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Universidade Federal de Minas Gerais
Av. Antonio Carlos 6627 Caixa Postal 702
CEP 30.123-970, Belo Horizonte, MG – Brazil





U
N

IV

E
R

SID
AD DE LA FRO

N
T

E
R

A

CUBO
A MATHEMATICAL JOURNAL

Universidad de La Frontera
Volume 25/No¯2 – AUGUST 2023

SUMMARY

– Some observations on a clopen version of the Rothberger
property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Manoj Bhardwaj and Alexander V. Osipov

– Existence of solutions for higher order φ−Laplacian
BVPs on the half-line using a one-sided Nagumo condition
with nonordered upper and lower solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
A. Zerki, K. Bachouche and K. Ait-Mahiout

– Several inequalities for an integral transform of positive
operators in Hilbert spaces with applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
S. S. Dragomir

– On stability of nonlocal neutral stochastic integro differential
equations with random impulses and Poisson jumps . . . . . . . . . . . . . . . . . . 211
Sahar M. A. Maqbol, R. S. Jain and B. S. Reddy

– Existence and controllability of integrodifferential equations
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ABSTRACT

In this paper, we prove that a clopen version S1(CO, CO)

of the Rothberger property and Borel strong measure ze-

roness are independent. For a zero-dimensional metric space

(X, d), X satisfies S1(CO, CO) if, and only if, X has Borel

strong measure zero with respect to each metric which has

the same topology as d has. In a zero-dimensional space, the

game G1(O,O) is equivalent to the game G1(CO, CO) and the

point-open game is equivalent to the point-clopen game. Us-

ing reflections, we obtain that the game G1(CO, CO) and the

point-clopen game are strategically and Markov dual. An

example is given for a space on which the game G1(CO, CO)

is undetermined.

RESUMEN

En este artículo, probamos que una versión clopen

S1(CO, CO) de la propiedad de Rothberger y la nulidad de

la medida fuerte de Borel son independientes. Para un espa-

cio métrico (X, d) cero-dimensional, X satisface S1(CO, CO)

si, y sólo si, X tiene una medida Borel fuerte cero con res-

pecto a cada métrica que tenga la misma topología que d

tiene. En un espacio cero-dimensional, el juego G1(O,O)

es equivalente al juego G1(CO, CO) y el juego punto-abierto

es equivalente al juego punto-cerrado. Usando reflexiones,

obtenemos que el juego G1(CO, CO) y el juego punto-clopen

son estratégicamente y Markov duales. Se entrega un ejem-

plo de un espacio para el cual el juego G1(CO, CO) es inde-

terminado
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1 Introduction

In 1938, Rothberger [12] (see also [9]) introduced covering property in topological spaces. A space

X is said to have Rothberger property if for each sequence hUn : n 2 !i of open covers of X there

is a sequence hVn : n 2 !i such that for each n, Vn is an element of Un and each x 2 X belongs to

Vn for some n. This property is stronger than Lindelöf and preserved under continuous images.

Usually, each selection principle S1(A,B) can be associated with some topological game G1(A,B).

So the Rothberger property S1(O,O) is associated with the Rothberger game G1(O,O).

Let X be a topological space. The Rothberger game G1(O,O) played on X is a game with two

players Alice and Bob.

1st round: Alice chooses an open cover U1 of X. Bob chooses a set U1 2 U1.

2nd round: Alice chooses an open cover U2 of X. Bob chooses a set U2 2 U2.

etc.

If the family {Un : n 2 !} is a cover of the space X then Bob wins the game G1(O,O). Otherwise,

Alice wins.

A topological space is Rothberger if, and only if, Alice has no winning strategy in the game

G1(O,O) [11].

In [8] Galvin proved that for a first-countable space X Bob has a winning strategy in G1(O,O) if,

and only if, X is countable.

In this paper, we continue to study the mildly Rothberger-type properties, started in papers [2, 3, 4],

and, we define a new game - the mildly Rothberger game G1(CO, CO). In a zero-dimensional space,

the Rothberger game is equivalent to the mildly Rothberger game. Using reflections, we obtained

that G1(CO, CO) and the point-clopen game are strategically and Markov dual.

2 Preliminaries

Let (X, ⌧) or X be a topological space. If a set is open and closed in a topological space, then it

is called clopen. Let ! be the first infinite cardinal and !1 the first uncountable cardinal. For the

terms and symbols that we do not define, follow [7].

Let A and B be collections of open covers of a topological space X.

The symbol S1(A,B) denotes the selection hypothesis that for each sequence hUn : n 2 !i of

elements of A there exists a sequence hUn : n 2 !i such that for each n, Un 2 Un and {Un : n 2

!} 2 B, [13].
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In this paper A and B will be collections of the following open covers of a space X:

O: the collection of all open covers of X.

CO: the collection of all clopen covers of X.

Clearly, X has the Rothberger property if, and only if, X satisfies S1(O,O).

A space X is said to have the mildly Rothberger property if it satisfies the selection principles

S1(CO, CO).

It can be noted that S1(O,O) ) S1(CO, CO) and also every connected space must satisfy S1(CO, CO).

Then the set of real numbers with usual topology satisfies S1(CO, CO) but it does not satisfy

S1(O,O).

Let (X, ⌧) be a topological space and TX = ⌧ \ {;} be a topology without empty set.

• Let TX,x = {U 2 TX : x 2 U} be the local point-base at x 2 X.

• Let PX = {TX,x : x 2 X} be the collection of local point-bases of X.

• Let CTX,x = {U 2 TX : U is a clopen set in X, x 2 U}.

• Let CX = {CTX,x : x 2 X}.

3 Results on S1(CO, CO)

3.1 S1(CO, CO) and Borel strong measure zeroness are independent

Recall that a set of reals X is null (or has measure zero) if for each positive ✏ there exists a cover

{In}n2! of X such that ⌃n diam(In) < ✏.

To restrict the notion of measure zero or null set, in 1919, Borel [1] defined a notion stronger than

measure zeroness. Now this notion is known as strong measure zeroness or strongly null set.

Borel strong measure zero: Y is Borel strong measure zero if there is for each sequence h✏n : n 2 !i

of positive real numbers a sequence hJn : n 2 !i of subsets of Y such that each Jn is of diameter

< ✏n, and Y is covered by {Jn : n 2 !}.

But Borel was unable to construct a nontrivial (that is, an uncountable) example of a Borel strong

measure zero set. He therefore conjectured that there exists no such examples.

In 1928, Sierpinski observed that every Luzin set is Borel strong measure zero, thus the Continuum

Hypothesis implies that Borel’s Conjecture is false.
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Sierpinski asked whether the property of being Borel strong measure zero is preserved under taking

homeomorphic (or even continuous) images.

In 1941, the answer given by Rothberger is negative under the Continuum Hypothesis. This lead

Rothberger to introduce the following topological version of Borel strong measure zero (which is

preserved under taking continuous images).

In 1988, Miller and Fremlin [10] proved that a space Y has the Rothberger property (S1(O,O))

if, and only if, it has Borel strong measure zero with respect to each metric on Y which generates

the topology of Y .

Recall that a space X is zero-dimensional if it has a base consisting clopen sets. Now we show that

S1(CO, CO) and Borel strong measure zeroness are independent to each other. Since the set of real

numbers does not have measure zero, it does not have Borel strong measure zero but it satisfies

S1(CO, CO). Since every metric space with Borel strong measure zero must be zero-dimensional

and separable, S1(CO, CO) is equivalent to S1(O,O) (see below Theorem 3.1). So by Theorem 6(c)

in [10], there is a subset of reals with Borel strong measure zero but it does not satisfy S1(CO, CO).

The proof of the following result easily follows from replacing the open sets with sets of a clopen

base of the topological space.

Theorem 3.1. For a zero-dimensional space X, S1(CO, CO) is equivalent to S1(O,O).

From Theorem 1 in [10], we obtain the following corollary.

Corollary 3.2. For a zero-dimensional metric space (X, d) the following statements are equivalent:

(1) X satisfies S1(O,O);

(2) X satisfies S1(CO, CO);

(3) X has Borel strong measure zero with respect to every metric which generates the original

topology;

(4) every continuous image of X in Baire space !! with usual metric has Borel strong measure

zero.

3.2 Dual selection games

The selection game G1(A,B) is an !-length game for two players, Alice and Bob. During round

n, Alice choose An 2 A, followed by Bob choosing Bn 2 An. Player Bob wins in the case that

{Bn : n < !} 2 B, and Player Alice wins otherwise.

We consider the following strategies:
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• A strategy for player Alice in G1(A,B) is a function � : (
S

A)<!
! A. A strategy � for

Alice is called winning if whenever xn 2 �hxi : i < ni for all n < !, {xn : n 2 !} 62 B. If

player Alice has a winning strategy, we write Alice " G1(A,B).

• A strategy for player Bob in G1(A,B) is a function ⌧ : A<!
!

S
A. A strategy ⌧ for Bob is

winning if An 2 A for all n < !, {⌧(A0, . . . , An) : n < !} 2 B.

• A predetermined strategy for Alice is a strategy which only considers the current turn number.

Formally it is a function � : ! ! A. If Alice has a winning predetermined strategy, we write

Alice
"

preG1(A,B).

• A Markov strategy for Bob is a strategy which only considers the most recent move of player

Alice and the current turn number. Formally it is a function ⌧ : A⇥ ! !
S
A. If Bob has a

winning Markov strategy, we write Bob
"

markG1(A,B).

Note that, Bob
"

markG1(A,B) ) Bob " G1(A,B) ) Alice 6" G1(A,B) ) Alice
6"

preG1(A,B).

It is worth noting that Alice
6"

preG1(A,B) is equivalent to the selection principle S1(A,B).

Two games G1 and G2 are said to be strategically dual provided that the following two hold:

• Alice " G1 iff Bob " G2

• Alice " G2 iff Bob " G1.

Two games G1 and G2 are said to be Markov dual provided that the following two hold:

• Alice
"

preG1 iff Bob
"

markG2

• Alice
"

preG2 iff Bob
"

markG1.

Two games G1 and G2 are said to be dual provided that they are both strategically dual and

Markov dual.

For a set X, let C(X) = {f 2 (
S
X)X : x 2 X ) f(x) 2 x} be the collection of all choice functions

on X.

Write X � Y if X is coinitial in Y with respect to ✓; that is, X ✓ Y , and for all y 2 Y , there

exists x 2 X such that x ✓ y.

In the context of selection games, A0 is a selection basis for A when A
0
� A [6].

Definition 3.3 ([6]). The set R is said to be a reflection of the set A if {range(f) : f 2 C(R)}

is a selection basis for A.

Let G1(A,¬B) := G1(A,P(
S
A) \ B).
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Theorem 3.4 ([6], Corollary 26). If R is a reflection of A, then G1(A,B) and G1(R,¬B) are

dual.

The point-open game PO(X) is a game where Alice chooses points of X, Bob chooses an open

neighborhood of each chosen point, and Alice wins if Bob’s choices are a cover.

Theorem 3.5 ([8]). The game G1(O,O) is strategically dual to the point-open game on each

topological space.

Theorem 3.6 ([5]). The game G1(O,O) is Markov dual to the point-open game on each topological

space.

Corollary 3.7. The game G1(O,O) is dual to the point-open game on each topological space.

Recall that two games G and G
0
are equivalent (isomorphic) if

(1) Alice " G iff Alice " G
0
.

(2) Bob " G iff Bob " G
0
.

Since PX is a reflection of O [6, Proposition 28], the Rothberger game G1(O,O) and G1(PX ,¬O)

are dual [6, Corollary 29]. It is well known that the game G1(PX ,¬O) is equivalent to the point-

open game.

3.3 The point-clopen and quasi-component-clopen games

The point-clopen game PC(X) on a space X is played according to the following rules:

In each inning n 2 !, Alice picks a point xn 2 X, and then Bob chooses a clopen set Un ✓ X with

xn 2 Un. At the end of the play

x0, U0, x1, U1, x2, U2, . . . , xn, Un, . . . ,

the winner is Alice if X =
S

n2! Un, and Bob otherwise.

We denote the collection of all non-empty clopen subsets of a space X by ⌧c and the collection of

all finite subsets of ⌧c by ⌧<!
c .

A strategy for Alice in the point-clopen game on a space X is a function ' : ⌧<!
c ! X.

A strategy for Bob in the point-clopen game on a space X is a function  : X<!
! ⌧c such that,

for all hx0, x1, . . . , xni 2 X
<!

\ {hi}, we have xn 2  (hx0, . . . , xni) = Un.

A strategy ' : ⌧<!
c ! X for Alice in the point-clopen game on a space X is a winning strategy

for Alice if, for every sequence hUn : n 2 !i of clopen subsets of a space X such that 8n 2 !,
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(xn = '(hU0, U1, . . . , Un�1i) 2 Un), we have X =
S

n2! Un. If Alice has a winning strategy in the

point-clopen game on a space X, we write Alice"PC(X).

A strategy  : X<!
! ⌧c for Bob in the point-clopen game on a space X is a winning strategy

for Bob if, for every sequence hxn : n 2 !i of points of a space X, we have X =
S

n2!{Un : Un =

 (hx0, x1, . . . , xni)}. If Bob has a winning strategy in the point-clopen game on a space X, we

write Bob"PC(X).

The game G1(CO, CO) is a game for two players, Alice and Bob, with an inning per each natural

number n. In each inning, Alice picks a clopen cover of the space and Bob selects one member

from this cover. Bob wins if the sets he selected throughout the game cover the space. If this is

not the case, Alice wins.

The intersection of all clopen sets containing a component is called a quasi-component of the

space [7].

The quasi-component-clopen game QC(X) on a space X is played according to the following rules:

In each inning n 2 !, Alice picks a quasi-component An of X, and then Bob chooses a clopen set

Un ✓ X with An ✓ Un. At the end of the play

A0, U0, A1, U1, A2, U2, . . . , An, Un, . . . ,

the winner is Alice if X =
S

n2! Un, and Bob otherwise.

We denote the collection of all quasi-components of a space X by QX and the collection of all

finite subsets of QX by Q
<!
X .

A strategy for Alice in the quasi-component-clopen game on a space X is a function ' : ⌧<!
c ! QX .

A strategy for Bob in the quasi-component-clopen game on a space X is a function  : Q<!
X ! ⌧c

such that, for all hA0, A1, . . . , Ani 2 Q
<!
X \ {hi}, we have An ✓  (hA0, . . . , Ani) = Un.

A strategy ' : ⌧<!
c ! QX for Alice in the quasi-component-clopen game on a space X is a winning

strategy for Alice if, for every sequence hUn : n 2 !i of clopen subsets of a space X such that

8n 2 !, (An = '(hU0, U1, . . . , Un�1i) ✓ Un), we have X =
S

n2! Un. If Alice has a winning

strategy in the quasi-component-clopen game on a space X, we write Alice"QC(X).

A strategy  : Q<!
X ! ⌧c for Bob in the quasi-component-clopen game on a space X is a winning

strategy for Bob if, for every sequence hAn : n 2 !i of quasi-components of a space X, we

have X =
S

n2!{Un : Un =  (hA0, A1, . . . , Ani)}. If Bob has a winning strategy in the quasi-

component-clopen game on a space X, we write Bob"QC(X).

Proposition 3.8. The point-clopen game is equivalent to the quasi-component-clopen game.

Proof. Let ' : ⌧<!
c ! X be a winning strategy for Alice in the point-clopen game on a space
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X. Then the function  : ⌧<!
c ! QX such that  (hU0, U1, . . . , Un�1i) = Q['(hU0, U1, . . . , Un�1i)]

(Q[x] is the quasi-component of x) for every sequence hUn : n 2 !i of clopen subsets of a space X

and n 2 !, is a winning strategy for Alice in the quasi-component-clopen game. This follows from

the fact that xn = '(hU0, U1, . . . , Un�1i) 2 Q[xn] ✓ Un.

Let ' : ⌧<!
c ! QX be a winning strategy for Alice in the quasi-component-clopen game on a space

X. Then the function  : ⌧<!
c ! X such that  (hU0, U1, . . . , Un�1i) 2 '(hU0, U1, . . . , Un�1i) for

every sequence hUn : n 2 !i of clopen subsets of a space X and n 2 !, is a winning strategy for

Alice in the point-clopen game.

Let  : X<!
! ⌧c be a winning strategy for Bob in the point-clopen game on X. Then the function

⇢ : Q<!
X ! ⌧c such that ⇢(hA0, A1, . . . , Ani) =  (hx0, x1, . . . , xni) for every sequence hAn : n 2 !i

of quasi-components of a space X and some x0, . . . , xn that Ai = Q[xi] for each i = 0, . . . , n, is a

winning strategy for Bob in the quasi-component-clopen game.

Let  : Q<!
X ! ⌧c be a winning strategy for Bob in the quasi-component-clopen game on X. Then

the function ⇢ : X<!
! ⌧c such that ⇢(hx0, x1, . . . , xni) =  (hA0, A1, . . . , Ani) for every sequence

hxn : n 2 !i of points of a space X where Ai = Q[xi] for each i = 0, . . . , n, is a winning strategy

for Bob in the point-clopen-clopen game.

Proposition 3.9. CX is a reflection of CO.

Proof. For every clopen cover U , the corresponding choice function f 2 C(CX) is simply the witness

that x 2 f(CTX,x) 2 U .

By Theorem 3.4, we get the following result.

Corollary 3.10. G1(CO, CO) and G1(CX ,¬CO) are dual.

Note that PC(X) and G1(CX ,¬CO) are the same game.

By Proposition 3.8, PC(X) and QC(X) are equivalent, hence, we get the following result.

Proposition 3.11. The game G1(CX ,¬CO) is equivalent to the quasi-component-clopen game.

Corollary 3.12. If a space X is a union of countable number of quasi-components, then Bob

" G1(CO, CO).
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The following chain of implications always holds:

X is a union of countable number of quasi-components

+

Bob " G1(CO, CO)

+

Alice 6" G1(CO, CO)

m

X has mildly Rothberger property.

The proof of the following result easily follows from replacing the open sets with sets of a clopen

base of the topological space.

Theorem 3.13. For a zero-dimensional space, the following statements hold:

(1) The game G1(CO, CO) is equivalent to the game G1(O,O).

(2) The point-clopen game is equivalent to the point-open game.

From [11] and [?], we have the following result.

Theorem 3.14. For a space X, the following statements hold:

(1) [11] X satisfies S1(O,O) iff Alice 6" G1(O,O).

(2) [?] X satisfies S1(CO, CO) iff Alice 6" G1(CO, CO).

Corollary 3.15. For a space X, the following statements are equivalent:

(1) X satisfies S1(CO, CO);

(2) Alice
6"

preG1(CO, CO);

(3) Alice 6" G1(CO, CO);

(4) Bob 6" G1(CX ,¬CO);

(5) Bob
6"

markG1(CX ,¬CO);

(6) Bob 6" PC(X);

(7) Bob 6" QC(X);

(8) Bob
6"

markPC(X);

(9) Bob
6"

markQC(X).

Corollary 3.16. For a zero-dimensional space X, the following statements are equivalent:

(1) X satisfies S1(O,O);

(2) X satisfies S1(CO, CO);

(3) Alice
6"

preG1(CO, CO);

(4) Alice
6"

preG1(O,O);

(5) Alice 6" G1(O,O);

(6) Alice 6" G1(CO, CO);
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(7) Bob 6" G1(PX ,¬O);

(8) Bob 6" G1(CX ,¬CO);

(9) Bob 6" PO(X);

(10) Bob 6" PC(X);

(11) Bob 6" QC(X);

(12) Bob
6"

markPO(X);

(13) Bob
6"

markPC(X);

(14) Bob
6"

markQC(X).

