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Département de Physique Théorique
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ABSTRACT

In this paper, we make the numerical analysis of the mild

solution which is also an entropy solution of parabolic

problem involving the p(x)−Laplacian operator with L1
−

data.

RESUMEN

En este art́ıculo, realizamos el análisis numérico de

la solución mild que también es una solución de en-

troṕıa del problema parabólico involucrando el operador

p(x)−Laplaciano con datos en L1.
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1 Introduction

We consider a bounded open domain Ω ⊂ Rd (d ≥ 2) with a Lipschitz boundary denoted by ∂Ω.

Let T > 0 and p : Ω → (1,∞) be a continuous function. In this paper, one of our main goals

is the numerical approximation of the mild solution of the following nonlinear parabolic problem

involving the p(x)−Laplacian operator






















∂u

∂t
− div(|∇u|p(x)−2∇u) = f in Q ≡ Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0 in Ω,

(1.1)

where u0 ∈ L1(Ω), f ∈ L1(Q). The assumptions on the variable exponent p(x) will be specified

later.

Partial differential equations with nonlinearities involving non-constant exponents have attracted

an increasing amount of attention on recent years. Their study is an interesting topic which raises

many mathematical difficulties (see [1, 2, 14, 16, 27, 30]). There are many results devoted to ques-

tions on existence and uniqueness of solutions to problems like (1.1), we refer for example the reader

to the bibliography [3, 4, 5, 9, 24, 29] and references therein. Many of these models have already

been analyzed for constant exponents of nonlinearity (see the references therein), but it seems to be

more realistic to assume the exponent to be variable. From numerical point of view, in the classical

evolution problem case where p(x) ≡ p, the numerical analysis was firstly considered in [7, 22].

Afterward, Jäger and Kačur [18] and Kačur [20] studied the numerical approximation. Inspired by

these works, Maitre [23] proposed a numerical scheme to approximate the mild solutions. On the

other side, for problems with variable exponent, in recent years, there are some papers devoted to

their numerical analysis (see for example [8, 10, 12, 13, 17, 19, 26]). Thus, in [13] the authors used

a quasi-Newton minimization method to approach the solution of the p(x)−Lapacian problems; in

[12], they present an inverse power method to compute the first homogeneous eigenpair. In [26],

an interior penalty discontinuous Galerkin method has been used by the authors to approximate

the minimizer of a variational problem related to the p(x)−Laplacian. Other authors use finite

elements to approximate the solution (see [10]). Nevertheless, there are scarcely papers about the

numerical analysis of nonlinear parabolic problems with variable exponent (see for example [11]).

The importance of investigating the problem (1.1) lies in their occurrence in modeling various

physical problems involving strong anisotropic phenomena related to electrorheological fluids (an

important class of non-Newtonian fluids, see [27]) which are characterized by their ability to change

the mechanical properties under the influence of the exterior electromagnetic field. Other important

applications are related to image processing, elasticity [30], the processes of filtration in complex

media, stratigraphy problems and also mathematical biology. The study of problem (1.1) involves

using of generalized Lebesgue and Sobolev spaces i.e., Lp(.) and W 1,p(.) respectively (see [15]).
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Throughout this paper we assume that the exponent p(.) appearing in (1.1) is a continuous function

p : Ω → (1,∞) such that:























∃C > 0 : |p(x)− p(y)| ≤
C

− log |x− y|
for every x, y ∈ Ω with |x− y| ≤

1

2

2d

d+ 2
< p− := minx∈Ω p(x) ≤ p+ := maxx∈Ω p(x) < ∞.

(1.2)

The first condition says that p(.) belongs to the class of log-Hölder continuous functions. These

assumptions are used to obtain several regularity results for Sobolev spaces with variable exponents;

in particular, C∞(Ω) is dense in W 1,p(.)(Ω) and W 1,p(.)
0 (Ω) = W 1,p(.)(Ω) ∩W 1,1

0 (Ω).

Our paper was inspired by the work of Maitre (see [23]) where the author studied the numerical

analysis of an elliptic-parabolic problem in the context of constant exponent setting.

The rest of this paper is organized as follows: in Section 2, we give some results for the study

of (1.1). In Section 3, we recall the notion of mild solution. In Section 4, we proceed to the

numerical study, where we show the existence and uniqueness of solution of numerical scheme for

the approximation of mild solution and the study of the convergence of this numerical scheme. We

conclude this section by numerical tests.

2 Preliminaries

We first recall in what follows some definitions and basic properties of generalized Lebesgue-Sobolev

spaces with variable exponent. We define the Lebesgue space with a variable exponent p(.) by

Lp(.)(Ω) =
{

u : Ω → R; u is measurable with ρp(.)(u) < ∞
}

,

where

ρp(.)(u) =

∫

Ω
|u(x)|p(x)dx,

is called a modular. We define a norm, the so-called Luxemburg norm, on this space by the formula

|u|p(.) = inf

{

µ > 0 : ρp(.)

(

u

µ

)

≤ 1

}

.

The space (Lp(.)(Ω), |.|p(.)) is a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then

Lp(.)(Ω) is uniformly convex, hence reflexive, and its dual space is isomorphic to Lp′(.)(Ω), where
1

p(x)
+

1

p′(x)
= 1. Finally, we have the Hölder type inequality:

∣

∣

∣

∣

∫

Ω
uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

p′−

)

|u|p(.)|v|p′(.)

for all u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).
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We define also the variable Sobolev space

W 1,p(.)(Ω) =
{

u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)
}

.

On W 1,p(.)(Ω) we may consider the following norm

‖u‖1,p(.) = |u|p(.) + |∇u|p(.).

The space (W 1,p(.)(Ω), ‖u‖1,p(.)) is a separable and reflexive Banach space. Next, we define

W 1,p(.)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(.)(Ω) under the norm

‖u‖ := |∇u|p(.).

The space (W 1,p(.)
0 (Ω), ‖u‖) is a separable and reflexive Banach space. For the interested reader,

more details about Lebesgue and Sobolev spaces with variable exponent can be found in [15] (see

also [21]).

Since Ω is bounded and p : Ω → (1,∞) is log-Hölder continuous, the Poincaré inequality holds (see

[28])

|u|p(.) ≤ C|∇u|p(.), ∀u ∈ W 1,p(.)
0 (Ω),

where C is a constant which depends on Ω and on the function p.

An important role in manipulating the generalized Lebesgue and Sobolev spaces is played by

modular ρp(.) of the space Lp(.). We have the following result (see [28]).

Lemma 2.1. If un, u ∈ Lp(.) and p+ < ∞, then the following relations hold:

(1) |u|p(.) > 1 ⇒ |u|p
−

p(.) ≤ ρp(.)(u) ≤ |u|p
+

p(.);

(2) |u|p(.) < 1 ⇒ |u|p
+

p(.) ≤ ρp(.)(u) ≤ |u|p
−

p(.);

(3) |u|p(.) < 1 (respectively = 1; > 1) ⇐⇒ ρp(.)(u) < 1 (respectively = 1; > 1);

(4) |u|p(.) → 0 (respectively → ∞) ⇐⇒ ρp(.)(u) → 0 (respectively → ∞);

(5) ρp(.)
(

u/|u|p(.)
)

= 1.

Following [4], we extend a variable exponent p : Ω → [1,+∞) to Q = [0, T ] × Ω by setting

p(t, x) := p(x) for all (t, x) ∈ Q. We also consider the generalized Lebesgue space

Lp(.)(Q) =

{

u : Q → R measurable such that

∫∫

Q

|u(x, t)|p(x) d(x, t) < ∞

}

endowed with the norm

‖u‖Lp(.) := inf

{

µ > 0 :

∫∫

Q

∣

∣

∣

∣

u(x, t)

µ

∣

∣

∣

∣

p(x)

d(x, t) < 1

}
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which shares the same properties as Lp(.)(Ω).

Now, we recall the main results for the study of (1.1).

In order to approximate the mild solution of (1.1), let us recall that Ouaro and Traoré have studied

in [25] the existence and uniqueness of weak energy and entropy solutions of the following stationary

problem associated to the problem (1.1)














u− div a(x,∇u) = f in Ω,

u = 0 on ∂Ω,

(2.1)

where Ω ⊂ Rd is a bounded domain with smooth boundary and f ∈ L1(Ω). For the vector field

a(x, ξ) : Ω × Rd → Rd, in addition to be Carathéodory, is the continuous derivative with respect

to ξ of the mapping A : Ω× Rd → Rd, i.e. a(x, ξ) = ∇ξA(x, ξ) such that:

A(x, 0) = 0 for almost every x ∈ Ω. (2.2)

There exists a positive constant C1 such that

|a(x, ξ)| ≤ C1(j(x) + |ξ|p(x)−1), (2.3)

for almost every x ∈ Ω and for every ξ ∈ Rd where j is a non-negative function in Lp′(.)(Ω), with
1

p(x)
+

1

p′(x)
= 1.

The following inequalities hold

(a(x, ξ)− a(x, η)).(ξ − η) > 0, (2.4)

for almost every x ∈ Ω and for every ξ, η ∈ Rd, with ξ 1= η and

1

C
|ξ|p(x) ≤ a(x, ξ).ξ ≤ Cp(x)A(x, ξ), (2.5)

for almost every x ∈ Ω, C > 0 and for every ξ ∈ Rd.

The exponent appearing in (2.3) and (2.5) is defined as follows.














p(.) : Ω → R is a measurable function such that

1 < p− := ess infx∈Ω p(x) ≤ p+ := ess supx∈Ω p(x) < ∞.

(2.6)

For more details, see [24, 25].

As example of models with respect to above assumptions, we can give the following.

Set A(x, ξ) =
1

p(x)
|ξ|p(x), a(x, ξ) = |ξ|p(x)−2ξ. Then, we get the p(x)−Laplace operator

div (|∇u|p(x)−2∇u).

Note that the weak solution of (2.1) is defined as follows.
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Definition 2.2. A weak solution of (2.1) is a function u ∈ W 1,1
0 (Ω) such that a(.,∇u) ∈

(

L1
loc(Ω)

)d

and
∫

Ω
a(.,∇u).∇ϕ dx +

∫

Ω
uϕ dx =

∫

Ω
fϕ dx, (2.7)

for all ϕ ∈ C∞
0 (Ω).

A weak energy solution is a weak solution such that u ∈ W 1,p(.)
0 (Ω).

Now, we recall one of main results.

Theorem 2.3. Assume that (2.2)–(2.6) hold and f ∈ L∞(Ω). Then there exists a unique weak

energy solution of (2.1).

We also recall a useful result needed in this paper (see [23]).

Lemma 2.4 ([23]). Let X be a Banach space and C a convex subset of X, containing 0. Let T̄ be

a non-expansive map on C such that T̄ (C) ⊂ C, admitting a unique fixed point x∗ in C. Let λk be

a sequence of (0, 1) verifying

lim
k→∞

λk = 1,
∏

k≥0

λk = 0,
∑

k≥0

|λk+1 − λk| < ∞.

Then the sequence (xk) generated by the iterative scheme

x0 ∈ C, xk+1 = λk+1T̄ (x
k) (2.8)

verifies limk→∞ xk − T̄ (xk) = 0. Consequently, if all subsequences of (xk) have in turn a subse-

quence converging to a point of C, then the whole sequence (xk) converges toward x∗.

Recall that a self-mapping T̄ of C is non-expansive if

‖T̄ (x)− T̄ (y)‖ ≤ ‖x− y‖ for all x, y ∈ C.

In the next section, we give the definition of mild solution.

3 Notion of mild solution

Let f ∈ L1(0, T ;L1(Ω)), u0 ∈ L1(Ω) and ε > 0 be given. We consider the time discretization of

problem (1.1) by an implicit Euler scheme



















uε
n+1 − uε

n

tn+1 − tn
− div(|∇uε

n+1|
p(x)−2∇uε

n+1) = f ε
n+1 in D′(Ω) for n = 0, . . . , N − 1,

uε
n+1 ∈ W 1,p(.)

0 (Ω) ∩ L∞(Ω);

(3.1)
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where



















































































































N ∈ N∗, 0 = t0 < t1 < · · · < tN ≤ T is a partition of [0, T ].

f ε
n ∈ L∞(Ω) for n = 1, . . . , N such that

N
∑

n=1

∫ tn

tn−1

‖f(t)− f ε
n‖L1(Ω)dt → 0 as ε → 0,

maxn=1,...,N (tn − tn−1) → 0, T − tN → 0 as ε → 0, uε
0 ∈ L∞(Ω) such that

‖u0 − uε
0‖L1(Ω) → 0 as ε → 0,

with uε the piecewise constant function defined by

uε(t) = uε
n on (tn−1, tn] with n = 1, . . . , N ; uε(0) = uε

0.

(3.2)

Definition 3.1. A mild solution of (1.1) is a function u ∈ C([0, T ];L1(Ω)) with u(0) = u0 ∈ L1(Ω)

such that, for all ε > 0, there exists (t0, t1, . . . , tN ; f ε
1 , f

ε
2 , . . . , f

ε
N ) and uε

0 verifying (3.2); and for

which there exists (uε
1, . . . , u

ε
N ) verifying (3.1) such that ‖u(t)− uε

n‖L1(Ω) ≤ ε for all t ∈ (tn−1, tn],

n = 1, . . . , N .

Remark 3.2. In this paper, for the sake of simplicity and readability, we chose to present the

constant step subdivision algorithm, i.e. that we set tn+1 − tn = h = T
N for all n = 0, . . . , N − 1.

However, the techniques developed thereafter can be adapted to a varying step subdivision without

difficulty.

Note that using the nonlinear semigroups theory [6], Ouaro and Ouédraogo have proved in [24]

the existence and uniqueness of mild solutions of the following parabolic problem























∂u

∂t
− div a(x,∇u) = f in Q ≡ Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0 in Ω,

where u0 ∈ L1(Ω) and f ∈ L1(Q). The assumptions on the vector field are the same than those

given in (2.2)–(2.5) and those on the variable exponent p(x) are the same as (2.6). Thanks to their

paper, one has the existence and uniqueness of the mild solution of problem (1.1).
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4 Numerical study

4.1 Numerical scheme

We are now interested in the numerical resolution of (3.1). Let f1, f2, . . . , fN , u0 be some functions

satisfying (3.2), we use the following iterative scheme (proposed by Maitre in [23]) to get uε
n+1

from uε
n.















Let uε,0
n+1 = uε

n ∈ L∞(Ω), solve for k = 0, 1, . . . ,

uε,k+1
n+1 − ρ div(|∇uε,k+1

n+1 |p(x)−2∇uε,k+1
n+1 ) = λku

ε,k
n+1 −

ρ

h
(λku

ε,k
n+1 − uε

n) + ρf ε
n+1,

(4.1)

where ρ > 0 is a given parameter and (λk) is a sequence of (0, 1) such that

lim
k→∞

λk = 1,
∏

k≥0

λk = 0,
∑

k≥0

|λk+1 − λk| < ∞. (4.2)

For example, we can take λk = 1−
1

k + 1
.

Remark 4.1. For the sake of simplicity, we could take ρ = h, but in this paper our idea is to

build a non-expansive map and use the Halpern algorithm to approach the solution of (3.1). In the

numerical simulation one will give examples where ρ = h.

4.2 Existence and uniqueness of solution of (4.1)

In this section, we state and prove the well-posedness of our scheme.

Definition 4.2. For any n = 0, . . . , N − 1, ε > 0 and uε
n ∈ L∞(Ω), a weak solution of (4.1) is a

sequence
(

uε,k+1
n+1

)

k≥0
such that uε,k+1

n+1 ∈ W 1,p(.)
0 (Ω) ∩ L∞(Ω) for all k = 0, 1, . . . , and

∫

Ω
uε,k+1
n+1 ϕ dx+ ρ

∫

Ω
|∇uε,k+1

n+1 |p(x)−2∇uε,k+1
n+1 .∇ϕ dx =

∫

Ω
gεn,kϕ dx, (4.3)

for all ϕ ∈ W 1,p(.)
0 (Ω), where

gε,kn := λku
ε,k
n+1 −

ρ

h
(λku

ε,k
n+1 − uε

n) + ρf ε
n+1.

Theorem 4.3. Let ε > 0. For any n = 0, . . . , N − 1 let uε,0
n+1 = uε

n ∈ L∞(Ω) and f ε
n+1 ∈ L∞(Ω).

Then, problem (4.1) admits a unique weak solution uε,k+1
n+1 ∈ W 1,p(.)

0 (Ω) for all k = 0, 1, . . .

Furthermore, for k = 0, 1, . . . , uε,k+1
n+1 ∈ L∞(Ω).

Proof. Let ε > 0 and fix n. For k = 0 we rewrite problem (4.1) as














uε,1
n+1 − ρ div(|∇uε,1

n+1|
p(x)−2∇uε,1

n+1) = gε,0n in Ω

uε,1
n+1 = 0 on ∂Ω,

(4.4)
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where

gε,0n =
[

λ0

(

1−
ρ

h

)

+ 1
]

uε
n + ρf ε

n+1.

Consider the energy functional Jρ on W 1,p(.)
0 (Ω) associated to (4.4) given by

Jρ(U) =
1

2

∫

Ω
U2dx+ ρ

∫

Ω

|∇U |p(x)

p(x)
dx −

∫

Ω
gε,0n U dx.

We will establish that Jρ(U) has a minimizer uε,1
n+1 in W 1,p(.)

0 (Ω).

Note that Jρ is well-defined and Gateaux differentiable on W 1,p(.)
0 (Ω), since W 1,p(.)

0 (Ω) ↪→ L2(Ω)

thanks to (1.2).

For ‖U‖
W

1,p(.)
0 (Ω)

≥ 1 we have from the continuous embedding of W 1,p(.)
0 (Ω) in Lp−

(Ω) and gε,0n ∈

L∞(Ω),

Jρ(U) =
1

2

∫

Ω
U2dx + ρ

∫

Ω

|∇U |p(x)

p(x)
dx−

∫

Ω
gε,0n U dx ≥

ρ

p+
‖U‖p

−

W
1,p(x)
0 (Ω)

− C‖U‖
W

1,p(x)
0 (Ω)

.

As p− > 1, then Jρ is coercive. Jρ(U) is lower bounded and furthermore weakly lower semi-

continuous; therefore, admits a global minimizer uε,1
n+1 ∈ W 1,p(.)

0 (Ω) which is a weak solution to

(4.4). The global minimizer uε,1
n+1 is also unique.

It remains to show that uε,1
n+1 ∈ L∞(Ω). To do this, let us show that ‖uε,1

n+1‖∞ ≤ ‖gε,0n ‖∞.

As uε,1
n+1 is a weak solution of (4.4), we have

∫

Ω
uε,1
n+1ϕ dx + ρ

∫

Ω
|∇uε,1

n+1|
p(x)−2∇uε,1

n+1.∇ϕ dx =

∫

Ω
gε,0n ϕ dx, (4.5)

for all ϕ ∈ W 1,p(.)
0 (Ω).

Let τ ∈ R+. Then, uε,1
n+1 − τ ∈ W 1,p(.)

0 (Ω) and
(

uε,1
n+1 − τ

)+
∈ W 1,p(.)

0 (Ω).

Note that for r ∈ R, r+ := max(r, 0) and r− := min(r, 0).

Taking
(

uε,1
n+1 − τ

)+
as a test function, it follows from (4.5) that

∫

Ω
uε,1
n+1(u

ε,1
n+1 − τ)+ dx+ ρ

∫

Ω
|∇uε,1

n+1|
p(x)−2∇uε,1

n+1.∇(uε,1
n+1 − τ)+ dx =

∫

Ω
gε,0n (uε,1

n+1 − τ)+ dx.

Setting Aτ =
{

x ∈ Ω : uε,1
n+1 ≥ τ

}

, we have

ρ

∫

Ω
|∇uε,1

n+1|
p(x)−2∇uε,1

n+1.∇(uε,1
n+1 − τ)+ dx = ρ

∫

Aτ

|∇uε,1
n+1|

p(x)−2∇uε,1
n+1.∇(uε,1

n+1 − τ) dx

= ρ

∫

Aτ

|∇uε,1
n+1|

p(x)dx ≥ 0.

Therefore,
∫

Ω
uε,1
n+1(u

ε,1
n+1 − τ)+ dx ≤

∫

Ω
gε,0n (uε,1

n+1 − τ)+ dx.
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As Ω is a bounded open domain, we have
∫

Ω
[(uε,1

n+1 − τ)+]2 dx ≤

∫

Ω
(gε,0n − τ)(uε,1

n+1 − τ)+ dx.

Taking τ = ‖gε,0n ‖∞, then gε,0n − τ ≤ 0 a.e. in Ω.

Therefore, we have (uε,1
n+1 − τ)+ = 0 a.e. in Ω for all τ = ‖gε,0n ‖∞ which is equivalent to saying

uε,1
n+1 ≤ ‖gε,0n ‖∞ a.e. in Ω.

It remains to prove that uε,1
n+1 ≥ −‖gε,0n ‖∞ a.e. in Ω. To do this we take (uε,1

n+1 + τ)− as test

function in (4.5) and use the same argument as previously. Thus, setting C = ‖gε,0n ‖∞ implies

that uε,1
n+1 ∈ L∞(Ω).

In short uε,1
n+1 ∈ W 1,p(.)

0 (Ω) ∩ L∞(Ω).

By induction, we deduce in the same manner that the problem (4.1) has a unique weak solution
(

uε,k+1
n+1

)

k≥0
such that uε,k+1

n+1 ∈ W 1,p(.)
0 (Ω) ∩ L∞(Ω) for all k ∈ N.

4.3 Study of the convergence

We begin with the following lemma which provides a crucial L∞ uniform bound for the sequence
(

uε,k
n+1

)

k≥0
.

Lemma 4.4. Let ε > 0 and fix n. If ρ ≤ h, there exists M > 0 independent of k such that

‖uε,k
n+1‖∞ ≤ M .

Proof. Let M = max
(

‖uε,0
n+1‖∞, ‖hf ε

n+1 + uε
n‖∞

)

.

Now let us show by induction that ‖uε,k
n+1‖∞ ≤ M . We first note that ‖uε,0

n+1‖∞ ≤ M.

One assumes that ‖uε,k
n+1‖∞ ≤ M, and one shows that ‖uε,k+1

n+1 ‖∞ ≤ M.

As uε,k+1
n+1 ∈ L∞(Ω) and verifies

uε,k+1
n+1 − div

(

ρ|∇uε,k+1
n+1 |p(x)−2∇uε,k+1

n+1

)

= λku
ε,k
n+1 −

ρ

h
(λku

ε,k
n+1 − uε

n) + ρf ε
n+1,

then, from the previous proof, it is established that for all k = 1, 2, . . . ,

‖uε,k+1
n+1 ‖∞ ≤

∥

∥

∥
λku

ε,k
n+1 −

ρ

h
(λku

ε,k
n+1 − uε

n) + ρf ε
n+1

∥

∥

∥

∞
.

Since ρ ≤ h, we then obtain using the induction assumption

‖uε,k+1
n+1 ‖∞ ≤

(

1−
ρ

h

)

M +
ρ

h
‖hf ε

n+1 + uε
n‖∞ ≤ M.

Thanks to M defined in the above proof we have the following convergence result.
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Theorem 4.5. Assume that conditions in Theorem 4.3 are satisfied. Then, for ρ ≤ h, the iterative

scheme (4.1) converges, i.e.

uε,k
n+1 −→ uε

n+1 strongly in L1(Ω) as k → +∞,

where uε
n+1 verifies (3.1).

Proof. Thanks to Lemma 4.4, we can write (4.1) as

1

λk+1
ūε,k+1
n+1 − ρ div

(

|∇
1

λk+1
ūε,k+1
n+1 |p(x)−2∇

1

λk+1
ūε,k+1
n+1

)

= ūε,k
n+1 −

ρ

h
(ūε,k

n+1 − uε
n) + ρf ε

n+1, (4.6)

where we put ūε,k
n+1 = λku

ε,k
n+1 and ūε,k+1

n+1 = λk+1u
ε,k+1
n+1 .

Let A(u) = −div(|∇u|p(x)−2∇u). We identify the operator A : L1(Ω) → L1(Ω) associated with

the p(x)−Laplacian problem (1.1) with its graph i.e.

G(A) =
{

(u, v) ∈ L1(Ω)× L1(Ω); v ∈ A(u)
}

.

Therefore, A is T−accretive as soon as u is an entropy solution of problem (2.1) where a(x,∇u) =

(|∇u|p(x)−2∇u). For more details, see [6] and [24, Proposition 4.3]. A is called T−accretive

if ‖(u − û)+‖1 ≤ ‖(u − û + ρ(v − v̂))+)‖1, for any (u, v), (û, v̂) ∈ A, ρ > 0; equivalently, if
∫

{u>û}
(v − v̂) +

∫

{u=û}
(v − v̂)+ ≥ 0 for any (u, v), (û, v̂) ∈ A.

Hence, (4.6) yields

(I + ρA)

(

1

λk+1
ūε,k+1
n+1

)

= ūε,k
n+1 −

ρ

h
(ūε,k

n+1 − uε
n) + ρf ε

n+1. (4.7)

To complete the proof of Theorem 4.5, we use the following technical lemma.

Lemma 4.6. Let ρ ≤ 2h and M defined in the above proof such that CM =
{

u ∈ L1(Ω), ‖u‖∞ ≤ M
}

.

The iteration operator

T̃ (ū) = (I + ρA)−1
(

ū−
ρ

h
(ū− uε

n) + ρf ε
n+1

)

is an L1-non-expanding operator from CM to CM .

Proof. The fact that T̃ maps CM to CM is easily seen thanks to the proof of the Lemma 4.4 and

(4.7). Now let (ū, v̄) ∈ C2
M . One has from the T−accretiveness of A on L1(Ω) that (I + ρA)−1 is

a T−contraction in L1(Ω) (see [6]), thus, a contraction. Therefore,

‖T̃ (ū)− T̃ (v̄)‖1 =
∥

∥

∥
(I + ρA)−1

(

ū−
ρ

h
(ū− un) + ρfn+1

)

− (I + ρA)−1
(

v̄ −
ρ

h
(v̄ − un) + ρfn+1

)
∥

∥

∥

1

≤
∥

∥

∥

(

1−
ρ

h

)

ū−
(

1−
ρ

h

)

v̄
∥

∥

∥

1
.
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Since ρ ≤ 2h, we obtain

‖T̃ (ū)− T̃ (v̄)‖1 ≤ ‖ū− v̄‖1.

Consequently, from (4.7) one has the iteration ūε,k+1
n+1 = λk+1T̃ (ū

ε,k
n+1) where T̃ is a non-expansive

operator in L1(Ω) defined as in Lemma 4.6. Now, we are going to apply the Lemma 2.4 with

X = L1(Ω) and C = CM which is clearly a convex subset of L1(Ω) containing 0. The uniqueness

of a fixed point is verified thanks to Theorem 2.3. Indeed a fixed point u∗ of T̃ verifies

u∗ − ρ div (|∇u∗|p(x)−2∇u∗) = u∗ −
ρ

h
(u∗ − uε

n) + ρf ε
n+1.

Thus, u∗ − h div (|∇u∗|p(x)−2∇u∗) = uε
n + hf ε

n+1. From Theorem 2.3 this equation has a unique

solution and from the definition of mild solution it is uε
n+1.

To conclude the proof of convergence of (4.1), we point out that each subsequence of ūε,k
n+1 has a

convergent subsequence to an element of CM , using the L∞ bound of ūε,k
n+1 and the monotonicity of

(|∇ūε,k
n+1|

p(x)−2∇ūε,k
n+1), to the equation (4.6). Applying Lemma 2.4, we conclude that the sequence

ūε,k
n+1 converges strongly in L1(Ω) toward uε

n+1. The same occurs for uε,k
n+1 =

1

λk
ūε,k
n+1.

4.4 Convergence when ε → 0 toward a solution of (1.1)

Note that for a mild solution we do not need to show the convergence in time since it is included in

its definition: once convergence in k is achieved for uε
n+1, then, by the definition of mild solution,

uε
n+1 approaches uε(t) on (tn, tn+1] up to ε. Thus, our scheme converges to the mild solution when

ε goes to zero.

We can state also the following result.

Proposition 4.7. Let u0 ∈ L∞(Ω), f ∈ L∞(Q) and u the unique mild solution of (1.1). Then u is

a weak solution of (1.1). By a weak solution we understand a solution in the sense of distributions

that belongs to the energy space, i.e.,

u ∈ V :=
{

v ∈ Lp−

(0, T ;W 1,p(.)
0 (Ω)); |∇v| ∈ Lp(.)(Q)

}

,

∂u

∂t
− div(|∇u|p(x)−2∇u) = f in D

′

(Q), u(., 0) = u0.
(4.8)

Remark 4.8. Note that a proof of the above proposition exists in [24]. Here, we use L∞ uniform

boundedness and the strong convergence in L1(Ω) of the solution of our numerical scheme to prove

Proposition 4.7.

Moreover, these two results lead to the L∞ uniform boundedness of the weak solution.

Proof of Proposition 4.7. Let u be the mild solution of (1.1). For n = 0, . . . , N − 1, uε
n+1 is the

unique weak solution of (3.1). We have
∫

Ω

uε
n+1 − uε

n

h
ϕ dx+

∫

Ω
|∇uε

n+1|
p(x)−2∇uε

n+1.∇ϕ dx =

∫

Ω
f ε
n+1ϕ dx, (4.9)
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∀ϕ ∈ W 1,p(.)
0 (Ω) ∩ L∞(Ω) and















































• 0 = t0 < · · · < tN = T such that tn − tn−1 = h ≤ ε for n = 1, . . . , N,

•
N
∑

n=1

∫ tn

tn−1

‖f(t)− f ε
n‖L1(Ω) dt ≤ ε ⇒ ‖f ε

n‖L∞(Ω) ≤ ‖f(t)‖L∞(Ω),

•
N
∑

n=1

h‖f ε
n‖L∞(Ω) ≤

∫ T

0
‖f(., t)‖L∞(Ω) dt,

• ‖u0 − uε
0‖L1(Ω) ≤ ε ⇒ ‖uε

0‖L∞(Ω) ≤ ‖u0‖L∞(Ω).

(4.10)

Note that relations in (4.10) are equivalent to relations in (3.2).

Let us set uε(t) = uε
n+1 ∀ t ∈ (tn, tn+1], uε(0) = uε

0 and fε(t) = f ε
n+1, ∀ t ∈ (tn, tn+1].

Lemma 4.4, Theorem 4.5 and the above relations in (4.10) imply that

‖uε‖L∞(Q) ≤ C(‖u0‖L∞(Ω); ‖f‖L∞(Q)). (4.11)

Let ζ be the function defined by ζ(r) =
r2

2
that satisfies ζ(r) − ζ(r̃) ≤ (r − r̃)r.

Taking ϕ = uε
n+1 as test function in (4.9) and integrating over (tn, tn+1] and summing over n =

0, . . . , N − 1, we get
∫

Ω
ζ(uε(t)) dx +

∫

Q

|∇uε|
p(x) dx dt ≤

∫

Q

fεuε dx dt+

∫

Ω
ζ(uε

0) dx.

Thanks to the uniform boundedness of uε in ε and as uε
0 ∈ L∞(Ω), we have

∫

Q

|∇uε|
p(x) dx dt ≤ C.

Moreover,

∫ T

0
‖∇uε‖

p−

Lp(.)(Ω) dt ≤

∫ T

0
max





∫

Ω
|∇uε|

p(x);

(
∫

Ω
|∇uε|

p(x)

)

p−

p+



 dt.

Hence,
∫ T

0
‖uε‖

p−

W
1,p(.)
0 (Ω)

dt ≤ C.

As a consequence, there exists a subsequence still denoted (uε)ε>0, such that

uε ⇀ u, weakly-* in L∞(Q),

uε ⇀ u, weakly in Lp−

(0, T ;W 1,p(.)
0 (Ω)),

|∇uε|p(.)−2∇uε ⇀ Φ, weakly in
(

Lp′(.)(Q)
)d

.

Using the monotonicity method we show that Φ = |∇u|p(.)−2∇u a.e. in Q.

Now, let ũε be the piecewise linear function defined by

ũε(t) = uε
n +

t− tn
h

(uε
n+1 − uε

n) for t ∈ [tn, tn+1], n = 0, . . . , N − 1.



200 S. Ouaro, N. Rabo & U. Traoré CUBO
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The function ũε verifies (ũε)t (t) =
uε
n+1 − uε

n

h
and ũε → u in L∞(0, T ;L1(Ω)). Hence,

u ∈ C([0, T ];L1(Ω)).

Integrating (4.9) over (tn, tn+1) and summing over n = 0, . . . , N − 1, we find

−

∫ T

0

∫

Ω
ϕtũε dx dt−

∫

Ω
ϕ(0)uε

0 dx+

∫ T

0

∫

Ω

(

|∇uε|
p(x)−2∇uε

)

.∇ϕ dx dt

=

∫ T

0

∫

Ω
fεϕ dx dt. (4.12)

Using the convergence results and passing to the limit in (4.12) as ε → 0, we get the result.

Remark 4.9. For u0 ∈ L1(Ω), f ∈ L1(Q) the unique mild solution u of (1.1) is also an entropy

solution. Indeed, since L∞ is dense in L1, we consider two sequences of functions (fm)m≥1 ⊂

L∞(Q) and (u0m)m≥1 ⊂ L∞(Ω) satisfying















fm → f in L1(Q), u0m → u0 in L1(Ω), as m → ∞,

‖fm‖L1(Q) ≤ ‖f‖L1(Q), ‖u0m‖L1(Ω) ≤ ‖u0‖L1(Ω).

(4.13)

Then, we get the following approximate problem of (1.1).























∂um

∂t
− div(|∇um|p(x)−2∇um) = fm in Q,

um = 0 on ∂Ω× (0, T ),

um(x, 0) = u0m in Ω.

(4.14)

Thanks to [24], for each m = 1, 2, . . . , we can find a unique mild solution um ∈ C([0, T ];L1(Ω))

for problem (4.14) which verifies the L1−contraction principle, i.e. the following estimate holds

for almost all t ∈ (0, T ),

‖um(., t)‖L1(Ω) ≤ ‖u0m‖L1(Ω) +

∫ t

0
‖fm(., s)‖L1(Ω) ds

≤ ‖u0‖L1(Ω) +

∫ t

0
‖f(., s)‖L1(Ω) ds.

By Proposition 4.7, and following the proof of [24, Theorem 5.1] we get the result.

Note that this entropy solution is equivalent to the renormalized solution of (1.1). Indeed, in

[29], Zhang and Zhou have proved thanks to the assumptions (1.2) the existence and uniqueness

of renormalized and entropy solutions of (1.1). In their paper, they have showed the equivalence

between entropy and renormalized solutions.
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4.5 Numerical tests

4.5.1 Implementation

We know that solving the equation (4.1) is equivalent to solve the following minimization problem

for n = 0, 1, . . . , N − 1 and k = 0, 1, . . .

uε,k+1
n+1 = argminv∈WJ(v), (4.15)

where,

W :=
{

v ∈ W 1,p(.)
0 (Ω) ∩ L∞(Ω)

}

and the functional J is

J(v) =
1

2

∫

Ω
v2 dx+ ρ

∫

Ω

1

p(x)
|∇v|p(x) dx−

(

1−
ρ

h

)

λk

∫

Ω
uε,k
n+1v −

ρ

h

∫

Ω
uε
nv dx

−ρ

∫

Ω
f ε
n+1v dx. (4.16)

We formulate a basic procedure for solving problem (4.15) following the split Bregman technique

(see [17]). We solve the minimization problem by introducing an auxiliary variable b. We have

min
v

{

1

2

∫

Ω
v2 dx+ ρ

∫

Ω

1

p(x)
|b|p(x) dx−

(

1−
ρ

h

)

λk

∫

Ω
uε,k
n+1v dx−

ρ

h

∫

Ω
uε
nv dx

− ρ

∫

Ω
f ε
n+1v dx subject to b = ∇v

}

. (4.17)

By adding one quadratic penalty function term, we convert equation (4.17) to an unconstrained

splitting formulation as follow.

min
v,b

{

1

2

∫

Ω
v2 dx+ ρ

∫

Ω

1

p(x)
|b|p(x) dx+

γ

2

∫

Ω
|b−∇v|2 dx−

(

1−
ρ

h

)

λk

∫

Ω
uε,k
n+1v dx

−
ρ

h

∫

Ω
uε
nv dx− ρ

∫

Ω
f ε
n+1v dx

}

, (4.18)

where γ is a positive parameter which controls the weight of the penalty term. Similar to the split

Bregman iteration, we propose the following scheme.















































(vl+1, bl+1) = argminv,b

{

1

2

∫

Ω
v2 dx+ ρ

∫

Ω

1

p(x)
|b|p(x) dx+

γ

2

∫

Ω
|b−∇v − δl|2 dx

−
(

1−
ρ

h

)

λk

∫

Ω
uε,k
n+1v dx−

ρ

h

∫

Ω
uε
nv dx− ρ

∫

Ω
f ε
n+1v dx

}

,

δl+1 = δl +∇vl+1 − bl+1.

(4.19)

Alternatively, this joint minimization problem can be solved by decomposing into several subprob-

lems.
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4.5.2 Subproblem v with fixed b and δ

Given the fixed variable bl and δl, our aim is to find the solution of the following problem

vl+1 = argminv

{

1

2

∫

Ω
v2 dx +

γ

2

∫

Ω
|bl −∇v − δl|2 dx−

(

1−
ρ

h

)

λk

∫

Ω
uε,k
n+1v dx

−
ρ

h

∫

Ω
uε
nv dx− ρ

∫

Ω
f ε
n+1v dx

}

. (4.20)

We know that solve (4.20) is equivalent to solve the following optimality condition.

v − γ∆v = γ∇.(δl − bl) +
(

1−
ρ

h

)

λku
ε,k
n+1 +

ρ

h
uε
n + ρf ε

n+1. (4.21)

Since the discrete system is strictly diagonally dominant with Neumann boundary condition, the

most natural choice is the Gauss-Seidel method.

4.5.3 Subproblem b with fixed v and δ

Similarly, we solve

bl+1 = argminb

{

ρ

∫

Ω

1

p(x)
|b|p(x) dx+

γ

2

∫

Ω
|b−∇vl+1 − δl|2 dx

}

(4.22)

In two dimensional space.

Here, setting b = (bx, by) and δ = (δx, δy).

Then, the resolution of (4.22) is equivalent to solve the following optimality condition.















ρ|b|p(x,y)−2bx + γ(bx −∇xvl+1 − δlx) = 0

ρ|b|p(x,y)−2by + γ(by −∇yvl+1 − δly) = 0,

(4.23)

where ∇v = (∇xv,∇yv).

If bx and by are not zero, then,

bx =
∇xvl+1 + δlx
∇yvl+1 + δly

by. (4.24)

Substituting (4.24) into (4.23), we obtain

sign(by)T |by|
p(x,y)−1 + γ(by −∇yv

l+1 − δly) = 0, (4.25)

where T = ρ

(

(

∇xvl+1 + δlx
∇yvl+1 + δly

)2

+ 1

)

p(x,y)−2
2

. Here, sign is defined as follows.

sign(ω) :=















1 if ω > 0,

0 if ω = 0,

−1 if ω < 0.
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Note that

sign(bx) = sign(∇xv
l+1 + δlx) (4.26)

and

sign(by) = sign(∇yv
l+1 + δly). (4.27)

So, (4.25) can be expressed as

sign(∇yv
l+1 + δly)T |by|

p(x,y)−1 + γ(by −∇yv
l+1 − δly) = 0. (4.28)

Unfortunately, we cannot obtain the explicit solution of the equation (4.28). We can use Newton

method to get an approximate solution. If by is solved, bx can be easily determined using (4.24)

and (4.26).

4.5.4 Applications

In the following numerical simulation the iteration process stops when the following condition is

satisfied
‖uk+1

n+1 − uk
n+1‖2

‖uk+1
n+1‖2

≤ stop := 10−5, (4.29)

where ‖.‖2 is the Euclidean norm and uk
n+1 the vector approaching, at iteration k, the space-

discretization of un+1. After stopping the iterations at k = klast, we denote un+1 = uklast

n+1 and

switch to the next time step.

Note that for implementation, finite difference method is used to approximate the partial deriva-

tives. Moreover, for sake of simplicity, the domain Ω will be a square. The domain Ω will be

subdivided into N2
x uniform squares.

For numerical simulation, we will use the following parameters

Nx = 80 and h = 0.02.

Let us recall that h is the time step. The space step is easily computed thanks to Nx and Ω.

Example 4.10. In this example, we take Ω = (0, 1) × (0, 1), T = 1, p(x, y) = 2, and f =

xy(1− x)(1 − y) + 2t((1− y)y + (1− x)x). As initial condition, we set

u0(x, y) = 0.

Let us note that with these data p, u0 and f , the exact solution is

u(x, y, t) = txy(1− x)(1 − y).
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0.4
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Figure 1: left: u(x, y, t) = txy(1− x)(1 − y) right: For ρ = h and γ = 0.02
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x

0.06

0.4
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Figure 2: left: u(x, y, t) = txy(1− x)(1 − y) right: For ρ = h/2 and γ = 0.02

Figure 1 shows the exact solution and the numerical solution for γ = 0.02 and ρ = h. While,

Figure 2 shows the exact solution and the numerical solution for γ = 0.02 and ρ = h/2.

As we can see, we always get a good numerical approximation of the solution even if ρ varies.

Denoting uh the numerical solution and u the exact solution of Example 4.10, with ρ = h and

γ = 0.02, we get the following table of the error approximation.

t 0.1 0.2 0.3 0.4 0.5

‖uh − u‖1 2.5099.10−5 5.6941.10−5 7.9789.10−5 1.0717.10−4 1.345.10−4

t 0.6 0.7 0.8 0.9 1

‖uh − u‖1 1.6192.10−4 1.8930.10−4 2.1668.10−4 2.4406.10−4 2.7144.10−4
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Example 4.11. In this example, we set Ω = (0, 1)× (0, 1), T = 5, p(x, y) = 2 +
|x|

2
, and f = 1.

As initial condition we set

u0(x, y) = 0.

As parameters we set ρ = h and γ = 0.02.

1

0

1

x

0.02

0.5

Numerical solution at t=1.000

0.8

0.04

y

0.6

0.06u

0.4

0.08

0.2

0.1

0

0.12

0

1

0

1

x

0.02

0.5

Numerical solution at t=5.000

0.8

0.04

y

0.6

0.06u

0.4

0.08

0.2

0.1

0

0.12

0

Figure 3: Numerical solution for p(x, y) = 2 +
|x|

2
, ρ = h and γ = 0.02.

Figure 3 shows the numerical solution at t = 1 and at t = 5. One can see that both figures are the

same.

Example 4.12. In this example, we take Ω = (−1, 1)× (−1, 1), T = 5, p(x, y) =
9

5
−

x2

2
and

f =







1 if x ≥ 0

0 if x < 0.

As the initial condition, we set

u0(x, y) = e(1−x2)(1−y2) − 1.

We use the same parameters ρ and γ as previously.

Figure 4 shows the numerical solution at t = 1 and t = 5.
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0

x

0.1

0
-0.5

-0.5
-1 -1

Figure 4: Numerical solution for p(x, y) =
9

5
−

x2

2
, ρ = h and γ = 0.02.

We remark that the exponents p(x) considered in the three examples satisfy the condition 1.2.

Also, note that the choice of γ results from the knowledge of the explicit solution of the Example

4.10. Indeed, knowing the explicit solution, we choose γ so as to obtain a better approximation of

this explicit solution. This leads to the choice of γ = 0.02.

Conclusion and discussion

Inspired by the work of Maitre (see [23]), we have in this paper made a numerical analysis of the

mild solution of parabolic problem involving the p(x)−Laplacian operator. Using the works of

Zhang and Zhou (see [29]), and Ouaro and Ouédraogo (see [24]), we have shown that the mild

solution is also an entropy solution which is equivalent to the renormalized solution. For the

numerical tests, we have used the split Bregman iteration.

In a forthcoming paper, we will make a comparison of the solutions of our numerical scheme (4.1)

to those of the classical backward Euler scheme.
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ABSTRACT

In this paper, we are concerned about the well-posedness of

Vlasov-Poisson equation near vaccum in weighted Sobolev

space Wm,p(w). The most difficult part comes from esti-

mates of the electronic term∇xφ. To overcome this difficulty,

we establish the Lp-Lq estimates of the electronic term ∇xφ;

some weight is introduced as well to obtain the off-diagonal

estimate. The weight is also useful when it comes to control

the higher-order derivative term.

RESUMEN

En este art́ıculo, estamos interesados en que la ecuación de

Vlasov-Poisson está bien puesta cercana al vaćıo en el es-

pacio de Sobolev Wm,p(w) con peso. La parte más dif́ıcil

proviene de estimaciones del término electrónico ∇xφ. Para

superar esta dificultad, establecemos las estimaciones Lp-Lq

del término electrónico ∇xφ; donde algún peso es también in-

troducido para obtener la estimación fuera de la diagonal. El

peso es también útil cuando se trata de controlar el término

de la derivada de alto orden.
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1 Introduction

Understanding the evolution of a distribution of particles over time is a major research area of

statistical physics. The Vlasov-Poisson equation is one of the key equations governing this evo-

lution. Specifically, it models particle behaviors with long range interactions in a non-relativistic

zero-magnetic field setting. Two principal types of long range interactions are Coulomb’s forces,

the electrostatic repulsion of similarly charged particles in a plasma, and Newtonian’s forces, the

gravitational attraction of stars in a galaxy. The general Cauchy’s problem for the Vlasov-Poisson

equation (VP equation) in n dimensional space is as follows:


















∂tf + v ·∇xf +∇xφ ·∇vf = 0,

−∆xφ =

∫

Rn

f dv,

f(0, x, v) = f0(x, v),

(1.1)

where f(t, x, v) denotes the distribution function of particles, x ∈ Rn is the position, v ∈ Rn is the

velocity, and t > 0 is the time and n ≥ 3.

The Cauchy problem for the Vlasov-Poisson equation has been studied for several decades. The

first paper on global existence is due to Arsen’ev [3]. He showed the global existence of weak

solutions. Then in 1977 Batt [5] established the global existence for spherically symmetric data.

In 1981 Horst [9] extended the global classical solvability to cylindrically symmetric data. Next,

in 1985, Bardos and Degond [4] obtained the global existence for “small” data. Finally, in 1989

Pfaffelmoser [12] proved the global existence of a smooth solution with large data. Later, simpler

proofs of the same results were published by Schaeffer [13], Horst [10], and Lions and Pertharne

[11]. Nevertheless, most of them were concerned about solutions in L∞ or continuous function

spaces. Also, there are many papers studying Vlasov-Poisson-Boltzmman (Landau) equation in

L2 setting, see [2, 6, 7, 8] and the references therein. A natural question is whether we can obtain

the solutions in Lp context, for example, Wm,p spaces. This becomes our main theme in this

paper.

In this paper, our aim is to construct the solution to (1.1) in Wm,p space. The difficulty lies in the

absence of Lp estimates of the electronic term ∇xφ. To handle this issue, we establish the Lp-Lq

off-diagonal estimates of ∇xφ which is highly important in estimating the higher order derivative

term. Also, it is necessary to introduce a weight w in order to obtain this off-diagonal estimate.

It is worthy to mention that this weight is crucial to deal with the higher-order derivative term.
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2 Preliminaries and main theorem

2.1 Notations and definitions

We first would like to introduce some notations.

• Given a locally integrable function f, the maximal function Mf is defined by

(Mf)(x) = sup
δ>0

1

|B(x, δ)|

∫

B(x,δ)
|f(y)|dy, (2.1)

where |B(x, δ)| is the volume of the ball of B(x, δ) with center x and radius δ.

• Weight w(v) = 〈v〉γ , γ · p
′

p
> n, 1

p
+ 1

p
′ = 1, n is the dimension.

• ‖f‖p
Lp

x,v(w)
=:

∫

R2n

|f |pw dxdv.

