u0, f),

C(u0, f,⌦) depending on the data but not on N such that for all n = 1, . . . , N, we have

1. kUnk1  C(u0, f)

2. ⌧
Pn

i=1

��b(U i)
��
1
 C(u0, f)

3.
Pn

i=1

��U i � U
i�1
��
1
 C(, u0, f)

4. ⌧
Pn

i=1 ⇢p(.)(rTk(U i))  kC(u0, f)

5. ⌧
Pn

i=1

R
{|Ui|k} |rU

i|p�dx  kC(u0, f,⌦)

Proof. 1 and 2. For ' = 0 as a test function in (3.1), we have

⌧

k

Z

⌦
a(x,rTk(U

i))rTk(U
i)dx+

Z

⌦
U

iTk(U i)

k
dx+

Z

⌦
⌧b(U i)

Tk(U i)

k
dx

 ⌧ kfik1 +
��U i�1

��
1
dx.
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Since
Z

⌦
a(x,rTk(U

i))rTk(U
i)dx � 0.

Then, it follows that
Z

⌦
U

iTk(U i)

k
dx+

Z

⌦
⌧b(U i)

Tk(U i)

k
dx  ⌧ kfik1 +

��U i�1
��
1
.

Then letting k ! 0 and using Fatou’s lemma, we deduce that

��U i
��
1
+ ⌧

��b(U i)
��
1
 ⌧ kfik1 +

��U i�1
��
1
. (4.1)

Now, we sum (4.1) from i = 1 to n to obtain

kUnk1 + ⌧

nX

i=1

��b(U i)
��
1
 kfk1 + ku0k1 (4.2)

which give, the inequalities 1 and 2.

3. For k � 1, we take ' = Th(U i� sign(U i�U
i�1)), (h > 1) as a test function in (3.1), then letting

h ! 1, for k � 1, we obtain,

⌧ lim
h!1

I(k, h) +
��U i � U

i�1
��
1
 ⌧

�
kfik1 +

��b(U i)
��
1

�

where

I(k, h) :=

Z

⌦
a(x,rU

i)rTk(U
i � Th(U

i � sign(U i � U
i�1)))dx

=

Z

⌦k,h\⌦(k)
a(x,rU

i)rU
i
dx

and

⌦k,h :=
�
|U i � Th(U

i � sign(U i � U
i�1))|  k

 

⌦(k) =
�
|U i � sign(U i � U

i�1)| > h
 
.

Then by the hypothesis (1.3) , we have

lim
h!1

I(k, h) � 0.

Then, it follows that
��U i � U

i�1
��
1
 k⌧

�
kfik1 +

��b(U i)
��
1

�
. (4.3)

Then, summing (4.3) from i = 1 to n and by the stability result 2, we obtain the stability result 3.

4. We take ' = 0 as a test function in 3.1 to get

⌧

✓Z

⌦
|a(x,rTk(U

i))rTk(U
i)dx

◆
 k⌧(kfik1 +

��b(U i)
��
1
) + k

��U i � U
i�1
��
1
.
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Therefore, using the assumption (1.5) it follows that

⌧⇢p(x)(rTk(U
i))  C3[k⌧(kfik1 +

��b(U i)
��
1
) + k

��U i � U
i�1
��
1
]. (4.4)

Now, summing (4.4) from i = 1 to n and using the stability results 1, 2, 3, we get

⌧

nX

i=1

⇢p(x)(rTk(U
i))  C3k

"
kfk1 + ⌧

nX

i=1

��b(U i)
��
1
+

nX

i=1

��U i � U
i�1
��
1

#

 kC(f, u0). (4.5)

5. According to (4.5), we get from the above estimate

⌧

nX

i=1

Z

{|Ui|k}
|rU

i|p(x)dx  kC(u0, f). (4.6)

Now, note that
Z

{|Ui|k}
|rU

i|p�dx =

Z

{|Ui|k, |rUi|> 1
N }

|rU
i|p�dx+

Z

{|Ui|k |rUi| 1
N }

|rU
i|p�dx


Z

{|Ui|k, |rUi|> 1
N }

|rU
i|p�dx+

1

N
meas(⌦)


Z

{|Ui|k}
|rU

i|p(x)dx+
1

N
meas(⌦).

By the inequalities above, thanks to (4.6), we obtain

⌧

nX

i=1

Z

{|Ui|k}
|rU

i|p�dx  kC(u0, f) +
n

N
meas(⌦)

 kC(u0, f) + meas(⌦)  k(C(u0, f) + meas(⌦)) (4.7)

for all k � 1.

5 Convergence and existence result

In this section, we prove the existence of an entropy solution of problem (P ). First of all, we

introduce the appropriate spaces for the entropy formulation of the nonlinear parabolic problem

(P ).

We define the space:

V =
�
v 2 L

p�(0, T ;W 1,p(·)(⌦)) : rv 2 (Lp(·)(QT ))
d
 
,

and

T 1,p(·)(QT ) =
n
u : ⌦⇥ (0, T ];measurable | Tk(u) 2 L

p�(0, T ;W 1,p(·)(⌦))

with rTk(u) 2 (Lp(·)(QT ))
d for every k > 0

o
.
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Definition 5.1. An entropy solution to problem (P ) is a function u 2 T 1,p(·)(QT )\C(0, T ;L1(⌦))

such that and for all k > 0 we have

Z t

0

Z

⌦
a(x,ru)rTk(u� ') +

Z t

0

Z

⌦
b(u)Tk(u� ')

 �
Z t

0

⌧
@'

@s
, Tk(u� ')

�
+

Z

⌦
Jk(u(0)� '(0))�

Z

⌦
Jk(u(t)� '(t))

+

Z t

0

Z

⌦
fTk(u� ')

for all ' 2 L
1(Q) \ V \W

1,1(0, T ;L1(⌦)) and t 2 [0, T ].

Our main result is

Theorem 5.2. Let hypotheses (H1)� (H3) be satisfied. Then the nonlinear parabolic problem (P )

has an entropy solution.

Proof. The proof is divided into two steps

Step 1: The Rothe function. We introduce a piecewise linear extension:

8
>><

>>:

u
N (0) := u0,

u
N (t) := U

n�1 + (Un � U
n�1) t�tn�1

⌧

(5.1)

for all t 2]tn�1
, t

n], n = 1, · · · , N, in ⌦ and a piecewise constant function

8
>><

>>:

u
N (0) := u0,

u
N (t) := U

n
, 8t 2]tn�1

, t
n], n = 1, · · · , N, in ⌦,

(5.2)

where t
n := n⌧ and (Un)1nN an entropy solution of (Pn).

By Theorem 3.3, for any N 2 N; the solution (Un)N2N of problems (Pn) is unique. Thus, uN and

u
N are uniquely defined. Consequently, by the Theorem 4.1, we deduce the existence of a constant

C(T, u0, f) not depending on N such that for all N 2 N, we have

��uN � u
N
��
L1(QT )

 1

N
C(T, u0, f)

��uN
��
L1(QT )

 C(T, u0, f)
��uN

��
L1(QT )

 C(T, u0, f) (5.3)
����
@u

N

@t

����
L1(QT )

 C(T, u0, f)

��b(uN )
��
L1(QT )

 C(T, u0, f)
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Moreover combining Proposition 2.1 and Young inequality, we get

��rTk(U
N )
��p�

p(x)
 max

⇢
⇢p(x)(rTk(U

N )), ⇢1,p(x)(rTkU
N )

p�
p+

�

 ⇢p(x)(rTk(U
N )) + ⇢1,p(x)(rTkU

N )
p�
p+

 ⇢p(x)(rTk(U
N )) +

p�
p+
⇢p(x)(rTk(U

N )) + 1� p�
p+

(5.4)

 2⇢p(x)(rTk(U
N )) + 1.

Thanks to Poincaré-Wirtinger inequality, we have

��Tk(U
N )
��
p(x)

 Cmeas(⌦)
��rTk(U

N )
��
p(x)

+ k k1kp(x) ,

which implies that

��Tk(U
N )
��p�

p(x)
 2p��1

⇣
(Cmeas(⌦))p�

��rTk(U
N )
��p�

p(x)
+ k

p� k1kp�
p(x)

⌘
, (5.5)

then it follows that,

��Tk(U
N )
��p�

1,p(x)
 2p��1

h
(Cmeas(⌦))p�

�
2⇢p(x)(rTk(U

N )) + 1
�
+ k

p� k1kp�
p(x)

i
(5.6)

+2⇢p(x)(rTk(U
N )) + 1.

Therefore,

Z T

0

��Tk(U
N )
��p�

1,p(.)
dt  2p��1

"
(Cmeas(⌦))p�

 
2

Z T

0
⇢p(.)(rTk(U

N ))dt+ T

!

+Tk
p� k1kp�

p(x)

NX
#
+ 2

Z T

0
⇢p(.)(rTk(U

N ))dt+ T

 2p��1

"
(Cmeas(⌦))p�

 
2

NX

n=1

Z n⌧

(n�1)⌧
⇢p(.)(rTk(U

N ))dt+ T

!

+Tk
p� k1kp�

p(.)

NX
#
+ 2

NX

n=1

Z n⌧

(n�1)⌧
⇢p(.)(rTk(U

N ))dt+ T (5.7)

 2p��1

"
(Cmeas(⌦))p�

 
2

NX

n=1

⌧⇢p(.)(rTk(U
n)) + T

!

+Tk
p� k1kp�

p(.)

NX
#
+ 2

NX

n=1

⌧⇢1,p(.)(Tk(U
n)) + T.

Consequently from stability result 4 it follows that

��Tk(u
N )
��
Lp� (0,T ;W 1,p(x)(⌦))

 C(T, k, u0, f, p�). (5.8)

Lemma 5.3. Let hypotheses (1.3) � (1.5) be satisfied. Then the sequence (uN )N2N converges in

measure and a.e. in QT .
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Proof. Let ", r, k be positive numbers. For N,M 2 N, we have the inclusion

�
|uN � u

M | > r
 

⇢
�
|uN | > k

 
[
�
|uM | > k

 

[
�
|uN |  k, |uM |  k, |uN � u

M | > r
 
.

Firstly, we have

meas
�
|uN | > k

 
 1

k

��uN
��
L1(QT )

 1

k
C(T, u0, f). (5.9)

Similarly, we have

meas
�
|uM | > k

 
 1

k

��uN
��
L1(QT )

 1

k
C(T, u0, f). (5.10)

Therefore, for k large enough, we have

meas(
�
|uM | > k

 
[
�
|uM | > k

 
)  "

2
. (5.11)

Secondly, by the Proposition 2.1 and Young inequality, we have

���rTk(u
N )

���
Lp(.)(QT )

 max

(✓Z T

0

Z

⌦

|rTk(u
N )|p(x)dxdt

◆ 1
p�

;

✓Z T

0

Z

⌦

|rTk(u
N )|p(x)dxdt

◆ 1
p+

)


✓Z T

0

Z

⌦

|rTk(u
N )|p(x)dxdt

◆ 1
p�

+

✓Z T

0

Z

⌦

|rTk(u
N )|p(x)dxdt

◆ 1
p+

and also, we have

Z T

0

Z

⌦

|rTk(u
N )|p(x)dxdt =

Z T

0

⇢p(.)(Tk(ruN )) =
NX

n=1

Z n⌧

(n�1)⌧

⇢p(.)(rTk(U
N ))dt


NX

n=1

⌧⇢p(.)(rTk(U
n)).

Therefore, using the stability result 4 and Proposition 2.1, it follows

���rTk(u
N )

���
(Lp(x)(QT ))d

 (kC(u0, f))
1

p� + (kC(u0, f))
1

p+ . (5.12)

Since by the Poincaré-Wirtinger inequality, we have

���Tk(u
N )

���
Lp(x)(QT )

 Cmeas(⌦)
���rTk(u

N )
���
Lp(x)(QT )

+ k k1kLp(x)(QT ) ,

then by (5.12), we get

���Tk(u
N )

���
Lp(x)(QT )

 Cmeas(⌦)

✓
(kC(u0, f))

1
p� + (kC(u0, f))

1
p+

◆
+ k k1k |Lp(x)(QT ). (5.13)

Hence, the sequences (Tk(u
N ))N2N are bounded in Lp(.)(QT ). Then, there exists a subsequence, still

denoted by (Tk(u
N ))N2N, that is a Cauchy sequence in Lp(.)(QT ) and in measure. Thus, there exists

N0 2 N such that for all N,M � N0, we have

meas

⇣n
|uN |  k, |uM |  k, |uN � uM | > r

o⌘
<

"
2
. (5.14)

Then, by (5.11) and (5.14), (uN )N2N converges in measure. Therefore there exists an element u 2 M(QT )

such that

uN ! u a.e. inQT .
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Now, by (5.12)

(rTk(u
N ))N2N is uniformly bounded in, (Lp(.)(QT ))

d
. (5.15)

Hence there exists a subsequence, still denoted by

(rTk(u
N ))N2N converges weakly to an element V in L

p(.)(QT ).

Since

Tk(u
N ) converges weakly to Tk(u) in L

p(.)(QT ).

Then

rTk(u
N ) converges weakly to rTk(u) in (Lp(.)(QT ))

d
. (5.16)

and by (5.8) we conclude that

Tk(u) 2 L
p�(0, T ;W 1,p(.)(⌦)) for all k > 0.

In the sequel, we need the following Lemma (see [22]).

Lemma 5.4. Let (vn)n�1 be a sequence of measurable functions in ⌦. If (vn)n�1 converges in

measure to v and is uniformly bounded in L
p(.)(⌦) for some 1 << p(.) 2 L

1(⌦), then (vn)n�1 ! v

strongly in L
1(⌦).

Now, we have the following result

Lemma 5.5. Let hypotheses (1.3)� (1.5) be satisfied. Then

(i) (rTk(u
N ))N2N converges in measure to rTk(u);

(ii) (a(x, Tk(u
N )))N2N converges strongly to a(x,rTk(u)) in (L1(QT ))d and weakly in (Lp0(.)

(QT ))d.

Proof. (i) Let h � 1, from the Hölder type inequality, we have

meas
�
|rTk(u

N )�rTk(u)| > h
 

 1

h

Z

QT

|rTk(u
N )�rTk(u)|dxds

 1

h

✓
1

p�
+

1

p+

◆��rTk(u
N )�rTk(u)

��
p(.)

k1kp0(.) (5.17)

 1

h

✓
1

p�
+

1

(p�)0

◆⇣��rTk(u
N )
��
p(.)

+ krTk(u)kp(.)
⌘
k1kp0(.) .

So by (5.15), meas
�
|rTk(u

N )�rTk(u)| > h
 
! 0 as h ! 1 for any fixed k > 0 and the proof

of (i) is complete.

As a consequence of (i), up to a subsequence, we can assume that rTk(u
N ) ! rTk(u) a.e in QT .

(ii) Since a(x, ⇠) is continuous with respect to ⇠ 2 RN
, then by (i) we deduce that

(a(x, Tk(u
N )))N2N converges in measure to a(x,rTk(u)) and a.e. in QT .
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Moreover, using the hypotheses (1.3) and (5.12) one shows that (a(x,rTk(u
N )))N2N is uniformly

bounded in (Lp0(.)(QT ))d.

Consequently, in the one part thanks to Lemma 5.4 it follows that (a(x, Tk(u
N )))N2N ! a(x,rTk(u))

strongly in
�
L
1(QT )

�d
.

On the other part, we can extract a subsequence still denoted by (a(x,rTk(u
N )))N2N such

that a(x,rTk(u
N )) * ⇣k in (Lp0(.)(QT ))d. Since each of the convergence implies the weak L

1-

convergence, ⇣k can be identified with a(x,rTk(u)), thus a(x,rTk(u)) 2 (Lp0(.)(QT ))d. This com-

pletes the proof.

Lemma 5.6. (uN )N2N converges a.e. in ⌃T .

Proof. We know that the trace operator is compact from W
1,1 (⌦) into L

1 (@⌦) , then there exists

a constant C such that
Z T

0

��Tk(u
N (t))� Tk(u(t))

��
L1(@⌦)

dt  C

Z T

0

��Tk(u
N (t))� Tk(u(t))

��
W 1,1(⌦)

dt.

Since W
1,p(.) (⌦) ,! W

1,1 (⌦) for all p(.) � 1, then by the Hölder type inequality, we deduce that

Tk(u
N (t)) ! Tk(u) inL

1 (⌃T ) and a.e. on ⌃T .

So, there exists A ⇢ ⌃T such that Tk(u
N (t)) converges to Tk(u(t)) on ⌃T \A with meas(A) = 0.

For every k > 0, we set

Ak = {(t, x) 2 ⌃T : |Tk(u(t))| < k} , and B = ⌃T \
1[

k=1

Ak.

We have, by Hölder’s inequality

meas (B)  1

k

Z

B
|Tk (u)| d�

 1

k

Z T

0
kTk(u)kL1(@⌦) dt

 1

k

Z T

0
kTk (u)kW 1,1(⌦) dt (5.18)

 1

k

Z T

0

Z

⌦
(|Tk (u) |+ |rTk (u) |)

 1

k

✓
1

p�
+

1

(p�)0

◆
k1kLp0(x)(QT )

⇣
kTk (u)kLp(x)(QT ) + krTk (u)k(Lp(x)(QT ))d

⌘
.

Thanks to (5.12) and (5.13), for all k > 0, we have

��Tk

�
u
N
���

Lp(x)(Q)
+
��rTk

�
u
N
���

(Lp(x)(Q))d
 2

⇣
k

1
p� + k

1
p+

⌘
(5.19)

⇥max
n
C(u0, p+, f, g)

1
p+ , C(u0, p+, f, g)

1
p+

o
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We now use the Fatou’s lemma in (5.19) to get

kTk (u)kLp(x)(Q) + krTk (u)k(Lp(x)(Q))d  2
⇣
k

1
p� + k

1
p+

⌘

⇥max
n
C(u0, p+, f, g)

1
p+ , C(u0, p+, f, g)

1
p+

o
,

and (5.18) becomes

meas (B)  2

✓
1

k
1� 1

p�

+
1

k
1� 1

p+

◆
max

n
C(u0, p+, f, g)

1
p+ , C(u0, p+, f, g)

1
p+

o
. (5.20)

Therefore, we get by letting k ! 1 in (5.20) that meas (B) = 0.

Let us now define on @⌦, the function v by

v(t, x) = Tk(u(t))(x) if (x, t) 2 Ak.

We take (x, t) 2 ⌃T \ (A [B); then there exists k > 0 such that (x, t) 2 Ak and we have

u
N (t, x)� v (t, x) = (uN (t, x)� Tk(u

N (t))(x)) + (Tk(u
N (t))(x)� Tk(u(t))(x)).

Since (x, t) 2 Ak, we have
��Tk(u

N (t))(x)
�� < k from which we deduce that Tk(u

N (t))(x) = u
N (t, x) .

Therefore,

u
N (t, x)� v (t, x) = (Tk(u

N (t))(x)� Tk(u(t))(x)) ! 0, asN ! 1.

This means that
�
u
N
�

converges to v a.e. on ⌃T .

Lemma 5.7. The sequence (uN )N2N converges to u in C(0, T ;L1(⌦)).

Proof. Let (tn = n⌧N )Nn=1 and (tm = m⌧M )Mn=1 be two partitions of the interval [0, T ] and let

(uN (t), uN (t)), (uM (t);uM (t)); be the semi-discrete solutions defined by (5.1), (5.2) and corre-

sponding to the respective partitions. Let ' 2 L
1(⌦) \ V \W

1,1(0, T ;L1(⌦)). We rewrite (3.1)

in the forms
Z t

0

⌧
@u

N

@s
, Tk(u

N � ')

�
ds+

Z t

0

Z

⌦
a(x,ru

N ).rTk(u
N � ')dxds

+

Z t

0

Z

⌦
b(uN )Tk(u

N � ')dxds


Z t

0

Z

⌦
fNTk(u

N � ')dxds (5.21)

and
Z t

0

⌧
@u

M

@s
, Tk(u

M � ')

�
ds+

Z t

0

Z

⌦
a(x,ru

M ).rTk(u
M � ')dxds

+

Z t

0

Z

⌦
b(uM )Tk(u

M � ')dxds


Z t

0

Z

⌦
fMTk(u

M � ')dxds (5.22)
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where
fN (t, x) = fn(x) 8t 2]tn�1

, t
n]

fM (t, x) = fm(x) 8t 2]tm�1
, t

m

]

Let h > 1, in inequality (5.21) we take ' = Th(u
M ) and in inequality (5.22) we take ' = Th(u

N ).

Summing both inequalities, we get, for k = 1,

Z t

0

⌧
@(uN � u

M )

@s
, T1(u

N � u
M )

�
ds+ IN,M (h)

+

Z t

0

Z

⌦
b(uN )T1(u

N � Th(u
M ))dxds

+

Z t

0

Z

⌦
b(uM )T1(u

M � Th(u
N ))dxds


Z t

0

⌧
@(uN � u

M )

@s
, T1(u

N � u
M )

�
�
⌧
@u

N

@s
, T1(u

N � Th(u
M ))

�
ds (5.23)

�
Z t

0

⌧
@u

M

@s
, T1(u

M � Th(u
N ))

�
ds

+

Z t

0

Z

⌦
[fNT1(u

N � Th(u
M )) + fMT1(u

M � Th(u
N ))]dxds

where

IN,M (h) =

Z t

0

Z

⌦
a(x,ru

N ).rT1(u
N � Th(u

M ))dxds

+

Z t

0

Z

⌦
a(x,ru

M ).rT1(u
M � Th(u

N ))dxds.

We have
����
Z t

0

⌧
@(uN � u

M )

@s
, T1(u

N � u
M )

�
ds

���� 
����
@(uN � u

M )

@s

����
L1(QT )

��T1(u
N � u

M )
��
L1(QT )

 2C(T, f, u0)
��T1(u

N � u
M )
��
L1(QT )

.

Since

lim
N,M!1

��T1(u
N � u

M )
��
L1(QT )

= 0.

Then it follows that

lim
h!1

lim
N,M!1

Z t

0

⌧
@(uN � u

M )

@s
, T1(u

N � u
M )

�
ds = 0. (5.24)

Similarly, we show that

lim
h!1

lim
N,M!1

✓Z t

0

⌧
@u

N

@s
, T1(u

N � Th(u
M ))

�
+

⌧
@u

M

@s
, T1(u

M � Th(u
N ))

�
ds

◆
= 0

lim
h!1

lim
N,M!1

Z t

0

Z

⌦
[fNT1(u

N � Th(u
M )) + fMT1(u

M � Th(u
N ))]dxds = 0
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and

lim
h!1

lim
N,M!1

Z t

0

Z

⌦
b(uN )T1(u

N � Th(u
M ))dxds+

Z t

0

Z

⌦
b(uM )T1(u

M � Th(u
N ))dxds = 0.

Then, letting N, M ! 1 and h ! 1, in (5.23)we get

lim
h!1

lim
N,M!1

Z t

0

⌧
@(uN � u

M )

@s
, T1(u

N � u
M )

�
ds+ lim

h!1
lim

N,M!1
IN,M (h)  0. (5.25)

Since ⌧
@v

@t
, Tk(v)

�
=

d

dt

Z

⌦
Jk(v) in L

1(]0, T [),

inequality (5.25) becomes

lim
N,M!1

Z

⌦
J1(u

N (t)� u
M (t))dx+ lim

h!1
lim

N,M!1
IN,M (h)  0. (5.26)

Now, we show that

lim
h!1

lim
N,M!1

IN,M (h) � 0.

We consider the decomposition

IN,M (h) =
4X

i=1

Li(h),

where

Li(h) =

Z t

0

Z

⌦i(h)
a(x,ru

N ).rT1(u
N � Th(u

M ))dxds

+

Z t

0

Z

⌦i(h)
a(x,ru

M ).rT1(u
M � Th(u

N ))dxds

and

⌦1(h) =
�
|uN |  h, |uM |  h

 
⌦2(h) =

�
|uN |  h, |uM | > h

 

⌦3(h) =
�
|uN | > h, |uM |  h

 
⌦4(h) =

�
|uN | > h, |uM | > h

 
.

On the one hand, thanks to assumption (1.4) we have

L1(h) =

Z t

0

Z

⌦1
1(h)

[a(x,ru
N )� a(x,ru

M )].r(uN � u
M )dxds � 0.

Therefore

lim
h!1

lim
N,M!1

L1(h) � 0.

On the other hand, we have

L2(h) =

Z t

0

Z

⌦1
2(h)

a(x,ru
N ).ru

N
dxds

+

Z t

0

Z

⌦2
2(h)

a(x,ru
M ).r(uM � u

N )dxds

� �
Z t

0

Z

⌦2
2(h)

a(x,ru
M ).ru

N
dxds,
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where

⌦1
2(h) =

�
|uN |  h, |uM | > h, |uN � hsign(uM )|  1

 
,

⌦2
2(h) =

�
|uN |  h, |uM | > h, |uN � u

M |  1
 
.