In [8], Galvin and Telgársky in [14, Theorem 6.3] prove: If X is a Lindelöf space in which each

element is G�, then Bob has a winning strategy in G1(O,O) if, and only if, X is countable.

Theorem 3.17. Let X be a space in which each quasi-component is an intersection of countably

many clopen sets, then Bob " G1(CO, CO) if, and only if, X is a union of countably many quasi-

components.

Proof. Let Bob have a winning strategy in the game G1(CO, CO) on X. Since the game G1(CO, CO)

and the point-clopen game are dual and, by Proposition 3.8, the point-clopen game and the quasi-

component-clopen game are equivalent.

Let Alice have a winning strategy in the quasi-component-clopen game. Let ' be a winning

strategy of Alice in the quasi-component-clopen game on X. For every quasi-component Q, there

is a sequence hVk : k 2 !i of clopen sets such that Q =
T

k2! Vk.

So we restrict the move of Bob from {Vk : k 2 !} for Q played by Alice.

Let Alice start the play of the point-clopen game by quasi-component '(hi) = Qhi. Then Bob

replies with a clopen set of the form Vk0,hi for some k0 2 !.

Alice’s next move in the play is a quasi-component '(hVk0,hii) = Qhk0i
. Then Bob replies with a

clopen set of the form Vk1,hk0i
for some k1 2 !.

Now Alice’s next move in the play is a quasi-component '(hVk0,hi, Vk1,hk0i
i) = Qhk0,k1i

. Then Bob

replies with a clopen set of the form Vk2,hk0,k1i
for some k2 2 ! and so on.

Similarly we are defining hQs : s 2 !
<!

i by setting Qhi = '(hi) and for each s 2 !
<! and for each

k 2 !, defining

Qs_hki = '(hVs(0),s�0, Vs(1),s�1, . . . , Vs(m�1),s�(m�1), Vk,si),

where m = dom(s). From this we construct a countable collection {Qs : s 2 !
<!

}.

Now to show that
S
{Qs : s 2 !

<!
} = X. If possible suppose that

S
{Qs : s 2 !

<!
} 6= X, then

there is y 2 X \ {Qs : s 2 !
<!

}. Then y /2 Qs for any s 2 !
<!. For each Qn 2 {Qs : s 2 !

<!
},

there is some kn such that y /2 Vkn,n. Then Alice loses the following play of the quasi-component-

clopen game
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hQ0, Vk0,0, Q1, Vk1,1, . . . , Qn, Vkn,n, . . . i

in which Alice uses the strategy ' since y /2
S

n2! Vkn,n, a contradiction.

The converse follows from Corollary 3.12.

3.4 Determinacy and G1(CO, CO) game

A game G played between two players Alice and Bob is determined if either Alice has a winning

strategy in game G or Bob has a winning strategy in game G. Otherwise G is undetermined.

It can be observed that the game G1(CO, CO) is determined for every countable space. But in

a mildly Rothberger space in which each quasi-component is an intersection of countably many

clopen sets with uncountable many quasi-components, none of the players Alice and Bob have a

winning strategy. So G1(CO, CO) is undetermined for a mildly Rothberger space in which each

quasi-component is an intersection of countably many clopen sets with uncountable many quasi-

components. Thus every uncountable zero-dimensional mildly Rothberger metric space is unde-

termined.

Recall that an uncountable set L of reals is a Luzin set if for each meager set M , L\M is countable.

The Continuum Hypothesis implies the existence of a Luzin set. A Luzin set is an example of a

space for which the game G1(CO, CO) is undetermined.
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ABSTRACT

In this paper, we consider the following (n+ 1)st order bvp

on the half line with a ��Laplacian operator

8
>>>>>>>><

>>>>>>>>:

(�(u(n)))0(t) = f(t, u(t), . . . , u(n)(t)), a.e., t 2 [0,+1),

n 2 N \ {0},

u(i)(0) = Ai, i = 0, . . . , n� 2,

u(n�1)(0) + au(n)(0) = B,

u(n)(+1) = C.

The existence of solutions is obtained by applying Schaefer’s

fixed point theorem under a one-sided Nagumo condition

with nonordered lower and upper solutions method where f

is a L1
-Carathéodory function.

RESUMEN

En este artículo, consideramos el siguiente pvf en la semi-

recta de orden (n+ 1) con un operador ��Laplaciano

8
>>>>>>>><

>>>>>>>>:

(�(u(n)))0(t) = f(t, u(t), . . . , u(n)(t)), a.e., t 2 [0,+1),

n 2 N \ {0},

u(i)(0) = Ai, i = 0, . . . , n� 2,

u(n�1)(0) + au(n)(0) = B,

u(n)(+1) = C.

Se obtiene la existencia de soluciones aplicando el teorema

de punto fijo de Schaefer bajo una condición unilateral de

Nagumo con un método de soluciones inferiores y superiores

no-ordenadas donde f es una función L1
-Carathéodory.
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priori estimates.
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1 Introduction

Differential equations of nth order were studied in many works, with different boundary value

conditions by using different methods on bounded and unbounded domains, we quote [5, 6, 8, 9, 10]

and references therein.

In this paper we consider the following ��Laplacian ordinary differential equation of order n+ 1

given by

(�(u(n)))0(t) = f(t, u(t), . . . , u(n)(t)), a.e., t 2 [0,+1), (1.1)

where n 2 N \ {0}, � is an increasing homeomorphism satisfying �(0) = 0 and �(R) = R.

Concerning the nonlinearity, we suppose that f : [0,+1) ⇥ Rn+1 ! R is a L1-Carathéodory

function.

This equation is subject to the following Sturm-Liouville type boundary conditions:

8
>>>><

>>>>:

u(i)(0) = Ai, i = 0, . . . , n� 2,

u(n�1)(0) + au(n)(0) = B,

u(n)(+1) = C,

(1.2)

where a < 0, B, C 2 R, Ai 2 R, i = 0, 1, . . . , n� 2 and u(n)(+1) = lim
t!+1

u(n)(t).

To prove the existence of solutions for this problem we use Scheafer’s fixed point theorem combined

with the upper and lower solutions method with a one-sided Nagumo condition.

The upper and lower solutions method have witnessed qualitative progress in recent years by

providing various results, following some papers that use this method [2, 3, 4, 7, 11, 12, 14, 15, 16].

In [12] and [7], the authors study the existence of solutions to the following two problems using the

Schauder fixed point theorem with upper and lower solutions method with a one-sided Nagumo

condition. The first problem is given by

u000(t) = f (t, u(t), u0(t), u00(t)) , t 2 [0,+1),

u(0) = A, au0(0) + bu00(0) = B, u00(+1) = C, with f : [0,+1)⇥ R3 ! R is a L1� Carathéodory

function, a > 0, b < 0, A,B,C 2 R. The second problem is

u(4)(t) = f (t, u(t), u0(t), u00(t), u000(t)) , t 2 [0,+1),

where f : [0,+1)⇥R4 ! R is a L1-Carathéodory function, and the boundary conditions are of
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Sturm-Liouville type,

u(0) = A, u0(0) = B, u00(0) + au000(0) = C, u000(+1) = D,

A,B,C,D 2 R, a < 0 and u000(+1) := lim
t!+1

u000(t).

In the present paper, we have obtained the same results as in [12] and [7], but for a more general

problem, where we combine an nth order ordinary differential equation with a ��Laplacian oper-

ator on the half line using non-ordered upper and lower solutions and to compensate the lack of

compactness of the interval [0,+1) we invoke the Corduneanu lemma (see Lemma 2.6).

This problem has many applications with regards to higher order problems defined on unbounded

intervals. We quote, e.g., [14] for n = 2. In the case where �(t) = t, we cite [12] and [7] for the

third and fourth order, respectively.

The paper is divided into four sections. Section 2 is devoted to some preliminary definitions and

the proof of technical lemmas. In Section 3, we prove the main result and in Section 4, we propose

an example where we show the applicability of the main result.

2 Definitions and preliminary results

Let

X =

⇢
u 2 Cn[0,+1) : lim

t!+1
u(n)(t) exists in R

�

and define the norm kukX := max{kuk0, ku0k1, ku00k2, . . . , ku(n)kn}, where

ku(i)ki = sup
0t<+1

����
u(i)(t)

1 + tn�i

���� , i = 0, 1, 2, . . . , n.

Lemma 2.1. For each fixed n 2 N \ {0}, let u 2 Cn([0,+1)). If lim
t!+1

u(n)(t) = `, then

lim
t!+1

u(n)(t) = (n� i)! lim
t!+1

u(i)(t)

1 + tn�i
, for i 2 {0, 1, . . . , n� 1}.

Proof. Let n be fixed in N⇤ and u 2 Cn([0,+1)) such that lim
t!+1

u(n)(t) = `. We have

lim
t!+1

u(n)(t)� `+ 1 = 1.

So,

lim
t!+1

u(n�1)(t)� `t+ t+ dn�1 = +1
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where dn�1 is a real constant. By using L’Hospital’s rule, we deduce that

lim
t!+1

u(n�1)(t)� `t+ t+ dn�1

1 + t
= lim

t!+1
u(n)(t)� `+ 1.

Hence,

lim
t!+1

u(n)(t) = lim
t!+1

u(n�1)(t)

1 + t
= (n� (n� 1))! lim

t!+1

u(n�1)(t)

1 + t(n�(n�1))
·

In this case, i = n� 1. To evaluate lim
t!+1

u(n�2)

1 + t2
, we repeat the formula twice:

lim
t!+1

u(n�1)(t)� `t+ t+ dn�1 = +1.

Then,

lim
t!+1

u(n�2)(t)� `
t2

2
+

t2

2
+ dn�1t+ dn�2 = +1.

Using L’Hospital’s rule twice, we get

lim
t!+1

u(n�2)(t)� `
2 t

2 + 1
2 t

2 + dn�1t+ dn�2

1 + t2
= lim

t!+1

u(n�1)(t)� `t+ t+ dn�1

2t

= lim
t!+1

u(n)(t)

2
� `

2
+

1

2
·

Then,

lim
t!+1

u(n)(t) = lim
t!+1

2
u(n�2)(t)

1 + t2
= (n� (n� 2))! lim

t!+1

u(n�2)(t)

1 + t(n�(n�2))
·

Here i = n� 2 and dn�1, dn�2 are real constants. At the order i,

lim
t!+1

u(i)(t)

1 + tn�i
� `

(n� i)!
+

1

(n� i)!

= lim
t!+1

u(i)(t)� `
(n�i)! t

n�i + 1
(n�i)! t

n�i + 1
(n�i�1)! t

n�i�1 + · · ·+ di�1t+ di

1 + tn�i

=

...

= lim
t!+1

u(n)(t)

(n� i)!
� `

(n� i)!
+

1

(n� i)!
·

In conclusion,

lim
t!+1

u(n)(t) = (n� i)! lim
t!+1

u(i)(t)

1 + tn�i
.

By this Lemma, (X, k · kX) is a Banach space.

The following definition establishes the assumptions assumed on the nonlinearity.
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Definition 2.2. A function f : [0,+1) ⇥ Rn+1 ! R is called a L1-Carathéodory function if it

satisfies:

(i) for each (x0, x1, . . . , xn) 2 Rn+1 , t 7! f(t, x0, x1, . . . , xn) is measurable on [0,+1);

(ii) for almost every t 2 [0,+1), (x0, x1, . . . , xn) 7! f(t, x0, x1, . . . , xn) is continuous in Rn+1;

(iii) 8⇢ > 0, 9'⇢ 2 L1[0,+1), 8x 2 X

kxkX < ⇢) |f(t, x(t), x0(t), . . . , x(n)(t))|  '⇢(t), a.e., t 2 [0,+1).

Lemma 2.3. Let ⌘ 2 L1[0,+1). The linear boundary value problem

(�(u(n)))0(t) + ⌘(t) = 0, a.e., t 2 [0,+1), (2.1)

with boundary conditions (1.2), has a unique solution in X. Moreover, this solution can be ex-

pressed as

u(t) =A0 +A1t+ · · ·+ An�2

(n� 2)!
tn�2 +

B � a��1
⇣
�(C) +

R +1
0 ⌘(s) ds

⌘

(n� 1)!
tn�1

+

Z t

0

✓
(t� s)n�1

(n� 1)!

◆
��1

✓
�(C) +

Z +1

s
⌘(⌧) d⌧

◆
ds.

(2.2)

Proof. We integrate (2.1) from t to +1,

�(u(n)(t)) = �(C) +

Z +1

t
⌘(⌧) d⌧

to get

u(n)(t) = ��1

✓
�(C) +

Z +1

t
⌘(⌧) d⌧

◆
. (2.3)

So,

u(n)(0) = ��1

✓
�(C) +

Z +1

0
⌘(⌧) d⌧

◆
. (2.4)

By integrating (2.3) on (0, t] and using (1.2) with (2.4),

u(n�1)(t) = B � a��1

✓
�(C) +

Z +1

0
⌘(s) ds

◆
+

Z t

0
��1

✓
�(C) +

Z +1

s
⌘(⌧) d⌧

◆
ds. (2.5)

Integrating (2.5) on (0, t], we get

u(n�2)(t) =An�2 +Bt� a��1

✓
�(C) +

Z +1

0
⌘(s) ds

◆
t

+

Z t

0
(t� s)��1

✓
�(C) +

Z +1

s
⌘(⌧) d⌧

◆
ds.

(2.6)
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By integrating (2.6) on (0, t],

u(n�3)(t) = An�3 +An�2t+
B � a��1

⇣
�(C) +

R +1
0 ⌘(s) ds

⌘

2
t2

+

Z t

0

(t� s)2

2
��1

✓
�(C) +

Z +1

s
⌘(⌧) d⌧

◆
ds.

Integrating again over (0, t], we find for i = 0, 1, . . . , n� 1,

u(i)(t) =
k=n�2X

k=i

Ak

(k � i)!
tk�i +B

tn�1�i

(n� 1� i)!
� a��1

✓
�(C) +

Z +1

0
⌘(s) ds

◆
tn�1�i

(n� 1� i)!

+

Z t

0

(t� s)n�1�i

(n� 1� i)!
��1

✓
�(C) +

Z +1

s
⌘(⌧) d⌧

◆
ds.

(2.7)

By (2.7),

u(t) =A0 +A1t+ · · ·+ An�2

(n� 2)!
tn�2 +

B � a��1
⇣
�(C) +

R +1
0 ⌘(s ds

⌘

(n� 1)!
tn�1

+

Z t

0

✓
(t� s)n�1

(n� 1)!

◆
��1

✓
�(C) +

Z +1

s
⌘(⌧) d⌧

◆
ds.

Now, we need to have an a priori estimate for u(n), for this let �i,�i 2 C[0,+1), �i(t)  �i(t),

i = 0, 1, 2, . . . , n� 1, with sup
t�0

|�n�1(t)|
1 + t

< +1 and sup
t�0

|�n�1(t)|
1 + t

< +1. Define the set

E =
�
(t, x0, x1, · · · , xn) 2 [0,+1)⇥ Rn+1 : �i(t)  xi  �i(t), i = 0, 1, 2, . . . , n� 1

 
.

Definition 2.4. A function f : E ! R is said to satisfy the one-sided Nagumo type growth

condition in E if it satisfies either

f(t, x0, x1, . . . , xn)   (t)h(|xn|), 8(t, x0, x1, . . . , xn) 2 E, (2.8)

or

f(t, x0, x1, . . . , xn) � � (t)h(|xn|), 8(t, x0, x1, . . . , xn) 2 E, (2.9)

for some positive continuous functions  , h, and some ⌫ > 1, such that

sup
0t<+1

 (t)(1 + t)⌫ < +1,

Z +1 ��1(s)

h(��1(s))
ds = +1,

Z +1 ��1(�s)

h(|��1(�s)|) ds = �1. (2.10)

Next lemma provides an a priori bound.
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Lemma 2.5. Let f : [0,+1) ⇥ Rn+1 ! R be a L1-Carathéodory function satisfying (2.8) with

(2.10), or (2.9) with (2.10). Then there exists R > 0 such that every solution u of (1.1)- (1.2)

satisfying

�i(t)  u(i)(t)  �i(t), i = 0, . . . , n� 1 (2.11)

for t 2 [0,+1) is such that ku(n)kn < R where R does not depend on the solution u.

Proof. Let u be a solution of (1.1)-(1.2) such that (2.11) holds. Consider r > 0 such that

r > max

⇢����
B � �n�1(0)

a

���� ,
����
B � �n�1(0)

a

���� , |C|
�
. (2.12)

With this inequality we cannot have |u(n)(t)| > r for all t 2 [0,+1), because

|u(n)(0)| =
����
B � u(n�1)(0)

a

����  max

⇢����
B � �n�1(0)

a

���� ,
����
B � �n�1(0)

a

����

�
< r (2.13)

and |u(n)(+1)| = |C| < r.

In the case where |u(n)(t)|  r for all t 2 [0,+1), it is enough to consider R > r/2 to complete

the proof:

ku(n)kn = sup
0t<+1

����
u(n)(t)

2

���� 
r

2
< R.

If there exists t 2 (0,+1) such that |u(n)(t)| > r, then by (2.10), we can take R > r such that

Z �(R)

�(r)

��1(s)

h(��1(s))
ds > M

⇢
M1 + sup

0t<+1

|�n�1(t)|
1 + t

⌫

⌫ � 1

�

and Z �(�r)

�(�R)

��1(s)

h(|��1(s)|) ds < M

⇢
�M1 + inf

0t<+1

� |�n�1(t)|
1 + t

⌫

⌫ � 1

�

with M := sup
0t<+1

 (t)(1 + t)⌫ and M1 := sup
0t<+1

�n�1(t)

(1 + t)⌫
� inf

0t<+1

�n�1(t)

(1 + t)⌫
·

Assume that the growth condition (2.8) holds. By (2.12), suppose that there exist t⇤, t+ 2 (0,+1)

such that u(n)(t⇤) = r and u(n)(t) > r for all t 2 (t⇤, t+]. Then

Z �(u(n)(t+))

�(u(n)(t⇤))

��1(s)

h(��1(s))
ds =

Z t+

t⇤

u(n)(s)

h(u(n)(s))
(�(u(n)))0(s) ds

=

Z t+

t⇤

f(s, u(s), u0(s), u00(s), u000(s), . . . , u(n)(s))

h(u(n)(s))
u(n)(s) ds


Z t+

t⇤

 (s) u(n)(s) ds  M

Z t+

t⇤

u(n)(s)

(1 + s)⌫
ds
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= M

Z t+

t⇤

 ✓
u(n�1)(s)

(1 + s)⌫

◆0

+
⌫u(n�1)(s)

(1 + s)1+⌫

!
ds

= M

✓
u(n�1)(t+)

(1 + t+)⌫
� u(n�1)(t⇤)

(1 + t⇤)⌫
+

Z t+

t⇤

⌫u(n�1)(s)

(1 + s)1+⌫
ds

◆

 M

✓
M1 + sup

0t<+1

|�n�1(t)|
1 + t

Z +1

0

⌫

(1 + s)⌫
ds

◆

<

Z �(R)

�(r)

��1(s)

h(��1(s))
ds.

So u(n)(t+) < R and as t⇤, t+ are arbitrary in (0,+1), we have u(n)(t) < R for all t 2 [0,+1).

By the same technique using (2.12), and considering t� and t⇤ such that u(n)(t⇤) = �r, u(n)(t) <

�r for all t 2 [t�, t⇤), it can be proved that u(n)(t) > �R for all t 2 [0,+1), therefore ku(n)kn <

R/2 < R.