• Define the higher-order energy norm as

E(f(t)) =: ‖f‖Wm,p(w) =
∑

|α|+|β|≤m

‖∂α
x ∂

β
v f(t)‖

p
Lp

x,v(w),

and

E(f0) =: E(f(0)) =
∑

|α|+|β|≤m

‖∂α
x ∂

β
v f0‖

p
Lp

x,v(w)
,

where m ≥ 5 and n
3 < p < n

2 , n ≥ 3. Here α and β denote multi-indices with length |α|

and |β|, respectively. If each component of α1 is not greater than that of α, we denote the

condition by α1 ≤ α. We also define α1 < α if α1 ≤ α and |α1| < |α|. We also denote
(
α1

α

)

by Cα1
α .

• A ! B means there exists a constant c > 1 independent of the main parameters such that

A ≤ cB. A ∼ B means A ! B and B ! A.

Now we are ready to state our main theorem.

Theorem 2.1. For any sufficiently small M > 0, there exists T ∗(M) > 0 such that if

E(f0) =
∑

|α|+|β|≤m

‖∂α
x ∂

β
v f0‖

p
Lp

x,v(w)
≤

M

2
,

then there is a unique solution f(t, x, v) to Vlasov-Poisson system (1.1) in [0, T ∗(M)) × Rn × Rn

such that sup
0≤t≤T∗

E(f(t)) ≤ M, where m > n
p
+ 1 with n ≥ 3 and n

3 < p < n
2 .
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Remark 2.2.

• One should pay attention to the differential index m in Wm,p(Rn) which represents the weak

derivative, is not the classical derivative in C2(Rn). Indeed, for the space W 4,1.4(R6) in which

we could obtain solutions that could not be embedded into C(R6) (the continuous function

space) or L∞(R6), not to mention C2(R6) (the twice continuously differentiable function

space) due to the fact 4 · 1.4 < 6, i.e. W 4,1.4(R6) +↪→ C2(R6) which implies that the classical

results in [3, 4] and [9]-[13] could not cover our results.

• In [4], C. Bardos and P. Degond also imposed the pointwise condition like

0 ≤ uα,0(x, v) ≤
ε

(1 + |x|)4 · (1 + |v|)4
.

However, the polynomial decay in the x variable is not needed at all in our proofs.

• Our working space Wm,p(Rn) has more flexibility than C2(Rn) because of the triplet (m,n, p)

which implies that we can obtain the solutions in more spaces.

Let us illustrate our strategies for proving Theorem 2.1. As is known, the routine to prove the

existence of solution is to get a uniform-in-k estimate for the energy norm E(fk+1(t)). In this paper,

we adopt the Lp version energy method, i.e. to do the dual with |∂α
x ∂

β
v f

k+1|p−2(∂α
x ∂

β
v f

k+1)w (see

(4.5)). We expect all the estimates Ji in Section 4 can be controlled by

E(f(t)) =:
∑

|α|+|β|≤m

‖∂α
x ∂

β
v f(t)‖

p
Lp

x,v(w)
.

To achieve our goal, some estimates related to the electronic term ∇xφ are needed. The Lp-Lq

estimate is established to deal with the higher-order derivative. For instance, when |α| = m, the

Lp-Lq estimate comes in to handle the highest order derivative term ∂α
x∇xφ

k :

〈

∂α
x∇xφ

k ·∇vf
k+1, |∂α

x f
k+1|p−2 · ∂α

x f
k+1 · w

〉

! ‖∂α
x∇xφ

k‖Lq
x
‖∇vf

k+1‖Ln
x,v(w)‖∂

α
x f

k+1‖p−1
Lp

x,v(w)
.

(2.2)

In turn, in order to get this Lp-Lq estimate involving∇xφ, we introduce weight w; surprisingly, this

weight w also plays another crucial role to deal with the higher order derivative. More precisely,

we do this trick when |α|+ |β| = m, w could “absorb” the extra derivative in ∇v as follows:

〈

∇xφ
k ·∇v∂

α
x ∂

β
v f

k+1, |∂α
x ∂

β
v f

k+1|p−2(∂α
x ∂

β
v f

k+1)w
〉

∼
〈

∇xφ
k ·∇v|∂

α
x ∂

β
v f

k+1|p, w
〉

∼ −
〈

∇xφ
k · |∂α

x ∂
β
v f

k+1|p, ∇vw
〉

.

(2.3)

Before we give the proof of the main theorem, we would like to establish the following Lp-Lq

estimates.
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3 Lp-Lq estimates

In this section, we are going to prove the Lp-Lq estimate which plays an essentially important role

in our proofs.

Lemma 3.1. Suppose 1 < p <
n

2
and

1

q
=

1

p
−

1

n
. If −∆φ =

∫

Rn

fdv =: g, then it holds that

‖∇xφ‖Lq(Rn) ! ‖g‖Lp(Rn), (3.1)

Proof. Note that ∇xφ = ∇x(I2 ∗ g), with I2(x) =
1

(n− 2)ωn−1
·

1

|x|n−2
, for more details, see the

last section Appendix. Therefore there holds

‖∇xφ‖Lq(Rn) = ‖∇x(I2 ∗ g)‖Lq(Rn)

! ‖(Mg)
1
2 · (I2 ∗ |g|)

1
2 ‖Lq(Rn)

! ‖(Mg)
1
2 ‖Lq1(Rn) · ‖(I2 ∗ |g|)

1
2 ‖Lq2(Rn)

! ‖Mg‖
1
2

L
q1
2 (Rn)

· ‖I2 ∗ |g|‖
1
2

L
q2
2 (Rn)

,

where we applied (5.3) in the second line, and Hölder’s inequality with

1

q1
+

1

q2
=

1

q
, qi > 1,

in the third line separately.

On the one hand, the boundedness of Hardy-Littlewood operator M as defined by identity (2.1)

yields that

‖Mg‖
L

q1
2 (Rn)

! ‖g‖
L

q1
2 (Rn)

= ‖g‖Lp(Rn), (3.2)

since we require that
q1
2

= p, i.e.

2

q1
=

1

p
. (3.3)

On the other hand, by Lemma 5.3, we have

‖I2 ∗ |g|‖
L

q2
2 (Rn)

! ‖g‖Lp(Rn), (3.4)

where
2

q2
=

1

p
−

2

n
. (3.5)

Consequently, ‖∇xφ‖Lq(Rn) ! ‖g‖
1
2

Lp(Rn) · ‖g‖
1
2

Lp(Rn) = ‖g‖Lp(Rn).

A “derivative version” is immediate:
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Corollary 3.2. With the same assumptions as in Lemma 3.1, we have

‖∂α
x∇xφ‖Lq(Rn) ! ‖∂α

x g‖Lp(Rn).

Proof. One only needs to observe that

∇x∂
α
xφ = ∂α

x∇xφ = ∂α
x∇x(I2 ∗ g) = ∇x(I2 ∗ ∂

α
x g).

Applying Lemma 3.1 with φ and g replaced by ∂αφ and ∂αg respectively, the desired result is

immediate.

Now we adapt Corollary 3.2 to the “kinetic version”. To achieve this goal, we need to introduce a

weight w.

Corollary 3.3. Take g =

∫

Rn

fdv in Corollary 3.2, then we have

‖∂α
x∇xφ‖Lq

x(Rn) ! ‖∂α
x f‖Lp

x,v(w).

Proof. Hölder’s inequality leads to

∣
∣
∣
∣

∫

Rn

∂α
x fdv

∣
∣
∣
∣
!

(∫

Rn

|∂α
x f |

pwdv

) 1
p
(∫

Rn

w− p
′

p dv

) 1

p
′

.

Note that w = 〈v〉γ and γ · p
′

p
> n, which implies that

(∫

Rn

w− p
′

p dv

) 1

p
′

≤ c.

Thus we end the proof of Corollary 3.3.

An L∞ estimate is also needed in the proof of the main Theorem 2.1.

Lemma 3.4. Suppose −∆φ =

∫

Rn

fdv. If 0 ≤ |α| ≤ m− 2,m ≥ 3, then

‖∂α
x∇xφ‖L∞

x
!

∑

|i|≤2

‖∂i+α
x f‖Lp

x,v(w). (3.6)

Proof. Choose a q such that q > n
2 and p ≤ q, then W 2,q ↪→ L∞. Thus we have

‖∂α
x∇xφ‖L∞

x
! ‖∂α

x∇xφ‖W 2,q(Rn
x )
.

Combining Corollary 3.2 and Corollary 3.3 leads to

‖∂α
x∇xφ‖W 2,q =

∑

|i|≤2

‖∂i
x∂

α
x∇xφ‖Lq

x
!

∑

|i|≤2

‖∂i+α
x f‖Lp

x,v(w),

i.e.

‖∂α
x∇xφ‖L∞

x
!

∑

|i|≤2

‖∂i+α
x f‖Lp

x,v(w).
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4 Proof of main theorem

Now we are in the position to prove Theorem 2.1. We split the proof into two parts which are

existence and uniqueness.

Part I: Proof of existence. To prove the existence of the solution to (1.1), we adopt the Lp-

version energy method and iteration method. In this process, we will apply the Lp-Lq

estimate of electronic term ∇xφ proved in Lemma 3.1 to estimate J3.

Proof. We consider the following iterating sequence for solving the Vlasov-Poisson system

(1.1),



















∂tf
k+1 + v ·∇xf

k+1 +∇xφ
k ·∇vf

k+1 = 0,

−∆φk =

∫

Rn

fkdv,

fk+1(0, x, v) = f0(x, v).

(4.1)

(4.2)

(4.3)

Step 1. Applying ∂α
x ∂

β
v to (4.1) with β += 0, |α|+|β| ≤ m, starting with f0(t, x, v) = f0(x, v),

we have

(∂t + v ·∇x +∇xφ
k ·∇v)∂

α
x ∂

β
v f

k+1 +
∑

β1<β

Cβ1

β ∂β−β1
v v · ∂β1

v ∇x∂
α
x f

k+1

= −
∑

0&=α1≤α

Cα1
α ∂α1

x ∇xφ
k · ∂α−α1

x ∂β
v∇vf

k+1.

(4.4)

Multiplying |∂α
x ∂

β
v f

k+1|p−2(∂α
x ∂

β
v f

k+1)w on both sides of (4.4), and then integrating

over Rn
x × Rn

v yields that

1

p

d

dt
‖∂α

x ∂
β
v f

k+1‖p
Lp

x,v(w)

+
∑

β1<β

Cβ1

β

〈

∂β−β1
v v · ∂β1

v ∇x∂
α
x f

k+1, |∂α
x ∂

β
v f

k+1|p−2(∂α
x ∂

β
v f

k+1)w
〉

︸ ︷︷ ︸

J1

=
〈

∇xφ
k · |∂α

x ∂
β
v f

k+1|p,∇vw
〉

︸ ︷︷ ︸

J2

−
∑

0&=α1≤α

Cα1
α

〈

∂α1
x ∇xφ

k · ∂α−α1
x ∂β

v∇vf
k+1, |∂α

x ∂
β
v f

k+1|p−2(∂α
x ∂

β
v f

k+1)w
〉

︸ ︷︷ ︸

J3

.

(4.5)

We now estimate (4.5) term by term.
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For J1, note that |∂β−β1
v v| ≤ c, β1 < β. Thus,

J1 !
∑

β1<β

∫

R2n

|∂β1
v ∇x∂

α
x f

k+1|w
1
p · |∂α

x ∂
β
v f

k+1|p−1w
1

p
′ dxdv

!
∑

β1<β

(∫

R2n

|∂β1
v ∇x∂

α
x f

k+1|pw dxdv

) 1
p
(∫

R2n

|∂α
x ∂

β
v f

k+1|(p−1)p
′

w dxdv

) 1

p
′

!
∑

β1<β

‖∂β1
v ∇x∂

α
x f

k+1‖Lp
x,v(w) · ‖∂

α
x ∂

β
v f

k+1‖p−1
Lp

x,v(w),

where 1
p + 1

p
′ = 1, i.e. (p− 1)p

′
= p, p

p
′ = p− 1.

For J2, note |∇vw| ≤ w, by Lemma 3.4, we have

J2 ! ‖∇xφ
k‖L∞

x
‖∂α

x ∂
β
v f

k+1‖p
L

p
x,v(w)

!
∑

|i|≤2

‖∂i
xf

k‖Lp
x,v(w)‖∂

α
x ∂

β
v f

k+1‖p
Lp

x,v(w)
.

For J3, we consider two cases individually.

Case 1: Recall |α| ≤ m− 1, if 0 < |α1| ≤ m− 2,m ≥ 3, Lemma 3.4 leads to

‖∂α1
x ∇xφ

k‖L∞
x

!
∑

|i|≤2

‖∂i+α1
x fk‖Lp

x,v(w).

Note |i|+ |α1| ≤ m − 2 + 2 = m, the order of the derivatives does not exceed m, then

we obtain,

J3 !
∑

0<|α1|≤m−2

∫

Rn

‖∂α1
x ∇xφ

k‖L∞
x
‖∂α−α1

x ∂β
v∇vf

k+1‖Lp
x

∥
∥
∥|∂α

x ∂
β
v f

k+1|p−1
∥
∥
∥
Lp

′

x

w dv

!
∑

0<|α1|≤m−2

∑

|i|≤2

‖∂i+α1
x fk‖Lp

x,v(w)‖∂
α−α1
x ∂β

v∇vf
k+1‖Lp

x,v(w)‖∂
α
x ∂

β
v f

k+1‖p−1
Lp

x,v(w)
,

where |α− α1|+ |β|+ 1 ≤ |α|+ |β| ≤ m.

Case 2: |α1| = m− 1, we have

J3 !
∑

|α1|=m−1

∫

Rn

w(v)‖∂α1
x ∇xφ

k‖Lq
x
‖∂α−α1

x ∂β
v∇vf

k+1‖Ln
x

∥
∥
∥|∂α

x ∂
β
v f

k+1|p−1
∥
∥
∥
Lp

′

x

dv

!
∑

|α1|=m−1

‖∂α1
x ∇xφ

k‖Lq
x

∫

Rn

w(v)
∑

|i|≤m−2

‖∂i
x∂

α−α1
x ∂β

v∇vf
k+1‖Lp

x

∥
∥
∥|∂α

x ∂
β
v f

k+1|p−1
∥
∥
∥
Lp

′

x

dv

!
∑

|α1|=m−1

‖∂α1
x fk‖Lp

x,v(w)

∑

|i|≤m−2

‖∂i
x∂

α−α1
x ∂β

v∇vf
k+1‖Lp

x,v(w)‖∂
α
x ∂

β
v f

k+1‖p−1
Lp

x,v(w)
,

where in the first inequality, we applied Hölder’s inequality with respect to x with

1

q
+

1

n
+

1

p′ = 1,
1

p
+

1

p′ = 1.

And in the second inequality, we used the embedding Wm−2,p ↪→ Ln, with

m >
n

p
+ 1, p ≤ n. (4.6)
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In the third inequality, we applied Corollary 3.3 and Hölder’s inequality in v.

Finally, plugging all the estimates of J1, J2, and J3 into (4.5) yields that

d

dt
‖∂α

x ∂
β
v f

k+1‖p
Lp

x,v(w)
!

∑

β1<β

‖∂β1
v ∇x∂

α
x f

k+1‖Lp
x,v(w) · ‖∂

α
x ∂

β
v f

k+1‖p−1
Lp

x,v(w)

+
∑

|i|≤2

‖∂i
xf

k‖Lp
x,v(w)‖∂

α
x ∂

β
v f

k+1‖p
Lp

x,v(w)

+
∑

0<|α1|≤m−2

∑

|i|≤2

‖∂i+α1
x fk‖Lp

x,v(w)‖∂
α−α1
x ∂β

v∇vf
k+1‖Lp

x,v(w)‖∂
α
x ∂

β
v f

k+1‖p−1
Lp

x,v(w)

+
∑

|α1|=m−1

∑

|i|≤m−2

‖∂α1
x fk‖Lp

x,v(w)‖∂
i
x∂

α−α1
x ∂β

v∇vf
k+1‖Lp

x,v(w)‖∂
α
x ∂

β
v f

k+1‖p−1
Lp

x,v(w)
.

(4.7)

Step 2. β = 0, |α| ≤ m, applying ∂α
x to (4.1) on both sides, we have

(∂t + v ·∇x +∇xφ
k ·∇v)∂

α
x f

k+1 = −
∑

0&=α1≤α

Cα1
α ∂α1

x ∇xφ
k · ∂α−α1

x ∇vf
k+1. (4.8)

We could completely repeat the process of step 1, the only difference is that we do not

need to estimate J1, thus we give the estimates as below but omit the process of proof

in details.

d

dt
‖∂α

x f
k+1‖p

Lp
x,v(w) !

∑

|i|≤2

‖∂i
xf

k‖Lp
x,v(w)‖∂

α
x f

k+1‖p
Lp

x,v(w)

+
∑

0<|α1|≤m−2

∑

|i|≤2

‖∂i+α1
x fk‖Lp

x,v(w)‖∂
α−α1
x ∇vf

k+1‖Lp
x,v(w)‖∂

α
x f

k+1‖p−1
Lp

x,v(w)

+
∑

m−1≤|α1|≤m

∑

|i|≤m−2

‖∂α1
x fk‖Lp

x,v(w)‖∂
i
x∂

α−α1
x ∇vf

k+1‖Lp
x,v(w)‖∂

α
x f

k+1‖p−1
Lp

x,v(w)
.

(4.9)

Collecting the estimates of J1, J2 and J3 and integrating over [0, t] of (4.5), summing

over |α|+ |β| ≤ m, we deduce from the definition of E(f(t)) that

E(fk+1(t)) ≤ E(f0) + Ct sup
0≤s≤t

E(fk+1(s)) + Ct sup
0≤s≤t

(E(fk(s)))
1
p · sup

0≤s≤t
E(fk+1(s)).

Inductively, assume sup
0≤s≤T∗(M)

E(fk(s)) ≤ M, T ∗(M) and M are sufficiently small; note

that f0(t, x, v) ≡ f0(x, v), E(f0) ≤
M
2 , we have

E(fk+1(t)) ≤
M

2
+ Ct sup

0≤s≤t
E(fk+1(s)) + CM

1
p · t sup

0≤s≤t
E(fk+1(s)),

i.e.

(1− CT ∗ − CM
1
pT ∗(M)) sup

0≤s≤T∗(M)
E(fk+1(s)) ≤

M

2
.

Thus sup
k

sup
0≤s≤T∗(M)

E(fk(s)) ≤ M, i.e. we get a uniform-in-k estimate.

As a routine, let k → ∞, we obtain the solution and complete the proof of existence.
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Remark 4.1. We summarize the indices as follows:

























































2

q1
=

1

p
, 1 < p <

n

2
, n ≥ 3,

2

q2
=

1

p
−

2

n
,

1

q1
+

1

q2
=

1

q
, q > 1, qi > 1, i = 1, 2,

q >
n

2
,

m >
n

p
+ 1, m, n ∈ N,

1

q
+

1

p1
=

1

p
,

γ > n(p− 1).

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

In fact, for any given (m,n, p) satisfying














m > n
p
+ 1,m ∈ N,

n ≥ 3,

n
3 < p < n

2 ,

(4.17)

we could designate












q1 = 2p,

q2 = 2np
n−2p ,

q = np
n−1 .

(4.18)

Let us move on to proving the uniqueness.

Part II: Proof of uniqueness. The proof of the uniqueness is analogous to the existence part.

However, we use a different energy norm E1(f(t)) =:
∑

|α|+|β|≤m−1

‖∂α
x ∂

β
v f(t)‖

p
Lp

x,v(w)
because

of a difficult term J̃4. In J̃4, there is a term

〈

∇x(φf − φg) · ∂
α
x ∂

β
v∇vg, |∂α

x ∂
β
v (f − g)|p−2 · ∂α

x ∂
β
v (f − g)w

〉

.

If we still work with E(f(t)) =
∑

|α|+|β|≤m

‖∂α
x ∂

β
v f(t)‖

p
Lp

x,v(w)
as in the existence part, the order

of derivative of ∂α
x ∂

β
v∇vg will be m + 1 which exceeds m when |α| + |β| = m. This is the

main reason we choose E1(f(t)) instead of E(f(t)).
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Proof. Assume another solution g exists such that sup
0≤s≤T∗

E(g(s)) ≤ M, taking the difference,

we have 

















(∂t + v ·∇x +∇xφf ·∇v)(f − g) + (∇xφf −∇xφg) ·∇vg = 0,

−∆x(φf − φg) =

∫

Rn

(f − g) dv,

f(0, x, v) = g(0, x, v).

(4.19)

Step 1. Applying ∂α
x ∂

β
v on both sides of (4.19)1 with β += 0, |α|+ |β| ≤ m− 1, we have

(∂t + v ·∇x +∇xφf ·∇v) · ∂
α
x ∂

β
v (f − g) +

∑

β1<β

Cβ1

β ∂β−β1
v v · ∂β1

v ∇x∂
α
x (f − g)

= −
∑

0&=α1≤α

Cα1
α ∂α1

x ∇xφf · ∂α−α1
x ∂β

v∇v(f − g)

−
∑

0≤α1≤α

Cα1
α ∂α1

x (∇xφf −∇xφg) · ∂
α−α1
x ∂β

v∇vg.

(4.20)

Multiplying |∂α
x ∂

β
v (f−g)|p−2 ·∂α

x ∂
β
v (f−g)w on both sides of (4.20), and then integrating

over Rn
x × Rn

v yields that

1

p

d

dt
‖∂α

x ∂
β
v (f − g)‖p

Lp
x,v(w)

+
∑

β1<β

Cβ1

β

〈

∂β−β1
v v · ∂β1

v ∇x∂
α
x (f − g), |∂α

x ∂
β
v (f − g)|p−2 · ∂α

x ∂
β
v (f − g)w

〉

︸ ︷︷ ︸

J̃1

=
〈

∇xφf · |∂α
x ∂

β
v (f − g)|p,∇vw

〉

︸ ︷︷ ︸

J̃2

−
∑

0&=α1≤α

Cα1
α

〈

∂α1
x ∇xφf · ∂α−α1

x ∂β
v∇v(f − g), |∂α

x ∂
β
v (f − g)|p−2 · ∂α

x ∂
β
v (f − g)w

〉

︸ ︷︷ ︸

J̃3

−
∑

0≤α1≤α

Cα1
α

〈

∂α1
x (∇xφf −∇xφg) · ∂

α−α1
x ∂β

v∇vg, |∂
α
x ∂

β
v (f − g)|p−2 · ∂α

x ∂
β
v (f − g)w

〉

︸ ︷︷ ︸

J̃4

.

(4.21)

We could repeat the estimates in the proof of the existence except for some special term.

Thus we would like to write down the estimates directly without the details.

For J̃1, we have

J̃1 !
∑

β1<β

‖∂β1
v ∇x∂

α
x (f − g)‖Lp

x,v(w) · ‖∂
α
x ∂

β
v (f − g)‖p−1

Lp
x,v(w)

.

For J̃2, we get

J̃2 !
∑

|i|≤2

‖∂i
xf‖Lp

x,v(w) · ‖∂
α
x ∂

β
v (f − g)‖p

Lp
x,v(w)

.
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For J̃3, since 0 < |α1| ≤ m− 2, we have

J̃3 !
∑

0<|α1|≤m−2

∑

|i|≤2

‖∂i+α1
x f‖Lp

x,v(w) · ‖∂
α−α1
x ∂β

v∇v(f − g)‖Lp
x,v(w) · ‖∂

α
x ∂

β
v (f − g)‖p−1

Lp
x,v(w)

,

where |α− α1|+ |β|+ 1 ≤ |α|+ |β| ≤ m− 1.

For J̃4, note that −∆x(φf − φg) =

∫

Rn

(f − g) dv. We consider two cases separately.

Case 1: 0 ≤ |α1| ≤ m− 3

J̃4 !
∑

0≤|α1|≤m−3

∑

|i|≤2

‖∂i+α1
x (f − g)‖Lp

x,v(w) · ‖∂
α−α1
x ∂β

v∇vg‖Lp
x,v(w) · ‖∂

α
x ∂

β
v (f − g)‖p−1

Lp
x,v(w),

where |i|+ |α1| ≤ 2 +m− 3 = m− 1 and

|α− α1|+ |β|+ 1 ≤ |α|+ |β|− |α1|+ 1 ≤ m− 1− |α1|+ 1 ≤ m.

Case 2: |α1| = m− 2

J̃4 !
∑

|α1|=m−2

∑

|i|≤m−2

‖∂α1
x (f − g)‖Lp

x,v(w) · ‖∂i
x∂

α−α1
x ∂β

v∇vg‖Lp
x,v(w) · ‖∂α

x ∂
β
v (f − g)‖p−1

Lp
x,v(w)

,

where |i|+ |α− α1|+ |β|+ 1 ≤ m− 2 + |α|− |α1|+ |β|+ 1 ≤ m.

Collecting all the estimates of J̃j , j = 1, 2, 3, 4, we have

d

dt
‖∂α

x ∂
β
v (f − g)‖p

Lp
x,v(w)

!
∑

β1<β

‖∂β1
v ∇x∂

α
x (f − g)‖Lp

x,v(w) · ‖∂
α
x ∂

β
v (f − g)‖p−1

Lp
x,v(w)

+
∑

|i|≤2

‖∂i
xf‖Lp

x,v(w) · ‖∂
α
x ∂

β
v (f − g)‖p

Lp
x,v(w)

+
∑

0<|α1|≤m−2

∑

|i|≤2

‖∂i+α1
x f‖Lp

x,v(w) · ‖∂α−α1
x ∂β

v∇v(f − g)‖Lp
x,v(w) · ‖∂α

x ∂
β
v (f − g)‖p−1

Lp
x,v(w)

+
∑

0≤|α1|≤m−3

∑

|i|≤2

‖∂i+α1
x (f − g)‖Lp

x,v(w) · ‖∂α−α1
x ∂β

v∇vg‖Lp
x,v(w) · ‖∂α

x ∂
β
v (f − g)‖p−1

Lp
x,v(w)

+
∑

|α1|=m−2

∑

|i|≤m−2

‖∂α1
x (f − g)‖Lp

x,v(w) · ‖∂i
x∂

α−α1
x ∂β

v∇vg‖Lp
x,v(w) · ‖∂α

x ∂
β
v (f − g)‖p−1

Lp
x,v(w).

(4.22)

Step 2. β = 0, |α| ≤ m− 1, applying ∂α
x on both sides of (4.19)1 yields

(∂t + v ·∇x +∇xφf ·∇v)∂
α
x (f − g) =−

∑

0&=α1≤α

Cα1
α ∂α1

x ∇xφf · ∂α−α1
x ∇v(f − g)

−
∑

0≤α1≤α

Cα1
α ∂α1

x (∇xφf −∇xφg) · ∂
α−α1
x ∇vg.

(4.23)
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Repeating the process of step 1, we get

d

dt
‖∂α

x (f − g)‖p
Lp

x,v(w)
!

∑

|i|≤2

‖∂i
xf‖Lp

x,v(w) · ‖∂α
x (f − g)‖p

Lp
x,v(w)

+
∑

0<|α1|≤m−2

∑

|i|≤2

‖∂i+α1
x f‖Lp

x,v(w) · ‖∂α−α1
x ∇v(f − g)‖Lp

x,v(w) · ‖∂α
x (f − g)‖p−1

Lp
x,v(w)

+
∑

|α1|=m−1

∑

|i|≤m−2

‖∂α1
x f‖Lp

x,v(w) · ‖∂i
x∂

α−α1
x ∇v(f − g)‖Lp

x,v(w) · ‖∂α
x (f − g)‖p−1

Lp
x,v(w)

+
∑

0<|α1|≤m−3

∑

|i|≤2

‖∂i+α1
x (f − g)‖Lp

x,v(w) · ‖∂α−α1
x ∇vg‖Lp

x,v(w) · ‖∂α
x ∂

β
v (f − g)‖p−1

Lp
x,v(w)

+
∑

m−2≤|α1|≤m−1

∑

|i|≤m−2

‖∂α1
x (f − g)‖Lp

x,v(w) · ‖∂i
x∂

α−α1
x ∇vg‖Lp

x,v(w) · ‖∂α
x (f − g)‖p−1

Lp
x,v(w)

.

(4.24)

Note f(0, x, v) = g(0, x, v),

sup
0≤s≤t

‖∂i+α1
x f(s)‖Lp

x,v(w) ≤ M, sup
0≤s≤t

‖∂α−α1
x ∂β

v∇vg(s)‖Lp
x,v(w) ≤ M,

and

sup
0≤s≤t

‖∂i
x∂

α−α1
x ∂β

v∇vg(s)‖Lp
x,v(w) ≤ M, sup

0≤s≤t
‖∂i

xf(s)‖Lp
x,v(w) ≤ M.

Integrating (4.22) and (4.24) over [0, t], then summing over |α|+ |β| ≤ m−1, we deduce

E1((f − g)(t)) ! (1 +M)

∫ t

0
E1((f − g)(s)) ds,

where

E1(f(t)) =:
∑

|α|+|β|≤m−1

‖∂α
x ∂

β
v f(t)‖

p
Lp

x,v(w).

By Gronwall’s inequality, we have E1((f − g)(t)) ≡ 0 implying f ≡ g, which completes

the proof of uniqueness. Thus we end the proof of Theorem 2.1.

Remark 4.2. All in all, we improved the results in [4] to the more general function space Wm,p(Rn)

which does not have to be C2(Rn) (too strong). Our results also shed light on exploring solutions

in Sobolev spaces. We are very confident that our method could be applied in fractional Sobolev

spaces, even the supercritical spaces which are far from being understood yet.

5 Appendix

For the sake of completeness, we cite some known results about the estimate for the Riesz potential.

First of all, we give the pointwise estimate of the Riesz potential, for more details, see chapter 3,

section 1, page 57 in [1].
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Proposition 5.1 ([1]). For any multi-index ξ with |ξ| < α < n, there is a constant A such that

for any f ∈ Lp(Rn), 1 ≤ p < ∞, and almost every x, we have

|Dξ(Iα ∗ f(x))| ≤ AMf(x)
|ξ|
α · (Iα ∗ |f |(x))1−

|ξ|
α , (5.1)

where Iα =
γα

|x|n−α
, γα =

Γ(n− α
2 )

π
n
2 2αΓ(α2 )

.

Remark 5.2. In our paper, we consider −∆φ =

∫

Rn

fdv =: g, n ≥ 3. Thus, in our context, Iα

can be taken

I2(x) =
1

(n− 2)ωn−1
·

1

|x|n−2
, i .e. α = 2, (5.2)

where ωn−1 =
2π

n
2

Γ(n2 )
is the (n− 1)−dimensional area of the unit sphere in Rn, then we have

|Dξ(I2 ∗ g(x))| ≤ cMg(x)
|ξ|
2 · (I2 ∗ |g|(x))

1− |ξ|
2 . (5.3)

Next, we give the off-diagonal estimate of the Riesz potential I2. For the details, see chapter V,

section 1 and page 119 in [14].

Lemma 5.3 ([14]). If −∆φ = g ∈ Lp(Rn), then φ = I2 ∗ g and

‖I2 ∗ g‖Lq̃(Rn) ≤ c‖g‖Lp(Rn), (5.4)

where 1 < p < n
2 , c = c(p, q̃) and

1

q̃
=

1

p
−

2

n
. (5.5)
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1 Introduction

In recent years, many researchers have extensively applied variational methods to study boundary

value problems (BVPs) for impulsive differential equations on the finite intervals. More precisely,

employing critical point theory, Nieto and O’Regan [8] studied a linear Dirichlet boundary value

problem with impulses














−u′′(t) + λu(t) = σ(t), a.e. t ∈ [0, T ],

#u′(tj) = dj , j ∈ {1, 2, . . . , l},

u(0) = u(T ) = 0,

(1.1)

and a nonlinear impulsive problem














−u′′(t) + λu(t) = f(t, u(t)), a.e. t ∈ [0, T ],

#u′(tj) = Ij(u(t
−
j )), j ∈ {1, 2, . . . , l},

u(0) = u(T ) = 0,

(1.2)

where λ is a positive parameter.

Moreover, the study of solutions for impulsive BVPs on the infinite intervals by using variational

methods has received considerably more attention, see for example [1, 2, 3, 9, 10], and the references

therein.

In the present paper, our aim is to improve some assumptions made in [8] in order to extend

problems (1.1) and (1.2) on the half-line via variational approach.

This paper is organized as follows. In Section 2 we state some preliminaries. In Section 3 we

consider the linear Dirichlet problem with impulses in the derivative. Due to the Lax-Milgram

Theorem, we show the existence of weak solutions that are precisely the critical points of some

functionals. The last section is to deal with the nonlinear Dirichlet problem. To investigate the

existence of solutions, we use standard results of critical point theory. Also, some examples are

given to illustrate our main results.

2 Preliminaries

We cite some basic and celebrated theorems from critical point theory which are crucial tools in

the proof of our main results.

Let H be a Hilbert space.

Theorem 2.1 (Lax-Milgram [4, 5]). Let a : H × H → R be a bounded bilinear form. If a is

coercive, i.e., there exists α > 0 such that a(u, u) ≥ α‖u‖2 for every u ∈ H, then for any σ ∈ H ′

(the conjugate space of H) there exists a unique u ∈ H such that

a(u, v) = (σ, v), for every v ∈ H.
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Moreover, if a is also symmetric, then the functional ϕ : H → R defined by

ϕ(v) =
1

2
a(v, v)− (σ, v)

attains its minimum at u.

Theorem 2.2 ([7]). If ϕ is weakly lower semi-continuous (w.l.s.c.) on a reflexive Banach space

X and has a bounded minimizing sequence, then ϕ has a minimum on X.

Now, let us recall some necessary concepts that will be needed in our argument. Let us define the

following reflexive Banach space

H1
0 (0,∞) =

{

u : [0,∞) → R is absolutely continuous, u, u′ ∈ L2(0,∞), u(0) = u(∞) = 0
}

,

equipped with the norm

‖u‖ =





+∞
∫

0

|u(t)|2dt+

+∞
∫

0

|u′(t)|2dt





1
2

.

Set the space

Cl,p[0,+∞) = {u ∈ C([0,+∞),R) : lim
t→∞

p(t)u(t) exists}

with the norm

‖u‖∞,p = sup
t∈[0,+∞)

p(t)|u(t)|,

where the function p : [0; +∞) → (0,+∞) is continuously differentiable and bounded, satisfying

C = 2max(‖p‖L2, ‖p′‖L2) < +∞.

Concerning the above spaces, we get the following vital embeddings.

Lemma 2.3 ([6]). The space H1
0 (0,∞) embeds continuously in Cl,p[0,∞), more precisely ‖u‖∞,p ≤

C‖u‖ for every u ∈ H1
0 (0,∞).

Lemma 2.4 ([6]). The embedding H1
0 (0,∞) ↪→ Cl,p[0,∞) is compact.

3 Impulsive linear problem

We consider the following linear Dirichlet boundary value problem with impulses in the derivative

at the prescribed instants tj , j ∈ N∗ = {1, 2, 3, . . .}















−u′′(t) + λu(t) = σ(t), a.e. t ∈ [0,∞), t *= tj ,

#u′(tj) = d(tj), j ∈ N∗,

u(0) = u(+∞) = 0,

(3.1)
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where λ ∈ R, σ ∈ L2(0,∞), 0 = t0 < t1 < t2 < · · · < tj < · · · < tm → ∞, as m → ∞, are

the impulse points, d : [0,∞) → R satisfies
∞
∑

j=1

d(tj)

p(tj)
< ∞ and #u′(tj) = u′(t+j ) − u′(t−j ) for

u′(t±j ) = limt→t±j
u′(t).

Now, multiply the equation in problem (3.1) by v ∈ H1
0 (0,∞), and then integrate over (0,+∞),

we obtain

−

+∞
∫

0

u′′v + λ

+∞
∫

0

uv =

+∞
∫

0

σv.

We have

−

+∞
∫

0

u′′v = −
∞
∑

j=0

tj+1
∫

tj

u′′v,

and
tj+1
∫

tj

u′′v = u′(t−j+1)v(t
−
j+1)− u′(t+j )v(t

+
j )−

tj+1
∫

tj

u′v′.

Consequently,

−

+∞
∫

0

u′′v =
∞
∑

j=1

#u′(tj)v(tj) + u′(0)v(0)− u′(∞)v(∞) +

+∞
∫

0

u′v′

=
∞
∑

j=1

d(tj)v(tj) +

+∞
∫

0

u′v′.

This leads to define the bilinear form a : H1
0 (0,∞)×H1

0 (0,∞) → R, by

a(u, v) =

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv, (3.2)

and the linear operator l : H1
0 (0,∞) → R by

l(v) =

+∞
∫

0

σv −
∞
∑

j=1

d(tj)v(tj). (3.3)

Definition 3.1. We say that a function u is a weak solution of the impulsive problem (3.1) if

u ∈ H1
0 (0,∞) such that a(u, v) = l(v) is valid for any v ∈ H1

0 (0,∞).

In what follows we refer to problem (3.1) as (LP ).

It is easily verified that a and l defined by (3.2), (3.3) respectively are continuous, and a is coercive

if λ > 0.

Consider the functional ϕ : H1
0 (0,∞) → R, defined by

ϕ(u) =
1

2

+∞
∫

0

u′2 +
λ

2

+∞
∫

0

u2 −

+∞
∫

0

σu+
∞
∑

j=1

d(tj)u(tj). (3.4)
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It is clear that ϕ is differentiable at any u ∈ H1
0 (0,∞) and

ϕ′(u)v =

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv −

+∞
∫

0

σv +
∞
∑

j=1

d(tj)v(tj) = a(u, v)− l(v).

Thus, a critical point of (3.4) gives us a weak solution of the problem (LP ).

Definition 3.2. We mean by a classical solution of the problem (LP ) a function u ∈ H2(tj , tj+1)

for all j ∈ N∗, where

H2(tj , tj+1) =
{

u : [0,∞) → R is absolutely continuous, u′, u′′ ∈ L2(tj , tj+1)
}

,

and u satisfies the first equation of (3.1) a.e. on [0,∞) with u(0) = u(∞) = 0, the limits u′(t+j ),

u′(t−j ), j ∈ N∗ exist and the impulse conditions hold.

Lemma 3.3. If u ∈ H1
0 (0,∞) is a weak solution of (LP ), then u is a classical solution of (LP ).

Proof. Since u ∈ H1
0 (0,∞), it is evident that u(0) = u(∞) = 0.

For j ∈ {1, 2, . . .}, choose any v ∈ H1
0 (0,∞) such that v(t) = 0 for t ∈ [0, tj] ∪ [tj+1,+∞). Then

tj+1
∫

tj

u′v′ + λ

tj+1
∫

tj

uv =

tj+1
∫

tj

σv.

Hence, −u′′ + λu = σ a.e. on (tj , tj+1). So, u ∈ H2(tj , tj+1) and satisfies the previous equation

a.e. on [0,∞).

Multiplying −u′′ + λu = σ by v ∈ H1
0 (0,∞) and integrating over [0,∞), we get

∞
∑

j=1

#u′(tj)v(tj) =
∞
∑

j=1

d(tj)v(tj).

Therefore, #u′(tj) = d(tj) for every j ∈ N∗, and the impulsive conditions are satisfied.

Lemma 3.4. If u ∈ H1
0 (0,∞) is a critical point of ϕ defined by (3.4), then u is a weak solution

of the impulsive Dirichlet problem (LP ).

Proof. Let u ∈ H1
0 (0,∞). The assumption that u is a critical point of ϕ means that ϕ′(u)v = 0,

for all v ∈ H1
0 (0,∞). Thus,

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv −

+∞
∫

0

σv +
∞
∑

j=1

d(tj)v(tj) = 0, ∀v ∈ H1
0 (0,∞).

Hence,
+∞
∫

0

u′v′ + λ

+∞
∫

0

uv =

+∞
∫

0

σv −
∞
∑

j=1

d(tj)v(tj), ∀v ∈ H1
0 (0,∞).

This implies that a(u, v) = l(v) is valid for any v ∈ H1
0 (0,∞). As a result, u is a weak solution of

the (LP ).
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In view of Lax-Milgram theorem, we formulate the following main result.

Theorem 3.5. If λ > 0, then the Dirichlet impulsive problem (LP ) has a weak solution u ∈

H1
0 (0,∞) for any σ ∈ L2(0,∞). Moreover, u ∈ H2(0,∞) and u is a classical solution and

minimizes the functional (3.4) and hence it is a critical point of (3.4).

Proof. For λ > 0, it follows that the bilinear a is coercive. The fact that a is continuous, by applying

Theorem 2.1, for any σ ∈ L2(0,∞), there exists a unique u ∈ H1
0 (0,∞) such that a(u, v) = l(v)

for all v ∈ H1
0 (0,∞). So, the problem (LP ) has a weak solution u ∈ H1

0 (0,∞).

Owing to Lemma 3.3, a weak solution of (LP ) is a classical solution. In addition, a is symmetric,

then the functional ϕ attains its minimum at u which is exactly a critical point of ϕ since it is

differentiable.

Example 3.6. As an example, let λ = 1 and p(t) = 1
1+t2 ·

This impulsive boundary value problem















−u′′(t) + u(t) = 1
1+t

, a.e. t ∈ [0,∞),

#u′(j) = e−j, j ∈ N∗,

u(0) = u(+∞) = 0,

(3.5)

has a solution.

4 Impulsive nonlinear problem

In the nonlinear situation we consider the following impulsive boundary value problem















−u′′(t) + λu(t) = f(t, u(t)), a.e. t ∈ [0,∞), t *= tj ,

#u′(tj) = g(tj)Ij(u(t
−
j )), j ∈ N∗,

u(0) = u(+∞) = 0,

(4.1)

where λ is a positive parameter, the functions f : [0,∞) × R → R, Ij : R → R, j ∈ N∗, and

g : [0,∞) → [0,∞) are continuous with
∞
∑

j=1

g(tj) < ∞.

We refer to problem (4.1) as (NP ).

Definition 4.1. A weak solution of (NP ) is a function u ∈ H1
0 (0,∞) such that

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv +
∞
∑

j=1

g(tj)Ij(u(tj))v(tj)−

+∞
∫

0

f(t, u(t))dt = 0,

for every v ∈ H1
0 (0,∞).
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Setting F (t, u) =
u
∫

0
f(t, s)ds, we define the functional ϕ : H1

0 (0,∞) → R by

ϕ(u) =
1

2

+∞
∫

0

u′2(t)dt+
λ

2

+∞
∫

0

u2(t)dt+
∞
∑

j=1

g(tj)

u(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, u(t))dt. (4.2)

Now we present our principal results for this part.

Theorem 4.2. Suppose that the following conditions hold:

(H1) There exists a positive bounded function M ∈ L1(0,+∞) with
M

p
∈ L1(0,+∞) such that

|f(t, u)| ≤ M(t) for (t, u) ∈ [0,+∞)× R.

(I1) There exist Mj > 0, j ∈ N∗, satisfying
∞
∑

j=1

Mjg(tj) < ∞ and
∞
∑

j=1

Mjg(tj)

p(tj)
< ∞, such that

the impulsive functions Ij are bounded i.e.,

|Ij(u)| ≤ Mj for every u ∈ R, j ∈ {1, 2, . . .}.

Then there is a critical point of ϕ, and (NP ) has at least one solution.

Proof. Claim 1. ϕ is weakly lower semi-continuous (w.l.s.c).

Let (un) ⊂ H1
0 (0,∞) be a sequence such that un ⇀ u in H1

0 (0,∞), when n → ∞. Then,

‖u‖ ≤ lim inf
n→∞

‖un‖,

and by Lemma 2.4 we have that (un) converges to u in Cl,p[0,∞), hence un(t) converges to

u(t) for all t ∈ [0,∞).

From (H1) and (I1), using the continuity of f and Ij , j ∈ N∗, together with the Lebesgue

Dominated Convergence Theorem, we obtain

lim inf
n→+∞

ϕ(un) = lim inf
n→+∞







1

2

+∞
∫

0

u
′2
n +

λ

2

+∞
∫

0

u2
n +

∞
∑

j=1

g(tj)

un(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, un(t))dt







≥
1

2

+∞
∫

0

u
′2 +

λ

2

+∞
∫

0

u2 +
∞
∑

j=1

g(tj)

u(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, u(t))dt = ϕ(u).

Thus, ϕ is w.l.s.c.

Claim 2. ϕ is coercive.

For any u ∈ H1
0 (0,∞), the fact that λ > 0, there exists α > 0 such that

ϕ(u) ≥ α‖u‖2 +
∞
∑

j=1

g(tj)

u(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, u(t))dt.
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Using conditions (H1), (I1) and Lemma 2.3, we have

ϕ(u) ≥ α‖u‖2 −
∞
∑

j=1

Mjg(tj)

p(tj)
p(tj)|u(tj)|−

+∞
∫

0

M(t)

p(t)
p(t)|u(t)|dt

≥ α‖u‖2 − ‖u‖∞,p

∞
∑

j=1

Mjg(tj)

p(tj)
− ‖u‖∞,p

+∞
∫

0

M(t)

p(t)
dt

≥ α‖u‖2 − C‖u‖
∞
∑

j=1

Mjg(tj)

p(tj)
− C‖u‖

∥

∥

∥

∥

M

p

∥

∥

∥

∥

L1

≥ α‖u‖2 − C





∞
∑

j=1

Mjg(tj)

p(tj)
+

∥

∥

∥

∥

M

p

∥

∥

∥

∥

L1



 ‖u‖,

for some C > 0. Then, the above inequality implies that lim
‖u‖→+∞

ϕ(u) = +∞. Hence, ϕ is

coercive.

Applying Theorem 2.2, ϕ possesses a minimum which is a critical point of ϕ. Finally, by (H1) and

(I1), it is easy to check that ϕ is continuous and differentiable for any u ∈ H1
0 (0,∞) and that

ϕ′(u)v =

+∞
∫

0

u′v′ + λ

+∞
∫

0

uv +
∞
∑

j=1

g(tj)Ij(u(tj))v(tj)dt−

+∞
∫

0

f(t, u(t))v(t)dt. (4.3)

Therefore, a critical point of ϕ is a weak solution of the problem (NP ).

Remark 4.3. Assume M ∈ L2(0,∞) in (H1), then it is easy to see that a weak solution u is in

H2(0,∞).

Example 4.4. Take λ = 1, p(t) = e−t, M(t) = e−2t, g(t) = e−2t, Mj =
1

j
and Ij(s) =

1

j + s2
,

j ∈ N∗.

The following IBVP:



















−u′′(t) + u(t) = e−3t, a.e. t ∈ [0,∞),

#u′(j) =
e−2j

j + u2(j)
, j ∈ N∗,

u(0) = u(+∞) = 0,

has at least one solution. (See Figure 1)
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Figure 1

Theorem 4.5. Assume the following conditions are satisfied:

(H2) The function f is sublinear i.e., there exist a constant γ ∈ [0, 1) and positive functions

a, b ∈ L1(0,∞) with
a

p
,
b

pγ
, b
pγ+1 ∈ L1[0,∞) such that

|f(t, u)| ≤ a(t) + b(t)|u|γ for (t, u) ∈ [0,+∞)× R.

(I2) There exist constants δ ∈ [0, 1) and aj , bj > 0, j ∈ {1, 2, . . .} with
∞
∑

j=1

ajg(tj),
∞
∑

j=1

ajg(tj)

p(tj)
,

∞
∑

j=1

bjg(tj)

pδ(tj)
,

∞
∑

j=1

bjg(tj)

pδ+1(tj)
are convergent series, such that the impulsive functions Ij have

sublinear growths i.e.,

|Ij(u)| ≤ aj + bj |u|
δ for every u ∈ R, j ∈ {1, 2, . . .}.

Then there is a critical point of ϕ, and (NP ) has at least one solution.

Proof. Claim 1. ϕ is weakly lower semi-continuous.

Under (H2) and (I2), arguing analogously to the proof of Theorem 4.2, we find the weak

lower semi-continuity of ϕ.

Claim 2. ϕ is coercive.