Now, taking ' = Th(u
N ) in (5.21), we deduce that

lim
h!1

lim
N!1

Z t

0

Z

{h|uN |h+k}
a(x,ru

N ).ru
N = 0.

This implies

lim
h!1

lim
N!1

Z t

0

Z

{h|uN |h+k}
|ru

N |p(x) = 0, k > 0. (5.27)

By the Young inequality, we have
�����

Z t

0

Z

⌦2
2(h)

a(x,ru
M ).ru

N
dxds

�����


Z t

0

Z

⌦2
2(h)

|ru
M |p(x)�1|ru

N |dxds


Z t

0

Z

{h|uM |h+1}
1

p0(x)
|ru

M |p(x)dxds+
Z t

0

Z

{h�1|uN |h}
1

p(x)
|ru

M |p(x)dxds


Z t

0

Z

{h|uM |h+1}
1

p
0
�
|ru

M |p(x)dxds+
Z t

0

Z

{h�1|uN |h}
1

p�
|ru

M |p(x)dxds.

Thus (5.27) gives

lim
N,M!1

Z t

0

Z t

0

Z

⌦2
2(h)

a(x,ru
M ).ru

N
dxds = 0,

which implies that

lim
h!1

lim
N,M!1

L2(h) � 0.

Similarly, we show that

lim
h!1

lim
N,M!1

(L3(h) + L4(h)) � 0.

Therefore

lim
h!1

lim
N,M!1

IN,M (h) � 0.

Thus (5.26) becomes

lim
N,M!1

Z

⌦
J1(u

N (t)� u
M (t))dx = 0. (5.28)

Since

1

2

Z

{|uN�uM |1}
|uN (t)� u

M (t)|2dx+

Z

{|uN�uM |�1}
|uN (t)� u

M (t)|dx 
Z

⌦
J1(u

N (t)� u
M (t));
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we have
Z

{|uN�uM |�1}
|uN (t)� u

M (t)|dx

=

Z

{|uN�uM |1}
|uN (t)� u

M (t)|dx+

Z

{|uN�uM |�1}
|uN (t)� u

M (t)|dx

 C⌦

 Z

{|uN�uM |1}
|uN (t)� u

M (t)|2dx
! 1

2

+

Z

{|uN�uM |�1}
|uN (t)� u

M (t)|dx

 C2(⌦)

✓Z

⌦
J1(u

N (t)� u
M (t))dx

◆ 1
2

+

Z

⌦
J1(u

N (t)� u
M (t))dx.

By (5.26), we deduce that (uN )N2N is a Cauchy sequence in C(0, T ;L1(⌦)). Hence (uN )N2N

converges to u in C(0, T ;L1(⌦)).

Step 2: Existence of entropy solution. Now, we prove that the limit function u is an entropy

solution of the problem (P ). Since u
N (0) = U

0 = u0 for all N 2 N, we have u(0, .) = u0, and

inequality (5.21) implies

Z t

0

⌧
@u

N

@s
, Tk(u

N � ')� Tk(u
N � ')

�
ds+

Z t

0

Z

⌦
a(x,ru

N ).rTk(u
N � ')dxds

+

Z t

0

Z

⌦
b(uN )Tk(u

N � ')dxds (5.29)


Z t

0

D
'

@s
, Tk(u

N � ')� Tk(u
N � ')

E
ds+

Z

⌦
Jk(u

N (0)� '(0))dx�
Z

⌦
Jk(u

N (t)� '(t))dx

+

Z t

0

Z

⌦
fNTk(u

N � ')dxds.

Let k = k + k'k1 . Then

Z t

0

Z

⌦
a(x,ru

N ).rTk(u
N � ')dxds =

Z t

0

Z

⌦
a(x,rTk(u

N )).rTk(Tk(u
N )� ')dxds

=

Z t

0

Z

⌦
[a(x,rTk(u

N )).rTk(u
N )

�a(x,rTk(u
N )).r']1Q(N,k)dxds,

where Q(N, k) =
�
|Tk(u

N )� '|  k
 
. Thus, the inequality (5.29) becomes

Z t

0

⌧
@u

N

@s
, Tk(u

N � ')� Tk(u
N � ')

�
ds�

Z t

0

Z

⌦
a(x,rTk(u

N )).r'1Q(N,k)

+

Z t

0

Z

⌦
[a(x,rTk(u

N )).rTk(u
N )]1Q(N,k) +

Z t

0

Z

⌦
b(uN )Tk(u

N � ')dxds (5.30)

 �
Z t

0

⌧
@'

@s
, Tk(u

N � ')

�
ds+

Z

⌦
Jk(u

N (0)� '(0))dx�
Z

⌦
Jk(u

N (t)� '(t))dx

+

Z t

0

Z

⌦
fNTk(u

N � ')dxds.
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On the one hand, thanks to Lemma 5.5 a(x,rTk(u
N )) converges weakly to a(x,rTk(u)) in

⇣
L
p0(.) (⌦)

⌘d
. Therefore,

lim
N!1

Z t

0

Z

⌦
a(x,rTk(u

N )).r'1Q(N,k) =

Z t

0

Z

⌦
a(x,rTk(u)).r'1Q(k), (5.31)

where Q(k) =
�
|Tk(u)� '|  k

 
. Moreover, a(x,rTk(u

N )).rTk(u
N ) is nonnegative and converges

a.e. in QT to a(x,rTk(u)).rTk(u) (see Lemma 5.5). Therefore by Fatou’s lemma, we obtain

lim inf
N!1

Z t

0

Z t

0

Z

⌦
[a(x,rTk(u

N )).rTk(u
N )]1Q(N,k)dxds �

Z t

0

Z t

0

Z

⌦
[a(x,rTk(u)).rTk(u)]1Q(k)dxds.

For the fourth term of (5.30), we have
Z t

0

Z

⌦
b(uN )Tk(u

N �')dxds =
Z t

0

Z

⌦
(b(uN )� b('))Tk(u

N �')dxds+
Z t

0

Z

⌦
b(')Tk(u

N �')dxds.

The quantity (b(uN ) � b('))Tk(u
N � ') is is nonnegative and since for all s 2 R, s 7! b(s) is

continuous, we obtain

(b(uN )� b('))Tk(u
N � ') ! (b(u)� b('))Tk(u

N � ') a.e. in ⌦.

Then, it follows by Fatou’s lemma that

lim inf
N!1

Z t

0

Z

⌦
(b(uN )� b('))Tk(u

N � ')dxds �
Z t

0

Z

⌦
(b(u)� b('))Tk(u� ')dxds.

We have b(') 2 L
1(QT ). Since Tk(u

N � ') converges weakly�⇤ to Tk(u� ') and b(') 2 L
1(QT ),

it follows that

lim inf
N!1

Z t

0

Z

⌦
b(')Tk(u

N � ')dxds �
Z t

0

Z

⌦
b(')Tk(u� ')dxds.

By Lemma 5.7 , we deduce that u
N (t) ! u(t) in L

1(⌦) for all t 2 [0, T ], which implies that
Z

⌦
Jk(u

N (t)� '(t))dx !
Z

⌦
Jk(u(t)� '(t))dx 8t 2 [0, T ]. (5.32)

We follow the method used in the proof of equality (5.24) to show that

lim
N!1

Z t

0

⌧
@u

N

@s
, Tk(u

N � ')� Tk(u
N � ')

�
ds = 0. (5.33)

Finally, letting N ! 1 and using the above results, the continuity of b and the facts that

fN ! f in L
1(QT ),

Tk(u
N � ') ! Tk(u� ') in L

1(QT ),

we deduce that u is an entropy solution of the nonlinear parabolic problem (P ).
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6 Conclusion

In this paper we prove the existence and uniqueness of an entropy solution for a non- linear

parabolic equation with homogeneous Neumann boundary conditions and initial data in L
1 by a

time discretization technique.

This method turns out to be better suited for the study of parabolic problems under Neumann-

type boundary conditions. However, this technique assumes that the associated elliptic problem is

well posed. This study opens up new perspectives, we could always in the context of the Sobolev

space with variable exponents look at the problem with measure data or consider the function b

as maximal monotone graph.
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ABSTRACT

For p 2 (0, 1], a set S ✓ V is said to p-dominate or par-
tially dominate a graph G = (V,E) if |N [S]|

|V | � p. The
minimum cardinality among all p-dominating sets is called
the p-domination number and it is denoted by �p(G).
Analogously, the independent partial domination (ip(G))
is introduced and studied here independently and in re-
lation with the classical domination. Further, the par-
tial independent set and the partial independence number
�p(G) are defined and some of their properties are pre-
sented. Finally, the partial domination chain is established
as �p(G)  ip(G)  �p(G)  �p(G).

RESUMEN

Para p 2 (0, 1], un conjunto S ✓ V se dice que p-
domina o parcialmente domina un grafo G = (V,E) si
|N [S]|
|V | � p. La cardinalidad mínima entre todos los con-

juntos p-dominantes se llama el número de p-dominación y
se denota por �p(G). Análogamente, la dominación parcial
independiente (ip(G)) es introducida y estudiada indepen-
dientemente y en relación con la dominación clásica. Más
aún el conjunto independiente parcial y el número de inde-
pendencia parcial �p(G) se definen y se presentan algunas
de sus propiedades. Finalmente, se establece la cadena
de dominación partial como �p(G)  ip(G)  �p(G) 
�p(G).
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1 Introduction

The theory of domination is one of the profusely researched areas in graph theory. Recently a new

domination parameter called partial domination number was introduced simultaneously in [3], [4]

and [6], and studied in [12, 13, 14, 15]. We extend the concept of partial domination to independent

domination in graphs. In [9], the concept of independent partial domination has been defined in

the context of partial domination that was defined in [4]. But our work is based on the definition of

partial domination in [3, 6] and we concentrate on partial domination chain. Domination addresses

the issue of the number of vertices that are dominating all the vertices in a graph. As the set of all

vertices of a graph dominates itself, the mathematical adventure is in finding the least number of

vertices that can dominate the entire graph. This number is the domination number of a graph.

Finding the domination number of a graph is a well known NP-complete decision problem [11].

In the case of large graphs with a good number of small-degree vertices, the domination number

shoots up. Hence, instead of finding the dominating set that dominates the entire graph, it might

be convenient to study the set of vertices that dominates the graph partially. This also could be

treated as the density problem. By identifying the vertices with large degrees, we can find dense

structures in the graph. The vertices that are contributing to the high density neighbourhoods

are likely to dominate the major section of vertices of a graph. Hence, domination problem and

its variations could also be interpreted as density problems. We follow the popular nomenclature

domination and study the structures that are partially dominating a graph.

Domination has been addressed in many different ways by imposing conditions on the dominating

set or on its complement or on both. The relations between various domination parameters thus

developed aroused mathematical curiosity. The domination chain proposed by Cockayne et al. is

mathematically profound and aesthetically appealing (see Section 5). A recent survey by Bazgan

et al. lists the most important results regarding the domination chain parameters [2]. In this

paper, we partially address the problem raised by Case et al. in [3].

The paper is structured as follows. In Section 2, we present all the preliminary concepts required

for this paper. In Section 3, we define independent partial domination number and study some

of their properties. In Section 4, we explore some relations between independent dominating set

and independent partial dominating set. In Section 5, we define partial independence number and

investigate some of its properties which in turn lead to a part of the partial domination chain.

2 Preliminaries

Let G be a simple, finite and undirected graph with V (G) as its set of vertices and E(G) as its edge

set. A set S ✓ V (G) is an independent set of vertices if no two vertices of S are adjacent to each
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other. An independent set S of vertices is said to be maximal if no superset T � S is independent.

The maximum cardinality of an independent set in G is called its vertex independence number

denoted by �(G) and the corresponding vertex set is called the �-set of G. For every vertex u in

G, the set N(u) of all vertices adjacent to u is called the open neighbourhood of u. The set N(u)

taken together with {u} is called the closed neighbourhood of u and is denoted by N [u].

A set D of vertices is called a dominating set of G if every vertex outside D is adjacent to at

least one vertex in D. A dominating set D is minimal if no proper subset of D is a dominating

set. The minimum cardinality of a minimal dominating set is called the domination number

of G denoted by �(G) and the maximum cardinality of a minimal dominating set is called the

upper domination number denoted by �(G). If a dominating set is independent, it becomes an

independent dominating set and the minimum cardinality of such a set is called the independent

domination number of G denoted by i(G). For any graph G = (V,E) and proportion p 2 (0, 1], a

set S ✓ V is a p-dominating or partial dominating set if |N [S]|
|V | � p. The p-domination or partial

domination number �p(G) equals the minimum cardinality of a p-dominating set in G.

v1 v2

v3v4

v5

v6

v7

v8

v9

Figure 1: Partial domination by white vertices

In the light of definitions of the neighbourhoods, it is obvious that, for a dominating set S, N [S] =

V . So a partial dominating set, when compared with a dominating set, dominates a proportion

‘p’ of the vertex set, which is not necessarily the whole set and hence partially dominates G. The

set of all white vertices in Figure 1 dominates exactly 4 vertices and hence is a 4
9 -dominating set.

As {v7} is enough to dominate 4 vertices, � 4
9
= 1 for the above graph. For all the other graph

theoretic parameters and the notations that are used in this paper, one can refer to [11].

3 Independent partial domination

In this section, we define independent partial domination number and present some observations

and some of the basic results. Since the observations are obvious, we present them without proofs.

Definition 3.1. Suppose G = (V,E) is a simple graph and p 2 (0, 1]. A subset S of V is called
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an independent p-dominating set (IPD-set) if S is a p-dominating set and is independent.

Definition 3.2. The minimum cardinality of an independent p-dominating set is called the inde-

pendent p-domination number (IPD-number) and is denoted by ip(G).

Observations:

(i) For p 2 (0, 1], �p(G)  ip(G).

(ii) For any n-vertex graph G and for p 2 (0, �+1
n

], ip(G) = 1.

(iii) For all p 2 (0, 1], ip(G) = 1 if and only if i(G) = 1.

(iv) For p 2
�
n�1
n

, 1
⇤
, ip(G) = i(G).

(v) For all p 2 (0, 1], ip(G)  i(G).

We proceed to find the IPD-numbers of paths, cycles and complete bipartite graphs.

Proposition 3.3. Suppose Pn and Cn are paths and cycles respectively on n-vertices. Then for

n � 3, ip(Cn) = ip(Pn) = dnp

3 e.

Proof. Consider Cn for n � 3. Let S be a �p-set of Cn. Then |S| = �p = dnp

3 e. If we can

choose S in such a way that S is independent, then ip(Cn) = dnp

3 e. For this, consider Cn =

(v1, v2, v3, ..., v3r, v3r+1, v3r+2).

Here three cases arise viz., (i) n = 3r, (ii) n = 3r + 1, (iii) n = 3r + 2 where r � 1.

Let S1 = {v2, v5, ..., v3r�1}, S2 = {v2, v5, ..., v3r�1, v3r+1} and S3 = {v2, v5, ..., v3r�1, v3r+2}. We

can see that |S1| = |S2| = |S3| = dn

3 e and Si is independent for 1  i  3. For cases (i), (ii) and

(iii) we can choose our set of dnp

3 e vertices from S1, S2 and S3. Hence, ip(Cn) = dnp

3 e. This proof

holds for Pn also.

Proposition 3.4. For m  n, ip(Km,n)=

8
><

>:

1, for p 2 (0, n+1
m+n

]

i+ 1, for p 2 ( n+i

m+n
,
n+(i+1)
m+n

] where 1  i  m� 1.

Also ip(Km,n)  m.

Proof. Consider Km,n for m  n. Let V1 = {v1, v2, ..., vm} and V2 = {u1, u2, ..., un} be the two

partite sets of Km,n, where each of V1 and V2 is an independent set.

Now, v1 2 V1 dominates n+1
m+n

vertices. Consequently, of the remaining m� 1 vertices in V1, each

vi 2 V1 dominates n+i

m+n
vertices. Thus ip(Km,n)  m.
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4 Independent domination and independent partial domina-

tion

Allan and Laskar described the relation between the domination number and the independent

domination number of a graph in [1]. Partial domination is all about dominating a proportion p

of the vertices of G. So a natural question which arises is that: whether this proportion p has any

role in relating the partial domination and the original domination parameters. In this section,

we do say ‘yes’ to that question by giving an upper bound for IPD-numbers in terms of p and

independent domination numbers. We also give some results, which relate independent dominating

sets [10] with that of partial independent dominating sets.

Theorem 4.1. For any graph G with independent domination number i(G) and p 2 (0, 1], ip(G) 
dp.i(G)e.

Proof. Let D = {v1, v2, ..., vi} be an i-set of G. Partition V into sets V1, V2, ..., Vi such that for each

1  j  i, Vj ✓ N [vj ]. Without loss of generality, let us assume that |Vj | � |Vj+1| for 1  j  i.

Consider D
0 = {v1, v2, ..., vdp.ie}.

Claim: D
0 is an IPD-set of G.

Proof of the Claim

Our construction yields,
������

i[

j=1

Vj

������
= |V | =)

������

dp.ie[

j=1

Vj

������
+

������

i[

j=dp.ie

Vj

������
= |V | =)

���
Sdp.ie

j=1 Vj

���
dp.ie �

���
S

i

j=1 Vj

���
i

=
|V |
i

������

i[

j=1

Vj

������
= |V | =)

������

dp.ie[

j=1

Vj

������
� |V |.dp.ie

i
.

Hence |N [D0]| � p.|V |. We have thus proved the claim.

Thus using the claim, we have ip(G)  |D0| = dp.i(G)e.

Proposition 4.2. Let G be any graph with independent domination number i(G) and p 2 (0, 1].

Then ip(G) + i1�p(G)  i(G) + 1.

Proof. By Theorem 5.7, ip(G)  dp.ie < p.i + 1 and i1�p(G)  d(1� p) .ie < (1 � p).i + 1, then

ip(G) + i1�p(G) < i+ 2  i+ 1.

Proposition 4.3. Let S be any independent dominating set of G. If p = |N [H]|
|V | , for some H ⇢ S,

then S �H is a 1� p independent dominating set in G.
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Proof. It can be easily proved that, N [S]�N [H] ✓ N [S �H]. Therefore, |N [S�H]|
|V | � 1� p since

N [S] = V .

The following result provides us with an algorithm that develops a minimal independent dominating

set from a minimal IPD-set.

Proposition 4.4. Every minimal IPD-set can be extended to form a minimal independent domi-

nating set.

Proof. Let I be a minimal IPD-set for any p 2 (0, 1]. The following algorithm extends I to I
0, a

minimal independent dominating set and gives m, the cardinality of I 0.

Procedure 1 Algorithm to construct I
0 from I

Input: V (G), I,N [I], N [u]8u 2 V (G)�N [I]

Output: I
0
,m

1: I
0 = I,m = |I 0|,M = {}

2: M = V (G)�N [I 0]

3: if M = � then

4: return I
0
,m

5: else

6: I
0 = I

0 [ {u} for any u 2 M

7: N [I 0] = N [I 0] [N [u]

8: m = m+ 1

9: go to 2

10: end if

When a graph is claw-free, it has been already proved in [1], that its domination number coincides

with that of its independent domination number. We found that to be true in the context of partial

domination also.

Proposition 4.5. If a graph G is claw-free, then �p(G) = ip(G).

Proof. Let S be a �p�set of G, for any p 2 (0, 1]. Since G is claw-free, < N [S] > is also claw-

free. Hence, �(< N [S] >) = i(< N [S] >). This implies that �p(G) � ip(G). But in general,

�p(G)  ip(G). Thus �p(G) = ip(G).

Corollary 4.6. If L(G) is the line graph of a graph G, then �p(L(G)) = ip(L(G)).
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5 Partial domination chain

A chain of inequalities involving domination numbers, independence numbers and irredundance

numbers of the form

ir(G)  �(G)  i(G)  �(G)  �(G)  IR(G)

was first observed in 1978 (see [5]). This type of chain was observed in the case of many other

domination parameters like ↵-domination [7] and k-dependent domination [8]. Also one of the

open questions posed by Case et al. in [3] was to find out, what relationship the above parameters

have amongst themselves in the context of partial domination. Hence we try to establish a similar

kind of chain involving partial domination and partial independence parameters. Having already

defined independent partial domination, we now define partial independence number of a graph.

Definition 5.1. Suppose G = (V,E) is a graph and p 2 (0, 1]. A set S of independent vertices is

called a p-independent set in G if N [S] ✓ V (H) for some induced subgraph H of G with |V (H)| �
np. A p-independent set S is said to be p-maximal if S is a maximal independent set in V (H). A

maximal p-independent set S is said to be min-max p-independent set if T ⇢ S is not p-maximal.

Partial independence number or p-independence number is the maximum cardinality of a min-max

p-independent set and is denoted by �p(G) and the associated induced subgraph H is denoted by

Hp.

For the graph in Figure 1, the set of all white vertices form a � 4
9
-set. For the same graph, the set

{v5, v8} is a min-max 4
9 -independent set, but it is not of maximum cardinality and hence is not a

� 4
9
-set.

5.1 Partial independent sets

This section explores some of the properties of partial independent sets, thereby proceeding towards

the suggested partial domination chain.

In light of the above definition, it may be noted that, for every maximal p-independent set S,

N [S] = V (H) of the proposed induced subgraph H of G and hence S is a p-dominating set. Thus

independent p-domination number is the minimum cardinality of a maximal p-independent set and

we have the following inequality.

Proposition 5.2. For p 2 (0, 1], �p(G)  ip(G)  �p(G).

Proposition 5.3. If p1  p2, then �p1(G)  �p2(G).

Proof. Let S ✓ V be such that |S| = �p2(G). Then S is also maximal p1-independent set. Also

the cardinality of every min-max p1-independent set  |S|. Thus �p1(G)  �p2(G).
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We now proceed to relate partial independence number �p with that of upper p-domination number,

�p which is the maximum cardinality of a minimal p-dominating set.

Proposition 5.4. Every min-max p-independent set is a minimal p-dominating set.

Proof. Let S be a min-max p-independent set and Hp be an induced subgraph associated with it.

Then by definition, S is p-dominating in G.

Suppose S is not minimal p-dominating. Then 9 u 2 S such that S � {u} is p-dominating. Then

9 v 2 S � {u}, such that uv 2 E(H) which is a contradiction since S is an independent set.

Thus S is a minimal p-dominating set.

Corollary 5.5. For p 2 (0, 1], �p(G)  �p(G).

From Proposition 5.2 and Corollary 5.5 we obtain the following chain of inequalities:

For p 2 (0, 1], �p(G)  ip(G)  �p(G)  �p(G).

We present some more properties of independent sets, which in turn lead us to a method, by which

one can deduce �p-sets for some ‘p’ values from the existing �-set of a graph.

Lemma 5.6. Suppose S is a �-set of a graph G and T ⇢ S. Then T is a min-max |N [T ]|
n

-

independent set.

Proof. By definition T is a maximal |N [T ]|
n

-independent set. It is also min-max since R ⇢ T is not
|N [T ]|

n
maximal. Suppose R is maximal then (S�T )[R is a dominating set which is a contradiction

as S is a minimal dominating set of G.

Theorem 5.7. Let Bi denote the set of all i-element subsets of a �-set of a graph G for 1  i 
�(G). Let Bi 2 Bi be such that |N [Bi]| = min{|N [X]|/X 2 Bi}. Then

(i) Bi is a �p�set for p = |N [Bi]|
n

.

(ii) For 0 < p  |N [B1]|
n

, �p = 1 and B1 is a �p�set.

Proof. For 1  i  �(G) let Bi be chosen by the given method. By the previous Lemma (5.6)

Bi is a min-max |N [Bi]|
n

independent set. Suppose Bi is not of maximum cardinality amongst all
|N [Bi]|

n
independent sets, then for j > i there exists a Y 2 Bj such that Y is a min-max |N [Bi]|

n

independent set. Also Y is min-max |N [Y ]|
n

independent set and thus Y is a maximal independent

set in both < N [Bi] > and < N [Y ] > and also |N [Bi]| = |N [Y ]|. But by the definition of Bis,

|N [Y ]| � |N [Bj ]| which implies that |N [Bj ]|  |N [Bi]| which is a contradiction since for j > i,

|N [Bj ]| > |N [Bi]|.
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Suppose |N [Bj ]|  |N [Bi]| for some j > i, choose R such that R ⇢ Bj and |R| = i. Then

|N [R]| < |N [Bj ]| which implies that |N [R]| < |N [Bi]| by our assumption. This contradicts our

definition of Bi.

6 Conclusion

Partial domination has a lot to promise. One of the striking features of the concept of partial

domination is its nature of accommodation. Domination with conditions are studied extensively.