If f satisfies (2.9), following similar arguments we get the same conclusion.

We also need a compactness criterion.

Lemma 2.6 ([1]). A set M ⇢ X is relatively compact if the following three conditions hold:

(1) all functions from M are uniformly bounded;

(2) all functions from M are equicontinuous on any compact interval of [0,+1);

(3) all functions from M are equiconvergent at infinity, that is, for any given ✏ > 0, there exists

a t✏ > 0 such that

����
u(i)(t)

1 + tn�i
� lim

t!+1

u(i)(t)

1 + tn�i

���� < ✏, for all t > t✏, u 2 M and i = 0, 1, 2, 3, . . . , n.

To end this section, we present the Schaefer Fixed Point Theorem with the definition of lower and

upper solutions for our problem (1.1)-(1.2).

Theorem 2.7 ([13]). Let E be a Banach space and T : E ! E be a completely continuous operator.

If the set

{x 2 E : x = �Tx for � 2 (0, 1)}

is bounded, then T has at least one fixed point.
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Definition 2.8. A function ↵ 2 X is said to be a lower solution of problem (1.1)-(1.2) if �(↵(n)) 2
AC[0,+1) such that

(�(↵(n)))0(t) � f(t,↵(t),↵0(t), . . . ,↵(n)(t)), a.e., t 2 [0,+1),

and 8
>>>><

>>>>:

↵(i)(0)  Ai, i = 1, . . . , n� 2,

↵(n�1)(0) + a↵(n)(0)  B,

↵(n)(+1) < C,

(2.14)

where a < 0, B,C 2 R, Ai 2 R, i = 0, . . . , n� 2 and ↵(t) := ↵(t)� ↵(0) +A0.

A function � 2 X where �(�(n)) 2 AC[0,+1) is an upper solution if it satisfies the reversed

inequalities with �(t) := �(t)� �(0) +A0.

3 Main existence result

Theorem 3.1. Let f : [0,+1) ⇥ Rn+1 ! R be a L1-Carathéodory function, � an increasing

homeomorphism satisfying �(0) = 0, and ↵,� lower and upper solutions of (1.1)-(1.2), respectively,

such that

↵(n�1)(t)  �(n�1)(t), 8t 2 [0,+1). (3.1)

If f satisfies the one-sided Nagumo condition (2.8), or (2.9), on the set

E⇤ =
n
(t, x0, x1, . . . , xn) 2 [0,+1)⇥ Rn+1 : ↵(t)  x0  �(t), ↵0(t)  x1  �0(t), . . . ,

↵(n�1)(t)  xn�1  �(n�1)(t)
o

and

f(t,↵(t),↵0(t), . . . ,↵(n�2)(t), xn�1, xn) � f(t, x0, . . . , xn)

� f(t,�(t),�0(t), . . . ,�(n�2)(t), xn�1, xn),
(3.2)

for (t, xn�1, xn) fixed and ↵(t)  x0  �(t), ↵0(t)  x1  �0(t), . . . ,↵(n�2)(t)  xn�2  �(n�2)(t),

then problem (1.1)-(1.2) has at least a solution u 2 X with �(u(n)) 2 AC[0,+1) and there exists

R > 0 such that

↵(t)  u(t)  �(t),↵0(t)  u0(t)  �0(t), . . . ,↵(n�1)(t)  u(n�1)(t)  �(n�1)(t),

�R < u(n)(t) < R, 8t 2 [0,+1).
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Remark 3.2. ↵ and � are almost-ordered. In fact, ↵ and � can be chosen such that ↵ 6 � but

we have necessary that ↵  �.

Indeed, from condition (3.1), for all t 2 [0,+1), we have ↵(n�1)(t)  �(n�1)(t). As ↵(n�2)(0) 
An�2  �(n�2)(0), integrating on [0,+1)

↵(n�2)(t)� ↵(n�2)(0) =

Z t

0
↵(n�1)(s) ds 

Z t

0
�(n�1)(s) ds = �(n�2)(t)� �(n�2)(0).

As

↵(n�2)(t)� ↵(n�2)(0) +An�2  �(n�2)(t)� �(n�2)(0) +An�2,

then

↵(n�2)(t)  �(n�2)(t).

By the same technique, one shows that ↵(i)  �(i), for i = 1, 2, . . . , n� 3, then

↵(t)� ↵(0) =

Z t

0
↵0(s) ds 

Z t

0
�0(s) ds = �(t)� �(0),

So,

↵(t)  �(t), 8t 2 [0,+1).

Proof. Consider the j-modified equation for j = 1, 2

(�(u(n)))0(t) = f(t, �0(t, u(t)), . . . , �n�1(t, u
(n�1)(t)), �nj(t, u

(n)(t)))

+
1

1 + t2
u(n�1)(t)� �n�1(t, u(n�1)(t))

1 + |u(n�1)(t)� �n�1(t, u(n�1)(t))|
, a.e., t 2 [0,+1),

(3.3)

where the functions �i, �nj : [0,+1)⇥ R ! R, i = 0, 1, 2, 3, . . . , n� 1 and j = 1, 2 are given by

�0(t, x) =

8
>>>><

>>>>:

�(t), x > �(t),

x, ↵(t)  x  �(t),

↵(t), x < ↵(t),

�i(t, yi) =

8
>>>><

>>>>:

�(i)(t), yi > �(i)(t),

yi, ↵(i)(t)  yi  �(i)(t),

↵(i)(t), yi < ↵(i)(t),

i = 1, 2, . . . , n� 1,

�n1(t, w) =

8
>>>><

>>>>:

N, w > N,

w, �N  w  N,

�N, w < �N,
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where N > max

⇢
sup

0t<+1
|↵(n)(t)|, sup

0t<+1
|�(n)(t)|

�
, and

�n2(t, w) = w.

For convenience, the proof is divided into three principal steps.

Step 1: Every solution of (3.3)-(1.2), satisfies ↵(n�1)(t)  u(n�1)
j (t)  �(n�1)(t) for all t 2

[0,+1), j = 1, 2. Let uj be a solution of the j-modified problem (3.3)-(1.2), j = 1, 2

and suppose, by contradiction, that there exists t 2 (0,+1) such that ↵(n�1)(t) > u(n�1)
j (t),

j = 1, 2. Therefore

inf
0t<+1

⇣
u(n�1)
j (t)� ↵(n�1)(t)

⌘
< 0, j = 1, 2.

By (2.14) this infimum cannot be attained at +1. In fact,

inf
0t<+1

⇣
u(n�1)
j (t)� ↵(n�1)(t)

⌘
:= u(n�1)

j (+1)� ↵(n�1)(+1) < 0

and

u(n)
j (+1)� ↵(n)(+1)  0.

We reach the following contradiction

0 � u(n)
j (+1)� ↵(n)(+1) > C � C = 0.

If

inf
0t<+1

⇣
u(n�1)
j (t)� ↵(n�1)(t)

⌘
:= u(n�1)

j (0+)� ↵(n�1)(0+) < 0, j = 1, 2.

Then we have the following contradiction for j = 1, 2

0  u(n)
j (0+)� ↵(n)(0+) 

B � u(n�1)
j (0)

a
+
↵(n�1)(0)�B

a
= �1

a
(u(n�1)

j (0)� ↵(n�1)(0)) < 0.

If there is t⇤ 2 (0,+1), we can define for j = 1, 2

min
0t<+1

⇣
u(n�1)
j (t)� ↵(n�1)(t)

⌘
:= u(n�1)

j (t⇤)� ↵(n�1)(t⇤) < 0,

with u(n)
j (t⇤) = ↵(n)(t⇤). Then there exists t > t⇤, such that

u(n�1)
j (t)� ↵(n�1)(t) < 0, u(n)

j (t)� ↵(n)(t) � 0, for all t 2 (t⇤, t).
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Therefore by (3.2) and Definition 2.8, we get a contradiction for j = 1, 2

(�(u(n)
j ))0(t)� (�(↵(n)))0(t) = f(t, �0(t, uj(t)), . . . , �n�1(t, u

(n�1)
j (t)), �nj(t, u

(n)
j (t)))

+
1

1 + t2
u(n�1)
j (t)� �n�1(t, u

(n�1)
j (t))

1 + |u(n�1)
j (t)� �n�1(t, u

(n�1)
j (t))|

� (�(↵(n)))0(t)

= f(t, �0(t, uj(t)), . . . , �n�2(t, u
(n�2)
j (t)),↵(n�1)(t),↵(n)(t))

+
1

1 + t2
u(n�1)
j (t)� ↵(n�1)(t)

1 + |u(n�1)
j (t)� ↵(n�1)(t)|

� (�(↵(n)))0(t)

 1

1 + t2
u(n�1)
j (t)� ↵(n�1)(t)

1 + |u(n�1)
j (t)� ↵(n�1)(t)|

< 0, a.e. t 2 (t⇤, t).

So, the function �(u(n)
j (t))� �(↵(n)(t)) is decreasing for all t 2 (t⇤, t). If t 2 (t⇤, t),

0 = �(u(n)
j (t⇤))� �(↵(n)(t⇤)) > �(u(n)

j (t))� �(↵(n)(t))

and u(n)
j (t)� ↵(n)(t) < 0. Therefore u(n�1)

j (t)� ↵(n�1)(t) is decreasing in (t⇤, t), which is a

contradiction. So u(n�1)
j (t) � ↵(n�1)(t), 8t 2 [0,+1), j = 1, 2. In the same way, we show

that u(n�1)
j (t)  �(n�1)(t), 8t 2 [0,+1), j = 1, 2.

As ↵(n�2)(0)  An�2  �(n�2)(0) and u(n�2)
j (0) = An�2, integrating on [0,+1) for j = 1, 2,

↵(n�2)(t)� ↵(n�2)(0) =

Z t

0
↵(n�1)(s) ds 

Z t

0
u(n�1)
j (s) ds = u(n�2)

j (t)�An�2


Z t

0
�(n�1)(s) ds = �(n�2)(t)� �(n�2)(0).

As

↵(n�2)(t)� ↵(n�2)(0) +An�2  u(n�2)
j (t)  �(n�2)(t)� �(n�2)(0) +An�2,

then

↵(n�2)(t)  u(n�2)
j (t)  �(n�2)(t).

By the same technique, one shows that ↵(i)  u(i)
j  �(i), for i = 1, 2, . . . , n � 3, j = 1, 2,

then

↵(t)� ↵(0) =

Z t

0
↵0(s) ds 

Z t

0
u0
j(s) ds = uj(t)�A0 

Z t

0
�0(s) ds = �(t)� �(0),

↵(t)  uj(t)  �(t), j = 1, 2.
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Step 2: By Lemma 2.5, if u is a solution of the 2-modified problem (3.3)-(1.2), then there exists

R1 > 0, not depending on u, such that

ku(n)kn < R1.

Now, we need to consider N = N1, where

N1 > max

⇢
2R1, sup

0t<+1
|↵(n)(t)|, sup

0t<+1
|�(n)(t)|

�
.

If the 1-modified problem (3.3)-(1.2) has a solution u, then u is a solution of problem (1.1)-

(1.2), where

ku(n)kn < R1 <
N1

2
< N1.

Step 3: Problem (3.3)-(1.2) for j = 1 has at least one solution. Let us define the operator

T : X ! X by

Tu(t) =A0 +A1t+ · · ·+ An�2

(n� 2)!
tn�2 +

B � a��1
⇣
�(C) +

R +1
0 F (u(s)) ds

⌘

(n� 1)!
tn�1

+

Z t

0

✓
(t� s)n�1

(n� 1)!

◆
��1

✓
�(C) +

Z +1

s
F (u(⌧)) d⌧

◆
ds.

with

F (u(s)) := �f(s, �0(s, u(s)), . . . , �n�1(s, u
(n�1)(s)), �n1(s, u

(n)(s)))

� 1

1 + s2
u(n�1)(s)� �n�1(s, u(n�1)(s))

1 + |u(n�1)(s)� �n�1(s, u(n�1)(s))|
·

From Lemma 2.3, one can see that the fixed points of T are solutions of the 1-modified

(3.3)-(1.2) problem. So it is sufficient to prove that T has a fixed point in X. For this aim,

it is enough to prove that the operator T satisfies the condition of the Schaefer fixed point

theorem 2.7. The proof is split into three steps.

(1) T : X ! X is well defined. Let u 2 X. As f is a L1-Carathéodory function, so, for

⇢ > max{N1, k↵k0, k�k0} [ {k↵(i)ki, k�(i)ki, i = 1, 2, . . . , n� 1},

we obtain

Z +1

0
|F (u(s))| ds 

Z +1

0
'⇢(s) +

1

1 + s2
|u(n�1)(s)� �n�1(s, u(n�1)(s))|

1 + |u(n�1)(s)� �n�1(s, u(n�1)(s))|
ds


Z +1

0

✓
'⇢(s) +

1

1 + s2

◆
ds = M⇢ < +1,

(3.4)
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this means that F is also a L1-Carathéodory function. Then,

lim
t!+1

(Tu)(n)(t) = lim
t!+1

��1

✓
�(C) +

Z +1

t
F (u(⌧)) d⌧

◆
= C = lim

t!+1

(Tu)(n�1)(t)

1 + t

= 2! lim
t!+1

(Tu)(n�2)(t)

1 + t2
= 3! lim

t!+1

(Tu)(n�3)(t)

1 + t3
= · · · = n!

(Tu)(t)

1 + tn
·

Therefore, Tu 2 X.

(2) T is continuous. Let (um) ⇢ X, such that um ! u in X. There exists r > 0 such that

kumkX < r, 8m 2 N. We have to prove that kTum � TukX
m!+1�! 0. To this end, we

can see that

kTum � Tuk0
m!+1�! 0, k(Tum)0 � (Tu)0k1

m!+1�! 0, k(Tum)00 � (Tu)00k2
m!+1�! 0, . . . ,

k(Tum)(n) � (Tu)(n)kn
m!+1�! 0.

We have,

sup
0t<+1

|�((Tum)(n))(t)� �((Tu)(n))(t)| = sup
0t<+1

����
Z +1

t
F (um(µ)) dµ�

Z +1

t
F (u(µ)) dµ

����


Z +1

0

���F (um(µ))� F (u(µ))
��� dµ  2M⇢ < +1.

From Lebesgue Dominated Convergence Theorem, F (um(t)) converges to F (u(t)) a.e.,

t 2 [0,+1), as m ! +1, because F is L1-Carathéodory function, so

Z +1

0

���F (um(µ))� F (u(µ))
���dµ ! 0,

as m ! +1, then,

k(Tum)(n) � (Tu)(n)kn ! 0,

as m ! +1. Moreover, we have that for i = 0, 1, 2, . . . , n� 1,

sup
0t<+1

����
(Tum)(i)(t)
1 + tn�i

� (Tu)(i)(t)
1 + tn�i

���� = sup
0t<+1

������
�a

��1
⇣
�(C) +

R +1
0

F (um(s))ds
⌘

1 + tn�i

tn�i�1

(n� i� 1)!

+

R t

0
(t� s)n�i�1��1

⇣
�(C) +

R +1
s

F (um(⌧))d⌧
⌘
ds

(1 + tn�i)(n� i� 1)!

+ a
��1

⇣
�(C) +

R +1
0

F (u(s))ds
⌘

1 + tn�i

tn�i�1

(n� i� 1)!

�

R t

0
(t� s)n�i�1��1

⇣
�(C) +

R +1
s

F (u(⌧))d⌧
⌘
ds

(1 + tn�i)(n� i� 1)!

������
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sup
0t<+1

����
(Tum)(i)(t)
1 + tn�i

�
����  sup

0t<+1

tn�i�1

(1 + tn�i)(n� i� 1)!

����a�
�1

✓
�(C) +

Z +1

0

F (u(s))ds

◆

� a��1

✓
�(C) +

Z +1

0

F (um(s))ds

◆����

+ sup
0t<+1

1
(1 + tn�i)(n� i� 1)!

Z t

0

(t� s)n�i�1

�����
�1

✓
�(C) +

Z +1

s

F (um(⌧))d⌧

◆

� ��1

✓
�(C) +

Z +1

s

F (u(⌧))d⌧

◆���� ds

 sup
0t<+1

2|a|tn�i�1

(1 + tn�i)(n� i� 1)!
k(Tum)(n) � (Tu)(n)kn

+ sup
0t<+1

Z t

0

2(t� s)n�i�1

(1 + tn�i)(n� i� 1)!
k(Tum)(n) � (Tu)(n)knds

 2|a|k(Tum)(n) � (Tu)(n)kn + 2k(Tum)(n) � (Tu)(n)kn ! 0,

as m ! +1.

(3) T is compact. Let

L⇢ = max
�
��1(|�(C)|+M⇢),

����1(�|�(C)|�M⇢)
�� .

Let U ⇢ X be any bounded subset, i.e., there is r > 0 such that kukX < r for all u 2 U .
For each u 2 U , one has for i = 0, 1, . . . , n� 1.

k(Tu)(i)ki = sup
0t<+1

������

Pk=n�2
k=i

Ak
(k�i)! t

k�i +B tn�1�i

(n�1�i)! � a��1
⇣
�(C) +

R +1
0

F (u(s))ds
⌘

tn�1�i

(n�1�i)!

1 + tn�i

+

Z t

0

(t� s)n�1�i

(n� 1� i)!(1 + tn�i)
��1

✓
�(C) +

Z +1

s

F (u(⌧))d⌧

◆
ds

����


k=n�2X

k=i

|Ak|
(k � i)!

+
|B|+ |a|L⇢

(n� 1� i)!
+

L⇢

(n� i)!
< +1,

and

k(Tu)(n)kn =
1

2
sup

0t<+1

�����1

✓
�(C) +

Z +1

t
F (u(µ))dµ

◆ ���  L⇢ < +1.

So,

kTukX  |A0|+ |A1|+ |A2|+ · · ·+ |An�2|+ |B|+ (|a|+ 1)L⇢ < +1.

That is, TU is uniformly bounded.

In order to prove that TU is equicontinuous, let L > 0 and t1, t2 2 [0, L] with t1 < t2.

We have
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���((Tu)(n))(t2)� �((Tu)(n))(t1)
�� =

����(C) +

Z +1

t2

F (u(⌧))d⌧ � �(C)�
Z +1

t1

F (u(⌧))d⌧
���

=
���
Z +1

t2

F (u(⌧))d⌧ �
Z +1

t1

F (u(⌧))d⌧
���

=
���
Z t2

t1

F (u(⌧))d⌧
���! 0,

as t1 ! t2. Also,

����
(Tu)(n�1)(t2)

1 + t2
� (Tu)(n�1)(t1)

1 + t1

���� =

������

B � a��1
⇣
�(C) +

R +1
0

F (u(s))ds
⌘

(1 + t2)

+

Z t2

0

1
1 + t2

��1

✓
�(C) +

Z +1

s

F (u(⌧))d⌧

◆
ds

�
B � a��1

⇣
�(C) +

R +1
0

F (u(s))ds
⌘

(1 + t1)

�
Z t1

0

1
1 + t1

��1

✓
�(C) +

Z +1

s

F (u(⌧))d⌧

◆
ds

����



������

B � a��1
⇣
�(C) +

R +1
0

F (u(s))ds
⌘

(1 + t2)

�
B � a��1

⇣
�(C) +

R +1
0

F (u(s))ds
⌘

(1 + t1)

������

+ L⇢

Z t1

0

����
1

1 + t2
� 1

1 + t1

���� ds

+ L⇢

Z t2

t1

����
1

1 + t2

���� ds ! 0,

as t1 ! t2. Moreover, we have that for i = 0, 1, . . . , n� 2

����
(Tu)(i)(t2)

1 + tn�i
2

� (Tu)(i)(t1)

1 + tn�i
1

���� =

����������

k=n�2X

k=i

Ak
(k�i)! t

k�i
2 �

⇣
a��1

⇣
�(C) +

R +1
0

F (u(s))ds
⌘
�B

⌘
tn�1�i
2

(n�1�i)!