In view of conditions (H2), (I2) and (4.2), for any u ∈ H1
0 (0,∞), we have

ϕ(u) =
1

2

+∞
∫

0

u′2 +
λ

2

+∞
∫

0

u2 +
∞
∑

j=1

g(tj)

u(tj)
∫

0

Ij(s)ds−

+∞
∫

0

F (t, u(t))dt

≥ α‖u‖2 −
∞
∑

j=1

g(tj)

u(tj)
∫

0

(aj + bj|s|
δ)ds−

+∞
∫

0

(

a(t)|u(t)|+
b(t)

γ + 1
|u(t)|γ+1

)

dt
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ϕ(u) ≥ α‖u‖2 −
∞
∑

j=1

g(tj)

(

aj
p(tj)

p(tj)|u(tj)|+
bj

(δ + 1)pδ+1(tj)
|p(tj)u(tj)|

δ+1

)

−

+∞
∫

0

a(t)

p(t)
p(t)|u(t)|dt −

1

(γ + 1)

+∞
∫

0

b(t)

pγ+1(t)
|p(t)u(t)|γ+1dt

≥ α‖u‖2 − ‖u‖∞,p

∞
∑

j=1

ajg(tj)

p(tj)
− ‖u‖δ+1

∞,p

∞
∑

j=1

bjg(tj)

pδ+1(tj)
− ‖u‖∞,p

∥

∥

∥

∥

a

p

∥

∥

∥

∥

L1

− ‖u‖γ+1
∞,p

∥

∥

∥

∥

b

pγ+1

∥

∥

∥

∥

L1

.

Hence, by Lemma 2.3, we get

ϕ(u) ≥ α‖u‖2 − C‖u‖
∞
∑

j=1

ajg(tj)

p(tj)
− Cδ+1‖u‖δ+1

∞
∑

j=1

bjg(tj)

pδ+1(tj)
− C‖u‖

∥

∥

∥

∥

a

p

∥

∥

∥

∥

L1

− Cγ+1‖u‖γ+1

∥

∥

∥

∥

b

pγ+1

∥

∥

∥

∥

L1

≥ α‖u‖2 − C





∥

∥

∥

∥

a

p

∥

∥

∥

∥

L1

+
∞
∑

j=1

ajg(tj)

p(tj)



 ‖u‖ − Cδ+1





∞
∑

j=1

bjg(tj)

pδ+1(tj)



 ‖u‖δ+1

− Cγ+1

∥

∥

∥

∥

b

pγ+1

∥

∥

∥

∥

L1

‖u‖γ+1.

Since δ, γ ∈ [0, 1), then lim
‖u‖→+∞

ϕ(u) = +∞. This means, ϕ is coercive.

Using Theorem 2.2, ϕ has a minimum, which is a critical point of ϕ. Finally, from (H2) and (I2),

we get the differentiability of ϕ such that its differentiable is defined by (4.3). Consequently, (NP )

has at least one solution.

Remark 4.6. In (H2), assume a,
b

pγ
∈ L2(0,∞), then a weak solution u is in H2(0,∞).

Example 4.7. Consider the following problem























−u′′(t) + u(t) = e−2t
√

|u(t)|+ e−3t, a.e. t ∈ [0,∞),

#u′(j) = e−2j

(

1

j2
+

|s|
1
4

j

)

, j ∈ N∗,

u(0) = u(+∞) = 0,

where λ = 1, p(t) = e−t, g(t) = e−2t, aj =
1

j2
, bj =

1

j
and Ij(s) =

1

j2
+

|s|
1
4

j
, j ∈ N∗.

By simple calculations, all conditions in Theorem 4.5 are satisfied, then (4.1) has at least one

solution.
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1 Introduction

Let (M2n, J,ω) be a compact almost Hermitian manifold of real dimension 2n with n ≥ 2. Let χ

be a smooth real (1, 1)-form on M . We define for a function u ∈ C2(M),

χu := χ+
√
−1∂∂̄u

and

[χ] := {χu|u ∈ C2(M)}, [χ]+ := {χ′ ∈ [χ]|χ′ > 0}, H(M,χ) := {u ∈ C2(M)|χu > 0}

and

Cα(ψ) := {[χ]|∃χ′ ∈ [χ]+, nχ′n−1 > (n− α)ψχ′n−α−1 ∧ ωα}.

We consider the following fully nonlinear Monge-Ampère type equations, which are called the

(n, n− α)-quotient equations for 1 ≤ α ≤ n:

χn
u = ψχn−α

u ∧ ωα with χu > 0, (1.1)

where ψ is a smooth positive function. We will call a function u ∈ C2(M) admissible if it satisfies

that u ∈ H(M,χ). When solutions u are admissible, the equations (1.1) are elliptic. Since the

equation (1.1) is invariant under the addition of constants to u, we may assume that u satisfies

the normalized condition such that

sup
M

u = 0. (1.2)

W. Sun has studied a class of fully nonlinear elliptic equations on closed Hermitian manifolds

and derived some a priori estimates for these equations (cf. [5, 6]). In [5], W. Sun has proven a

uniform a priori C∞ estimates of a smooth solution of the equation (1.1) and shown the existence

of a solution of (1.1) on a closed Hermitian manifold. In [12], J. Zhang has shown that on a

compact almost Hermitian manifold (M2n, J,ω), if there exists an admissible C-subsolution and an

admissible supersolution for the equation (1.1) for χ = ω, there exists a pair of (u, b) with b ∈ R

such that u ∈ H(M,ω), supM u = 0, ωn
u = ebψωn−α ∧ ωα for 1 ≤ α ≤ n on M . L. Chen has

studied a Hessian equation with its structure as a combination of elementary symmetric functions

on a closed Kähler manifold and Chen has provided a sufficient and necessary condition for the

solvability of this equation in [1]. Q. Tu and N. Xiang have investigated the Dirichlet problem

for a class of Hessian type equation with its structure as a combination of elementary symmetric

functions on a closed Hermitian manifold with smooth boundary and they have derived a priori

estimates for the complex mixed Hessian equation in [9].

In this paper, we show that we have the a priori L∞ estimate for a smooth solution of the equation

(1.1) on general almost Hermitian manifolds.
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Theorem 1.1. Let (M,J,ω) be a compact almost Hermitian manifold of real dimension 2n with

n ≥ 2 and u be a smooth admissible solution to (1.1). Suppose that χ ∈ Cα(ψ). Then there is a

uniform a priori L∞ estimate for u depending only on (M,J,ω), χ, ψ.

This paper is organized as follows: in section 2, we recall some basic definitions and computations

on an almost Hermitian manifold (M,J,ω). In section 3, for an arbitrary chosen smooth function

ϕ on M , we show the result that ∂∂∂̄ϕ and ∂̄∂∂̄ϕ depend only on the first derivative of ϕ and

some geometric quantities of (M,J,ω). In section 4, we give a proof for Theorem 1.1. Notice that

we assume the Einstein convention omitting the symbol of sum over repeated indexes in all this

paper.

2 Preliminaries

2.1 The Nijenhuis tensor of the almost complex structure

Let M be a 2n-dimensional smooth differentiable manifold. An almost complex structure on M

is an endomorphism J of TM , J ∈ Γ(End(TM)), satisfying J2 = −IdTM , where TM is the real

tangent vector bundle of M . The pair (M,J) is called an almost complex manifold. Let (M,J)

be an almost complex manifold. We define a bilinear map on C∞(M) for X,Y ∈ Γ(TM) by

4N(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ], (2.1)

which is the Nijenhuis tensor of J . The Nijenhuis tensor N satisfies N(X,Y ) = −N(Y,X),

N(JX, Y ) = −JN(X,Y ), N(X, JY ) = −JN(X,Y ), N(JX, JY ) = −N(X,Y ). For any (1, 0)-

vector fields W and V , N(V,W ) = −[V,W ](0,1), N(V, W̄ ) = N(V̄ ,W ) = 0 and N(V̄ , W̄ ) =

−[V̄ , W̄ ](1,0) since we have 4N(V,W ) = −2([V,W ] +
√
−1J [V,W ]), 4N(V̄ , W̄ ) = −2([V̄ , W̄ ] −

√
−1J [V̄ , W̄ ]). An almost complex structure J is called integrable if N = 0 on M . Giving a

complex structure to a differentiable manifold M is equivalent to giving an integrable almost

complex structure to M (cf. [4]). A Riemannian metric g on M is called J-invariant if J is

compatible with g, i.e., for any X,Y ∈ Γ(TM), g(X,Y ) = g(JX, JY ). In this case, the pair (J, g)

is called an almost Hermitian structure.

The complexified tangent vector bundle is given by TCM = TM ⊗R C for the real tangent vector

bundle TM . By extending J C-linearly and g C-bilinearly to TCM , they are also defined on

TCM and we observe that the complexified tangent vector bundle TCM can be decomposed as

TCM = T 1,0M⊕T 0,1M, where T 1,0M , T 0,1M are the eigenspaces of J corresponding to eigenvalues
√
−1 and −

√
−1, respectively:

T 1,0M = {X −
√
−1JX

∣∣X ∈ TM}, T 0,1M = {X +
√
−1JX

∣∣X ∈ TM}. (2.2)



242 M. Kawamura CUBO
24, 2 (2022)

Let ΛrM =
⊕

p+q=r Λ
p,qM for 0 ≤ r ≤ 2n denote the decomposition of complex differential

r-forms into (p, q)-forms, where Λp,qM = Λp(Λ1,0M)⊗ Λq(Λ0,1M),

Λ1,0M = {η +
√
−1Jη

∣∣η ∈ Λ1M}, Λ0,1M = {η −
√
−1Jη

∣∣η ∈ Λ1M} (2.3)

and Λ1M denotes the dual of TCM .

Let {Zr} be a local (1, 0)-frame on (M,J) with an almost Hermitian metric g and let {ζr} be a

local associated coframe with respect to {Zr}, i.e., ζi(Zj) = δij for i, j = 1, . . . , n. Since g is almost

Hermitian, its components satisfy gij = gīj̄ = 0 and gij̄ = gj̄i = ḡīj . Using these local frame {Zr}

and coframe {ζr}, we have

N(Zī, Zj̄) = −[Zī, Zj̄ ]
(1,0) =: Nk

īj̄Zk, N(Zi, Zj) = −[Zi, Zj]
(0,1) = Nk

īj̄
Zk̄,

and

N =
1

2
Nk

īj̄
Zk̄ ⊗ (ζi ∧ ζj) +

1

2
Nk

īj̄Zk ⊗ (ζ ī ∧ ζ j̄). (2.4)

Let (M,J, g) be an almost Hermitian manifold with dimR M = 2n. An affine connection D on

TCM is called almost Hermitian connection if Dg = DJ = 0. For the almost Hermitian connection,

we have the following Lemma (cf. [10, 13]).

Lemma 2.1. Let (M,J, g) be an almost Hermitian manifold with dimRM = 2n. Then for any

given vector valued (1, 1)-form Θ = (Θi)1≤i≤n, there exists a unique almost Hermitian connection

∇ on (M,J, g) such that the (1, 1)-part of the torsion is equal to the given Θ.

If the (1, 1)-part of the torsion of an almost Hermitian connection vanishes everywhere, then the

connection is called the second canonical connection or the Chern connection. We will refer the

connection as the Chern connection and denote it by ∇. Now let ∇ be the Chern connection on

M . We denote the structure coefficients of Lie bracket by

[Zi, Zj] = Br
ijZr +Br̄

ijZr̄, [Zi, Zj̄ ] = Br
ij̄Zr +Br̄

ij̄Zr̄, [Zī, Zj̄ ] = Br
īj̄Zr +Br̄

īj̄Zr̄.

We have Bk
ij = −Bk

ji since [Zi, Zj] = −[Zj, Zi]. Notice that J is integrable if and only if the Br̄
ij ’s

vanish.

For any p-form ψ, there holds that

dψ(X1, . . . , Xp+1) =
p+1∑

i=1

(−1)i+1Xi(ψ(X1, . . . , X̂i, . . . , Xp+1))

+
∑

i<j

(−1)i+jψ([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xp+1) (2.5)

for any vector fields X1, . . . , Xp+1 on M (cf. [13]). We directly compute that

dζs = −
1

2
Bs

klζ
k ∧ ζl −Bs

kl̄ζ
k ∧ ζ l̄ −

1

2
Bs

k̄l̄ζ
k̄ ∧ ζ l̄. (2.6)
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For any real (1, 1)-form η =
√
−1ηij̄ζ

i ∧ ζ j̄ , we have

∂η =

√
−1

2

(
Zi(ηjk̄)− Zj(ηik̄)−Bs

ijηsk̄ −Bs̄
ik̄ηjs̄ +Bs̄

jk̄ηis̄

)
ζi ∧ ζj ∧ ζ k̄, (2.7)

∂̄η =

√
−1

2

(
Zj̄(ηkī)− Zī(ηkj̄)−Bs

kīηsj̄ +Bs
kj̄ηs̄i +Bs̄

īj̄ηks̄

)
ζk ∧ ζ ī ∧ ζ j̄ . (2.8)

We can split the exterior differential operator d : ΛpM⊗RC → Λp+1M⊗RC, into four components

d = A+ ∂ + ∂̄ + Ā

with

∂ : Λp,qM → Λp+1,qM, ∂̄ : Λp,qM → Λp,q+1M,

A : Λp,qM → Λp+2,q−1M, Ā : Λp,qM → Λp−1,q+2M.

In terms of these components, the condition d2 = 0 can be written as

A2 = 0, ∂A+A∂ = 0, ∂̄Ā+ Ā∂̄ = 0, Ā2 = 0,

A∂̄ + ∂2 + ∂̄A = 0, AĀ+ ∂∂̄ + ∂̄∂ + ĀA = 0, ∂Ā+ ∂̄2 + Ā∂ = 0. (2.9)

A direct computation yields for any ϕ ∈ C∞(M,R),

√
−1∂∂̄ϕ =

1

2
(dJdϕ)(1,1) =

√
−1(ZiZj̄ − [Zi, Zj̄]

(0,1))(ϕ)ζi ∧ ζ j̄ , (2.10)

so we write locally

∂i∂j̄ϕ = (ZiZj̄ − [Zi, Zj̄]
(0,1))ϕ. (2.11)

2.2 The torsion and the curvature on almost complex manifolds

Since the Chern connection ∇ preserves J , we have

∇iZj := ∇Zi
Zj = Γr

ijZr, ∇iZj̄ := ∇Zi
Zj̄ = Γr̄

ij̄Zr̄,

where Γr
ij = grs̄Zi(gjs̄) − grs̄gjl̄B

l̄
is̄. We can obtain that Γr̄

ij̄
= Br̄

ij̄
since the (1, 1)-part of the

torsion of the Chern connection vanishes everywhere.

Note that the mixed derivatives ∇iZj̄ do not depend on g (cf. [10]). Let {γij} be the connection

form, which is defined by γij = Γi
sjζ

s + Γi
s̄jζ

s̄. The torsion T of the Chern connection ∇ is given

by T i = dζi − ζp ∧ γip, T ī = dζ ī − ζ p̄ ∧ γ īp̄, which has no (1, 1)-part and the only non-vanishing

components are as follows:

T s
ij = Γs

ij − Γs
ji −Bs

ij , T s̄
ij = −Bs̄

ij .
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These tell us that T = (T i) splits into T = T ′ + T ′′, where T ′ ∈ Γ(Λ2,0M ⊗ T 1,0M), T ′′ ∈

Γ(Λ0,2M ⊗ T 1,0M).

We denote by Ω the curvature of the Chern connection ∇. We can regard Ω as a section of

Λ2M⊗Λ1,1M , Ω ∈ Γ(Λ2M⊗Λ1,1M) and Ω splits in Ω = H+R+H̄, where R ∈ Γ(Λ1,1M⊗Λ1,1M),

H ∈ Γ(Λ2,0M ⊗ Λ1,1M). The curvature form can be expressed by Ωi
j = dγij + γis ∧ γsj .

In terms of Zr’s, we have

R r
ij̄k = Ωr

k(Zi, Zj̄) = Zi(Γ
r
j̄k)− Zj̄(Γ

r
ik) + Γr

isΓ
s
j̄k − Γr

j̄sΓ
s
ik −Bs

ij̄Γ
r
sk +Bs̄

j̄iΓ
r
s̄k = −R r

j̄ik , (2.12)

H r
ijk = Ωr

k(Zi, Zj) = Zi(Γ
r
jk)− Zj(Γ

r
ik) + Γr

isΓ
s
jk − Γr

jsΓ
s
ik −Bs

ijΓ
r
sk −Bs̄

ijΓ
r
s̄k = −H r

jik , (2.13)

H r
īj̄k = Ωr

k(Zī, Zj̄) = Zī(Γ
r
j̄k)− Zj̄(Γ

r
īk) + Γr

īsΓ
s
j̄k − Γr

j̄sΓ
s
īk −Bs

īj̄Γ
r
sk −Bs̄

īj̄Γ
r
s̄k = −H r

j̄īk . (2.14)

Lemma 2.2 (The first Bianchi identity for the Chern curvature). For any X,Y, Z ∈ TCM ,

∑
Ω(X,Y )Z =

∑(
T (T (X,Y ), Z) +∇XT (Y, Z)

)
,

where the sum is taken over all cyclic permutations.

This identity induces the following formulae:

R l
ij̄k = R l

kj̄i − T r̄
ikT

l
r̄j̄ +∇j̄T

l
ki = R l

kj̄i −Br̄
ikB

l
r̄j̄ +∇j̄T

l
ki, (2.15)

H l
ijk = T r̄

jiT
k̄
r̄l̄ +∇l̄T

k̄
ji = −Br̄

jiT
k̄
r̄l̄ +∇l̄T

k̄
ji, (2.16)

where used that Rijk̄l̄ = Rīj̄kl = Hjl̄ik = Hj̄l̄ik̄ = Hl̄ijk = Hl̄ij̄k̄ = 0.

Let {Zr} be a local unitary (1, 0)-frame with respect to g around a fixed point p ∈ M . Note

that unitary frames always exist locally since we can take any frame and apply the Gram-Schmidt

process. Then with respect to a local g-unitary frame, we have gij̄ = δij for any i, j, k = 1, . . . , n,

and the Christoffel symbols satisfy

Γk
ij = −Γj̄

ik̄
, Γk̄

īj̄ = −Γj
īk
,

since we have

Γk
ij = g(∇iZj, Zk̄) = Zi(gjk̄)− g(Zj ,∇iZk̄) = −Γj̄

ik̄
,

Γk̄
īj̄ = g(Zk,∇īZj̄) = Zī(gkj̄)− g(∇īZk, Zj̄) = −Γj

īk
.

And also we have

R r
ij̄k = Zi(Γ

r
j̄k)− Zj̄(Γ

r
ik) + Γr

isΓ
s
j̄k − Γr

j̄sΓ
s
ik −Bs

ij̄Γ
r
sk +Bs̄

j̄iΓ
r
s̄k

= −Zi(Γ
k̄
j̄r̄) + Zj̄(Γ

k̄
ir̄) + Γs̄

ir̄Γ
k̄
j̄s̄ − Γs̄

j̄r̄Γ
k̄
is̄ +Bs

ij̄Γ
k̄
sr̄ −Bs̄

j̄iΓ
k̄
s̄r̄

= −R k̄
ij̄r̄ , (2.17)
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H r
ijk = Zi(Γ

r
jk)− Zj(Γ

r
ik) + Γr

isΓ
s
jk − Γr

jsΓ
s
ik − Bs

ijΓ
r
sk −Bs̄

ijΓ
r
s̄k

= −Zi(Γ
k̄
jr̄)− Zj(Γ

k̄
ir̄) + Γs̄

ir̄Γ
k̄
js̄ − Γs̄

jr̄Γ
k̄
is̄ +Bs

ijΓ
k̄
sr̄ +Bs̄

ijΓ
k̄
s̄r̄

= −H k̄
ijr̄ (2.18)

and

R r
ij̄k

= Zī(Γ
r̄
jk̄)− Zj(Γ

r̄
īk̄) + Γr̄

īs̄Γ
s̄
jk̄ − Γr̄

js̄Γ
s̄
īk̄ −Bs̄

ījΓ
r̄
s̄k̄ +Bs

jīΓ
r̄
sk̄

= Zj(Γ
k
īr)− Zī(Γ

k
jr) + Γs

īrΓ
k
js − Γs

jrΓ
k
īs −Bs

jīΓ
k
sr +Bs̄

ījΓ
k
s̄r

= R k
jīr , (2.19)

H r
ijk = Zī(Γ

r̄
j̄k̄)− Zj̄(Γ

r̄
īk̄) + Γr̄

īs̄Γ
s̄
j̄k̄ − Γr̄

j̄s̄Γ
s̄
īk̄ − Bs̄

īj̄Γ
r̄
s̄k̄ −Bs

īj̄Γ
r̄
sk̄

= −Zī(Γ
k
j̄r) + Zj̄(Γ

k
īr) + Γs

īrΓ
k
j̄s − Γs

j̄rΓ
k
īs −Bs̄

j̄īΓ
k
s̄r −Bs

j̄īΓ
k
sr

= H k
j̄īr . (2.20)

Hence we obtain Rij̄kr̄ = −Rij̄r̄k, Hijkr̄ = −Hijr̄k and Rij̄kr̄ = Rjīrk̄, Hijkr̄ = Hj̄īrk̄ by using a

local unitary (1, 0)-frame with respect to g.

3 Some results for a smooth function on almost Hermitian

manifolds

Let (M,J, g) be an almost Hermitian manifold. Here note that Bq̄

jb̄
, Bq

j̄b
’s do not depend on the

metric g, which depend only on the almost complex structure J since the mixed derivatives ∇jZb̄,

∇j̄Zb do not depend on g. Since we have Bq

bj̄
= −Bq

j̄b
, we have that Bq

bj̄
, Bq̄

b̄j
’s also do not depend

on g (cf. [10]). Also note that Bs̄
ri, B

s
r̄ī

do not depend on g, depend only on J . We can choose

a local unitary frame {Zr} around an arbitrary chosen point p0 ∈ M such that gij̄(p0) = δij and

∇Z(p0) = 0 (cf. [11]). Then we have Γk
ij(p0) = 0 since ∇iZj(p0) = Γk

ij(p0)Zk = 0, also we obtain

that

[Zi, Zj̄](p0) = ∇iZj(p0)−∇jZi(p0)− T (Zi, Zj̄)(p0) = 0 for all i, j = 1, . . . , n. (3.1)

Then we have that 0 = [Zi, Zj̄](p0) = Bk
ij̄
(p0)Zk +Bk̄

ij̄
(p0)Zk̄, which gives that Bk

ij̄
(p0) = 0 for all

i, j, k = 1, . . . , n and that Bk̄
ij̄
(p0) = 0 for all i, j, k = 1, . . . , n. By choosing such a local unitary

frame around a point p0, we have that the torsion tensor T ′ satisfies that T k
ij(p0) = −Bk

ij(p0) for

all i, j, k = 1, . . . , n, and for instance from the formula (2.11), we have that ϕij̄(p0) = ∂i∂j̄ϕ(p0) =

ZiZj̄(ϕ)(p0) = Zj̄Zi(ϕ)(p0) = ϕj̄i(p0) for a smooth real-valued function ϕ. We show the following

critical lemma for proving the main result. We choose and fix a local unitary frame {Zr} around

an arbitrary chosen point p0 ∈ M such that gij̄(p0) = δij and ∇Z(p0) = 0. Our computations will

be done at the point p0.
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We introduce some results for a smooth function on almost Hermitian manifolds. We write that

ϕs := ∇sϕ = ∂ϕ(Zs) = Zs(ϕ).

Lemma 3.1. One has for a smooth real-valued function ϕ on M ,

∂∂∂̄ϕ(Zk, Zj, Zī) = ∂̄(Bs̄
kj)(Zī)∂̄ϕ(Zs̄). (3.2)

Proof. We compute that from (2.7),

∂∂∂̄ϕ(Zk, Zj , Zī) = Zk(ϕjī)− Zj(ϕkī)− Bs
kjϕs̄i −Bs̄

kīϕjs̄ +Bs̄
jīϕks̄

= Zk(ZjZī(ϕ)−Bs̄
jīϕs̄)− Zj(ZkZī(ϕ)−Bs̄

kīϕs̄)−Bs
kj(ZsZī(ϕ) −Br̄

s̄iϕr̄)

= ZkZjZī(ϕ) − ZjZkZī(ϕ)− Bs
kjZsZī(ϕ)− Zk(B

s̄
jī)ϕs̄ + Zj(B

s̄
kī)ϕs̄

= [Zk, Zj ]Zī(ϕ) −Bs
kjZsZī(ϕ)− Zk(B

s̄
jī)ϕs̄ + Zj(B

r̄
s̄i)ϕr̄

= Bs̄
kjZs̄Zī(ϕ)− Zk(B

s̄
jī)ϕs̄ + Zj(B

s̄
kī)ϕs̄

= Bs̄
kj [Zs̄, Zī](ϕ) +Bs̄

kjZīZs̄(ϕ) −
{
Zk(Γ

s̄
jī)− Zj(Γ

s̄
kī)

}
ϕs̄

= Bs̄
kjB

r
s̄īϕr +Bs̄

kjB
r̄
s̄̄iϕr̄ +Bs̄

kjZīZs̄(ϕ) −H s
k̄j̄i

ϕs, (3.3)

where we have used that Γk̄
ij̄
(p0) = Bk̄

ij̄
(p0) = 0, Γk

īj
(p0) = Bk

īj
(p0) = 0, Γk

ij(p0) = 0 for all

i, j, k = 1, . . . , n, and that from (2.14),

H s
k̄j̄i (p0) =

{
Zk̄(Γ

s
j̄i)− Zj̄(Γ

s
k̄i) + Γs

k̄rΓ
r
j̄i − Γs

j̄rΓ
r
k̄i −Br

k̄j̄Γ
s
ri −Br̄

k̄j̄Γ
s
r̄i

}
(p0)

= Zk̄(Γ
s
j̄i)(p0)− Zj̄(Γ

s
k̄i)(p0).

We compute that

Bs̄
kjZīZs̄(ϕ) = Zī(B

s̄
kjZs̄(ϕ)) − Zī(B

s̄
kj)Zs̄(ϕ)

= Zī(∂
2ϕ(Zk, Zj))− Zī(B

s̄
kj)∂̄ϕ(Zs̄)

= ∂̄∂2ϕ(Zī, Zk, Zj)− Zī(B
s̄
kj)∂̄ϕ(Zs̄), (3.4)

where we used that

∂2ϕ(Zk, Zj) = ZkZj(ϕ)− ZjZk(ϕ)−Bs
kjZs(ϕ)

= [Zk, Zj ](ϕ)−Bs
kjZs(ϕ)

= Bs̄
kjZs̄(ϕ), (3.5)

∂̄∂2ϕ(Zī, Zk, Zj) = Zī(∂
2ϕ(Zk, Zj))− ∂2ϕ([Zī, Zk], Zj) + ∂2ϕ([Zī, Zj ], Zk)

= Zī(∂
2ϕ(Zk, Zj))−Br̄

sjB
s
īkϕr̄ + Br̄

skB
s
ījϕr̄

= Zī(∂
2ϕ(Zk, Zj)).

By combining (3.3) with (3.4), we obtain

∂∂∂̄ϕ(Zk, Zj, Zī) = ∂̄∂2ϕ(Zī, Zk, Zj) +Bs̄
kjB

r
s̄ī∂ϕ(Zr) +

{
Br̄

kjB
s̄
r̄ī − Zī(B

s̄
kj)−H s

k̄j̄i

}
∂̄ϕ(Zs̄)

= ∂̄∂2ϕ(Zī, Zk, Zj) +Bs̄
kjB

r
s̄ī∂ϕ(Zr),



CUBO
24, 2 (2022)

On an a priori L∞ estimate for a class of Monge-Ampère type... 247

where we have used that from (2.16) and (2.20),

H s
k̄j̄i

= H i
jks

= −Br̄
kjT

s̄
r̄ī +∇īT

s̄
kj

= Br̄
kjB

s̄
r̄ī − Zī(B

s̄
kj). (3.6)

We compute by using (3.5),

∂∂∂̄ϕ(Zk, Zj , Zī) = ∂̄∂2ϕ(Zī, Zk, Zj) +Bs̄
kjB

r
s̄̄i∂ϕ(Zr)

= ∂̄(Bs̄
kj ∂̄ϕ(Zs̄))(Zī) + T s̄

kjT
r
s̄̄i∂ϕ(Zr)

= ∂̄(Bs̄
kj)(Zī)∂̄ϕ(Zs̄) +Bs̄

kj ∂̄
2ϕ(Zī, Zs̄) + T s̄

kjT
r
s̄̄i∂ϕ(Zr)

= ∂̄(Bs̄
kj)(Zī)∂̄ϕ(Zs̄)− T s̄

kjB
r
īs̄∂ϕ(Zr) + T s̄

kjT
r
s̄̄i∂ϕ(Zr)

= ∂̄(Bs̄
kj)(Zī)∂̄ϕ(Zs̄),

where we have used that Br
īs̄
= −T r

īs̄
= T r

s̄̄i
.

Lemma 3.2. One has for a smooth real-valued function ϕ on M ,

∂̄∂∂̄ϕ(Zk̄, Zi, Zj̄) = ∂(Bs
k̄j̄)(Zi)∂ϕ(Zs). (3.7)

Proof. We compute that from (2.8), using Bs
ij̄
(p0) = 0 for all i, j, s = 1, . . . , n, Br̄

is̄(p0) = 0 for all

i, r, s = 1, . . . , n and [Zk̄, Zi](p0) = 0 for all i, k = 1, . . . , n,

∂̄∂∂̄ϕ(Zk̄, Zi, Zj̄) = Zk̄(ϕij̄)− Zj̄(ϕik̄)−Bs
ij̄ϕsk̄ +Bs

ik̄ϕsj̄ +Bs̄
j̄k̄ϕis̄

= Zk̄(ZiZj̄(ϕ)−Bs̄
ij̄ϕs̄)− Zj̄(ZiZk̄(ϕ)−Bs̄

ik̄ϕs̄) +Bs̄
j̄k̄ϕis̄

= Zk̄ZiZj̄(ϕ) − Zj̄ZiZk̄(ϕ) +Bs̄
j̄k̄(ZiZs̄(ϕ)−Br̄

is̄ϕr̄)

−Zk̄(B
s̄
ij̄)ϕs̄ + Zj̄(B

s̄
ik̄)ϕs̄

= ZiZk̄Zj̄(ϕ) + [Zk̄, Zi]Zj̄(ϕ) − ZiZj̄Zk̄(ϕ)− [Zj̄ , Zi]Zk̄(ϕ)

+Bs̄
j̄k̄ZiZs̄(ϕ)− Zk̄(B

s̄
ij̄)ϕs̄ + Zj̄(B

s̄
ik̄)ϕs̄

= Zi[Zk̄, Zj̄](ϕ) −Bs̄
k̄j̄ZiZs̄(ϕ)− Zk̄(Γ

s̄
ij̄)ϕs̄ + Zj̄(Γ

s̄
ik̄)ϕs̄

= Bs
k̄j̄ZiZs(ϕ) + Zi(B

s
k̄j̄)ϕs + Zi(B

s̄
k̄j̄)ϕs̄ − Zk̄(Γ

s̄
ij̄)ϕs̄ + Zj̄(Γ

s̄
ik̄)ϕs̄

= Bs
k̄j̄ZiZs(ϕ)− Zi(T

s
k̄j̄)ϕs −

{
Zi(Γ

s̄
k̄j̄)− Zi(Γ

s̄
j̄k̄)− Zi(B

s̄
k̄j̄)

}
ϕs̄

−
{
Zk̄(Γ

s̄
ij̄)− Zi(Γ

s̄
k̄j̄)

}
ϕs̄ +

{
Zj̄(Γ

s̄
ik̄)− Zi(Γ

s̄
j̄k̄)

}
ϕs̄

= Bs
k̄j̄ZiZs(ϕ)− Zi(T

s
k̄j̄)ϕs − Zi(T

s̄
k̄j̄)ϕs̄ −R s

kīj
ϕs̄ +R s

jīk
ϕs̄, (3.8)

where we have used that Bs̄
k̄j̄

= −Bs̄
j̄k̄

and that

ZiZk̄Zj̄(ϕ)− ZiZj̄Zk̄(ϕ) = Zi[Zk̄, Zj̄ ](ϕ)

= Zi(B
s
k̄j̄Zs +Bs̄

k̄j̄Zs̄)(ϕ)

= Zi(B
s
k̄j̄)ϕs +Bs

k̄j̄ZiZs(ϕ) + Zi(B
s̄
k̄j̄)ϕs̄ +Bs̄

k̄j̄ZiZs̄(ϕ),
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and from (2.12),

R s
kīj (p0) =

{
Zk(Γ

s
īj)− Zī(Γ

s
kj) + Γs

krΓ
r
īj − Γs

īrΓ
r
kj −Br

kīΓ
s
rj +Br̄

īkΓ
s
r̄j

}
(p0)

= Zk(Γ
s
īj)(p0)− Zī(Γ

s
kj)(p0).

We compute that

Bs
k̄j̄ZiZs(ϕ) = Zi(B

s
k̄j̄Zs(ϕ))− Zi(B

s
k̄j̄)Zs(ϕ)

= Zi(∂̄
2ϕ(Zk̄, Zj̄))− Zi(B

s
k̄j̄)∂ϕ(Zs)

= ∂∂̄2ϕ(Zi, Zk̄, Zj̄) + Zi(T
s
k̄j̄)∂ϕ(Zs), (3.9)

where we used that

∂̄2ϕ(Zk̄, Zj̄) = Zk̄Zj̄(ϕ)− Zj̄Zk̄(ϕ)−Bs̄
k̄j̄Zs̄(ϕ)

= [Zk̄, Zj̄ ](ϕ)−Bs̄
k̄j̄Zs̄(ϕ)

= Bs
k̄j̄Zs(ϕ), (3.10)

∂∂̄2ϕ(Zi, Zk̄, Zj̄) = Zi(∂̄
2ϕ(Zk̄, Zj̄))− ∂̄2ϕ([Zi, Zk̄], Zj̄) + ∂̄2ϕ([Zi, Zj̄ ], Zk̄)

= Zi(∂
2ϕ(Zk̄, Zj̄))−Br

s̄j̄B
s̄
ik̄ϕr + Br

s̄k̄B
s̄
ij̄ϕr

= Zi(∂
2ϕ(Zk̄, Zj̄)).

Combining (3.8) with (3.9), we obtain that

∂̄∂∂̄ϕ(Zk̄, Zi, Zj̄) = ∂∂̄2ϕ(Zi, Zk̄, Zj̄) +
{
R s

jīk
−R s

kīj
− Zi(T

s̄
k̄j̄)

}
∂̄ϕ(Zs̄)

= ∂∂̄2ϕ(Zi, Zk̄, Zj̄) + T r
k̄j̄T

s̄
ri∂̄ϕ(Zs̄),

where we have used that from (2.15),

R s
jīk

−R s
kīj

= −Br
j̄k̄
Bs̄

ri +∇īT
s
kj

= T r
k̄j̄T

s̄
ri + Zi(T

s̄
k̄j̄).

We compute that by applying (3.5) and (3.10),

∂̄∂∂̄ϕ(Zk̄, Zi, Zj̄) = ∂∂̄2ϕ(Zi, Zk̄, Zj̄) + T r
k̄j̄T

s̄
ri∂̄ϕ(Zs̄)

= ∂(Bs
k̄j̄∂ϕ(Zs))(Zi) + T r

k̄j̄T
s̄
ri∂̄ϕ(Zs̄)

= ∂(Bs
k̄j̄)(Zi)∂ϕ(Zs) +Br

k̄j̄∂
2ϕ(Zi, Zr) + T r

k̄j̄T
s̄
ri∂̄ϕ(Zs̄)

= ∂(Bs
k̄j̄)(Zi)∂ϕ(Zs)− T r

k̄j̄B
s̄
ir ∂̄ϕ(Zs̄) + T r

k̄j̄T
s̄
ri∂̄ϕ(Zs̄)

= ∂(Bs
k̄j̄)(Zi)∂ϕ(Zs),

where we have used that Bs̄
ir = −T s̄

ir = T s̄
ri.
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Lemma 3.3. One has for a smooth real-valued function ϕ on M ,

∂∂̄∂∂̄ϕ(Zl, Zk̄, Zi, Zj̄) = −∂2(T s
k̄j̄)(Zl, Zi)∂ϕ(Zs) + ∂(T s

k̄j̄)(Zi)T
r̄
ls∂̄ϕ(Zr̄). (3.11)

Proof. By applying (3.5) and (3.6), we have that

∂∂̄∂∂̄ϕ(Zl, Zk̄, Zi, Zj̄) = ∂2(Bs
k̄j̄)(Zl, Zi)∂ϕ(Zs) + ∂(Bs

k̄j̄)(Zi)∂
2ϕ(Zl, Zs)

= −∂2(T s
k̄j̄)(Zl, Zi)∂ϕ(Zs) + ∂(T s

k̄j̄)(Zi)T
r̄
ls∂̄ϕ(Zr̄).

In order to avoid a notational quagmire, we adopt the following ∗-convention C1 ∗ C2 between two

geometric quantities C1 and C2 with respect to a metric g:

(1) Summation over pairs of maching upper and lower indices.

(2) Contraction on upper indices with respect to the metric.

(3) Contraction on lower indices with respect to the dual metrics.

Since the point p0 was chosen arbitrary, the computations in Lemma 3.1–3.3 hold globally on an

almost Hermitian manifold M for any real-valued smooth function ϕ, which implies that we can

write (3.2), (3.7), and (3.11) globally on M as follows:

∂∂̄∂∂̄ϕ =: T1 ∗ ∂ϕ+ T2 ∗ ∂̄ϕ, ∂2∂̄ϕ =: T3 ∗ ∂̄ϕ, ∂̄∂∂̄ϕ =: T4 ∗ ∂ϕ. (3.12)

4 Proof of Theorem 1.1

Let (M2n, J,ω) be a compact almost Hermitian manifold of real dimension 2n with n ≥ 2 in

this whole section. Let u be a smooth solution of (1.1). As in [5], we let Sk(λ) denote the k-th

elementary symmetric polynomial of λ ∈ Rn:

Sk(λ) :=
∑

1≤i1<···<ik≤n

λi1 · · ·λik .

For a square matrix U , we define Sα(U) := Sα(λ(U)), where λ(U) denote the eigenvalues of the

matrix U . Locally, we can write the equation (1.1) in the following form:

Sn(χu)

Sn−α(χu)
=

ψ

Cα
n

, (4.1)

where Cα
n := n!

(n−α)!α! . We need the following generalized Newton-MacLaurin inequality.

Lemma 4.1 (cf. [1, Proposition 3], [9, Proposition 2.1]). For λ ∈ Γk := {λ ∈ Rn : Sk(λ) > 0,

∀ 1 ≤ i ≤ k} and 0 ≤ l < k ≤ n, 0 ≤ s < r, r ≤ k, s ≤ l, we have

[ Sk(λ)
Ck

n

Sl(λ)
Cl

n

] 1
k−l

≤

[ Sr(λ)
Cr

n

Ss(λ)
Cs

n

] 1
r−s

. (4.2)
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In this section, the positive constant C may be changed from line to line, but it depends on the

allowed data.

Proof of Theorem 1.1. It suffices to show the following key inequality:
∫

M

|∂e−
p
2 u|2gωn ≤ Cp

∫

M

e−puωn (4.3)

for p large enough.

Lemma 4.2. Let u be a smooth admissible solution to the Monge-Ampère type equation (1,1).

Then, there are uniform constants C, p0 such that for any p ≥ p0, we have the inequality (4.3).

Proof. Without loss of generality, we may assume that

nχn−1 > (n− α)ψχn−α−1 ∧ ωα, (4.4)

and there exist uniform positive constants λ,Λ > 0 such that

λω ≤ χ ≤ Λω. (4.5)

As the local expression (4.1):

χn
u

χn−α
u ∧ ωα

= Cα
n

Sn(χu)

Sn−α(χu)
= ψ,

we locally have that

Cα
n−1

Sn−1(χu)

Sn−α−1(χu)
=

χn−1
u

χn−α−1
u ∧ ωα

and which implies that the following inequality

nχn−1
u > (n− α)ψχn−α−1

u ∧ ωα (4.6)

is equivalent to
Sn−1(χu)

Sn−α−1(χu)
>

Sn(χu)

Sn−α(χu)
(4.7)

since we have locally that

n− α

n
· ψ =

n− α

n
· Cα

n

Sn(χu)

Sn−α(χu)
= Cα

n−1
Sn(χu)

Sn−α(χu)
.

Note that we may apply Lemma 4.1 to χu since χu > 0. Applying the inequality (4.2), we have

[ Sn(χu)
Cn

n

Sn−α(χu)

Cn−α
n

] 1
α

≤

[ Sn−1(χu)

Cn−1
n

Sn−α−1(χu)

Cn−α−1
n

] 1
α

,

which can be written by

Sn(χu)

Sn−α(χu)
≤

Cn−α−1
n

Cn−1
n Cn−α

n

Sn−1(χu)

Sn−α−1(χu)

=
n− α

n(α+ 1)

Sn−1(χu)

Sn−α−1(χu)

<
Sn−1(χu)

Sn−α−1(χu)
,
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where we used that n−α
n(α+1) < 1. Therefore, the inequality (4.7) holds and as a consequence, we

have the inequality (4.6).

We estimate that

I :=

∫

M

e−pu((χn
u − χn)− ψ(χn−α

u ∧ ωα − χn−α ∧ ωα))

=

∫

M

e−pu
( χn

u

χn−α
u ∧ ωα

−
χn

χn−α ∧ ωα

)
χn−α ∧ ωα

≤ C

∫

M

e−puωn. (4.8)

On the other hand, we have that by Stokes’ theorem,

I =

∫ 1

0

∫

M

e−pu d

dt
(χn

tu − ψχn−α
tu ∧ ωα)dt

=

∫ 1

0

∫

M

e−pu
√
−1∂∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt

=

∫ 1

0

∫

M

d(e−pu
√
−1∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα))dt

−
∫ 1

0

∫

M

√
−1∂e−pu ∧ ∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt

+

∫ 1

0

∫

M

√
−1e−pu∂̄u ∧ ∂(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt

= p

∫ 1

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt

−
1

p

∫ 1

0

∫

M

√
−1∂̄e−pu ∧ ∂(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt

= p

∫ 1

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt

−
1

p

∫ 1

0

∫

M

d(
√
−1e−pu∂(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα))dt

+
1

p

∫ 1

0

∫

M

e−pu
√
−1∂̄∂(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα))dt

= p

∫ 1

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt

−
1

p

∫ 1

0

∫

M

e−pu
√
−1∂∂̄(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt, (4.9)

where we have used that d = A+ ∂ + ∂̄ + Ā,

∂̄(e−pu
√
−1∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)) = 0,

A(e−pu
√
−1∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)) = 0,

Ā(e−pu
√
−1∂̄u ∧ (nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)) = 0,

∂(
√
−1e−pu∂(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)) = 0,
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A(
√
−1e−pu∂(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)) = 0,

Ā(
√
−1e−pu∂(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)) = 0

and from (2.9),

∂̄∂(nχn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα) = −(∂∂̄ +AĀ+ ĀA)(nχn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα)

= −∂∂̄(nχn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα)

since we have

A(nχn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα) = Ā(nχn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα) = 0.

We compute that for 0 ≤ t ≤ 1,

−
1

p

∫

M

e−pu
√
−1∂∂̄(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)

= −
1

p

∫

M

e−pu
√
−1∂

(
n(n− 1)χn−2

tu ∧ (∂̄χ+
√
−1t∂̄∂∂̄u)− (n− α)∂̄ψ ∧ χn−α−1

tu ∧ ωα

−(n− α)(n − α− 1)ψχn−α−2
tu ∧ (∂̄χ+

√
−1t∂̄∂∂̄u) ∧ ωα − α(n− α)ψχn−α−1

tu ∧ ωα−1 ∧ ∂̄ω
)

= −
1

p

∫

M

√
−1e−pu

{
n(n− 1)(n− 2)χn−3

tu ∧ (∂χ+ t
√
−1∂∂∂̄u) ∧ (∂̄χ+ t

√
−1∂̄∂∂̄u)

+n(n− 1)χn−2
tu ∧ (∂∂̄χ+ t

√
−1∂∂̄∂∂̄u)− (n− α)∂∂̄ψ ∧ χn−α−1

tu ∧ ωα

+(n− α)(n − α− 1)∂̄ψ ∧ χn−α−2
tu ∧ (∂χ+ t

√
−1∂∂∂̄u) ∧ ωα

+α(n− α)∂̄ψ ∧ χn−α−1
tu ∧ ωα−1 ∧ ∂ω

−(n− α)(n − α− 1)∂ψ ∧ χn−α−2
tu ∧ (∂̄χ+ t

√
−1∂̄∂∂̄u) ∧ ωα

−(n− α)(n − α− 1)(n− α− 2)ψχn−α−3
tu ∧ (∂χ+ t

√
−1∂∂∂̄u) ∧ (∂̄χ+ t

√
−1∂̄∂∂̄u) ∧ ωα

−(n− α)(n − α− 1)ψχn−α−2
tu ∧ (∂∂̄χ+ t

√
−1∂∂̄∂∂̄u) ∧ ωα

−α(n− α)(n− α− 1)ψχn−α−2
tu ∧ (∂̄χ+ t

√
−1∂̄∂∂̄u) ∧ ωα−1 ∧ ∂ω

−α(n− α)∂ψ ∧ χn−α−1
tu ∧ ωα−1 ∧ ∂̄ω

−α(n− α)(n− α− 1)ψχn−α−2
tu ∧ (∂χ+ t

√
−1∂∂∂̄u) ∧ ωα−1 ∧ ∂̄ω

−α(n− α)(α − 1)ψχn−α−1
tu ∧ ωα−2 ∧ ∂ω ∧ ∂̄ω

−α(n− α)ψχn−α−1
tu ∧ ωα−1 ∧ ∂∂̄ω

}

≥ −
C

p

∫

M

e−puχn−3
tu ∧ ω3 −

C

p

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−3

tu ∧ ω2 − C

∫

M

e−puχn−2
tu ∧ ω2

−
C

p

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

tu ∧ ω

−
C

p

∫

M

e−puχn−α−1
tu ∧ ωα+1 −

C

p

∫

M

e−puχn−α−2
tu ∧ ωα+2

−
C

p

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−α−2

tu ∧ ωα+1 −
C

p

∫

M

e−puχn−α−3
tu ∧ ωα+3

−
C

p

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−α−3

tu ∧ ωα+2, (4.10)
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where we have used that for instance, by applying (3.12),
∫

M

√
−1e−puχn−2

tu ∧ t
√
−1∂∂̄∂∂̄u

=

∫

M

√
−1e−puχn−2

tu ∧ t
√
−1(T1 ∗ ∂u+ T2 ∗ ∂̄u)

≤ C

∫

M

e−puχn−2
tu ∧

√
−1∂u ∧ ∂̄u ∧ ω + C

∫

M

e−puχn−2
tu ∧ ω2, (4.11)

∫

M

∂̄ψ ∧ χn−α−2
tu ∧ t

√
−1∂∂∂̄u ∧ ωα

=

∫

M

∂̄ψ ∧ χn−α−2
tu ∧ t

√
−1T3 ∗ ∂̄u ∧ ωα

≤ C

∫

M

χn−α−2
tu ∧

√
−1∂u ∧ ∂̄u ∧ ωα+1 + C

∫

M

χn−α−2
tu ∧ ωα+2, (4.12)

∫

M

√
−1e−puχn−3

tu ∧ ∂χ ∧ t
√
−1∂̄∂∂̄u ∧ ω

=

∫

M

√
−1e−puχn−3

tu ∧ ∂χ ∧ t
√
−1T4 ∗ ∂u ∧ ω

≤ C

∫

M

e−puχn−3
tu ∧

√
−1∂u ∧ ∂̄u ∧ ω + C

∫

M

e−puχn−3
tu ∧ ω3. (4.13)

Since we have assumed that χ,χu > 0, then we have that χtu > 0 for any 0 ≤ t ≤ 1. Now we

introduce the following crucial inequalities (cf. [6]):

Lemma 4.3. For any 0 < t ≤ 1, 1 < l ≤ n, one has that

l

l − 1

∫ t

0

∫

M

e−pu
√
−1∂u∧∂̄u∧χl−1

su ∧ωn−lds ≥ λ

∫ t

0

∫

M

e−pu
√
−1∂u∧∂̄u∧χl−2

su ∧ωn−l+1ds, (4.14)

and for any 0 < t ≤ 1, 1 ≤ k ≤ n, one has that

k + 1

k

∫ t

0
χk
su ∧ ωn−kds ≥ λ

∫ t

0
χk−1
su ∧ ωn−k+1ds, (4.15)

where λ > 0 is the uniform constant in (4.5).