In the case of partial domination, the imperfect situations are addressed. Hence, it is worth

exploring the partial domination in all the numerous types of dominations. In this context we

could establish the partial domination chain. Future beckons with great hope of the explorations

of partial domination in the areas of distance domination, stratified domination, Roman domination

etc., but not exclusively.
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1 Background

During the last 50 years fractional calculus due to its wide applications to many applied sciences

has become a main trend in mathematics. Its predominant kinds are the old Riemann-Liouville

fractional calculus and the newer one of Caputo type. Around these two versions have been built

a plethora of other variants and all of these involve singular kernels. More recently researchers

presented also new fractional calculi of non singular kernels.

The recent Hilfer fractional calculus unifies the Riemann-Liouville and Caputo fractional calculi and

the Prabhakar fractional calculus unifies both singular and non-singular kernel fractional calculi.

Finally the newer Hilfer-Prabhakar fractional calculus is the most general one unifying all trends

and for different values of its parameters we get the particular fractional calculi. In this article we

present and employ unifying advanced and generalized versions of Prabhakar and Hilfer-Prabhakar

fractional calculi and we establish related unifying fractional integral inequalities of the following

types: Hardy, Opial and Hilbert-Pachpatte. The advantage of this unification is the uniform action

taken in describing the various natural phenomena.

We are inspired by [7], [6] and [1]. We start by introducing our own generalized  -Prabhakar type of

fractional calculus, then mixing it with the  -Hilfer fractional calculus. Then, we prove a variety of

generalized Hardy, Opial and Hilbert-Pachpatte type left and right fractional integral inequalities

related to  -Hilfer ([8]) and  -Prabhakar fractional calculi. We involve several functions.

We consider the Prabhakar function (also known as the three parameter Mittag-Leffler function),

(see [4, p. 97]; [3])

E�

↵,�
(z) =

1X

k=0

(�)
k

k!� (↵k + �)
zk, (1.1)

where � is the gamma function; ↵,�, � 2 R : ↵,� > 0, z 2 R, and (�)
k
= � (� + 1) · · · (� + k � 1).

It is E0
↵,�

(z) =
1

� (�)
.

Let a, b 2 R, a < b and x 2 [a, b]; f 2 C ([a, b]) . Let also  2 C1 ([a, b]) which is increasing. The

left and right Prabhakar fractional integrals with respect to  are defined as follows:
⇣
e�; 
⇢,µ,!,a+f

⌘
(x) =

Z
x

a

 0 (t) ( (x)�  (t))µ�1 E�

⇢,µ
[! ( (x)�  (t))⇢] f (t) dt, (1.2)

and ⇣
e�; 
⇢,µ,!,b�f

⌘
(x) =

Z
b

x

 0 (t) ( (t)�  (x))µ�1 E�

⇢,µ
[! ( (t)�  (x))⇢] f (t) dt, (1.3)

where ⇢, µ > 0; �,! 2 R.

Functions (1.2) and (1.3) are continuous, see Theorem 3.1.

Next, additionally, assume that  0 (x) 6= 0 over [a, b] .

Let  , f 2 CN ([a, b]), where N = dµe, (d·e is the ceiling of the number), 0 < µ /2 N. We define the
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 -Prabhakar-Caputo left and right fractional derivatives of order µ as follows (x 2 [a, b]):
⇣
CD�; 

⇢,µ,!,a+f
⌘
(x) =

Z
x

a

 0 (t) ( (x)�  (t))N�µ�1

E��
⇢,N�µ

[! ( (x)�  (t))⇢]

✓
1

 0 (t)

d

dt

◆N

f (t) dt, (1.4)

and ⇣
CD�; 

⇢,µ,!,b�f
⌘
(x) = (�1)N

Z
b

x

 0 (t) ( (t)�  (x))N�µ�1

E��
⇢,N�µ

[! ( (t)�  (x))⇢]

✓
1

 0 (t)

d

dt

◆N

f (t) dt. (1.5)

One can write (see (1.4), (1.5))
⇣
CD�; 

⇢,µ,!,a+f
⌘
(x) =

⇣
e��; 
⇢,N�µ,!,a+f

[N ]
 

⌘
(x) , (1.6)

and ⇣
CD�; 

⇢,µ,!,b�f
⌘
(x) = (�1)N

⇣
e��; 
⇢,N�µ,!,b�f

[N ]
 

⌘
(x) , (1.7)

where

f [N ]
 

(x) = f (N)
 

f (x) :=

✓
1

 0 (x)

d

dx

◆N

f (x) , (1.8)

8 x 2 [a, b].

Functions (1.6) and (1.7) are continuous on [a, b].

Next we define the  -Prabhakar-Riemann-Liouville left and right fractional derivatives of order µ

as follows (x 2 [a, b]):

⇣
RLD�; 

⇢,µ,!,a+f
⌘
(x) =

✓
1

 0 (x)

d

dx

◆N Z x

a

 0 (t) ( (x)�  (t))N�µ�1

E��
⇢,N�µ

[! ( (x)�  (t))⇢] f (t) dt, (1.9)

and
⇣
RLD�; 

⇢,µ,!,b�f
⌘
(x) =

✓
� 1

 0 (x)

d

dx

◆N Z b

x

 0 (t) ( (t)�  (x))N�µ�1

E��
⇢,N�µ

[! ( (t)�  (x))⇢] f (t) dt. (1.10)

That is we have

⇣
RLD�; 

⇢,µ,!,a+f
⌘
(x) =

✓
1

 0 (x)

d

dx

◆N ⇣
e��; 
⇢,N�µ,!,a+f

⌘
(x) , (1.11)

and
⇣
RLD�; 

⇢,µ,!,b�f
⌘
(x) =

✓
� 1

 0 (x)

d

dx

◆N ⇣
e��; 
⇢,N�µ,!,b�f

⌘
(x) , (1.12)

8 x 2 [a, b].
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We define also the  -Hilfer-Prabhakar left and right fractional derivatives of order µ and type

0  �  1, as follows
⇣
HD�,�; 

⇢,µ,!,a+f
⌘
(x) = e���; 

⇢,�(N�µ),!,a+

✓
1

 0 (x)

d

dx

◆N

e��(1��); 
⇢,(1��)(N�µ),!,a+f (x) , (1.13)

and
⇣
HD�,�; 

⇢,µ,!,b�f
⌘
(x) = e���; 

⇢,�(N�µ),!,b�

✓
� 1

 0 (x)

d

dx

◆N

e��(1��); 
⇢,(1��)(N�µ),!,b�f (x) , (1.14)

8 x 2 [a, b].

When � = 0, we get the Riemann-Liouville version, and when � = 1, we get the Caputo version.

We call ⇠ = µ + � (N � µ), we have that N � 1 < µ  µ + � (N � µ)  µ + N � µ = N , hence

d⇠e = N.

We can easily write that
⇣
HD�,�; 

⇢,µ,!,a+f
⌘
(x) = e���; 

⇢,⇠�µ,!,a+
RLD�(1��); 

⇢,⇠,!,a+ f (x) , (1.15)

and ⇣
HD�,�; 

⇢,µ,!,b�f
⌘
(x) = e���; 

⇢,⇠�µ,!,b�
RLD�(1��); 

⇢,⇠,!,b� f (x) , (1.16)

8 x 2 [a, b].

2 Main results

We start with a left  -Prabhakar fractional Hardy type integral inequality involving several func-

tions.

Theorem 2.1. Here i = 1, . . . ,m; fi 2 C ([a, b]),  2 C1 ([a, b]) and  is increasing. Let ⇢i, µi > 0,

�i,!i 2 R. Also let r1, r2, r3 > 1 : 1
r1

+ 1
r2

+ 1
r3

= 1, and assume that µi > 1
r2

+ 1
r3

, for all

i = 1, . . . ,m.

Then �����

mY

i=1

e�i; 
⇢i,µi,!i,a+fi

�����
Lr1 ([a,b], )



( (b)�  (a))


mP

i=1
µi�m+ m

r1
+ 1

r1
� 1

r1r2

�

✓
r1r3

✓
mP
i=1

µi �m

◆
+mr3 + 1

◆ 1
r1r3

✓
mQ
i=1

(r1 (µi � 1) + 1)

◆ 1
r1

(Z
b

a

"
mY

i=1

✓Z
x

a

��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
��r2 d (t)

◆#r1
d (x)

) 1
r1r2

 
mY

i=1

kfikLr3 ([a,b], )

!
. (2.1)
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Proof. By (1.2) we have
⇣
e�i; 
⇢i,µi,!i,a+fi

⌘
(x) =

Z
x

a

 0 (t) ( (x)�  (t))µi�1 E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ] fi (t) dt, (2.2)

i = 1, . . . ,m; 8 x 2 [a, b].

By Hölder’s inequality and (2.2) we obtain
���
⇣
e�i; 
⇢i,µi,!i,a+fi

⌘
(x)
��� 

Z
x

a

 0 (t) ( (x)�  (t))µi�1 ��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
�� |fi (t)| dt 

✓Z
x

a

( (x)�  (t))r1(µi�1) d (t)

◆ 1
r1

✓Z
x

a

��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
��r2 d (t)

◆ 1
r2
✓Z

x

a

|fi (t)|r3 d (t)

◆ 1
r3

 (2.3)

( (x)�  (a))µi�1+ 1
r1

(r1 (µi � 1) + 1)
1
r1

✓Z
x

a

��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
��r2 d (t)

◆ 1
r2

kfikLr3 ([a,b], )
.

So far we have
���
⇣
e�i; 
⇢i,µi,!i,a+fi

⌘
(x)
��� 

( (x)�  (a))µi�1+ 1
r1

(r1 (µi � 1) + 1)
1
r1

✓Z
x

a

��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
��r2 d (t)

◆ 1
r2

kfikLr3 ([a,b], )
, (2.4)

8 x 2 [a, b], with µi >
1
r2

+ 1
r3
, for any i = 1, . . . ,m.

Hence it holds

 
mY

i=1

���
⇣
e�i; 
⇢i,µi,!i,a+fi

⌘
(x)
���

!r1

 ( (x)�  (a))
r1

mP
i=1

µi�mr1+m

✓
mQ
i=1

(r1 (µi � 1) + 1)

◆

"
mY

i=1

✓Z
x

a

��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
��r2 d (t)

◆# r1
r2
 

mY

i=1

kfikLr3 ([a,b], )

!r1

, (2.5)

8 x 2 [a, b] .

Therefore we obtain

Z
b

a

 
mY

i=1

���
⇣
e�i; 
⇢i,µi,!i,a+fi

⌘
(x)
���

!r1

d (x) 

✓
mQ
i=1

kfikLr3 ([a,b], )

◆r1

✓
mQ
i=1

(r1 (µi � 1) + 1)

◆ (2.6)

"Z
b

a

( (x)�  (a))
r1

mP
i=1

µi�mr1+m
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"
mY

i=1

✓Z
x

a

��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
��r2 d (t)

◆# r1
r2

d (x)

3

5

(again by Hölder’s inequality)



✓
mQ
i=1

kfikLr3 ([a,b], )

◆r1

✓
mQ
i=1

(r1 (µi � 1) + 1)

◆
 Z

b

a

( (x)�  (a))
r1r3

mP
i=1

µi�mr1r3+mr3

d (x)

! 1
r3

(Z
b

a

"
mY

i=1

✓Z
x

a

��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
��r2 d (t)

◆#r1
d (x)

) 1
r2

( (b)�  (a))
1
r1 =

✓
mQ
i=1

kfikLr3 ([a,b], )

◆r1

( (b)�  (a))
r1

mP
i=1

µi�mr1+m+1� 1
r2

✓
mQ
i=1

(r1 (µi � 1) + 1)

◆✓
r1r3

mP
i=1

µi �mr1r3 +mr3 + 1

◆ 1
r3

(2.7)

(Z
b

a

"
mY

i=1

✓Z
x

a

��E�i
⇢i,µi

[!i ( (x)�  (t))⇢i ]
��r2 d (t)

◆#r1
d (x)

) 1
r2

,

where µi >
1
r2

+ 1
r3

, i = 1, . . . ,m.

The claim is proved.

We continue with a right  -Prabhakar fractional Hardy type integral inequality involving several

functions.

Theorem 2.2. All as in Theorem 2.1. It holds
�����

mY

i=1

e�i; 
⇢i,µi,!i,b�fi

�����
Lr1 ([a,b], )



( (b)�  (a))


mP

i=1
µi�m+ m

r1
+ 1

r1
� 1

r1r2

�

✓
r1r3

✓
mP
i=1

µi �m

◆
+mr3 + 1

◆ 1
r1r3

✓
mQ
i=1

(r1 (µi � 1) + 1)

◆ 1
r1

(Z
b

a

"
mY

i=1

 Z
b

x

��E�i
⇢i,µi

[!i ( (t)�  (x))⇢i ]
��r2 d (t)

!#r1
d (x)

) 1
r1r2

 
mY

i=1

kfikLr3 ([a,b], )

!
. (2.8)

Proof. Similar to the proof of Theorem 2.1 and omitted.

Next we apply Theorems 2.1, 2.2.

We give the related Hardy type inequalities:
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Theorem 2.3. Here i = 1, . . . ,m; fi 2 CNi ([a, b]), where Ni = dµie, 0 < µi /2 N; ✓ :=

max {N1, . . . , Nm} ,  2 C✓ ([a, b]) with  0 6= 0 and increasing. Let ⇢i > 0, �i,!i 2 R. Also

let r1, r2, r3 > 1 : 1
r1

+ 1
r2

+ 1
r3

= 1, and assume that Ni � µi >
1
r2

+ 1
r3

, for all i = 1, . . . ,m. Then

i) �����

mY

i=1

CD�i; 
⇢i,µi,!i,a+fi

�����
Lr1 ([a,b], )



( (b)�  (a))


mP

i=1
(Ni�µi)�m+ m

r1
+ 1

r1
� 1

r1r2

�

✓
r1r3

✓
mP
i=1

(Ni � µi)�m

◆
+mr3 + 1

◆ 1
r1r3

✓
mQ
i=1

(r1 (Ni � µi � 1) + 1)

◆ 1
r1

(Z
b

a

"
mY

i=1

✓Z
x

a

���E��i
⇢i,Ni�µi

[!i ( (x)�  (t))⇢i ]
���
r2

d (t)

◆#r1
d (x)

) 1
r1r2

 
mY

i=1

���f [Ni]
i 

���
Lr3 ([a,b], )

!
, (2.9)

and

ii) �����

mY

i=1

CD�i; 
⇢i,µi,!i,b�fi

�����
Lr1 ([a,b], )



( (b)�  (a))


mP

i=1
(Ni�µi)�m+ m

r1
+ 1

r1
� 1

r1r2

�

✓
r1r3

✓
mP
i=1

(Ni � µi)�m

◆
+mr3 + 1

◆ 1
r1r3

✓
mQ
i=1

(r1 (Ni � µi � 1) + 1)

◆ 1
r1

(Z
b

a

"
mY

i=1

 Z
b

x

���E��i
⇢i,Ni�µi

[!i ( (t)�  (x))⇢i ]
���
r2

d (t)

!#r1
d (x)

) 1
r1r2

 
mY

i=1

���f [Ni]
i 

���
Lr3 ([a,b], )

!
. (2.10)

Proof. By (1.6), (1.7) and Theorems 2.1, 2.2.

We also present other Hardy type related inequalities:

Theorem 2.4. Here i = 1, . . . ,m; fi 2 CNi ([a, b]), where Ni = dµie, 0 < µi /2 N; ✓ :=

max {N1, . . . , Nm} ,  2 C✓ ([a, b]) ,  0 6= 0, and  is increasing. Let ⇢i > 0, �i,!i 2 R, 0  �i  1,

⇠i = µi + �i (Ni � µi) . Also let r1, r2, r3 > 1 : 1
r1

+ 1
r2

+ 1
r3

= 1, and assume that ⇠i �µi >
1
r2

+ 1
r3

,

for all i = 1, . . . ,m.

Also assume that RLD�i(1��i); 
⇢i,⇠i,!i,a+

fi, RLD�i(1��i); 
⇢i,⇠i,!i,b�fi 2 C ([a, b]), i = 1, . . . ,m.

Then
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i) �����

mY

i=1

HD�i,�i; 
⇢i,µi,!i,a+fi

�����
Lr1 ([a,b], )



( (b)�  (a))


mP

i=1
(⇠i�µi)�m+ m

r1
+ 1

r1
� 1

r1r2

�

✓
r1r3

✓
mP
i=1

(⇠i � µi)�m

◆
+mr3 + 1

◆ 1
r1r3

✓
mQ
i=1

(r1 (⇠i � µi � 1) + 1)

◆ 1
r1

(2.11)

(Z
b

a

"
mY

i=1

✓Z
x

a

���E��i�i

⇢i,⇠i�µi
[!i ( (x)�  (t))⇢i ]

���
r2

d (t)

◆#r1
d (x)

) 1
r1r2

 
mY

i=1

���RLD�i(1��i); 
⇢i,⇠i,!i,a+

fi
���
Lr3 ([a,b], )

!
,

and

ii) �����

mY

i=1

HD�i,�i; 
⇢i,µi,!i,b�fi

�����
Lr1 ([a,b], )



( (b)�  (a))


mP

i=1
(⇠i�µi)�m+ m

r1
+ 1

r1
� 1

r1r2

�

✓
r1r3

✓
mP
i=1

(⇠i � µi)�m

◆
+mr3 + 1

◆ 1
r1r3

✓
mQ
i=1

(r1 (⇠i � µi � 1) + 1)

◆ 1
r1

(2.12)

(Z
b

a

"
mY

i=1

 Z
b

x

���E��i�i

⇢i,⇠i�µi
[!i ( (t)�  (x))⇢i ]

���
r2

d (t)

!#r1
d (x)

) 1
r1r2

 
mY

i=1

���RLD�i(1��i); 
⇢i,⇠i,!i,b�fi

���
Lr3 ([a,b], )

!
.

Proof. By (1.15), (1.16) and Theorems 2.1, 2.2.

From now on all entities are according and respectively to Section 1. Background.

Next we give Opial type inequalities related to Prabhakar fractional calculus.

A left side one follows:

Theorem 2.5. Let p, q > 1 : 1
p
+ 1

q
= 1. Then

Z
x

a

���
⇣
e�; 
⇢,µ,!,a+f

⌘
(w)
��� |f (w)| 0 (w) dw  2�

1
q

Z
x

a

⇢Z
w

a

( (w)�  (t))p(µ�1) ��E�

⇢,µ
[! ( (w)�  (t))⇢]

��p dt
�
dw

� 1
p

✓Z
x

a

|f (w)|q ( 0 (w))
q
dw

◆ 2
q

, (2.13)

8 x 2 [a, b] .
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Proof. By (1.2), using Hölder’s inequality, we have
���
⇣
e�; 
⇢,µ,!,a+f

⌘
(x)
��� 

Z
x

a

 0 (t) ( (x)�  (t))µ�1 ��E�

⇢,µ
[! ( (x)�  (t))⇢]

�� |f (t)| dt


✓Z

x

a

( (x)�  (t))p(µ�1) ��E�

⇢,µ
[! ( (x)�  (t))⇢]

��p dt
◆ 1

p

✓Z
x

a

( 0 (t) |f (t)|)q dt
◆ 1

q

. (2.14)

Call

� (x) =

Z
x

a

( 0 (t) |f (t)|)q dt, � (a) = 0. (2.15)

Thus

�0 (x) = ( 0 (x) |f (x)|)q � 0, (2.16)

and

(�0 (x))
1
q =  0 (x) |f (x)| � 0, 8 x 2 [a, b] .

Consequently, we get ���
⇣
e�; 
⇢,µ,!,a+f

⌘
(w)
��� 0 (w) |f (w)| 

✓Z
w

a

( (w)�  (t))p(µ�1) ��E�

⇢,µ
[! ( (w)�  (t))⇢]

��p dt
◆ 1

p

(� (w)�0 (w))
1
q , 8 w 2 [a, b] . (2.17)

Then, by applying again Hölder’s inequality:
Z

x

a

���
⇣
e�; 
⇢,µ,!,a+f

⌘
(w)
��� |f (w)| 0 (w) dw  (2.18)

Z
x

a

⇢Z
w

a

( (w)�  (t))p(µ�1) ��E�

⇢,µ
[! ( (w)�  (t))⇢]

��p dt
� 1

p

(� (w)�0 (w))
1
q dw 

Z
x

a

⇢Z
w

a

( (w)�  (t))p(µ�1) ��E�

⇢,µ
[! ( (w)�  (t))⇢]

��p dt
�
dw

� 1
p

✓Z
x

a

� (w) d� (w)

◆ 1
q

=

Z
x

a

⇢Z
w

a

( (w)�  (t))p(µ�1) ��E�

⇢,µ
[! ( (w)�  (t))⇢]

��p dt
�
dw

� 1
p

✓
�2 (x)

2

◆ 1
q

= 2�
1
q

Z
x

a

⇢Z
w

a

( (w)�  (t))p(µ�1) ��E�

⇢,µ
[! ( (w)�  (t))⇢]

��p dt
�
dw

� 1
p

✓Z
x

a

( 0 (w) |f (w)|)q dw
◆ 2

q

. (2.19)

The theorem is proved.
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The right side Opial inequality follows:

Theorem 2.6. Let p, q > 1 : 1
p
+ 1

q
= 1. Then

Z
b

x

���
⇣
e�; 
⇢,µ,!,b�f

⌘
(w)
��� |f (w)| 0 (w) dw  2�

1
q

"Z
b

x

(Z
b

w

( (t)�  (w))p(µ�1) ��E�

⇢,µ
[! ( (t)�  (w))⇢]

��p dt
)
dw

# 1
p

 Z
b

x

|f (w)|q ( 0 (w))
q
dw

! 2
q

, (2.20)

8 x 2 [a, b] .

Proof. As it is similar to the proof of Theorem 2.5, is omitted.

We continue with more interesting Opial type Prabhakar-Caputo fractional inequalities:

Theorem 2.7. Let p, q > 1 : 1
p
+ 1

q
= 1. Then

i) Z
x

a

���
⇣
CD�; 

⇢,µ,!,a+f
⌘
(w)
���
���f [N ]
 

(w)
��� 0 (w) dw  2�

1
q

Z
x

a

⇢Z
w

a

( (w)�  (t))p(N�µ�1)
���E��

⇢,N�µ
[! ( (w)�  (t))⇢]

���
p

dt

�
dw

� 1
p

✓Z
x

a

���f [N ]
 

(w)
���
q

( 0 (w))
q
dw

◆ 2
q

, (2.21)

and

ii) Z
b

x

���
⇣
CD�; 

⇢,µ,!,b�f
⌘
(w)
���
���f [N ]
 

(w)
��� 0 (w) dw  2�

1
q

"Z
b

x

(Z
b

w

( (t)�  (w))p(N�µ�1)
���E��

⇢,N�µ
[! ( (t)�  (w))⇢]

���
p

dt

)
dw

# 1
p

 Z
b

x

���f [N ]
 

(w)
���
q

( 0 (w))
q
dw

! 2
q

, (2.22)

8 x 2 [a, b] .

Proof. By Theorems 2.5, 2.6 and (1.6)-(1.8).

Next come  -Hilfer-Prabhakar left and right Opial type fractional inequalities:
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Theorem 2.8. Let p, q > 1 : 1
p
+ 1

q
= 1. Additionally here assume that

RLD�(1��); 
⇢,⇠,!,a+ f,RL D�(1��); 

⇢,⇠,!,b� f 2 C ([a, b]) .

Then

i) Z
x

a

���
⇣
HD�,�; 

⇢,µ,!,a+f
⌘
(w)
���
���
⇣
RLD�(1��); 

⇢,⇠,!,a+ f
⌘
(w)
��� 0 (w) dw  2�

1
q

Z
x

a

⇢Z
w

a

( (w)�  (t))p(⇠�µ�1)
���E���

⇢,⇠�µ
[! ( (w)�  (t))⇢]

���
p

dt

�
dw

� 1
p

✓Z
x

a

���
⇣
RLD�(1��); 

⇢,⇠,!,a+ f
⌘
(w)
���
q

( 0 (w))
q
dw

◆ 2
q

, (2.23)

and

ii) Z
b

x

���
⇣
HD�,�; 

⇢,µ,!,b�f
⌘
(w)
���
���
⇣
RLD�(1��); 

⇢,⇠,!,b� f
⌘
(w)
��� 0 (w) dw  2�

1
q

"Z
b

x

(Z
b

w

( (t)�  (w))p(⇠�µ�1)
���E���

⇢,⇠�µ
[! ( (t)�  (w))⇢]

���
p

dt

)
dw

# 1
p

 Z
b

x

���
⇣
RLD�(1��); 

⇢,⇠,!,b� f
⌘
(w)
���
q

( 0 (w))
q
dw

! 2
q

, (2.24)

8 x 2 [a, b] .

Proof. By Theorems 2.5, 2.6 and (1.15), (1.16).

Next we give several Prabhakar Hilbert-Pachpatte fractional inequalities. We start with a left side

one.