1 + tn�i
2

�

k=n�2X

k=i

Ak
(k�i)! t

k�i
1 �

⇣
a��1

⇣
�(C) +

R +1
0

F (u(s))ds
⌘
�B

⌘
tn�1�i
1

(n�1�i)!

1 + tn�i
1

+

Z t2

0

(t2 � s)n�1�i

(n� 1� i)!(1 + tn�i
2 )

��1

✓
�(C) +

Z +1

s

F (u(⌧))d⌧

◆
ds

�
Z t1

0

(t1 � s)n�1�i

(n� 1� i)!(1 + tn�i
1 )

��1

✓
�(C) +

Z +1

s

F (u(⌧))d⌧

◆
ds

����
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

����������

k=n�2X

k=i

Ak
(k�i)! t

k�i
2 �

⇣
a��1

⇣
�(C) +

R +1
0

F (u(s))ds
⌘
�B

⌘
tn�1�i
2

(n�1�i)!

1 + tn�i
2

�

k=n�2X

k=i

Ak
(k�i)! t

k�i
1 �

⇣
a��1

⇣
�(C) +

R +1
0

F (u(s))ds
⌘
�B

⌘
tn�1�i
1

(n�1�i)!

1 + tn�i
1

����������

+ L⇢

Z t1

0

����
(t2 � s)n�1�i

(n� 1� i)!(1 + tn�i
2 )

� (t1 � s)n�1�i

(n� 1� i)!(1 + tn�i
1 )

���� ds

+ L⇢

Z t2

t1

����
(t2 � s)n�1�i

(n� 1� i)!(1 + tn�i
2 )

���� ds ! 0,

as t1 ! t2.

Furthermore, TU ⇢ X is equiconvergent at infinity. We use that F is L1-Carathéodory

function and the continuity of ��1. From Lemma 2.1, we have that for all u 2 U ,

lim
t!+1

(Tu)(n)(t) = C, then, lim
t!+1

(Tu)(n�i)(t)

1 + ti
=

C

i!
for i 2 {1, . . . , n}. So,

���(Tu)(n)(t)� C
��� =

�����1

✓
�(C) +

Z +1

t
F (u(µ))dµ

◆
� C

���! 0,

as t ! +1. Regarding the next derivative, we have

lim
t!+1

����
(Tu)(n�1)(t)

1 + t
� C

���� = lim
t!+1

����
1

1 + t

✓
B � a��1

✓
�(C) +

Z +1

0
F (u(s)) ds

◆

+

Z t

0
��1

✓
�(C) +

Z +1

s
F (u(⌧)) d⌧

◆
ds

◆
� C

����

 lim
t!+1

����
1

1 + t

✓
B � a��1

✓
�(C) +

Z +1

0
F (u(s)) ds

◆◆����

+ lim
t!+1

����
1

1 + t

Z t

0
��1

✓
�(C) +

Z +1

s
F (u(⌧)) d⌧

◆
ds� C

����

= lim
t!+1

����
1

1 + t

✓
B � a��1

✓
�(C) +

Z +1

0
F (u(s)) ds

◆◆����

+ lim
t!+1

�����
�1

✓
�(C) +

Z +1

t
F (u(⌧)) d⌧

◆
� C

���� = 0.

By the same technique, one can show that

����
(Tu)(n�i)(t)

1 + ti
� C

i!

����! 0,

as t ! +1, i = 2, 3, . . . , n. So, by Lemma 2.6, the set TU is relatively compact.

Moreover, the set

{u 2 X : u = �Tu, � 2 (0, 1)}
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is bounded, as

k�TukX  |A0|+ |A1|+ |A2|+ · · ·+ |An�2|+ |B|+ (|a|+ 1)L⇢ < +1, 8� 2 (0, 1).

By Theorem 2.7, T has at least one fixed point u 2 X such that

↵(t)  u(t)  �(t),↵0(t)  u0(t)  �0(t), . . . ,↵(n�1)(t)  u(n�1)(t)  �(n�1)(t),

�2R1 < u(n)(t) < 2R1, 8t 2 [0,+1).

Remark 3.3. If n = 1, problem (1.1)-(1.2) is written as

8
>>>><

>>>>:

(�(u0))0(t) = f(t, u(t), u0(t)), a.e. t 2 [0,+1),

u(0) + au0(0) = B,

u0(+1) = C.

In this case, we cannot consider the functions ↵ and �. Moreover, in Theorem 3.1, we do not need

to suppose the condition (3.2) and the upper and lower solutions are automatically ordered.

4 Example

Consider the (n+ 1)st order differential equation for a fixed n 2 N \ {0, 1}

((u(n))3)0(t) = f(t, u(t), u0(t), . . . , u(n)(t)), a.e., t � 0, (4.1)

with the boundary conditions

8
>>>>>>>><

>>>>>>>>:

u(0) = 2,

u(i)(0) = 0, i = 1, . . . , n� 2,

u(n�1)(0)� 1

(n+ 1)!
u(n)(0) =

1

3
,

u(n)(+1) =
n!

2
,

(4.2)

where

f(t, x0, x1, . . . , xn) =

���xn�1 � n!t� (n� 1)!
���(�x0 + 2)� (x1 + x2 + · · ·+ xn�2)

���xn � n!
���

(1 + t3)(2 + tn)2
· (4.3)

Moreover, the functions ↵(t) ⌘ 2 and �(t) = tn + tn�1 + · · · + t + 1 are respectively, non-ordered

lower and upper solutions for (4.1)-(4.2), with ↵(t) = 2 and �(t) = tn + tn�1 + · · · + t + 2. As,
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↵(i)  0  �(i)(t), i = 1, . . . , n� 2, 0 = ↵(n)(+1) < n!
2 < �(n)(+1) = n! and

�(n�1)(0)� �(n)(0)

(n+ 1)!
= (n� 1)!� n!

(n+ 1)!
� 1

3
� 0 = ↵(n�1)(0)� ↵(n)(0)

(n+ 1)!
.

Also, �(n�1)(t) = n!t + (n � 1)!, �(n)(t) = n!, ((↵(n))3)0(t) = 0 and ((�(n))3)0(t) = 0, then,

f(t,↵(t),↵0(t), . . . ,↵(n)(t)) = 0 and f(t,�(t),�0(t), . . . ,�(n)(t)) = 0 for all t � 0. The nonlinearity

f satisfies the one-sided Nagumo condition (2.8) with

 (t) =
1

1 + t3
, 1 < ⌫ < 3, h(w) = 2

on the set

E0 =
n
(t, x0, x1, . . . , xn) 2 [0,+1)⇥ Rn+1 : ↵(t)  x0  �(t),↵0(t)  x1  �0(t),

↵00(t)  x2  �00(t), . . . ,↵n�1(t)  xn�1  �(n�1)(t)
o
,

and satisfies the assumptions of Theorem 3.1.

Therefore, there is at least a nontrivial solution u of (4.1)-(4.2), and R > 0, such that

↵(t)  u(t)  �(t),↵0(t)  u0(t)  �0(t), . . . ,↵(n�1)(t)  u(n�1)(t)  �(n�1)(t),

�R < u(n)(t) < R, 8t 2 [0,+1).

From this, we see that u is a nonnegative function and its derivatives u(i) are nonnegative for

i 2 {1, . . . , n� 1} and nondecreasing for i 2 {1, . . . , n� 2}.
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ABSTRACT

For a continuous and positive function w (λ) , λ > 0 and µ a

positive measure on (0,∞) we consider the following integral

transform

D (w, µ) (T ) :=

∫
∞

0

w (λ) (λ+ T )−1 dµ (λ) ,

where the integral is assumed to exist for T a postive oper-

ator on a complex Hilbert space H .

We show among others that, if β ≥ A ≥ α > 0, B > 0 with

M ≥ B − A ≥ m > 0 for some constants α, β, m, M , then

0 ≤
m2

M2
[D (w, µ) (β) −D (w, µ) (M + β)]

≤
m2

M
[D (w, µ) (β)−D (w, µ) (M + β)] (B − A)−1

≤ D (w, µ) (A)−D (w, µ) (B)

≤
M2

m
[D (w, µ) (α) −D (w, µ) (m+ α)] (B − A)−1

≤
M2

m2
[D (w, µ) (α) −D (w, µ) (m+ α)] .

Some examples for operator monotone and operator convex

functions as well as for integral transforms D (·, ·) related to

the exponential and logarithmic functions are also provided.
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RESUMEN

Para una función cont́ınua y positiva w (λ) , λ > 0 y µ una

medida positiva sobre (0,∞) consideramos la siguiente trans-

formada integral

D (w, µ) (T ) :=

∫
∞

0

w (λ) (λ+ T )−1 dµ (λ) ,

donde se asume que la integral existe para un operador posi-

tivo T , sobre el espacio complejo de Hilbert H .

Mostramos, entre otras cosas, que si β ≥ A ≥ α > 0, B > 0

con M ≥ B − A ≥ m > 0 para algunas constantes α, β, m,

M , entonces

0 ≤
m2

M2
[D (w, µ) (β) −D (w, µ) (M + β)]

≤
m2

M
[D (w, µ) (β)−D (w, µ) (M + β)] (B − A)−1

≤ D (w, µ) (A)−D (w, µ) (B)

≤
M2

m
[D (w, µ) (α) −D (w, µ) (m+ α)] (B − A)−1

≤
M2

m2
[D (w, µ) (α) −D (w, µ) (m+ α)] .

También se proporcionan algunos ejemplos para las funciones

operador monótono y operador convexo, aśı como de trans-

formadas integrales D (·, ·) relacionadas con las funciones ex-

ponencial y logaŕıtmica.

Keywords and Phrases: Operator monotone functions, Operator convex functions, Operator inequalities, Löwner-

Heinz inequality, Logarithmic operator inequalities.

2020 AMS Mathematics Subject Classification: 47A63, 47A60.
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1 Introduction

Consider a complex Hilbert space (H, 〈·, ·〉). An operator T is said to be positive (denoted by

T ≥ 0) if 〈Tx, x〉 ≥ 0 for all x ∈ H and also an operator T is said to be strictly positive (denoted

by T > 0) if T is positive and invertible. A real valued continuous function f on (0,∞) is said to

be operator monotone if f(A) ≥ f(B) holds for any A ≥ B > 0.

We have the following representation of operator monotone functions [6], see for instance [1, p.

144–145]:

Theorem 1.1. A function f : [0,∞) → R is operator monotone in [0,∞) if and only if it has the

representation

f (t) = f (0) + bt+

∫ ∞

0

tλ

t+ λ
dµ (λ) , (1.1)

where b ≥ 0 and a positive measure µ on [0,∞) such that

∫ ∞

0

λ

1 + λ
dµ (λ) < ∞. (1.2)

A real valued continuous function f on an interval I is said to be operator convex (operator concave)

on I if

f ((1− λ)A+ λB) ≤ (≥) (1− λ) f (A) + λf (B) (OC)

in the operator order, for all λ ∈ [0, 1] and for every selfadjoint operator A and B on a Hilbert

space H whose spectra are contained in I. Notice that a function f is operator concave if −f is

operator convex. We have the following representation of operator convex functions [1, p. 147]:

Theorem 1.2. A function f : [0,∞) → R is operator convex in [0,∞) with f ′
+ (0) ∈ R if and only

if it has the representation

f (t) = f (0) + f ′
+ (0) t+ ct2 +

∫ ∞

0

t2λ

t+ λ
dµ (λ) , (1.3)

where c ≥ 0 and a positive measure µ on [0,∞) such that (1.2) holds.

We have the following integral representation for the power function when t > 0, r ∈ (0, 1], see for

instance [1, p. 145]

tr−1 =
sin (rπ)

π

∫ ∞

0

λr−1

λ+ t
dλ. (1.4)

Observe that for t > 0, t )= 1, we have

∫ u

0

dλ

(λ+ t) (λ+ 1)
=

ln t

t− 1
+

1

1− t
ln

(

u+ t

u+ 1

)

, for all u > 0

By taking the limit over u → ∞ in this equality, we derive

ln t

t− 1
=

∫ ∞

0

dλ

(λ+ t) (λ+ 1)
,
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which gives the representation for the logarithm

ln t = (t− 1)

∫ ∞

0

dλ

(λ+ 1) (λ+ t)
, for all t > 0. (1.5)

Motivated by these representations, we introduce, for a continuous and positive function w (λ) ,

λ > 0, the following integral transform

D (w, µ) (t) :=

∫ ∞

0

w (λ)

λ+ t
dµ (λ) , t > 0, (1.6)

where µ is a positive measure on (0,∞) and the integral (1.6) exists for all t > 0. For µ the

Lebesgue usual measure, we put

D (w) (t) :=

∫ ∞

0

w (λ)

λ + t
dλ, t > 0. (1.7)

If we take µ to be the usual Lebesgue measure and the kernel wr (λ) = λr−1, r ∈ (0, 1], then

tr−1 =
sin (rπ)

π
D (wr) (t) , t > 0. (1.8)

For the same measure, if we take the kernel wln (λ) = (λ+ 1)−1 , t > 0, we have the representation

ln t = (t− 1)D (wln) (t) , t > 0. (1.9)

Assume that T > 0, then by the continuous functional calculus for selfadjoint operators, we can

define the positive operator

D (w, µ) (T ) :=

∫ ∞

0
w (λ) (λ+ T )−1 dµ (λ) , (1.10)

where w and µ are as above. Also, when µ is the usual Lebesgue measure, then

D (w) (T ) :=

∫ ∞

0
w (λ) (λ+ T )−1 dλ, for T > 0. (1.11)

From (1.8) we have the representation

T r−1 =
sin (rπ)

π
D (wr) (T ) (1.12)

where T > 0 and from (1.9)

(T − 1)−1 lnT = D (wln) (T ) (1.13)

provided T > 0 and T − 1 is invertible.

In what follows, if A is an operator and a is a real number, then by A ≥ a we understand A ≥ aI,

where I is the identity operator.
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In this paper we show among others that, if β ≥ A ≥ α > 0, B > 0 with M ≥ B −A ≥ m > 0 for

some constants α, β, m, M , then

0 ≤
m2

M2
[D (w, µ) (β)−D (w, µ) (M + β)]

≤
m2

M
[D (w, µ) (β)−D (w, µ) (M + β)] (B −A)−1

≤ D (w, µ) (A)−D (w, µ) (B)

≤
M2

m
[D (w, µ) (α)−D (w, µ) (m+ α)] (B −A)−1

≤
M2

m2
[D (w, µ) (α)−D (w, µ) (m+ α)] .

Some examples for operator monotone and operator convex functions as well as for integral trans-

forms D (·, ·) related to the exponential and logarithmic functions are also provided.

2 Main results

In the following, whenever we write D (w, µ) we mean that the integral from (1.6) exists and is

finite for all t > 0.

Theorem 2.1. For all A, B > 0 with B −A ≥ 0 we have the representation

0 ≤ (B −A)1/2 [D (w, µ) (A)−D (w, µ) (B)] (B −A)1/2 (2.1)

=

∫ ∞

0

(
∫ 1

0

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

ds

)

× w (λ) dµ (λ) .

Proof. Observe that, for all A, B > 0

D (w, µ) (B)−D (w, µ) (A) =

∫ ∞

0
w (λ)

[

(λ+B)−1 − (λ+A)−1
]

dµ (λ) . (2.2)

Let T, S > 0. The function f (t) = −t−1 is operator monotone on (0,∞), operator Gâteaux

differentiable and the Gâteaux derivative is given by

∇fT (S) := lim
t→0

[

f (T + tS)− f (T )

t

]

= T−1ST−1, for T, S > 0 (2.3)

Consider the continuous function f defined on an interval I for which the corresponding operator

function is Gâteaux differentiable on the segment [C,D] : {(1− t)C + tD, t ∈ [0, 1]} for C, D

selfadjoint operators with spectra in I. We consider the auxiliary function defined on [0, 1] by

fC,D (t) := f ((1− t)C + tD) , t ∈ [0, 1] .

Then we have, by the properties of the Bochner integral, that

f (D)− f (C) =

∫ 1

0

d

dt
(fC,D (t)) dt =

∫ 1

0
∇f(1−t)C+tD (D − C) dt. (2.4)
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If we write this equality for the function f (t) = −t−1 and C, D > 0, then we get the representation

C−1 −D−1 =

∫ 1

0
((1− t)C + tD)−1 (D − C) ((1− t)C + tD)−1 dt. (2.5)

Now, if we take in (2.5) C = λ+B, D = λ+A, then

(λ+B)−1 − (λ+A)−1

=

∫ 1

0
((1− t) (λ+B) + t (λ+A))−1 (A−B)× ((1− t) (λ+B) + t (λ+A))−1 dt (2.6)

=

∫ 1

0
(λ+ (1− t)B + tA)−1 (A−B) (λ+ (1− t)B + tA)−1 dt

and by (2.2) we derive

D (w, µ) (A)−D (w, µ) (B)

=

∫ ∞

0
w (λ)

(
∫ 1

0
(λ+ (1− t)B + tA)−1 (B −A) × (λ+ (1− t)B + tA)−1 dt

)

dµ (λ) (2.7)

=

∫ ∞

0
w (λ)

(
∫ 1

0
(λ+ sB + (1− s)A)−1 (B −A) × (λ+ sB + (1− s)A)−1 ds

)

dµ (λ)

for all A, B > 0, where for the last equality we used the change of variable s = 1 − t, t ∈ [0, 1] .

Now, since B −A ≥ 0, hence by multiplying both sides with (B −A)1/2 we get

(B −A)1/2 [D (w, µ) (A)−D (w, µ) (B)] (B −A)1/2

=

∫ ∞

0
w (λ)

(
∫ 1

0
(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)

× (λ+ sB + (1− s)A)−1 (B − A)1/2 ds
)

dµ (λ)

=

∫ ∞

0
w (λ)

(
∫ 1

0
(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2

× (B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2 ds
)

dµ (λ)

=

∫ ∞

0
w (λ)×

(
∫ 1

0

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

ds

)

dµ (λ) ,

(2.8)

which proves the identity in (2.1). Since

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

≥ 0

then by integrating over s on [0, 1], multiplying by w (λ) ≥ 0 and integrating over dµ (λ) , we

deduce the inequality in (2.1).



CUBO
25, 2 (2023)

Several inequalities for an integral transform of positive... 201

The case of operator monotone functions is as follows:

Corollary 2.2. Assume that f is operator monotone on [0,∞), then all A, B > 0 with B−A ≥ 0

we have the equality

0 ≤ (B −A)1/2
[

f (A)A−1 − f (B)B−1
]

(B −A)1/2

− f (0) (B −A)1/2
(

A−1 −B−1
)

(B −A)1/2

=

∫ ∞

0

(
∫ 1

0

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

ds

)

λ dµ (λ)

(2.9)

for some positive measure µ (λ). If f (0) = 0, then

0 ≤ (B −A)1/2
[

f (A)A−1 − f (B)B−1
]

(B −A)1/2

=

∫ ∞

0

(
∫ 1

0

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

ds

)

× λ dµ (λ) .
(2.10)

Proof. From (1.1) we have the representation

f (t)− f (0)

t
− b = D (%, µ) (t) , (2.11)

with % (λ) = λ, for some positive measure µ (λ) and nonnegative number b. Since

D (%, µ) (A)−D (%, µ) (B) = [f (A)− f (0)]A−1 − [f (B)− f (0)]B−1

= f (A)A−1 − f (B)B−1 − f (0)
(

A−1 −B−1
)

,

hence by (2.1) we get (2.9).