Proof. By using integration by parts and G̊arding’s inequality as in [6, (2.22)], we have that by

using χ ≥ λω,
∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χl−1

su ∧ ωn−lds

=

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χl−2

su ∧ (χ+ s
√
−1∂∂̄u) ∧ ωn−lds

≥ λ

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χl−2

su ∧ ωn−l+1ds

+
1

l− 1

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ s

d

ds
χl−1
su ∧ ωn−lds

≥ λ

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χl−2

su ∧ ωn−l+1ds

−
1

l− 1

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χl−1

su ∧ ωn−lds, (4.16)
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where we used that
∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ s

d

ds
χl−1
su ∧ ωn−lds

= t

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χl−1

tu ∧ ωn−l −
∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χl−1

su ∧ ωn−lds

≥ −
∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χl−1

su ∧ ωn−lds.

The inequality (4.16) gives the desired one (4.14). Next we compute that by using integration by

parts and G̊arding’s inequality as in [6, (3.7)], for 1 ≤ k ≤ n, using χ ≥ λω,

∫ t

0
χk
su ∧ ωn−kds =

∫ t

0
χk−1
su ∧ (χ+ s

√
−1∂∂̄u) ∧ ωn−kds

≥ λ

∫ t

0
χk−1
su ∧ ωn−k+1ds+

1

k

∫ t

0
s
d

ds
(χk

su ∧ ωn−k)ds

= λ

∫ t

0
χk−1
su ∧ ωn−k+1ds+

t

k
χk
tu ∧ ωn−k −

1

k

∫ t

0
χk
su ∧ ωn−kds

≥ λ

∫ t

0
χk−1
su ∧ ωn−k+1ds−

1

k

∫ t

0
χk
su ∧ ωn−kds,

which implies the inequality (4.15).

By applying these inequalities (4.14) and (4.15) for t = 1 to the estimate (4.10), we obtain that

−
1

p

∫ 1

0

∫

M

e−pu
√
−1∂∂̄(nχn−1

tu − (n− α)ψχn−α−1
tu ∧ ωα)dt

≥ −
C

p

∫ 1

0

∫

M

e−puχn−1
tu ∧ ωdt−

C

p

∫ 1

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−1

tu dt. (4.17)

Combining (4.17) with (4.9), we have that

I ≥ p

∫ 1

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧

{(
n−

C

p2

)
χn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα
}
dt

−
C

p

∫ 1

0

∫

M

e−puχn−1
tu ∧ ωdt. (4.18)

By the concavity of hyperbolic polynomials, for 0 < τ < 1, 1 ≤ k ≤ n, we have (cf. [6, (2.13)])

1

τ
S

1
k

k (χτtu) +
(
1−

1

τ

)
S

1
k

k (χ) ≥ S
1
k

k (χtu),

which gives

Sk(χτtu) ≥ τkSk(χtu).

For τ = 1
2 , k = n− 1, we obtain that

∫ 1

0

∫

M

e−puχn−1
tu ∧ ωdt ≤ 2n−1

∫ 1

0

∫

M

e−puχn−1
tu
2

∧ ωdt

= 2n
∫ 1

2

0

∫

M

e−puχn−1
tu ∧ ωdt. (4.19)
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By combining (4.8), (4.18) and (4.19), we have that

p

∫ 1

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧

{(
n−

C

p2

)
χn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα
}
dt

≤ C

∫

M

e−puωn +
C

p

∫ 1
2

0

∫

M

e−puχn−1
tu ∧ ωdt. (4.20)

Since we have χtu > 0 and

nχn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα > 0

for any 0 ≤ t ≤ 1, we can choose a sufficiently large p so that

nχn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα −
C

p2
χn−1
tu > 0.

Then we have that by the concavity of the quotient equation, for some 0 < δ < 1, we have (cf. [6,

(3.10)])

nχn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα > n
{
1−

1

(1 + δ − tδ)α

}
χn−1
tu ,

hence for sufficiently large p,

∫ 1

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧

{(
n−

C

p2

)
χn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα
}
dt

≥
∫ 1

2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧

{(
n−

C

p2

)
χn−1
tu − (n− α)ψχn−α−1

tu ∧ ωα
}
dt

≥
∫ 1

2

0
n
{
1−

C

np2
−

1

(1 + δ − tδ)α

}∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−1

tu dt

≥ n
{
1−

C

np2
−

1

(1 + δ
2 )

α

}∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−1

tu dt. (4.21)

On the other hand, we compute by Stokes’ theorem,

1

p

∫ 1
2

0

∫

M

e−puχn−1
tu ∧ ωdt

=
1

p

∫ 1
2

0

∫ t

0

d

ds

(∫

M

e−puχn−1
su ∧ ω

)
dsdt+

1

2p

∫

M

e−puχn−1 ∧ ω

=
n− 1

p

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂∂̄u ∧ χn−2

su ∧ ωdsdt+
1

2p

∫

M

e−puχn−1 ∧ ω

=
n− 1

p

∫ 1
2

0

∫ t

0

∫

M

d(e−pu
√
−1∂̄u ∧ χn−2

su ∧ ω)dsdt

−
n− 1

p

∫ 1
2

0

∫ t

0

∫

M

√
−1∂e−pu ∧ ∂̄u ∧ χn−2

su ∧ ωdsdt

+
n− 1

p

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂̄u ∧ ∂(χn−2

su ∧ ω)dsdt+
1

2p

∫

M

e−puχn−1 ∧ ω
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= (n− 1)

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

su ∧ ωdsdt

−
n− 1

p2

∫ 1
2

0

∫ t

0

∫

M

√
−1∂̄e−pu ∧ ∂(χn−2

su ∧ ω)dsdt+
1

2p

∫

M

e−puχn−1 ∧ ω

= (n− 1)

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

su ∧ ωdsdt

−
n− 1

p2

∫ 1
2

0

∫ t

0

∫

M

d(
√
−1e−pu∂(χn−2

su ∧ ω))dsdt

+
n− 1

p2

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂̄∂(χn−2

su ∧ ω)dsdt+
1

2p

∫

M

e−puχn−1 ∧ ω

= (n− 1)

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

su ∧ ωdsdt

−
n− 1

p2

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂∂̄(χn−2

su ∧ ω)dsdt+
1

2p

∫

M

e−puχn−1 ∧ ω, (4.22)

where we used that as in the computation in (4.9),

d(e−pu
√
−1∂̄u∧χn−2

su ∧ω) = (∂+ ∂̄+A+ Ā)(e−pu
√
−1∂̄u∧χn−2

su ∧ω) = ∂(e−pu
√
−1∂̄u∧χn−2

su ∧ω),

d(
√
−1e−pu∧∂(χn−2

su ∧ω)) = (∂+ ∂̄+A+Ā)(
√
−1e−pu∧∂(χn−2

su ∧ω)) = ∂̄(
√
−1e−pu∧∂(χn−2

su ∧ω)),

and

∂̄∂(χn−2
su ∧ ω) = −(∂∂̄ +AĀ+ ĀA)(χn−2

su ∧ ω) = −∂∂̄(χn−2
su ∧ ω).

Applying (3.12), we estimate that as in (4.11)-(4.13) such as
∫

M

√
−1e−puχn−3

su ∧ s
√
−1∂∂̄∂∂̄u ∧ ω

≤ C

∫

M

e−puχn−3
su ∧

√
−1∂u ∧ ∂̄u ∧ ω2 + C

∫

M

e−puχn−3
su ∧ ω3, (4.23)

∫

M

e−puχn−4
su ∧ s

√
−1∂∂∂̄u ∧ ∂̄χ ∧ ω

≤ C

∫

M

e−puχn−4
su ∧

√
−1∂u ∧ ∂̄u ∧ ω3 + C

∫

M

e−puχn−4
su ∧ ω4, (4.24)

∫

M

e−puχn−4
su ∧ ∂χ ∧ s

√
−1∂̄∂∂̄u ∧ ω2

≤ C

∫

M

e−puχn−4
su ∧

√
−1∂u ∧ ∂̄u ∧ ω3 + C

∫

M

e−puχn−4
su ∧ ω4. (4.25)

Then we estimate that by applying these estimates (4.23)-(4.25) and the inequalities (4.14)-(4.15),

n− 1

p2

∫ t

0

∫

M

e−pu
√
−1∂∂̄(χn−2

su ∧ ω)ds

=
n− 1

p2

∫ t

0

∫

M

e−pu
√
−1∂((n− 2)χn−3

su ∧ (∂̄χ+ s
√
−1∂̄∂∂̄u) ∧ ω)ds

=
n− 1

p2

∫ t

0

∫

M

e−pu
√
−1

{
(n− 2)(n− 3)χn−4

su ∧ (∂χ+ s
√
−1∂∂∂̄u) ∧ (∂̄χ+ s

√
−1∂̄∂∂̄u) ∧ ω

+(n− 2)χn−3
su ∧ (∂∂̄χ+ s

√
−1∂∂̄∂∂̄u) ∧ ω + (n− 2)χn−3

su ∧ (∂̄χ+ s
√
−1∂̄∂∂̄u) ∧ ∂ω
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+(n− 2)χn−3
su ∧ (∂χ+ s

√
−1∂∂∂̄u) ∧ ∂̄ω + χn−2

su ∧ ∂∂̄ω
}
ds

≤
C

p2

∫ t

0

∫

M

e−puχn−4
su ∧ ω4ds+

C

p2

∫ t

0

∫

M

e−puχn−4
su ∧

√
−1∂u ∧ ∂̄u ∧ ω3ds

+
C

p2

∫ t

0

∫

M

e−puχn−3
su ∧ ω3ds+

C

p2

∫ t

0

∫

M

e−puχn−3
su ∧

√
−1∂u ∧ ∂̄u ∧ ω2ds

+
C

p2

∫ t

0

∫

M

e−puχn−2
su ∧ ω2ds

≤
C1

p2

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

su ∧ ωds+
C2

p2

∫ t

0

∫

M

e−puχn−2
su ∧ ω2ds. (4.26)

By choosing p sufficiently large such that C1
p2 < n − 1, C2

p < λ · n−1
n , by combining (4.22) with

(4.26), and applying (4.15) for t = 1
2 , k = n− 1 such that

∫ 1
2

0

∫

M

e−puχn−2
tu ∧ ω2dt ≤

1

λ
·

n

n− 1

∫ 1
2

0

∫

M

e−puχn−1
tu ∧ ωdt,

we obtain that for 0 ≤ t ≤ 1
2 ,

1

p

∫ 1
2

0

∫

M

e−puχn−1
tu ∧ ωdt

≤ (n− 1)

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

su ∧ ωdsdt+
1

2p

∫

M

e−puχn−1 ∧ ω

+
C1

p2

∫ 1
2

0

∫ t

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

su ∧ ωdsdt+
C2

p2

∫ 1
2

0

∫ t

0

∫

M

e−puχn−2
su ∧ ω2dsdt

≤ (n− 1)

∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

tu ∧ ωdt

+
1

2p
·
λ(n− 1)

n

∫ 1
2

0

∫

M

e−puχn−2
tu ∧ ω2dt+

1

2p

∫

M

e−puχn−1 ∧ ω

≤ (n− 1)

∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

tu ∧ ωdt

+
1

2p

∫ 1
2

0

∫

M

e−puχn−1
tu ∧ ωdt+

1

2p

∫

M

e−puχn−1 ∧ ω (4.27)

which implies that we have by applying (4.14) for t = 1
2 , l = n,

1

2p

∫ 1
2

0

∫

M

e−puχn−1
tu ∧ ωdt

≤ (n− 1)

∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

tu ∧ ωdt+
1

2p

∫

M

e−puχn−1 ∧ ω

≤
n

λ

∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−1

tu dt+
1

2p

∫

M

e−puχn−1 ∧ ω. (4.28)

Therefore, by combining (4.28) with (4.20), (4.21), we obtain that

[
np

{
1−

C

np2
−

1

(1 + δ
2 )

α

}
− C

2n

λ

] ∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−1

tu dt

≤ C

∫

M

e−puωn +
C

p

∫

M

e−puχn−1 ∧ ω ≤ C

∫

M

e−puωn. (4.29)
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We choose p sufficiently large such that
[
n
{
1−

C

np2
−

1

(1 + δ
2 )

α

}
− C

2n

λp

]
> 0.

By applying (4.14) for t = 1
2 repeatedly, we obtain

∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−1

tu dt ≥ λ
n− 1

n

∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−2

tu ∧ ωdt

≥ λ2
n− 1

n

n− 2

n− 1

∫ 1
2

0

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ χn−3

tu ∧ ω2dt

· · ·

≥
λn−1

n

1

2

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ ωn−1. (4.30)

By combining (4.29) with (4.30), we finally obtain that for sufficiently large p,

p

∫

M

e−pu
√
−1∂u ∧ ∂̄u ∧ ωn−1 ≤ C

∫

M

e−puωn,

which tells us that there exists a sufficiently large p0 such that for all p ≥ p0, the desired inequality

(4.3) holds.

The rest of the proof is similar to the ones in [7, 8]. In the following, we give a brief proof for reader’s

convenience. We introduce the definition of Gauduchon metrics on almost complex manifolds.

Definition 4.4. Let (M2n, J) be an almost complex manifold. A metric g is called a Gauduchon

metric on M if g is an almost Hermitian metric whose associated real (1, 1)-form ω =
√
−1gij̄ζ

i∧ζ j̄

satisfies d∗(Jd∗ω) = 0, where d∗ is the adjoint of d with respect to g, which is equivalent to

d(Jd(ωn−1)) = 0, or ∂∂̄(ωn−1) = 0.

One has the following well-known result.

Proposition 4.5 (cf. [2, Theorem 2.1], [3]). Let (M2n, J,ω) be a compact almost Hermitian

manifold with n ≥ 2. Then there exists a smooth function σ, unique up to addition of a constant,

such that the conformal almost Hermitian metric eσω is Gauduchon.

Thanks to Proposition 4.5, there exists a smooth function σ : M → R with supM σ = 0 such that

ωG := eσω is Gauduchon on M .

Lemma 4.6 (cf. [8, Lemma 2.3]). Let M be a compact almost complex manifold of real dimension

2n (n ≥ 2) with a Gauduchon metric ωG. If φ is a smooth nonnegative function on M with

∆Gφ ≥ −C0, where ∆G is the Laplacian operator with respect to ωG, then there exists a positive

constant C1, C2 depending only on (M,ωG) and C0 such that
∫

M

|∂φ
p+1
2 |2ωG

ωn
G ≤ C1p

∫

M

φpωn
G (4.31)

for any p ≥ 1, and

sup
M

φ ≤ C2 max
{∫

M

φωn
G, 1

}
. (4.32)
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Proof. We compute for p ≥ 1, by Stokes’ theorem,

∫

M

|∂φ
p+1
2 |2ωG

ωn
G = n

∫

M

√
−1∂φ

p+1
2 ∧ ∂̄φ

p+1
2 ∧ ωn−1

G

=
n(p+ 1)2

4

∫

M

√
−1φp−1∂φ ∧ ∂̄φ ∧ ωn−1

G

=
n(p+ 1)2

4p

∫

M

√
−1∂(φp) ∧ ∂̄φ ∧ ωn−1

G

=
n(p+ 1)2

4p

∫

M

√
−1(∂ + ∂̄ +A+ Ā)(φp∂̄φ ∧ ωn−1

G )

−
n(p+ 1)2

4p

∫

M

φp
√
−1∂∂̄φ ∧ ωn−1

G +
n(p+ 1)

4p

∫

M

√
−1∂̄(φp+1) ∧ ∂ωn−1

G

= −
(p+ 1)2

4p

∫

M

φpn

√
−1∂∂̄φ ∧ ωn−1

G

ωn
G

ωn
G

+
n(p+ 1)

4p

∫

M

√
−1(∂ + ∂̄ +A+ Ā)(φp+1∂ωn−1

G )

−
n(p+ 1)

4p

∫

M

φp+1
√
−1∂̄∂ωn−1

G

=
(p+ 1)2

4p

∫

M

φp(−∆Gφ)ω
n
G

≤ C1p

∫

M

φpωn
G, (4.33)

where we used that (∂̄ +A+ Ā)(φp∂̄φ ∧ ωn−1
G ) = 0, (∂ +A+ Ā)(φp+1∂ωn−1

G ) = 0, and that

∂̄∂ωn−1
G = −(∂∂̄ +AĀ+ ĀA)ωn−1

G = −∂∂̄ωn−1
G = 0

since we have Aωn−1
G = Āωn−1

G = 0.

We apply the Sobolev inequality: for β := n
n−1 > 1, and for any smooth function f ,

( ∫

M

f2βωn
) 1

β ≤ C
( ∫

M

|∂f |2gωn +

∫

M

f2ωn
)
. (4.34)

Taking ω = ωG and f = φ
q
2 , where we put q := p+ 1, then for q ≥ 2, we have that

( ∫

M

φqβωn
G

) 1
β ≤ Cqmax

{∫

M

φqωn
G, 1

}
.

By repeatedly replacing q by qβ and iterating, after setting q = 2, then we obtain that

sup
M

φ ≤ Cmax
{(∫

M

φ2ωn
G

) 1
2
, 1
}
≤ Cmax

{(
sup
M

φ
) 1

2
(∫

M

φωn
G

) 1
2
, 1
}
,

which gives us the desired estimate (4.32).

By applying the inequality (4.3) and the Sobolev inequality (4.34), for any p ≥ p0, we obtain that

‖e−u‖Lpβ ≤ C
1
p p

1
p ‖e−u‖Lp ,
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and by the standard iteration, we have that

e−p0 infM u ≤ C

∫

M

e−p0uωn. (4.35)

We need the following lemma, whose proof goes in the same way as in the Hermitian case.

Lemma 4.7 (cf. [7, Lemma 3.2], [8, Lemma 2.2]). Let f be a smooth function on a compact almost

Hermitian manifold (M,J,ω). Write dµ := ωn
∫
M

ωn . If there exists a constant C1 such that

e− infM f ≤ eC1

∫

M

e−fdµ, (4.36)

then

|{f ≤ inf
M

f + C1 + 1}| ≥
e−C1

4
, (4.37)

where | · | denotes the volume of the set with respect to dµ.

We apply Lemma 4.6 to f = p0u, and then since we have the inequality (4.35), there exist uniform

constants C, δ > 0 such that

|{u ≤ inf
M

u+ C}| ≥ δ. (4.38)

Now, we define φ := u − infM u. Since it satisfies that ∆Gφ = e−σ∆φ > −C, where ∆ is the

Laplacian operator with respect to ω, we may apply Lemma 4.3 to the function φ. From the

Poincaré inequality and the estimate (4.31) with p = 1, we obtain that

‖φ− φ‖L2 ≤ C
( ∫

M

|∂φ|2ωG
ωn
G

) 1
2 ≤ C‖φ‖

1
2

L1 , (4.39)

where we put φ := 1∫
M

ωn
G

∫
M
φωn

G.

By making use of (4.38), the set S := {φ ≤ C} satisfies that |S|G ≥ δ, where | · |G denotes the

volume of a set with respect to ωn
G. Therefore, we obtain that

δφ ≤
∫

S

φωn
G ≤

∫

S

(|φ− φ|+ C)ωn
G ≤

∫

M

|φ− φ|ωn
G + C,

which gives that by applying (4.39),

‖φ‖L1 ≤ C(‖φ− φ‖L1 + 1) ≤ C(‖φ− φ‖L2 + 1) ≤ C(‖φ‖
1
2

L1 + 1).

Hence, φ is uniformly bounded in L1, and from (4.32) and (1.2), we obtain a uniform bound of u

in the L∞ norm.
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ABSTRACT

In this note we study inhomogeneous random bipartite

graphs in random environment. These graphs can be thought

of as an extension of the classical Erdős-Rényi random bi-

partite graphs in a random environment. We show that

the expected number of perfect matchings obeys a precise

asymptotic.

RESUMEN

En esta nota estudiamos grafos aleatorios bipartitos inho-

mogéneos en un ambiente aleatorio. Estos grafos pueden

ser pensados como una extensión de los grafos bipartitos

aleatorios clásicos de Erdős-Rényi en un ambiente aleato-

rio. Mostramos que el número esperado de pareos obedece

un comportamiento asintótico preciso.
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1 Introduction

In their seminal paper [7], Erdős and Rényi studied a certain type of random graphs, which in the

case of bipartite graphs correspond to the following. Consider a bipartite graph with set of vertices

given by W = {w1, . . . , wn} and M = {m1, . . . ,mn}. Let p ∈ [0, 1], Σ be a probability space and

consider the independent random variables X(ij) defined on Σ with law

X(ij)(x) =











1 with probability p;

0 with probability 1− p,

for x ∈ Σ. Denote by Gn(x) the bipartite graph with vertex set W ∪M and edges E(x), where

the edge (wi,mj) belongs to E(x) if and only if X(ij)(x) = 1. Let pm(Gn(x)) be the number of

perfect matchings of the graph Gn(x) (see Sec. 3 for precise definitions). Erdős and Rényi [8, p.

460] observed that the mean of the number of perfect matchings was given by

E(pm(Gn(x))) = n!pn. (1.1)

This number has been also studied by Bollobás and McKay [5, Theorem 1] in the context of

k−regular random graphs and by O’Neil [11, Theorem 1] for random graphs having a fixed (large

enough) proportion of edges. We refer to the text by Bollobás [4] for further details on the subject

of random graphs.

This paper is devoted to study certain sequences of inhomogeneous random bipartite graphsGn,ω in

a random environment ω ∈ Ω (definitions are given in Sec. 2). Inhomogeneous random graphs have

been intensively studied over the last years (see [6], where non-bipartite graphs are also considered).

Our main result (see Theorem 3.2 for precise statement) is that there exists a constant c ∈ (0, 1)

such that for almost every environment ω ∈ Ω and for large n ∈ N

En,ω(pm(Gn,ω(x))) $ n!cn, (1.2)

where the meaning of the asymptotic $ will be explained later. Moreover, we have an explicit

formula for the number c.

The result in equation (1.2) should be understood in the sense that the mean number of perfect

matchings for inhomogeneous random bipartite graphs in a random environment is asymptotically

the same as the one of Erdős-Rényi bipartite graphs in which p = c. Note that p is a constant

that does not depend on n. The number c is the so-called scaling mean of a function related to the

random graphs. Scaling means were introduced, in more a general setting, in [2] and are described

in Sec. 3.
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2 Inhomogeneous random bipartite graphs in random envi-

ronment

Consider the following generalization of the Erdős-Rényi bipartite graphs. Let W = {w1, . . . , wn}

and M = {m1, . . . ,mn} be two disjoint sets of vertices. For every pair 1 ≤ i, j ≤ n, let aij ∈ [0, 1]

and consider the independent random variables X(ij), with law

X(ij)(x) =







1 with probability a(ij);

0 with probability 1− a(ij).

Denote by Gn(x) the bipartite graph with vertices W,M and edges E(x), where the edge (wi,mj)

belongs to E(x) if and only if X(ij)(x) = 1. As it is clear from the definition all vertex of the graph

do not play the same role. This contrasts with the (homogenous) Erdős-Renyi graphs (see [6] for

details). We remark that in relation to the graphs we are considering it is possible to include the

stochastic block model (see [10]) that is used, for example, in problems of community detection, in

the context of machine learning. In this note we consider inhomogeneous random bipartite graphs

in random environments, that is, the laws of X(ij) (and hence the numbers a(ij)) are randomly

chosen following an exterior environment law. This approach to stochastic processes has developed

since the groundbreaking work by Solomon [12] on Random Walks in Random Environment and

subsequent work of a large community (see [3] for a survey on the subject).

The model we propose is to consider the vertex sets W,M as the environment and to consider

that the number a(ij), which is the probability that the edge connecting wi with mj occurs in the

graph, is a random variable depending on wi and mj . We now describe precisely this model.

The space of environments is as follows. Fix α ∈ N and a stochastic vector (p1, p2, . . . , pα). Endow

the set {1, . . . ,α} with the probability measure PW defined by PW ({i}) = pi. Denote by ΩW the

product space
∏∞

i=1{1, 2, . . . ,α} and by µW the corresponding product measure. Let (ΩM , µM )

be the analogous probability measure space for the set {1, 2, . . . ,β} and the stochastic vector

(q1, q2, . . . , qβ). The space of environments is Ω = ΩW × ΩM with the measure µΩ = µW × µM

and an environment is an element ω ∈ Ω. Note that every environment defines two sequences

W (ω) = (w1, w2, . . . ) ∈ ΩW and M(ω) = (m1,m2, . . . ) ∈ ΩM .

For each environment ω ∈ Ω we now define the edge distribution Xω,(ij). Let F = [fsr] be a α× β

matrix with entries fsr satisfying 0 ≤ fsr ≤ 1 and let f : {1, 2, . . . ,α} × {1, 2, . . . ,β} → [0, 1] be

the function defined by f(w,m) = fwm. For each ω ∈ Ω let

a(ij)(ω) := f (wi(ω),mj(ω)) = fwi(ω),mj(ω). (2.1)

Given an environment ω ∈ Ω the corresponding edge distributions are the random variables Xω,(ij)
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with laws

Xω,(ij)(x) =







1 with probability a(ij)(ω);

0 with probability 1− a(ij)(ω).

Given an environment ω ∈ Ω, we construct a sequence of random bipartite graphs Gn,ω considering

the sets of vertices

Wn,ω = (w1(ω), . . . , wn(ω)) and Mn,ω = (m1(ω), . . . ,mn(ω)),

and edge distributions Xω,(ij) given by the values of a(ij)(ω) as in (2.1). We denote by Pn,ω the

law of the random graph Gn,ω.

Example 2.1. Given a choice of an environment ω ∈ Ω, the probability that the bipartite graph

Gn,ω(x) equals the complete bipartite graph Kn,n, using independence of the edge variables, is

Pn,ω (Gn,ω(x) = Kn,n) =
∏

1≤i,j≤n

Pn,ω(Xω,(ij) = 1) =
∏

1≤i,j≤n

a(ij)(ω).

3 Counting Perfect Matchings

Recall that a perfect matching of a graph G is a subset of edges containing every vertex exactly

once. We denote by pm(G) the number of perfect matchings of G. When the graph G is bipartite,

and the corresponding bipartition of the vertices has the form W = {w1, w2, . . . , wn} and M =

{m1,m2, . . . ,mn}, a perfect matching can be identified with a bijection between W and M , and

hence with a permutation σ ∈ Sn. From this, the total number of perfect matchings can be

computed as

pm(G) =
∑

σ∈Sn

x1σ(1)x2σ(2) · · ·xnσ(n), (3.1)

where xij are the entries of the incidence matrix XG of G, that is xij = 1 if (wi,mj) is an edge of

G and xij = 0 otherwise. Of course, the right hand side of (3.1) is the permanent, per(XG), of the

matrix XG.

In the framework of Section 2, we estimate the number of perfect matchings for the sequence of

inhomogeneous random bipartite graphs Gn,ω, for a given environment ω ∈ Ω. More precisely, we

obtain estimates for the growth of the mean of

pm(Gn,ω(x)) = per(XGn,ω(x)) =
∑

σ∈Sn

Xω,(1σ(1)) · · ·Xω,(nσ(n)). (3.2)

Denote by En,ω the expected value with respect to the probability Pn,ω. Since the edges are
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independent and En,ω(Xω,(ij)) = aij(ω) we have

En,ω (pm(Gn,ω)) = En,ω

(

∑

σ∈Sn

Xω,(1σ(1)) · · ·Xω,(nσ(n))

)

=
∑

σ∈Sn

a(1σ(1))(ω) · · ·a(nσ(n))(ω)

= per(An(ω)),

where the entries of the matrix are (An(ω))ij = a(ij)(ω). The main result of this note describes

the growth of this expected number for perfect matchings.

The following number is a particular case of a quantity introduced by the authors in a more general

setting in [2].

Definition 3.1. Let F be an α × β matrix with non-negative entries (frs). Let %p = (p1, . . . , pα)

and %q = (q1, . . . , qβ) be two stochastic vectors. The scaling mean of F with respect to %p and %q is

defined by

sm%p,%q(F ) := inf
(xr)∈Rα

+,(ys)∈R
β
+

(

α
∏

r=1

x−pr
r

)(

β
∏

s=1

y−qs
s

)(

α
∑

r=1

β
∑

s=1

xrfrsysprqs

)

.

The scaling mean is increasing with respect to the entries of the matrix and lies between the

minimum and the maximum of the entries (see [2] for details and more properties). We stress that

the scaling mean can be exponentially approximated using a simple iterative process (see Section

5).

The main result in this note is the following,

Theorem 3.2 (Main Theorem). Let (Gn,ω)n≥1 be a sequence of random bipartite graphs on a

random environment ω ∈ Ω. If for every pair (r, s) we have frs > 0 then the following pointwise

convergence holds

lim
n→∞

(

En,ω (pm(Gn,ω))

n!

)1/n

= sm%p,%q(F ), (3.3)

for µW × µM -almost every environment ω ∈ Ω.

Remark 3.3. As discussed in the introduction Theorem 3.2 shows that there exists a constant

c ∈ (0, 1), such that for almost every environment ω ∈ Ω and for n ∈ N sufficiently large

En,ω(pm(Gn,ω(x))) $ n!cn.

Namely c = sm%p,%q(F ). This result should be compared with the corresponding one obtained by Erdős

and Rényi for their class of random graphs, that is

E(pm(Gn(x))) = n!pn.
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Thus, we have shown that for large values of n the growth of the number of perfect matchings

for random graphs in a random environment behaves like the simpler model studied by Erdős and

Rényi with p = sm%p,%q(F ).

Remark 3.4. Theorem 3.2 shows that the expected number of perfect matchings is a quenched

variable, in the sense of that it does not depend on the environment ω (see for instance [P]).

Remark 3.5. Using the Stirling formula, the limit in (3.3) can be stated as

lim
n→∞

(

1

n
log (En,ω (pm(Gn,ω)))− logn

)

= log sm%p,%q(F )− 1,

which gives a quenched result for the growth of the perfect matching entropy for the sequence of

graphs Gω,n (see [1]).

Remark 3.6. Note that we assume a uniform ellipticity condition on the values of the probabil-

ities a(ij) as in (2.1). A similar assumption appears in the setting of Random Walks in Random

Environment (see [3, p. 355]).

We now present some concrete examples.

Example 3.7. Let α = β = 2 and p1 = p2 = q1 = q2 = 1/2. Therefore, the space of en-

vironments is the direct product of two copies of the full shift on two symbols endowed with the

(1/2, 1/2)−Bernoulli measure. The edge distribution matrix F is a 2 × 2 matrix with entries

belonging to (0, 1). In [2, Example 2.11], it was shown that

sm%p,%q





f11 f12

f21 f22



 =

√
f11f22 +

√
f12f21

2
.

Therefore, Theorem 3.2 implies that

lim
n→∞

(

En,ω (pm(Gn,ω))

n!

)1/n

=

√
f11f22 +

√
f12f21

2
,

for almost every environment ω ∈ Ω.

Example 3.8. More generally let α ∈ N with α ≥ 2 and β = 2. Consider the two stochastic

vectors %p = (p1, p2, . . . , pα) and %q = (q1, q2). The space of environments is the direct product of

a full shift on α symbols endowed with the %p-Bernoulli measure with a full shift on two symbols

endowed with the %q-Bernoulli measure. The edge distribution matrix F is a α × 2 matrix with

entries fr1, fr2 ∈ (0,∞), where r ∈ {1, . . . ,α}. Denote by χ ∈ R+ the unique positive solution of

the equation
α
∑

r=1

prfr1
fr1 + fr2χ

= q1.

Then

sm%p,%q(F ) = sm%p,%q











f11 f12
...

...

fα1 fα2











= qq11

(

q2
χ

)q2 α
∏

r=1

(fr1 + fr2χ)
pr .



CUBO
24, 2 (2022)

Perfect matchings in inhomogeneous random bipartite graphs... 269

Therefore, Theorem 3.2 implies that

lim
n→∞

(

En,ω (pm(Gn,ω))

n!

)1/n

= qq11

(

q2
χ

)q2 α
∏

r=1

(fr1 + fr2χ)
pr ,

for almost every environment ω ∈ Ω. The quantity in the right hand side first appeared in the work

by Halász and Székely in 1976 [9], in their study of symmetric means. In [2, Theorem 5.1] using

a completely different approach we recover their result.

4 Proof of the Theorem

The shift map σW : ΩW → ΩW is defined by

σW (w1, w2, w3, . . . ) = (w2, w3, . . . ).

The shift map σW is a µW -preserving, that is, µW (Λ) = µW (σ−1
W (Λ)) for every measurable set

Λ ⊂ ΩW , and it is ergodic, that is, if Λ = σ−1
W (Λ) then µW (Λ) equals 1 or 0. Analogously for σM

and µM . We define a function Φ : ΩW × ΩM → R by

Φ(%w, %m) = fw1m1 .

Thus

Φ(σi−1
W (%w),σj−1

M (%m)) = fwimj = a(ij)(ω).

That is, the matrix An(ω) has entries a(ij)(ω) = Φ(σi−1
W (%w),σj−1

M (%m)). We are in the exact setting

in order to apply the Law of Large Permanents see [2, Theorem 4.1].

Theorem (Law of Large Permanents). Let (X,µ), (Y, ν) be Lebesgue probability spaces, let

T : X → X and S : Y → Y be ergodic measure preserving transformations, and let g : X × Y → R

be a positive measurable function essentially bounded away from zero and infinity. Then for

µ× ν-almost every (x, y) ∈ X × Y , the n× n matrix

Mn(x, y) =















g(x, y) g(Tx, y) · · · g(T n−1x, y)

g(x, Sy) g(Tx, Sy) · · · g(T n−1x, Sy)
...

...
...

g(x, Sn−1y) g(Tx, Sn−1y) · · · g(T n−1x, Sn−1y)















verifies

lim
n→∞

(

per (Mn(x, y))

n!

)1/n

= smµ,ν(g)

pointwise, where smµ,ν(g) is the scaling mean of g defined as

smµ,ν(g) = inf
φ,ψ

∫∫

X×Y φ(x)g(x, y)ψ(y)dµdν

exp
(∫

X logφ(x)dµ
)

exp
(∫

Y logψ(y)dν
) ,
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where the functions φ and ψ are assumed to be measurable, positive and such that their logarithms

are integrable.

We apply this Law of Large Permanents setting X = ΩW , Y = ΩM , T = σW , S = σM , g = Φ and

recalling that frs > 0. We have

smµW ,µM (Φ) = sm%p,%q(F )

as a consequence of an alternative characterization of the scaling mean given in (see [2, Proposition

3.5]). This concludes the proof of the Main Theorem. !

Remark 4.1. We have chosen to present our result in the simplest possible setting. That is, the

environment space being products of full-shifts endowed with Bernoulli measures. Using the general

form of the Law of Large Permanent above our results can be extended for inhomogeneous random

graphs in more general random environments.

5 An algorithm to compute the scaling mean

The purpose of this section is to show that the scaling mean is the unique fixed point of a contrac-

tion. Therefore it can be computed, or approximated, using a suitable iterative process. It should

be stressed that, on the other hand, it has been shown that no such algorithm exists to compute

the permanent.

Denote by Bα ⊂ Rα and by Bβ ⊂ Rβ the positive cones. Define the following maps forming a

(non-commutative) diagram:

Bα Bα

Bβ Bβ

I1

K2K1

I2

by the formulas:

(I1(%x))i :=
1

xi
, (I2(%y))i :=

1

yi
,

(K1(%x))j :=
β
∑

i=1

fijxipi , (K2(%y))j :=
α
∑

j=1

fijyjqj .

Let T : Bα ,→ Bα be the map defined by T := K1 ◦ I2 ◦ K2 ◦ I1. The map T is a contraction for a

suitable Hilbert metric. Indeed, for %x,%z ∈ Bα define the following (pseudo)-metric

d(%x,%z) := log

(

maxi xi/zi
mini xi/zi

)

.

It was proven in [2, Lemma 3.4]

Lemma 5.1. We have that

d(T (%x), T (%z)) ≤
(

tanh
δ

4

)2

d(%x,%z),
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where

δ ≤ 2 log

(

maxi,j fij
minij fij

)

< ∞.

The following results was proved in [2, Lemma 3.3]

Lemma 5.2. The map T has a unique (up to positive scaling) fixed point %xT ∈ Bα. Moreover,

defining %yT := K2 ◦ I1(%xT) one has that

sm(f) =
α
∏

i=1

xpi

i

β
∏

j=1

y
qj
j .

Therefore, it possible to find good approximations of the scaling mean using an iterative process.
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[1] M. Abért, P. Csikvári, P. Frenkel and G. Kun, “Matchings in Benjamini-Schramm convergent

graph sequences”, Trans. Amer. Math. Soc., vol. 368, no. 6, pp. 4197–4218, 2016.

[2] J. Bochi, G. Iommi and M. Ponce, “The scaling mean and a law of large permanents”, Adv.

Math., vol. 292, pp. 374–409, 2016.

[3] L. V. Bogachev, “Random walks in random environments”, in Encyclopedia of Mathematical

Physics, vol. 4, pp. 353–371. Elsevier: Oxford, 2006.

[4] B. Bollobás, Random graphs, Cambridge Studies in Advanced Mathematics, vol. 73, Cam-

bridge University Press: Cambridge, 2001.

[5] B. Bollobás and B. D. McKay, “The number of matchings in random regular graphs and

bipartite graphs”, J. Combin. Theory Ser. B, vol. 41, no. 1, pp. 80–91, 1989.

[6] B. Bollobás, S. Janson and O. Riordan, “The phase transition in inhomogeneous random

graphs”, Random Structures Algorithms, vol. 31, no. 1, pp. 3–122, 2007.
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ABSTRACT

In this paper, we study the existence and uniqueness results

of a fractional hybrid boundary value problem with multi-

ple fractional derivatives of ψ−Caputo with different orders.

Using a useful generalization of Krasnoselskii’s fixed point

theorem, we have established results of at least one solu-

tion, while the uniqueness of solution is derived by Banach’s

fixed point. The last section is devoted to an example that

illustrates the applicability of our results.

RESUMEN

En este art́ıculo, estudiamos los resultados de existencia y

unicidad de un problema de valor en la frontera fraccional

h́ıbrido con múltiples derivadas fraccionarias de ψ−Caputo

con diferentes órdenes. Usando una generalización útil del

teorema del punto fijo de Krasnoselskii, establecemos resul-

tados de al menos una solución, mientras que la unicidad de

dicha solución se obtiene a partir del punto fijo de Banach.

La última sección está dedicada a un ejemplo que ilustra la

aplicabilidad de nuestros resultados.
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1 Introduction

Fractional differential equations have received great attention of many researchers working in differ-

ent disciplines of science and technology, especially, since they have found that certain thermal [3],

electrochemical [4] and viscoelastic [16] systems are governed by fractional differential equations.

Recently some publications show the importance of fractional differential equations in the math-

ematical modeling of many real-world phenomena. For example ecological models [10], economic

models [20], physics [12], fluid mechanics [21]. There are many studies on fractional differential

equations with distinct kinds of fractional derivatives in the literature, such as Riemann-Liouville

fractional derivative, Caputo fractional derivative, and Grunwald Letnikov fractional derivative,

etc. For example, see [11, 14, 15]. Very recently, a new kind of fractional derivative the ψ−Caputo’s

derivative, was introduced by Almeida in [1], the main advantage of this derivative is the freedom

of choices of the kernels of the derivative by choosing different functions ψ, which gives us some well

known fractional derivatives such Caputo, Caputo-Erdelyi-Koper and Caputo Hadamard deriva-

tive. For more details on the ψ−Caputo and fractional differential equation involving ψ−Caputo,

we refer the reader to a series of papers [1, 2, 7] and the references cited therein.

Nowadays, many researchers have shown the interest of quadratic perturbations of nonlinear dif-

ferential equations, these kind of differential equations are known under the name of hybrid dif-

ferential equations. Some recent works regarding hybrid differential equations can be found in

[8, 13, 17, 23] and the references cited therein. Dhage and Lakshmikantham [6] discussed the

existence and uniqueness theorems of the solution to the ordinary first-order hybrid differential

equation with perturbation of the first type



















d

dt

(

u(t)

g(t, u(t))

)

= f(t, u(t)), a.e. t ∈ [t0, t0 + T ],

u(t0) = u0, u0 ∈ R,

where t0, T ∈ R with T > 0, g : [t0, t0+T ]×R → R\{0} and f : [t0, t0+T ]×R → R are continuous

functions. By using the fixed point theorem in Banach algebra, the authors obtained the existence

results.

In [9], Dong et al., established the existence and the uniqueness of solutions for the following

implicit fractional differential equation















cDpu(t) = f(t, u(t),cDpu(t)), t ∈ J := [0, T ], 0 < p ≤ 1,

u(0) = u0,

where cDp is the Caputo fractional derivative, f : [0, T ]×R×R→ R is a given continuous function.

Sitho et al. [17] studied existence results for the initial value problems of hybrid fractional sequen-
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tial integro-differential equations:











































Dp













Dqu(t)−
m
∑

i=1

Iηigi(t, u(t))

h(t, x(t))













= f(t, u(t), Iγx(t)), t ∈ J,

u(0) = 0, Dqu(0) = 0,

where Dp, Dq denotes the Riemann-Liouville fractional derivative of order p, q respectively and

0 < p, q ≤ 1, Iηi is the Riemann-Liouville fractional integral of order ηi > 0, h ∈ C(J ×R,R\{0}),

f ∈ C(J × R2,R) and gi ∈ C(J × R,R) with gi(0, 0) = 0, i = 1, . . . ,m.

In 2019, Derbazi et al. [8] proved the existence of solutions for the fractional hybrid boundary

value problem

cDp

[

u(t)− g(t, u(t))

h(t, u(t))

]

= f(t, u(t)), t ∈ J,

with the fractional hybrid boundary value conditions



































a1

[

u(t)− g(t, u(t))

h(t, u(t))

]

t=0

+ b1

[

u(t)− g(t, u(t))

h(t, u(t))

]

t=T

= υ1,

a2
cDδ

[

u(t)− g(t, u(t))

h(t, u(t))

]

t=ξ

+ b2
cDδ

[

u(t)− g(t, u(t))

h(t, u(t))

]

t=T

= υ2 , ξ ∈ J,

where 1 < p ≤ 2, 0 < δ ≤ 1, ξ ∈ J and a1, a2, b1, b2, υ1, υ2 are real constants. Moreover, two

fractional derivatives of Caputo type appeared in the above problem.

Motivated by these works, we mainly investigate the existence and uniqueness of solutions for a

class of hybrid differential equations of arbitrary fractional order of the form

cDp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













=

f













t, u(t),cDp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))

























, t ∈ J, (1.1)
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endowed with the hybrid fractional integral boundary conditions










































































































































u(0) = 0, cDq;ψu(0) = 0,

a1













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













t=0

+ b1













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













t=T

= υ1,

a2
cDδ;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













t=ξ

+

b2
cDδ;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













t=T

= υ2 , ξ ∈ J,

(1.2)

where J := [0, T ], Dp;ψ, Dq;ψ and Dδ;ψ denote the ψ−Caputo fractional derivative of order 2 <

p ≤ 3 and 0 < q, δ ≤ 1 respectively, Iηi;ψ is the ψ−Riemann-Liouville fractional integral of order

ηi > 0, h ∈ C(J×R,R\{0}), f ∈ C(J×R2,R) and gi ∈ C(J×R,R) with gi(0, 0) = 0, i = 1, . . . ,m,

a1, a2, b1, b2, υ1, υ2 are real constants such that b1 &= 0 and

2
(

a2Ψ
2−δ
0 (ξ) + b2Ψ

2−δ
0 (T )

)

−Ψ1
0(T )(2− δ)

(

a2Ψ
1−δ
0 (ξ) + b2Ψ

1−δ
0 (T )

)

&= 0.

The rest of the paper is arranged as follows. Section 2 gives some background material needed in

this paper, such as fractional differential equations and fixed point theorems. Section 3 treats the

main results concerning the existence and uniqueness results of the solution for the given problem

(1.1)-(1.2) by employing hybrid fixed point theorem for a sum of two operators in Banach algebra

space and Banach’s fixed point. In the last section, an example is presented to illustrate our results.

2 Preliminaries

In this section, we introduce some preliminaries and lemmas that will be used throughout this

paper. We will prove an auxiliary lemma, which plays a key role in defining a fixed point problem

associated with the given problem.

Let ψ : J → R an increasing function satisfying ψ′(t) &= 0 for all t ∈ J. For the sake of simplicity,

we set Ψr
0(t) = (ψ(t) − ψ(0))r.

Definition 2.1 ([2]). The ψ−Riemann-Liouville fractional integral of order (p > 0) of an integrable
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function g : [0,∞) → R is defined by

Ip;ψg(t) =
1

Γ(p)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−1g(s)ds, 0 < s < t.

Definition 2.2 ([2]). The ψ−Caputo fractional derivative of order p (n − 1 < p < n ∈ N) of a

function g ∈ Cn[0,∞) is defined by

cDp;ψg(t) =
1

Γ(p− n)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−n−1Dn
ψ g(s)ds, 0 < s < t,

where n = [p] + 1 and Dn
ψ =

(

1

ψ′(t)

d

dt

)n

. In case, if 2 < p ≤ 3, we have

cDp;ψg(t) =
1

Γ(p− 3)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−4D3
ψg(s)ds, 0 < s < t.

Lemma 2.3 ([2]). Let p > 0. The following hold

• If g ∈ C(J,R), then

cDp;ψIp;ψg(t) = g(t), t ∈ J.

• If g ∈ Cn(J,R), n− 1 < p < n, then

Ip;ψcDp;ψg(t) = g(t)−
n−1
∑

k=0

ckΨ
k
0(t), t ∈ J,

where ck =
Dk
ψg(0)

k!
.

Lemma 2.4. Let 2 < p < 3, 0 < q < 1. For any functions F ∈ C(J,R), H ∈ C(J,R \ {0}) and

Gi ∈ C(J,R) with Gi(0) = 0, i = 1, . . . ,m, the following linear fractional boundary value problem

Dp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













= F (t), 2 < p ≤ 3, 0 < q ≤ 1, t ∈ J, (2.1)
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supplemented with the following conditions











































































































































u(0) = 0, cDq;ψu(0) = 0,

a1













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













t=0

+ b1













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













t=T

= υ1,

a2
cDδ;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













t=ξ

+

b2
cDδ;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)













t=T

= υ2, ξ ∈ J,

(2.2)

has a unique solution, which is given by

u(t) = Iq;ψ
(

H(s)Ip;ψF (s)
)

(t) +
m
∑

i=1

Iηi+q;ψGi(s)(t)

+ Iq;ψ
(

H(s)
(

Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

)(υ1
b1

− Ip;ψF (s)
)

)

(t)

+ Ω1

(

υ2 − a2I
p−δ;ψF (ξ)− b2I

p−δ;ψF (T )
)

Iq;ψ
(

H(s)
(

Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

)

)

(t),

(2.3)

where

Ω1 =
Γ(3− δ)

2
(

a2Ψ
2−δ
0 (ξ) + b2Ψ

2−δ
0 (T )

)

−Ψ1
0(T )(2− δ)

(

a2Ψ
1−δ
0 (ξ) + b2Ψ

1−δ
0 (T )

) ,

Ω2 =
a2Ψ

1−δ
0 (ξ) + b2Ψ

1−δ
0 (T )

Γ(2− δ)Ω1

, Ω3 = 1 + Ω2Ψ
1
0(T ).