Theorem 2.9. Let p, q > 1 : 1
p
+ 1

q
= 1; i = 1, 2. Let [ai, bi] ⇢ R,  i 2 C1 ([ai, bi]) and strictly

increasing, fi 2 C ([ai, bi]); ⇢i, µi > 0, �i,!i 2 R. Then

Z
b1

a1

Z
b2

a2

���
⇣
e�1; 1
⇢1,µ1,!1,a1+f1

⌘
(x1)

���
���
⇣
e�2; 2
⇢2,µ2,!2,a2+f2

⌘
(x2)

��� dx1dx2
8
><

>:

hR x1
a1
{( 1(x1)� 1(t1))

µ1�1|E�1
⇢1,µ1

[!1( 1(x1)� 1(t1))
⇢1 ]|}p

dt1

i

p
+

hR x2
a2
{( 2(x2)� 2(t2))

µ2�1|E�2
⇢2,µ2

[!2( 2(x2)� 2(t2))
⇢2 ]|}q

dt2

i

q

9
>=

>;

 (b1 � a1) (b2 � a2) k 0
1f1kq k 

0
2f2kp . (2.25)

Proof. We have that (i = 1, 2) ⇣
e�i; i
⇢i,µi,!i,ai+fi

⌘
(xi)

(1.2)
=

Z
xi

ai

 0
i
(ti) ( i (xi)�  i (ti))

µi�1 E�i
⇢i,µi

[!i ( i (xi)�  i (ti))
⇢i ] fi (ti) dti, (2.26)
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8 xi 2 [ai, bi], where ⇢i, µi > 0; �i,!i 2 R.

Then ���
⇣
e�i; i
⇢i,µi,!i,ai+fi

⌘
(xi)

��� 
Z

xi

ai

 0
i
(ti) ( i (xi)�  i (ti))

µi�1 ��E�i
⇢i,µi

[!i ( i (xi)�  i (ti))
⇢i ]
�� |fi (ti)| dti, (2.27)

i = 1, 2, 8 xi 2 [ai, bi] .

By appying Hölder’s inequality twice we get:
���
⇣
e�1; 1
⇢1,µ1,!1,a1+f1

⌘
(x1)

��� 

Z
x1

a1

n
( 1 (x1)�  1 (t1))

µ1�1 ��E�1
⇢1,µ1

[!1 ( 1 (x1)�  1 (t1))
⇢1 ]
��
op

dt1

� 1
p

✓Z
x1

a1

( 0
1 (t1) |f1 (t1)|)

q
dt1

◆ 1
q

, (2.28)

8 x1 2 [a1, b1] , and ���
⇣
e�2; 2
⇢2,µ2,!2,a2+f2

⌘
(x2)

��� 
Z

x2

a2

n
( 2 (x2)�  2 (t2))

µ2�1 ��E�2
⇢2,µ2

[!2 ( 2 (x2)�  2 (t2))
⇢2 ]
��
oq

dt2

� 1
q

✓Z
x2

a2

( 0
2 (t2) |f2 (t2)|)

p
dt2

◆ 1
p

, (2.29)

8 x2 2 [a2, b2] .

Hence we have (by (2.28), (2.29))
���
⇣
e�1; 1
⇢1,µ1,!1,a1+f1

⌘
(x1)

���
���
⇣
e�2; 2
⇢2,µ2,!2,a2+f2

⌘
(x2)

��� 

Z
x1

a1

n
( 1 (x1)�  1 (t1))

µ1�1 ��E�1
⇢1,µ1

[!1 ( 1 (x1)�  1 (t1))
⇢1 ]
��
op

dt1

� 1
p

Z
x2

a2

n
( 2 (x2)�  2 (t2))

µ2�1 ��E�2
⇢2,µ2

[!2 ( 2 (x2)�  2 (t2))
⇢2 ]
��
oq

dt2

� 1
q

k 0
1f1kq k 

0
2f2kp  (2.30)

(using Young’s inequality for a, b � 0, a
1
p b

1
q  a

p
+ b

q
)

8
<

:

hR
x1

a1

n
( 1 (x1)�  1 (t1))

µ1�1 ��E�1
⇢1,µ1

[!1 ( 1 (x1)�  1 (t1))
⇢1 ]
��
op

dt1
i

p
+

hR
x2

a2

n
( 2 (x2)�  2 (t2))

µ2�1 ��E�2
⇢2,µ2

[!2 ( 2 (x2)�  2 (t2))
⇢2 ]
��
oq

dt2
i

q

9
=

;

k 0
1f1kq k 

0
2f2kp ,
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8 xi 2 [ai, bi] , i = 1, 2.

So far we have
���
⇣
e�1; 1
⇢1,µ1,!1,a1+f1

⌘
(x1)

���
���
⇣
e�2; 2
⇢2,µ2,!2,a2+f2

⌘
(x2)

���
8
><

>:

hR x1
a1
{( 1(x1)� 1(t1))

µ1�1|E�1
⇢1,µ1

[!1( 1(x1)� 1(t1))
⇢1 ]|}p

dt1

i

p
+

hR x2
a2
{( 2(x2)� 2(t2))

µ2�1|E�2
⇢2,µ2

[!2( 2(x2)� 2(t2))
⇢2 ]|}q

dt2

i

q

9
>=

>;

 k 0
1f1kq k 

0
2f2kp , (2.31)

8 xi 2 [ai, bi] , i = 1, 2.

The denominator in (2.31) can be zero only when x1 = a1 and x2 = a2. Therefore we obtain (2.25)

by integrating (2.31) over [a1, b1]⇥ [a2, b2] .

It follows the corresponding to (2.25) right side inequality.

Theorem 2.10. All as in Theorem 2.9. Then

Z
b1

a1

Z
b2

a2

���
⇣
e�1; 1

⇢1,µ1,!1,b1�f1
⌘
(x1)

���
���
⇣
e�2; 2

⇢2,µ2,!2,b2�f2
⌘
(x2)

��� dx1dx2
8
><

>:

hR b1
x1
{( 1(t1)� 1(x1))

µ1�1|E�1
⇢1,µ1

[!1( 1(t1)� 1(x1))
⇢1 ]|}p

dt1

i

p
+

hR b2
x2
{( 2(t2)� 2(x2))

µ2�1|E�2
⇢2,µ2

[!2( 2(t2)� 2(x2))
⇢2 ]|}q

dt2

i

q

9
>=

>;

 (b1 � a1) (b2 � a2) k 0
1f1kq k 

0
2f2kp . (2.32)

Proof. As similar to the proof of Theorem 2.9 is omitted.

We continue with applications of Theorems 2.9, 2.10.

Theorem 2.11. Let p, q > 1 : 1
p
+ 1

q
= 1; i = 1, 2. Let [ai, bi] ⇢ R,  i 2 Cmax(N1,N2) ([ai, bi]) ,

 0
i
6= 0, and strictly increasing; fi 2 CNi ([ai, bi]), where Ni = dµie, 0 < µi /2 N. Here ⇢i > 0;

�i,!i 2 R. Then

Z
b1

a1

Z
b2

a2

���
⇣
CD�1; 1

⇢1,µ1,!1,a1+f1
⌘
(x1)

���
���
⇣
CD�2; 2

⇢2,µ2,!2,a2+f2
⌘
(x2)

��� dx1dx2
8
><

>:

hR x1
a1

n
( 1(x1)� 1(t1))

N1�µ1�1
���E��1

⇢1,N1�µ1
[!1( 1(x1)� 1(t1))

⇢1 ]
���
op

dt1

i

p
+

hR x2
a2

n
( 2(x2)� 2(t2))

N2�µ2�1
���E��2

⇢2,N2�µ2
[!2( 2(x2)� 2(t2))

⇢2 ]
���
oq

dt2

i

q

9
>=

>;

 (b1 � a1) (b2 � a2)
��� 0

1f
[N1]
1 1

���
q

��� 0
2f

[N2]
2 2

���
p

. (2.33)

Proof. By Theorem 2.9 and (1.2), (1.6).

We also give
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Theorem 2.12. All as in Theorem 2.11. Then

Z
b1

a1

Z
b2

a2

���
⇣
CD�1; 1

⇢1,µ1,!1,b1�f1
⌘
(x1)

���
���
⇣
CD�2; 2

⇢2,µ2,!2,b2�f2
⌘
(x2)

��� dx1dx2
8
><

>:

hR b1
x1

n
( 1(t1)� 1(x1))

N1�µ1�1
���E��1

⇢1,N1�µ1
[!1( 1(t1)� 1(x1))

⇢1 ]
���
op

dt1

i

p
+

hR b2
x2

n
( 2(t2)� 2(x2))

N2�µ2�1
���E��2

⇢2,N2�µ2
[!2( 2(t2)� 2(x2))

⇢2 ]
���
oq

dt2

i

q

9
>=

>;

 (b1 � a1) (b2 � a2)
��� 0

1f
[N1]
1 1

���
q

��� 0
2f

[N2]
2 2

���
p

. (2.34)

Proof. By Theorem 2.10 and (1.3), (1.7).

We present

Theorem 2.13. Let p, q > 1 : 1
p
+ 1

q
= 1; i = 1, 2. Let [ai, bi] ⇢ R,  i 2 Cmax(N1,N2) ([ai, bi]) ,

 0
i
6= 0, and strictly increasing; fi 2 CNi ([ai, bi]), where Ni = dµie, 0 < µi /2 N. Here ⇢i > 0;

�i,!i 2 R and ⇠i = µi + �i (Ni � µi), i = 1, 2, where 0  �i  1. Then

Z
b1

a1

Z
b2

a2

���
⇣
HD�1,�1; 1

⇢1,µ1,!1,a1+f1
⌘
(x1)

���
���
⇣
HD�2,�2; 2

⇢2,µ2,!2,a2+f2
⌘
(x2)

��� dx1dx2
8
><

>:

hR x1
a1

n
( 1(x1)� 1(t1))

⇠1�µ1�1
���E��1�1

⇢1,⇠1�µ1
[!1( 1(x1)� 1(t1))

⇢1 ]
���
op

dt1

i

p
+

hR x2
a2

n
( 2(x2)� 2(t2))

⇠2�µ2�1
���E��2�2

⇢2,⇠2�µ2
[!2( 2(x2)� 2(t2))

⇢2 ]
���
oq

dt2

i

q

9
>=

>;

 (b1 � a1) (b2 � a2)
��� 0

1
RLD�1(1��1); 1

⇢1,⇠1,!1,a1+
f1
���
q

��� 0
2

RLD�2(1��2); 2

⇢2,⇠2,!2,a2+
f2
���
p

. (2.35)

Proof. By Theorem 2.9 and (1.15).

We also give

Theorem 2.14. All as in Theorem 2.13. Then

Z
b1

a1

Z
b2

a2

���
⇣
HD�1,�1; 1

⇢1,µ1,!1,b1�f1
⌘
(x1)

���
���
⇣
HD�2,�2; 2

⇢2,µ2,!2,b2�f2
⌘
(x2)

��� dx1dx2
8
><

>:

hR b1
x1

n
( 1(t1)� 1(x1))

⇠1�µ1�1
���E��1�1

⇢1,⇠1�µ1
[!1( 1(t1)� 1(x1))

⇢1 ]
���
op

dt1

i

p
+

hR b2
x2

n
( 2(t2)� 2(x2))

⇠2�µ2�1
���E��2�2

⇢2,⇠2�µ2
[!2( 2(t2)� 2(x2))

⇢2 ]
���
oq

dt2

i

q

9
>=

>;

 (b1 � a1) (b2 � a2)
��� 0

1
RLD�1(1��1); 1

⇢1,⇠1,!1,b1�f1
���
q

��� 0
2

RLD�2(1��2); 2

⇢2,⇠2,!2,b2�f2
���
p

. (2.36)

Proof. By Theorem 2.10 and (1.16).
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3 Appendix

We give the following important fundamental results:

Theorem 3.1. Let ⇢, µ > 0; �,! 2 R; and  2 C1 ([a, b]) increasing, f 2 C ([a, b]). Then⇣
e�; 
⇢,µ,!,a+f

⌘
,
⇣
e�; 
⇢,µ,!,b�f

⌘
2 C ([a, b]) .

Proof. We only prove
⇣
e�; 
⇢,µ,!,a+f

⌘
2 C ([a, b]). We skip the proof for the other is similar.

We consider the power series

E
�

⇢,µ
(z) =

1X

k=0

|(�)
k
|

k!� (⇢k + µ) (⇢k + µ)
zk, z 2 R. (3.1)

We form

R
�1

:= lim
k!1

|(�)k+1|
(k+1)!�(⇢(k+1)+µ)(⇢(k+1)+µ)

|(�)k|
k!�(⇢k+µ)(⇢k+µ)

= lim
k!1

|�+k|
(k+1)�(⇢(k+1)+µ)(⇢(k+1)+µ)

1
�(⇢k+µ)(⇢k+µ)

= (3.2)

lim
k!1

|� + k|� (⇢k + µ) (⇢k + µ)

(k + 1)� (⇢ (k + 1) + µ) (⇢ (k + 1) + µ)
=

lim
k!1

✓
|� + k|� (⇢k + µ)

(k + 1)� (⇢ (k + 1) + µ)

◆
lim
k!1

✓
⇢k + µ

(⇢k + µ) + ⇢

◆
=: (⌅) . (3.3)

Notice that

lim
k!1

✓
⇢k + µ

(⇢k + µ) + ⇢

◆
= 1. (3.4)

From (1.1) we have that its radius of convergence is

R = lim
k!1

|(�)k|
k!�(⇢k+µ)

|(�)k+1|
(k+1)!�(⇢(k+1)+µ)

= lim
k!1

1
�(⇢k+µ)

|�+k|
(k+1)�(⇢(k+1)+µ)

= lim
k!1

(k + 1)� (⇢ (k + 1) + µ)

|� + k|� (⇢k + µ)
= 1,

because (1.1) is an entire function.

Therefore, we have that

lim
k!1

|� + k|� (⇢k + µ)

(k + 1)� (⇢ (k + 1) + µ)
= 0.

Consequently by (3.3), (3.4), we get that (⌅) = 0. Thus R
�1

= 0 and the radius of convergence of

E
�

⇢,µ
(z), see (3.1), is R = 1, hence (3.1) is convergent everywhere.

Consequently it holds
1X

k=0

|(�)
k
| (|!| ( (x)�  (a))⇢)

k

k!� (⇢k + µ) (⇢k + µ)
< 1, (3.5)

8 x 2 [a, b] .

We notice that
1X

k=0

|(�)
k
| |!|k

k!� (⇢k + µ)

Z
x

a

 0 (t) ( (x)�  (t))(⇢k+µ)�1 |f (t)| dt 
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kfk1
1X

k=0

|(�)
k
| |!|k

k!� (⇢k + µ)

( (x)�  (a))⇢k+µ

⇢k + µ
 (3.6)

kfk1 ( (b)�  (a))µ
1X

k=0

|(�)
k
| (|!| ( (x)�  (a))⇢)

k

k!� (⇢k + µ) (⇢k + µ)

(3.5)
< 1.

Consequently, by [5, p. 175], we derive

⇣
e�; 
⇢,µ,!,a+f

⌘
(x)

(1.2)
=

Z
x

a

 0 (t) ( (x)�  (t))µ�1

 1X

k=0

(�)
k

k!� (⇢k + µ)
(! ( (x)�  (t))⇢)

k

!
f (t) dt

=
1X

k=0

(�)
k
!k

k!� (⇢k + µ)

Z
x

a

 0 (t) ( (x)�  (t))(⇢k+µ)�1 f (t) dt, (3.7)

8 x 2 [a, b] .

By [2, p. 98], we obtain that the function

�(k)
⇢,µ

(f, x) =

Z
x

a

 0 (t) ( (x)�  (t))(⇢k+µ)�1 f (t) dt,

x 2 [a, b], is absolutely continuous for ⇢k+µ � 1 and continuous for ⇢k+µ 2 (0, 1);  2 C1 ([a, b])

and increasing.

That is always �(k)⇢,µ (|f | , x) 2 C ([a, b]), for all k = 0, 1, . . .

By (3.5), one can derive that
1X

k=0

|(�)
k
| |!|k

k!� (⇢k + µ)
�(k)
⇢,µ

(|f | , x) 

kfk1 ( (b)�  (a))µ
1X

k=0

|(�)
k
| (|!| ( (b)�  (a))⇢)

k

k!� (⇢k + µ) (⇢k + µ)
< 1. (3.8)

Notice that
����(k)⇢,µ

(f, x)
���  �(k)

⇢,µ
(|f | , x) =

Z
x

a

 0 (t) ( (x)�  (t))(⇢k+µ)�1 |f (t)| dt

 kfk1
( (b)�  (a))(⇢k+µ)

(⇢k + µ)
, k = 0, 1, . . . (3.9)

And even more we get:

|(�)
k
| |!|k

k!� (⇢k + µ)

����(k)⇢,µ
(f, x)

��� 
|(�)

k
| |!|k

k!� (⇢k + µ)
�(k)
⇢,µ

(|f | , x) 

 
|(�)

k
| |!|k

k!� (⇢k + µ)

!
kfk1 ( (b)�  (a))(⇢k+µ)

(⇢k + µ)
=: Mk, k = 0, 1, . . . ; (3.10)

and by (3.8) that
1P
k=0

Mk < 1, converges.

By Weierstrass M -test we get that
1P
k=0

(�)k!
k

k!�(⇢k+µ)�
(k)
⇢,µ (f, x) is uniformly and absolutely convergent

for x 2 [a, b].

Consequently by (3.7) we derive that
⇣
e�; 
⇢,µ,!,a+f

⌘
2 C ([a, b]) . The proof is completed.
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We finish with

Corollary 3.2. All as in Theorem 3.1. We have that

���e�; 
⇢,µ,!,a+(b�)f

���
1


 1X

k=0

|(�)
k
| |!|k ( (b)�  (a))⇢k+µ

k!� (⇢k + µ+ 1)

!
kfk1 < +1. (3.11)

That is e�; 
⇢,µ,!,a+(b�) are bounded linear operators and positive operators if �,! > 0.

Proof. By (3.7), (3.8).
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ABSTRACT

The purpose of this article is to move towards a more com-

plete understanding of the qualitative properties of solutions to

discrete boundary value problems. In particular, we introduce

and develop sufficient conditions under which the existence of a

unique solution for a third-order difference equation subject to

three-point boundary conditions is guaranteed. Our contribu-

tions are realized in the following ways. First, we construct the

corresponding Green’s function for the problem and formulate

some new bounds on its summation. Second, we apply these

properties to the boundary value problem by drawing on Ba-

nach’s fixed point theorem in conjunction with interesting met-

rics and appropriate inequalities. We discuss several examples

to illustrate the nature of our advancements.

RESUMEN

El propósito de este artículo es avanzar hacia un entendimiento

más completo de las propiedades cualitativas de las soluciones a

problemas discretos de valor en la frontera. En particular, intro-

ducimos y desarrollamos condiciones suficientes bajo las cuales se

garantiza la existencia de una única solución para una ecuación

en diferencias de tercer orden sujeta a condiciones de borde en

tres puntos. Nuestras contribuciones son de dos tipos. En primer

lugar, construimos las funciones de Green correspondientes para

el problema y formulamos nuevas cotas para su suma. En se-

gundo lugar, aplicamos estas propiedades al problema de valor en

la frontera usando el teorema del punto fijo de Banach junto con

métricas interesantes y desigualdades apropiadas. Discutimos

varios ejemplos para ilustrar la naturaleza de nuestros avances.

Keywords and Phrases: Forward difference, boundary value problem, Green’s function, contraction, fixed point,

existence, uniqueness.
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1 Introduction

Discrete boundary value problems are of significant interest to scientific and technical communi-

ties. For instance, their perceived utility is partly due to their ability to act as a mathematical

framework to model purely discrete processes and phenomena that arise in various fields of science

and engineering. In addition, developing a theory of discrete boundary value problems has the po-

tential to inform our understanding of continuous boundary value problems. For example, discrete

boundary value problems can arise as approximations to “continuous” boundary value problems

that involve differential equations, where the numerical aspects of solutions are of importance. Fur-

thermore, it is also possible to construct a theory of differential equations by only using difference

equations [7].

Although discrete problems have enjoyed continued interest, the mathematics community is yet to

reach a complete understanding of the qualitative and quantitative properties of their solutions.

This includes, for example, discrete boundary value problems of the third order, which have not

been advanced to the same degree as their “continuous cousins” or to the same extent as discrete

problems of the second order. Moreover, we are yet to achieve a total comprehension of the

mathematical similarities and distinctions between such continuous and discrete problems.

Motivated by the above discussion, the purpose of the current paper is to make progress towards

a more complete theory concerning the existence and uniqueness of solutions to discrete bound-

ary value problems of the third order. “Knowing an equation has a unique solution is important

from both a modelling and theoretical point of view” [19, p. 794] as it informs our mathematical

understanding from applied and pure perspectives. For example, by developing a deeper under-

standing of the existence and uniqueness of solutions to discrete boundary value problems we are

simultaneously expanding capacity and knowledge of the associated models and the mathematical

frameworks that attempt to describe them.

For any a, b 2 R such that (b � a) 2 N, we will denote Na = {a, a + 1, a + 2, . . . } and Nb
a =

{a, a+ 1, a+ 2, . . . , b}. Let � denote the usual forward difference operator defined by
�
�u
�
(t) = u(t+ 1)� u(t), t 2 NT+2

0 ,

Herein we will consider the following third-order, three-point discrete boundary value problem
8
><

>:

�
�3

u
�
(t� 2) + f(t, u(t)) = 0, t 2 NT+2

2 ,

u(0) =
�
�u
�
(0) = 0, u(T + 3) = ku(⌘)

(1.1)

where f is a continuous function from NT+3
0 ⇥ R to R which we denote via f 2 C

⇥
NT+3

0 ⇥ R,R
⇤
.

In addition, T 2 N1, k 2 R and ⌘ 2 NT+2
1 .

Let us briefly outline recent and relevant literature to situate and contextualize our work. Agarwal

and Henderson [2] initiated the study of positive solutions to the third-order three-point discrete
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boundary value problem
8
><

>:

�
�3

u
�
(t� 2) + a(t)g(u(t)) = 0, t 2 NT+2

2 ,

u(0) = u(1) = u(T + 3) = 0,
(1.2)

where a : NT+2
0 ! R+ and g 2 C [R+

,R+]. Following this work, Anderson [5] and Anderson

and Avery [6] examined the existence of multiple solutions to third-order, three-point discrete

focal boundary value problems. Positive solutions to discrete, third-order problems have been

shown to exist using fixed point theory in cones [13]. In addition, several authors have discussed

various qualitative properties of different classes of third-order three-point discrete boundary value

problems and a detailed discussion can be found in [11, 12, 23, 24, 25, 13] and the references

therein.

Motivated by the recent work [4, 15], where the differential equation version of (1.1) was analyzed,

in the present article we investigate the discrete boundary value problem (1.1). When compared

with the ideas in [4, 15] our methods and results herein are different; and they reveal some thought-

provoking distinctions and connections between the sets of works. For example, the present work

develops alternative bounds on the Green’s functions to those in [4, 15] and we employ purely

discrete ways of working. In particular, we observe that some of our bounds for the discrete

case are sharp, while others are rougher. The bounds are different from those developed for the

continuous case [4]. This highlights some of the interesting distinctions between the discrete and

the continuous in terms of results and methods within the domain of third order problems.

Our article is organized as follows: In Section 2, we construct the Green’s function corresponding

to the boundary value problem (1.1) and establish new bounds on its summation. In Section 3 we

apply the properties of the Green’s function to the boundary value problem (1.1) in conjunction

with Banach’s contraction mapping theorem to establish sufficient conditions for the existence of

a unique solution. We provide a discussion of examples in Section 4 to illustrate how our ideas can

be put into practice and the relationships between them. Finally, we conclude with some ideas for

further work in Section 5.

For more on discrete problems, see the monographs [1, 8, 9, 10, 14].

2 Green’s function and its properties

In order to develop the Green’s function for the three-point case, we first analyze the two-point

discrete boundary value problem
8
><

>:

�
�3

v
�
(t� 2) + h(t) = 0, t 2 NT+2

2 ,

v(0) =
�
�v
�
(0) = v(T + 3) = 0,

(2.1)
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where h 2 C
⇥
NT+2

2 ,R
⇤
. The boundary value problem (2.1) can be equivalently rewritten as

8
><

>:

�
�3

v
�
(t� 2) + h(t) = 0, t 2 NT+2

2 ,

v(0) = v(1) = v(T + 3) = 0.
(2.2)

Yang and Weng [25] derived a Green’s function for the boundary value problem (2.2) and also

investigated its sign. The following two results are found therein and will be helpful in our present

analysis.

Lemma 2.1 ([25]). The unique solution of the boundary value problem (2.2) (or (2.1)) is given

by

v(t) =
T+2X

s=2

H(t, s)h(s), t 2 NT+3
0 , (2.3)

where

H(t, s) =

8
>><

>>:

t(t� 1)(T + 3� s)(T + 4� s)

2(T + 3)(T + 2)
� (t� s)(t� s+ 1)

2
, s 2 Nt�1

0 ,

t(t� 1)(T + 3� s)(T + 4� s)

2(T + 3)(T + 2)
, s 2 NT+3

t .