The case of operator convex functions is as follows:

Corollary 2.3. Assume that f is operator convex on [0,∞), then all A, B > 0 with B − A ≥ 0

we have that

0 ≤ (B −A)1/2
[

f (A)A−2 − f (B)B−2
]

(B −A)1/2

− f ′
+ (0) (B −A)1/2

(

A−1 −B−1
)

(B − A)1/2

− f (0) (B −A)1/2
(

A−2 −B−2
)

(B −A)1/2

=

∫ ∞

0

(
∫ 1

0

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

ds

)

× λ dµ (λ) ,

(2.12)

for some positive measure µ (λ). If f (0) = 0, then

0 ≤ (B −A)1/2
[

f (A)A−2 − f (B)B−2
]

(B −A)1/2

− f ′
+ (0) (B −A)1/2

(

A−1 −B−1
)

(B − A)1/2

=

∫ ∞

0

(
∫ 1

0

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

ds

)

× λ dµ (λ) .

(2.13)
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Proof. From (1.3) we have that

f (t)− f (0)− f ′
+ (0) t

t2
− c = D (%, µ) (t) ,

for t > 0. Then for A, B > 0,

D (%, µ) (A)−D (%, µ) (B) = f (A)A−2 − f ′
+ (0)A−1 − f (0)A−2 − f (A)B−2 + f ′

+ (0)B−1 + f (0)B−2

= f (A)A−2 − f (B)B−2 − f ′
+ (0)

(

A−1 −B−1
)

− f (0)
(

A−2 −B−2
)

and by (2.1) we derive (2.13).

When more conditions are imposed on the operators A and B we have the following refinements

and reverses of the inequality

0 ≤ D (w, µ) (A)−D (w, µ) (B)

that hold for B −A ≥ 0.

Theorem 2.4. If β ≥ A ≥ α > 0, B > 0 with M ≥ B − A ≥ m > 0 for some constants α, β, m,

M , then

0 ≤
m2

M2
[D (w, µ) (β)−D (w, µ) (M + β)]

≤
m2

M
[D (w, µ) (β)−D (w, µ) (M + β)] (B −A)−1

≤ D (w, µ) (A)−D (w, µ) (B)

≤
M2

m
[D (w, µ) (α)−D (w, µ) (m+ α)] (B −A)−1

≤
M2

m2
[D (w, µ) (α)−D (w, µ) (m+ α)] .

(2.14)

Proof. For s ∈ [0, 1] we have

λ+ sB + (1− s)A = λ+ s (B −A) +A.

We have

λ+ s (B −A) +A ≥ λ+ sm+A ≥ λ+ sm+ α = λ+ (1− s)α+ s (m+ α) ,

s ∈ [0, 1] and λ ≥ 0, which implies that

(λ+ sB + (1− s)A)−1 ≤ [λ+ (1− s)α+ s (m+ α)]−1

and, by multiplying both sides by (B −A)1/2 ≥ 0,

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2 ≤ [λ+ (1− s)α+ s (m+ α)]−1 (B −A)

≤ M [λ+ (1− s)α+ s (m+ α)]−1 .
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Furthermore,

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

≤ M2 [λ+ (1− s)α+ s (m+ α)]−2 ,

for s ∈ [0, 1] and λ ≥ 0, which implies by integration that
∫ ∞

0
w (λ)

(
∫ 1

0

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

ds

)

dµ (λ)

≤ M2

∫ ∞

0
w (λ)

(
∫ 1

0
[λ+ (1− s)α+ s (m+ α)]−2 ds

)

dµ (λ)

=
M2

m

∫ ∞

0
w (λ)

(
∫ 1

0
[λ+ (1− s)α+ s (m+ α)]−1 (m+ α− α)

× [λ+ (1− s)α+ s (m+ α)]−1 ds
)

dµ (λ) (and by (2.7))

=
M2

m
[D (w, µ) (α)−D (w, µ) (m+ α)] .

Using (2.8) we get

(B −A)1/2 [D (w, µ) (A)−D (w, µ) (B)] (B −A)1/2 ≤
M2

m
[D (w, µ) (α) −D (w, µ) (m+ α)] .

Multiplying both sides with (B −A)−1/2 we deduce the fourth inequality in (2.14). We also have

λ+ s (B −A) +A ≤ λ+ sM +A ≤ λ+ sM + β = λ+ (1− s)β + s (M + β) ,

which implies that

(λ+ sB + (1− s)A)−1 ≥ [λ+ (1− s)β + s (M + β)]−1

and, by multiplying both sides by (B −A)1/2 ≥ 0,

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2 ≥ [λ+ (1− s)β + s (M + β)]−1 (B −A)

≥ m [λ+ (1− s)β + s (M + β)]−1 ,

for s ∈ [0, 1] and λ ≥ 0. By taking the square, we get

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

≥ m2 [λ+ (1− s)β + s (M + β)]−2 ,

for s ∈ [0, 1] and λ ≥ 0. By taking the integrals in this inequality we obtain
∫ ∞

0
w (λ)

(
∫ 1

0

[

(B −A)1/2 (λ+ sB + (1− s)A)−1 (B −A)1/2
]2

ds

)

dµ (λ)

≥ m2

∫ ∞

0
w (λ)

(
∫ 1

0
[λ+ (1− s)β + s (M + β)]−2 ds

)

dµ (λ)

=
m2

M

∫ ∞

0
w (λ)

(
∫ 1

0
[λ+ (1− s) β + s (M + β)]−1 (M + β − β)

× [λ+ (1− s)β + s (M + β)]−1 ds
)

dµ (λ) (and by (2.7))

=
m2

M
[D (w, µ) (β)−D (w, µ) (M + β)] .
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Using (2.8) we get

(B −A)1/2 [D (w, µ) (A)−D (w, µ) (B)] (B −A)1/2 ≥
m2

M
[D (w, µ) (β)−D (w, µ) (M + β)] .

Multiplying both sides with (B −A)−1/2 we deduce the second inequality in (2.14). The rest of

the inequalities are obvious.

It is well known that, if P ≥ 0, then

|〈Px, y〉|2 ≤ 〈Px, x〉 〈Py, y〉 ,

for all x, y ∈ H. Therefore, if T > 0, then

0 ≤ 〈x, x〉2 =
〈

T−1Tx, x
〉2

=
〈

Tx, T−1x
〉2

≤ 〈Tx, x〉
〈

TT−1x, T−1x
〉

= 〈Tx, x〉
〈

x, T−1x
〉

,

for all x ∈ H. If x ∈ H, ‖x‖ = 1, then

1 ≤ 〈Tx, x〉
〈

x, T−1x
〉

≤ 〈Tx, x〉 sup
‖x‖=1

〈

x, T−1x
〉

= 〈Tx, x〉
∥

∥T−1
∥

∥ ,

which implies the following operator inequality

∥

∥T−1
∥

∥

−1
≤ T. (2.15)

Remark 2.5. If A > 0 and B − A > 0, then obviously ‖A‖ ≥ A ≥
∥

∥A−1
∥

∥

−1
and ‖B −A‖ ≥

B − A ≥
∥

∥

∥
(B −A)−1

∥

∥

∥

−1
. So, if we take β = ‖A‖ , α =

∥

∥A−1
∥

∥

−1
, M = ‖B −A‖ and m =

∥

∥

∥
(B −A)−1

∥

∥

∥

−1
in (2.14), then we get

0 ≤
D (w, µ) (‖A‖)−D (w, µ) (‖B −A‖+ ‖A‖)

‖B −A‖2
∥

∥

∥
(B −A)−1

∥

∥

∥

2

≤
D (w, µ) (‖A‖)−D (w, µ) (‖B −A‖+ ‖A‖)

‖B −A‖
∥

∥

∥
(B −A)−1

∥

∥

∥

2 (B −A)−1

≤ D (w, µ) (A)−D (w, µ) (B)

≤ ‖B −A‖2
∥

∥

∥
(B −A)−1

∥

∥

∥

×

[

D (w, µ)
(

∥

∥A−1
∥

∥

−1
)

−D (w, µ)

(

∥

∥

∥
(B −A)−1

∥

∥

∥

−1
+
∥

∥A−1
∥

∥

−1
)]

× (B −A)−1

≤ ‖B −A‖2
∥

∥

∥
(B −A)−1

∥

∥

∥

2

×

[

D (w, µ)
(

∥

∥A−1
∥

∥

−1
)

−D (w, µ)

(

∥

∥

∥
(B −A)−1

∥

∥

∥

−1
+
∥

∥A−1
∥

∥

−1
)]

.

(2.16)
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Corollary 2.6. Assume that f is operator monotone on [0,∞). If β ≥ A ≥ α > 0, B > 0 with

M ≥ B −A ≥ m > 0 for some constants α, β, m, M , then

0 ≤
m2

M2

[

f (β)

β
−

f (M + β)

M + β
−

M

β (M + β)
f (0)

]

≤
m2

M

[

f (β)

β
−

f (M + β)

M + β
−

M

β (M + β)
f (0)

]

(B −A)−1

≤ f (A)A−1 − f (B)B−1 − f (0)
(

A−1 −B−1
)

≤
M2

m

[

f (α)

α
−

f (m+ α)

m+ α
−

m

α (m+ α)
f (0)

]

(B −A)−1

≤
M2

m2

[

f (α)

α
−

f (m+ α)

m+ α
−

m

α (m+ α)
f (0)

]

.

(2.17)

If f (0) = 0, then

0 ≤
m2

M2

[

f (β)

β
−

f (M + β)

M + β

]

≤
m2

M

[

f (β)

β
−

f (M + β)

M + β

]

(B −A)−1

≤ f (A)A−1 − f (B)B−1 ≤
M2

m

[

f (α)

α
−

f (m+ α)

m+ α

]

(B −A)−1

≤
M2

m2

[

f (α)

α
−

f (m+ α)

m+ α

]

.

(2.18)

The proof follows by (2.14) and the representation (2.11).

Remark 2.7. If A > 0 and B −A > 0, then for f an operator monotone function on [0,∞) with

f (0) = 0, we obtain from (2.18) some similar inequalities to the ones in Remark 2.5. We omit the

details.

The case of operator convex functions is as follows:

Corollary 2.8. Assume that f is operator convex on [0,∞). If β ≥ A ≥ α > 0, B > 0 with

M ≥ B −A ≥ m > 0 for some constants α, β, m, M , then

0 ≤
m2

M2

[

f (β)

β2
−

f (M + β)

(M + β)2
− f ′

+ (0)
M

β (M + β)
− f (0)

M (M + 2β)

β2 (M + β)2

]

≤
m2

M

[

f (β)

β2
−

f (M + β)

(M + β)2
− f ′

+ (0)
M

β (M + β)
− f (0)

M (M + 2β)

β2 (M + β)2

]

× (B −A)−1

≤ f (A)A−2 − f (B)B−2 − f ′
+ (0)

(

A−1 −B−1
)

− f (0)
(

A−2 −B−2
)

≤
M2

m

[

f (α)

α2
−

f (m+ α)

(m+ α)2
− f ′

+ (0)
m

α (m+ α)
− f (0)

m (m+ 2α)

α2 (m+ α)2

]

× (B −A)−1

≤
M2

m2

[

f (α)

α2
−

f (m+ α)

(m+ α)2
− f ′

+ (0)
m

α (m+ α)
− f (0)

m (m+ 2α)

α2 (m+ α)2

]

.

(2.19)
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If f (0) = 0, then

0 ≤
m2

M2

[

f (β)

β2
−

f (M + β)

(M + β)2
− f ′

+ (0)
M

β (M + β)

]

≤
m2

M

[

f (β)

β2
−

f (M + β)

(M + β)2
− f ′

+ (0)
M

β (M + β)

]

(B −A)−1

≤ f (A)A−2 − f (B)B−2 − f ′
+ (0)

(

A−1 −B−1
)

≤
M2

m

[

f (α)

α2
−

f (m+ α)

(m+ α)2
− f ′

+ (0)
m

α (m+ α)

]

(B −A)−1

≤
M2

m2

[

f (α)

α2
−

f (m+ α)

(m+ α)2
− f ′

+ (0)
m

α (m+ α)

]

.

(2.20)

Remark 2.9. If A > 0 and B − A > 0, then for f an operator convex function on [0,∞) with

f (0) = 0, we obtain from (2.20) some similar inequalities to the ones in Remark 2.5. We omit the

details.

3 Some examples

The function f (t) = tr, r ∈ (0, 1] is operator monotone on [0,∞) and by (2.18) we obtain the

power inequalities

0 ≤
m2

M2

[

βr−1 − (M + β)r−1
]

≤
m2

M

[

βr−1 − (M + β)r−1
]

(B −A)−1

≤ Ar−1 −Br−1 ≤
M2

m

[

αr−1 − (m+ α)r−1
]

(B −A)−1

≤
M2

m2

[

αr−1 − (m+ α)r−1
]

,

(3.1)

provided that β ≥ A ≥ α > 0, B > 0 with M ≥ B − A ≥ m > 0 for some constants α, β, m, M.

The function f (t) = ln (t+ 1) is operator monotone on [0,∞) and by (2.18) we get

0 ≤
m2

M2

[

ln (β + 1)

β
−

ln (M + β + 1)

M + β

]

≤
m2

M

[

ln (β + 1)

β
−

ln (M + β + 1)

M + β

]

(B −A)−1

≤ A−1 ln (A+ 1)−B−1 ln (B + 1) ≤
M2

m

[

ln (α+ 1)

α
−

ln (m+ α+ 1)

m+ α

]

(B −A)−1

≤
M2

m2

[

ln (α+ 1)

α
−

ln (m+ α+ 1)

m+ α

]

,

(3.2)

provided that β ≥ A ≥ α > 0, B > 0 with M ≥ B −A ≥ m > 0 for some constants α, β, m, M .
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The function f (t) = − ln (t+ 1) is operator convex, and by (2.20) we obtain

0 ≤
m2

M2

[

ln (M + β + 1)

(M + β)2
−

ln (β + 1)

β2
+

M

β (M + β)

]

≤
m2

M

[

ln (M + β + 1)

(M + β)2
−

ln (β + 1)

β2
+

M

β (M + β)

]

(B −A)−1

≤ B−2 ln (B + 1)−A−2 ln (A+ 1) +A−1 −B−1

≤
M2

m

[

ln (m+ α+ 1)

(m+ α)2
−

ln (α+ 1)

α2
+

m

α (m+ α)

]

(B −A)−1

≤
M2

m2

[

ln (m+ α+ 1)

(m+ α)2
−

ln (α+ 1)

α2
+

m

α (m+ α)

]

,

(3.3)

provided that β ≥ A ≥ α > 0, B > 0 with M ≥ B − A ≥ m > 0 for some constants α, β, m, M .

Consider the kernel e−a (λ) := exp (−aλ) , λ ≥ 0 and a > 0. Then

D(e−a) (t) :=

∫ ∞

0

exp (−aλ)

t+ λ
dλ = E1 (at) exp (at) , t ≥ 0,

where

E1 (t) :=

∫ ∞

t

e−u

u
du, t ≥ 0. (3.4)

For a = 1 we have

D(e−1) (t) :=

∫ ∞

0

exp (−λ)

t+ λ
dλ = E1 (t) exp (t) , t ≥ 0.

Let β ≥ A ≥ α > 0, B > 0 with M ≥ B − A ≥ m > 0 for some constants α, β, m, M. Then by

(2.14) we have

0 ≤
m2

M2
[E1 (aβ) exp (aβ)− E1 (a (M + β)) exp (a (M + β))]

≤
m2

M
[E1 (aβ) exp (aβ)− E1 (a (M + β)) exp (a (M + β))] (B −A)−1

≤ E1 (aA) exp (aA)− E1 (aB) exp (aB)

≤
M2

m
[E1 (aα) exp (aα)− E1 (a (m+ α)) exp (a (m+ α))] (B −A)−1

≤
M2

m2
[E1 (aα) exp (aα)− E1 (a (m+ α)) exp (a (m+ α))] ,

(3.5)

for a > 0. For a = 1 we have

0 ≤
m2

M2
[E1 (β) exp (β)− E1 (M + β) exp (M + β)]

≤
m2

M
[E1 (β) exp (β)− E1 (M + β) exp (M + β)] (B −A)−1

≤ E1 (A) exp (A)− E1 (B) exp (B)

≤
M2

m
[E1 (α) exp (α)− E1 (m+ α) exp (m+ α)] (B −A)−1

≤
M2

m2
[E1 (α) exp (α)− E1 (m+ α) exp (m+ α)] .

(3.6)
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More examples of such transforms are

D(w1/(!2+a2)) (t) :=

∫ ∞

0

1

(t+ λ) (λ2 + a2)
dλ =

πt− 2a ln(t/a)

2a (t2 + a2)
, t ≥ 0

and

D(w!/(!2+a2)) (t) :=

∫ ∞

0

λ

(t+ λ) (λ2 + a2)
dλ =

πa+ 2t ln(t/a)

2a (t2 + a2)
, t ≥ 0,

for a > 0. The interested reader may state other similar results by employing the examples of

monotone operator functions provided in [2, 3, 4, 7] and [8].
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ABSTRACT

This article aims to examine the existence and Hyers-Ulam

stability of non-local random impulsive neutral stochastic in-

tegrodifferential delayed equations with Poisson jumps. Ini-

tially, we prove the existence of mild solutions to the equa-

tions by using the Banach fixed point theorem. Then, we

investigate stability via the continuous dependence of solu-

tions on the initial value. Next, we study the Hyers-Ulam

stability results under the Lipschitz condition on a bounded

and closed interval. Finally, we give an illustrative example

of our main result.

RESUMEN

Este artículo examina la existencia y estabilidad de Hyers-

Ulam de ecuaciones integrodiferenciales con retardo no-

locales aleatorias impulsivas neutrales estocásticas con saltos

de Poisson. Inicialmente probamos la existencia de solu-

ciones mild de las ecuaciones usando el teorema del punto

fijo de Banach. Luego, investigamos la estabilidad a través

de la dependencia continua de las soluciones respecto del

valor inicial. A continuación, estudiamos resultados acerca

de la estabilidad de Hyers-Ulam bajo la condición de Lips-

chitz en un intervalo cerrado y acotado. Finalmente, damos

un ejemplo ilustrativo de nuestro resultado principal.
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1 Introduction

A model to represent the system with the occurrence of a sudden change in state at some time

points is provided by impulsive differential equations. Differential equations (DEs) with fixed time

impulses have been studied by many authors [7, 15, 22]. However, in the real world, impulses

frequently occur at unpredictable times. Wu and Meng [21] introduced the generic DEs with

random impulses, where the impulsive moments are random variables and any solution of the

equations is a stochastic process, to better depict this phenomenon in reality. Examples of integer-

order DEs with random impulses that have moderate solutions have been mentioned in [9, 18, 19].

The stochastic differential equations (SDEs) with random impulse involving fractional derivatives

also have been studied in [10, 20, 24].

Poisson jumps are now a common modelling element in the fields of physics, biology, medicine,

economics, and finance. A jump term must naturally be included in the SDEs. Furthermore,

many real-world systems (such those that experience abrupt price changes or jumps as a result of

stock market crashes, earthquakes, epidemics, etc.) could experience some jump-type stochastic

disturbances. Since these system’s sample pathways are not continuous, stochastic processes with

jumps are a better fit for describing these models. These jump models typically come from Poisson

random measurements. Such system’s sample pathways (abbreviated c’adl’ag) are right continuous

and have left limits. For more details, see the monographs [1, 23] and references therein.