Proof. Applying the ψ−Caputo fractional integral of order p to both sides of equation in (2.1) and

using Lemma 2.3, we get

cDq;ψu(t)−
m
∑

i=1

Iηi;ψGi(t)

H(t)
= Ip;ψF (t) + c0 + c1Ψ

1
0(t) + c2Ψ

2
0(t), (2.4)

where c0, c1, c2 ∈ R .

Next, applying the ψ−Caputo fractional integral of order q to both sides (2.4), we get
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u(t) = Iq;ψ
(

H(s)Ip;ψF (s)
)

(t) +
m
∑

i=1

Iηi+q;ψGi(s)(t)

+ Iq;ψ
(

H(s)
(

c0 + c1Ψ
1
0(s) + c2Ψ

2
0(s)

))

(t) + c3, c3 ∈ R.

(2.5)

With the help of conditions u(0) = 0 and cDq;ψu(0) = 0, we find, c3 = 0 and c0 = 0 respectively.

Applying the boundary conditions (2.2), and from (2.4), we obtain

c1Ψ
1
0(T ) + c2Ψ

2
0(T ) =

υ1
b1

− Ip;ψF (T ),

and

c1
Γ(2− δ)

(

a2Ψ
1−δ
0 (ξ) + b2Ψ

1−δ
0 (T )

)

+
2c2

Γ(3− δ)

(

a2Ψ
2−δ
0 (ξ) + b2Ψ

2−δ
0 (T )

)

= υ2 − a2I
p−δ;ψF (ξ) − b2I

p−δ;ψF (T ).

Solving the resulting equations for c1 and c2, we find that

c1 =
(υ1
b1

− Ip;ψF (T )
)

Ω3 −
(

υ2 − a2I
p−δ;ψF (ξ)− b2I

p−δ;ψF (T )
)

Ω1Ψ
1
0(T ),

c2 =
(

υ2 − a2I
p−δ;ψF (ξ)− b2I

p−δ;ψF (T )
)

Ω1 −
(υ1
b1

− Ip;ψF (T )
)

Ω2.

Inserting c1 and c2 in (2.5), which leads to the solution system (2.3).

Let E = C(J,R) be the Banach space of continuous real-valued functions defined on J . We define

in E a norm ‖ · ‖ by

‖u‖ = sup
t∈J

|u(t)|,

and a multiplication by

(uv)(t) = u(t)v(t), ∀t ∈ J.

Clearly E is a Banach algebra with above defined supremum norm and multiplication.

Lemma 2.5 ([5]). Let S be a nonempty, convex, closed, and bounded set such that S ⊆ E, and

let A : E → E and B : S → E be two operators which satisfy the following:

(1) A is contraction,

(2) B is completely continuous, and

(3) u = Au +Bv, for all v ∈ S ⇒ u ∈ S.

Then the operator equation u = Au+Bu has at least one solution in S.

Theorem 2.6 ([18]). Let S be a non-empty closed convex subset of a Banach space E, then any

contraction mapping A of S into itself has a unique fixed point.
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3 Main result

In this section, we derive conditions for the existence and uniqueness of a solution for the problem

(1.1)-(1.2).

The following assumptions are necessary in obtaining the main results.

(H1) The functions h ∈ C(J × R,R \ {0}), and f ∈ C(J × R2,R) are continuous, and there exist

bounded functions L,M : J → [0,∞), such that

|h(t, u(t))− h(t, v(t))| ≤ L(t)|u(t)− v(t)|,

and

|f(t, u(t), v(t))− f(t, u(t), v(t))| ≤ M(t)
(

|u(t)− u(t)|+ |v(t) − v(t)|
)

,

for t ∈ J and u, v, u, v ∈ R.

(H2) There exist functions ϑ,χ,ϕi ∈ C(J, [0,∞)) such that

|f(t, u(t), v(t))| ≤ ϑ(t) for each t, u ∈ J × R,

|h(t, u(t))| ≤ χ(t) for each t, u ∈ J × R,

|gi(t, u(t))| ≤ ϕi(t) for each t, u ∈ J × R, i = 1, . . . ,m,

for t ∈ J and u ∈ R.

(H3) The functions gi ∈ C(J ×R,R) are continuous, and there exist bounded functions Ki : J →

(0,∞), such that

|gi(t, u(t))− gi(t, v(t))| ≤ Ki(t)|u(t)− v(t)|.

We set L∗ = supt∈J |L(t)|, M∗ = supt∈J |M(t)|, χ∗ = supt∈J |χ(t)|, ϑ∗ = supt∈J |ϑ(t)| and ϕ∗
i =

supt∈J |ϕi(t)|, K∗
i = supt∈J |Ki(t)|, i = 1, 2, . . . ,m.

3.1 Existence of solutions

In this subsection, we prove the existence of a solution for the problem (1.1)–(1.2) by applying a

generalization of Krasnoselskii’s fixed point theorem.

Theorem 3.1. Assume that hypotheses (H1)–(H2) hold and if

Λ =
Ψp

0(T )

Γ(p+ 1)

(

χ∗M∗

1−M∗
+ ϑ∗L∗

)(

Ψq
0(T )

Γ(q + 1)
+

|Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)

+ |Ω1|(q + 4)
Ψq+2

0 (T )

Γ(q + 3)

(

|υ2|L∗ +
|a2|Ψp−δ

0 (ξ) + |b2|Ψp−δ
0 (T )

Γ(p− δ + 1)

×
(

χ∗M∗

1−M∗
+ ϑ∗L∗

))

+
|υ1|L∗

|b1|

(

|Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)

< 1.

(3.1)

Then the problem (1.1)–(1.2) has at least one solution on J .
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Proof. First, we choose r > 0 such that

r ≥χ∗ϑ∗
Ψp+q

0 (T )

Γ(p+ 1)Γ(q + 1)
+ χ∗

(

|Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)

( |υ1|
|b1|

+
Ψp

0(T )

Γ(p+ 1)
ϑ∗
)

+ χ∗|Ω1|
(q + 4)Ψq+2

0 (T )

Γ(q + 3)

(

|υ2|+ ϑ∗
|a2|Ψp−δ

0 (ξ) + |b2|Ψp−δ
0 (T )

Γ(p− δ + 1)

)

+
n
∑

i=1

ϕ∗
i

Ψηi+q
0 (T )

Γ(ηi + q + 1)
.

Set

Br = {u ∈ E : ‖u‖ ≤ r}.

Clearly Br is a closed, convex and bounded subset of the Banach space E.

Let u(t) be a solution of the problem (1.1)–(1.2). Define

Fu(t) := f













t, u(t),c Dp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))

























.

Then

cDp;ψ













cDq;ψu(t)−
m
∑

i=1

Iηi;ψgi(t, u(t))

h(t, u(t))













= Fu(t),

supplemented with the conditions (1.2), then by Lemma 2.4, we get

u(t) = Iq;ψ
(

h(s, u(s))Ip;ψFu(s)
)

(t) +
m
∑

i=1

Iηi+q;ψgi(s, u(s))(t)+

+ Iq;ψ
(

h(s, u(s))
(

Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

)(υ1
b1

− Ip;ψFu(s)
)

)

(t)

+ Ω1

(

υ2 − a2I
p−δ;ψFu(ξ)− b2I

p−δ;ψFu(T )
)

Iq;ψ
(

h(s, u(s))
(

Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

)

)

(t),

Let us define three operators Cp, Cp−δ : E → E and D : E → E such that

Cpu(t) =
1

Γ(p)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−1Fu(s)ds, t ∈ J,

Cp−δu(t) =
1

Γ(p− δ)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−δ−1Fu(s)ds, t ∈ J,

and

Du(t) = h(t, u(t)), t ∈ J.

Then, using assumptions (H1)–(H2) , we have

|Cpu(t)− Cpv(t)| ≤
1

Γ(p)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))p−1|Fu(s)− Fv(s)|ds, (3.2)
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and

|Fu(t)− Fv(t)| ≤ |f(t, u(t), Fu(t)) − f(t, v(t), Fv(t))|

≤ M(t)
(

|u(t)− v(t)|+ |Fu(t)− Fv(t)|
)

≤
M(t)

1−M(t)
‖u(·)− v(·)‖.

(3.3)

By replacing (3.3) in (3.2), we obtain

|Cpu(t)− Cpv(t)| ≤
M∗Ψp

0(T )

(1−M∗)Γ(p+ 1)
‖u(·)− v(·)‖,

and

|Du(t)−Dv(t)| ≤ L∗‖u(·)− v(·)‖,

|Cpu(t)| ≤
Ψp

0(T )

Γ(p+ 1)
ϑ∗,

and

|Du(t)| ≤ χ∗.

Now we define two more operators A : E → E and B : Br → E such that

Au(t) = Iq;ψ
(

Du(s)Cpu(s)
)

(t) + Iq;ψ
(

Du(s)
(

Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

)(υ1
b1

− Cpu(s)
)

)

(t)

+ Ω1

(

υ2 − a2Cp−δu(ξ)− b2Cp−δu(T )
)

Iq;ψ
(

Du(s)
(

Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

)

)

(t),

and

Bu(t) =
m
∑

i=1

Iηi+q;ψgi(s, u(s))(t).

We need to show that the two operators A and B satisfy all conditions of Lemma 2.5. This can

be achieved in the following steps.

Step 1. First we show that A is a contraction mapping. Let u(t), v(t) ∈ Br, then we have

|Au(t)−Av(t)|

≤ Iq;ψ
(

∣

∣Du(s)Cpu(s)−Dv(s)Cpv(s)
∣

∣

(

1 +
∣

∣Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

∣

∣

)

)

(t)

+ Iq;ψ
(

|υ1|
|b1|

∣

∣Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

∣

∣

∣

∣Du(s)−Dv(s)
∣

∣

)

(t)

+ |Ω1|Iq;ψ
(

∣

∣Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

∣

∣

(

|υ2|
∣

∣Du(s)−Dv(s)
∣

∣+ |a2|
∣

∣Du(s)Cp−δu(ξ)

−Dv(s)Cp−δv(ξ)
∣

∣ + |b2|
∣

∣Du(s)Cp−δu(T )−Dv(s)Cp−δv(T )
∣

∣

)

)

(t)
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≤ Iq;ψ
(

(

∣

∣Du(s)
∣

∣

∣

∣Cpu(s)− Cpv(s)
∣

∣ +
∣

∣Cpv(s)||Du(s)−Dv(s)
∣

∣

)

×
(

1 +
∣

∣Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

∣

∣

)

)

(t) + Iq;ψ
(

|υ1|
|b1|

∣

∣Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

∣

∣

∣

∣Du(s)−Dv(s)
∣

∣

)

(t)

+ |Ω1|Iq;ψ
(

∣

∣Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

∣

∣

(

∣

∣Du(s)−Dv(s)
∣

∣

(

|υ2|+ |a2|
∣

∣Cp−δv(ξ)
∣

∣ + |b2|
∣

∣Cp−δv(T )
∣

∣

)

+
∣

∣Du(s)
∣

∣

(

|a2|
∣

∣Cp−δu(ξ)− Cp−δv(ξ)
∣

∣ + |b2|
∣

∣Cp−δu(T )− Cp−δv(T )
∣

∣

)

))

(t)

Using the hypotheses (H1)–(H2) and taking the supremum over t, we get

‖Au(·)−Av(·)‖ ≤ Λ‖u(·)− v(·)‖. (3.4)

Therefore from (3.1), we conclude that the operator A is a contraction mapping.

Step 2. Next, we prove that the operator B satisfies condition (2) of Lemma 2.5, that is, the

operator B is compact and continuous on Br. Therefore first, we show that the operator B is

continuous on Br.

Let un(t) be a sequence of functions in Br converging to a function u(t) ∈ Br. Then, by the

Lebesgue dominant convergence theorem, for all t ∈ J , we have

lim
n→∞

Bun(t) = lim
n→∞

m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))ηi+q−1gi(s, un(s))ds

=
m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))ηi+q−1 lim
n→∞

gi(s, un(s))ds

=
m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))ηi+q−1gi(s, u(s))ds.

Hence limn→∞ Bun(t) = Bu(t). Thus B is a continuous operator on Br.

Further, we show that the operator B is uniformly bounded on Br. For any u ∈ Br, we have

‖Bu(·)‖ ≤ sup
t∈J

{ m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))ηi+q−1|gi(s, u(s))|ds
}

≤
m
∑

i=1

Ψηi+q
0 (T )

Γ(ηi + q + 1)
ϕ∗
i ≤ r.

Therefore Bu(t) ≤ r, for all t ∈ J , which shows that B is uniformly bounded on Br.

Now, we show that the operator B is equi-continuous. Let t1, t2 ∈ J with t1 > t2. Then for any
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u(t) ∈ Br, we have

|Bu(t1)−Bu(t2)|

≤
m
∑

i=1

1

Γ(ηi + q)

∣

∣

∣

∣

∫ t2

0

ψ′(s)
(

(ψ(t1)− ψ(s))ηi+q−1 − (ψ(t2)− ψ(s))ηi+q−1
)

gi(s, u(s))ds

∣

∣

∣

∣

+
m
∑

i=1

1

Γ(ηi + q)

∣

∣

∣

∣

∫ t1

t2

ψ′(s)(ψ(t1)− ψ(s))ηi+q−1gi(s, u(s))ds

∣

∣

∣

∣

≤
m
∑

i=1

ϕ∗
i

Γ(ηi + q + 1)

(

2|ψ(t1)− ψ(t2)|ηi+q +
∣

∣Ψηi+q
0 (t2)−Ψηi+q

0 (t1)
∣

∣

)

.

As t2 → t1, so the right-hand side tends to zero. Thus B is equi-continuous. Therefore, it follows

from the Arzelá–Ascoli theorem that B is a compact operator on Br. We conclude that B is

completely continuous.

Step 3. It remains to verify the condition (3) of Lemma 2.5. For any v ∈ Br, we have

‖u(·)‖ = ‖Au(·) +Bv(·)‖

≤ ‖Au(·)‖+ ‖Bv(·)‖

≤ sup
t∈J

{∣

∣

∣

∣

Iq;ψ
(

Du(s)Cpu(s)
)

(t) + Iq;ψ
(

Du(s)
(

Ψ1
0(s)Ω3 −Ψ2

0(s)Ω2

)(υ1
b1

− Cpu(s)
)

)

(t)

+ Ω1

(

υ2 − a2Cp−δu(ξ)− b2Cp−δu(T )
)

Iq;ψ
(

Du(s)
(

Ψ2
0(s)−Ψ1

0(T )Ψ
1
0(s)

)

)

(t)

∣

∣

∣

∣

}

+ sup
t∈J

{ m
∑

i=1

Iηi+q;ψ
∣

∣gi(s, v(s))
∣

∣(t)

}

≤ χ∗ϑ∗
Ψp+q

0 (T )

Γ(p+ 1)Γ(q + 1)
+ χ∗

(

|Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)(

|υ1|
|b1|

+
Ψp

0(T )

Γ(p+ 1)
ϑ∗
)

+ χ∗|Ω1|
(q + 4)Ψq+2

0 (T )

Γ(q + 3)

(

|υ2|+ ϑ∗
|a2|Ψp−δ

0 (ξ) + |b2|Ψp−δ
0 (T )

Γ(p− δ + 1)

)

+
n
∑

i=1

ϕ∗
i

Ψηi+q
0 (T )

Γ(ηi + q + 1)
.

Which implies, from the choice of r that ‖u‖ ≤ r, and so u ∈ Br. Hence all conditions of Lemma

2.5 are satisfied. Therefore, the operator equation u(t) = Au(t) + Bu(t) has at least one solution

in Br. Consequently, the problem (1.1)–(1.2) has at least on solution on J . Thus the proof is

completed.

3.2 Uniqueness of solutions

In the next result, we apply the Banach fixed theorem to prove the uniqueness of solutions for the

problem (1.1)–(1.2).
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Theorem 3.2. Assume that the hypotheses(H1)–(H3) together with the inequality

Λ+
m
∑

i=1

K∗
i

Ψηi+q
0 (T )

Γ(ηi + q)
< 1.

are satisfied, then the problem (1.1)–(1.2) has an unique solution.

Proof. According to Lemma 2.4, we define the operator Q : E → E by

Qu(t) = Au(t) +Bu(t).

First, we show that Q(Br) ⊂ Br. As in the previous proof (step 3) of Theorem 3.1, we can obtain

for u ∈ Br and t ∈ J

‖Qu(·)‖ ≤ χ∗ϑ∗
Ψp+q

0 (T )

Γ(p+ 1)Γ(q + 1)
+ χ∗

(

|Ω3|Ψq+1
0 (T )

Γ(q + 2)
+

2|Ω2|Ψq+2
0 (T )

Γ(q + 3)

)(

|υ1|
|b1|

+
Ψp

0(T )

Γ(p+ 1)
ϑ∗
)

+ χ∗|Ω1|
(q + 4)Ψq+2

0 (T )

Γ(q + 3)

(

|υ2|+ ϑ∗
|a2|Ψp−δ

0 (ξ) + |b2|Ψp−δ
0 (T )

Γ(p− δ + 1)

)

+
n
∑

i=1

ϕ∗
i

Ψηi+q
0 (T )

Γ(ηi + q + 1)
≤ r.

This shows that Q(Br) ⊂ Br.

Next, we prove that the operator Q is a contractive operator. For u, v ∈ Br

‖Qu(·)−Qv(·)‖ ≤ ‖Au(·)−Av(·)‖ + ‖Bu(·)−Bv(·)‖,

and

‖Bu(·)−Bv(·)‖

≤ sup
t∈J

{ m
∑

i=1

1

Γ(ηi + q)

∫ t

0

ψ′(s)(ψ(t) − ψ(s))ηi+q−1
∣

∣gi(s, u(s))− gi(s, v(s))
∣

∣ds

}

≤
m
∑

i=1

K∗
i

Ψηi+q
0 (T )

Γ(ηi + q + 1)
‖u(·)− v(·)‖.

(3.5)

From (3.4) and (3.5), we get

‖Qu(·)−Qv(·)‖ ≤

(

Λ+
m
∑

i=1

K∗
i

Ψηi+q
0 (T )

Γ(ηi + q + 1)

)

‖u(·)− v(·)‖.

This implies that the operator Q is a contractive operator. Consequently, by Theorem 3.2, we

conclude that Q has an unique fixed point, which is a solution of the problem (1.1)–(1.2). This

completes the proof.
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4 Example

Consider the following fractional hybrid differential equation















































































































































cD
5
2 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













= f













t, u(t),cD
5
2 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))

























,

u(0) = 0, cD
3
4 ;tu(0) = 0,

2













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













t=0

+
2

7













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













t=1

=
7

2
,

7

13
cD

4
5 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













t= 4
5

+
1

2
cD

4
5 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))













t=1

= 2 ,

(4.1)

where

3
∑

i=1

Iηi;tgi(t, u(t))(s) = I
1
3 ;t

(

sin2 x(s)

8(s+ 1)2

)

(t) + I
3
2 ;t

(

1

2π
√
81 + s2

|x(s)|
2 + |x(s)|

)

(t)

+ I
7
3 ;t

(

sinx(s)

3π
√
49 + s2

)

(t),

h(t, u(t)) =
e−3t cosu(t)

2t+ 40
+

1

80
(t3 + 1),

and

f













t, u(t),c D
5
2 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))

























=
1

60
√
t+ 81













|x(t)|
3 + |x(t)|

− arctan













cD
5
2 ;t













cD
3
4 ;tu(t)−

3
∑

i=1

Iηi;tgi(t, u(t))

h(t, u(t))





































.
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Here T = 1, p = 5
2
, q = 3

4
,m = 3, η1 = 1

3
, η2 = 3

2
, η3 = 7

3
, δ = 4

5
, a1 = 2, a2 = 7

13
, b1 = 2

7
,

b2 = 1
2
, υ1 = 7

2
, υ2 = 2, ξ = 4

5
, g1 =

sin2 x(t)

8(t+ 1)2
, g2 =

1

2π
√
81 + t2

|x(t)|
2 + |x(t)|

, g3 =
sinx(t)

3π
√
49 + t2

.

The hypotheses (H1), (H2) and (H4) are satisfied with the following positives functions: L(t) =
e−3

2t+ 40
, M(t) = ϑ(t) =

1

60
√
t+ 81

, ϕ1(t) = K1(t) =
1

8(t+ 1)2
, ϕ2(t) = K2(t) =

1

2π
√
81 + t2

,

ϕ3(t) = K3(t) =
1

3π
√
49 + t2

and χ(t) =
e−3

2t+ 40
+

1

80
(t3+1), which gives us L∗ = 1

40
, M∗ = ϑ∗ =

1
540

,χ∗ = 3
80
, ϕ∗

1 = K∗
1 = 1

8
,ϕ∗

2 = K∗
2 = 1

18π
, ϕ∗

3 = K∗
3 = 1

21π
.

With the given data, we find that

Ω1 / 1.81820508, Ω2 / 0.60797139, Ω3 / 1.60797139,

and

Λ / 0.48820986 < 1.

By Theorem 3.1, the problem (4.1) has a solution on [0, 1].

Also, we have

Λ+
3
∑

i=1

K∗
i

Ψηi+q
0 (1)

Γ(ηi +
7
4
)
/ 0.61782704 < 1.

In view of Theorem 3.2 the problem (4.1) has an unique solution.

5 Conclusion

In this manuscript, we have successfully investigated the existence, uniqueness of the solutions for

a new class of ψ−Caputo type hybrid fractional differential equations with hybrid conditions. The

existence of solutions is provided by using a generalization of Krasnoselskii’s fixed point theorem

due to Dhage [5], whereas the uniqueness result is achieved by Banach’s contraction mapping

principle. Also, we have presented an illustrative example to support our main results. In future

works, many results can be established when one takes a more generalized operator. Precisely,

it will be of interest to study the current problem in this work for the fractional operator with

variable order [22], and ψ-Hilfer fractional operator [19].
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ABSTRACT

In this paper, we introduce and study graded weakly 1-

absorbing prime ideals in graded commutative rings. Let

G be a group and R be a G-graded commutative ring with

a nonzero identity 1 != 0. A proper graded ideal P of R

is called a graded weakly 1-absorbing prime ideal if for each

nonunits x, y, z ∈ h(R) with 0 != xyz ∈ P , then either xy ∈ P

or z ∈ P . We give many properties and characterizations of

graded weakly 1-absorbing prime ideals. Moreover, we in-

vestigate weakly 1-absorbing prime ideals under homomor-

phism, in factor ring, in rings of fractions, in idealization.

RESUMEN

En este art́ıculo, introducimos y estudiamos ideales primos

débilmente 1-absorbentes en anillos conmutativos gradados.

Sea G un grupo y R un anillo conmutativo G-gradado con

identidad no cero 1 != 0. Un ideal gradado propio P de R se

llama ideal primo gradado débilmente 1-absorbente si para

cualquiera x, y, z ∈ h(R) no-unidades con 0 != xyz ∈ P ,

entonces o bien xy ∈ P o z ∈ P . Entregamos muchas

propiedades y caracterizaciones de ideales primos grada-

dos débilmente 1-absorbentes. Más aún, investigamos ide-

ales primos débilmente 1-absorbentes bajo homomorfismo,

en anillos cociente, en anillos de fracciones, en idealización.
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1-absorbing prime ideal.
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1 Introduction

Throughout the paper, we focus only on graded commutative rings with a nonzero identity. R will

always denote such a ring and G denotes a group with identity e. u(R), N(R) and reg(R) denote

the set of all unit elements, all nilpotent elements and all regular elements of R, respectively. Over

the years, several types of ideals have been developed such as prime, maximal, primary, etc. The

concept of prime ideals and its generalizations have a significant place in commutative algebra since

they are used in understanding the structure of rings [6, 19, 11, 4]. R is said to be G-graded if

R =
⊕

g∈G

Rg with RgRh ⊆ Rgh for all g, h ∈ G where Rg is an additive subgroup of R for all g ∈ G.

Sometimes we denote the G-graded ring R by G(R). The elements of Rg are called homogeneous

of degree g. If x ∈ R, then x can be written as
∑

g∈G

xg, where xg is the component of x in Rg.

Also, we set h(R) =
⋃

g∈G

Rg. The support of G(R) is defined as supp(G(R)) = {g ∈ G : Rg #= {0}}.

Moreover, as shown for example in [13] that Re is a subring of R and 1 ∈ Re. Let P be an ideal of

a graded ring R. Then P is said to be graded ideal if P =
⊕

g∈G

(P ∩Rg), i.e., for x ∈ P , x =
∑

g∈G

xg

where xg ∈ P for all g ∈ G. It is known that an ideal of a graded ring need not be graded. Let R

be a G-graded ring and P be a graded ideal of R. Then R/P is G-graded by (R/P )g = (Rg+P )/P

for all g ∈ G. If R and S are G-graded rings, then R×S is a G-graded ring by (R× S)g = Rg×Sg

for all g ∈ G.

Lemma 1.1 ([9, Lemma 2.1]). Let R be a G-graded ring.

(1) If P and Q are graded ideals of R, then P +Q, PQ and P
⋂

Q are graded ideals of R.

(2) If x ∈ h(R), then Rx = (x) is a graded ideal of R.

Let P be a proper graded ideal of R. Then the graded radical of P is denoted by Grad(P ) and it

is defined as follows:

Grad(P ) =







x =
∑

g∈G

xg ∈ R : for all g ∈ G, there exists ng ∈ N such that xng

g ∈ P







.

Note that Grad(P ) is always a graded ideal of R (see [15]).

In [15], Refai et al. defined and studied graded prime ideals. A proper graded ideal P of a graded

ring R is called graded prime ideal if whenever xy ∈ P for some x, y ∈ h(R) then either x ∈ P or

y ∈ P . Clearly, if P is a prime ideal of R and it is a graded ideal of R, then P is a graded prime

ideal of R. On the other hand, the importance of graded prime ideals comes from the fact that

graded prime ideals are not necessarily prime ideals, as we see in the next example.

Example 1.2. Consider R = Z[i] and G = Z2. Then R is G-graded by R0 = Z and R1 = iZ.
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Consider the graded ideal I = 17R of R. We show that I is a graded prime ideal of R. Let xy ∈ I

for some x, y ∈ h(R).

Case (1): Assume that x, y ∈ R0. In this case, x, y ∈ Z such that 17 divides xy, and then either

17 divides x or 17 divides y as 17 is a prime number, which implies that x ∈ I or y ∈ I.

Case (2): Assume that x, y ∈ R1. In this case, x = ia and y = ib for some a, b ∈ Z such that 17

divides xy = −ab, and then 17 divides a or 17 divides b in Z, which implies that 17 divides

x = ia or 17 divides y = ib in R. Then we have that x ∈ I or y ∈ I.

Case (3): Assume that x ∈ R0 and y ∈ R1. In this case, x ∈ Z and y = ib for some b ∈ Z such

that 17 divides xy = ixb in R, that is ixb = 17(α + iβ) for some α,β ∈ Z. Then we obtain

xb = 17β, that is 17 divides xb in Z, and again 17 divides x or 17 divides b, which implies

that 17 divides x or 17 divides y = ib in R. Thus, x ∈ I or y ∈ I.

One can similarly show that x ∈ I or y ∈ I in other cases. So, I is a graded prime ideal of R. On

the other hand, I is not a prime ideal of R since (4− i)(4 + i) ∈ I, (4− i) /∈ I and (4 + i) /∈ I.

Several generalizations of graded prime ideals attracted attention by many authors. In [14], Refai

and Al-Zoubi introduced graded primary ideals which is a generalization of graded prime ideals.

A proper graded ideal P of a graded ring R is called graded primary ideal if xy ∈ P for some

x, y ∈ h(R) implies that either x ∈ P or y ∈ Grad(P ). They also studied graded primary G-

decomposition related to graded primary ideals. Atani defined a generalization of graded prime

ideals as graded weakly prime ideals in [5]. A proper graded ideal P of a graded ring R is said to

be graded weakly prime ideal if whenever x, y ∈ h(R) such that 0 #= xy ∈ P then either x ∈ P or

y ∈ P . They gave some characterizations of graded weakly prime ideals and their homogeneous

components. In [12], Naghani and Moghimi introduced 2-absorbing version of graded prime ideals

and graded weakly prime ideals. A proper graded ideal P of a graded ring R is called graded 2-

absorbing (graded weakly 2-absorbing) if whenever x, y, z ∈ h(R) such that xyz ∈ P (0 #= xyz ∈ P )

then xy ∈ P or yz ∈ P or xz ∈ P . They investigated some properties of this new class of graded

ideals. Yassine et al. studied 1-absorbing prime ideals which is a generalization of prime ideals

in [19]. A proper ideal P of R is said to be 1-absorbing prime ideal if for some nonunit elements

x, y, z ∈ R such that xyz ∈ P implies that either xy ∈ P or z ∈ P . Authors determined 1-absorbing

prime ideals in some special rings such as principal ideal domains, valuation domains and Dedekind

domains. Currently, Koç et al. defined weakly 1-absorbing prime ideals which is a generalization

of 1-absorbing prime ideals in [11]. A proper ideal P of R is called weakly 1-absorbing prime ideal

if 0 #= xyz ∈ P for some nonunits x, y, z ∈ R implies xy ∈ P or z ∈ P . They gave certain properties

of this new concept and characterized rings that every proper ideal is weakly 1-absorbing ideal.

More recently, in [1], Dawwas et al. defined graded version of 1-absorbing prime ideals which is a
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generalization of both graded prime ideals and 1-absorbing prime ideals. A proper graded ideal P

of a graded ring R is called graded 1-absorbing prime ideal if whenever for some nonunits x, y, z

in h(R) such that xyz ∈ P then either xy ∈ P or z ∈ P . Moreover, many studies have been made

by researchers related to graded versions of known structures [3, 7, 8, 10, 16].

In this paper, we define graded weakly 1-absorbing prime ideal which is a generalization of graded

1-absorbing prime ideals. A proper graded ideal P of a graded ring R is said to be graded weakly

1-absorbing prime ideal if whenever for some nonunits x, y, z in h(R) such that 0 #= xyz ∈ P then

either xy ∈ P or z ∈ P . Every graded 1-absorbing prime ideal is a graded weakly 1- absorbing

prime ideals but the converse is not true in general (see, Example 3.2). In addition to many

properties of this new class of graded ideals, we also investigate behavior of graded weakly 1-

absorbing ideals under homomorphism, in factor ring, in rings of fractions, in idealization (see,

Theorem 3.15, Proposition 3.14, Theorem 3.16, Theorem 3.18 and Theorem 3.23).

2 Motivation

Graded prime ideals play an essential role in graded commutative ring theory. Indeed, graded prime

ideals are interesting because they correspond to irreducible varieties and schemes in the graded

case and because of their connection to factorization. Also, graded prime ideals are important

because they have applications to combinatorics and they have structural significance in graded ring

theory. Thus, this concept has been generalized and studied in several directions. The significance

of some of these generalizations is same as the graded prime ideals. In a feeling of animate being,

they determine how far an ideal is from being graded prime. Several generalizations of graded

prime ideals attracted attention by many authors. For instance, graded weakly prime ideals,

graded primary ideals, graded almost prime ideals, graded 2-absorbing ideals, graded 2-absorbing

primary ideals and graded 1-absorbing prime ideals. In continuation of these generalizations, we

present the concept of graded weakly 1-absorbing prime ideals, as a new generalization to graded

prime ideals, in order to benefit from this new concept in more applications, and to make the study

of graded prime ideals more flexible.

3 Graded weakly 1-absorbing prime ideals

Definition 3.1. Let R be a G-graded ring and P be a proper graded ideal of R. Then, P is called

graded weakly 1-absorbing prime ideal of R if whenever 0 #= xyz ∈ P for some nonunit elements

x, y, z in h(R) then xy ∈ P or z ∈ P .

Example 3.2. Every graded 1-absorbing prime ideal is a graded weakly 1-absorbing prime ideal.

The converse may not be true. Let R = Z21 and consider the trivial grading on R. P = (0̄) is graded
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weakly 1-absorbing prime ideal. But it is not graded 1-absorbing prime ideal since 3̄.3̄.7̄ = 0̄ ∈ P ,

3̄.3̄ #∈ P and 7̄ #∈ P .

Example 3.3. Let R = Z8[i] = Z8 ⊕ iZ8. Then note that R is a Z2-graded ring and h(R) =

Z8∪ iZ8. Now, put P = (4). Since 2(1+ i)(1− i) = 4 ∈ P but 2(1+ i) /∈ P and (1− i) /∈ P, it follows

that P is not a weakly 1-absorbing prime ideal of R. However, the set of nonunit homogeneous

elements of R is {0, 2, 4, 6, 2i, 4i, 6i}. Let x, y, z ∈ h(R) be nonunit elements. Then note that

xyz = 0 ∈ P , which implies that P is a graded weakly 1-absorbing prime ideal of R.

N(R) denotes the set of all nilpotent elements of R. Recall that a ring R is said to be reduced if

N(R) = 0.

Theorem 3.4. Let R be a G-graded reduced ring and P be a graded weakly 1-absorbing prime

ideal of R. Then, Grad(P ) is a graded weakly prime ideal of R.

Proof. Suppose that 0 #= xy ∈ Grad(P ) where x, y ∈ h(R). Then there exists n ∈ N such that

(xy)n ∈ P . We have 0 #= (xy)n = xkxn−kyn ∈ P for some positive integer k < n. If x or y is

unit in h(R), we are done. So, assume that x and y are nonunit elements in h(R). As P is graded

weakly 1-absorbing prime ideal, xn ∈ P or yn ∈ P showing that x ∈ Grad(P ) or y ∈ Grad(P ).

Theorem 3.5. Let R be a G-graded ring and P be a graded weakly 1-absorbing prime ideal of R.

Then, (P : a) is a graded weakly prime ideal of R where a is a regular nonunit element in h(R)−P .

Proof. From [1, Lemma 2.4], (P : a) is a graded ideal of R. Suppose 0 #= xy ∈ (P : a) for some

x, y ∈ h(R). Then 0 #= (xa)y ∈ P where xa, y ∈ h(R). If x or y is unit, there is nothing to

prove. So, we can assume that x and y are nonunit elements in h(R). Since P is graded weakly

1-absorbing prime ideal of R, we get either xa ∈ P or y ∈ P . It gives x ∈ (P : a) or y ∈ (P : a),

as needed.

Definition 3.6. Let R be a G-graded ring and P be a graded ideal of R. Then, P is called g-weakly

1-absorbing prime ideal of R for g ∈ G with Pg #= Rg if 0 #= xyz ∈ P for some nonunit elements

x, y, z in Rg implies that xy ∈ P or z ∈ P .

We say that a proper graded ideal P of a G-graded ring R is said to be a g-weakly prime for g ∈ G

if Pg #= Rg and whenever 0 #= xy ∈ P for some x, y ∈ Rg implies x ∈ P or y ∈ P .

Proposition 3.7. Let R be a G-graded reduced ring and P be a gn-weakly 1-absorbing prime ideal

of R for each n ∈ N. Then, Grad(P ) is a g-weakly prime ideal of R.

Proof. It immediately follows from Theorem 3.4.
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Recall from [1] that a proper graded ideal P of a G-graded ring R is said to be a g-1-absorbing

prime for g ∈ G if Pg #= Rg and whenever xyz ∈ P for some nonunits x, y, z ∈ Rg implies xy ∈ P

or z ∈ P .

Proposition 3.8. Let R be a G-graded ring. If R has a g-weakly-1-absorbing prime ideal that is

not a g-weakly prime ideal of R and (0) is a g-1-absorbing prime ideal of R, then, for each unit

element u in Rg and for each nonunit element v in Rg the sum u+ v is a unit element in Rg.

Proof. Assume that P is a g-weakly 1-absorbing prime ideal of R that is not a g-weakly prime

ideal of R. Then, there exist nonunit elements x, y ∈ Rg such that xy ∈ P but x #∈ P and y #∈ P .

Then we have vxy ∈ P where v is a nonunit element in Rg. If vxy = 0 ∈ (0), then vx ∈ P since (0)

is a g-1 absorbing prime ideal and y #∈ P . If 0 #= vxy ∈ P , we have vx ∈ P since P is a g-weakly

1-absorbing prime ideal of R. Now we will show that u + v is a unit element in Rg where u is a

unit element in Rg. Suppose to the contrary. If (u + v)xy = 0 ∈ (0), we get (u + v)x ∈ P . This

implies ux ∈ P giving that x ∈ P which is a contadiction. If we assume 0 #= (u + v)xy ∈ P , then

again we get a contradiction by using the fact that P is a g-weakly 1-absorbing prime ideal and so

it completes the proof.

Theorem 3.9. Let R be a G-graded ring and P be a proper graded ideal of R. Consider the

following statements.

(i) P is a graded weakly 1-absorbing prime ideal of R.

(ii) If xy #∈ P for some nonunits x, y ∈ h(R), then (P : xy) = P ∪ (0 : xy).

(iii) If xy #∈ P for some nonunits x, y ∈ h(R), then either (P : xy) = P or (P : xy) = (0 : xy).

(iv) If 0 #= xyK ⊆ P for some nonunits x, y ∈ h(R) and proper graded ideal K of R, then either

xy ∈ P or K ⊆ P .

(v) If 0 #= xJK ⊆ P for some nonunit x ∈ h(R) and proper graded ideals J,K of R, then either

xJ ⊆ P or K ⊆ P .

(vi) If 0 #= IJK ⊆ P for proper graded ideals I, J,K of R, then either IJ ⊆ P or K ⊆ P .

Then, (vi) ⇒ (v) ⇒ (iv) ⇒ (iii) ⇒ (ii) ⇒ (i).

Proof. (vi) ⇒ (v) : Suppose that 0 #= xJK ⊆ P for some nonunit x ∈ h(R) and proper graded

ideals J,K of R. Now, put I = (x). Then I is a proper graded ideal ofR and 0 #= IJK ⊆ P. By

(vi), we have xJ ⊆ IJ ⊆ P or K ⊆ P, which completes the proof.

(v) ⇒ (iv) : Suppose that 0 #= xyK ⊆ P for some nonunits x, y ∈ h(R) and proper graded ideal

K of R. Now, consider the proper graded ideal J = (y) of R and note that 0 #= xJK ⊆ P.

So by (v), we get xy ∈ xJ ⊆ P or K ⊆ P.
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(iv) ⇒ (iii) : Let x, y ∈ h(R) be nonunit elements such that xy /∈ P. It is easy to see that xy(P :

xy) ⊆ P.

Case 1: Assume that xy(P : xy) = 0. This gives (P : xy) ⊆ (0 : xy) ⊆ (P : xy), that is,

(P : xy) = (0 : xy).

Case 2: Assume that xy(P : xy) #= 0. Then by (iv), we have (P : xy) ⊆ P which implies

that (P : xy) = P.

(iii) ⇒ (ii) : It is straightforward.

(ii) ⇒ (i) : Let x, y, z ∈ h(R) be nonunits such that 0 #= xyz ∈ P. If xy ∈ P, then we are done.

So assume that xy /∈ P. Since z ∈ (P : xy) − (0 : xy) and (P : xy) = (0 : xy) ∪ P, we have

z ∈ P which completes the proof.

In the following example, we show that the condition “P is a graded weakly 1-absorbing prime

ideal” does not ensure that the conditions (ii)-(vi) in Theorem 3.9 hold. In fact, we will show that

(i) ! (ii).

Example 3.10. Let R = Z12[X ], where X is an indeterminate over Z12. Then R =
⊕

n∈Z

Rn is a

Z-graded ring, where R0 = Z12 and Rn = Z12Xn if n > 0, otherwise Rn = 0. Then note that

h(R) =
⋃

n≥0

Z12Xn and the set of nonunits homogeneous elements of R is nh(R) = {2k, 3k, aXn :

k, a ∈ Z and n ∈ N}. Consider the graded ideal P = (X, 4) of R. Let f, g, h ∈ nh(R) such that

0 #= fgh ∈ P. If at least one of the f, g, h is of the form aXn, then we are done. So assume that

f, g, h ∈ {2k, 3k : k ∈ Z}. Since 0 #= fgh ∈ P = (X, 4), we have 0 #= fgh = 4k for some k ∈ Z with

gcd(k, 3) = 1. Since 4|fgh and 3 " fgh, we conclude that f, g, h ∈ {2, 4, 8, 10}. This implies that

fg ∈ P, that is, P is a graded weakly 1-absorbing prime ideal of R. Now, we will show that P does

not satisfy the condition (ii) in Theorem 3.9. Take nonunits homogeneous elements c = 2, d = 3

of R. Then note that cd /∈ P. On the other hand, it is clear that 2 ∈ (0 : cd)− P and X ∈ P − (0 :

cd). This gives z = 2 +X ∈ (P : cd) − ((0 : cd) ∪ P ) . Thus, we have (P : cd) # (0 : cd) ∪ P, i.e.,

P does not satisfy the condition (ii) in Theorem 3.9.

Definition 3.11. Let P be a graded weakly 1-absorbing prime ideal of R and xg1 , yg2 , zg3 be

nonunits in h(R). Then, (xg1 , yg2 , zg3) is called graded 1-triple zero if xg1yg2zg3 = 0, xg1yg2 #∈ P

and zg3 #∈ P, where g1, g2, g3 ∈ G.

Theorem 3.12. Let P =
⊕

g∈G Pg be a graded weakly 1-absorbing prime ideal that is not graded

1-absorbing prime ideal and (xg1 , yg2 , zg3) be a graded 1-triple zero of P, where g1, g2, g3 ∈ G. Then,

(i) xg1yg2Pg3 = 0.

(ii) xg1zg3 #∈ Pg1g3 and yg2zg3 #∈ Pg2g3 imply that xg1zg3Pg2 = yg2zg3Pg1 = xg1Pg2Pg3 = yg2Pg1Pg3 =

zg3Pg1Pg2 = 0. In particular, Pg1Pg2Pg3 = 0.
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Proof. (i) : Let P =
⊕

g∈G Pg be a graded weakly 1-absorbing prime ideal that is not graded

1-absorbing prime ideal and (xg1 , yg2 , zg3) be a graded 1-triple zero of P . Assume that

xg1yg2Pg3 #= 0. Then, there exists a ∈ Pg3 = P ∩ Rg3 such that 0 #= xg1yg2a. So, we

have 0 #= xg1yg2a = xg1yg2(zg3 + a) ∈ P . If zg3 + a is unit, then xg1yg2 ∈ P which gives a

contradiction. Since P is graded weakly 1-absorbing prime ideal and xg1yg2 #∈ P , zg3 +a ∈ P .

This shows zg3 ∈ P , a contradiction.

(ii) : Let xg1zg3 #∈ Pg1g3 and yg2zg3 #∈ Pg2g3 . Then, xg1zg3 , yg2zg3 #∈ P . Now choose a ∈ Pg2 .

So, we have xg1(yg2 + a)zg3 = xg1azg3 ∈ P since xg1yg2zg3 = 0. If yg2 + a is unit, then we

obtain xg1zg3 ∈ P , which is a contradiction. Thus, yg2 + a is not unit. If xg1azg3 #= 0, then

0 #= xg1(yg2 + a)zg3 ∈ P . Thus, xg1(yg2 + a) ∈ P or zg3 ∈ P implying that xg1yg2 ∈ P

or zg3 ∈ P , a contradiction. This shows xg1azg3 = 0 and so xg1zg3Pg2 = 0. Similarly,

yg2zg3Pg1 = 0.

Now assume that xg1Pg2Pg3 #= 0. Then there exist ag2 ∈ Pg2 , bg3 ∈ Pg3 such that xg1ag2bg3 #=

0. This gives 0 #= xg1 (yg2 + ag2)(zg3 + bg3) = xg1yg2zg3 + xg1yg2bg3 + xg1ag2zg3 + xg1ag2bg3 =

xg1ag2bg3 ∈ P . If (yg2 + ag2) is unit, xg1(zg3 + bg3) ∈ P . It means that xg1zg3 ∈ P , which

is a contradiction. Hence, (yg2 + ag2) is nonunit. Similar argument shows that (zg3 + bg3) is

nonunit. Since P is graded weakly 1-absorbing prime ideal, xg1(yg2+ag2) ∈ P or zg3+bg3 ∈ P .

This proves xg1yg2 ∈ P or zg3 ∈ P which is a contradiction. So, xg1Pg2Pg3 = 0. Similarly we

have yg2Pg1Pg3 = zg3Pg1Pg2 = 0.

Suppose Pg1Pg2Pg3 #= 0. Then there exist ag1 ∈ Pg1 , bg2 ∈ Pg2 , cg3 ∈ Pg3 such that

ag1bg2cg3 #= 0. So, we have 0 #= (ag1 + xg1 )(bg2 + yg2)(cg3 + zg3) = ag1bg2cg3 ∈ P since

xg1zg3Pg2 = yg2zg3Pg1 = xg1Pg2Pg3 = yg2Pg1Pg3 = zg3Pg1Pg2 = 0 and xg1yg2zg3 = 0. If

ag1 + xg1 is unit, (bg2 + yg2)(cg3 + zg3) ∈ P and it implies yg2zg3 ∈ P , a contradiction.

So, ag1 + xg1 is not unit. Similar argument shows that bg2 + yg2 , cg3 + zg3 are nonunits.

Since P is graded weakly 1-absorbing prime ideal, we have either (ag1 + xg1)(bg2 + yg2) ∈ P

or cg3 + zg3 ∈ P . Thus, we conclude that xg1yg2 ∈ P or zg3 ∈ P giving a contradiction.

Therefore, Pg1Pg2Pg3 = 0.

Let R be a G-graded ring. It is clear that for each g ∈ G, Rg is an Re-module and Pg is an

Re-submodule of Rg.

Theorem 3.13. Let P =
⊕

g∈G Pg be a graded 1-absorbing prime ideal of G(R) and g ∈ G. If

x, y ∈ Rg are nonunits such that xy #∈ P , then (Pg2 :Re
xy) = Pe.

Proof. Let z ∈ (Pg2 :Re
xy), where x, y ∈ Rg are nonunits. Then, xyz ∈ Pg2 ⊆ P . If z is a unit,

xy ∈ P which gives a contradiction. So, z is not unit. As P is graded 1-absorbing prime ideal and

xy #∈ P we get z ∈ P . Thus, z ∈ P ∩Re = Pe. This shows (Pg2 :Re
xy) ⊆ Pe.
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On the other hand, suppose z ∈ Pe ⊆ P . Then, xyz ∈ P ∩Rg2 = Pg2 proving z ∈ (Pg2 :Re
xy), as

desired.

Proposition 3.14. Let R be a G-graded ring and J ⊆ I be proper graded ideals of R. Then the

followings statements are satisfied.

(i) If I is graded weakly 1-absorbing prime ideal, then I/J is graded weakly 1-absorbing prime

ideal of R/J .

(ii) Suppose that J consists of all nilpotent elements of R. If J is a graded weakly 1-absorbing

prime ideal of R and I/J is a graded weakly 1-absorbing prime ideal of R/J , then I is a

graded weakly 1-absorbing prime ideal of R.

(iii) If (0) is graded 1-absorbing prime ideal of R and I is graded weakly 1-absorbing prime ideal

of R, then I is graded 1-absorbing prime ideal of R.

Proof. (i) : Let 0+J #= (x+J)(y+J)(z+J) ∈ I/J for some nonunits x+J, y+J, z+J ∈ h(R/J).

Then, 0 #= xyz + J ∈ I/J and so 0 #= xyz ∈ I where x, y, z are nonunits in h(R). As I is

a graded weakly 1-absorbing prime ideal, either xy ∈ I or z ∈ I. Hence, xy + J ∈ I/J or

z + J ∈ I/J , as desired.

(ii) : Suppose 0 #= xyz ∈ I for some nonunits x, y, z ∈ h(R). Then, xyz+J = (x+J)(y+J)(z+J) ∈

I/J . If xyz ∈ J , then xy ∈ J ⊆ I or z ∈ J since J ⊆ I is graded weakly 1-absorbing prime

ideal. So we can assume xyz #∈ J . Then we have 0 + J #= (x + J)(y + J)(z + J) ∈ I/J . As

I/J is graded weakly 1-absorbing prime ideal of R/J , (x+ J)(y + J) ∈ I/J or z + J ∈ I/J .

It implies either xy ∈ I or z ∈ I.