(2.4)

Lemma 2.2 ([25]). The Green’s function H(t, s) in (2.4) satisfies H(t, s) � 0 for all (t, s) 2
NT+3

0 ⇥ NT+2
2 .

Now let us construct the Green’s function for the boundary value problem
8
><

>:

�
�3

u
�
(t� 2) + h(t) = 0, t 2 NT+2

2 ,

u(0) =
�
�u
�
(0) = 0, u(T + 3) = ku(⌘)

(2.5)

to form the following new result.

Lemma 2.3. Let h 2 C
⇥
NT+2

2 ,R
⇤

and assume

(T + 2)(T + 3) 6= k⌘(⌘ � 1).

The unique solution to the boundary value problem (2.5) is given by

u(t) =
T+2X

s=2

G(t, s)h(s), t 2 NT+3
0 , (2.6)

where

G(t, s) = H(t, s) +
kt(t� 1)

(T + 2)(T + 3)� k⌘(⌘ � 1)
H(⌘, s). (2.7)

Proof. Assume the solution of the boundary value problem (2.5) can be expressed as

u(t) = v(t) + [C0 + C1t+ C2t(t� 1)] v(⌘), (2.8)
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where C0, C1 and C2 are constants to be determined and v be the unique solution of the boundary

value problem (2.1). When v(⌘) = 0, the u(t) defined by (2.8) is the same as v(t) and it is actually

the solution of (2.5). In what follows, we assume that v(⌘) 6= 0.

It follows from (2.8) that
�
�u
�
(t) =

�
�v
�
(t) + [C1 + 2C2t] v(⌘). (2.9)

From (2.1), (2.5), (2.8) and (2.9), we have

u(0) = 0 ) v(0) + C0v(⌘) = 0 ) C0 = 0, (2.10)
�
�u
�
(0) = 0 )

�
�v
�
(0) + C1v(⌘) = 0 ) C1 = 0, (2.11)

and

u(T + 3) = ku(⌘)

) v(T + 3) + C2(T + 2)(T + 3)v(⌘) = k [v(⌘) + C2⌘(⌘ � 1)v(⌘)]

) C2 =
k

(T + 2)(T + 3)� k⌘(⌘ � 1)
. (2.12)

Using (2.3) and (2.10) – (2.12) in (2.8) and rearranging the terms, we obtain (2.6) and (2.7). The

proof is complete.

Let us now establish new bounds on the summation of the Green’s functions H(t, s) and G(t, s)

via the following result, which is of interest in its own right, for example, the bounds may prove

useful in areas beyond the scope of this paper, such as in the application of topological ways of

working with fixed point theory. We will draw on it to establish the main existence and uniqueness

results of Section 3. The bounds will be formulated in terms of T, k, ⌘. To assist with notation,

we define the following constant ⇤ (that depends on the form of T ) that we will use below. For

n 2 N1 we define

⇤ =

8
>>>>>>>>>>><

>>>>>>>>>>>:

n(n+ 2)(2n+ 1)

3
, if T = 3n,

n(n+ 1)(2n+ 1)

3
, if T = 3n� 1,

n(n+ 1)(2n� 1)

3
, if T = 3n� 2.

(2.13)

Lemma 2.4. The Green’s function G(t, s) in (2.7) satisfies
T+2X

s=2

|G(t, s)|  �,

where � depends on T, k, ⌘ and is explicitly given by

� = ⇤+

����
k

(T + 2)(T + 3)� k⌘(⌘ � 1)

���� (T + 2)(T + 3)


⌘(⌘ � 1)(T + 7)

6
+ ⌘

�
(2.14)

and ⇤ is defined in (2.13).
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Proof. Consider
T+2X

s=2

H(t, s) =
t�1X

s=2


t(t� 1)(T + 3� s)(T + 4� s)

2(T + 3)(T + 2)
� (t� s)(t� s+ 1)

2

�

+
T+2X

s=t


t(t� 1)(T + 3� s)(T + 4� s)

2(T + 3)(T + 2)

�

=
T+2X

s=2


t(t� 1)(T + 3� s)(T + 4� s)

2(T + 3)(T + 2)

�
�

t�1X

s=2


(t� s)(t� s+ 1)

2

�

=
t(t� 1)

2(T + 3)(T + 2)

T+1X

s=1

s(s+ 1)� 1

2

t�2X

s=1

s(s+ 1)

=
t(t� 1)

2(T + 3)(T + 2)

"
T+1X

s=1

s
2 +

T+1X

s=1

s

#
� 1

2

"
t�2X

s=1

s
2 +

t�2X

s=1

s

#

=
t(t� 1)

2(T + 3)(T + 2)


(T + 1)(T + 2)(2T + 3)

6
+

(T + 1)(T + 2)

2

�

� 1

2


(t� 2)(t� 1)(2t� 3)

6
+

(t� 2)(t� 1)

2

�

=
t(t� 1)(T + 1)� t(t� 1)(t� 2)

6
=

t(t� 1)(T + 3� t)

6
.

Clearly,
T+2X

s=2

H(0, s) =
T+2X

s=2

H(1, s) = 0.

Now we wish to maximize
T+2X

s=2

H(t, s) for t 2 NT+3
2 . Denote by

g(t) =
t(t� 1)(T + 3� t)

6
, t 2 NT+3

2 .

The first forward difference of g with respect to t is given by
�
�g
�
(t) =

t (2T � 3t+ 5)

6
.

In this expression, the term t/6 is positive for all t 2 NT+3
2 . The equation 2T � 3t+ 5 = 0 has the

solution t = 2T+5
3 , so we consider t = b 2T+5

3 c 2 NT+3
2 . If t  b 2T+5

3 c, the difference 2T � 3t+ 5 is

positive, and thus g is increasing. If t > b 2T+5
3 c, the quantity 2T � 3t+ 5 is negative, and thus g

is decreasing. Hence, the maximum value of g occurs at t = b 2T+5
3 c. We observe that, for n 2 N1,

�
2T + 5

3

⌫
=

8
>>>><

>>>>:

2n+ 1, if T = 3n,

2n+ 1, if T = 3n� 1,

2n, if T = 3n� 2.

Therefore,

max
t2NT+3

0

T+2X

s=2

H(t, s) = max
t2NT+3

2

g(t) = g

✓�
2T + 5

3

⌫◆
= ⇤. (2.15)
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Consider

T+2X

s=2

H(⌘, s) =
t�1X

s=2


⌘(⌘ � 1)(T + 3� s)(T + 4� s)

2(T + 3)(T + 2)
� (⌘ � s)(⌘ � s+ 1)

2

�

+
T+2X

s=t


⌘(⌘ � 1)(T + 3� s)(T + 4� s)

2(T + 3)(T + 2)

�

=
T+2X

s=2


⌘(⌘ � 1)(T + 3� s)(T + 4� s)

2(T + 3)(T + 2)

�
�

t�1X

s=2


(⌘ � s)(⌘ � s+ 1)

2

�

=
⌘(⌘ � 1)

2(T + 3)(T + 2)

T+1X

s=1

s(s+ 1)� 1

2

t�2X

s=1

(⌘ � s)(⌘ � s� 1)

=
⌘(⌘ � 1)

2(T + 3)(T + 2)

"
T+1X

s=1

s
2 +

T+1X

s=1

s

#
� 1

2

"
⌘(⌘ � 1)

t�2X

s=1

1� (2⌘ � 1)
t�2X

s=1

s+
t�2X

s=1

s
2

#

=
⌘(⌘ � 1)

2(T + 3)(T + 2)


(T + 1)(T + 2)(2T + 3)

6
+

(T + 1)(T + 2)

2

�

� 1

2


⌘(⌘ � 1)(t� 2)� (2⌘ � 1)

(t� 2)(t� 1)

2
+

(t� 2)(t� 1)(2t� 3)

6

�

=
⌘(⌘ � 1)(T � 3t+ 7) + (3⌘ � t)(t� 1)(t� 2)

6
.

Now we wish to maximize
T+2X

s=2

H(⌘, s) for t 2 NT+3
0 . Denote by

h(t) =
⌘(⌘ � 1)(T � 3t+ 7) + (3⌘ � t)(t� 1)(t� 2)

6
, t 2 NT+3

0 .

The first forward difference of h with respect to t is given by

�
�h
�
(t) = � t

2 � (2⌘ + 1)t+ ⌘(⌘ + 1)

2
.

We observe that

�
�h
�
(t)

8
>>>>>>><

>>>>>>>:

< 0, for t 2 N⌘�1
0 ,

= 0, for t = ⌘,

= 0, for t = ⌘ + 1,

< 0, for t 2 NT+3
⌘+2 ,

implying that

max
t2NT+3

0

h(t) = h(0) =
⌘(⌘ � 1)(T + 7)

6
+ ⌘.

That is,

max
t2NT+3

0

T+2X

s=2

H(⌘, s) =
⌘(⌘ � 1)(T + 7)

6
+ ⌘.
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Now, consider

T+2X

s=2

|G(t, s)| =
T+2X

s=2

����H(t, s) +
kt(t� 1)

(T + 2)(T + 3)� k⌘(⌘ � 1)
H(⌘, s)

����


T+2X

s=2

|H(t, s)|+
����

k

(T + 2)(T + 3)� k⌘(⌘ � 1)

���� t(t� 1)
T+2X

s=2

|H(⌘, s)|

=
T+2X

s=2

H(t, s) +

����
k

(T + 2)(T + 3)� k⌘(⌘ � 1)

���� t(t� 1)
T+2X

s=2

H(⌘, s)

 ⇤+

����
k

(T + 2)(T + 3)� k⌘(⌘ � 1)

���� (T + 2)(T + 3)


⌘(⌘ � 1)(T + 7)

6
+ ⌘

�

= �.

The proof is complete.

Remark 2.5. From the proof of Lemma 2.4 we see that (2.15) implies that the bound ⇤ on

T+2X

s=2

H(t, s), t 2 N
T+3
0

is sharp therein. If we compare this sharp bound with the sharp bound for the integral of the

corresponding Green’s function in the continuous case of (T +3)3/81 in [4] then we see the bounds

between the discrete and continuous cases are different. This is partly due to the differing forms of

the Green’s function for the discrete and continuous problems. However, it is possible to establish

a connection between the two theories by forming a new bound that is common to both problems

simply by choosing the larger of the two bounds. The price to pay for this unity in this situation

is that one of the bounds will no longer be sharp. Thus we see a trade-off between unification and

sharpness in this situation.

3 Application of Banach’s theorem

In this section we establish sufficient conditions on the existence of a unique solution for the

boundary value problem (1.1) using Banach’s fixed point theorem. “The field of fixed point theory

aims to establish conditions under which certain classes of problems will admit one, or more, fixed

points [21, 20]” [16, C16]. First let us recall the statement of this theorem.

Theorem 3.1 ([3]). Let (X, d) be a complete metric space and T : X ! X be a contraction

mapping, that is, there is an ↵, 0  ↵ < 1, such that

d(Tx, Ty)  ↵d(x, y),

for all x, y in X. Then T has a unique fixed point z in X, that is, Tz = z.
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Every solution of the boundary value problem (1.1) can be treated as a (T + 4)-tuple real vector.

Denote the set X = RT+4 and consider the following metrics defined on X:

d(u, v) = max
t2NT+3

0

|u(t)� v(t)| ,

�(u, v) =

 
T+3X

t=0

|u(t)� v(t)|p
! 1

p

, p > 1,

for all u, v 2 X. The pair (X, d) forms a complete metric space, and the pair (X, �) also forms a

complete metric space. Define the operator T : X ! X by

�
Tu
�
(t) =

T+2X

s=2

G(t, s)f(s, u(s)), t 2 NT+3
0 .

Note that u is a solution of the boundary value problem (1.1) if and only if u is a fixed point of T .

We apply Theorem 3.1 to show that T has a unique fixed point in X with the ideas manifested in

the following two new theorems.

Theorem 3.2. Let f 2 C
⇥
NT+3

0 ⇥ R,R
⇤
, let f(t, 0) 6= 0 for all t 2 NT+3

0 , let (T + 2)(T + 3) 6=
k⌘(⌘ � 1) and let � be defined in (2.14). If f satisfies a Lipschitz condition with respect to the

second variable on NT+3
0 ⇥ R with Lipschitz constant K, that is, there is a nonnegative constant

K, such that

|f(t, x)� f(t, y)|  K|x� y|, for all t 2 NT+3
0 and all x, y 2 R

and

K� < 1, (3.1)

then the boundary value problem (1.1) has a unique nontrivial solution.

Proof. For u, v 2 X and t 2 NT+3
0 , consider

���Tu
�
(t)�

�
Tv
�
(t)
�� =

�����

T+2X

s=2

G(t, s)f(s, u(s))�
T+2X

s=2

G(t, s)f(s, v(s))

�����


T+2X

s=2

|G(t, s)| |f(s, u(s))� f(s, v(s))|

 K

T+2X

s=2

|G(t, s)| |u(s)� v(s)|

 Kd(u, v)
T+2X

s=2

|G(t, s)|

 K�d(u, v),

implying that

d(Tu, Tv)  ↵d(u, v),
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where ↵ = K� < 1. Thus, T is a contraction mapping on X. Hence, by Theorem 3.1, our T has

a unique fixed point in X. This is equivalent to the boundary value problem (1.1) admitting a

unique nontrivial solution. The proof is complete.

The following result sharpens the inequality (3.1) in Theorem 3.2 through the strategic use of a

different metric.

Theorem 3.3. Let the conditions of Theorem 3.2 hold, with the assumption (3.1) removed. If

there are constants p > 1 and q > 1 such that 1/p+ 1/q = 1 and

K

0

@
T+3X

t=0

 
T+2X

s=2

|G(t, s)|q
! p

q

1

A

1
p

< 1, (3.2)

then the boundary value problem (1.1) has a unique nontrivial solution.

Proof. We apply Theorem 3.1 to show that T has a unique fixed point in X where X is defined in

the proof of Theorem 3.2 but is now coupled with the metric

�(u, v) :=

 
T+3X

t=0

|u(t)� v(t)|p
! 1

p

.

Consider

���Tu
�
(t)�

�
Tv
�
(t)
�� =

�����

T+2X

s=2

G(t, s)f(s, u(s))�
T+2X

s=2

G(t, s)f(s, v(s))

�����


T+2X

s=2

|G(t, s)| |f(s, u(s))� f(s, v(s))|

 K

T+2X

s=2

|G(t, s)| |u(s)� v(s)| . (3.3)

By Holder’s inequality, we have

T+2X

s=2

|G(t, s)| |u(s)� v(s)| 
 

T+2X

s=2

|u(s)� v(s)|p
! 1

p
 

T+2X

s=2

|G(t, s)|q
! 1

q

. (3.4)

Thus,

���Tu
�
(t)�

�
Tv
�
(t)
��  K

 
T+2X

s=2

|u(s)� v(s)|p
! 1

p
 

T+2X

s=2

|G(t, s)|q
! 1

q

(3.5)

 K

 
T+2X

s=2

|G(t, s)|q
! 1

q

�(u, v)

and so, we have

 
T+3X

t=0

���Tu
�
(t)�

�
Tv
�
(t)
��p
! 1

p

 K

0

@
T+3X

t=0

 
T+2X

s=2

|G(t, s)|q
! p

q

1

A

1
p

�(u, v),
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implying that

�(Tu, Tv)  ��(u, v),

where

� = K

0

@
T+3X

t=0

 
T+2X

s=2

|G(t, s)|q
! p

q

1

A

1
p

< 1.

Thus, the conditions of Theorem 3.1 hold. Hence, by Theorem 3.1, our T has a unique fixed

point in X. This is equivalent to the boundary value problem (1.1) furnishing a unique nontrivial

solution. The proof is complete.

For the choices p = q = 2, Theorem 3.3 takes the following form:

Theorem 3.4. Let the conditions of Theorem 3.2 hold, with the assumption (3.1) removed. If

K

 
T+3X

t=0

 
T+2X

s=2

|G(t, s)|2
!! 1

2

< 1, (3.6)

then the boundary value problem (1.1) has a unique nontrivial solution.

4 Discussion of examples

Let us discuss two examples to illustrate the nature of our new theorems and the relationship

between them.

Example 4.1. Consider the following discrete boundary value problem
8
><

>:

�
�3

u
�
(t� 2) + 1

150 cos(u(t)) = 0, t 2 N11
2 ,

u(0) =
�
�u
�
(0) = 0, u(12) = u(6).

(4.1)

We claim that this problem admits a unique solution.

Proof. Observe that (4.1) is a special case of (1.1) with T = 9, k = 1, ⌘ = 6 and f(t, u) = f(u) =

(cos(u))/150.

We show that the conditions of Theorem 3.2 are satisfied.

Since T is a multiple of 3 we have n = 3 and so ⇤ = 35. Furthermore, appropriate calculations

reveal � ⇡ 146.294 < 147.

Our f satisfies a Lipschitz condition due to the property that its derivative with respect to u is

uniformly bounded by 1/150 and we may choose this bound to be the Lipschitz constant, that is,

on R we have

|@f/@u| = |� sin(u)|/150  1/150 = K.
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Finally, we see that K� < 147/150 < 1. Thus, all of the conditions of Theorem 3.2 hold and we

conclude that the discrete boundary value problem (4.1) admits a unique solution.

Let us now discuss an example that illustrates Theorem 3.3 and its distinction from Theorem 3.2.

Example 4.2. Consider the following discrete boundary value problem
8
><

>:

�
�3

u
�
(t� 2) + 1

54 tan
�1(u(t)) + t

2 + 1 = 0, t 2 N11
2 ,

u(0) =
�
�u
�
(0) = 0, u(12) = u(6).

(4.2)

We claim that this problem admits a unique solution.

Proof. Observe that (4.2) is a special case of (1.1) with T = 9, k = 1, ⌘ = 6 and f(t, u) =

(tan�1(u))/54 + t
2 + 1.

We show that the conditions of Theorem 3.3 are satisfied with p = 2 = q, that is, Theorem 3.4 will

hold.

Appropriate calculations using Maple reveal
 

T+3X

t=0

 
T+2X

s=2

|G(t, s)|2
!! 1

2

⇡ 52.3839 < 53.

Our f satisfies a Lipschitz condition due to the property that its derivative with respect to u is

uniformly bounded by 1/54 and we may choose this bound to be the Lipschitz constant, that is,

on R we have

|@f/@u| = |1/(54(u2 + 1))|  1/54 = K.

Finally, we see that (3.6) holds since

K

 
T+3X

t=0

 
T+2X

s=2

|G(t, s)|2
!! 1

2

< 53/54 < 1.

Thus, all of the conditions of Theorem 3.3 hold with p = 2 = q (that is, Theorem 3.4 holds) and

we conclude that the discrete boundary value problem (4.2) admits a unique solution.

Remark 4.3. We note that Theorem 3.2 cannot be directly applied to the boundary value problem

(4.2) in Example 4.2. The reason is because the condition K� < 1 is not satisfied in this situation.

Thus, we observe that Theorem 3.4 is more general than Theorem 3.2.

5 Concluding remarks and further work

This paper deepened our understanding of the existence and uniqueness of solutions to discrete

boundary value problems. We showed that a larger class of problems admitted a unique solution
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and achieved this by drawing on fixed-point theory and the use of new bounds. Our results add

to the recent literature on discrete boundary value problems and difference equations [17, 18] and

move us closer to a more complete understanding of the underlying theory and application.

Although our bound on the summation of H(t, s) herein is sharp, the corresponding bound involv-

ing G(t, s) remains rough and a natural question for further work is: can this bound be sharpened?

One of the main limitations with many fixed point theorems is the very nature of their assump-

tions. Because sufficient conditions are involved, it may be the case that the conditions of these

theorems do not hold, yet the problem under consideration does actually admit a unique solution

(or solutions). Thus it is important to also look beyond these types of sufficient assumptions and

the development of new methods and altenative perspectives in mathematics are needed [21, 22]

to advance the associated existence and uniqueness theory.
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1 Introduction

The following Wirtinger type inequalities are well known
Z b

a
u2(t)dt  (b� a)2

⇡2

Z b

a
[u0 (t)]

2
dt (1.1)

provided u 2 C1 ([a, b] ,R) and u (a) = u (b) = 0 with equality holding if and only if u (t) =

K sin
h
⇡(t�a)
b�a

i
for some constant K, and, similarly, if u 2 C1 ([a, b] ,R) satisfies u (a) = 0, then

Z b

a
u2(t)dt  4 (b� a)2

⇡2

Z b

a
[u0 (t)]

2
dt. (1.2)

The equality holds in (1.2) if and only if u (t) = K sin
h
⇡(t�a)
2(b�a)

i
for some constant K.

For p > 1 put ⇡p := 2⇡
p sin

⇣
⇡
p

⌘
. In [11], J. Jaroš obtained, as a particular case of a more general

inequality, the following generalization of (1.1)
Z b

a
|u (t)|p dt  (b� a)p

(p� 1)⇡p
p

Z b

a
|u0 (t)|p dt (1.3)

provided u 2 C1 ([a, b] ,R) and u (a) = u (b) = 0, with equality if and only if u (t) = K sinp
h
⇡p(t�a)

b�a

i

for some K 2 R, where sinp is the 2⇡p-periodic generalized sine function, see [18] or [5].

If u (a) = 0 and u 2 C1 ([a, b] ,R) , then
Z b

a
|u (t)|p dt  [2 (b� a)]p

(p� 1)⇡p
p

Z b

a
|u0 (t)|p dt (1.4)

with equality iff u (t) = K sinp
h
⇡p(t�a)
2(b�a)

i
for some K 2 R.

The inequalities (1.3) and (1.4) were obtained for a = 0, b = 1 and q = p > 1 in [17] by the use of

an elementary proof.

For some related Wirtinger type integral inequalities see [1, 2, 4, 8, 9, 11, 12] and [15]-[17].

These inequalities are used in various fields of Mathematical Analysis, Approximation Theory,

Integral Operator Theory and Analytic Inequalities Theory since they provide connections between

the Lebesgue norms of a function and the corresponding Lebesgue norms of the derivative under

some natural assumptions at the endpoints.

Motivated by the above results, in this paper we establish some natural consequences of the

Wirtinger type integral inequalities for p-norms (1.3) and (1.4). Applications related to the trape-

zoid unweighted inequalities, of Grüss’ type inequalities and reverses of Jensen’s inequality are also

provided.
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2 Some applications for trapezoid inequality

We have:

Proposition 2.1. Let g 2 C1([a, b],R). Then for p > 1 we have the trapezoid inequality

�����
g (a) + g (b)

2
� 1

b� a

Z b

a
g (t) dt

�����

 b� a

2 (p� 1)1/p ⇡p

 
1

b� a

Z b

a
|g0 (t)� g0 (a+ b� t)|p dt

!1/p

. (2.1)

In particular, for p = 2, we have [7]

�����
g (a) + g (b)

2
� 1

b� a

Z b

a
g (t) dt

����� 
b� a

2⇡

 
1

b� a

Z b

a
|g0 (t)� g0 (a+ b� t)|2 dt

!1/2

. (2.2)

Proof. If g 2 C1([a, b],R), then by taking

u (t) :=
g (t) + g (a+ b� t)

2
� g (a) + g (b)

2
, t 2 [a, b]

we have u (a) = u (b) = 0 and by (1.3) we have

Z b

a

����
g (t) + g (a+ b� t)

2
� g (a) + g (b)

2

����
p

dt  (b� a)p

(p� 1) 2p⇡p
p

Z b

a
|g0 (t)� g0 (a+ b� t)|p dt, (2.3)

namely

 Z b

a

����
g (t) + g (a+ b� t)

2
� g (a) + g (b)

2

����
p

dt

!1/p

 (b� a)

2 (p� 1)1/p ⇡p

 Z b

a
|g0 (t)� g0 (a+ b� t)|p dt

!1/p

. (2.4)

By Hölder’s integral inequality we have for p, q > 1, 1
p + 1

q = 1

Z b

a

����
g (t) + g (a+ b� t)

2
� g (a) + g (b)

2

���� dt


 Z b

a
dt

!1/q  Z b

a

����
g (t) + g (a+ b� t)

2
� g (a) + g (b)

2

����
p

dt

!1/p

= (b� a)1/q
 Z b

a

����
g (t) + g (a+ b� t)

2
� g (a) + g (b)

2

����
p

dt

!1/p

= (b� a)1�1/p

 Z b

a

����
g (t) + g (a+ b� t)

2
� g (a) + g (b)

2

����
p

dt

!1/p

. (2.5)
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By making use of the properties of modulus and integral, we also have
Z b

a

����
g (t) + g (a+ b� t)

2
� g (a) + g (b)

2

���� dt �

�����

Z b

a


g (t) + g (a+ b� t)

2
� g (a) + g (b)

2

�
dt

�����

=

�����

Z b

a
g (t) dt� g (a) + g (b)

2
(b� a)

����� . (2.6)

By making use of (2.4)-(2.6) we get the desired result (2.1).