On the other hand, impulsive differential equations also caught the interest of researchers see

[2, 11, 12, 13]. Differential equations with fixed moments of impulses have become a natural

framework for modeling processes in economics, physics, and population dynamics. The impulses

usually exist at deterministic or random points. The properties of fixed-type random impulses

are investigated in many articles [18, 19]. A. Anguraj et al. [4] established the existence and HU

stability of random impulsive stochastic functional integrodifferential equations with finite delays.

Moreover, Lang, Wenxuan, et al. [16] investigated the existence and HU stability of solutions

for SDEs with random impulses. D. Chalishajar et al. [6] studied the existence, uniqueness, and

stability of non-local random impulsive neutral stochastic differential equations with Poisson jumps.

Recently, D. Baleanu, et al. [5] discussed the existence and stability results of mild solutions for

random impulsive stochastic integro-differential equations (RISIDEs) with noncompact semigroups

and resolvent operators in Hilbert spaces. R. Kasinathan et al. [14] investigated the existence and

stability results of mild solutions for RISIDEs with noncompact semigroups via resolvent operators.

In A. Anguraj et al. [3] have been studied the existence and UH stability of SDEs with random

impulse driven by Poisson jumps of the type
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d(z(t)) = f(t, zt) + g(t, zt)dW (t) +

Z

U
h(t, zt, z)K̃(ds, dz), t � t0, t 6= tq,

z(�q) = bq(�q)z(�
�
q ), q = 1, 2, . . .

zt0 = � = {�(✓) : ��  ✓  0}.

Motivated by the above works, this paper aims to fill this gap by investigating the existence, sta-

bility and HU stability of non-local random impulsive neutral stochastic integrodifferential delayed

equations (NRINSIDEs) and Poisson jumps.

The considered following NRINSIDEs with Poisson jumps of the type

d[z(t) + h(t, zt)] =


f(t, zt) +

Z t

0
k(t, s, zs) ds

�
dt+ g(t, zt) dW (t) (1.1)

+

Z

U
P (t, zt, z)K̃(ds, dz), t � t0, t 6= tq,

z(�q) = bq(�q)z(�
�
q ), q = 1, 2, . . . , (1.2)

zt0 + r(z) = z0 = � = {�(✓) : ��  ✓  0}, (1.3)

where �q is a random variable defined from ⌦ to Dq
def
= (0, dq) for q = 1, 2, . . . , where 0 < dq < 1.

Moreover, suppose that �ı and �| are independent of each other as ı 6= | for ı, | = 1, 2 . . . Here

f : [t0, T ]⇥ C ! Rd
, h : [t0, T ]⇥ C ! Rd

, g : [t0, T ]⇥ C⇥ ! Rd⇥m, k : [t0, T ]⇥ [t0, T ]⇥ C ! Rd,

r : C ! C and bq : Dq ! Rd⇥d are Borel measurable functions, and zt is Rd-valued stochastic

process such that

zt = {z(t+ ✓) : ��  ✓  0}, zt 2 Rd
.

We assume that �0 = t0 and �q = �q�1 + �q for q = 1, 2, . . . Obviously, {�q} is a process

with independent increments. The impulsive moments �q from a strictly increasing sequence, i.e.

� = �0 < �1 < �2 < · · · < lim
k!1

�q = 1, and z(��
q ) = lim

t!�q�0
z(t). Denote by {G(t), t � 0} the

simple counting process generated by {�q}, and {K(t), t � 0} is a given m-dimensional Wiener

process, and denote F(1)
t the �-algebra generated by {Gt, t � 0}, and denote F(2)

t the �-algebra

generated by {Kt, t � 0}. We assume that F(2)
1 ,F(2)

1 and � are mutually independent. In (1.1)-(1.3),

K̃(dt, dz) = K(dt, dz) � dt ⌫(du) denotes the compensated Poisson measure independent of W (t)

and K̃(dt, dz) represents the Poisson counting measure associated with a characteristic measure ⌫.
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Highlights:

(1) This work extends the work of A. Anguraj et al. [3].

(2) Time delay of NRINSIDEs and Poisson jumps is taken care of by the prescribed phase

space B.

The structure of this article is as follows: In section 2, we mention some concepts and principles.

Section 3 is devoted to studying the existence of mild solutions of the system (1.1)-(1.3). In

section 4, the stability of the mild solution of the equations (1.1)-(1.3) is studied. In section 5, we

investigate the HU stability of the system (1.1)-(1.3). An example is given to illustrate the theory

in section 6. At the end, the last section deals with the conclusion and acknowledgement.

2 Preliminaries

Suppose that (⌦,Ft,P) is a probability space with filtration {Ft}, t � 0 fulfilling Ft = F(1)
t [ F(2)

t .

Let £p = (⌦,Rd) be the collection of all strongly measurable, pth integrable, Ft measurable, Rd-

random variables in z with the norm kzk£p = (Ekzkpt )1/p. Let � > 0 and denote the Banach space

of all piecewise continuous Rd-valued stochastic process {�(t), t 2 [��, 0]} by C([��, 0],£(⌦,Rd))

equipped with the norm

k kC =

✓
sup

��✓0
Ek (✓)kpt

◆1/p

.

The initial data

zt0 + r(z) = z0 = � = {�(✓) : ��  ✓  0}, (2.1)

is an Ft0 measurable, [��, 0] to Rd-valued random variable such that Ek�kp < 1.

2.1 Poisson jump process

Let (p(t))t�0 be an H-valued, �-finite stationary Ft-adapted Poisson point process on (⌦,F, (Ft),P).

The counting random measure K defined by

K((t1, t2]⇥ U)(w) =
X

t1<st2

IU(p(s)(w)),

for any U 2 B�(H) is called the Poisson random measure associated to the Poisson point process

p. This measure ⌫ is said to be a Levy measure. Then the measure K̂ is defined by

K̂((0, t]⇥ U) = K((0, t]⇥ U)� t⌫(U).
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This measure K̂(dt, du) is called the compensated Poisson random measure, and dt ⌫(U) is called

the compensator.

Definition 2.1. For a given T 2 (t0,1), a Rd
-valued stochastic process z(t) on t0 � �  t  T

is called the solution to equation (1.1)-(1.3) with the initial data (2.1), if for each t0  t  T ,

zt0 = �, {zt0}t0tT is Ft-adapted and

z(t) =
1X

q=0

 qY

ı=1

bı(�ı)�(0)� r(z) + h(0,�)�
qY

ı=1

bı(�ı)h(t, zt)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

f(s, zs) ds+

Z t

�q

f(s, zs) ds

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0
k(s, &, z&) d&ds+

Z t

�q

Z s

0
k(s, &, z&) d&ds

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

g(s, zs) dW (s) +

Z t

�q

g(s, zs) dW (s)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U
P (s, zs, u)K̃(ds, du) +

Z t

�q

Z

U
P (s, zs, u)K̃(ds, du)

�
I[�q,�q+1)(t)

where

qY

|=ı

b|(�|) = bq(�q)bq�1(�q�1) · · · bı(�ı), and IL(.) is the index function, i.e.,

IL(t) =

8
><

>:

1 if t 2 L,

0 if t /2 L.

Definition 2.2 (HU stability). Suppose that w(t) is a Rd
-valued stochastic process. If there exists

a real number N > 0, such that for arbitrary ✏ � 0, satisfying

E
����w(t)�

1X

q=0

 qY

ı=1

bı(�ı)�(0)� r(z) + h(0,�)�
qY

ı=1

bı(�ı)h(t, zt) +
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

f(s, zs) ds

+

Z t

�q

f(s, zs) ds+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0
k(s, &, z&) d& ds+

Z ⇣

�q

Z s

0
k(s, &, z&) d& ds

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

g(s, zs) dW (s) +

Z t

�q

g(s, zs) dW (s)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U
P (s, zs, u)K̃(ds, du) +

Z t

�q

Z

U
P (s, zs, u)K̃(ds, du)

�
I[�q,�q+1)(t)

����
p

 ✏.

For each solution z(t) with the initial value zt0 = wt0 = �, if there exists a solution z(t) of equations

(1.1)-(1.3) with

Ekw(t)� z(t)k  N✏, 8 t (t0 � ⌧, T ).
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Then equation (1.1)-(1.3) has the HU stability.

Lemma 2.3 ([8]). Let #, 2 C([a, b],Rd) be two functions. We suppose that #(t) is nondecreasing.

If z(t) 2 C([a, b],Rd) is a solution of the following inequality

z(t)  #(t) +

Z t

a
 (s)z(s) ds, t 2 [a, b],

then z(t)  #(t) exp

✓Z t

a
 (s) ds

◆
.

Lemma 2.4 ([17]). For any p � 1 and for any predictable process z 2 £p
d⇥m = [0, T ] the inequality

holds,

supEkz(t) dW (t)kp  (p/2(p� 1))p/2
✓Z t

0
Ekz(s)kp)2/pds

◆p/2

, t 2 [0, T ].

3 Main results

In order to derive the existence and uniqueness of the system (1.1)-(1.3), we shall impose the

following assumptions:

(A1): The functions h : [t0, T ]⇥C ! Rd
, f : [t0, T ]⇥C ! Rd

, and g : [t0, T ]⇥C ! Rd⇥m. There

exist positive constant Lh > 0, Lf > 0 and Lg > 0 such that,

Ekh(t, 1)� h(t, 2)k
p
 LhEk 1 �  2k

p
C,

Ekh(t, )kp  LhEk kpC.

Ekf(t, 1)� f(t, 2)k
p
 LfEk 1 �  2k

p
C,

Ekf(t, )kp  LfEk kpC.

Ekg(t, 1)� g(⇣, 2)k
p
 LgEk 1 �  2k

p
C,

Ekg(t, )kp  LgEk kpC,

for all t 2 [t0, T ] and  1, 2 and  2 C.

(A2): The function k : [t0, T ] ⇥ [t0, T ] ⇥ C ! Rd, there exists a positive constant Lk > 0 such

that,

Z t

0
Ekk(t, s, 1)� k(t, s, 2)k

p
 LkEk 1 �  2k

p
C,

Z t

0
Ekk(t, s, )kp  LkEk kpC,

for all t 2 [t0, T ] and  1, 2 and  2 C.
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(A3): The condition max
ı,q

(
qQ

|=ı
kb|(⌧|)k

)
< 1. That is to say, there exists a constant C > 0 such

that

E
 
max
ı,q

(
qY

|=ı

kbı(⌧|)k

)!p

 C.

(A4): The function P : [t0, T ]⇥ C⇥ U ! Rd, there exists a positive constant LP > 0 such that,

Z

U
EkP (t, 1, u)� P (t, 2, u)k

p
⌫ dz  LPEk 1 �  2k

p
C,

Z

U
EkP (t, s, )kp⌫ dz  LPEk kpC,

for all t 2 [t0, T ] and  1, 2 and  2 C.

(A5): The function r : C ! C is continuous and there exists some constant Lr > 0 such that,

Ekr(t, 1)� r(t, 2)k
p
 LrEk 1 �  2k

p
C,

Ekr(t, )kp  LrEk kpC,

for all t 2 [t0, T ] and  1, 2 and  2 C.

Theorem 3.1. Assume that the assumptions (A1)–(A5) are satisfied. Then the system (1.1)-(1.3)

has a unique solution in B.

Proof. Let B be the phase space B = C([t0 � �, T ],£p(⌦,Rd)) endowed with the norm

kzk
p
B = sup

t2[t0,T ]
kztk

p
C,

where kztkC = sup��st Ekztkp. Denote Bm = {z 2 B, kzk
p
B  m}, which is the closed ball with

center z and radius m > 0. For any initial value (t0, z0, ) with t0 � 0 and z0 2 Bm, we define the
operator S : B ! B by

(Sz)(t) =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

�(t)� r(t), t 2 (1, t0]
1X

q=0

 qY

ı=1

bı(�ı)�(0)� r(t) + h(0,�)�
qY

ı=1

bı[(�ı)h(t, zt)

+
qX

ı=1

qY

|=ı

b|(⌧|)

Z �ı

�ı�1

f(s, zs)ds+

Z t

�q

f(s, zs)ds+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0

k(s, &, z&)d&ds

+

Z t

�q

Z s

0

k(s, &, z&)d& +
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

g(s, zs)dW (s) +

Z t

�q

g(s, zs)dW (s)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U

P (s, zs, u)K̃(ds, du)

+

Z t

�q

Z

U

P (s, zs, u)K̃(ds, du)

�
I[�q ,�q+1)(t), t 2 [t0, T ].
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Now we have to prove that S maps B into itself.

k(Sz)(t)kp =

����
1X

q=0

 qY

ı=1

bı(�ı)[�(0)� r(t) + h(0,�)]�
qY

ı=1

bı(�ı)h(t, zt)

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

f(s, zs) ds+

Z �

�q

f(s, zs) ds

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0

k(s, &, z&) d& ds+

Z �

�q

Z s

0

k(s, &, z&) d&

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

g(s, zs) dW (s) +

Z �

�q

g(s, zs) dW (s)

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U

P (s, zs, u)K̃(ds, du) +

Z t

�q

Z

U

P (s, zs, u)K̃(ds, du)

��
I[�q ,�q+1)(t)

����
p

EkSz(t)kp  4p�1E

max
ı,q

⇢ qY

ı=|

kb|(�|)k
��p

[k�(0)� r(z) + h(0,�)kp]

+ 4p�1E

max
ı,q

⇢ qY

ı=|

kb|(�|)k
��p

kh(t, zt)kp

+ 4p�1E

max
ı,q

⇢
1,

qY

ı=|

kb|(�|)k
��p Z t

t0

kf(s, zs)k ds I[�q ,�q+1)(t)

�p

+ 4p�1E

max
ı,q

⇢
1,

qY

ı=|

kb|(�|)k
��p Z t

t0

Z s

0

kk(s, &, z&) d& ds I[�q ,�q+1)(t)

�p

+ 4p�1E

max
ı,q

⇢
1,

qY

ı=|

kb|(�|)k
��p Z t

t0

kg(s, zs)dW (s)k ds I[�q ,�q+1)(t)

�p

+ 4p�1E

max
ı,q

⇢
1,

qY

ı=|

kb|(�|)k
��p Z t

t0

Z

U

kP (s, zs, u)K̃(ds, du)k ds I[�q ,�q+1)(t)

�p

 4p�1
C[Ek�(0)kp + LrEkzkp] + 4p�1

CLhEk�kp + 4p�1
CLhEkztkpC

+ 4p�1 max{1, C}(t� t0)
p�1

Lf

Z t

t0

EkzskpC ds+ 4p�1 max{1, C}(t� t0)
p�1

Lk

Z t

t0

EkzskpC ds

+ 4p�1 max{1, C}(t� t0)
p/2�1

LgLp

Z t

t0

EkzskpC ds+ 4p�1 max{1, C}(t� t0)
p/2

LP cp

Z t

t0

EkzskpC ds.

Thus

sup
s2[t�⌧,t]

EkSz(t)kp  4p�1
C[Ek�(0)kp + LhEk�kp] +

�
4p�1

C(Lr + Lh)(t� t0)
�1

+ 4p�1 max{1, C}
⇥
(t� t0)

p�1
Lf + (t� t0)

p�1
Lk + (t� t0)

p/2�1
LgLp

+ (t� t0)
p�1

cp(LP + L
P/2
P )

⇤ 
(t� t0) sup

s2[t��,t]
EkzskpC.

Therefore S maps B into itself.
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Now, we have to prove that S is a contraction mapping.

Ek(Sz)(t)� (Sw)(t)kp  3p�1E

max
ı,q

⇢ qY

ı=|

kb|(�|)k
��p

kr(z)� r(w)kI[�q ,�q+1)(t)

�p

+ 3p�1E

max
ı,q

⇢ qY

ı=|

kb|(�|)k
��p

kh(t, zt)� h(t, wt)kI[�q ,�q+1)(t)

�p

+ 3p�1E

max
ı,q

⇢
1,

qY

ı=|

kb|(�|)k
��p Z t

t0

kf(s, zs)� f(s, ws)kdsI[�q ,�q+1)(t)

�p

+ 3p�1E

max
ı,q

⇢
1,

qY

ı=|

kb|(�|)k
��p Z t

t0

Z s

0

kk(s, &, z&)� k(s, &, z&)kd&dsI[�q ,�q+1)(t)

�p

+ 3p�1E

max
ı,q

⇢
1,

qY

ı=|

kb|(�|)k
��p Z t

t0

kg(s, zs)� g(s, ws)kdW (s)dsI[�q ,�q+1)(t)

�p

+ 3p�1E

max
ı,q

⇢
1,

qY

ı=|

kb|(�|)k
��p Z t

t0

Z

U

kP (s, zs, u)� P (s, zs, u)kK̃(ds, du)I[�q ,�q+1)(t)

�p

 3p�1
CEkr(z)� r(w)kp + 3p�1

CEkh(t, zt)� h(t, wt)kp

+ 3p�1 max{1, C}(t� t0)
p
Lf ⇥

Z t

t0

Ekf(s, zs)� f(s, ws)kpds

+ 3p�1 max{1, C}(t� t0)
p
Lk

Z t

t0

Z s

0

Ekk(s, &, z&)� k(s, &, w&)kpd&ds

+ 3p�1 max{1, C}(t� t0)
p/2

LpLg

Z t

t0

Ekg(s, zs)� g(s, ws)kpdW (s)

+ 3p�1 max{1, C}(t� t0)
p
cpLP

Z t

t0

EkP (s, zs, u)� P (s, zs, u)kpds

 3p�1
CLrEkz � wkpC + 3p�1

CLhEkz � wkpC

+ 3p�1 max{1, C}(t� t0)
p
LfEkzs � wskpCds

+ 3p�1 max{1, C}(t� t0)
p
LkEkzs � wskpCds

+ 3p�1 max{1, C}(t� t0)
p/2

LpLgEkzs � wskpCds

+ 3p�1 max{1, C}(t� t0)
p
cp(LP + L

p/2
P )Ekzs � wskpCds


�
3p�1

C(Lr + Lh) + 3p�1 max{1, C}[
�
t� t0)

p
Lf + (t� t0)

p
Lk

+ (t� t0)
p/2

LpLg + (t� t0)
p
cp(LP + L

p/2
P )

⇤ 
sup

✓2[��,0]
Ekz(t+ ✓)� w(t+ ✓)kpC


�
3p�1

C(Lr + Lh) + 3p�1 max{1, C}[
�
t� t0)

p
Lf + (t� t0)

p
Lk

+ (t� t0)
p/2

LpLg + (t� t0)
p
cp(LP + L

p/2
P )

⇤ 
sup

s2[t��,t]
Ekz(s)� w(s)kpC.

Taking the supremum over t, we get

k(Sz)(t)� (Sw)(t)kpB  A(T )Ekz � wk
p
B,

with

A(T ) = 3p�1
C(Lr +Lh) + 3p�1 max{1, C}[

�
t� t0)

p(Lf +Lk + cp(LP +L
p/2
P )) + (t� t0)

p/2
LpLg

⇤
.
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By taking a suitable 0 < T1 < T sufficient small such that A(T ) < 1. Hence S is a contraction on

BT1 . Sz = z is a unique solution of equation (1.1)-(1.3) by the Banach fixed point theorem.

4 Stability

The stability through continuous dependence of solutions on the initial condition is investigated.