(iii) : Suppose that xyz ∈ I for some nonunits x, y, z ∈ h(R). If xyz #= 0, then we are done. So,

we can assume xyz = 0 ∈ (0). Then, we get either xy = 0 ∈ I or z = 0 ∈ I since (0) is

graded 1-absorbing prime ideal. Therefore, we conclude that xy ∈ I or z ∈ I.

Let R and S be two G-graded rings. A ring homomorphism f : R → S is said to be graded

homomorphism if f(Rg) ⊆ Sg for all g ∈ G.

Theorem 3.15. Let R1 and R2 be two G-graded rings and f : R1 −→ R2 be a graded homomor-

phism such that f(1R1) = 1R2 . The following statements are satisfied.

(i) If f is injective, J is a graded weakly 1-absorbing prime ideal of R2 and f(x) is a nonunit

element of R2 for all nonunit elements x ∈ h(R1), then f−1(J) is a graded weakly 1-absorbing

prime ideal of R1.

(ii) If f is surjective and I is a graded weakly 1-absorbing prime ideal of R1 with ker(f) ⊆ I,

then f(I) is a graded weakly 1-absorbing prime ideal of R2.
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Proof. (i) : It is clear that f−1(J) is a graded ideal of R1. Let 0 #= xyz ∈ f−1(J) for some nonunits

x, y, z in h(R1). So, f(x), f(y) and f(z) are nonunits in h(R2) by the assumption. Since f

is injective and xyz #= 0, we have f(xyz) #= 0. Then we get 0 #= f(x)f(y)f(z) = f(xyz) ∈ J .

As J is a graded weakly 1-absorbing prime ideal of R2, f(x)f(y) ∈ J or f(z) ∈ J . It implies

that we have either xy ∈ f−1(J) or z ∈ f−1(J).

(ii) : Suppose that 0 #= abc ∈ f(I) for some nonunits a, b, c ∈ h(R2). Then, there exist nonunits

x, y, z ∈ h(R1) such that f(x) = a, f(y) = b and f(z) = c. It gives that 0 #= f(x)f(y)f(z) =

abc ∈ f(I). So, there exists i ∈ I such that f(xyz) = f(i). This means xyz − i ∈ ker(f) ⊆ I

giving xyz ∈ I. Since I is a graded weakly 1-absorbing prime ideal and 0 #= xyz ∈ I, we

conclude that xy ∈ I or z ∈ I. It shows f(x)f(y) = ab ∈ f(I) or f(z) = c ∈ f(I), as

needed.

Let S ⊆ h(R) be a multiplicative set and R be a G-graded ring. Then S−1R is a G-graded ring

with (S−1R)g =
{

a
s
: a ∈ Rh, s ∈ S ∩Rhg−1

}

. Let I be a graded ideal of R. Then we denote the

set {a ∈ R : ab ∈ I for some b ∈ R− I} by ZI(R).

Theorem 3.16. Let R be a G-graded ring and S ⊆ h(R) be a multiplicatively closed subset. The

following statements are satisfied.

(i) If I is a graded weakly 1-absorbing prime ideal of R with I ∩ S = ∅, then S−1I is a graded

weakly 1-absorbing prime ideal of S−1R.

(ii) If S−1I is a graded weakly 1-absorbing prime ideal of S−1R, u(S−1R) = {x
s : x ∈ u(R), s ∈

S}, S ⊆ reg(R) and S ∩ ZI(R) = ∅, then I is a graded weakly 1-absorbing prime ideal of R.

Proof. (i) : Suppose that 0 #= x
s
y
t
z
u

∈ S−1I for some nonunits x
s
, y
t
, z
u

∈ h(S−1R). Then 0 #=

a(xyz) = (ax)yz ∈ I for some a ∈ S. Here, ax, y, z are nonunits in h(R). Otherwise, we

would have x
s ,

y
t ,

z
u are units in S−1R, a contradiction. As I is a graded weakly 1-absorbing

prime ideal of R, we have either axy ∈ I or z ∈ I. This implies that x
s
y
t
= axy

ast
∈ S−1I or

z
u ∈ S−1I. Thus, S−1I is a graded weakly 1-absorbing prime ideal of S−1R.

(ii) : Let 0 #= xyz ∈ I for some nonunits x, y, z ∈ h(R). Since S ⊆ reg(R), we conclude that

0 #= x
1

y
1

z
1
∈ S−1I. Here, x

1
, y
1
, z
1
are nonunits in h(S−1R). Since S−1I is a graded weakly

1-absorbing prime ideal of S−1R, we conclude either x
1

y
1
= xy

1
∈ S−1I or z

1
∈ S−1I. Then

there exists s ∈ S such that sxy ∈ I or sz ∈ I. We can assume that sxy ∈ I. If xy /∈ I, then

we have s ∈ ZI(R)∩S which is a contradiction. Thus we have xy ∈ I. In other case, similarly,

we get z ∈ I. Therefore, I is a graded weakly 1-absorbing prime ideal of R.

Theorem 3.17. Let P =
⊕

g∈G Pg be a graded weakly 1-absorbing prime ideal of R and g ∈ G.

Then, (Pg2 :Re
xy) = Pe ∪ (0 :Re

xy) where x, y ∈ Rg are nonunits such that xy #∈ P .
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Proof. Clearly (0 :Re
xy) ⊆ (Pg2 :Re

xy). Let z ∈ Pe ⊆ P . This implies that xyz ∈ P ∩Rg2 = Pg2

and so z ∈ (Pg2 :Re
xy). Hence, Pe ∪ (0 :Re

xy) ⊆ (Pg2 :Re
xy). Now, we will show that

(Pg2 :Re
xy) ⊆ (0 :Re

xy) ∪ Pe. Let z ∈ (Pg2 :Re
xy). Then, we have xyz ∈ Pg2 ⊆ P . If z is a

unit, then we have xy ∈ P, a contradiction. Suppose that z is a nonunit of R. If xyz #= 0, then

z ∈ P ∩ Re = Pe. So assume that xyz = 0. It gives z ∈ (0 :Re
xy). Thus we have z ∈ Pe ∪ (0 :Re

xy). Therefore, (Pg2 :Re
xy) = Pe ∪ (0 :Re

xy).

Let R =
⊕

g∈G Rg be a graded ring. Recall from [18] that R is said to be a graded field if every

nonzero homogenous element is a unit in R.

Theorem 3.18. Suppose that R1, R2 be two G-graded commutative rings that are not graded

fields and R = R1 × R2. Let P be a nonzero proper graded ideal of R. The following statements

are equivalent.

(i) P is a graded weakly 1-absorbing prime ideal of R.

(ii) P = P1 × R2 for some graded prime ideal P1 of R1 or P = R1 × P2 for some graded prime

ideal P2 of R2.

(iii) P is a graded prime ideal of R.

(iv) P is a graded weakly prime ideal of R.

(v) P is a graded 1-absorbing prime ideal of R.

Proof. (i) ⇒ (ii) : Let P be a nonzero proper graded ideal of R. Then we can write P = P1×P2 for

some graded ideals P1 of R1 and P2 of R2. Since P is nonzero, P1 #= 0 or P2 #= 0. Without loss

of generality, we may assume that P1 #= 0. Then there exists a homogeneous element 0 #= x ∈

P1. Since P is a graded weakly 1-absorbing prime ideal and (0, 0) #= (1, 0)(1, 0)(x, 1) ∈ P, we

conclude either (1, 0) ∈ P or (x, 1) ∈ P. Then we have either P1 = R1 or P2 = R2. Assume

that P1 = R1. Now we will show that P2 is a graded prime ideal of R2. Let yz ∈ P2 for

some y, z ∈ h(R2). If y or z is a unit, then we have either y ∈ P2 or z ∈ P2. So assume

that y, z are nonunits in h(R2). Since R1 is not a graded field, there exists a nonzero nonunit

t ∈ h(R1). This implies that (0, 0) #= (t, 1)(1, y)(1, z) = (t, yz) ∈ P. As P is a graded weakly

1-absorbing prime ideal of R, we conclude either (t, 1)(1, y) = (t, y) ∈ P or (1, z) ∈ P. Thus

we get y ∈ P2 or z ∈ P2 and so P2 is a graded prime ideal of R2. In other case, one can

similarly show that P = P1 ×R2 and P1 is a graded prime ideal of R1.

(ii) ⇒ (iii) ⇒ (iv) ⇒ (i) : It is obvious.

(iii) ⇒ (v) : It is clear.

(v) ⇒ (i) : It is straightforward.
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Definition 3.19. Let R be a ring and M be an R-module. A proper submodule N of M is called a

1-absorbing R-submodule if whenever xym ∈ N where x, y ∈ R are nonunits, m ∈ M , then either

xy ∈ (N :R M) or m ∈ N .

Theorem 3.20. Let P =
⊕

g∈G Pg be a graded 1-absorbing prime ideal of G(R). If Pg #= Rg, then

Pg is a 1-absorbing Re-submodule of Rg.

Proof. Let xyr ∈ Pg ⊆ P for some nonunits x, y ∈ Re and r ∈ Rg. As P is graded 1-absorbing

prime ideal, xy ∈ P or r ∈ P . This implies that xy ∈ (Pg :Re
Rg) since xyRg ⊆ PRg ⊆ P∩Rg = Pg

or r ∈ P ∩Rg = Pg .

Definition 3.21. Let P =
⊕

g∈G Pg be a graded ideal of G(R). A graded component Pg of P

is called 1-absorbing prime subgroup of Rg if xyz ∈ Pg for some nonunits x, y, x ∈ h(R) implies

either xy ∈ Pg or z ∈ Pg.

Proposition 3.22. Let P =
⊕

g∈G Pg be a graded ideal of G(R). If Pg is a 1-absorbing prime

subgroup of Rg for all g ∈ G, then P is a graded 1-absorbing prime ideal of R.

Proof. Suppose xyz ∈ P for some nonunits x, y, z ∈ h(R). Then, xyz ∈ Pg for some g ∈ G. Since

Pg is 1-absorbing prime subgroup of Rg, xy ∈ Pg or z ∈ Pg. This gives xy ∈ P or z ∈ P , as

needed.

LetM be an R-module. The idealization R$M = {(r,m) : r ∈ R and m ∈ M} ofM is a commuta-

tive ring with componentwise addition and multiplication: (x,m1)+(y,m2) = (x+y,m1+m2) and

(x,m1)(y,m2) = (xy, xm2 + ym1) for each x, y ∈ R and m1,m2 ∈ M . Let G be an Abelian group

andM be a G-graded R-module. Then X = R$M is a G-graded ring byXg = Rg$Mg = Rg⊕Mg

for all g ∈ G. Note that, Xg is an additive subgroup of X for all g ∈ G. Also, for g, h ∈ G,

XgXh = (Rg$Mg)(Rh$Mh) = RgRh$(RgMh+RhMg) ⊆ Rgh$(Mgh+Mhg) ⊆ Rgh$Mgh = Xgh

as G is Abelian (see [2, 17]).

Theorem 3.23. Let G be an Abelian group, M be a G-graded R-module and P be an ideal of R.

Then, the following statements are equivalent.

(i) P $M is a graded weakly 1-absorbing prime ideal of R$M .

(ii) P is a graded weakly 1-absorbing prime ideal of R and if xg1yg2zg3 = 0 such that xg1yg2 #∈ P

and zg3 /∈ P for some nonunit elements xg1 , yg2 , zg3 in h(R), where g1, g2, g3 ∈ G, then

xg1yg2Mg3 = xg1zg3Mg2 = yg2zg3Mg1 = 0.

Proof. (i) ⇒ (ii) : By [17, Theorem 3.3], P is a graded ideal of R. Suppose that 0 #= abc ∈ P where

a, b, c are nonunits in h(R). Since (0, 0) #= (a, 0)(b, 0)(c, 0) ∈ P $ M and (a, 0), (b, 0), (c, 0)
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are nonunits in h(R $ M), we get (a, 0)(b, 0) ∈ P $ M or (c, 0) ∈ P $ M . Thus, we con-

clude that ab ∈ P or c ∈ P , as needed. Now suppose xg1yg2zg3 = 0 such that xg1yg2 #∈ P

and zg3 /∈ P for some nonunit elements xg1 , yg2 , zg3 in h(R), where g1, g2, g3 ∈ G. Let

xg1yg2Mg3 #= 0. Then there exists mg3 ∈ Mg3 such that xg1yg2mg3 #= 0. This gives

(0, 0) #= (xg1 , 0)(yg2 , 0)(zg3 ,mg3) = (0, xg1yg2mg3) ∈ P $ M for some nonunits (xg1 , 0),

(yg2 , 0), (zg3 ,mg3) ∈ h(R $M) and P $M is a graded weakly 1-absorbing prime ideal, we

have (xg1 , 0)(yg2 , 0) = (xg1yg2 , 0) ∈ P $M or (zg3 ,mg3) ∈ P $M . This gives xg1yg2 ∈ P or

zg3 ∈ P , a contradiction. Hence, xg1yg2Mg3 = 0. Similar argument shows that xg1zg3Mg2 =

yg2zg3Mg1 = 0.

(ii) ⇒ (i) : By [17, Theorem 3.3], P $ M is a graded ideal of R $ M . Assume that (0, 0) #=

(xg1 ,mg1)(yg2 ,mg2)(zg3 ,mg3) = (xg1yg2zg3 , xg1yg2mg3 +xg1zg3mg2 +yg2zg3mg1) ∈ P $M for

some nonunits (xg1 ,mg1), (yg2 ,mg2), (zg3 ,mg3) in h(R$M). Then we get xg1yg2zg3 ∈ P for

some nonunits xg1 , yg2 , zg3 ∈ h(R).

Case 1: Assume that xg1yg2zg3 = 0. If xg1yg2 #∈ P and zg3 #∈ P , we have xg1yg2Mg3 =

xg1zg3Mg2 = yg2zg3Mg1 = 0. This implies that xg1yg2mg3 + xg1zg3mg2 + yg2zg3mg1 = 0

and so (xg1 ,mg1)(yg2 ,mg2)(zg3 ,mg3) = (0, 0) giving a contradiction. Hence, we must

have xg1yg2 ∈ P or zg3 ∈ P . This gives (xg1 ,mg1)(yg2 ,mg2) ∈ P $M or (zg3 ,mg3) ∈

P $M.

Case 2: Now, assume that xg1yg2zg3 #= 0. This gives xg1yg2 ∈ P or zg3 ∈ P since P is graded

weakly 1-absorbing prime ideal. Then we conclude that (xg1 ,mg1)(yg2 ,mg2) ∈ P$M or

(zg3 ,mg3) ∈ P $M which completes the proof.
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ABSTRACT

Let V be a variety related to the second row of the

Freudenthal-Tits Magic square in N-dimensional projective

space over an arbitrary field. We show that there exist

M ≤ N quadrics intersecting precisely in V if and only if

there exists a subspace of projective dimension N−M in the

secant variety disjoint from the Severi variety. We present

some examples of such subspaces of relatively large dimen-

sion. In particular, over the real numbers we show that the

Cartan variety (related to the exceptional group E6(R)) is

the set-theoretic intersection of 15 quadrics.

RESUMEN

Sea V una variedad relacionada a la segunda fila del

cuadrado Mágico de Freudenthal-Tits en el espacio proyec-

tivo N-dimensional sobre un cuerpo arbitrario. Mostramos

que existen M ≤ N cuádricas intersectandose precisamente

en V si y solo si existe un subespacio de dimensión proyec-

tiva N − M en la variedad secante disjunta de la variedad

de Severi. Presentamos algunos ejemplos de tales subespa-

cios de dimensión relativamente grande. En particular, sobre

los números reales, mostramos que la variedad de Cartan

(relacionada al grupo excepcional E6(R)) es la intersección

conjuntista de 15 cuádricas.
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1 Introduction

It is well known that the Grassmannians of the (split) spherical buildings related to semi-simple

algebraic groups over algebraically closed fields can be described as the intersection of a number

of quadrics, see [7] for the complex case, and [3] and [10] for the more general case. In this paper,

we consider the Grassmannians (or “varieties”) related to the second row of the Freudenthal-Tits

Magic square. Over the complex numbers, these are the so-called “Severi varieties”. However,

these can be considered over any field K (not necessarily algebraically closed anymore), and these

geometries will be also called Severi varieties. A Severi variety lives in a projective space of

dimension N = 5, 8, 14 or 26 and is the set-theoretic and scheme-theoretic intersection of N + 1

quadrics, the equations of which carry a particularly elegant combinatorics, see [11]. The question

we’d like to put forward in this paper is whether we can describe the Severi varieties set-theoretically

with fewer quadrics, and ultimately try to find the minimum number of quadrics the intersection

of which is precisely the given Severi variety. Our motivation is entirely curiosity and beauty; the

latter under the form of a rather unexpected connection we found.

We will show that the N + 1 quadrics referred to above are linearly independent from each other.

Also, every quadric containing the given Severi variety is a linear combination of these N + 1

quadrics. These two facts point, in our opinion, to the conjecture that no set of N quadrics can

intersect precisely in the Severi variety. However, the quadric Veronese surface (the case N = 5

Severi variety) over fields of characteristic 2 is the set-theoretic intersection of three quadrics, see

Lemma 4.20 in [6]. Moreover, it was stated in [2], however without proof, that in the case N = 8,

the Severi variety is the set-theoretic intersection of only 6 quadrics. Hence the above conjecture

is false. In general, we will show the following equivalence:

Main Result. There exist M ≤ N quadrics intersecting precisely in the given Severi variety ⇐⇒

there exists a subspace of projective dimension N−M in the secant variety disjoint from the Severi

variety.

A more detailed and precise statement will be provided in Section 3. In fact, that statement and

its proof allow one, in principle, to describe all equivalence classes of systems of M ≤ N quadratic

equations exactly describing a given Severi variety. As an application, we will do this explicitly

in the simplest case, N = 5. For the other cases we content ourselves with giving examples for

relatively small M . In particular we will exhibit the real Cartan variety (the Grassmanian of

type E6,1 in 26-dimensional real projective space) as the intersection of only 15 quadrics (whereas

initially, we had 27 of them). It would require additional methods and ideas to pin down the

minimal M for each case and each field, so we consider that to be out of the scope of this paper.

About the method of our proof: Usually, the equations of the N + 1 initial quadrics are partial

derivatives of a cubic form (which has to be taken for granted). In the present paper, we start
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with the combinatorics of the equations of the quadrics and derive the cubic form from that. This

enables us to make a few geometric observations and interpretations which lead to a proof of the

Main Result.

Since the secant variety of a Severi variety always contains at least one point outside the variety,

we recover in our special case of Severi variety already the general result of Kronecker saying that

any projective variety in PN
K

is a set theoretic intersection of (at most) N hypersurfaces (in our

case quadrics), see Corollary 2 in [5]. One could also ask the equivalent question for the scheme-

theoretic intersection of quadrics, but we did not consider that. It seems to us that the answer we

give in the present paper for the Segre variety is also valid in the scheme-theoretic sense, but the

minimal examples for the line Grassmannian and the Cartan variety are not.

2 Preliminaries

2.1 The varieties

The main objects in this paper are the quadric Veronese surface V2(K) over any field K, the

Segre variety S2,2(K) corresponding to the product of two projective planes over K, the line

Grassmannian G2,6(K) of projective 5-space over K, and the Cartan variety E6(K) associated to

the 27-dimensional module of the (split) exceptional group of Lie type E6 over the field K. These

varieties can be defined as intersections of quadrics (and we will do so in Subsection 4.1 below),

but it might be insightful to also have the classical definition, which we now present. In what

follows, K is an arbitrary field and PN
K

or PN denotes the N -dimensional projective space over K,

which we suppose to be coordinatized with homogeneous coordinates from K after an arbitrary

choice of a basis.

The quadric Veronese surface V2(K)—This is the image of the Veronese map ν : P2 → P5 :

(x, y, z) &→ (x2, y2, z2, yz, zx, xy).

The Segre variety S2,2(K)—This is the image of the Segre map P2×P2 → P8 : (x, y, z;u, v, w) &→

(xu, yu, zu, xv, yv, zv, xw, yw, zw).

We may view the set of 3 × 3 matrices over K as a 9-dimensional vector space, and the set of

symmetric 3 × 3 matrices as a 6-dimensional subspace. Then we may consider the corresponding

projective spaces of (projective) dimension 8 and 5, respectively, in the classical way by considering

the 1-spaces as the points. In this way, the Segre variety S2,2(K) corresponds exactly with the

rank 1 matrices; explicitly

K(xu, yu, zu, xv, yv, zv, xw, yw, zw) ↔ K









xu yu zu

xv yv zv

xw yw zw









.
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Similarly, the quadric Veronese surface V2(K) corresponds exactly with the rank 1 symmetric

matrices; explicitly

K(x2, y2, z2, yz, zx, xy) ↔ K









x2 yx zx

xy y2 zy

xz yz z2









.

In particular, V2(K) is a subvariety of S2,2(K) obtained by intersecting with a 5-dimensional

subspace.

There exist other Segre varieties; in general Sn,m(K) is defined as the image in Pnm−1 of the map

(xi, yj)1≤i≤n,1≤j≤m &→ (xiyj)1≤i≤n,1≤j≤m. The images of the marginal maps defined by either

fixing the xi, 1 ≤ i ≤ n, or the yj , 1 ≤ j ≤ m, are called the generators of the variety (in case of

S2,2(K) the generators are 2-dimensional projective subspaces).

The line Grassmannian G2,6(K)—Denote the set of lines of P5, or equivalently, the set of 2-

spaces of K6 by
(

K
6

K2

)

. Then G2,6(K) is the image of the Plücker map

(

K6

K2

)

→ P
14 : 〈(x1, x2, . . . , x6).(y1, y2, . . . , y6)〉 &→ (xiyj − xjyi)1≤i<j≤6.

Denote the coordinate of P14 corresponding to the entry xiyj − xjyi by pij , 1 ≤ i < j ≤ 6. By

restricting to y1 = y2 = y3 = x4 = x5 = x6 = 0, we see that S2,2(K) is a subvariety of G2,6(K)

obtained by intersecting with an 8-dimensional projective subspace with equation p12 = p13 =

p23 = p45 = p46 = p56 = 0.

The Cartan variety E6(K)—This variety is traditionally defined using a trilinear or cubic form,

and we postpone this to Subsection 4.1. It is an exceptional variety in the sense that it cannot be

defined, using classical notions like Plücker or Grassmann coordinates, from a projective space.

The above varieties share the following properties, see [9]. Set N = 2+3M , with M = 1, 2, 4, 8. Let

V be one of the varieties V2(K), S2,2(K), G2,6(K) or E6(K), in PN , with M = 1, 2, 4, 8, respectively.

Then there exists a unique set H of (M + 1)-dimensional subspaces, called host spaces, satisfying

(1) every pair of points of V is contained in at least one host space;

(2) the intersection of V with any host space is a non-degenerate quadric of maximal Witt index

in the host space.

Borrowing some terminology from the theory of parapolar spaces, we shall refer to the quadrics in

(2) as symps. Also, we shall call two points of the variety collinear when all points of the joining

projective line belong to the variety.

If we specialize K = C, then V is sometimes called a Severi variety; these are the only complex

varieties with the property that their secant varieties are not the whole projective space, but

the secant variety of every variety of the same dimension in a lower dimensional projective space
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coincides with the ambient space. So we will also refer to these varieties over an arbitrary field as

the Severi varieties.

2.2 A generalized quadrangle

The introduction of an appropriate cubic form and explicit descriptions using coordinates will be

greatly facilitated by using the language of finite generalized quadrangles. A finite generalized

quadrangle (of order (s, t)) is an incidence system Γ = (P,L ) of finitely many points (P) and

lines (L ), where each line is a subset of P, such that each line contains s + 1 points, through

each point pass t+ 1 lines, and for each point p and each line L with p /∈ L, there exists a unique

point-line pair (q,M) such that p ∈ M and q ∈ L ∩ M . We are only interested in generalized

quadrangles of order (2, t), and then, by 1.2.2 and 1.2.3 of [8], necessarily t ∈ {1, 2, 4}. Moreover,

by 5.2.3 and 5.3.2 of [8], for each t ∈ {1, 2, 4}, there is a unique generalized quadrangle GQ(2, t) of

order (2, t) and GQ(2, 1) is contained in GQ(2, 2) as a subgeometry, and GQ(2, 2) is contained in

GQ(2, 4) as a subgeometry.

In the rest of this paper, we denote by Γ = (P,L ) the generalized quadrangle GQ(2, 4). An

explicit construction of Γ runs as follows, see Section 6.1 of [8]. Let P ′ be the set of all 2-subsets

of the 6-set {1, 2, 3, 4, 5, 6, }, and define

P = P
′ ∪ {1, 2, 3, 4, 5, 6}∪ {1′, 2′, 3′, 4′, 5′, 6′}.

Denote briefly the 2-subset {i, j} by ij, for all appropriate i, j. Let L ′ be the set of partitions of

{1, 2, 3, 4, 5, 6} into 2-subsets and define

L = L
′ ∪ {{i, j′, ij} | i, j ∈ {1, 2, 3, 4, 5, 6}, i .= j} .

Then Γ = (P,L ) is a model of GQ(2, 4). The subgeometry Γ′ = (P ′,L ′) is a model of GQ(2, 2).

Further restriction to

P
′′ = {ij | i ∈ {1, 2, 3}, j ∈ {4, 5, 6}} ,

with induced line set

L
′′ = {{14, 25, 36}, {15, 26, 34}, {16, 24, 35}, {14, 26, 35}, {15, 24, 36}, {16, 25, 34}} ,

produces a model Γ′′ = (P ′′,L ′′) of GQ(2, 1), which we sometimes refer to as a 3× 3 grid.

The sets {1, 2, 3, 4, 5, 6} and {1′, 2′, 3′, 4′, 5′, 6′} have the property that they both do not contain

any pair of collinear points, and that non-collinearity is a paring between the two sets. Such a pair

of 6-sets is usually called a double six.

Finally, we need the notion of a partial spread, which is just a set of disjoint lines. A spread is a

partial spread that partitions the point set. Every generalized quadrangle of order (2, t), t = 1, 2, 4,

satisfies the following property (again, see Section 6.1 of [8]):
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(∗) Every pair of disjoint lines is contained in a unique generalized subquadrangle of order (2, 1)

Three mutually disjoint lines of a subquadrangle of order (2, 1) will be called a regulus. Property

(∗) can be reformulated as “every pair of disjoint lines is contained in a unique regulus”. A partial

spread which is closed under taking reguli of pairs of its members is called regular. The GQ(2, 4)

contains regular spreads; a maximum regular partial spread of GQ(2, 2) has size 3, and obviously

the GQ(2, 1) contains exactly two regular spreads. In this paper, we will fix the following regular

spread S of Γ, which induces maximum regular partial spreads in Γ′ and Γ′′:

S = {{14, 25, 36}, {15, 26, 34}, {16, 24, 35}, {12, 2, 1′}, {23, 3, 2′}, {13, 1, 3′},

{45, 4, 5′}, {56, 5, 6′}, {46, 6, 4′}} .

The lines {14, 25, 36}, {15, 26, 34}, {16, 24, 35} form a maximum regular partial spread in both Γ′

and Γ′′.

3 Main result

In this paper, we prove the following connection between the minimum number of quadrics needed

to describe a Severi variety and the largest dimension of a projective subspace in the secant variety

disjoint from the variety itself.

Theorem 3.1. Let V be either the quadratic Veronese surface V2(K), the Segre variety S2,2(K),

the line Grassmannian G2,6(K), or the Cartan variety E6(K), in N -dimensional projective space

PN over K, with N = 5, 8, 14, 26, respectively. Then V is the intersection of N − d quadrics and

no less, where d is the dimension of a maximum dimensional projective subspace of PN entirely

consisting of points lying on a secant of V , or in the nucleus plane if V = V2(K) with charK = 2,

but not on V . More precisely, the equivalence classes of the systems of N − d linearly independent

quadrics intersecting precisely in V are in natural bijective correspondence with the d-dimensional

projective subspaces of PN entirely consisting of points lying on a secant of V , or in the nucleus

plane if V = V2(K) with charK = 2, but not on V .

To fix the ideas, we provide a full proof for the variety E6(K). The other cases are completely

similar. We comment on them along the way, if differences arise.

4 Proof of Theorem 3.1

4.1 A cubic form

The Cartan variety E6(K) is the intersection of 27 well chosen degenerate quadrics. The equations

of these quadrics can be described as follows. LetK27 be the vector space underlying P26 and denote
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by 〈v〉 the point of P26 corresponding to the nonzero vector v ∈ K27. Recall that Γ = (P,L )

is the generalized quadrangle of order (2, 4) and S is a regular spread of Γ. Label the standard

basis vectors of K27 with the points of Γ; so the standard basis is {ep : p ∈ P}. Each point p ∈ P

defines a unique quadratic form Qp given in coordinates by

Qp(v) = Xq1Xq2 −

∑

{p,r1,r2}∈L \S

Xr1Xr2 ,

where {p, q1, q2} ∈ S . Now define the map φ : K27 → K27 : v &→ (Qp(v))p∈P . Our basic

observation is the following identity.

Observation 4.1. For all v ∈ K27 we have φ(φ(v)) = C(v)v, where

C(v) =

∑

{p,q,r}∈S

XpXqXr −

∑

{p,q,r}∈L \S

XpXqXr.

Also, φ(v) = ∇C(v) (the gradient in the classical sense).

Proof. The last assertion is obvious. We show the first one. We have to prove the following identity

for each point p ∈ P:

Qq1(v)Qq2(v) −

∑

{p,r1,r2}∈L \S

Qr1(v)Qr2(v) = C(v)Xp, (4.1)

where {p, q1, q2} ∈ S and v = (Xq)q∈P . Since each Qq(v), q ∈ P, has five terms of degree 2 in

the coordinates of v, the above sum has 125 terms of degree 4. Since each Qq(v) has a unique term

containing Xp, there are five terms containing X2
p and another 40 containing Xp but not X2

p . The

terms with X2
p are easily seen to be

X2
pXq1Xq2 −

∑

{p,r1,r2}∈L \S

X2
pXr1Xr2 . (4.2)

For each line {q1, s, s′} ∈ L , we have the combined terms XpXq1 of Qq2(v) and −XsXs′ of Qq1(v),

resulting in a term −XpXq1XsXs′ in the left hand side of Equation (4.1). Note that {q1, s, s′} /∈ S .

Similarly for the lines through q2. We conclude that the terms of Qq1Qq2 containing Xp but not

X2
p are given by

−

2
∑

i=1

∑

{qi,s,s
′}∈L \S

XpXqiXsXs′ . (4.3)

Now let r ∈ P be collinear to p but distinct from q1 and q2. Let {r, s, s′} ∈ L , with p /∈ {s, s′}.

First suppose that {r, s, s′} ∈ S . Let r′ ∈ P be such that {p, r, r′} ∈ L \ S . Then have the

combined terms −XpXr of Qr′(v) and XsXs′ of Qq1(v), resulting in a term −XpXrXsXs′ in the

left hand side of Equation (4.1). If {r, s, s′} ∈ L \ S , then we obtain the same term, but with
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the opposite sign. These terms, together with those of Expressions (4.2) and (4.3) already provide

the full right hand side of Equality (4.1). The remaining 125 − 5 − 40 = 80 terms in the left

hand side of Equality (4.1) should now cancel pairwise. Disregarding the signs, they are all of the

form Xs1Xs′1
Xs2Xs′2

, where {ri, si, s′i} ∈ L , i = 1, 2, with {p, r1, r2} ∈ L . These three lines are

contained in a unique grid








p r1 r2

q s1 s2

q′ s′1 s′2









, for some q, q′ ∈ P,

where the rows and columns correspond to lines of Γ. Hence in the term Qq(v)Qq′ (v) also appears a

term Xs1Xs2Xs′1
Xs′2

, up to sign. We now have to see that the signs are opposite. If {p, r1, r2} ∈ S ,

then both signs are +, but the terms nevertheless cancel since Qq(v)Qq′ (v) appears with a minus

sign in Equality (4.1). Note that it does not make any difference whether {q, s1, s2} ∈ S or not,

since, by the regularity property of S we have {q, s1, s2} ∈ S if and only if {q′, s′1, s
′
2} ∈ S .

Now suppose {p, r1, r2} ∈ L \ S . We may also assume that {p, q, q′} ∈ L \ S , as otherwise we

are back in the previous case by interchanging the roles of {r1, r2} and {q, q′}. If exactly one of

the other lines of the grid belongs to the spread S , then the signs are opposite. The regularity

of S implies that at most one other line belongs to S ; we now claim that every 3 × 3 grid of Γ

contains at least one spread line. Indeed, we count 12 grids with three spread lines and 9 ·12 = 108

grids with a unique spread line. In total there are 45 lines, each in 16 grids, but each also counted

6 times. Hence there are 120 3× 3 grids in total, which shows our claim and the observation. !

Comments on the other cases.

(i) The Grassmannian variety G2,6(K) arises from the Cartan variety above by setting Xp = 0

for all points p in a double six. Indeed, the analogue of the construction above considers Γ′

in place of Γ and a maximal regular partial spread S ′ in place of S (S ′ consists just of

three disjoint lines of a grid). That this works can be seen through the model of Γ,Γ′ and

S given in Subsection 2.2. Since G2,6(K) is the intersection of all quadrics with equation

pijpk! + pikp!j + pi!pjk = 0 (as follows from Theorem 3.8 in [6]), it suffices to make a choice

between each pij and pji in order to get the signs lined up with the above rule and the choice

of S ′. But this can simply be done by retaining pij for i ∈ {1, 2, 3} and j ∈ {4, 5, 6}, and

(ij) ∈ {(12), (23), (31), (45), (56), (64)}, as an elementary calculation shows.

(ii) The Segre variety S2,2(K) arises from the Cartan variety by setting Xp = 0 for all points

outside a regulus of spread lines. This can easily be seen through the construction in Sub-

section 2.1, denoting the point of the grid associated to the entry (i, j) in the 3 × 3 ma-

trix by qij and the corresponding coordinate by xij , we let the grid be defined by the

lines {qij , qk!, qmn} with {i, k,m} = {j, #, n} = {1, 2, 3}. If we choose the spread lines as
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{q11, q22, q33}, {q12, q23, q31} and {q13, q32, q21}, then we see that Qp is exactly the co-factor

of the entry corresponding to p in the matrix (xij)1≤i,j≤3. This indeed defines S2,2(K) as

can be deduced from Theorem 4.94 in [6], or from [2].

(iii) The quadric Veronese variety V2(K) arises from the Cartan variety by setting Xp = 0 for

all points outside a regulus {L1, L2, L3} of spread lines and Xp1 = Xp2 for collinear points

pi ∈ Li, i = 1, 2. Indeed, in the previous paragraph, choosing L3 = {q11, q22, q33}, collinear

points outside this line correspond to symmetric entries of the matrix. Here, the gradient

is not identical to φ; the last three coordinates of the gradient are twice the last three

coordinates of φ, hence there is special behaviour in characteristic 2.

Denoting by v.w the ordinary dot product of v and w in K27, we observe the following.

Observation 4.2. For arbitrary v, w ∈ K27 and t ∈ K, we have

C(v + tw) = C(v) + tφ(v).w + t2v.φ(w) + t3C(w). (4.4)

Proof. It is clear that the coefficient of t0 and t3 are C(v) and C(w), respectively. It remains to

explain the coefficient of t, as the one of t2 is obtained by switching the roles of v and w. Now,

obviously, the coefficient of t is linear in w, hence if suffices to set w = ep for p ∈ P. Then we see

that the coefficient of t in C(v+ tep) is equal to
∂C(v)
∂Xp

ep = Qp(v)ep. Now Identity (4.4) follows. !

Hence we deduce that the adjoint square v# in the sense of Aschbacher [1], is, up to reordering

the coordinates, exactly equal to φ(v). Hence C(v) is the cubic form related to E6(K) and the

Chevalley group E6(K) acts on P26 with three orbits, which are easily seen to be defined as

(i) the points of the variety E6(K), namely those corresponding to the vectors v with φ(v) = $o.

These points are the white points ;

(ii) the points off the variety E6(K) corresponding to the vectors v with C(v) = 0. These points

are the grey points;

(iii) the points corresponding to vectors v with C(v) .= 0. These points are the black points.

We have taken the notions of white, grey and black from Aschbacher [1]. See also Cohen [4] for a

very comprehensive introduction.

Comments on the other cases. For the quadric Veronese variety V2(K) the group has more

than three orbits; in this case, and if charK = 2, the grey points also comprise all points of the

nucleus plane.

It now follows from (i), (ii) and Identity (4.4) that the projective null set of the cubic form C is

exactly the secant variety of E6(K).
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Observation 4.3. Let v be a nonzero vector of K27.

(i) The point 〈v〉 is a white point if and only if φ(v) = $o;

(ii) the point 〈v〉 is grey if and only if φ(v) .= $o and the point 〈φ(v)〉 is white;

(iii) the point 〈v〉 is black if and only if 〈φ(v)〉 is a black point.

Proof. (i) This follows immediately from the definition of white points above.

(ii) By definition, the point 〈v〉 is grey if and only if φ(v) .= $o and C(v) = 0. The latter is

equivalent to φ(φ(v)) = $o, which is equivalent to φ(v) being white by (i).

(iii) Suppose 〈v〉 is black. If 〈φ(v)〉 is white or grey, then C(φ(v)) = 0, implying φ(φ(φ(v))) = $o.

But the left hand side is equal to φ(C(v)v) = C(v)2φ(v) .= $o, a contradiction. Now suppose

φ(v) is black. Then φ(φ(φ(v))) is a non-zero multiple of φ(v), and so φ(φ(v)) cannot be equal

to $o, implying C(v) .= 0 and 〈v〉 is black. !

It follows from the previous observation that 〈φ(v)〉 is never a grey point. We record this for further

reference.

Corollary 4.4. For each v ∈ K27, 〈φ(v)〉 is never a grey point.

We also observe that transitivity of the automorphism group of E6(K) implies the following.

Observation 4.5. Let v be a nonzero vector of K27. Then 〈v〉 is a white point if and only if there

exists a grey point 〈w〉 with 〈φ(w)〉 = 〈v〉.

Proof. If 〈w〉 is grey, then by Observation 4.3 (ii), 〈φ(w)〉 is white. Now let 〈v〉 be a white point.

Let 〈w0〉 be a grey point (for instance the point 〈ep+ eq〉 with p and q collinear points of Γ). Then

by Observation 4.3 (ii), 〈φ(w0)〉 is white. Let g be an automorphism of E6(K) mapping 〈φ(w0)〉 to

〈v〉. Then 〈wg
0〉 is grey and 〈φ(wg

0)〉 = 〈φ(w0)g = 〈v〉. !

Observation 4.6. For every white point 〈v〉, the set {〈w〉 | $o .= φ(w) ∈ 〈v〉} is the set of grey

points of a (9-dimensional) host space of P26 (hence generated by the points of some fixed symp).

Proof. Let p ∈ P be arbitrary. Let 〈w〉 be a grey point belonging to the host space Up := 〈eq |

p ⊥ q ∈ P〉. Then clearly φ(w) is a nonzero multiple of ep. By transitivity of the automorphism

group, we thus see that for every white point 〈v〉, the set {〈w〉 | $o .= φ(w) ∈ 〈v〉} is the set of grey

points of a union of host spaces of P26. Suppose that we have the union of at least two host spaces.

By transitivity, we may assume that two of these host spaces are Up and Uq, with p, q ∈ P. But

we already know that these map to 〈ep〉 and 〈eq〉, respectively, which are distinct. The assertion

now follows. !
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4.2 A lemma

Lemma 4.7. Let Q be a quadratic form whose null set contains E6(K). Then Q is a linear

combination (with constant coefficients in K) of the Qp, p ∈ P.

Proof. Let Q be given by the polynomial

Q(v) =
∑

{p,q}⊆P

a{p,q}XpXq,

with a{p,q} ∈ K. Since all points corresponding to the standard basis vectors belong to E6(K), we

have a{p} = 0, for all p ∈ P. Now let p, q ∈ P be distinct but non-collinear in Γ. Then one easily

checks that 〈ep + eq〉 ∈ E6(K). Hence the coefficient a{p,q} of XpXq in Q(v) is also 0.

Now consider a line L ∈ S and a line M ∈ L \ S with L ∩M = {p}, p ∈ P. Let L = {p, q1, q2}

and M = {p, r1, r2}. Then clearly the point 〈eq1 + eq2 + er1 + er2〉 belongs to E6(K). This implies

that a{q1,q2} = −a{r1,r2} =: ap. Now it is clear that Q(v) =
∑

p∈P

apQp(v), proving the lemma. !

Noting that, for collinear points q1, q2 ∈ P, the vector eq1 + eq2 belongs to the null set of each

quadratic form Qp, p ∈ P, except for the unique point p with {p, q1, q2} ∈ L , we see that

Observation 4.8. The set {Qp : p ∈ P} is a linearly independent set of quadratic forms and no

proper subset of it intersects precisely in E6(K).

Comments on the other cases. Care has to be taken for the case V2(K), not only since the

automorphism group can have more than three orbits on the points (and on the hyperplanes) of

the surrounding projective space, but also since this case behaves in an exceptional way for small

fields. Let us provide some quick details. With respect to the representation given as definition in

Subsection 2.1, we have

φ(x1, x2, x3, x23, x31, x12) =

(x2x3 − x2
23, x3x1 − x2

31, x1x2 − x2
12, x31x12 − x1x23, x12x23 − x2x31, x23x31 − x3x12),

and

C(x1, x2, x3, x23, x31, x12) = x1x2x3 + 2x12x23x31 − x1x
2
23 − x2x

2
31 − x3x

2
12.

Observations 4.5 and 4.6 need an alternative proof, since the group does not act transitively on

the grey points. However, one calculates easily that

φ(0, 0, 0, k,−#, 0) = (−k2,−#2, 0, 0, 0,−k#) = −ν(k, #, 0)

and

φ(1, 1, a2 + b2,−b,−a, 0) = (a2, b2, 1, b, a, ab) = ν(a, b, 1),
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which covers all points of V2(K). This shows the nontrivial direction of Observation 4.5. Obser-

vation 4.6 follows from a similar calculation and is left to the reader. Lemma 4.7 only holds for

fields with at least four elements. To prove this, one just expresses that a generic point ν(x, y, z)

satisfies a quadratic equation, and one argues that, if the field has at least 4 elements, then the

corresponding quadratic form is a linear combination of the XiXj −X2
ij, ij ∈ {12, 23, 31}, and the

XiXjk−XkiXij , ijk ∈ {123, 231, 312}. For |K| ≤ 3, all points of V2(K) satisfy X1X23−X2X23 = 0

since x = x3 for all x ∈ K, and this is not a linear combination of the basic quadratic equations.

Finally, Observation 4.8 is false, see Subsection 5.2 below.

4.3 Reducing the number of quadrics—End of the proof

Lemma 4.7 and Observation 4.8 indicate that we need all 27 quadratic forms to describe E6(K) as

the intersection of quadrics. However, making suitable linear combinations, we can actually reduce

the number of quadrics. To do this, let U be a subspace of K27 such that all its non-zero vectors

correspond to grey points, and we use the same notation U for the corresponding subspace of P26.

Let {Hi : i ∈ I} be a minimal set of hyperplanes of K27 whose intersection is exactly U (then

|I|+ dimU = 27, where dimU is the vector dimension of U). For each

Hi ↔
∑

p∈P

a(i)p Xp = 0, i ∈ I,

define the quadratic form Qi given by

Qi(v) =
∑

p∈P

a(i)p Qp(v).

Note that for a vector v ∈ K27 we have Qi(v) = 0 if and only if φ(v) ∈ Hi.

Clearly, the null set of each Qi contains the vectors corresponding to E6(K). Conversely, suppose

some nonzero vector v belongs to the null set of each Qi, i ∈ I. Then, by construction, 〈φ(v)〉 ∈ U .

If φ(v) .= $o, this would mean that 〈φ(v)〉 is a grey point, contradicting Corollary 4.4.

Conversely, suppose E6(K) is the intersection of the null sets of a number of quadratic forms Qi,

i ∈ I. By Lemma 4.7, each quadratic form Qi is a linear combination of the Qp, p ∈ P, say

Qi(v) =
∑

p∈P

a(i)p Qp(v), a(i)p ∈ K.

For i ∈ I, let the hyperplane Hi be given by the equation

Hi ↔
∑

p∈P

a(i)p Xp = 0.

Suppose there is a white or black point 〈v〉 contained in each hyperplaneHi, i ∈ I. Then Lemma 4.5

and the definition of C(v) implies that there exists w ∈ K27 with φ(w) = v and with 〈w〉 grey or
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black. It follows that w is in the null set of each Qi, i ∈ I, contradicting the fact that 〈w〉 is not

white. This actually shows the last claim of Theorem 3.1, and the first claim also follows.

Hence the minimum number of quadrics completely describing E6(K) as their intersection is equal

to 27 − d′, where d′ = d + 1 is the dimension of a maximum dimensional subspace containing no

vectors corresponding to white or black points.

5 Examples and applications

In this section, we determine the exact value of d for some specific cases. Our results will show

that d strongly depends on the field K and therefore the determination of d for every field K is

beyond the scope of this paper.

We begin with some general observations.

5.1 General observations

To ease notation, we will identify the projective version of φ with φ, i.e., we will write 〈φ(v)〉

as φ(〈v〉). This projective version is then not defined on the points of E6(K), and it induces an

involutive bijection from the set of black points onto itself.

In this section, let U be a subspace of P26 entirely consisting of grey points; we will briefly call this

a grey subspace. Then φ(U) corresponds to a set of points of E6(K). We prove some properties of

φ(U).

Lemma 5.1. Let p, q ∈ U , p .= q. Denote the line joining p and q by L, and note that L ⊆ U .

Then

(i) If φ(p) = φ(q), then φ(L) = φ(p);

(ii) if φ(p) and φ(q) are collinear on E6(K), then φ is bijective on L and φ(L) is a conic on E6(K)

which is contained in a singular plane of E6(K);

(iii) if φ(p) and φ(q) are not collinear on E6(K), then φ is bijective on L and φ(L) is a conic on

E6(K) which is not contained in a singular plane of E6(K).

Proof. Define the cross product v×w as the linearization of φ, i.e., v×w = φ(v+w)−φ(v)−φ(w).

Denote the projective version also by ×, i.e., 〈v〉 × 〈w〉 = 〈v × w〉. Then one calculates that, for

all λ, µ ∈ K,

φ(λv + µw) = λ2φ(v) + λµ(v × w) + µ2φ(w). (5.1)
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If v × w is linearly dependent on φ(v) and φ(w), then also φ(v + w) is a linear combination of

φ(v) and φ(w). Suppose first that φ(v) and φ(w) are not collinear on E6(K). Then, since the only

points of E6(K) on the line 〈v, w〉 are 〈v〉 and 〈w〉, and since 〈φ(v + w)〉 is by assumption a point

of E6(K), we deduce without loss of generality φ(〈v + w〉) = φ(〈v〉). Hence 〈v〉 and 〈v + w〉 are

contained in the same host space, implying 〈w〉 is also, and we are in Situation (i), a contradiction.

Hence Equation (5.1) defines a conic.

Now suppose that φ(v) and φ(w) are collinear on E6(K). Let ξ and ζ be the symplecta the host

spaces of which contain 〈v〉 and 〈w〉, respectively. Let U = ξ∩ζ. Select maximal singular subspaces

V ⊆ ξ and W ⊆ ζ disjoint from U . Then simple dimension arguments show that every point of V

is collinear to a unique point of W . Moreover 〈V,W 〉 ∩ E6(K) is a Segre variety S isomorphic to

S1,4(K), and every 4-dimensional generator of that Segre variety is contained in a unique symp

also containing U . This follows from the similar but easy to check fact for S2,2(K) and the fact

that S2,2(K) is amply contained in E6(K) (by [11]). Now v = v1 + v2, with 〈v1〉 ∈ U and v2 ∈ V ,

and w = w1+w2, with 〈w1〉 ∈ U and 〈w2〉 ∈ W . Notice that p×q = φ(p+q) for points p, q ∈ E6(K).