Further, we have:

Proposition 2.2. Let g 2 C1([a, b],R). Then for p > 1 we have the trapezoid inequality

�����
g (a) + g (b)

2
� 1

b� a

Z b

a
g (t) dt

�����

 b� a

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

����g
0 (t)� g (b)� g (a)

b� a

����
p

dt

!1/p

. (2.7)

In particular, for p = 2, we have [7]

�����
g (a) + g (b)

2
� 1

b� a

Z b

a
g (t) dt

����� 
b� a

⇡

 
1

b� a

Z b

a

����g
0 (t)� g (b)� g (a)

b� a

����
2

dt

!1/2

. (2.8)

Proof. If g 2 C1([a, b],R), then by taking

u (t) := g (t)� g (a) (b� t) + g (b) (t� a)

b� a
, t 2 [a, b]

we have u (a) = u (b) = 0 and by (1.3) we have
Z b

a

����g (t)�
g (a) (b� t) + g (b) (t� a)

b� a

����
p

dt  (b� a)p

(p� 1)⇡p
p

Z b

a

����g
0 (t)� g (b)� g (a)

b� a

����
p

dt, (2.9)

which gives that
 Z b

a

����g (t)�
g (a) (b� t) + g (b) (t� a)

b� a

����
p

dt

!1/p

 b� a

(p� 1)1/p ⇡p

 Z b

a

����g
0 (t)� g (b)� g (a)

b� a

����
p

dt

!1/p

. (2.10)

By Hölder’s integral inequality we have for p, q > 1, 1
p + 1

q = 1 that

Z b

a

����g (t)�
g (a) (b� t) + g (b) (t� a)

b� a

���� dt


 Z b

a
dt

!1/q  Z b

a

����g (t)�
g (a) (b� t) + g (b) (t� a)

b� a

����
p

dt

!1/p

= (b� a)1/q
 Z b

a

����g (t)�
g (a) (b� t) + g (b) (t� a)

b� a

����
p

dt

!1/p

. (2.11)
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By making use of the properties of modulus and integral, we also have

Z b

a

����g (t)�
g (a) (b� t) + g (b) (t� a)

b� a

���� dt �

�����

Z b

a


g (t)� g (a) (b� t) + g (b) (t� a)

b� a

�
dt

�����

=

�����

Z b

a
g (t) dt� g (a) + g (b)

2
(b� a)

����� . (2.12)

By making use of (2.10)-(2.12) we get the desired result (2.7).

We also have:

Proposition 2.3. Let g 2 C([a, b],R). Then for p > 1 we have the inequality

�����
b+ a

2

Z b

a
g (s) ds�

Z b

a
tg (t) dt

�����

 (b� a)2

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

�����g (t)�
1

b� a

Z b

a
g (s) ds

�����

p

dt

!1/p

. (2.13)

In particular, for p = 2, we have [7]

�����
b+ a

2

Z b

a
g (s) ds�

Z b

a
tg (t) dt

�����

 (b� a)2

⇡

2

4 1

b� a

Z b

a
g2 (t) dt�

 
1

b� a

Z b

a
g (s) ds

!2
3

5
1/2

. (2.14)

Proof. Assume that g : [a, b] ! C is continuous, then by taking

u (t) :=

Z t

a
g (s) ds� t� a

b� a

Z b

a
g (s) ds, t 2 [a, b]

we have u (a) = u (b) = 0, u 2 C1([a, b],C) and by (1.3) we get

Z b

a

�����

Z t

a
g (s) ds� t� a

b� a

Z b

a
g (s) ds

�����

p

dt  (b� a)p

(p� 1)⇡p
p

Z b

a

�����g (t)�
1

b� a

Z b

a
g (s) ds

�����

p

dt.

This is equivalent to

 Z b

a

�����

Z t

a
g (s) ds� t� a

b� a

Z b

a
g (s) ds

�����

p

dt

!1/p

 b� a

(p� 1)1/p ⇡p

 Z b

a

�����g (t)�
1

b� a

Z b

a
g (s) ds

�����

p

dt

!1/p

. (2.15)
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By Hölder’s integral inequality we also have for p, q > 1, 1
p + 1

q = 1 that

(b� a)1/q
 Z b

a

�����

Z t

a
g (s) ds� t� a

b� a

Z b

a
g (s) ds

�����

p

dt

!1/p

�
Z b

a

�����

 Z t

a
g (s) ds� t� a

b� a

Z b

a
g (s) ds

!����� dt

�

�����

Z b

a

 Z t

a
g (s) ds� t� a

b� a

Z b

a
g (s) ds

!
dt

����� . (2.16)

Observe that, integrating by parts, we have
Z b

a

 Z t

a
g (s) ds� t� a

b� a

Z b

a
g (s) ds

!
dt =

Z b

a

✓Z t

a
g (s) ds

◆
dt� b� a

2

Z b

a
g (s) ds

= b

Z b

a
g (s) ds�

Z b

a
tg (t) dt� b� a

2

Z b

a
g (s) ds

=
b+ a

2

Z b

a
g (s) ds�

Z b

a
tg (t) dt. (2.17)

By making use of (2.15)-(2.17) we get the desired result (2.13).

3 Inequalities for the Čebyšev functional

For two Lebesgue integrable functions f, g : [a, b] ! R, consider the Čebyšev functional :

C (f, g) :=
1

b� a

Z b

a
f(t)g(t)dt� 1

(b� a)2

Z b

a
f(t)dt

Z b

a
g(t)dt. (3.1)

In 1935, Grüss [10] showed that

|C (f, g)|  1

4
(M �m) (N � n) , (3.2)

provided that there exist real numbers m, M, n, N such that

m  f (t)  M and n  g (t)  N for a. e. t 2 [a, b] . (3.3)

The constant 1
4 is the best possible in (3.1) in the sense that it cannot be replaced by a smaller

quantity.

Another, however less known result, even though it was obtained by Čebyšev in 1882, [3], states

that

|C (f, g)|  1

12
(b� a)2 kf 0k1 kg0k1 , (3.4)

provided that f 0, g0 exist and are continuous on [a, b] and kf 0k1 = supt2[a,b] |f 0 (t)| . The constant
1
12 cannot be improved in the general case.
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The Čebyšev inequality (3.4) also holds if f, g : [a, b] ! R are assumed to be absolutely continuous

and f 0, g0 2 L1 [a, b] while kf 0k1 = ess supt2[a,b] |f 0 (t)| .

A mixture between Grüss’ result (3.2) and Čebyšev’s one (3.4) is the following inequality obtained

by Ostrowski in 1970, [14]:

|C (f, g)|  1

8
(b� a) (M �m) kg0k1 , (3.5)

provided that f is Lebesgue integrable and satisfies (3.3) while g is absolutely continuous and

g0 2 L1 [a, b] . The constant 1
8 is the best possible in (3.5).

The case of euclidean norms of the derivative was considered by A. Lupaş in [13] in which he

proved that

|C (f, g)|  1

⇡2
(b� a) kf 0k2 kg

0k2 , (3.6)

provided that f, g are absolutely continuous and f 0, g0 2 L2 [a, b] . The constant 1
⇡2 is the best

possible.

We have:

Theorem 3.1. If f : [a, b] ! R is continuous, p, q > 1 with
1
p + 1

q = 1 and g : [a, b] ! C is

absolutely continuous with g0 2 Lq [a, b] , then

|C (f, g)|  (b� a)1/p

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a
f (s) ds

�����

p

dt

!1/p

⇥
 Z b

a
|g0 (t)|q dt

!1/q

. (3.7)

In particular, for p = q = 2, we get

|C (f, g)|  (b� a)1/2

⇡

0

@ 1

b� a

Z b

a
f2 (t) dt�

 
1

b� a

Z b

a
f (s) ds

!2
1

A
1/2

⇥
 Z b

a
|g0 (t)|2 dt

!1/2

. (3.8)

Proof. Integrating by parts, we have

1

b� a

Z b

a

 Z x

a
f (t) dt� x� a

b� a

Z b

a
f (s) ds

!
g0 (x) dx

=
1

b� a

2

4
 Z x

a
f (t) dt� x� a

b� a

Z b

a
f (s) ds

!
g (x)

�����

b

a

�
Z b

a
g (x)

 
f (x)� 1

b� a

Z b

a
f (s) ds

!
dx

3

5

= � 1

b� a

Z b

a
f (x) g (x) dx+

1

b� a

Z b

a
f (s) ds

1

b� a

Z b

a
g (x) dx,
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which gives that

C (f, g) =
1

b� a

Z b

a

 
x� a

b� a

Z b

a
f (s) ds�

Z x

a
f (t) dt

!
g0 (x) dx. (3.9)

Using Hölder’s integral inequality for p, q > 1 with 1
p + 1

q = 1 we have

|C (f, g)| =

�����
1

b� a

Z b

a

 
x� a

b� a

Z b

a
f (s) ds�

Z x

a
f (t) dt

!
g0 (x) dx

�����

 1

b� a

Z b

a

�����
x� a

b� a

Z b

a
f (s) ds�

Z x

a
f (t) dt

����� |g0 (x)| dx

 1

b� a

 Z b

a

�����
x� a

b� a

Z b

a
f (s) ds�

Z x

a
f (t) dt

�����

p

dx

!1/p Z b

a
|g0 (x)|q dx

!1/q

=: I (3.10)

Using (2.15) we have

I  1

b� a

 Z b

a

�����

Z t

a
f (s) ds� t� a

b� a

Z b

a
f (s) ds

�����

p

dt

!1/p Z b

a
|g0 (x)|q dx

!1/q

 1

b� a

b� a

(p� 1)1/p ⇡p

 Z b

a

�����f (t)� 1

b� a

Z b

a
f (s) ds

�����

p

dt

!1/p Z b

a
|g0 (x)|q dx

!1/q

=
(b� a)1/p

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a
f (s) ds

�����

p

dt

!1/p Z b

a
|g0 (x)|q dx

!1/q

(3.11)

for p, q > 1 with 1
p + 1

q = 1, which proves (3.7).

Now, if we put p = q = 2 and take into account that

1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a
f (s) ds

�����

2

dt =
1

b� a

Z b

a
f2 (t) dt�

 
1

b� a

Z b

a
f (s) ds

!2

,

then by (3.7) we derive (3.8).

This results can be used to obtain various inequalities by taking particular examples of functions

f and g as follows.

We have the following trapezoid type inequality:

Proposition 3.2. Assume that g : [a, b] ! C has an absolutely continuous derivative with g00 2
Lq [a, b] , where p, q > 1 and

1
p + 1

q = 1. Then

�����
g (a) + g (b)

2
� 1

b� a

Z b

a
g (t) dt

����� 
(b� a)1+1/p

2 (p� 1)1/p (p+ 1)1/p ⇡p

 Z b

a
|g00 (t)|q dt

!1/q

. (3.12)

Proof. We use the following identity that can be proved integrating by parts

g (a) + g (b)

2
� 1

b� a

Z b

a
g (t) dt =

1

b� a

Z b

a

✓
t� a+ b

2

◆
g0 (t) dt = C

✓
`� a+ b

2
, g0
◆
,
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where ` (t) = t, t 2 [a, b] .

Using (3.7) we have

����C
✓
`� a+ b

2
, g0
◆����

 (b� a)1/p

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

�����t�
a+ b

2
� 1

b� a

Z b

a

✓
s� a+ b

2

◆
ds

�����

p

dt

!1/p Z b

a
|g00 (x)|q dx

!1/q

=
(b� a)1/p

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

����t�
a+ b

2

����
p

dt

!1/p Z b

a
|g00 (x)|q dx

!1/q

=
(b� a)1+1/p

2 (p� 1)1/p (p+ 1)1/p ⇡p

 Z b

a
|g00 (x)|q dx

!1/q

,

which proves the desired inequality (3.12).

Let � : [m,M ] ⇢ R ! R be a differentiable convex function on (m,M) and f : [a, b] ! [m,M ] be

absolutely continuous so that � � f, f, �0 � f, (�0 � f) f 2 L [a, b] . If f 0 2 L1 [a, b] , then we have

the Jensen’s reverse inequality [6]

0  1

b� a

Z b

a
(� � f) (t) dt� �

 
1

b� a

Z b

a
f (t) dt

!

 1

b� a

Z b

a
(�0 � f) (t) f (t) dt� 1

b� a

Z b

a
�0 � f (t) dt

1

b� a

Z b

a
f (t) dt = C (�0 � f, f) . (3.13)

We have the following reverse of Jensen’s inequality:

Proposition 3.3. Let � : [m,M ] ⇢ R ! R be a differentiable convex function on (m,M) and

f : [a, b] ! [m,M ] be absolutely continuous so that � � f, f, �0 � f, (�0 � f) f 2 L [a, b] .

(i) If f 0 2 Lq [a, b] , �0 � f 2 Lp [a, b] with p, q > 1 and
1
p + 1

q = 1, then

0  1

b� a

Z b

a
(� � f) (t) dt� �

 
1

b� a

Z b

a
f (t) dt

!

 (b� a)1/p

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

�����(�
0 � f) (t)� 1

b� a

Z b

a
(�0 � f) (s) ds

�����

p

dt

!1/p

⇥
 Z b

a
|f 0 (t)|q dt

!1/q

. (3.14)
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(ii) If � is twice differentiable and (�00 � f) f 0 2 Lq [a, b] with p, q > 1 and
1
p + 1

q = 1, then

0  1

b� a

Z b

a
(� � f) (t) dt� �

 
1

b� a

Z b

a
f (t) dt

!

 (b� a)1/p

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a
f (s) ds

�����

p

dt

!1/p

⇥
 Z b

a
|(�00 � f) (t) f 0 (t)|q dt

!1/q

. (3.15)

The proof follows by Theorem 3.1 for C (�0 � f, f) and the inequality (3.13).

We have the following mid-point type inequalities:

Corollary 3.4. Let � : [a, b] ⇢ R ! R be a differentiable convex function on (a, b) .

(i) If �0 2 Lp [a, b] with p > 1, then

0  1

b� a

Z b

a
� (t) dt� �

✓
a+ b

2

◆

 b� a

(p� 1)1/p ⇡p

 
1

b� a

Z b

a

�����
0 (t)� � (b)� � (a)

b� a

����
p

dt

!1/p

. (3.16)

(ii) If � is twice differentiable and �00 2 Lq [a, b] with p, q > 1 and
1
p + 1

q = 1, then

0  1

b� a

Z b

a
� (t) dt��

✓
a+ b

2

◆
 (b� a)1+1/p

2 (p� 1)1/p (p+ 1)1/p ⇡p

 Z b

a
|�00 (t)|q dt

!1/q

. (3.17)
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ABSTRACT

The main goal of this work is to examine the periodic dynamic

behavior of some retarded periodic partial differential equations

(PDE). Taking into consideration that the linear part realizes the

Hille-Yosida condition, we discuss the Massera’s problem to this

class of equations. Especially, we use the perturbation theory of

semi-Fredholm operators and the Chow and Hale’s fixed point the-

orem to study the relation between the boundedness and the peri-

odicity of solutions for some inhomogeneous linear retarded PDE.

An example is also given at the end of this work to show the appli-

cability of our theoretical results.

RESUMEN

El principal objetivo de este trabajo es examinar el comportamiento

dinámico periódico de algunas ecuaciones diferenciales parciales

(EDP) periódicas con retardo. Tomando en consideración que la

parte lineal cumple la condición de Hille-Yosida, discutimos el prob-

lema de Massera para esta clase de ecuaciones. Especialmente us-

amos la teoría de perturbaciones de operadores semi-Fredholm y

el teorema de punto fijo de Chow y Hale para estudiar la relación

entre el acotamiento y la periodicidad de soluciones para algunas

EDP no homogéneas lineales con retardo. Se entrega un ejemplo al

final de este trabajo para mostrar la aplicabilidad de los resultados

teóricos.
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1 Introduction

Along this work, we investigate the periodicity of solutions of the following inhomogeneous linear

retarded PDE 8
<

:

d

dt
y(t) = Ay(t) + L(yt) + h(t) for t � 0

y(t) =  (t) for � r  t  0.
(1.1)

We assume that the generator A is not necessarily dense on a Banach space E and realizes the

following Hille-Yosida condition:

(i) there exist M � 1, b! 2 R such that (b!,1) ⇢ ⇢(A) ,

(ii) the operator A satisfies for n 2 N, � > b!, the following inequality

| (�I �A)�n |  M

(�� b!)n ,

where ⇢(A) is the resolvent set of A. The history function yt : [�r, 0] ! E defined for each

✓ 2 [�r, 0] by yt(✓) = y(t+ ✓), belongs to C([�r, 0],E) the space of continuous functions equipped

with the supremum norm. L : C ! E is a linear bounded operator and h is a continuous function

from R to E.

Almost periodic and periodic solutions remain the most interesting subject in the qualitative

analysis of PDE in view of their important applications in many real phenomena and fields. Recall

that the concept of almost periodic is more general than the one of periodicity. It was introduced

by Bochner and studied by many authors. For more details on almost periodic function we refer

to [9, 16, 17, 18]. For the periodicity, there is an extensive literature related to this topic, see

for example [10, 11, 25] for more details. Moreover, the choice of a suitable fixed point theorem

is a fundamental tool to establish the periodicity of solutions for different classes of differential

equations, in fact, to find a fixed point of the well known Poincaré map is equivalent to find

the initial data of the periodic solution of the equation. After a long period of research and

development, Massera’s theorem [24] is the first result explaining the relation between the existence

of bounded and periodic solutions for periodic differential equations. In finite dimensional spaces,

several works have been developed on this subject. The authors in [4, 12] proved the periodicity of

solutions when the solutions of periodic system are just bounded and ultimately bounded by the

use of the Horn’s fixed point theorem. Especially, in infinite dimensional spaces, the authors in [8],

used the Poincaré map approach to get the periodicity of solutions for a class of retarded differential

equation, they supposed that the infinitesimal generator satisfies the Hille-Yosida condition and

generates a compact semigroup (T (t))t�0 by applying an appropriate fixed point theorem. In

[22], the authors proved the periodicity for a nonhomogeneous linear differential equation when

the linear part generates a C0-semigroup on E and they obtained the existence and uniqueness of

periodic solutions for this class of equations.
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The present work would be a continuation and extension of the work [8] for inhomogeneous linear

retarded PDE, we establish the periodicity of solution for Equation (1.1) by using the perturbation

theory of semi-Fredholm operators and without considering the compactness condition of (T (t))t�0.

To achieve this goal, we suppose that Equation (1.1) admits a bounded solution on the positive

real line and under suitable estimations on the norm of the operator L, we derive periodic solution

of Equation (1.1) from bounded ones on the positive real line by using the perturbation theory of

semi-Fredholm operators and the Chow and Hale’s fixed point theorem.

This work is treated as follows, in Section 2, we give some definitions and results about integral

solutions of Equation (1.1). Moreover, we give some definitions and properties concerning the semi-

Fredholm operators. Section 3 is devoted to prove and introduce some useful estimations on the

integral solutions of Equation (1.1). In Section 4, we discuss the problem of existence of periodic

solutions of Equation (1.1). Finally, we apply our theoretical results to an equation appearing in

physical systems.

2 Preliminary results

In this article, we assume that:

(H0) A satisfies the Hille-Yosida condition.

We consider the following definition and results.

Definition 2.1 ([1]). A continuous function y : [0,+1) ! E is said to be an integral solution of

Equation (1.1) if the following conditions hold:

(i) y : [0,+1) ! E is continuous, such that y0 =  ,

(ii)

Z t

0
y(s) ds 2 D(A) for t � 0,

(iii) y(t) =  (0) +A
Z t

0
y(s) ds+

Z t

0
(L(ys) + h(s)) ds for t � 0.

We can deduce from the continuity of the integral solution y that y(t) 2 D(A), for all t � 0.

Moreover  (0) 2 D(A). In the next we define the part A0 of the operator A in D(A) as follows

D(A0) = {y 2 D(A) : Ay 2 D(A)},

and

A0y = Ay for y 2 D(A0).

Lemma 2.2 ([2]). The operator A0 is the infinitesimal generator of a strongly continuous semi-

group denoted by (T0(t))t�0 on D(A).
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Theorem 2.3 ([1]). Under the assumption (H0). For all  2 C such that  (0) 2 D(A), Equation

(1.1) has a unique integral solution y(.) on [�r,+1). Furthermore, y(.) is given by

y(t) = T0(t) (0) + lim
�!+1

Z t

0
T0(t� s)�R(�,A) (L(ys) + h(s)) ds for t � 0.

Through this work, the integral solutions of Equation (1.1) are called plainly solutions. Let

y(., , L, h) be the solution of Equation (1.1).

We define C0 the phase space of Equation (1.1) as C0 = { 2 C :  (0) 2 D(A)}.

Let X (t) be the linear operator defined on C0 for each t � 0, by

X (t) = yt(., , 0, 0),

where yt(., , 0, 0) is the solution of the following equation

8
<

:

d

dt
y(t) = Ay(t) for t � 0,

y0 =  .

Theorem 2.4 ([1]). (X (t))t�0 is a linear strongly continuous semigroup on C0:

(i) for all t � 0, X (t) is a bounded linear operator on C0 such that X (0) = I and X (t + s) =

X (t)X (s) for all t, s � 0,

(ii) for t � 0 and ✓ 2 [�r, 0], (X (t))t�0 satisfies:

[X (t)�](✓) =

8
<

:
[X (t+ ✓)�](0), if t+ ✓ � 0,

�(t+ ✓), if t+ ✓  0.

(iii) for all  2 C0 and t � 0, X (t) is a continuous function with values in C0.

Theorem 2.5 ([1]). Under the assumption (H0). The solution Y(t) = yt(., , L, 0) of Equation

(1.1) with h = 0 can be decomposed as follows:

Y(t) = X (t) + Z(t) for t � 0,

where Z(t), is a bounded linear operator defined on C0, by

[Z(t) ](✓) =

8
><

>:
lim

�!+1

Z t+✓

0
T0(t+ ✓ � s)�R(�,A)L(ys( )) ds t+ ✓ � 0,

0 t+ ✓  0.

(2.1)

for each t � 0.

To discuss the existence of periodic solutions, we use the theory of semi-Fredholm operators. We

consider some definitions and propositions which are taken from [21].
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Definition 2.6. Let E, F be two Banach spaces. A bounded linear operator F from E to F, denoted

by F 2 L(E,F), is said to be semi-Fredholm from E to F if

(i) dimker(F ) < 1, where ker(F ) is the null space.

(ii) Im(F ) the range of F is closed in F.

We designate by �+(E,F) the set of all semi-Fredholm operators and �+(E) = �+(E,E). Now

we recall some well known theorems for the closed range operators. Let F 2 B(E,F). Then the

quotient space E/ ker(F ) is a Banach space equipped with the norm

|[x]| = inf{|x+m| : m 2 ker(F )},

where

[x] = x+ ker(F ) := {x+m : m 2 ker(F )}.

Furthermore, if dimker(F ) < 1, then there exists a closed subspace M of E such that

E = ker(F )�M .

Theorem 2.7 ([21]). Let F be a bounded linear operator in E. Then, Im(F ) is closed if and only

if there exists a constant ec such that

|[x]|  ec kFxk for all x 2 E.

Theorem 2.8 ([21]). Let F be a bounded linear operator in E such that dimker(F ) < 1. Then,

the following assertions are equivalent.

(i) F 2 �+(E).

(ii) There exists a constant ec such that

|[x]|  ec kFxk for all x 2 E.

(iii) There exists a constant b such that

k(I � P )xk  b kFxk for all x 2 E,

where P is the projection operator onto ker(F ) along M .

We present now a result for bounded perturbation of Semi-Fredholm operators.

Theorem 2.9 ([21]). Let F be an operator in �+(E,F). If S 2 L(E) satisfying

kSk <
1

2b
,

where b is the constant given in Theorem 2.8. Then,

F + S 2 �+(E,F) with dimker(F + S)  dim ker(F ).
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Now, we need to introduce some well known definitions and results about the spectral theory. Let

J be a linear bounded operator on F, we define the measure of Kuratowski of noncompactness of

the operator J as follows

|J |↵ = inf{✏ > 0 : ↵(J (B))  ✏↵(B), for every bounded set B ⇢ F},

where ↵(.) is the measure of Kuratowski of noncompactness of bounded sets B ⇢ F defined by

↵(J) = inf{✏ > 0 : B has a finite cover of ball of diameter < ✏}.

The essential radius ress(J ) is characterized by the following Nussbaum Formula introduced in

[19]:

ress(J ) = lim
n!+1

[|J n|↵]1/n.

Moreover, if J is bounded and ress(J ) < 1, then I � J 2 �+(F).

Let us define the essential growth bound of a strongly continuous semigroup S := (S(t))t�0 on a

Banach space F as

!ess(S) := lim
t!+1

1

t
log |S(t)|↵.