Definition 4.1 ([4]). A mild solution z(t) of the system (1.1) and (1.2) with initial condition �

satisfying (2.1) is said to be stable in the mean square if for all ✏ > 0, there exist, � > 0 such that,

Ekz � wk
p
t  ✏, whenever,

Ek�1 � �2k
p
< �, for all t 2 [t0, T ],

where w(t) is another mild solution of the system (1.1) and (1.2) with initial value � defined in

(1.3).

Theorem 4.2. Let z(t) and w(t) be mild solutions of the system (1.1)-(1.3) with initial values �1

and �2 respectively. If the hypotheses of theorem 3.1 are fulfilled, the mean solution of the system

(1.1)- (1.3) is stable in the mean square.

Proof. Under assumptions, z(t) and w(t) be two mild solutions of the system (1.1)-(1.3) with initial
values �1 and �2 respectively.

z(t)� w(t) =
1X

q=0

 qY

ı=1

bı(�ı)[�1 � �2] + [r(z)� r(w)] + [h(0,�1)� h(0,�2)] +
qY

ı=1

bı(�ı)[h(t, zt)� h(t, wt)]

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

[f(s, zs)� f(s, ws)] ds+

Z t

�q

[f(s, zs)� f(s, ws)] ds

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0

[k(s, &, z&)� k(s, &, w&)] d& ds+

Z t

�q

Z s

0

[k(s, &, z&)� k(s, &, w&)] d&

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

[g(s, zs)� g(s, ws)] dW (s) +

Z t

�q

[g(s, zs)� g(s, ws)] dW (s)

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U

[P (s, zs, u)� P (s, ws, u)]K̃(ds, du)

+

Z t

�q

Z

U

[P (s, zs, u)� P (s, ws, u)]K̃(ds, du)

��
I[�q ,�q+1)(t).
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Then,

Ekz(t)� w(t)kp  4p�1
C(1 + Lh)Ek�1 � �2k

p + 4p�1
CLrEkz � wk

p + 4p�1
C

p
LhEkz(t)� w(t)kp

+ 4p�1 max{1, C}(t� t0)
p�1

Lf

Z t

t0

Ekz(s)� w(s)kpds

+ 4p�1 max{1, C}(t� t0)
p�1

Lk

Z t

t0

Ekz(s)� w(s)kpds

+ 4p�1 max{1, C}(t� t0)
p/2�1

LgLp

Z t

t0

Ekz(s)� w(s)kpds

+ 4p�1 max{1, C}(t� t0)
p/2

LP cp

Z t

t0

Ekz(s)� w(s)kpds.

Furthermore,

sup
s2[t�⌧,t]

Ekz(t)� w(t)kp  4p�1
C(1 + Lh)Ek�1 � �2k

p + 4p�1
C(Lr + Lh) sup

t2[t�⌧,t]
Ekz(t)� w(t)kp

+ 4p�1 max{1, C}(t� t0)
p�1

Lf

Z t

t0

sup
s2[t�⌧,t]

Ekz(s)� w(s)kpds

+ 4p�1 max{1, C}(t� t0)
p�1

Lk

Z t

t0

sup
s2[t�⌧,t]

Ekz(s)� w(s)kpds

+ 4p�1 max{1, C}(t� t0)
p/2�1

LgLp

Z t

t0

sup
s2[t�⌧,t]

Ekz(s)� w(s)kpds

+ 4p�1 max{1, C}(t� t0)
p�1

LP cp

Z t

t0

sup
s2[t�⌧,t]

Ekz(s)� w(s)kpds.

Thus,

sup
s2[t�⌧,t]

Ekz(t)� w(t)kp  �Ek�1 � �2k
p
,

where,

� =
4p�1

C(1 + Lh)

1�
⇥
4p�1C(Lr + Lh) + 4p�1 max{1, C}(t� t0)p[(Lf + Lk) + (t� t0)�p/2LgLp + cp(LP + L

p/2
P )]

⇤ .

Given ✏ > 0, choose � = ✏
� such that Ek�1 � �2k

p
< �. Then,

kz � wk
p
B  ✏.

This completes the proof.
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5 HU stability

In this section, we investigate the HU stability of equations (1.1)-(1.3) under the assumptions (A1)-

(A5). We have the following HU stability theorem.

Theorem 5.1. Under the assumptions (A1)-(A5). Then equations (1.1)-(1.3) has the HU stability.

Proof.

z(t) =
1X

q=0

 qY

ı=1

bı(�ı)�(0)� r(z) + h(0,�)�
qY

ı=1

bı(⌧ı)h(t, zt)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

f(s, zs) ds+

Z t

�q

f(s, zs) ds

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0
k(s, &, z&) d& ds+

Z ⇣

�q

Z s

0
k(s, &, z&) d& ds

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

g(s, zs) dW (s) +

Z t

�q

g(s, zs) dW (s)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U
P (s, zs, u)K̃(ds, du) +

Z t

�q

Z

U
P (s, zs, u)K̃(ds, du)

�
I[�q,�q+1)(⇣).

It follows from the condition that

E
����w(s)�

1X

q=0

 qY

ı=1

bı(�ı)�(0)� r(z) + h(0,�)�
qY

ı=1

bı(⌧ı)h(t, zt)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

f(s, zs) ds+

Z t

�q

f(s, zs) ds

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0
k(s, &, z&) d& ds+

Z t

�q

Z s

0
k(s, &, z&) d& ds

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

g(s, zs) dW (s) +

Z t

�q

g(s, zs) dW (s)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U
P (s, zs, u)K̃(ds, du) +

Z t

�q

Z

U
P (s, zs, u)K̃(ds, du)

�
I[�q,�q+1)(t)

����
p

 ✏.

When t 2 [t0 � �, t0], we get Ekw(t)� z(t)kp = 0. And when t 2 [0, T ], we get

Ekw(t)� z(t)kp  2p�1E
����w(s)�

1X

q=0

 qY

ı=1

bı(�ı)�(0)� r(z) + h(0,�)�
qY

ı=1

bı(�ı)h(t, zt)

+
qX

ı=1

qY

|=ı

b|(⌧|)

Z �ı

�ı�1

f(s, zs) ds+

Z t

�q

f(s, zs) ds+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0

k(s, &, z&) d& ds
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Ekw(t)� z(t)kp +

Z t

�q

Z s

0

k(s, &, z&) d&ds+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

g(s, zs) dW (s) +

Z t

�q

g(s, zs) dW (s)

+
qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U

P (s, zs, u)K̃(ds, du) +

Z t

�q

Z

U

P (s, zs, u)K̃(ds, du)

�
I[�q ,�q+1)(t)

+ 2p�1E
����

1X

q=0

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

[f(s, zs)� f(s, ws)] ds+

Z t

�q

[f(s, zs)� f(s, ws)] ds

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0

[k(s, &, z&)� k(s, &, w&)] d& ds+

Z t

�q

Z s

0

[k(s, &, z&)� k(s, &, w&)] d&

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

[g(s, zs)� g(s, ws)] dW(s) +

Z t

�q

[g(s, zs)� g(s, ws)] dW(s)

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U

[P (s, zs, u)� P (s, ws, u)]K̃(ds, du)

+

Z t

�q

Z

U

[P (s, zs, u)� P (s, ws, u)]K̃(ds, du)

�
I[�q ,�q+1)(t)

����
p

 2p�1
✏+ 2p�1

N,

where

N = 4p�1E
����

1X

q=0

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

[f(s, zs)� f(s, ws)]ds+

Z t

�q

[f(s, zs)� f(s, ws)]ds

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z s

0
[k(s, &, z&)� k(s, &, w&)]d&ds+

Z t

�q

Z s

0
[k(s, &, z&)� k(s, &, w&)]d&

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

[g(s, zs)� g(s, ws)]dW (s) +

Z t

�q

[g(s, zs)� g(s, ws)]dW (s)

�

+

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U
[P (s, zs, u)� P (s, ws, u)]K̃(ds, du)

+

Z t

�q

Z

U
[P (s, zs, u)� P (s, ws, u)]K̃(ds, du)

��
I[�q,�q+1)(t)

����
p

 4p�1(A+ B + C +D).

Take

A = E
����

1X

q=0

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

⇥
f(s, zs)� f(s, ws)

⇤
ds+

Z t

�q

⇥
f(s, zs)� f(s, ws)

⇤
ds

�
I[�q,�q+1)(t)

����
p

 (Cp + 1)(T � t0)
p�1

Z t

t0

E
��f(s, zs)� f(s, ws)

��pds

 (Cp + 1)(T � t0)
p�1

Z t

t0

E
��f(s, zs)� f(s, ws)

��pds

 (Cp + 1)Lf (T � t0)
p�1

Z t

t0

��zs � ws

��p
C
ds.
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By (A2), we have

B = E
����

1X

q=0

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

⇥
k(s, &, z&)� k(s, &, w&)

⇤
d& ds

+

Z t

�q

Z s

0

⇥
k(s, &, z&)� k(s, &, w&)

⇤
d& ds

�
I[�q,�q+1)(t)

����
p

 (Cp + 1)(T � t0)
p�1

Z t

t0

E
��k(s, &, z&)� k(s, &, w&)

⇤
d&ds

 (Cp + 1)Lk(T � t0)
p�1

Z t

t0

��zs � ws

��p
C
ds.

Using Lemma 2.4, we have

C = E
����

1X

q=0

 qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

⇥
g(s, zs)� g(s, ws)

⇤
dW (s)

+

Z t

�q

⇥
g(s, zs)� g(s, ws)

⇤
dW (s)

�
I[�q,�q+1)(t)

����
p

 (Cp + 1)(p(p� 1)/2)(T � t0)
p�2/2

Z t

t0

E
��g(s, zs)� g(s, ws)

��pds

 (Cp + 1)Lg(p(p� 1)/2)(T � t0)
p�2/2

Z t

t0

��zs � ws

��p
C
ds.

By (A4), we have

D = E
����

qX

ı=1

qY

|=ı

b|(�|)

Z �ı

�ı�1

Z

U
[P (s, zs, u)� P (s, ws, u)]K̃(ds, du)

+

Z t

�q

Z

U
[P (s, zs, u)� P (s, ws, u)]K̃(ds, du)

�
I[�q,�q+1)(t)

����
p

 (Cp + 1)cp(T � t0)
p�1

 Z t

t0

Z

U
EkP (s, zs, u)� P (s, ws, u)k

p
⌫(dz) ds

+

✓Z t

t0

Z

U
EkP (s, zs, u)� P (s, ws, u)k

p/2
⌫(dz) ds

◆1/2�

 (Cp + 1)cp(LP + L
p/2
P )(T � t0)

p�1

Z t

t0

��zs � ws

��p
C
ds.

Therefore,

F = H

Z t

t0

��z(s)� w(s)
��p
C
ds, with

H = 4p�1(Cp+1)(T �⇣0)
p/2�1⇥

Lf (T �t0)
p/2+Lk(T �t0)

p/2+Lg(p(p�1)/2)p/2+cp(LP+L
p/2
P )(T �t0)

p/2⇤
.

Then, we get that

Ekz(t)� w(t)kp  2p�1
✏+ 2p�1

H

Z t

t0

kw(s)� z(s)kpCds.
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Considering,

Z t

t0

��w(s)� z(s)
��p
C
ds =

Z t

t0

sup
✓2[�⌧,0]

Ekw(s+ ✓)� z(s+ ✓)kpds

= sup
✓2[�⌧,0]

Z t

⇣0

Ekw(s+ ✓)� z(s+ ✓)kpds

= sup
✓2[�⌧,0]

Z t+✓

t0+✓
Ekw(I)� z(I)kpdI.

Notice that, when t 2 [t0 � ⌧, t0],

Ekw(I)� z(I)kpdI = 0.

Therefore,

Z t

t0

��ws � zs

��p
C
ds = sup

✓2[�⌧,0]

Z t+✓

t0

Ekw(I)� z(I)kpdI =

Z t

t0

Ekw(I)� z(I)kpdI.

So, we get

Ekw(t)� z(t)kp  2p�1
✏+ 2p�1

H

Z t

t0

Ekw(I)� z(I)kpdI.

By Lemma 2.3, we have

Ekw(t)� z(t)kp  2p�1
✏+ 2p�1 exp(2p�1

H).

Therefore, there exists N = 2p�1 exp(2p�1
K) such that

Ekw(t)� z(t)kp  N✏.

Thus the proof gets completed.

6 An application

The considered NRINSIDEs with Poisson jumps is of the form

d


(z(⇣) +

Z 0

�↵
u1(✓)z(⇣ + ✓)

�
=

 Z 0

�↵
u2(✓)z(⇣ + ✓) +

Z 0

�↵

Z ⇣

0
u3(✓)z(⇣ + ✓)

�
d⇣

+

 Z 0

�↵
u4(✓)z(⇣ + ✓)

�
dW (⇣)

+

 Z 0

�↵

Z

U
u5(✓)z(⇣ + ✓)

�
K̃(ds, du), t � t0, t 6= ⇣q
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z(�q) = bq(�q)z(�
�
q ), q = 1, 2, . . . ,

z(0) +
mX

ı

cı(rı,z) = z0, 0  r1  r2  · · ·  rp  T .

Let ↵ > 0, z is R-valued stochastic process, � 2 C([��, 0],£2(⌦,R)). �q is defined from ⌦ to

Dq
def
= (0, dq) for all q = 1, 2, . . . Suppose that ⌧q follow Erlang distribution and let �ı and �| are

independent of every other as ı 6= | for ı, | = 1, 2, . . . , ⇣0 = �0 < �1 < �2 < · · · and �q = �q�1 + ⌧q

for q = 1, 2, . . . Let W (t) 2 R be a one-dimensional Brownian motion, where b is a function of q.

u1, u2, u3 : [��, 0] ! R are continuous functions. Define h : [⇣0, T ]⇥ C ! Rd
, f : [⇣0, T ]⇥ C ! Rd

,

g : [⇣0, T ] ⇥ C ! Rd⇥m
, r : C ! C, k : [⇣0, T ] ⇥ [⇣0, T ] ⇥ C ! Rd

, P : [⇣0, T ] ⇥ C ⇥ U ! Rd
, and

bq : Dq ! Rd⇥d by

h(⇣, z(⇣))(.) =

Z 0

�↵
u1(✓)z(⇣ + ✓) d✓(.), f(⇣, z(⇣))(.) =

Z 0

�↵
u2(✓)z(⇣ + ✓) d✓(.),

k(⇣, z(⇣))(.) =

Z 0

�↵
u3(✓)z(⇣ + ✓) d✓(.), g(⇣, z(⇣))(.) =

Z 0

�↵
u4(✓)z(⇣ + ✓) d✓(.),

P (⇣, z(⇣))(.) =

Z 0

�↵
u3(✓)z(⇣ + ✓) d✓(.).

For z(t+ ✓) 2 C, we suppose that the following conditions hold:

(1) max
ı,q

(
qY

|=ı

Ekbı(�ı)k2
)

< 1,

(2)
Z 0

�↵
u1(✓)

2
d✓,

Z 0

�↵
u2(✓)

2
d✓,

Z 0

�↵
u3(✓)

2
d✓ <

Z 0

�↵
u4(✓)

2
d✓ <

Z 0

�↵
u5(✓)

2
d✓ < 1.

Suppose the conditions (1) and (2) are fulfilled. Then the assumptions (A1)-(A5) holds. The

system (1.1)-(1.3) has a unique mild solution z and is HU stable.

Lemma 6.1. If P = 0 in (1.1)-(1.3), then the system behaves as NRINSIDEs of the form:

d[z(t) + h(t, zt)] =
⇥
f(t, zt) +

Z t

0
k(t, s, zs) ds

⇤
dt+ g(t, zt) dW (t), t � t0, t 6= tq,

z(�q) = bq(�q)z(�
�
q ), q = 1, 2, . . . ,

zt0 + r(z) = z0 = � = {�(✓) : ��  ✓  0}

By applying Theorem 3.1 under the assumptions (A1)-(A5), then the above guarantees the exis-

tence of the mild solution.
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7 Conclusion

This article is devoted to discuss the existence and HU stability. First, we used the Banach fixed

point theorem to demonstrate the existence of mild solutions to the equations (1.1)-(1.3). Then,

we examined the stability via the continuous dependence of solutions on the initial value. Next,

we investigated the HU stability results under the Lipschitz condition on a bounded and closed

interval. In addition, this result could be extended to investigate the controllability of random im-

pulsive neutral stochastic differential equations finite/infinite state-dependent delay in the future.

The fractional order of NRINSDEs with Poisson jumps would be quite interesting. This will be

the focus of future research.
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ABSTRACT

In this paper, we investigate existence of mild solutions to a

non-instantaneous integrodifferential equation via resolvent

operators in the sense of Grimmer in Fréchet spaces. Utiliz-

ing the technique of measures of noncompactness in conjunc-

tion with the Darbo’s fixed point theorem, we present suffi-

cient criteria ensuring the controllability of the given prob-

lem. An illustrative example is also discussed.

RESUMEN

En este artículo, investigamos la existencia de soluciones

mild de una ecuación integrodiferencial no-instantánea vía

operadores resolventes en el sentido de Grimmer en espacios

de Fréchet. Usando la técnica de medidas de nocompaci-

dad junto con el teorema de punto fijo de Darbo, presenta-

mos criterios suficientes para asegurar la controlabilidad del

problema dado. Se discute, además, un ejemplo ilustrativo.

Keywords and Phrases: Integrodifferential equation, mild solution, measures of noncompactness, resolvent op-

erator controllability, fixed point theorem, Fréchet space.

2020 AMS Mathematics Subject Classification: 93B05, 34D23, 47H10, 46A04, 45J05, 47H08, 35D30, 47B40.

Accepted: 31 May, 2023

Received: 20 November, 2022

©2023 A. Bensalem et al. This open access article is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2502.231
https://orcid.org/0009-0008-9169-148X
https://orcid.org/0000-0003-2795-6224
https://orcid.org/0000-0001-5350-2977
https://orcid.org/0000-0003-3063-9449
mailto:bensalem.abdelhamid@yahoo.com
mailto:benchohra@yahoo.com
mailto:salim.abdelkrim@yahoo.com
mailto:bashirahmad_qau@yahoo.com


232 A. Bensalem, A. Salim, B. Ahmad & M. Benchohra CUBO
25, 2 (2023)

1 Introduction

In recent years, the theory of fractional differential equations has been extensively developed

by many authors. For a detailed account of the subject, we refer the reader to [1, 3, 4, 33].

Hernández and O’Regan initiated the theory of abstract impulsive differential equations with non-

instantaneous impulses in [21]. Later, the authors studied instantaneous and non-instantaneous

impulsive integrodifferential equations in Banach spaces in [2].

The controllability of linear and nonlinear differential systems in finite dimensional spaces received

considerable attention, for example, see [8, 9, 10], while some interesting results on the controllabil-

ity of such systems in infinite-dimensional Banach spaces with unbounded operators can be found

in the monographs [10, 12, 23, 31]. For more details on the subject, see the papers [5, 13, 19, 20, 32]

and the references cited therein. Lasiecka and Triggiani [22] discussed the exact controllability of

semilinear abstract systems with application to waves and plates boundary control problems. For

some results on evolution equations, for instance, see [1, 11, 28, 29].

Recently, in [15], the authors used Schauder’s fixed point theorem to study the existence of mild

solutions by considering two cases of the resolvent operators for the following integrodifferential

problem:

8
><

>:

⇠0(t) =  1⇠(t) +

Z t

0
 2(t� ✓)⇠(✓) d✓ + } (t, ⇠(t), (H⇠)(t)) ; if t 2 [0, a],

⇠(0) = g(⇠) + ⇠0.