If 〈v2〉 and 〈w2〉 are not contained in the same 1-dimensional generator of S , then 〈v2+w2〉 is not

contained in S and hence φ(v2 + w2) is not contained in a symplecton through U (as each host

space through U intersects 〈S 〉 in a 4-dimensional generator of S ). Consequently in that case,

v × w = v1 × w2 + v2 × w1 + v2 × w2 = φ(v1 + w2) + φ(v2 + w1) + φ(v2 + w2)

is linearly independent from φ(v) and φ(w) (since φ(v2 + w1) is a (possibly trivial) multiple of

φ(〈v〉) and φ(v1 + w2) a multiple of φ(w)). So in this case, (ii) holds.

So we may assume that 〈v2〉 and 〈w2〉 are collinear on E6(K), i.e., v2×w2 = $o. It then follows that

there exists a unique point p on the line through 〈v1〉 and 〈w1〉 collinear with both 〈v2〉 and 〈w2〉 (if

some point q on that line were collinear to 〈v2〉 but not to 〈w2〉, then ζ would be determined by 〈w2〉

and q and would contain 〈v2〉). Hence there exists # ∈ K× with v2×(v1+#w1) = $o = w2×(v1+#w1).

Then, using the bilinearity of the cross-product, we calculate

v × w = v1 × w2 + v2 × w1 = −#w1 × w2 − #−1v1 × v2 = −#φ(w) − #−1φ(v).

Hence, substituting this in Equation (5.1), we obtain

φ(λv + µw) = (λ2 − #−1λµ)φ(v) + (µ2 − #λµ)φ(w). (5.2)

which becomes $o for µ = #λ, a contradiction.

The lemma now follows. !

We call lines of type (i) short, lines of type (ii) flat and lines of type (iii) conical. We now have

the following result.
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Proposition 5.2. Set d = dim(U), where we use projective dimensions.

(1) If all lines of U are short, then φ(U) is a point.

(2) If only all lines in a hyperplane of U are short, then either all other lines are flat, or all other

lines are conical. In both cases φ(U) is a quadric of Witt index 1 spanning a (d+1)-dimensional

space in P26, which is singular in the flat case, and in the conical case the quadric is contained

in a symp as a subquadric.

(3) In all cases φ(U) is the quotient (or projection) of a Veronese variety Vd(K), where the image of

a conic is either a conic, or a single point. If U does not contain short lines, then dim〈φ(U)〉 ≥

d.

(4) If U contains two disjoint planes containing only short lines, then every line intersecting both

planes is conical.

For G2,6(K), the last statement becomes:

(4′) If U contains two disjoint short lines, then every line intersecting both lines is conical.

Proof. We start with noting that (1) is obvious: all points of U are contained in the same host

space.

Let e0, . . . , ed be a (vector) basis of U . Then, using the definition of the cross product and the

bilinearity of it, we calculate that φ(U) is the image of the map

(λ0, . . . ,λd) &→
d

∑

i=0

λ2
iφ(ei) +

d−1
∑

i=0

d
∑

j=i+1

λiλj(ei × ej), (5.3)

which is a Veronese variety Vd(K) if all φ(ei) and ei× ej are linearly independent. But if not, then

this is just an obvious quotient of Vd(K). If φ(U) does not contain short lines, then no point of the

subspace from which one projects lies on a tangent, and since tangents at one point fill the whole

tangent space, the latter are isomorphically projected. Hence (3).

To show (2), we may assume that all lines of the subspace H := 〈e1, . . . , ed〉 are short. Hence there

exist constants k1, . . . , kd−1 such that φ(ei) = kiφ(ed), ki ∈ K, i = 1, . . . , d−1. Then φ(ei+ej) is a

multiple of φ(ed), i, j ∈ {1, . . . , d}, i .= j, and so we may write ei × ej = #ijφ(ed), i, j ∈ {1, . . . , d},

i < j, for some # ∈ K. The mapping (5.3) becomes

(λ0, . . . ,λd) &→ λ2
0φ(e0) +





d
∑

i=1

kiλ
2
i +

d−1
∑

i=1

d
∑

j=i+1

#ijλiλj



φ(ed) +
d

∑

i=1

λ0λi(e0 × ei). (5.4)

If φ(e0),φ(ed) and all e0 × ei, i = 1, . . . , d, are linearly independent from each other, then, with

respect to that basis, and denoting the coordinate corresponding to e0 × ei by Xi, the one corre-

sponding to φ(e0) byX0 and the one corresponding to φ(ed) byXd+1, it is an elementary exercise to
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calculate that a point is in the image of the map (5.4) if and only if its coordinates (X0, . . . , Xd+1)

satisfy

X0Xd+1 =
d

∑

i=1

kiX
2
i +

d−1
∑

i=1

d
∑

j=i+1

#ijXiXj . (5.5)

Note that the right hand side of Equation (5.5) is an anisotropic quadratic form; indeed, suppose

there exist xi ∈ K, i = 1, . . . , d, such that
∑d

i=1 kix
2
i +

∑d−1
i=1

∑d
j=i+1 #ijxixj = 0. Then setting

λ0 = 0 and λi = xi, we see that the right hand side of the map in (5.4) becomes $o, a contradiction,

as this would yield a white point in U .

Hence Equation (5.5) defines a quadricQ of Witt index 1. If φ(e0),φ(ed) and all e0×ei, i = 1, . . . , d,

are not linearly independent from each other, then φ(S) is a projection ofQ. However, considering a

point p in 〈Q〉 in the subspace from which we project, we can select a plane α through p containing

two points of φ(U), and then α contains a conic, which is either not projected bijectively, or

projected into a line, both of which are contradictions to Lemma 5.1. Hence φ(U) spans a space

of dimension d+ 1.

If some line L of U is flat, then, for each point p ∈ L\H , φ(p) and φ(L∩H) are collinear on E6(K).

But φ(L ∩ H) = φ(H) = φ(q), for each q ∈ H . Hence all lines of U intersecting L in some point

not in H are flat. Replacing L with each such a line, we obtain that all lines of U not contained

in H are flat.

This completes the proof of (2). We now address (4). Suppose that α and β are two disjoint planes

all of whose lines are short, and suppose for a contradiction that there is a flat line L intersecting

α and β in some point 〈v〉 and 〈w〉, respectively. Then φ(α) = φ(〈v〉) and φ(β) = φ(〈w〉) are

collinear on E6(K). We now use the same notation as in the proof of Lemma 5.1 (ii). So ξ and

ζ are the symplecta with α ⊆ 〈ξ〉 and β ⊆ 〈ζ〉, and U = ξ ∩ ζ. Also, V and W are maximal

singular subspaces of ξ and ζ, respectively, disjoint from U . Let α2 and β2 be the projection of α

and β, respectively, from U onto V and W , respectively. Since 〈V,W 〉 ∩E6(K) is a Segre variety, a

dimension argument implies that some point 〈v2〉 of α2 is collinear on E6(K) with some point 〈w2〉

of β2. But, as one can read in the last part of the proof of Lemma 5.1, this leads to a contradiction.

!

Corollary 5.3. With the above notation, if U intersects the space spanned by a symp ξ in a

subspace of dimension 1, 2 or 4 in the cases V = S2,2(K), G2,6(K) or E6(K), respectively, then

either U is contained in 〈ξ〉, or V = G2,6(K) and all lines of U that intersect 〈ξ〉 are flat.

Proof. Set d = dimU . Without loss of generality, we may assume that U ∩ 〈ξ〉 is a hyperplane of

U . Then Proposition 5.2 implies that φ(U) is contained in a subspace W of P6d−4 of dimension

d+1 = 3, 4, 6 for the respective cases. So W can only be a singular subspace of V if V = G2,6(K).

If W is not singular, then φ(U) is quadric of Witt index 1 arising as the intersection of a symp
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with a subspace of dimension 3, 4 and 6, respectively. But such subspaces always have lines in

common with the symp, since they intersect each maximal singular subspace of the symp in a line,

by an obvious dimension argument, a contradiction. !

Now we consider the separate varieties in turn. Notice first that, since V2(K) ⊆ S2,2(K) ⊆

G2,6(K) ⊆ E6(K), each example for a certain variety carries over to the next variety, as ordered in

the inclusions just given.

5.2 The quadric Veronesean V2(K)

Recall that V2(K) is given by the image of the Veronese map

P
2 → P

5 : (x, y, z) &→ (x2, y2, z2, yz, zx, xy).

The line given by the points (0, 0, 0, k, #, 0) entirely consists of grey points, hence in general, 6 −

2 = 4 quadrics suffice to describe V2(K). After a little calculation, ordering the coordinates like

(X1, X2, X3, X23, X31, X12), these turn out to be X1X2 = X2
12, X3X1 = X2

31, X2X3 = X2
23, and

any one of X1X23 = X31X12, X2X31 = X12X23 or X3X12 = X23X31. In characteristic 2, the

whole nucleus plane consists of grey points and hence the first three equations suffice (see also

Lemma 4.20 in Hirschfeld & Thas [6]). This somehow reflects the property of the gradient being

identically zero in the last three coordinates.

We now determine all grey planes, showing in particular that in characteristic not equal to 2 there

do not exist such planes, and in characteristic 2 only the nucleus plane is a grey plane, except if

the underling field is F2. We are grateful to J. Thas for hinting the use of conic bundles in the

below argument (our original proof consisted merely of boring calculations).

So suppose π is a grey plane containing at least one point p contained in a secant L. Obviously there

are no flat lines. Then Corollary 5.3 implies that π only contains conical lines. Proposition 5.2(3)

now implies that φ is bijective from π onto V2(K). Hence the map ρ mapping each point p ∈ π

to the unique conic C on V2(K) with p ∈ 〈C〉 is a bijection. Let L ∩ V2(K) = {x, y}. Consider

the bundle B of conics of P2 defined by intersecting V2(K) with all hyperplanes containing the

solid 〈π, L〉. By the bijectivity of ρ, each conic D on V2(K) containing x generates, together with

π and L, a hyperplane HD. Hence HD ∩ V2(K) is a degenerate conic in P2, which also contains

y. So if y /∈ D, then HD ∩ V2(K) contains a conic of V2(K) through y. It follows that B consists

solely of degenerate conics. But an arbitrary pair of members of B not containing the line of P2

corresponding to the conic of V2(K) containing x and y generates a bundle containing exactly three

degenerate members. Hence |K| = 2. In this case one can easily check that π is the unique plane

in a solid spanned by the complement in V2(F2) of a conic (a conic corresponding to a line of P2
F2
).

Hence there are seven such planes. Each such plane intersects the nucleus plane in a unique point,
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namely the unique point of the solid not lying in a plane spanned by any three of the four points

of V2(F2) it contains.

5.3 The Segre variety S2,2(K)

This is the only case with a uniform answer for arbitrary fields. Indeed, we will show that there

always exists a grey plane π, and never a grey solid.

First, if we represent S2,2(K) as the 3× 3 rank 1 matrices, up to a scalar, then we can define π as

the plane containing all skew-symmetric matrices (with 0 on every diagonal entry). It is easy to see

that a skew-symmetric matrix, which always has determinant 0, has rank 1 if and only if it is the

0-matrix. Here every line of π is conical and φ(π) is a Veronesean isomorphic to V2(K) embedded

in S2,2(K). It follows that the following system of equations in the unknowns X00, . . . , X22 defines

S2,2(K):














































X11X22 = X12X21

X00X22 = X02X20

X00X11 = X01X10

X10X02 +X01X20 = (X12 +X21)X00

X01X12 +X10X21 = (X02 +X20)X11

X02X21 +X20X12 = (X01 +X10)X22

In characteristic 2, the plane π is the nucleus plane of the Veronese surface contained in S2,2(K)

obtained by restricting S2,2(K) to the symmetric (rank 1) 3× 3 matrices.

Now suppose there exists a grey solid S. If S contains a short line, then considering any plane

in S containing that short line, Corollary 5.3 leads to a contradiction. If S contains only conical

lines, then let L1 and L2 be two non-intersecting lines of S. Let ξi be the symp containing φ(Li),

i = 1, 2. Clearly ξ1 .= ξ2 as otherwise every point of φ(L1) is collinear to two points of φ(L2),

yielding flat lines. Hence ξ1 and ξ2 intersect nontrivially and since φ(L1) is an ovoid of ξ1, some

point x1 ∈ φ(L1) is collinear to a point of the intersection ξ1 ∩ ξ2. Then x1 is collinear to a line of

ξ2, and since φ(L2) is an ovoid of ξ2, x1 is collinear to some point x2 ∈ φ(L2), a contradiction (as

〈x1, x2〉 is then the image under φ of a flat line of S). Hence there is at least one flat line L ⊆ S. Let

π be the plane spanned by φ(L). If φ(S) ⊆ π, then S only contains flat lines. By Lemma 5.2 (3) the

dimension of π is at least 3, a contradiction. Hence there is some point p ∈ S with φ(p) /∈ π. Since

there is a unique point in π collinear to φ(p), we can pick two points x1, x2 ∈ L such that φ(xi) is

not collinear to φ(p), i = 1, 2. Let ξi be the symp determined by φ(xi) and φ(p), i = 1, 2. Then

ξ1 ∩ ξ2 is obviously equal to the line through φ(p) intersecting π. The argument above shows that

for each point q1 on the line 〈x1, p〉, the point φ(q1) is collinear in S2,2(K) to a unique point φ(q2),

with q2 ∈ 〈x2, p〉. But clearly φ(〈q1, q2〉) is contained in a plane disjoint from π, contradicting the

fact that 〈p, L〉 is a projective plane in S. So we ruled out all possibilities for S to exist.
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Nevertheless one can sometimes find other grey planes. For instance, if P2 admits a linear

collineation without fixed points, then one can find such a plane in the span of two disjoint singular

planes of S2,2(K). Such a plane only has flat lines. As an example suppose K is a field admitting

a cubic extension L; let the corresponding cubic polynomial be given by x3 −Tx2 +Qx−N , with

T,Q,N ∈ K. The plane containing the points









m k −Qm −#

# − Tm Nm k

0 0 0









, k, #,m ∈ K,

is grey, as one can calculate (in the calculations one might need the fact that also the polynomial

x3 + Qx2 + TNx + N2 is irreducible; its roots in the cubic extension L are the opposites of the

pairwise products of the roots of the original polynomial). Applying φ we obtain that the mapping

(k, l,m) &→









0 0 0

0 0 0

k2 +N#m−Qkm #2 − T #m+ km (N −QT )m2 − l#+ Tkm+Q#m









,

k, #,m ∈ K, induces a bijection from P2 onto a singular plane of S2,2(K), where each line is mapped

to a conic. In fact, these conics form the net of all conics passing through three given conjugate

points in the plane over the cubic extension L.

Remark 5.4. One might wonder how the net of conics in P2 of the last example can be a projection

of the quadric Veronese surface, as required by Proposition 5.2 (3). To see this directly, one

considers the above net of conics in P2, take its image under the Veronese map, and project the

Veronese surface from the intersection of the hyperplanes spanned by the image of three linearly

independent members of the net. This intersection is a plane consisting merely of black points.

5.4 The line Grassmannian G2,6(K)

By the previous subsection, there always exists a grey plane. But we can do better for certain

fields, in particular, if the field K admits a quadratic extension (separable or not). We will see

that in this case we can find a grey 5-dimensional subspace of P14. But we start with a curious

example in the case that P3 admits a linear collineation without fixed elements.

Example 5.5 (Dimension 3). Therefore, we consider a point p ∈ G2,6(K) and the subspace Up ⊆

P14 generated by all singular lines on p. Then dimUp = 8 and G2,6(K) ∩ Up is a cone with vertex

p and base S1,3(K) (the latter is indeed the residue at p). Consider any base space W ; that is, a

7-dimensional subspace of Up not containing p. Then S := W ∩ G2,6(K) ∼= S1,3(K). Take two

singular solids S1, S2 of S . The mapping θ : S1 → S2 : x1 &→ x2 defined by 〈x1, x2〉 ⊆ S is a

(linear) collineation from S1 to S2. Now let ϕ be a linear collineation of S2 without fixed elements.
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Then let S ′ ∼= S1,3(K) be the Segre variety with as set of maximal singular 1-dimensional subspaces

the set of lines {〈p, pθϕ〉}, and select a 3-dimensional singular subspace S′ of S ′ distinct from S1

and S2. We claim that S′ ∩ S = ∅. Indeed, each point in S′ is on a unique line intersecting both

S1 and S2, and if that line would belong to S and intersect Si in xi, i = 1, 2, then xθ
1 = x2 = xθϕ

1 ,

implying x2 is a fixed point of ϕ, a contradiction.

Suppose now that two points p′, q′ ∈ S′ are contained in a common host space of some symplecton

ξ of G2,6(K). Then it is easy to see that ξ ∩ Si = Li is a line, i = 1, 2. In the solid 〈L1, L2〉 there

is a unique line L′ containing p′ and intersecting Li in some point pi; then pθϕ1 = p2. Likewise,

there is a unique line M ′ containing q′ and intersecting Li in some point qi; then qθϕ1 = q2. Hence

Lθϕ
1 = 〈p1, q1〉θϕ = 〈p2, q2〉 = L2. But the latter also coincides with Lθ

1 (as L1, L2 is contained in

a hyperbolic quadric completely contained in S ). Hence ϕ fixes L2, a contradiction.

We conclude that φ(S′) is the bijective projection of a Veronese variety V3(K) into a hyperbolic

quadric in some 5-dimensional projective space (that quadric corresponds to the point p; it consists

of the images under φ of the symplecta passing through p). This is a rather remarkable situation.

But that inclusion can abstractly be seen directly by sending a point x of S2 to the image of the line

〈x, xϕ〉 under the Klein correspondence. We deduce that every plane of the Klein quadric contains

a unique conic of that image.

If, in the above, ϕ has no fixed points, but does admit fixed lines, then we can still find S′ and

it is still a grey solid. But φ(S′) is the union of elliptic quadratic surfaces (in 3-dimensional

subspaces). An extreme situation is that the fixed lines of ϕ form a spread of S′, in which case

φ(S′) coincides with one such elliptic quadric. It is clear that this situation arises if and only if K

admits a quadratic extension. But in this case we can extend S′ to a 5-dimensional grey subspace,

as evidenced by the next example.

Example 5.6 (Dimension 5). Let x2 − Tx + N be an irreducible quadratic polynomial over K

(with coefficients in K), defining the quadratic extension L of K. Let p1, p2, p3 be three points on

a line of the quadrangle Γ′ of order (2, 2), and suppose {p1, p2, p3} is a spread line. Let {pi, qi, ri}

and {pi, si, ti} be the other two lines passing through pi, i = 1, 2, 3. We may choose this notation

such that {q1, q2, q3} and {r1, r2, r3} are the other two spread lines in Γ′, and the other six lines of

Γ′ are {s1, q2, t3}, {s1, t2, r3} and cyclic permutations of the indices. (For an explicit realization

inside the model given in Subsection 2.2, see Example 5.8.) Define the following subspace:














0 = Xpi
, i = 1, 2, 3,

0 = Xri +Xqi , i = 1, 2, 3,

0 = Xti +NXsi + TXqi, i = 1, 2, 3.

Since we have nine linearly independent equations, this defines a 5-dimensional projective subspace

U . In order to apply φ we write a generic point of U with coordinates Xpi
= 0, i = 1, 2, 3, the

coordinates Xqi and Xsi are considered as running parameters, i = 1, 2, 3, and the coordinates
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Xri and Xti linearly depend on these parameters as given above, namely Xri = −Xqi and Xti =

−NXsi−TXqi. We denote the coordinate vector of such a generic point by vXq1 ,Xq2 ,Xq3 ;Xs1 ,Xs2 ,Xs3
,

or simply v in the sequel. Calculating φ(v) we obtain a vector with pi-coordinate equal to

X2
qi + TXq1Xsi +NX2

si , i = 1, 2, 3.

Clearly, such coordinate is 0 if and only if Xqi = Xsi = 0, showing that no point of U is white.

Calculating C(v), we simply obtain 0, showing that U is a grey space.

One now sees that the short lines in U form a regular spread; they are the point set of a projective

plane P2
L
the lines of which are the 3-dimensional subspaces of U generated by two distinct short

lines. This is the spread representation of P2
L
. We now claim that φ transforms this representation

into the corresponding Hermitian Veronesean of P2
L
. Indeed, let δ be one of the roots in L of the

polynomial x2 − Tx + N , and let x &→ x be the corresponding Galois involution of L. Note that

a+ bδ = a+ Tb− bδ, a, b ∈ K. Denoting the p-coordinate of φ(v) by Yp, p ∈ P, a straightforward

calculation reveals:

(Xq2 +Xs2δ)(Xq3 +Xs3δ) = Yr1 + Yt1δ,

(Xq1 +Xs1δ)(Xq1 +Xs1δ) = Yp1 ,

Ys1 = NYt1 ,

Yq1 = Yr1 − TYt1 ,

and the same equation for cyclic permutations of the indices, which shows that φ(U) is projectively

equivalent to the point set

{(X1X1, X2X2, X3X3, X2X3, X3X1, X1X2) | X1, X2, X3 ∈ L},

where the first three coordinates are considered to belong to K, and the last three to K×K via the

obvious identification a+ bδ → (a, b). This shows our claim.

5.5 The Cartan variety E6(K)

By the previous subsections, there always exists a grey plane, and if K admits a quadratic extension,

there is always a grey 5-space. We can slightly generalise the latter, and we can also give an example

of a grey 11-dimensional space if K is the centre of a quaternion division algebra, or charK = 2

and K admits a degree 4 inseparable field extension. Also, we will show that there always exists a

grey 4-space, whatever the field.

Example 5.7 (Dimensions 4 and 5). Let Γ′ = (P ′,L ′) be a subquadrangle of Γ = (P,L ) of order

(2, 2). Let W be the 12-dimensional vector subspace of K27 generated by the ep not belonging to Γ′.

The points outside P ′ form a double six {p1, . . . , p6, q1, . . . , q6}, where {p1, . . . , p6} and {q1, . . . , q6}
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are cocliques and pi is collinear to qj if and only if i .= j, for all i, j ∈ {1, . . . , 6}. Let w ∈ W have

coordinates (xp)p∈P (with xp = 0 if p ∈ P ′). Then φ(w) = 0 if and only if xpi
xqj = ±xpj

xqi ,

for all i, j ∈ {1, . . . , 6} with i .= j, and where each sign depends on the position of the spread S .

However, changing the sign of the coordinates related to the points of one single six collinear to

the points of one single three with respect to the grid in Γ′ defined by intersecting L ′ with S ,

we see that all signs become positive. This means that, denoting the projective subspace defined

by W also by W , the intersection W ∩ E6(K) is a Segre variety S1,5(K). As before, given a fixed

point free linear collineation of P5, one can select a 5-dimensional subspace U of W disjoint from

E6(K), which is automatically a grey subspace. If K admits a separable quadratic extension, then

we may choose W such that it contains a regular spread of short lines, and φ(U) is a Hermitian

Veronesean variety on E6(K), as in Example 5.6. However, note that in the inseparable case, the

corresponding spread is elementwise fixed only by the identity. We hence conjecture that also in

the separable case, the current 5-space is not projectively equivalent to the one of Example 5.6

(meaning the current subspace U is not contained in the space spanned by any subvariety of E6(K)

isomorphic to G2,6(K)).

Now let K be arbitrary and let M be a 6× 6 upper triangular matrix with entries in K, with 1s on

the diagonal and such that M − I (with I the identity matrix) has rank 5. Then the corresponding

linear collineation θ of P5 has a unique fixed point. Let U ′ be a 5-space in W constructed as above

from θ; then U ′ ∩ E6(K) is a point p corresponding to the unique fixed point of θ. Hence any

hyperplane of U ′ not containing p is a grey 4-space.

Example 5.8 (Dimension 11). Let x2
1 − Tx1x2 +Nx2

2 − #x2
3 + #Tx3x4 − #Nx2

4 be the norm form

of a quaternion division algebra H over K, with #, T,N ∈ K, or with T = 0 and charK = 2, and

then we assume it is just an inseparable field extension of degree 4.

It is convenient to work with the explicit description of Γ and S given in Subsection 2.2. The

current example will extend Example 5.6 with

(p1, p2, p3) = (25, 14, 36),

(q1, q2, q3) = (34, 26, 15),

(r1, r2, r3) = (16, 35, 24),

(s1, s2, s3) = (46, 56, 45),

(t1, t2, t3) = (13, 23, 12).

The subspace U we want to define can be described by a system of fifteen equations, nine of which are

given in Example 5.6 (using the above identification). The other six read (denoting the coordinate

corresponding to the point i by Xi and the one corresponding to i′ by X ′
i, i = 1, . . . , 6):







0 = X ′
i − #Xj, (i, j) = (2, 5), (1, 4), (3, 6),

0 = X ′
i − #NXj − #TXi, (i, j) = (5, 2), (4, 1), (6, 3).
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In completely the same way as in Example 5.6, one checks that U is a grey 11-dimensional subspace,

and that its image under φ is the corresponding quaternion Veronesean of P2
H
.

As a corollary of the last example, we obtain that every quaternion Veronese variety of the plane

P2
H
, with H a quaternion division algebra over the field K, or a degree 4 inseparable field extension

in characteristic 2, is a projection of the Veronese variety V11(K).

Over the real numbers, we can choose −# = N = 1 and T = 0. It follows that in this case E6(R)

has a particularly nice description as the intersection of fifteen quadrics, whose forms can be given

as follows. Choose a fixed spread line L of S . Three of the forms are Qp, with p ∈ L. The other

twelve forms are all of shape Qa +Qb, where {a, b, p} ∈ L is a line of Γ with p ∈ L.

5.6 Conclusion

We conclude by noting that we gave a full answer for the minimality of the number of quadrics

describing a Severi variety in the cases of V2(K) and S2,2(K). For the two other case, we were only

able to give some examples (yielding bounds) over fields with certain properties. Since we think

that some of the dimensions we obtained are pretty high, we conjecture that

(C1) If K admits a quadratic extension, then the maximum projective dimension of a grey subspace

for G2,6(K) is 5.

(C2) If K admits a quaternion division algebra, or a degree 4 inseparable field extension in char-

acteristic 2, then the maximum projective dimension of a grey subspace for E6(K) is 11.

Remark 5.9. We note that the minimum number of quadrics found in the present paper for

a certain variety, is exactly equal to the dimension of the vector space related to the variety of

the previous case, ranking the cases in increasing dimension, and adding a trivial variety in the

beginning consisting of three spanning points in a projective plane (three 1-spaces generating a

3-dimensional vector space; this is the line-residue of the long root geometry of type D4 which is

sometimes added as zeroth column in the fourth row of the Freudenthal-Tits magic square; the

Severi varieties are the line-residues of the other varieties of the fourth column). We do not think

this is a coincidence; further research should give evidence for this.

Finally, one could wonder which quadrics one can obtain by linearly combining the 27 basic quadrics

in the case E6(K), or 9 and 15 basic quadrics in the cases S2,2(K) and G2,6(K), respectively.

It is proved in a yet unpublished manuscript of A. De Schepper and M. Victoor that there are

exactly three possibilities (corresponding to the “duals” of the white, grey and black points): For

E6(K), these are non-degenerate parabolic quadrics (hence of maximal Witt index) and degenerate

quadrics with an 8- or 16-dimensional radical (projective dimension) and hyperbolic base. Similarly,
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for G2,6(K), we have non-degenerate parabolic quadrics and degenerate quadrics with a 4- or 8-

dimensional radical and hyperbolic base; for S2,2(K), we have non-degenerate parabolic quadrics

and degenerate quadrics with a 2- or 4-dimensional radical and hyperbolic base.
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ABSTRACT

We introduce a graph structure Γ∗

2(R) for commutative rings

with unity. We study some of the properties of the graph

Γ∗

2(R). Also we study some parameters of Γ∗

2(R) and find

rings for which Γ∗

2(R) is split.

RESUMEN

Introducimos una estructura de grafo Γ∗

2(R) para ani-

llos conmutativos con unidad. Estudiamos algunas de las

propiedades del grafo Γ∗

2(R). También estudiamos algunos

parámetros de Γ∗

2(R) y encontramos anillos para los cuales

Γ∗

2(R) se escinde.
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1 Introduction

The idea of relating a commutative ring to a graph was introduced by Istvan Beck [3]. He introduced

a graph, Γ(R), whose vertices are the elements of R and two distinct vertices x and y are adjacent

if and only if xy = 0. In [1], Anderson and Livingston modified the definition of Beck to introduce

the zero-divisor graph, Γ∗(R), and investigated many of its properties. Γ∗(R) is the subgraph of

Γ(R) induced by the set of non-zero zero-divisors of R. Cherian Thomas introduced many graph

structures for R in [10] and obtained many interesting results.

Throughout the paper, the word ‘ring’ shall mean a commutative ring with 1 != 0 which is not a

field. We denote the Jacobson radical of a ring R by J(R) and the set of all maximal ideals by

maxR.

For the basic concepts from graph theory refer [4, 9]; for commutative ring theory, see [2].

We give two ideal based graphs, Γ1(R) and Γ2(R), introduced in [10].

The graph Γ1(R) has all ideals of R as vertices and two distinct vertices a and b are adjacent if

and only if ab = 0.

The graph Γ2(R) has the same vertex set as that of Γ1(R) and two distinct vertices a and b are

adjacent if and only if a+ b = R.

In [5], the authors have studied the subgraph Γ∗
1(R) of Γ1(R) induced by all the non-zero proper

ideals of R.

We state the following result :

Theorem 1.1 ([5]). Let R be an Artin ring. Γ∗
1(R) is complete if and only if one of the following

holds:

(i) R ∼= F1 ⊕ F2 where F1 and F2 are fields.

(ii) R is local with maximal ideal m having index of nilpotency 2.

(iii) R is local with principal maximal ideal m having index of nilpotency 3.

In [8], S. C. Mathew has introduced and studied some basic properties of Γ∗
2(R) which is the

subgraph of Γ2(R) induced by the set of all non-zero proper ideals of R. In this paper we include

those results, for the sake of completeness. We compare the graphs Γ∗
1(R) and Γ∗

2(R) and find the

clique number and domination number of Γ∗
2(R). Also we investigate the properties of rings for

which Γ∗
2(R) is split.
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2 The graph Γ∗
2(R) and its properties

In this section we define the graph Γ∗
2(R) and investigate some properties of the graph.

Definition 2.1. Let R be a ring. We associate a graph Γ∗
2(R) to R whose vertex set is the set

of all non-zero proper ideals of R and for distinct ideals a and b, the corresponding vertices are

adjacent if and only if a+ b = R.

Remark 2.2. Γ∗
2(R) is totally disconnected if and only if R is local.

Remark 2.3. Γ∗
2(R) = K1 if and only if (R,m) is local with m principal and m2 = 0.

Theorem 2.4. Let R be a non-local ring. Then Γ∗
2(R) is connected if and only if J(R) = 0.

Proof. (⇒): Assume Γ∗
2(R) is connected. If J(R) != 0, then J(R) is an isolated vertex in Γ∗

2(R).

(⇐): Assume that J(R) = 0. Now, maxR induces a complete subgraph in Γ∗
2(R). Let a be any

proper non-zero non maximal ideal. Since J(R) = 0, there exists a maximal ideal m such

that a ! m. Thus a is adjacent to m and hence Γ∗
2(R) is connected.

Corollary 2.5. If Γ∗
2(R) is connected, diamΓ∗

2(R) ≤ 3.

Remark 2.6. a is an isolated vertex of Γ∗
2(R) if and only if a ⊆ J(R).

Next result follows from the proof of Theorem 2.4 and Remark 2.6.

Theorem 2.7. Γ∗
2(R) is connected except for isolated vertices. That is, Γ∗

2(R) has at most one

component different from K1.

Theorem 2.8. Γ∗
2(R) ∼= K2 if and only if R is a direct sum of two fields.

Proof. (⇒): Let R ∼= F1 ⊕F2 where F1 and F2 are fields. Then the ideals of R are F1 ⊕ 0, 0⊕F2,

0⊕ 0 and F1 ⊕ F2. Then, Γ∗
2(R) ∼= K2.

(⇐): Suppose Γ∗
2(R) ∼= K2. Then R is non-local. Also, R cannot have more than two maximal

ideals. Therefore R has exactly two maximal ideals, say m1 and m2 with m1 ∩m2 = 0. This

implies R ∼=
R

m1

⊕
R

m2

, a direct sum of two fields.

Theorem 2.9. The only triangle free connected graphs that can be realized as Γ∗
2(R) are K1

and K2.

Proof. Let G be a triangle free connected graph. Since G is triangle free R can have at most two

maximal ideals. Also since G is connected the result follows.

Theorem 2.10. Γ∗
2(R) is complete if and only if either R is a direct sum of two fields or R is

local with principal maximal ideal having index of nilpotency 2.
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Proof. (⇒): If Γ∗
2(R) is complete, R can have at most two maximal ideals. For, assume R has 3

maximal ideals say, m1,m2 and m3. Then m1m2 = 0; otherwise m1m2 is a vertex of Γ∗
2(R) and

will not be adjacent to m1 and m2. For the same reason, m1m3 = 0. Then m1(m2 +m3) = 0.

This implies m1 = 0 which is not possible. Now assume that R has exactly 2 maximal ideals

say, m1 and m2. Then J(R) = m1m2 = {0}. Thus R is a direct sum of 2 fields. Now, if R

is local with maximal ideal m, since Γ∗
2(R) is complete, m must be principal with index of

nilpotency 2.

(⇐): If R is a direct sum of two fields, Γ∗
2(R) ∼= K2 and if R is local with principal maximal ideal

having index of nilpotency 2, Γ∗
2(R) ∼= K1.

The following corollary is immediate.

Corollary 2.11. The only complete graphs that can be realized as Γ∗
2(R) are K1 and K2.

3 Comparison between Γ∗
1(R) and Γ∗

2(R)

Theorem 3.1. Assume diamΓ∗
2(R) = 2. Then any two vertices in Γ∗

2(R) which are not adjacent

are also not adjacent in Γ∗
1(R). That is, Γ∗

1(R) is a subgraph of Γ∗
2(R).

Proof. Let diamΓ∗
2(R) = 2. Suppose a and b are not adjacent in Γ∗

2(R). Then, there exists a

maximal ideal m such that a + m = R = b + m. Therefore, (a + m)(b + m) = R. That is,

ab+ am+ bm+m2 = R.

But, ab + am + bm + m2 ⊆ ab + m. Therefore, ab + m = R. This implies, in particular, ab != 0.

Thus, a and b are not adjacent in Γ∗
1(R).

Remark 3.2. Suppose a and b are adjacent in Γ∗
2(R). Then, a+ b = R. This implies ab = a ∩ b.

Hence a is adjacent to b in Γ∗
1(R) if and only if a ∩ b = 0. This must hold for every pair of

comaximal ideals a and b.

Theorem 3.3. Let R be a non-local ring. Then, Γ∗
2(R) is a subgraph of Γ∗

1(R) if and only if R is

a direct sum of two fields; and hence Γ∗
1(R) = Γ∗

2(R) only when R is a direct sum of two fields.

Proof. (⇒): Γ∗
2(R) is a subgraph of Γ∗

1(R) if and only if for any pair of comaximal ideals a and b

of R, ab = 0. So, if Γ∗
2(R) is a subgraph of Γ∗

1(R), in particular, m1m2 = 0 where m1 and m2

are two maximal ideals of R. Hence, R ∼= R
m1

⊕ R
m2

.

(⇐): If R is a direct sum of two fields, Γ∗
1(R) = Γ∗

2(R) = K2.

Theorem 3.4. If R is a finite direct sum of fields, Γ∗
1(R) ∼= Γ∗

2(R).
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Proof. Let R = F1 ⊕ F2 ⊕ · · · ⊕ Fn where Fi’s are fields. Thus, an ideal a of R is of the form,

a1 ⊕ a2 ⊕ · · ·⊕ an where, ai = 0 or Fi.

Define ϕ : V (Γ∗
1(R)) → V (Γ∗

2(R)) by ϕ(a1 ⊕ a2 ⊕ · · ·⊕ an) = b1 ⊕ b2 ⊕ · · ·⊕ bn where

bi =











Fi, if ai = (0)

0, if ai = Fi.

Clearly, ϕ is a bijection.

Suppose a and b are adjacent in Γ∗
1(R). Thus b must contain 0 at the positions in which a contains

Fi’s. Therefore, ϕ(b) contains Fi’s at the positions where ϕ(a) contains 0. Then, ϕ(a) is adjacent

to ϕ(b).

Similarly, if ϕ(a) and ϕ(b) are adjacent in Γ∗
2(R) then, a and b are adjacent in Γ∗

1(R). Thus, ϕ is

a graph isomorphism. That is, Γ∗
1(R) ∼= Γ∗

2(R).

Remark 3.5. In the context of Theorem 3.4, we can explicitly determine Γ∗
1(R) and Γ∗

2(R) by

identifying the vertex set with the power set P (X) \ {X,∅} where X = {1, 2, . . . , n} and A ⊂ X

with
⊕

i∈A Fi. Then A and B are adjacent in Γ∗
1(R) if and only if A ∩ B = ∅ and A and B are

adjacent in Γ∗
2(R) if and only if A ∪B = X.

Theorem 3.6. Γ∗
1(R) and Γ∗

2(R) are edge disjoint if and only if R has no non-trivial idempotents.

Proof. (⇒): Suppose that R contains a non-trivial idempotent e. Then, R = Re⊕R(1− e). This

implies, Re+R(1− e) = R and Re∩R(1− e) = ReR(1− e) = 0. That is, Γ∗
1(R) and Γ∗

2(R)

are not edge disjoint.

(⇐): Assume that Γ∗
1(R) and Γ∗

2(R) are not edge disjoint and then there exist two ideals a and b

such that a+b = R and a∩b = ab = 0. Then, R = a⊕b and hence, a = Re and b = R(1−e)

for some idempotent e. Since a and b are non-zero proper ideals, e must be non-trivial.

Theorem 3.7. Let R be a non-local ring. If Γ∗
1(R) = Γ∗

2(R), R is not semi-local.

Proof. Assume that R is semi-local with maximal ideals m1,m2, . . . ,mn. Then, there are the

following possibilities.

Case (I): Γ∗
2(R) is connected.

This assumption implies m1m2 · · ·mn = 0, by Theorem 2.4. Therefore, (m1 · · ·mn−1),mn are

adjacent in Γ∗
1(R) as well as in Γ∗

2(R), which means Γ∗
1(R) != Γ∗

2(R).

Case (II): Γ∗
2(R) is disconnected.

This implies m1m2 · · ·mn = J(R) != 0. We subdivide this case into two.
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Case (II)(a): J(R) is nilpotent.

Then there exist least positive integers k1, k2, . . . , kn such that mk1
1 m

k2
2 · · ·mkn

n = 0 with

at least one kj > 1 for 1 ≤ j ≤ n, say kn > 1.

If kn > 2, we have (m1 · · ·mn) + mn != R and (m1 · · ·mn)mn != 0. That is, Γ∗
1(R) !=

Γ∗
2(R).

Now consider the case when kn = 2. If ki > 1 for some i != n, (m1 · · ·mn)+mn != R and

(m1 · · ·mn)mn != 0. If ki = 1 ∀i != n, (m1 · · ·ml−1ml+1 · · ·m2
n) + ml = R where l != n.

But, (m1 · · ·ml−1ml+1 · · ·m2
n)ml = 0. So, Γ∗

1(R) != Γ∗
2(R).

Case (II)(b): J(R) is not nilpotent.

In this case we have (m1 · · ·mn) +m1 != R and (m1 · · ·mn)m1 != 0.

Thus, if Γ∗
1(R) = Γ∗

2(R), R cannot be semi-local.

Theorem 3.8. Let (R,m) be an Artin local ring. Then, Γ∗
1(R) = Γ∗

2(R) if and only if either m

has index of nilpotency 2 or m is principal with index of nilpotency 3.

Proof. Follows from Remark 2.2 and Theorem 1.1.

4 Some parameters of Γ∗
2(R)

In this section we find the clique number and the domination number of Γ∗
2(R).

Theorem 4.1. cl(Γ∗
2(R)) = |maxR|.

Proof. Clearly maxR induces a complete subgraph. Let a be any non-zero non-maximal proper

ideal of R. Then a is contained in a maximal ideal. That is, there exists a maximal ideal m such

that a is not adjacent to m. Thus, maxR induces a maximal complete subgraph.

Now suppose S = {ai : i ∈ Λ}, where Λ is an index set, induces a complete subgraph in Γ∗
2(R).

Then one maximal ideal can contain at most one ai ∈ S. That is, there exists an injective map

from S to maxR. This implies, |S| ≤ |maxR|. Thus, cl(Γ∗
2(R)) = |maxR|.

Theorem 4.2. Let R be a semi local ring with |maxR| = n > 2. Then, γ(Γ∗
2(R)) = |maxR| +

Number of isolated vertices in Γ∗
2(R).

Proof. Let Γ∗∗
2 (R) be the connected component of Γ∗

2(R) induced by the non-isolated vertices of

Γ∗
2(R). Now, by Theorem 2.7, it is enough to show that γ(Γ∗∗

2 (R)) = |maxR|.

Let maxR = {m1,m2, . . . ,mn}. Clearly maxR is a dominating set for Γ∗∗
2 (R). Now consider,

S = {m2 · · ·mn,m1m3 · · ·mn, . . . ,m1m2 · · ·mn−1}, which is an independent set in Γ∗∗
2 (R). Note

that any ideal a /∈ S can be adjacent only to at most one element of S. So every dominating set
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in Γ∗∗
2 (R) must contain at least n elements. Thus, γ(Γ∗∗

2 (R)) = n = |maxR|. Hence the result

follows.

Remark 4.3. If R is a semi-local ring with |maxR| = 2 then, the above result is not true. For

example, if R is a direct sum of two fields, γ(Γ∗
2(R)) = γ(K2) = 1 but |maxR| = 2.

5 Splitness

A graph (V,E) is said to be a split graph if V is the disjoint union of two sets K and S where

K induces a complete subgraph and S is an independent set. Then, we can assume either K is

a clique or S is a maximal independent set. In [6] & [7], the authors have carried out a detailed

study on splitness of some graphs associated with a ring. In this section we continue the study in

the case of Γ∗
2(R).

Lemma 5.1. Let R = R1 ×R2 ×R3 be a ring. If Γ∗
2(R) is split, each Ri must be a field.

Proof. Suppose R1 is not a field. Then there exists a proper non-zero ideal I of R1. Then,

{I × R2 ×R3, R1 ×R2 × 0, 0×R2 ×R3, R1 × 0× 0} induces a C4 in Γ∗
2(R), a contradiction.

Lemma 5.2. If Fi (1 ≤ i ≤ 3) are fields and R = F1 × F2 × F3 then Γ∗
2(R) is split.

Proof. V (Γ∗
2(R)) can be partitioned into K = {F1 × F2 × 0, F1 × 0 × F3, 0 × F2 × F3} and S =

{F1 × 0× 0, 0×F2 × 0, 0× 0×F3} where K induces a complete subgraph and S is an independent

set.

Lemma 5.3. Let F be a field and R1 a local ring. Let R = R1 × F . Then Γ∗
2(R) is split.

Proof. Let {Ij : j ∈ J} be the collection of non-zero proper ideals of R1. Then {Ij × F : j ∈

J} ∪ {Ij × 0 : j ∈ J} is an independent set and {0× F,R1 × 0} is a K2. This forms a partition of

V (Γ∗
2(R)). Thus, Γ∗

2(R) is split.

Lemma 5.4. Suppose R has exactly n maximal ideals mi (1 ≤ i ≤ n) with each mi being generated

by an idempotent ei. Then R ∼=
n
∏

i=1

Fi where each Fi
∼= R/mi, a field.

Proof. Let e =
∏n

i=1
ei. Then e ∈ J(R). Therefore, 1 − e is a unit (and an idempotent). So,

1− e = 1 ⇒ e = 0. Then by the Chinese Remainder Theorem,

R ∼=
R

∏n
i=1 Rei

∼=
R

⋂n
i=1 Rei

∼=
n
∏

i=1

R

Rei
.
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Theorem 5.5. Let R be a ring. Γ∗
2(R) is a split graph if and only if one of the following conditions

holds:

(i) R is local.

(ii) R ∼= R1 × F where R1 is a local ring and F is a field.

(iii) R ∼= F1 × F2 × F3 where Fi’s are fields.

Proof. First we note that Γ∗
2(R) is split if and only if Γ2(R) is split. Also, if R is local, Γ∗

2(R)

is split. Sufficiency of other conditions follows from the lemmas. To prove the necessity of the

conditions, we assume that R is not local and V (Γ2(R)) is the disjoint union of two sets K and S

where K induces a complete subgraph and S is an independent set. We assume that K and S are

non-empty. Also, S can contain at most one maximal ideal.

Case (I): S contains a maximal ideal, say m1.

In this case, R can have only one maximal ideal other than m1. For, if m2 and m3 are distinct

maximal ideals other than m1, then m2 and m3 are in K. Then, m2m3 ∈ S, m1 ∈ S. Clearly,

m1 + m2m3 = R, a contradiction. Thus, R contains only one maximal ideal other than m1,

say m2 which belongs to K. Let xi ∈ mi (i = 1, 2) with x1+x2 = 1. As m2
2+m1 = R, m2

2 ∈ K

which implies m2
2 = m2. Similarly, as Rx2 + m1 = R, Rx2 ∈ K which implies m2 = Rx2.

Then, m2 is a finitely generated maximal ideal which is idempotent. Hence, m2 is generated

by an idempotent. So, R ∼= R1 × F where F is a field and m2 is isomorphic to the ideal

R1 × {0}. Further, R1 must be local.

Case (II): S contains no maximal ideal.

In this case, R can have at most three maximal ideals, for, if m1,m2,m3 and m4 are distinct

maximal ideals, m1m2 and m3m4 are in S which leads to a contradiction. If R has only two

maximal ideals, say, m1 and m2, then m1,m2 ∈ K. Since, m2
i + mi != R (i = 1, 2), we have

m2
1,m

2
2 ∈ S. But m2

1 + m2
2 = R. So, to avoid a contradiction we have to assume m2

1 = m1 or

m2
2 = m2. That is, R ∼= R1 × F where F is a field and R1 is a local ring. So, let us assume

R has exactly 3 maximal ideals m1,m2 and m3. Note that mi ∈ K (i = 1, 2, 3). Then, as

m1 + m2m3 = R, there exists x1 ∈ m1 such that Rx1 + m2m3 = R which implies Rx1 ∈ K

and hence, Rx1 = m1. Similarly arguing with m2
1 + m2m3 = R, we get m1 = m2

1. Then m1

is generated by an idempotent. Similarly each mj (j = 2, 3) is generated by an idempotent.

Then by the Lemma 5.4, R ∼= F1 × F2 × F3 where Fi (1 ≤ i ≤ 3) are fields.
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ABSTRACT

The purpose of this paper is to prove some results on fixed

point, coincidence point, coupled coincidence point and cou-

pled common fixed point for the mappings satisfying gen-

eralized (φ,ψ)-contraction conditions in complete partially

ordered b-metric spaces. Our results generalize, extend and

unify most of the fundamental metrical fixed point theorems

in the existing literature. A few examples are illustrated to

support our findings.

RESUMEN

El propósito de este artículo es demostrar algunos resulta-

dos sobre puntos fijos, puntos de coincidencia, puntos de co-

incidencia acoplados y puntos de coincidencia acoplados co-

munes para aplicaciones que satisfacen condiciones de (φ,ψ)-

contracción generalizadas en b-espacios métricos completos

parcialmente ordenados. Nuestros resultados generalizan,

extienden y unifican la mayoría de los teoremas de punto

fijo métricos fundamentales en la literatura existente. Se

ilustran algunos ejemplos para apoyar nuestros resultados.
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1 Introduction

The usual metric space has been generalized and enhanced in many different directions, one of such

generalizations is a b-metric space which was first coined by Czerwik in [16] and is also known as

metric type space (Khamsi and Hussain [35] used recently the term “metric type space”)‘. Indeed,

in some papers it is considered that this concept has been introduced by Bourbaki [14] in 1974, or

that it has been introduced by Bakhtin [12] in 1989, or by Czerwik [16] in 1993 or even by Czerwik

[17] in 1998. After extensive searches in zbMATH and Mathematical Reviews, it appears that the

first fixed point theorem in a quasimetric space (b-metric spaces) has been established in 1981 by

Vulpe et al. [55], who transposed the Picard-Banach contraction mapping principle from metric

spaces to the framework of a quasimetric space. Some important information on the introduction

of a b-metric spaces can be found from the article “The early developments in fixed point theory on

b-metric spaces: a brief survey and some important related aspects” by Berinde and Pacurar [13].