It is well know that

ress(S(t)) = exp (t!ess(S)) , t > 0.

3 Several estimates

Before discussing the periodicity of solution of Equation (1.1), we need some preparatory estimates.

Proposition 3.1. Suppose that |T0(t)|  M0 e!0t for t � 0. Then

kZ(t)kC  M0 e
!+

0 t(eM0|L|M t � 1) for t � 0,

where !+
0 = max{!0, 0}.

To prove the above Proposition, we need to introduce the following Lemma.

Lemma 3.2. Let |T0(t)|  M0e!0t for t � 0. Then, the solution of Equation (1.1) in the case

where h = 0 is estimated as

|Y(t)|  M0 e
(!+

0 +M0|L|M)t.

Proof. For t � 0, ✓ 2 [�r, 0], one has

kY(t) kC = sup
✓2[�r,0]

|y(t+ ✓, )| = sup
⇠2[t�r,t]

|y(⇠, )|.
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Then for t � r,

sup
⇠2[t�r,t]

|y(⇠, )|  sup
⇠2[t�r,t]

|T0(⇠) (0)|+ sup
⇠2[t�r,t]

����� lim
�!+1

�

Z ⇠

0
T0(⇠ � s)R(�,A)L(Y(s) ) ds

�����

 M0e
!+

0 tk kC +M0|L|M
✓Z t

0
e!

+
0 (t�s) kY(s) kC ds

◆
.

For t < r,

sup
⇠2[t�r,t]

|y(⇠, )| = max

(
sup

⇠2[t�r,0]
|y(⇠, )|; sup

⇠2[0,t]
|y(⇠, )|

)

 max

(
k kC ; sup

⇠2[0,t]
|y(⇠, )|

)
,

and

sup
⇠2[0,t]

|y(⇠, )|  M0e
!+

0 tk kC +M0|L|M
✓Z t

0
e!

+
0 (t�s) kY(s) kCds

◆
.

Finally, we obtain that

kY(t) kC  M0e
!+

0 t | |C +M0 |L|M
Z t

0
e!

+
0 (t�s) kY(s) kC ds.

Hence,

ke�!+
0 t Y(t) kC  M0 k kC +M0 |L|M

Z t

0
e�!+

0 s kY(s) kC ds.

Gronwall’s inequality implies that

ke�!+
0 t Y(t) kC  M0 e

M0 |L|M t k kC ,

and then

kY(t) kC  M0 e
(!+

0 +M0 |L|M) t k kC

Proof of Proposition 3.1. Let t � 0, t+ ✓ � 0. Then

kZ(t) kC = sup
✓2[�r,0]

|(Z(t) )(✓)|

 M0|L|M
✓Z t

0
e!

+
0 (t�s)kY(s) kC ds

◆
.

From Lemma 3.2, we have

kZ(t) kC  M2
0 |L|M e!

+
0 t

✓Z t

0
eM0|L|M s ds

◆
k kC

 M0 e
!+

0 t(eM0|L|M t � 1) k kC .

This implies our inequality.

Proposition 3.3. A function � 2 ker(I �X (!)) if and only if �(0) 2 ker(I � T0(!)), furthermore

dim ker(I � X (!)) = dim ker(I � T0(!)).
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Proof. Let � 2 ker(I � X (!)). Then,

X (!)� = � and (X (!)�)(✓) = �(✓) for ✓ 2 [�r, 0].

Since

(X (!)�)(0) = T0(!)�(0),

then

�(0) = T0(!)�(0),

and hence

�(0) 2 ker(I � T0(!)).

Conversely, let x 2 ker(I � T0(!)) and �n(✓) = T0(n! + ✓)x for n � [ r! ] + 1, where [.] denotes

the integer part. Then,

T0(t+ !)x = T0(t)T0(!)x = T0(t)x for t � 0,

and �n(✓) is independent of the integer n and then

�n(✓) = T0(! + ✓)x = �(✓) and �(0) = x.

If ! + ✓ � 0, then

(X (!)�)(✓) = T0(! + ✓)�(0) = T0(! + ✓)x = �(✓).

If ! + ✓  0, then

(X (!)�)(✓) = �(! + ✓) = �n(! + ✓)

= T0(✓ + ! + n!)x = T0(n! + ✓)x

= �n(✓) = �(✓),

hence,

X (!)� = �,

which implies that � 2 ker(I � X (!)). Moreover, ker(I � T0(!)) is mapped bijectively onto the

space ker(I � X (!)). Therefore,

dim ker(I � X (!)) = dim ker(I � T0(!)).

Let us define the constant m! by

m! = sup
0t!

|T0(t)|.

As it is shown in [22], the proof is omitted here, if I � T0(!) is semi-Fredholm on D(A), then, the

operator defined by

SM := I � T0(!) : M ! Im(I � T0(!)),
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is bijective, such that M is a subset of E and D(A) is decomposed as

D(A) = ker(I � T0(!))�M.

Let S�1
M be the inverse operator of SM and let k 2 N⇤ such that

(k � 1)! < r  k!.

We set

Ik = [�r,�(k � 1)!) and Ip = [�p!,�(p� 1)!) for p = 1, 2, . . . , k � 1 with k � 2.

Let G be a linear operator defined from D(G) to C0 by

(G�)(✓) =
p�1X

j=0

�(✓ + j!) + T0(✓ + p!)S�1
M �(0) for ✓ 2 Ip,

with

D(G) = {� 2 C0 : �(0) 2 Im(I � T0(!))}.

Clearly, for ✓ 2 Ip, p = 1, 2, . . . , k,

kG�kC = sup
✓2[�r,0]

|(G�)(✓)| 
p�1X

j=0

k�kC + sup
s2[0,!]

|T0(s)||S�1
M ||�(0)|.

Then

kG�kC 
�
k +m!|S�1

M |
�
k�kC . (3.1)

Consequently, we have the following Theorem.

Theorem 3.4. I � T0(!) is semi-Fredholm on D(A) if and only if I �X (!) is semi-Fredholm on

C0 .

To prove Theorem 3.4, we need the following Lemma

Lemma 3.5 ([14]).

Im(I � X (!)) = D(G).

Proof of Theorem 3.4. Suppose that Im(I � T0(!)) is closed, let �n 2 D(G) such that �n ! � as

n ! 1. Then

�n(0) 2 Im(I � T0(!)) and �n(0) ! �(0) 2 Im(I � T0(!)),

which implies that � 2 D(G) and D(G) is closed. Lemma 3.5 implies that Im(I �X (!)) is closed.

Now, we suppose that Im(I � X (!)) is closed and xn 2 Im(I � T0(!)) such that xn ! x as

n ! 1. Let �n,� 2 C0 be such that �n(✓) = xn and �(✓) = x. It is clear that �n ! � as

n ! 1 and by Lemma 3.5 we have that (�n) 2 Im(I � X (!)). Then � 2 Im(I � X (!)) and

�(0) = x 2 Im(I � T0(!)). Consequently, Im(I � T0(!)) is closed. Therefore, by the use of

Proposition 3.3 we obtain the desired result.
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In the nondensely defined case, we can prove the following result as in [22], the proof is omitted

here.

Theorem 3.6. Suppose that I�T0(!) is semi-Fredholm on D(A) such that dimker(I�T0(!)) = n.

If

|Z(!)| < 1

2ec (1 +
p
n)

.

Then,

I � Y(!) 2 �+(C0) and dimker(I � Y(!))  n.

Proposition 3.7. Suppose that I � T0(!) is semi-Fredholm on D(A). If |L| satisfies

|L| <
log

 
e�!+

0 !

2M0ec (1 +
p
n)

+ 1

!

M0M!
. (3.2)

Then,

I � Y(!) 2 �+(C0) and dimker(I � Y(!))  n.

Proof. By the inequality (3.2), it follows that

M0 e
!+

0 !(eM0M |L|! � 1) <
1

2ec (1 +
p
n)

,

and by Proposition 3.1, one has

|Z(!)| < 1

2ec (1 +
p
n)

.

Theorem 3.6 gives that

I � Y(!) 2 �+(C0) and dimker(I � Y(!))  n.

4 Periodic solutions for Equation (1.1)

To discuss the existence of periodic solutions of Equation (1.1), we introduce the following fixed

point Theorem for a linear affine map T defined from E to E by

Tu = Tu+ v for u 2 E,

where T 2 B(E) and v 2 E is fixed. Let FT be the set of all fixed points of the map T .

Theorem 4.1 ([5]). Let T be a linear affine map on a Banach space E such that the range Im(I�T )

is closed. If there is an u0 2 E such that {T ku0, k 2 N} is bounded in E, then FT 6= ?.

If there exists some v 2 FT , then

FT = v + ker(I � T ).
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dimFT is defined as

dimFT = dimker(I � T ).

If I � T 2 �+(X). Then, Theorem 4.1 is refined as follows

Theorem 4.2 ([22]). Let T be a linear affine map on a Banach space E. If I � T 2 �+(E) and if

there exists an u0 2 E such that {T ku0, k 2 N} is bounded, then FT 6= ? and dim FT is finite.

Through the rest of this work, we suppose that

(H1) h is an !-periodic function.

Furthermore, by property (R) we mean the following equivalence:

Equation (1.1) has an !�periodic solution if and only if it has a bounded one on the positive real

line. Then, we have the following result.

Theorem 4.3. Under assumptions (H0) and (H1). If I � T0(!) is semi-Fredholm on D(A) and

if the operator L satisfies the following estimate

|L| <
log

 
e�!+

0 !

2M0ec (1 +
p
n)

+ 1

!

M0M!
,

where ec and n are the constants given in Theorem 3.6. Then, Equation (1.1) satisfies the property

(R).

Proof. Let y(., , h) be the solution of Equation (1.1). We introduce the Poincaré map P defined

from C0 to C0 as follows

P!( ) = y!(., , h),

Then,

P! = y!(., , 0) + y!(., 0, h),

and hence P! is an affine map such that

P! = P + ',

with

P = y!(., , 0) and ' = y!(., 0, h).

According to the second section, P is decomposed as

P = X (!) + Z(!).

Moreover, Proposition 3.7 gives that

I � P 2 �+(C0).
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Now, let y(., , h) denote the bounded solution of Equation (1.1) on R+. Thus, for each n 2 N, we

have

Pn
! = yn!(., , h),

and then (Pn
! )n�0 is a bounded sequence in C0. All conditions of Theorem 4.2 are satisfied and

then FP! 6= ?, which yields an !-periodic solution of Equation (1.1).

Corollary 4.4. Under assumptions (H0) and (H1). If I � T0(!) is semi-Fredholm in D(A) and

if |L| satisfies the following inequality

|L| <
log

 
e�!+

0 !

2M0

�
k +m!|S�1

M |
�
(1 +

p
n)

+ 1

!

M0M!
.

Then, Equation (1.1) satisfies the property (R).

To establish the proof, we need the following Lemma.

Lemma 4.5 ([14]). Suppose that I � T0(!) is semi-Fredholm on D(A). If there exists a constant

ec > 0 such that

kG kC  eck kC for all  2 D(G).

Then,

|[']|  eck(I � X (!))'kC for all ' 2 C0.

Proof of Corollary 4.4: Since,

|L| <
log

 
e�!+

0 !

2M0

�
k +m!|S�1

M |
�
(1 +

p
n)

+ 1

!

M0M!
.

it follows that,

(k +m!|S�1
M |)(eM0M!|L| � 1) <

e�!+
0 !

2M0 (1 +
p
n)

.

Lemma 4.5 and estimation (3.1) implies that

ec  k +m!|S�1
M |,

and then

ec(eM0M!|L| � 1) <
e�!+

0 !

2M0 (1 +
p
n)

.

Finally

|L| <
log

 
e�!+

0 !

2M0ec (1 +
p
n)

+ 1

!

M0M!
.

Now, Theorem 4.3 shows that Equation (1.1) satisfies the property (R).
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In the particular case where the semigroup (T0(t))t�0 is exponentially stable, we have the following

Theorem.

Theorem 4.6. Under assumptions (H0) and (H1). If the semigroup (T0(t))t�0 is exponentially

stable and if the operator L satisfies the following inequality

|L| <
log

 
1

2M0

�
k +m!|S�1

M |
� + 1

!

M0M!
.

Then, Equation (1.1) satisfies the property (R).

Proof. From the exponential stability of (T0(t))t�0, we have

!ess(T0) = lim
t!+1

1

t
log |T0(t)|↵  lim

t!+1

1

t
log |T0(t)| = �!0 < 0.

Consequently,

ress(T0(!)) = exp (!!ess(T0)) < 1.

Which implies that Im(I � T0(!)) is closed. On the other hand, one has

|T0(!)n| = |T0(n!)|  M0e
�!0n!

and

|T0(n!)|
1
n  M

1
n
0 e�!0!,

which implies that the spectral radius is estimated as

r(T0(!)) = lim
n!+1

|T0(!)n|
1
n  e�!0! lim

n!+1
M

1
n
0 < lim

n!+1
M

1
n
0 < 1.

Consequently

1 /2 �(T0(!)) and n = dimker(I � T0(!)) = 0.

All conditions of Corollary 4.4 are satisfied with n = 0. Then, Equation (1.1) satisfies the property

(R).

5 Application

In order to apply our theoretical results, we consider the following delayed partial differential

equation:
8
><

>:

@

@t
y(t, ⇣) =

@2

@⇣2
y(t, ⇣)� ay(t, ⇣) + by(t� r, ⇣) + g(t, ⇣) for t 2 R+ and ⇣ 2 R,

y(✓, ⇣) =  0(✓, ⇣) for ✓ 2 [�r, 0] and ⇣ 2 R,
(5.1)

where a and b are positive constants, g : R ⇥ R ! R and � : [�r, 0] ⇥ R ! R are continuous

functions where �(✓, ⇣) has a finite limit at ±1.
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Note that Equation (5.1) can be written in the form of Equation (1.1). In fact: we set R :=

[�1,+1] and we say that z 2 C
k(R) if z 2 C

k(R) and all derivatives of z up to the order k have

finite limits at ±1. Then, the space of continuous functions on R, denoted by E = C(R), endowed

with the norm

kzk1 = sup
�1<⇣<+1

|z(⇣)|

becomes a Banach space. we consider the linear operator � defined from D(�) ⇢ E to E by
8
><

>:

D(�) =

⇢
z 2 C

2
�
R
�
: lim
⇣!±1

z(⇣) = 0

�
,

�z = z00.

Then, we have

Lemma 5.1 ([7]).

(0,+1) ⇢ ⇢(�)

and for each � > 0 ���(�I ��)�1
��� 

1

�
.

Clearly

D(�) =

⇢
z 2 C

�
R
�
: lim
⇣!±1

z(⇣) = 0

�
.

We write the part �0 of � in D(�) as
8
><

>:

D(�0) =

⇢
z 2 C

2
�
R
�
: lim
⇣!±1

z(⇣) = lim
⇣!±1

z00(⇣) = 0

�
,

�0z = z00.

Lemma 5.2 ([7]). �0 is the infinitesimal generator of a strongly continuous semigroup (T�0(t))t�0

on D(�). Furthermore,

|T�0(t)|  1 for t � 0.

Let A : D(A) ⇢ E ! E defined by:
8
>>><

>>>:

D(A) =

⇢
z 2 C

2
�
R
�
: lim
⇣!±1

z(⇣) = 0

�
,

Az = z00 � az.

By Lemma 5.1, it is clear that

Lemma 5.3.

(�a,+1) ⇢ ⇢(A)

and for each � > �a ���(�I �A)�1
��� 

1

�+ a
.
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Lemma 5.3 guarantees that the assumption (H0) is satisfied with b! = �a and M = 1. Moreover,

D(A) =

⇢
z 2 C

�
R
�
: lim
⇣!±1

z(⇣) = 0

�
 E.

Moreover, we write the part A0 of the linear operator A in D(A) as:
8
><

>:

D(A0) =

⇢
z 2 C

2
�
R
�
: lim
⇣!±1

z(⇣) = 0 = lim
⇣!±1

z00(⇣) = 0

�
,

A0z = z00 � az.

Lemma 5.4. A0 is the infinitesimal generator of an exponentially stable continuous semigroup

(T0(t))t�0 on D(A). Moreover, for t � 0, we have

|T0(t)|  e�at.

Consider the following notations:
8
<

:
y(t)(⇣) = y(t, ⇣) for t 2 R+, ⇣ 2 R,
 (✓)(⇣) =  0(✓, ⇣) for ✓ 2 [�r, 0], ⇣ 2 R,

and define the function L : C ! E as follows

L(�)(⇣) = b�(�r)(⇣) for ⇣ 2 R and � 2 C.

h : R �! E is defined by

h(t)(⇣) = g(t, ⇣) for t 2 R and ⇣ 2 R.

Clearly, L is a linear bounded operator from C to E. Then, Equation (5.1) can be written in E as

follows
8
<

:

d

dt
y(t) = Ay(t) + L(yt) + h(t) for t � 0,

y0 =  2 C.
(5.2)

We suppose that lim
⇣!±1

 0(0, ⇣) = 0, then Equation (5.2) has a unique integral solution y on

[�r,+1).

To get the periodicity of solutions of Equation (5.2), we suppose that

(H2) b < a.

Let ⇢ = 1 +
|h|1
a� b

where |h|1 = sup
0t!

|h(t)|. Then, we have

Lemma 5.5. Under assumption (H2). For every  2 C such that k kC < ⇢, the solution of

Equation (5.2) is bounded by ⇢ on R+
.
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Proof. We proceed by contradiction. Let

t⇤ = inf{t > 0 : |y(t, )| > ⇢}.

From the continuity of y, one has

|y(t⇤, )| = ⇢,

and there is ↵ > 0, with

|y(t, )| > ⇢ for each t 2 (t⇤, t⇤ + ↵).

Applying the variation-of-constants formula for Equation (5.2) with the initial value  ,

y(t) = T0(t) (0) + lim
�!+1

�

Z t

0
T0(t� s)R(�,A) (L(ys) + h(s)) ds.

Then, for t � 0

|y(t⇤, )|  |T0(t⇤)| | (0)|+
Z t⇤

0
|T0(t⇤ � s)| (|L(ys)|+ |h(s)|) ds.

Since for 0 < s < t⇤, it follows that �r  s� r  t⇤ � r < t⇤ and then

|L(ys)| = b|y(s� r)|  b ⇢,

hence

|y(t⇤, )|  ⇢e�at⇤ + (b ⇢+ |h|1)

Z t⇤

0
e�a(t⇤�s) ds

 ⇢e�at⇤ +
(1� e�at⇤)

a
(b ⇢+ |h|1) .

Consequently,

|y(t⇤, )|  ⇢e�at⇤ + (b⇢+ (a� b)(⇢� 1))
(1� e�at⇤)

a

 ⇢e�at⇤ +

✓
⇢� 1 +

b

a

◆
(1� e�at⇤)

 ⇢e�at⇤ + ⇢(1� e�at⇤)

 ⇢,

which contradicts the definition of t⇤, and we deduce that

|y(t, )|  ⇢ for t � 0.

To discuss the periodicity of solutions of Equation (5.2), we assume that:

(H3) h is an !-periodic function in t.

Theorem 5.6. Suppose that (H2) and (H3) hold true. If

|L| < !�1 log

✓
(1� e�a!)(1 + 2k) + 2

2 + 2k(1� e�a!)

◆
,

then, Equation (5.2) has an !-periodic solution.
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Proof. Let m! be the constant defined by

m! = sup
0t!

|T0(t)|.

Then

m!  sup
0t!

e�at = 1.

Moreover, since |T0(!)| < 1, one has

|S�1
M | = |(I � T0(!))�1|  1

I � |T0(!)|

 1

1� e�a!
.

Thus,

k +m!|S�1
M |  k +

1

1� e�a!
,

and

|L| < !�1 log

✓
(1� e�a!)(1 + 2k) + 2

2 + 2k(1� e�a!)

◆

< !�1 log

 
1

2
�
k +m!|S�1

M |
� + 1

!
.

All condition of Theorem 4.6 are satisfied. Then, Lemma 5.5 implies that Equation (5.2) has an

!�periodic solution.
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ABSTRACT

The purpose of this article is to introduce an extension of
Exton’s hypergeometric function K16 by using the extended
beta function given by Özergin et al. [11]. Some integral
representations, generating functions, recurrence relations,
transformation formulas, derivative formula and summation
formulas are obtained for this extended function. Some spe-
cial cases of the main results of this paper are also considered.

RESUMEN

El propósito de este artículo es introducir una extensión de
la función hipergeométrica de Exton K16 usando la función
beta extendida dada por Özergin et al. [11]. Se obtienen
algunas representaciones integrales, funciones generatrices,
relaciones de recurrencia, fórmulas de transformación, fór-
mulas de derivadas y fórmulas de sumación para esta función
extendida. Se consideran también algunos casos especiales
de los resultados principales de este artículo.
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1 Introduction

In recent years, some extensions of beta function and Gauss hypergeometric function have been

considered by several authors (see [3, 5, 6, 11]). The following extended beta function and extended

Gauss hypergeometric function are introduced by Özergin et al. [11]:

B(↵,�)
p (x, y) =

Z 1

0
tx�1(1� t)y�1

1F1

✓
↵;�;� p

t(1� t)

◆
dt, (1.1)

(<(↵) > 0, <(�) > 0, <(p) � 0, <(x) > 0, <(y) > 0)

and

F (↵,�)
p (a, b; c; z) =

1X

n=0

(a)n
B(↵,�)

p (b+ n, c� b)

B(b, c� b)

zn

n!
, (1.2)

(<(c) > <(b) > 0, |z| < 1).

They [11] presented the following integral representation:

F (↵,�)
p (a, b; c; z) =

1

B(b, c� b)

Z 1

0
tb�1(1� t)c�b�1(1� zt)�a

1F1

✓
↵;�;� p

t(1� t)

◆
dt, (1.3)

<(p) > 0; p = 0 and |arg(1� z)| < ⇡; <(c) > <(b) > 0.

Clearly, we have

B(↵,�)
0 (x, y) = B(x, y)

and

F (↵,�)
0 (a, b; c; z) = 2F1(a, b; c; z),

where B(x, y) and 2F1(z, b; c; z) are the classical beta function and Gauss hypergeometric function

defined by (see [13])

B(x, y) =

Z 1

0
tx�1(1� t)y�1dt, <(x) > 0, <(y) > 0 (1.4)

and

2F1(a, b; c; z) =
1X

n=0

(a)n(b)n
(c)n

zn

n!
, c 6= 0,�1,�2, . . . , (1.5)

where (�)n (n 2 N0 = N [ {0}) denotes the Pochhammer’s symbol defined by [13]

(�)n =

8
><

>:

1, n = 0

�(�+ 1)(�+ 2) . . . (�+ n� 1), n 2 N.
(1.6)

Many authors have considered certain interesting extensions of some hypergeometric functions of

two and three variables (see [1, 2, 8, 10]). By using the extended beta function in (1.1), Liu [8]

defined the extended Appell’s function F1 as follows:

F (↵,�)
1,p (a, b, c; d;x, y) =

1X

m,n=0

B(↵,�)
p (a+m+ n, d� a)(b)m(c)n

B(a, d� a)

xm

m!

yn

n!
(1.7)
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and obtained the following integral representation:

F (↵,�)
1,p (a, b, c; d;x, y) =

1

B(a, d� a)

⇥
Z 1

0
ta�1(1� t)d�a�1(1� xt)�b(1� yt)�c

1F1

✓
↵;�;� p

t(1� t)

◆
dt. (1.8)

Observe that

F (↵,�)
1,0 (a, b, c; d;x, y) = F1(a, b, c; d;x, y),

where F1(a, b, c; d;x, y) is Appell’s hypergeometric function [13]

F1(a, b, c; d;x, y) =
1X

m,n=0

(a)m+n(b)m(c)n
(d)m+n

xm

m!

yn

n!
. (1.9)

The Exton’s hypergeometric function K16 is defined by [7] as follows:

K16(a1, a2, a3, a4; b;x, y, z, t) =
1X

m,n,p,q=0

(a1)m+n(a2)m+p(a3)n+q(a4)p+q xm yn zp tq

(b)m+n+p+q m! n! p! q!
. (1.10)

In this paper, we use the extended beta function given in (1.1) to define extended Exton’s hyper-

geometric function K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) as follows:

K(↵,�)
16,p (a, b, c, d; e;x, y, z, u)

=
1X

m,n,r,s=0

B(↵,�)
p (a+m+ n, e� a+ r + s)(b)m+r(c)n+s(d)r+s xmynzrus

B(a, e� a)(e� a)r+s m! n! r! s!
. (1.11)

The extended Exton’s hypergeometric function K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) given in (1.11) can be

written as follows:

K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) =

1X

r,s=0

(d)r+s(b)r(c)s
(e)r+s

F (↵,�)
1,p (a, b+ r, c+ s; e+ r+ s;x, y)

zr us

r! s!
. (1.12)

Observe that:

• The special case d = e � a of (1.11) yields the following extended Exton’s hypergeometric

function K(↵,�)
16,p :

K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u)

=
1X

m,n,r,s=0

B(↵,�)
p (a+m+ n, e� a+ r + s)(b)m+r(c)n+s xm yn zr us

B(a, e� a) m! n! r! s!
. (1.13)

• The special case p = 0 of (1.11) yields the Exton’s hypergeometric function K16

K(↵,�)
16,0 (a, b, c, d; e;x, y, z, u) = K16(a, b, c, d; e;x, y, z, u). (1.14)
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2 Integral representations

In this section, we present some integral representations for the extended Exton’s hypergeometric

function K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) in (1.11).