Later, a series of papers have been dedicated to the improvement of fixed point results for single

valued and multi-valued operators on b-metric spaces by following various topological properties,

some of such are from [1, 3, 6, 5, 9, 20, 22, 28, 29, 30, 32, 34, 36, 39, 40, 41, 43, 53].

The concept of coupled fixed points for certain mappings in ordered spaces was first introduced by

Bhaskar et al. [23] and applied their results to study the existence and uniqueness of the solutions

for boundary valued problems. While the concept of coupled coincidence and coupled common

fixed point theorems for nonlinear contractive mappings with monotone property in complete

partially ordered metric spaces was first introduced by Lakshmikantham et al. [37]. Since then,

several authors have carried out further generalizations and improvements in various spaces (see

[10, 18, 21, 24, 44, 48]). Aghajani et al. [2] proved some coupled coincidence and coupled fixed

point results for mappings satisfying generalized (ψ,φ, θ)-contractive conditions in partially ordered

complete b-metric spaces. Later, the results of [2] have been improved and generalized by Huaping

Huang et al. [27] in the same space. More works on coupled coincidence and coupled fixed point

results for generalized contraction mappings in ordered spaces can be seen from [4, 7, 8, 11, 15,

19, 25, 26, 31, 38, 42, 45, 46, 47, 49, 50, 51, 52]. Recently, some results on fixed point, coincidence

point and coupled coincidence points for the mappings satisfying generalized weak contraction

contractions in partially ordered b-metric spaces have been discussed by Belay Mituku et al. [39],

Seshagiri Rao et al. [53, 54] and Kalyani et al. [33].

The aim of this work is to provide some results on fixed point and coincidence point, coupled

coincidence point for the mappings satisfying generalized (φ,ψ)-contractive conditions in an ordered

b-metric space. Our results are the variations and the generalizations of the results of [25, 26, 31,

38, 42, 45, 52] and several comparable results in the existing literature. A few numerical examples

are illustrated to support the findings.
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2 Mathematical Preliminaries

The following definitions and results will be needed in what follows.

Definition 2.1 ([39, 53]). A mapping d : P ×P → [0,+∞), where P is a non-empty set is said to

be a b-metric, if it satisfies the properties given below for any υ, ξ, µ ∈ P and for some real number

s ≥ 1,

(a) d(υ, ξ) = 0 if and only if υ = ξ,

(b) d(υ, ξ) = d(ξ, υ),

(c) d(υ, ξ) ≤ s (d(υ, µ) + d(µ, ξ)).

Then (P, d, s) is known as a b-metric space. If (P,') is still a partially ordered set, then (P, d, s,')

is called a partially ordered b-metric space.

Definition 2.2 ([39, 53]). Let (P, d, s) be a b-metric space. Then

(1) a sequence {υn} is said to converge to υ, if lim
n→+∞

d(υn, υ) = 0 and written as lim
n→+∞

υn = υ.

(2) {υn} is said to be a Cauchy sequence in P , if lim
n,m→+∞

d(υn, υm) = 0.

(3) (P, d) is said to be complete, if every Cauchy sequence in it is convergent.

Definition 2.3. If the metric d is complete then (P, d, s,') is called complete partially ordered

b-metric space.

Definition 2.4 ([39]). Let (P,') be a partially ordered set and let f,g : P → P be two mappings.

Then

(1) g is called monotone non-decreasing, if gυ ' gξ for all υ, ξ ∈ P with υ ' ξ.

(2) an element υ ∈ P is called a coincidence (common fixed) point of f and g, if fυ = gυ (fυ =

gυ = υ).

(3) f and g are called commuting, if fgυ = gfυ, for all υ ∈ P .

(4) f and g are called compatible, if any sequence {υn} with lim
n→+∞

fυn = lim
n→+∞

gυn =

µ, for µ ∈ P then lim
n→+∞

d(gfυn,fgυn) = 0.

(5) a pair of self maps (f,g) is called weakly compatible, if fgυ = gfυ, when gυ = fυ for

some υ ∈ P .

(6) g is called monotone f-non-decreasing, if

fυ ' fξ implies gυ ' gξ, for any υ, ξ ∈ P.
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(7) a non empty set P is called well ordered set, if every two elements of it are comparable i.e.,

υ ' ξ or ξ ' υ, for υ, ξ ∈ P .

Definition 2.5 ([2, 37]). Let (P,') be a partially ordered set and, let h : P × P → P and

f : P → P be two mappings. Then

(1) h has the mixed f-monotone property, if h is non-decreasing f-monotone in its first argu-

ment and is non-increasing f-monotone in its second argument, that is for any υ, ξ ∈ P

υ1, υ2 ∈ P, fυ1 ' fυ2 implies h(υ1, ξ) ' h(υ2, ξ) and

ξ1, ξ2 ∈ P, fξ1 ' fξ2 implies h(υ, ξ1) ( h(υ, ξ2).

Suppose, if f is the identity mapping then h is said to have the mixed monotone property.

(2) an element (υ, ξ) ∈ P × P is called a coupled coincidence point of h and f, if h(υ, ξ) = fυ

and h(ξ, υ) = fξ. Note that, if f is the identity mapping then (υ, ξ) is said to be a coupled

fixed point of h.

(3) an element υ ∈ P is called a common fixed point of h and f, if h(υ, υ) = fυ = υ.

(4) h and f are commutative, if for all υ, ξ ∈ P , h(fυ,fξ) = f(hυ,hξ).

(5) h and f are said to be compatible, if

lim
n→+∞

d(f(h(υn, ξn)),h(fυn,fξn)) = 0 and lim
n→+∞

d(f(h(ξn, υn)),h(fξn,fυn)) = 0,

whenever {υn} and {ξn} are any two sequences in P such that lim
n→+∞

h(υn, ξn) = lim
n→+∞

fυn =

υ and lim
n→+∞

h(ξn, υn) = lim
n→+∞

fξn = ξ, for any υ, ξ ∈ P .

We know that a b-metric is not continuous and then we use frequently the following lemma in the

proof of our results for the convergence of sequences in b-metric spaces.

Lemma 2.6 ([2]). Let (P, d, s,') be a b-metric space with s > 1 and suppose that {υn} and {ξn}

are b-convergent to υ and ξ respectively. Then we have

1

s2
d(υ, ξ) ≤ lim

n→+∞
inf d(υn, ξn) ≤ lim

n→+∞
sup d(υn, ξn) ≤ s2d(υ, ξ).

In particular, if υ = ξ, then lim
n→+∞

d(υn, ξn) = 0. Moreover, for each τ ∈ P , we have

1

s
d(υ, τ) ≤ lim

n→+∞
inf d(υn, τ) ≤ lim

n→+∞
sup d(υn, τ) ≤ sd(υ, τ).
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3 Main Results

The following distance functions are used throughout the paper.

A self mapping φ defined on [0,+∞) is said to be an altering distance function, if it satisfies the

following conditions:

(i) φ is non-decreasing and continuous function,

(iii) φ(t) = 0 if and only if t = 0.

Let us denote the set of all altering distance functions on [0,+∞) by Φ.

Similarly, Ψ denotes the set of all functions ψ : [0,+∞) → [0,+∞) satisfying the following condi-

tions:

(i) ψ is lower semi-continuous,

(ii) ψ(t) = 0 if and only if t = 0.

Let (P, d, s,') be a partially ordered b-metric space with parameter s > 1 and, let g : P → P be

a mapping. Set

M(υ, ξ) = max

{

d(ξ,gξ) [1 + d(υ,gυ)]

1 + d(υ, ξ)
,

d(υ,gυ) d(υ,gξ)

1 + d(υ,gξ) + d(ξ,gυ)
, d(υ, ξ)

}

, (3.1)

and

N(υ, ξ) = max

{

d(ξ,gξ) [1 + d(υ,gυ)]

1 + d(υ, ξ)
, d(υ, ξ)

}

. (3.2)

Let φ ∈ Φ and ψ ∈ Ψ. The mapping g is a generalized (φ,ψ)-contraction mapping if it satisfies

the following condition

φ(sd(gυ,gξ)) ≤ φ(M(υ, ξ)) − ψ(N(υ, ξ)), (3.3)

for any υ, ξ ∈ P with υ ' ξ and M,N are same as above.

Now, we prove some results for the existence of fixed point, coincidence point, coupled coincidence

point and coupled common fixed point of the mappings satisfying a generalized (φ,ψ)-contraction

condition in the context of partially ordered b-metric space. We begin with the following fixed

point theorem in this paper.

Theorem 3.1. Suppose that (P, d, s,') is a complete partially ordered b-metric space with pa-

rameter s > 1. Let g : P → P be a generalized (φ,ψ)-contractive mapping, and be continuous,

non-decreasing mapping with respect to '. If there exists υ0 ∈ P with υ0 ' gυ0, then g has a

fixed point in P .
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Proof. For some υ0 ∈ P such that gυ0 = υ0, then we have the result. Assume that υ0 ≺ gυ0,

then construct a sequence {υn} ⊂ P by υn+1 = gυn, for n ≥ 0. Since g is non-decreasing, then

by induction we obtain that

υ0 ≺ gυ0 = υ1 ' · · · ' υn ' gυn = υn+1 ' · · · . (3.4)

If for some n0 ∈ N such that υn0
= υn0+1 then from (3.4), υn0

is a fixed point of g and we have

nothing to prove. Suppose that υn ,= υn+1, for all n ≥ 1. Since υn > υn−1 for all n ≥ 1 and then

by condition (3.3), we have

φ(d(υn, υn+1)) = φ(d(gυn−1,gυn)) ≤ φ(sd(gυn−1,gυn))

≤ φ(M(υn−1, υn))− ψ(N(υn−1, υn)).
(3.5)

From (3.5), we get

d(υn, υn+1) = d(gυn−1,gυn) ≤
1

s
M(υn−1, υn), (3.6)

where

M(υn−1, υn) = max

{

d(υn,gυn) [1 + d(υn−1,gυn−1)]

1 + d(υn−1, υn)
,

d(υn−1,gυn−1) d(υn−1,gυn)

1 + d(υn−1,gυn) + d(υn,gυn−1)
,

1

11
d(υn−1, υn)

}

= max

{

d(υn, υn+1),
d(υn−1, υn) d(υn−1, υn+1)

1 + d(υn−1, υn+1)
, d(υn−1, υn)

}

≤ max{d(υn, υn+1), d(υn−1, υn)}.

(3.7)

If max{d(υn, υn+1), d(υn−1, υn)} = d(υn, υn+1) for some n ≥ 1, then from (3.6) follows

d(υn, υn+1) ≤
1

s
d(υn, υn+1), (3.8)

which is a contradiction. This means that max{d(υn, υn+1), d(υn−1, υn)} = d(υn−1, υn) for n ≥ 1.

Hence, we obtain from (3.6) that

d(υn, υn+1) ≤
1

s
d(υn−1, υn). (3.9)

Since, 1
s
∈ (0, 1) then the sequence {υn} is a Cauchy sequence by [1, 6, 41, 22]. But P is complete,

then there exists µ ∈ P such that υn → µ.

Also, the continuity of g implies that

gµ = g( lim
n→+∞

υn) = lim
n→+∞

gυn = lim
n→+∞

υn+1 = µ. (3.10)
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Therefore, µ is a fixed point of g in P .

Last result is still valid for g not necessarily continuous, assuming an additional hypothesis on P .

Theorem 3.2. In Theorem 3.1 assume that P satisfies,

if a non-decreasing sequence {υn} → µ in P, then υn ' µ for all n ∈ N, i.e., µ = sup υn.

Then a non-decreasing mapping g has a fixed point in P .

Proof. From Theorem 3.1, we take the same sequence {υn} in P such that υ0 ' υ1 ' · · · '

υn ' υn+1 ' · · · , that is, {υn} is non-decreasing and converges to some µ ∈ P . Thus from the

hypotheses, we have υn ' µ, for any n ∈ N, implies that µ = supυn.

Next, we prove that µ is a fixed point of g in P , that is gµ = µ. Suppose that gµ ,= µ. Let

M(υn, µ) = max

{

d(µ,gµ) [1 + d(υn,gυn)]

1 + d(υn, µ)
,

d(υn,gυn) d(υn,gµ)

1 + d(υn,gµ) + d(µ,gυn)
, d(υn, µ)

}

, (3.11)

and

N(υn, µ) = max

{

d(µ,gµ) [1 + d(υn,gυn)]

1 + d(υn, µ)
, d(υn, µ)

}

. (3.12)

Letting n → +∞ and from the fact that lim
n→+∞

υn = µ, we get

lim
n→+∞

M(υn, µ) = max{d(µ,gµ), 0, 0} = d(µ,gµ), (3.13)

and

lim
n→+∞

N(υn, µ) = max{d(µ,gµ), 0} = d(µ,gµ). (3.14)

We know that υn ' µ for all n, then from contraction condition (3.3), we get

φ(d(υn+1,gµ)) = φ(d(gυn,gµ) ≤ φ(sd(gυn,gµ) ≤ φ(M(υn, µ))− ψ(N(υn, µ)). (3.15)

Letting n → +∞ and use of (3.13) and (3.14), we get

φ(d(µ,gµ)) ≤ φ(d(µ,gµ)) − ψ(d(µ,gµ)) < φ(d(µ,gµ)), (3.16)

which is a contradiction under (3.16). Thus, gµ = µ, that is g has a fixed point µ in P .

Now we give a sufficient condition for the uniqueness of the fixed point that exists in Theorem 3.1

and Theorem 3.2.

every pair of elements has a lower bound or an upper bound. (3.17)
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This condition is equivalent to,

for every υ, ξ ∈ P, there exists w ∈ P which is comparable to υ and ξ.

Theorem 3.3. In addition to the hypotheses of Theorem 3.1 (or Theorem 3.2), condition (3.17)

provides the uniqueness of a fixed point of g in P .

Proof. From Theorem 3.1 (or Theorem 3.2), we conclude that g has a nonempty set of fixed

points. Suppose that υ∗ and ξ∗ be two fixed points of g then, we claim that υ∗ = ξ∗. Suppose

that υ∗ ,= ξ∗, then from the hypotheses we have

φ(d(gυ∗,gξ∗)) ≤ φ(sd(gυ∗,gξ∗)) ≤ φ(M(υ∗, ξ∗))− ψ(N(υ∗, ξ∗)). (3.18)

Consequently, we get

d(υ∗, ξ∗) = d(gυ∗,gξ∗) ≤
1

s
M(υ∗, ξ∗), (3.19)

where

M(υ∗, ξ∗) = max

{

d(ξ∗,gξ∗) [1 + d(υ∗,gυ∗)]

1 + d(υ∗, ξ∗)
,

d(υ∗,gυ∗) d(υ∗,gξ∗)

1 + d(υ∗,gξ∗) + d(ξ∗,gυ∗)
, d(gυ∗,gξ∗)

}

= max

{

d(ξ∗, ξ∗) [1 + d(υ∗, υ∗)]

1 + d(υ∗, ξ∗)
,

d(υ∗, υ∗) d(υ∗, ξ∗)

1 + d(υ∗, ξ∗) + d(ξ∗, υ∗)
, d(υ∗, ξ∗)

}

= max{0, 0, d(υ∗, ξ∗)}

= d(υ∗, ξ∗).

(3.20)

From (3.19), we obtain that

d(υ∗, ξ∗) ≤
1

s
d(υ∗, ξ∗) < d(υ∗, ξ∗), (3.21)

which is a contradiction. Hence, υ∗ = ξ∗. This completes the proof.

Let (P, d, s,') be a partially ordered b-metric space with parameter s > 1, and let g,f : P → P

be two mappings. Set

Mf(υ, ξ) = max

{

d(fξ,gξ) [1 + d(fυ,gυ)]

1 + d(fυ,fξ)
,

d(fυ,gυ) d(fυ,gξ)

1 + d(fυ,gξ) + d(fξ,gυ)
, d(fυ,fξ)

}

, (3.22)

and

Nf(υ, ξ) = max

{

d(fξ,gξ) [1 + d(fυ,gυ)]

1 + d(fυ,fξ)
, d(fυ,fξ)

}

. (3.23)
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Now, we introduce the following definition.

Definition 3.4. Let (P, d, s,') be a partially ordered b-metric space with s > 1. The mapping

g : P → P is called a generalized (φ,ψ)-contraction mapping with respect to f : P → P for some

φ ∈ Φ and ψ ∈ Ψ, if

φ(sd(gυ,gξ)) ≤ φ(Mf(υ, ξ))− ψ(Nf(υ, ξ)), (3.24)

for any υ, ξ ∈ P with fυ ' fξ, where Mf(υ, ξ) and Nf(υ, ξ) are given by (3.22) and (3.23)

respectively.

Theorem 3.5. Suppose that (P, d, s,') is a complete partially ordered b-metric space with s > 1.

Let g : P → P be a generalized (φ,ψ)-contractive mapping with respect to f : P → P and, g and

f are continuous such that g is a monotone f-non-decreasing mapping, compatible with f and

gP ⊆ fP . If for some υ0 ∈ P such that fυ0 ' gυ0, then g and f have a coincidence point in P .

Proof. By following the proof of Theorem 2.2 in [8], we construct two sequences {υn} and {ξn} in

P such that

ξn = gυn = fυn+1 for all n ≥ 0, (3.25)

for which

fυ0 ' fυ1 ' · · · ' fυn ' fυn+1 ' · · · . (3.26)

Again from [8], we have to show that

d(ξn, ξn+1) ≤ λd(ξn−1, ξn), (3.27)

for all n ≥ 1 and where λ ∈ [0, 1
s
). Now from (3.24) and using (3.25) and (3.26), we get

φ(sd(ξn, ξn+1)) = φ(sd(gυn,gυn+1))

≤ φ(Mf(υn, υn+1))− ψ(Nf(υn, υn+1)),
(3.28)

where

Mf(υn, υn+1) = max

{

d(fυn+1,gυn+1) [1 + d(fυn,gυn)]

1 + d(fυn,fυn+1)
,

d(fυn,gυn) d(fυn,gυn+1)

1 + d(fυn,gυn+1) + d(fυn+1,gυn)
,

1

11
d(fυn,fυn+1)

}

= max

{

d(ξn, ξn+1) [1 + d(ξn−1, ξn)]

1 + d(ξn−1, ξn)
,

d(ξn−1, ξn) d(ξn−1, ξn+1)

1 + d(ξn−1, ξn+1) + d(ξn, ξn)
, d(ξn−1, ξn)

}

= max{d(ξn−1, ξn), d(ξn, ξn+1)}
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and

Nf(υn, υn+1) = max

{

d(fυn+1,gυn+1) [1 + d(fυn,gυn)]

1 + d(fυn,fυn+1)
, d(fυn,fυn+1)

}

= max

{

d(ξn, ξn+1) [1 + d(ξn−1, ξn)]

1 + d(ξn−1, ξn)
, d(ξn−1, ξn)

}

= max{d(ξn−1, ξn), d(ξn, ξn+1)}.

Therefore from equation (3.28), we get

φ(sd(ξn, ξn+1)) ≤ φ(max{d(ξn−1, ξn), d(ξn, ξn+1)})− ψ(max{d(ξn−1, ξn), d(ξn, ξn+1)}). (3.29)

If 0 < d(ξn−1, ξn) ≤ d(ξn, ξn+1) for some n ∈ N, then from (3.29) we get

φ(sd(ξn, ξn+1)) ≤ φ(d(ξn, ξn+1))− ψ(d(ξn, ξn+1)) < φ(d(ξn, ξn+1)), (3.30)

or equivalently

sd(ξn, ξn+1) ≤ d(ξn, ξn+1). (3.31)

This is a contradiction. Hence from (3.29) we obtain that

sd(ξn, ξn+1) ≤ d(ξn−1, ξn). (3.32)

Thus equation (3.27) holds, where λ ∈ [0, 1
s
). Therefore from (3.27) and Lemma 3.1 of [32], we

conclude that {ξn} = {gυn} = {fυn+1} is a Cauchy sequence in P and then converges to some

µ ∈ P as P is complete such that

lim
n→+∞

gυn = lim
n→+∞

fυn+1 = µ.

Thus by the compatibility of g and f, we obtain that

lim
n→+∞

d(f(gυn),g(fυn)) = 0, (3.33)

and from the continuity of g and f, we have

lim
n→+∞

f(gυn) = fµ, lim
n→+∞

g(fυn) = gµ. (3.34)

Further, from the triangular inequality of a b-metric and, from equations (3.33) and (3.34) , we get

1

s
d(gµ,fµ) ≤ d(gµ,g(fυn)) + sd(g(fυn),f(gυn)) + sd(f(gυn),fµ). (3.35)

Finally, we arrive at d(gv,fv) = 0 as n → +∞ in (3.35). Therefore, v is a coincidence point of g
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and f in P .

Relaxing the continuity of the mappings f and g in Theorem 3.5, we obtain the following result.

Theorem 3.6. In Theorem 3.5, assume that P satisfies

for any non-decreasing sequence {fυn} ⊂ P with lim
n→+∞

fυn = fυ in fP, where fP

is a closed subset of P implies that fυn ' fυ,fυ ' f(fυ) for n ∈ N.

If there exists υ0 ∈ P such that fυ0 ' gυ0, then the weakly compatible mappings g and f have a

coincidence point in P . Furthermore, g and f have a common fixed point, if g and f commute

at their coincidence points.

Proof. The sequence, {ξn} = {gυn} = {fυn+1} is a Cauchy sequence from the proof of Theorem

3.5. Since fP is closed, then there is some µ ∈ P such that

lim
n→+∞

gυn = lim
n→+∞

fυn+1 = fµ.

Thus from the hypotheses, we have fυn ' fµ for all n ∈ N. Now, we have to prove that µ is a

coincidence point of g and f.

From equation (3.24), we have

φ(sd(gυn,gυ)) ≤ φ(Mf(υn, υ))− ψ(Nf(υn, υ)), (3.36)

where

Mf(υn, µ) = max

{

d(fµ,gµ) [1 + d(fυn,gυn)]

1 + d(fυn,fµ)
,

d(fυn,gυn) d(fυn,gµ)

1 + d(fυn,gµ) + d(fµ,gυn)
, d(fυn,fµ)

}

→ max{d(fµ,gµ), 0, 0}

= d(fµ,gµ) as n → +∞,

and

Nf(υn, µ) = max

{

d(fµ,gµ) [1 + d(fυn,gυn)]

1 + d(fυn,fµ)
, d(fυn,fµ)

}

→ max{d(fµ,gµ), 0}

= d(fµ,gµ) as n → +∞.

Therefore equation (3.36) becomes

φ(s lim
n→+∞

d(gυn,gυ)) ≤ φ(d(fµ,gµ))− ψ(d(fµ,gµ)) < φ(d(fµ,gµ)). (3.37)
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Consequently, we get

lim
n→+∞

d(gυn,gυ) <
1

s
d(fµ,gµ). (3.38)

Further by triangular inequality, we have

1

s
d(fµ,gµ) ≤ d(fµ,gυn) + d(gυn,gµ), (3.39)

then (3.38) and (3.39) lead to contradiction, if fµ ,= gµ. Hence, fµ = gµ. Let fµ = gµ = ρ,

that is g and f commute at ρ, then gρ = g(fµ) = f(gµ) = fρ. Since fµ = f(fµ) = fρ, then

by equation (3.36) with fµ = gµ and fρ = gρ, we get

φ(sd(gµ,gρ)) ≤ φ(Mf(µ, ρ))− ψ(Nf(µ, ρ)) < φ(d(gµ,gρ)), (3.40)

or equivalently,

sd(gµ,gρ) ≤ d(gµ,gρ),

which is a contradiction, if gµ ,= gρ. Thus, gµ = gρ = ρ. Hence, gµ = fρ = ρ, that is ρ is a

common fixed point of g and f.

Definition 3.7. Let (P, d, s,') be a complete partially ordered b-metric space with s > 1, φ ∈ Φ

and ψ ∈ Ψ. A mapping h : P ×P → P is said to be a generalized (φ,ψ)-contractive mapping with

respect to f : P → P such that

φ(skd(h(υ, ξ),h(ρ, τ))) ≤ φ(Mf(υ, ξ, ρ, τ))− ψ(Nf(υ, ξ, ρ, τ)), (3.41)

for all υ, ξ, ρ, τ ∈ P with fυ ' fρ and fξ ( fτ , k > 2 where

Mf(υ, ξ, ρ, τ) = max

{

d(fρ,h(ρ, τ)) [1 + d(fυ,h(υ, ξ))]

1 + d(fυ,fρ)
,

d(fυ,h(υ, ξ)) d(fυ,h(ρ, τ))

1 + d(fυ,h(ρ, τ)) + d(fρ,h(υ, ξ))
,

1

11
d(fυ,fρ)

}

,

and

Nf(υ, ξ, ρ, τ) = max

{

d(fρ,h(ρ, τ)) [1 + d(fυ,h(υ, ξ))]

1 + d(fυ,fρ)
, d(fυ,fρ)

}

.

Theorem 3.8. Let (P, d, s,') be a complete partially ordered b-metric space with s > 1. Suppose

that h : P × P → P be a generalized (φ,ψ)- contractive mapping with respect to f : P → P and,

h and f are continuous functions such that h has the mixed f-monotone property and commutes

with f. Also assume that h(P × P ) ⊆ f(P ). Then h and f have a coupled coincidence point in

P , if there exists (υ0, ξ0) ∈ P × P such that fυ0 ' h(υ0, ξ0) and fξ0 ( h(ξ0, υ0).
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Proof. From the hypotheses and following the proof of Theorem 2.2 of [8], we construct two

sequences {υn} and {ξn} in P such that

fυn+1 = h(υn, ξn), fξn+1 = h(ξn, υn), for all n ≥ 0.

In particular, {fυn} is non-decreasing and {fξn} is non-increasing sequences in P . Now from

(3.41) by replacing υ = υn, ξ = ξn, ρ = υn+1, τ = ξn+1, we get

φ(skd(fυn+1,fυn+2)) = φ(skd(h(υn, ξn),h(υn+1, ξn+1)))

≤ φ(Mf(υn, ξn, υn+1, ξn+1))− ψ(Nf(υn, ξn, υn+1, ξn+1)),
(3.42)

where

Mf(υn, ξn, υn+1, ξn+1) ≤ max{d(fυn,fυn+1), d(fυn+1,fυn+2)} (3.43)

and

Nf(υn, ξn, υn+1, ξn+1) = max{d(fυn,fυn+1), d(fυn+1,fυn+2)}. (3.44)

Therefore from (3.42), we have

φ(skd(fυn+1,fυn+2)) ≤ φ(max{d(fυn,fυn+1), d(fυn+1,fυn+2)})

− ψ(max{d(fυn,fυn+1), d(fυn+1,fυn+2)}).
(3.45)

Similarly by taking υ = ξn+1, ξ = υn+1, ρ = υn, τ = υn in (3.41), we get

φ(skd(fξn+1,fξn+2)) ≤ φ(max{d(fξn,fξn+1), d(fξn+1,fξn+2)})

− ψ(max{d(fξn,fξn+1), d(fξn+1,fξn+2)}).
(3.46)

From the fact that max{φ(c),φ(d)} = φ{max{c, d}} for all c, d ∈ [0,+∞). Then combining (3.45)

and (3.46), we get

φ(skδn) ≤ φ(max{d(fυn,fυn+1), d(fυn+1,fυn+2), d(fξn,fξn+1), d(fξn+1,fξn+2)})

− ψ(max{d(fυn,fυn+1), d(fυn+1,fυn+2), d(fξn,fξn+1), d(fξn+1,fξn+2)}),
(3.47)

where

δn = max{d(fυn+1,fυn+2), d(fξn+1,fξn+2)}. (3.48)

Let us denote,

∆n = max{d(fυn,fυn+1), d(fυn+1,fυn+2), d(fξn,fξn+1), d(fξn+1,fξn+2)}. (3.49)
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Hence from equations (3.45)-(3.48), we obtain

skδn ≤ ∆n. (3.50)

Next, we prove that

δn ≤ λδn−1, (3.51)

for all n ≥ 1 and where λ = 1
sk

∈ [0, 1).

Suppose that if ∆n = δn then from (3.50), we get skδn ≤ δn which leads to δn = 0 as s > 1

and hence (3.51) holds. If ∆n = max{d(fυn,fυn+1), d(fξn,fξn+1)}, i.e., ∆n = δn−1 then (3.50)

follows (3.51).

Now from (3.50), we obtain that δn ≤ λnδ0 and hence,

d(fυn+1,fυn+2) ≤ λnδ0 and d(fξn+1,fξn+2) ≤ λnδ0. (3.52)

Therefore from Lemma 3.1 of [32], the sequences {fυn} and {fξn} are Cauchy sequences in P .

Hence, by following the remaining proof of Theorem 2.2 of [2], we can show that h and f have a

coincidence point in P .

Corollary 3.9. Let (P, d, s,') be a complete partially ordered b-metric space with s > 1, and

h : P × P → P be a continuous mapping such that h has a mixed monotone property. Suppose

there exists φ ∈ Φ and ψ ∈ Ψ such that

φ(skd(h(υ, ξ),h(ρ, τ))) ≤ φ(Mf(υ, ξ, ρ, τ))− ψ(Nf(υ, ξ, ρ, τ)),

for all υ, ξ, ρ, τ ∈ P with υ ' ρ and ξ ( τ , k > 2 where

Mf(υ, ξ, ρ, τ) = max

{

d(ρ,h(ρ, τ)) [1 + d(υ,h(υ, ξ))]

1 + d(υ, ρ)
,

d(υ,h(υ, ξ)) d(υ,h(ρ, τ))

1 + d(υ,h(ρ, τ)) + d(ρ,h(υ, ξ))
, d(υ, ρ)

}

,

and

Nf(υ, ξ, ρ, τ) = max

{

d(ρ,h(ρ, τ)) [1 + d(υ,h(υ, ξ))]

1 + d(υ, ρ)
, d(υ, ρ)

}

.

Then h has a coupled fixed point in P , if there exists (υ0, ξ0) ∈ P × P such that υ0 ' h(υ0, ξ0)

and ξ0 ( h(ξ0, υ0).

Proof. Set f = IP in Theorem 3.8.

Corollary 3.10. Let (P, d, s,') be a complete partially ordered b-metric space with s > 1, and

h : P × P → P be a continuous mapping such that h has a mixed monotone property. Suppose



CUBO
24, 2 (2022)

Fixed point results of (φ,ψ)-weak contractions in ordered b-metric... 357

there exists ψ ∈ Ψ such that

d(h(υ, ξ),h(ρ, τ)) ≤
1

sk
Mf(υ, ξ, ρ, τ)−

1

sk
ψ(Nf(υ, ξ, ρ, τ)),

for all υ, ξ, ρ, τ ∈ P with υ ' ρ and ξ ( τ , k > 2 where

Mf(υ, ξ, ρ, τ) = max

{

d(ρ,h(ρ, τ)) [1 + d(υ,h(υ, ξ))]

1 + d(υ, ρ)
,

d(υ,h(υ, ξ)) d(υ,h(ρ, τ))

1 + d(υ,h(ρ, τ)) + d(ρ,h(υ, ξ))
, d(υ, ρ)

}

,

and

Nf(υ, ξ, ρ, τ) = max

{

d(ρ,h(ρ, τ)) [1 + d(υ,h(υ, ξ))]

1 + d(υ, ρ)
, d(υ, ρ)

}

.

If there exists (υ0, ξ0) ∈ P × P such that υ0 ' h(υ0, ξ0) and ξ0 ( h(ξ0, υ0), then h has a coupled

fixed point in P .

Theorem 3.11. In addition to Theorem 3.8, if for all (υ, ξ), (r, s) ∈ P ×P , there exists (c∗, d∗) ∈

P × P such that (h(c∗, d∗),h(d∗, c∗)) is comparable to (h(υ, ξ),h(ξ, υ)) and to (h(r, s),h(s, r)),

then h and f have a unique coupled common fixed point in P × P .

Proof. From Theorem 3.8, we know that there exists at least one coupled coincidence point in P

for h and f. Assume that (υ, ξ) and (r, s) are two coupled coincidence points of h and f, i.e.,

h(υ, ξ) = fυ, h(ξ, υ, ) = fξ and h(r, s) = fr, h(s, r) = fs. Now, we have to prove that fυ = fr

and fξ = fs.

From the hypotheses, there exists (c∗, d∗) ∈ P × P such that (h(c∗, d∗),h(d∗, c∗)) is comparable

to (h(υ, ξ),h(ξ, υ)) and to (h(r, s),h(s, r)). Suppose that

(h(υ, ξ),h(ξ, υ)) ≤ (h(c∗, d∗),h(d∗, c∗)) and (h(r, s),h(s, r)) ≤ (h(c∗, d∗),h(d∗, c∗)).

Let c∗0 = c∗ and d∗0 = d∗ and then choose (c∗1, d
∗
1) ∈ P × P as

fc∗1 = h(c∗0, d
∗
0), fd

∗
1 = h(d∗0, c

∗
0) (n ≥ 1).

By repeating the same procedure above, we can obtain two sequences {fc∗n} and {fd∗n} in P such

that

fc∗n+1 = h(c∗n, d
∗
n), fd

∗
n+1 = h(d∗n, c

∗
n) (n ≥ 0).

Similarly, define the sequences {fυn}, {fξn} and {frn}, {fsn} as above in P by setting υ0 = υ,

ξ0 = ξ and r0 = r, s0 = s. Further, we have that

fυn → h(υ, ξ), fξn → h(ξ, υ), frn → h(r, s), fsn → h(s, r) (n ≥ 1). (3.53)

Since, (h(υ, ξ),h(ξ, υ)) = (fυ,fξ) = (fυ1,fξ1) is comparable to (h(c∗, d∗),h(d∗, c∗)) = (fc∗,fd∗) =
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(fc∗1,fd
∗
1) and hence we get (fυ1,fξ1) ≤ (fc∗1,fd

∗
1). Thus, by induction we obtain that

(fυn,fξn) ≤ (fc∗n,fd
∗
n) (n ≥ 0). (3.54)

Therefore from (3.41), we have

φ(d(fυ,fc∗n+1)) ≤ φ(skd(fυ,fc∗n+1)) = φ(skd(h(υ, ξ),h(c∗n, d
∗
n)))

≤ φ(Mf(υ, ξ, c
∗
n, d

∗
n))− ψ(Nf(υ, ξ, c

∗
n, d

∗
n)),

(3.55)

where

Mf(υ, ξ, c
∗
n, d

∗
n) = max

{

d(fc∗n,h(c∗n, d
∗
n)) [1 + d(fυ,h(υ, ξ))]

1 + d(fυ,fc∗n)
,

d(fυ,h(υ, ξ)) d(fυ,h(c∗n, d
∗
n))

1 + d(fυ,h(c∗n, d
∗
n)) + d(fc∗n,h(υ, ξ))

, d(fυ,fc∗n)

}

= max{0, 0, d(fυ,fc∗n)}

= d(fυ,fc∗n)

and

Nf(υ, ξ, c
∗
n, d

∗
n) = max

{

d(fc∗n,h(c∗n, d
∗
n)) [1 + d(hυ,h(υ, ξ))]

1 + d(fυ,fc∗n)
, d(fυ,fc∗n)

}

= d(fυ,fc∗n).

Thus from (3.55),

φ(d(fυ,fc∗n+1)) ≤ φ(d(fυ,fc∗n))− ψ(d(fυ,fc∗n)). (3.56)

As by the similar process, we can prove that

φ(d(fξ,fd∗n+1)) ≤ φ(d(fξ,fd∗n))− ψ(d(fξ,fd∗n)). (3.57)

From (3.56) and (3.57), we have

φ(max{d(fυ,fc∗n+1), d(fξ,fd
∗
n+1)}) ≤ φ(max{d(fυ,fc∗n), d(fξ,fd

∗
n)})

− ψ(max{d(fυ,fc∗n), d(fξ,fd
∗
n)})

< φ(max{d(fυ,fc∗n), d(fξ,fd
∗
n)}).

(3.58)

Hence by the property of φ, we get

max{d(fυ,fc∗n+1), d(fξ,fd
∗
n+1)} < max{d(fυ,fc∗n), d(fξ,fd

∗
n)},

which shows that max{d(fυ,fc∗n), d(fξ,fd
∗
n)} is a decreasing sequence and by a result there exists
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γ ≥ 0 such that

lim
n→+∞

max{d(fυ,fc∗n), d(fξ,fd
∗
n)} = γ.

From (3.58) taking upper limit as n → +∞, we get

φ(γ) ≤ φ(γ) − ψ(γ), (3.59)

from which we get ψ(γ) = 0, implies that γ = 0. Thus,

lim
n→+∞

max{d(fυ,fc∗n), d(fξ,fd
∗
n)} = 0.

Consequently, we get

lim
n→+∞

d(fυ,fc∗n) = 0 and lim
n→+∞

d(fξ,fd∗n) = 0. (3.60)

By similar argument, we get

lim
n→+∞

d(fr,fc∗n) = 0 and lim
n→+∞

d(fs,fd∗n) = 0. (3.61)

Therefore from (3.60) and (3.61), we get fυ = fr and fξ = fs. Since fυ = h(υ, ξ) and

fξ = h(ξ, υ), then by the commutativity of h and f, we have

f(fυ) = f(h(υ, ξ)) = h(fυ,fξ) and f(fξ) = f(h(ξ, υ)) = h(fξ,fυ). (3.62)

Let fυ = a∗ and fξ = b∗ then (3.62) becomes

f(a∗) = h(a∗, b∗) and f(b∗) = h(b∗, a∗), (3.63)

which shows that (a∗, b∗) is a coupled coincidence point of h and f. It follows that f(a∗) = fr and

f(b∗) = fs that is f(a∗) = a∗ and f(b∗) = b∗. Thus from (3.63), we get a∗ = f(a∗) = h(a∗, b∗)

and b∗ = f(b∗) = h(b∗, a∗). Therefore, (a∗, b∗) is a coupled common fixed point of h and f.

For the uniqueness, let (u∗, v∗) be another coupled common fixed point of h and f, then we have

u∗ = fu∗ = h(u∗, v∗) and v∗ = fv∗ = h(v∗, u∗). Since (u∗, v∗) is a coupled common fixed point

of h and f, then we get fu∗ = fυ = a∗ and fv∗ = fξ = b∗. Thus, u∗ = fu∗ = fa∗ = a∗ and

v∗ = fv∗ = fb∗ = b∗. Hence the result.

Theorem 3.12. In addition to the hypotheses of Theorem 3.11, if fυ0 and fξ0 are comparable,

then h and f have a unique common fixed point in P .
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Proof. From Theorem 3.11, h and f have a unique coupled common fixed point (υ, ξ) ∈ P . Now,

it is enough to prove that υ = ξ. From the hypotheses, we have fυ0 and fξ0 are comparable then

we assume that fυ0 ' fξ0. Hence by induction we get fυn ' fξn for all n ≥ 0, where {fυn}

and {fξn} are from Theorem 3.8.

Now by use of Lemma 2.6, we get

φ(sk−2d(υ, ξ)) = φ

(

sk
1

s2
d(υ, ξ)

)

≤ lim
n→+∞

supφ(skd(υn+1, ξn+1))

= lim
n→+∞

supφ(skd(h(υn, ξn),h(ξn, υn)))

≤ lim
n→+∞

supφ(Mf(υn, ξn, ξn, υn))− lim
n→+∞

inf ψ(Nf(υn, ξn, ξn, υn))

≤ φ(d(υ, ξ)) − lim
n→+∞

inf ψ(Nf(υn, ξn, ξn, υn))

< φ(d(υ, ξ)),

which is a contradiction. Thus, υ = ξ, i.e., h and f have a common fixed point in P .

Remark 3.13. It is well known that b-metric space is a metric space when s = 1. So, from the

result of Jachymski [31], the condition

φ(d(h(υ, ξ),h(ρ, τ))) ≤ φ(max{d(fυ,fρ), d(fξ,fτ)})− ψ(max{d(fυ,fρ), d(fξ,fτ)})

is equivalent to,

d(h(υ, ξ),h(ρ, τ)) ≤ ϕ(max{d(fυ,fρ), d(fξ,fτ)}),

where φ ∈ Φ, ψ ∈ Ψ and ϕ : [0,+∞) → [0,+∞) is continuous, ϕ(t) < t for all t > 0 and

ϕ(t) = 0 if and only if t = 0. So, in view of above our results generalize and extend the results of

[15, 23, 25, 31, 37, 38] and several other comparable results.

Corollary 3.14. Suppose (P, d, s,') be a complete partially ordered b-metric space with parameter

s > 1. Let g : P → P be a continuous, non-decreasing mapping with regards to ' such that there

exists υ0 ∈ P with υ0 ' gυ0. Suppose that

φ(sd(gυ,gξ)) ≤ φ(M(υ, ξ)) − ψ(M(υ, ξ)), (3.64)

where M(υ, ξ) and the conditions upon φ,ψ are same as in Theorem 3.1. Then g has a fixed point

in P .

Proof. Set N(υ, ξ) = M(υ, ξ) in a contraction condition (3.3) and apply Theorem 3.1, we have the

required proof.
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Note 1. Similarly by removing the continuity of a non-decreasing mapping g and taking a non-

decreasing sequence {υn} as above in Theorem 3.2, we can obtain a fixed point for g in P . Also

one can obtain the uniqueness of a fixed point of g by using condition (3.17) in P as by following

the proof of Theorem 3.3.

Note 2. By following the proofs of Theorems 3.5 - 3.6, we can find the coincidence point for the

mappings g and f in P . Similarly, from Theorem 3.8, Theorem 3.11 and Theorem 3.12, one

can obtain a coupled coincidence point and its uniqueness, and a unique common fixed point for

the mappings h and f in P × P and on P satisfying an almost generalized contraction condition

(3.64), where M(υ, ξ), Mf(υ, ξ), Mf(υ, ξ, ρ, τ) and the conditions upon φ,ψ are same as above

defined.

Corollary 3.15. Suppose that (P, d, s,') be a complete partially ordered b-metric space with s > 1.

Let g : P → P be a continuous, non-decreasing mapping with regards to '. If there exists k ∈ [0, 1)

and for any υ, ξ ∈ P with υ ' ξ such that

d(gυ,gξ) ≤
k

s
max

{

d(ξ,gξ) [1 + d(υ,gυ)]

1 + d(υ, ξ)
,

d(υ,gυ) d(υ,gξ)

1 + d(υ,gξ) + d(ξ,gυ)
, d(υ, ξ)

}

. (3.65)

If there exists υ0 ∈ P with υ0 ' gυ0, then g has a fixed point in P .

Proof. Set φ(t) = t and ψ(t) = (1− k)t, for all t ∈ (0,+∞) in Corollary 3.14.

Note 3. Relaxing the continuity of a map g in Corollary 3.15, one can obtains a fixed point for

g on taking a non-decreasing sequence {υn} in P by following the proof of Theorem 3.2.

Example 3.16. Define a metric d : P × P → P as below and ≤ is an usual order on P , where

P = {1, 2, 3, 4, 5, 6}

d(υ, ξ) = d(ξ, υ) = 0, if υ, ξ = 1, 2, 3, 4, 5, 6 and υ = ξ,

d(υ, ξ) = d(ξ, υ) = 3, if υ, ξ = 1, 2, 3, 4, 5 and υ ,= ξ,

d(υ, ξ) = d(ξ, υ) = 12, if υ = 1, 2, 3, 4 and ξ = 6,

d(υ, ξ) = d(ξ, υ) = 20, if υ = 5 and ξ = 6.

Define a map g : P → P by g1 = g2 = g3 = g4 = g5 = 1,g6 = 2 and let φ(t) = t
2 , ψ(t) =

t
4

for t ∈ [0,+∞). Then g has a fixed point in P .

Proof. It is apparent that, (P, d, s,') is a complete partially ordered b-metric space for s = 2.

Consider the possible cases for υ, ξ in P :

Case 1 Suppose υ, ξ ∈ {1, 2, 3, 4, 5}, υ < ξ then d(gυ,gξ) = d(1, 1) = 0. Hence,

φ(2d(gυ,gξ)) = 0 ≤ φ(M(υ, ξ)) − ψ(M(υ, ξ)).
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Case 2 Suppose that υ ∈ {1, 2, 3, 4, 5} and ξ = 6, then d(gυ,gξ) = d(1, 2) = 3, M(6, 5) = 20 and

M(υ, 6) = 12, for υ ∈ {1, 2, 3, 4}. Therefore, we have the following inequality,

φ(2d(gυ,gξ)) ≤
M(υ, ξ)

4
= φ(M(υ, ξ)) − ψ(M(υ, ξ)).

Thus, condition (3.64) of Corollary 3.14 holds. Furthermore, the remaining assumptions in Corol-

lary 3.14 are fulfilled. Hence, g has a fixed point in P as Corollary 3.14 is appropriate to g,φ,ψ

and (P, d, s,').

Example 3.17. A metric d : P × P → P , where P = {0, 1, 12 ,
1
3 ,

1
4 , . . .

1
n
, . . . } with usual order ≤

is defined as follows

d(υ, ξ) =



































0, if υ = ξ

1, if υ ,= ξ ∈ {0, 1}

|υ − ξ|, if υ, ξ ∈
{

0, 1
2n ,

1
2m : n ,= m ≥ 1

}

3, otherwise.

A map g : P → P be such that g0 = 0,g 1
n
= 1

12n for all n ≥ 1 and let φ(t) = t, ψ(t) = 4t
5 for

t ∈ [0,+∞). Then, g has a fixed point in P .

Proof. It is obvious that for s = 12
5 , (P, d, s,') is a complete partially ordered b-metric space and

also by definition, d is discontinuous b-metric space. Now for υ, ξ ∈ P with υ < ξ, we have the

following cases:

Case 1 If υ = 0 and ξ = 1
n
, n ≥ 1, then d(gυ,gξ) = d(0, 1

12n ) = 1
12n and M(υ, ξ) = 1

n
or

M(υ, ξ) = {1, 3}. Therefore, we have

φ

(

12

5
d(gυ,gξ)

)

≤
M(υ, ξ)

5
= φ(M(υ, ξ))− ψ(M(υ, ξ)).

Case 2 If υ = 1
m

and ξ = 1
n

with m > n ≥ 1, then

d(gυ,gξ) = d

(

1

12m
,

1

12n

)

and M(υ, ξ) ≥
1

n
−

1

m
or M(υ, ξ) = 3.

Therefore,

φ

(

12

5
d(gυ,gξ)

)

≤
M(υ, ξ)

5
= φ(M(υ, ξ))− ψ(M(υ, ξ)).

Hence, condition (3.64) of Corollary 3.14 and remaining assumptions are satisfied. Thus, g has a

fixed point in P .
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Example 3.18. Let P = C[a, b] be the set of all continuous functions. Let us define a b-metric d

on P by

d(θ1, θ2) = sup
t∈C[a,b]

{|θ1(t)− θ2(t)|
2}

for all θ1, θ2 ∈ P with partial order ' defined by θ1 ' θ2 if a ≤ θ1(t) ≤ θ2(t) ≤ b, for all t ∈ [a, b],

0 ≤ a < b. Let g : P → P be a mapping defined by gθ = θ
5 , θ ∈ P and the two altering distance

functions by φ(t) = t, ψ(t) = t
3 , for any t ∈ [0,+∞]. Then g has a unique fixed point in P .

Proof. From the hypotheses, it is clear that (P, d, s,') is a complete partially ordered b-metric

space with parameter s = 2 and fulfill all the conditions of Corollary 3.14 and Note 1. Furthermore

for any θ1, θ2 ∈ P , the function min(θ1, θ2)(t) = min{θ1(t), θ2(t)} is also continuous and the

conditions of Corollary 3.14 and Note 1 are satisfied. Hence, g has a unique fixed point θ = 0 in

P .
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