Theorem 2.1. The integral representations (2.1), (2.4), (2.5) of K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) hold

for <(p) > 0, <(e) > <(a) > 0; |x| + |z| < 1, |y| + |u| < 1 and the others hold for <(p) > 0,

<(e) > <(a) > <(d) > 0; |x|+ |z| < 1, |y|+ |u| < 1:

K(↵,�)
16,p (a, b, c, d; e;x, y, z, u)

=
1

B(a, e� a)

Z 1

0
ta�1(1� t)e�a�1(1� xt)�b(1� yt)�c

⇥ F1

✓
d, b, c; e� a;

z(1� t)

1� xt
,
u(1� t)

1� yt

◆
1F1

✓
↵;�;� p

t(1� t)

◆
dt (2.1)

K(↵,�)
16,p (a, b, c, d; e;x, y, z, u)

=
1

B(a, e� a)

1

B(d, e� a� d)

Z 1

0

Z 1

0
ta�1sd�1(1� t)e�a�1(1� s)e�a�d�1

⇥ (1� xt� zs(1� t))�b(1� yt� us(1� t))�c
1F1

✓
↵;�;� p

t(1� t)

◆
dtds (2.2)

K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) =

1

B(a, e� a) B(d, e� a� d)

⇥
Z 1

0

Z 1

0
ta�1sd�1(1� t)e�a�1(1� s)e�a�d�1(1� zs)�b(1� us)�c

⇥
✓
1�

✓
x� zs

1� zs

◆
t

◆�b✓
1�

✓
y � us

1� us

◆
t

◆�c

1F1

✓
↵;�;� p

t(1� t)

◆
dtds (2.3)

K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) =

2

B(a, e� a)

⇥
Z ⇡

2

0
sin2a�1 ✓ cos2e�2a�1 ✓(1� x sin2 ✓)�b(1� y sin2 ✓)�c

⇥ F1

✓
d, b, c; e� a;

z cos2 ✓

1� x sin2 ✓
,

u cos2 ✓

1� y sin2 ✓

◆
1F1

✓
↵;�;� p

sin2 ✓ cos2 ✓

◆
d✓ (2.4)

K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) =

1

B(a, e� a)

⇥
Z 1

0
⇠a�1(1 + ⇠)c+b�e(1 + (1� x)⇠)�b(1 + (1� y)⇠)�c

⇥ F1

✓
d, b, c; e� a;

z

1 + (1� x)⇠
,

u

1 + (1� y)⇠

◆
1F1

✓
↵;�;�p(1 + ⇠)2

⇠

◆
d⇠. (2.5)
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Proof of (2.1). Using (1.1) in (1.11) and interchanging the order of summation and integration,

we have

K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) =

1

B(a, e� a)

⇥
Z 1

0
ta�1(1� t)e�a�1

1X

r,s=0

(d)r+s(b)r(c)s(z(1� t))r(u(1� t))s

(e� a)r+s r! s!

⇥ 1F1

✓
↵;�;� p

t(1� t)

◆ 1X

m=0

(b+ r)m(xt)m

m!

! 1X

n=0

(c+ s)n(yt)n

n!

!
dt

=
1

B(a, e� a)

Z 1

0
ta�1(1� t)e�a�1(1� xt)�b(1� yt)�c

⇥ 1F1

✓
↵;�;� p

t(1� t)

◆( 1X

r,s=0

(d)r+s(b)r(c)s
(e� a)r+s r! s!

✓
z(1� t)

1� xt

◆r ✓u(1� t)

1� yt

◆s
)
dt,

which by applying the definition of Appell hypergeometric function F1 (1.9), we have the desired

result (2.1). The integral representation (2.2) can be obtained easily from (2.1) by using the

following integral representation of F1 [12]:

F1(a, b, c; d;x, y) =
1

B(a, d� a)

Z 1

0
ta�1(1� t)d�a�1(1� xt)�b(1� yt)�cdt. (2.6)

Also the integral representation (2.3) can be obtained directly from (2.2) if we use the following

relation:

(1� xt� z(1� t))�a = (1� z)�a

✓
1� (x� z)t

1� z

◆�a

. (2.7)

Finally, the integral representations (2.4) and (2.5) can be easily obtained by taking the transfor-

mations t = sin2 ✓ and t = ⇠
1+⇠ in (2.1), respectively. This completes the proof of theorem 2.1.

The special case d = e� a of (2.1), (2.4) and (2.5), yields the following results:

Corollary 2.2.

K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u)

=
1

B(a, e� a)

Z 1

0
ta�1(1� t)e�a�1(1� xt� z(1� t))�b(1� yt� u(1� t))�c

⇥ 1F1

✓
↵;�;� p

t(1� t)

◆
dt, (2.8)

K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u) =

2

B(a, e� a)

⇥
Z ⇡

2

0
sin2a�1 ✓ cos2e�2a�1 ✓(1� x sin2 ✓ � z cos2 ✓)�b(1� y sin2 ✓ � u cos2 ✓)�c

⇥ 1F1

✓
↵;�;� p

sin2 ✓ cos2 ✓

◆
d✓ (2.9)
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and

K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u) =

1

B(a, e� a)

⇥
Z 1

0
⇠a�1(1 + ⇠)c+b�e(1 + (1� x)⇠ � z)�b(1 + (1� y)⇠ � u)�c

⇥ 1F1

✓
↵;�;�p(1 + ⇠)2

⇠

◆
d⇠. (2.10)

3 Generating functions

In this section, we derive certain generating functions for the extended Exton’s hypergeometric

function K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) in (1.11).

Theorem 3.1. The following generating functions holds true:

1X

k=0

(b)ktk

k!
K(↵,�)

16,p (a, b+ k, c, d; e;x, y, z, u) = (1� t)�bK(↵,�)
16,p

✓
a, b, c, d; e;

x

1� t
, y,

z

1� t
, u

◆
(3.1)

1X

k=0

(c)ktk

k!
K(↵,�)

16,p (a, b, c+ k, d; e;x, y, z, u) = (1� t)�cK(↵,�)
16,p

✓
a, b, c, d; e;x,

y

1� t
, z,

u

1� t

◆
(3.2)

1X

k=0

(d)ktk

k!
K(↵,�)

16,p (a, b, c, d+k; e;x, y, z, u) = (1� t)�dK(↵,�)
16,p

✓
a, b, c, d; e;x, y,

z

1� t
,

u

1� t

◆
. (3.3)

Proof of (3.1). Using (1.11) in the L.H.S. of equation (3.1), we get

1X

k=0

(b)ktk

k!
K(↵,�)

16,p (a, b+ k, c, d; e;x, y, z, u)

=
1X

m,n,r,s,k=0

B(↵,�)
p (a+m+ n, e� a+ r + s)(b)m+r+k(c)n+s(d)r+s xmynzrustk

B(a, e� a)(e� a)r+s m! n! r! s! k!

=
1X

m,n,r,s=0

B(↵,�)
p (a+m+ n, e� a+ r + s)(b)m+r(c)n+s(d)r+s xmynzrus

B(a, e� a)(e� a)r+s m! n! r! s!

1X

k=0

(b+m+ r)ktk

k!

= (1� t)�bK(↵,�)
16,p

✓
a, b, c, d; e;

x

1� t
, y,

z

1� t
, u

◆
.

This completes the proof of (3.1). The generating functions (3.2) and (3.3) can be proved by a

similar method as in the proof of (3.1).

Setting p = 0 in (3.1), (3.2) and (3.3), we get known results [4].

Theorem 3.2. The following generating functions holds true:

1X

k=0

(�)ktk

k!
K(↵,�)

16,p (a, b, c,�k; e;x, y, z, u) = (1� t)��K(↵,�)
16,p

✓
a, b, c,�; e;x, y,

�zt

1� t
,
�ut

1� t

◆
(3.4)



CUBO
23, 3 (2021)

Extension of exton’s hypergeometric function K16 495

1X

k=0

(�)ktk

k!
K(↵,�)

16,p (a, b,�k, d; e;x, y, z, u) = (1� t)��K(↵,�)
16,p

✓
a, b,�, d; e;x,

�yt

1� t
, z,

�ut

1� t

◆
(3.5)

1X

k=0

(�)ktk

k!
K(↵,�)

16,p (a,�k, c, d; e;x, y, z, u) = (1� t)��K(↵,�)
16,p

✓
a,�, c, d; e;

�xt

1� t
, y,

�zt

1� t
, u

◆
. (3.6)

Proof of (3.4). Using (1.11) in the L.H.S. of equation (3.4) and using the result [13]

(�k)r =
(�1)rk!

(k � r)!
, 0  r  k, (3.7)

we have
1X

k=0

(�)kt
k

k!
K(↵,�)

16,p (a, b, c,�k; e;x, y, z, u)

=
1X

m,n,k=0

kX

r=0

k�rX

s=0

B(↵,�)
p (a+m+ n, e� a+ r + s)(b)m+r(c)n+s(�)k xmyn(�z)r(�u)stk

B(a, e� a)(e� a)r+s m! n! r! s! (k � r � s)!

=
1X

m,n,r,s,k=0

B(↵,�)
p (a+m+ n, e� a+ r + s)(b)m+r(c)n+s(�)k+r+s xmyn(�zt)r(�ut)stk

B(a, e� a)(e� a)r+s m! n! r! s! k!

=
1X

m,n,r,s=0

B(↵,�)
p (a+m+ n, e� a+ r + s)(b)m+r(c)n+s(�)r+s xmyn(�zt)r(�ut)s

B(a, e� a)(e� a)r+s m! n! r! s!

1X

k=0

(�+ r + s)kt
k

k!

= (1� t)��K(↵,�)
16,p

✓
a, b, c,�; e;x, y,

�zt
1� t

,
�ut
1� t

◆
.

This completes the proof of (3.4). The generating functions (3.5) and (3.6) can be proved by a

similar method as in the proof of (3.4).

4 Recurrence relations

In this section, we deduce some recurrence relations for the extended Exton’s hypergeometric

function K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) in (1.11) by using the recurrence relations of the confluent

function 1F1 and Appell’s function F1.

Theorem 4.1. The following recurrence relation holds true:

K(↵,�)
16,p (a, b, c, d+ 1; e;x, y, z, u)�K(↵,�)

16,p (a, b, c, d; e;x, y, z, u)

� bz

e
K(↵,�)

16,p (a, b+ 1, c, d+ 1; e+ 1;x, y, z, u)� cu

e
K(↵,�)

16,p (a, b, c+ 1, d+ 1; e+ 1;x, y, z, u) = 0

(4.1)

Proof. To prove Theorem 4.1, we consider the following recurrence relation of Appell’s function

F1 [14]:

F1(↵+ 1,�1,�2; �;x, y)� F1(↵,�1,�2; �;x, y)�
x�1

�
F1(↵+ 1,�1 + 1,�2; � + 1;x, y)

� y�2

�
F1(↵+ 1,�1,�2 + 1; � + 1;x, y) = 0 (4.2)
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In (4.2) replacing ↵, �1, �2, �, x, y by d, b, c, e � a, z(1�t)
1�xt , u(1�t)

1�yt respectively, multiplying

both sides by 1
B(a,e�a) t

a�1(1� t)e�a�1(1� xt)�b(1� yt)�c
1F1

⇣
↵;�;� p

t(1�t)

⌘
and integrating the

resulting equation with respect to t between the limits 0 to 1, we get

1

B(a, e� a)

Z 1

0
ta�1(1� t)e�a�1(1� xt)�b(1� yt)�c

⇥ F1

✓
d+ 1, b, c; e� a;

z(1� t)

1� xt
,
u(1� t)

1� yt

◆
1F1

✓
↵;�;� p

t(1� t)

◆
dt

� 1

B(a, e� a)

Z 1

0
ta�1(1� t)e�a�1(1� xt)�b(1� yt)�c

⇥ F1

✓
d, b, c; e� a;

z(1� t)

1� xt
,
u(1� t)

1� yt

◆
1F1

✓
↵;�;� p

t(1� t)

◆
dt

� bz

(e� a)B(a, e� a)

Z 1

0
ta�1(1� t)e�a(1� xt)�b�1(1� yt)�c

⇥ F1

✓
d+ 1, b+ 1, c; e� a+ 1;

z(1� t)

1� xt
,
u(1� t)

1� yt

◆
1F1

✓
↵;�;� p

t(1� t)

◆
dt

� cu

(e� a)B(a, e� a)

Z 1

0
ta�1(1� t)e�a(1� xt)�b(1� yt)�c�1

⇥ F1

✓
d+ 1, b, c+ 1; e� a+ 1;

z(1� t)

1� xt
,
u(1� t)

1� yt

◆
1F1

✓
↵;�;� p

t(1� t)

◆
dt = 0.

Finally, using the integral representation (2.1), we get the desired result (4.1).

Theorem 4.2. The following recurrence relations hold true:

(i)

(� � ↵)K(↵�1,�)
16,p (a, b, c, e� a; e;x, y, z, u)� ↵K(↵+1,�)

16,p (a, b, c, e� a; e;x, y, z, u)

+ (2↵� �)K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u)

+
pB(a� 1, e� a� 1)

B(a, e� a)
K(↵,�)

16,p (a� 1, b, c, e� a� 1; e� 2;x, y, z, u) = 0 (4.3)

(ii)

�(� � 1)K(↵,��1)
16,p (a, b, c, e� a; e;x, y, z, u)� �(� � 1)K(↵,�)

16,p (a, b, c, e� a; e;x, y, z, u)

� �pB(a� 1, e� a� 1)

B(a, e� a)
K(↵,�)

16,p (a� 1, b, c, e� a� 1; e� 2;x, y, z, u)

+
p(↵� �)B(a� 1, e� a� 1)

B(a, e� a)
K(↵,�+1)

16,p (a� 1, b, c, e� a� 1; e� 2;x, y, z, u) = 0 (4.4)

(iii)

↵�K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u)� ↵�K(↵+1,�)

16,p (a, b, c, e� a; e;x, y, z, u)

+
p�B(a� 1, e� a� 1)

B(a, e� a)
K(↵,�)

16,p (a� 1, b, c, e� a� 1; e� 2;x, y, z, u)

� p(� � ↵)B(a� 1, e� a� 1)

B(a, e� a)
K(↵,�+1)

16,p (a� 1, b, c, e� a� 1; e� 2;x, y, z, u) = 0 (4.5)
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(iv)

�K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u)� �K(↵�1,�)

16,p (a, b, c, e� a; e;x, y, z, u)

+
pB(a� 1, e� a� 1)

B(a, e� a)
K(↵,�+1)

16,p (a� 1, b, c, e� a� 1; e� 2;x, y, z, u) = 0 (4.6)

(v)

(� � ↵� 1)K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u) + ↵K(↵+1,�)

16,p (a, b, c, e� a; e;x, y, z, u)

� (� � 1)K(↵,��1)
16,p (a, b, c, e� a; e;x, y, z, u) = 0 (4.7)

(vi)

(↵� 1)K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u)

+
pB(a� 1, e� a� 1)

B(a, e� a)
K(↵,�)

16,p (a� 1, b, c, e� a� 1; e� 2;x, y, z, u)

+ (� � ↵)K(↵�1,�)
16,p (a, b, c, e� a; e;x, y, z, u)

� (� � 1)K(↵,��1)
16,p (a, b, c, e� a; e;x, y, z, u) = 0. (4.8)

Proof. To prove our results in Theorem 4.2, we require the following recurrence relations of the

confluent function 1F1 [9]:

(� � ↵)1F1(↵� 1;�; z)� ↵ 1F1(↵+ 1;�; z) + (2↵� � + z)1F1(↵;�; z) = 0 (4.9)

�(� � 1)1F1(↵;� � 1; z)� �(� � 1 + z)1F1(↵;�; z) + (� � ↵)z1F1(↵;� + 1; z) = 0 (4.10)

�(↵+ z)1F1(↵;�; z)� ↵ � 1F1(↵+ 1;�; z)� (� � ↵)z 1F1(↵;� + 1; z) = 0 (4.11)

� 1F1(↵;�; z)� � 1F1(↵� 1;�; z)� z 1F1(↵;� + 1; z) = 0 (4.12)

(� � ↵� 1)1F1(↵;�; z) + ↵ 1F1(↵+ 1;�; z)� (� � 1)1F1(↵;� � 1; z) = 0 (4.13)

(↵+ z � 1)1F1(↵;�; z) + (� � ↵)1F1(↵� 1;�; z)� (� � 1)1F1(↵;� � 1; z) = 0. (4.14)

Proof of (4.3). In (4.9) replacing z by � p
t(1�t) , multiplying both sides by ta�1(1� t)e�a�1(1�xt�

z(1� t))�b(1� yt� u(1� t))�c/B(a, e� a) and integrating the resulting equation with respect to
t between the limits 0 to 1, we get

� � ↵
B(a, e� a)

Z 1

0

ta�1(1� t)e�a�1(1� xt� z(1� t))�b(1� yt� u(1� t))�c
1F1

✓
↵� 1;�;� p

t(1� t)

◆
dt

� ↵
B(a, e� a)

Z 1

0

ta�1(1� t)e�a�1(1� xt� z(1� t))�b(1� yt� u(1� t))�c
1F1

✓
↵;�;� p

t(1� t)

◆
dt

+
2↵� �

B(a, e� a)

Z 1

0

ta�1(1� t)e�a�1(1� xt� z(1� t))�b(1� yt� u(1� t))�c
1F1

✓
↵;�;� p

t(1� t)

◆
dt

+
p

B(a, e� a)

Z 1

0

ta�2(1� t)e�a�2(1� xt� z(1� t))�b(1� yt� u(1� t))�c
1F1

✓
↵;�;� p

t(1� t)

◆
dt = 0

Finally, using the integral representation (2.8), we get the desired result (4.3).
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The results (4.4)-(4.8) can be proved by a similar method as in the proof of (4.3) and we use here

the recurrence relations (4.10)-(4.14).

5 Transformation, differentiation and summation formulas

In this section, we derive certain transformation, derivative and summation formulas for the ex-

tended Exton’s hypergeometric function K(↵,�)
16,p (a, b, c, d; e;x, y, z, u) in (1.11).

Theorem 5.1. The following transformation formula of K↵,�
16,p(a, b, c, d; e;x, y, z, u) holds true:

K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u) = (1� z)�b(1� u)�cF (↵,�)

1,p

✓
a, b, c; e;

x� z

1� z
,
y � u

1� u

◆
. (5.1)

Proof. Using (2.7) in (2.8), we have

K(↵,�)
16,p (a, b, c, e� a; e;x, y, z, u) =

(1� z)�b(1� u)�c

B(a, e� a)

⇥
Z 1

0

ta�1(1� t)e�a�1

✓
1�

✓
x� z
1� z

◆
t

◆�b ✓
1�

✓
y � u
1� u

◆
t

◆�c

1F1

✓
↵;�;� p

t(1� t)

◆
dt,

which by using (1.8), we get the desired result (5.1).

Setting p = 0 in (5.1), we get a known result [7]

K16(a, b, c, e� a; e;x, y, z, u) = (1� z)�b(1� u)�cF1

✓
a, b, c; e;

x� z

1� z
,
y � u

1� u

◆
. (5.2)

Theorem 5.2. The following derivative formula holds true:

dm+n+r+s

dxm dyn dzr dus

n
K(↵,�)

16,p (a, b, c, d; e;x, y, z, u)
o
=

(a)m+n(b)m+r(c)n+s(d)r+s

(e)m+n+r+s

⇥K(↵,�)
16,p (a+m+ n, b+m+ r, c+ n+ s, d+ r + s; e+m+ n+ r + s;x, y, z, u). (5.3)

Proof. Differentiating (1.11) with respect to x, y, z and u, we have
d

dx dy dz du

n
K(↵,�)

16,p (a, b, c, d; e;x, y, z, u)
o

=
1X

m=1

1X

n=1

1X

r=1

1X

s=1

Bp(a+m+ n, e� a+ r + s)(b)m+r(c)n+s(d)r+sx
m�1yn�1zr�1us�1

B(a, e� a)(e� a)r+s(m� 1)!(n� 1)!(r � 1)!(s� 1)!

setting m ! m+ 1, n ! n+ 1, r ! r + 1, s ! s+ 1 and using the following identities:

B(a, e� a) =
e

a
B(a+ 1, e� a) =

e(e+ 1)

a(a+ 1)
B(a+ 2, e� a),

(a)p+q+2 = a(a+ 1)(a+ 2)p+q,

we obtain
d

dx dy dz du

n
K(↵,�)

16,p (a, b, c, d; e;x, y, z, u)
o
=

(a)2(b)2(c)2(d)2
(e)2(e� a)2

⇥
1X

m,n,r,s=0

B(↵,�)
p (a+m+ n+ 2, e� a+ r + s+ 2)(b+ 2)m+r(c+ 2)n+s(d+ 2)r+sx

mynzrus

B(a+ 2, e� a)(e� a+ 2)r+s m! n! r! s!
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Now using

B(a+ 2, e� a) =
(e)4

(e)2(e� a)2
B(a+ 2, e� a+ 2),

we have

d

dx dy dz du

n
K(↵,�)

16,p (a, b, c, d; e;x, y, z, u)
o
=

(a)2(b)2(c)2(d)2
(e)4

⇥K(↵,�)
16,p (a+ 2, b+ 2, c+ 2, d+ 2; e+ 4;x, y, z, u).

Thus by repeatedly differentiating, we find that the result (5.3) can be derived by induction.

Theorem 5.3. The following summation formulas hold true:

K(↵,�)
16,p (a, b, c, d; e; 1, 1, 1, 1) =

�(e)�(e� a� b� c� d)

�(a)�(e� a� d)�(e� a� b� c)
B(↵,�)

p (a, e� a� b� c) (5.4)

K(↵,�)
16,p (a, b, c, d; 1 + a+ b+ d� c; 1, 1, 1,�1)

=
�(1� c)�(1 + 1

2d)�(1 + a+ b+ d� c)

�(a)�(1 + d)�(1 + b� c)�(1 + 1
2d� c)

B(↵,�)
p (a, d� 2c+ 1). (5.5)

Proof. Setting x = y = z = u = 1 in (2.1) and using the following formula:

F1(a, b, c; d; 1, 1) =
�(d)�(d� a� b� c)

�(d� a)�(d� b� c)
, (5.6)

we get

K(↵,�)
16,p (a, b, c, d; e; 1, 1, 1, 1) =

�(e)�(e� a� b� c� d)

�(a)�(e� a� d)�(e� a� b� c)

⇥
Z 1

0
ta�1(1� t)e�a�b�c�1

1F1

✓
↵;�;� p

t(1� t)

◆
dt (5.7)

Now, by using (1.1) in (5.7), we obtain the desired result (5.4). The summation formula (5.5) can

be obtained easily by putting e = 1+ a+ b+ d� c, x = y = z = 1, u = �1 in (2.1) and using the

formula

F1(a, b, c; 1 + a+ b� c; 1,�1) =
�(1� c)�(1 + 1

2a)�(1 + a+ b� c)

�(1 + a)�(1 + b� c)�(1 + 1
2a� c)

. (5.8)

This completes the proof of the theorem (5.3).

Setting p = 0 in (5.4) and (5.5), we get respectively the following summation formulas of Exton’s

hypergeometric function K16:

K16(a, b, c, d; e; 1, 1, 1, 1) =
�(e)�(e� a� b� c� d)

�(e� a� d)�(e� b� c)
(5.9)

and

K16(a, b, c, d; 1 + a+ b+ d� c; 1, 1, 1,�1) =
�(1� c)�(1 + 1

2d)�(1 + a+ b+ d� c)�(d� 2c+ 1)

�(1 + d)�(1 + b� c)�(1 + 1
2d� c)�(a+ d� 2c+ 1)

. (5.10)
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6 Conclusion

In this paper, we have introduced the extended Exton’s hypergeometric function K↵,�
16,p(a, b, c, d; e;

x, y, z, u) by using the extended beta function B↵,�
p (x, y) given by Özergin et al. [11]. For this func-

tion we have presented some integral representations, generating functions, recurrence relations,

transformation formulas, derivative formula and summation formulas. We have also established

some a known and new generating functions, transformation formulas, and summation formulas

for the classical Exton’s hypergeometric function K16(a, b, c, d; e;x, y, z, u).
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