Motivated by the works [2, 15], we will investigate the existence and controllability of mild solutions

to the following impulsive integrodifferential equations via resolvent operators:

8
>>><

>>>:

⇠0(t) =  1⇠(t) + } (t, ⇠(t), (H⇠)(t)) +

Z t

0
 2(t� ✓)⇠(✓) d✓; if t 2 ⇥j ; j = 0, 1, . . . ,

⇠(t) = $j

�
t, ⇠

�
t�j
��

; if t 2 ⇥̃j , j = 1, 2, . . . ,

⇠(0) = ⇠0,

(1.1)

where ⇥0 = [0, t1],⇥j := (✓j , tj+1] and ⇥̃j = (tj , ✓j ] with 0 = ✓0 < t1  ✓1  t2 < · · · < ✓`�1 
t`  ✓`  t`+1  · · ·  +1,  1 : D( 1) ⇢ ⌅ ! ⌅ is the infinitesimal generator of a strongly

continuous semigroup {T (t)}t�0,  2(t) is a closed linear operator with domain D( 1) ⇢ D( 2(t)),

the operator H is defined by

(H⇠)(t) =

Z a

0
~(t, ✓, ⇠(✓)) d✓,

for a > 0, D~ = {(t, ✓) 2 R2 ; 0  ✓  t  a} and ~ : D~ ⇥ ⌅ ! ⌅. The nonlinear term
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} : ⇥j ⇥ ⌅ ⇥ ⌅ ! ⌅; j = 0, . . . , $j : ⇥̃j ⇥ ⌅ ! ⌅; j = 1, 2, . . . , are given functions, where

⇥ = [0,+1), and (⌅, k · k) is a Banach space, ⇠0 2 ⌅.

We emphasize that the novelty of our work includes the investigation of problem (1.1) under a

diverse set of conditions. Specifically, we incorporated non-instantaneous impulses in the integrod-

ifferential system on an unbounded domain to broaden its scope, in contrast to previous research

efforts. The controllability of the given integrodifferential problem with non-instantaneous impulses

is also studied. Our results generalize the ones presented in the articles [2, 15].

The rest of this paper is organized as follows. In Section 2, we recall some preliminary results and

definitions related to our study. In Section 3, we will present the existence result by using the

technique of measures of noncompactness in conjunction with the Darbo’s fixed point theorem.

We will also study the controllability for the given problem. An example is given to illustrate the

applicability of the abstract results.

2 Preliminaries

Let us begin this section with some preliminary concepts related to the study of the problem at

hand. Let C(⇥,⌅) be the space of continuous functions from ⇥ := [0;+1) into ⌅ and B(⌅)

denotes the space of all bounded linear operators from ⌅ into ⌅ equipped with the norm

kTkB(⌅) = sup{kT (⇠)k : k⇠k = 1}.

A measurable function ⇠ : [0; +1) ! ⌅ is Bochner integrable if and only if k⇠k is Lebesgue

integrable. For the properties of the Bochner integral, for instance, see [30].

Let L1([0;+1),⌅) denote the Banach space of measurable functions ⇠ : [0; +1) ! ⌅ which are

Bochner integrable, with the norm

k⇠kL1 =

Z +1

0
k⇠(t)k dt.

We consider the following Cauchy problem

8
><

>:

⇠0(t) =  1⇠(t) +

Z t

0
 2(t� ✓)⇠(✓) d✓, for t � 0,

⇠(0) = ⇠0 2 ⌅.
(2.1)

The existence and properties of the resolvent operator have been discussed in [18]. In what follows,

we suppose the following assumptions:

(R1)  1 is the infinitesimal generator of a uniformly continuous semigroup {T (t)}t>0;
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(R2) For all t � 0, 2(t) is a closed linear operator from D( 1) to ⌅ and 2(t) 2 2(D( 1),⌅). For

any ⇠ 2 D( 1), the map t !  2(t)⇠ is bounded, differentiable and the derivative t !  2
0(t)⇠

is bounded and uniformly continuous on R+.

Theorem 2.1 ([18]). If the assumptions (R1) and (R2) are satisfied, then the problem (2.1) has

a unique resolvent operator.

Let {ti}1i=0 be the sequence of real numbers such that

0 = t0 < t1 < t2 < · · · , and lim
i!+1

ti = +1.

Let PC(R+,⌅) be the Banach space defined by

PC(R+,⌅) =
n
⇠ : R+ ! ⌅ : ⇠|⇥̃j

= $j ; j = 1, . . . , `, ⇠|⇥j
; j = 0, . . . , `, are continuous

⇠
�
✓�j

�
, ⇠

�
✓+j
�
, ⇠

�
t�j
�

and ⇠
�
t+j
�

exist with ⇠
�
t�j
�
= ⇠ (tj)

o
,

endowed with the family of seminorms:

kxkn = sup{kx(t)k : t 2 [0, tn]}, n = 1, 2, . . .

Define by F = C (⇥,⌅) the Fréchet space of continuous functions = from R+ into ⌅, with the norm

k=kn = sup
t2⇥̃n

k=(t)k, ⇥̃n := [0, n], n 2 N,

and the distance

d(⇠,=) =
1X

n=1

2�nk⇠ �=kn
1 + k⇠ �=kn

; ⇠,= 2 C (R+,⌅) .

Let � represent the Kuratowski measure of noncompactness in ⌅. The properties of � can be found

in [6].

Definition 2.2 ([16]). Let jF be the family of all nonempty and bounded subsets of a Fréchet

space F. A family of functions {�n}n2N, where �n : jF ! [0,1) is a family of measures of

noncompactness in the real Fréchet space F, if for all ⌦,⌦1 and ⌦2 2 jF, the following conditions

are satisfied:

(C1) {�n}n2N is full, that is �n(⌦) = 0 for n 2 N if and only if ⌦ is precompact;

(C2) �n (⌦1) < �n (⌦2), for ⌦1 ⇢ ⌦2 and n 2 N;

(C3) �n(Conv⌦) = �n(⌦), for n 2 N;
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(C4) If {⌦i} is a sequence of closed sets from jF, such that ⌦i+1 ⇢ ⌦i, i = 1, . . ., and lim
i!1

�n (⌦i) =

0, for each n 2 N, then the intersection set ⌦1 =
T1

i=1 ⌦i is nonempty.

Example 2.3. For ⌦ 2 jF, x 2 ⌦, n 2 N and ✏ > 0, let us denote by �n(x, ✏) for n 2 N, the

modulus of continuity of the function x on the interval ⇥̃n defined by

�n(x, ✏) = sup{|x(t)� x(✓)| ; t, ✓ 2 ⇥̃n |t� ✓| < ✏}.

Further, let us set

�n(⌦, ✏) = sup{�n(x, ✏) ; x 2 ⌦}, �n
0 (⌦) = lim

✏!0+
�n(⌦, ✏)

and

↵n(⌦) = �n
0 (⌦) + sup

t2⇥̃n

�
�
⌦(t)

�
.

If the family of mappings {↵n}n2N, where ↵n : jF ! ⇥, satisfies the conditions (C1)–(C4), then

the family of maps {↵n}n2N defined above is a family of measures of noncompactness in the Fréchet

space F.

Definition 2.4 ([27]). A nonempty subset ⌦ ⇢ F is bounded if, for n 2 N, there exists jn > 0,

such that

k⇠kn  jn, for each ⇠ 2 ⌦.

Lemma 2.5 ([16]). If M is a bounded subset of a Banach space ⌅, then for each ✏ > 0, there is a

sequence {⇠j}1j=1 ⇢ M such that

�(M)  2�
⇣
{⇠j}1j=1

⌘
+ ✏.

Lemma 2.6 ([24]). If {⇠j}1j=0 ⇢ L1 is uniformly integrable, then the function t ! ↵({⇠j(t)}1j=0)

is measurable and

�

✓⇢Z t

0
⇠j(✓)d✓

�1

j=0

◆
 2

Z t

0
�

✓
{⇠j(✓)}1j=0

◆
d✓, for t 2 ⇥̃n, n 2 N.

For more details about measures of noncompactness, see [7, 16, 17].
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3 Main results

In this subsection, we discuss the existence of mild solutions for the problem (1.1).

3.1 Existence of mild solutions

Definition 3.1. A function ⇠ 2 PC (R+,⌅) is called a mild solution to the problem (1.1) if it

satisfies

⇠(t) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

R(t)⇠0 +

Z t

0
R(t� ✓)}(✓, ⇠(✓), (H⇠)(✓)) d✓; if t 2 ⇥0,

R(t� ✓j)
⇥
$j(✓, ⇠(✓

�
j ))

⇤
+

Z t

✓j

R(t� ✓)}(✓, ⇠(✓), (H⇠)(✓)) d✓; if t 2 ⇥j ,

$j(t, ⇠(t
�
j )); if t 2 ⇥̃j ,

where j = 1, 2, . . .

In the sequel, we need the following hypotheses.

(A1) (i) } : ⇥⇥⌅⇥⌅! ⌅ is a Carathéodory function and there exist a function p 2 L1(⇥,R+)

and a continuous nondecreasing function  : ⇥! (0,+1), such that

||}(t, ⇠, ⇠̄)||  p(t) (k⇠k+ k⇠̄k), for ⇠, ⇠̄ 2 ⌅.

(ii) There exists a function l} 2 L1(⇥,R+) such that for any bounded set B ⇢ ⌅ and t 2 ⇥,

we have

�(}(t, B,H(B)))  l}(t)�(B).

(A2) The function ~ : D~ ⇥ ⌅⇥ ⌅! ⌅ is continuous and there exists c1 > 0 such that,

k~(t, ✓, ⇠)� ~(t, ✓, ⇠̄)k  c1k⇠ � ⇠̄k, for each (t, ✓) 2 D~ and ⇠, ⇠̄ 2 ⌅,

with

~⇤ = sup{k~(t, ✓, 0)k , (t, ✓) 2 D~} < 1.

(A3) $j : ⇥̃j ⇥ ⌅ ! ⌅ are continuous and there exist positive constants L$j , j 2 N and ⌧ > 1
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such that

k$j(., ⇠)�$j(.,=)k 
L$j

⌧
k⇠ �=k, for all ⇠,= 2 ⌅, j = 1, 2, . . .

(A4) Assume that (R1)� (R2) hold, and there exist jR � 1 and b � 0, such that

kR(t)kB(⌅)  jRe�bt.

Using the methods employed in [25, 26], we can verify that the following example contains a family

of measures of noncompactness in PC (R+,⌅):

�n(⇧) = max
i=0,...,`

�0 (�
p
i ,⇧) + sup

t2⇥̃n

n
e�⌧e⇣(t)�(⇧(t))

o
; p = 0, 1, 2 and ` = 0, 1, . . . ,

with �pi a partition of R+. In particular,

�pi =

8
>><

>>:

⇥0; if p = 0, ` = 0,

⇥`; if p = 1, ` = 1, 2, . . . ,

⇥̃`; if p = 2, ` = 1, 2, . . . ,

and e⇣(t) =
Z t

0
⇣(✓) d✓, ⇣(t) = 4jRl(t), ⌧ > 1, where ⇧(t) = {⇡(t) 2 F ; ⇡ 2 ⇧}, t 2 ⇥̃n.

Moreover, if the set ⇧ is equicontinuous, then �0 (�pi ,⇧) = 0.

Theorem 3.2. If the conditions (A1)� (A4) are satisfied and

jRL$j < ⌧,

then the system (1.1) has at least one mild solution.

Proof. Transform the problem (1.1) into a fixed point problem by introducing an operator @ :

PC (R+,⌅) ! PC (R+,⌅) as

@⇠(t) =

8
>>>>><

>>>>>:

R(t)⇠0 +

Z t

0
R(t� ✓)}(✓, ⇠(✓), (H⇠)(✓)) d✓; if t 2 ⇥0,

R(t� ✓j)
⇥
$j(✓, ⇠(✓

�
j ))

⇤
+

Z t

✓j

R(t� ✓)}(✓, ⇠(✓), (H⇠)(✓)) d✓; if t 2 ⇥j ,

$j(t, ⇠(t
�
j )); if t 2 ⇥̃j ,

where j = 1, 2, . . . Clearly, the fixed points of the operator @ are mild solutions to the problem

(1.1). Next, we verify that the operator @ satisfies the hypothesis of Darbo’s fixed point theorem

[16].
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Let �n > 0 and D�n = {⇠ 2 PC (R+,⌅); k⇠kn  �n}, where

max

(
jR(k⇠0k+  (K⇤

�n)),
jR($0 +  (K⇤

�n
))

1� jRL$j

⌧

)
 �n,

and

K⇤
�n =

�
(c1 + 1)�n + a~⇤

�
kpkL1 .

Notice that the set D�n is bounded, closed and convex.

Step 1: @(D�n) ⇢ D�n .

• Case 1: For any n 2 N, ⇠ 2 D�n , t 2 ⇥0 \ ⇥̃n, it follows by (A1) that

k@⇠(t)k  jRk⇠0k+ jR
Z t

0
 (k⇠(✓)k+ kH⇠(✓)k)p(✓) d✓

 jRk⇠0k+ jR ((c1 + 1)�n + a~⇤)kpkL1 .

Then we have

k@⇠kn  jR

k⇠0k+  ((c1 + 1)�n + a~⇤)kpkL1

�
.

• Case 2: For t 2 ⇥j \ ⇥̃n and for each ⇠ 2 D�n , by (A1), (A2) and (A3), we have

k$j(·, ⇠(·))k 
L$j

⌧
k⇠(·)k+$0,

and

k@⇠kn  jR

L$j

⌧
�n +$0 +  ((c1 + 1)�n + a~⇤)kpkL1

�
.

• Case 3: For t 2 ⇥̃j \ ⇥̃n, and for each ⇠ 2 D�n , by (A3), we have

k@⇠kn 
L$j

⌧
�n +$0.

Thus,

k@⇠kn  �n.

Step 2: @ is continuous.

Let ⇠` be a sequence such that ⇠` ! ⇠⇤ in ⌅. We complete the proof in several steps.
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• Case 1: For t 2 ⇥0 \ ⇥̃n, we have

k(@⇠`)(t)� (@⇠⇤)(t)k  jR
Z t

✓j

k}(✓, ⇠`(✓), H⇠`(✓))� }(✓, ⇠⇤(✓), H⇠⇤(✓))k d✓.

It follows by continuity of ~ and } that

~(t, ✓, ⇠`(✓)) ! ~(t, ✓, ⇠⇤(✓)) as `! +1,

and

k~(t, ✓, ⇠`(✓))� ~(t, ✓, ⇠⇤(✓))k  c1k⇠` � ⇠⇤k.

By the Lebesgue dominated convergence theorem, we obtain

Z t

0
~(t, ✓, ⇠`(✓)) d✓ !

Z t

0
~(t, ✓, ⇠⇤(✓)) d✓, as `! +1.

Then, by (A1), we get

}(✓, ⇠`(✓), H⇠`(✓)) ! }(✓, ⇠⇤(✓), H⇠⇤(✓)), as `! +1,

which implies that

k(@⇠`)� (@⇠⇤)kn ! 0, as `! +1.

• Case 2: Let t 2 ⇥j \ ⇥̃n. Then we have

k(@⇠`)(t)� (@⇠⇤)(t)k  jRk$j(✓j , ⇠`(✓
�
j ))�$j((✓j , ⇠⇤(✓

�
j )))k

+jR
Z t

0
k}(✓, ⇠`(✓), H⇠`(✓))� }(✓, ⇠⇤(✓), H⇠⇤(✓))k d✓.

As argued in case 1, by the continuity of ~,} and $j , we get

k(@⇠`)� (@⇠⇤)kn ! 0, as `! +1.

• Case 3: For t 2 ⇥̃j \ ⇥̃n, we obtain

k(@⇠`)(t)� (@⇠⇤)(t)k  k$j(tj , ⇠`(t
�
j ))�$j((tj , ⇠⇤(t

�
j )))k,

which, in view of the continuity of $j , implies that

k(@⇠`)� (@⇠⇤)kn ! 0, as `! +1.

Thus, @ is continuous.
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Step 3 Since we have @(D�n) ⇢ D�n , therefore, @(D�n) is bounded.

Step 4 Let ⇧ be a bounded equicontinuous subset of D�n , then {@(⇧)} is equicontinuous, which

implies that �0 (�pi ,@(⇧)) = 0. Now, for any % > 0, there exists a sequence {⇠`}1j=0 ⇢ ⇧ and

we complete the proof of this part in certain steps.

• Case 1: Let t 2 ⇥0 \ ⇥̃n. Setting Ofv(✓) = }(✓, ⇠(✓), H⇠(✓)), we have

�

⇢Z t

0
R(t� ✓)Ofv(✓)d✓ ; ⇠ 2 ⇧

�
 2�

⇢Z t

0
R(t� ✓)Of⇠`(✓)d✓ ; ⇠ 2 ⇧

�
+ %

 4

Z t

0
jRl}(✓)�({⇧(✓)})d✓ + %


Z t

0
⇣(✓)�(⇧(✓))d✓ + %


Z t

0
e⌧

e⇣(✓)e�⌧e⇣(✓)⇣(✓)�(⇧(✓))d✓ + %


Z t

0
⇣(✓)e⌧

e⇣(✓) sup
✓2[0,t]

e�⌧e⇣(✓)�(⇧(✓))d✓ + %

 �n(⇧)

Z t

0

✓
e⌧

e⇣(✓)

⌧

◆0

d✓ + %

 e⌧
e⇣(t)

⌧
�n(⇧) + %,

which implies that

�(@(⇧)(t))  e⌧
e⇣(t)

⌧
�n(⇧) + %.

Since % is arbitrary, so

�(@(⇧)(t))  e⌧
e⇣(t)

⌧
�n(⇧),

and hence

�n(@(⇧))  1

⌧
�n(⇧).

• Case 2: For t 2 ⇥j \ ⇥̃n, we proceed as in the proof of Case 1 to obtain

�(@(⇧)(t))  jR �(
�
$j(✓, ⇠`(✓

�
j )); ⇠ 2 ⇧

 
) +

e⌧
e⇣(t)

⌧
�n(⇧) + %


e⌧

e⇣(t)(jRL$j + 1)

⌧
�n(⇧) + %.
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Therefore, we get

�n(@(⇧)) 
(jRL$j + 1)

⌧
�n(⇧).

• Case 3: Let t 2 ⇥̃j \ ⇥̃n. By (A3), the set
�
$j(t, ⇠

�
j )
 n

j=1
is equicontinuous, and that

�0 (�
p
i , G(⇧)) = 0, with {Gv(t)} =

�
$j(t, ⇠

�
j )
 
.

On the other hand, we have

k$j(t, ⇠(.))�$j(t, ⇠(.))k 
L$j

⌧
k⇠(.)� ⇠(.)k,

which yields

e�⌧e⇣(t)k$j(t, ⇠(t
�
j ))�$j(t, ⇠(t

�
j ))k 

L$j

⌧
e�⌧e⇣(t)k⇠(t�j )� ⇠(t�j )k.

Hence, we get

�n(@(⇧)) 
L$j

⌧
�n(⇧),

which shows that @ is contraction (in terms of a measure of noncompactness), since jRL$j +

1 < ⌧. Therefore, by Darbo’s fixed point theorem [16], we deduce that @ has at least one

fixed point which is a mild solution to the problem (1.1).

3.2 Controllability of the system

In this subsection, we discuss the controllability for the system:

8
>>>>>><

>>>>>>:

⇠0(t) =  1(t)⇠(t) + } (t, ⇠(t), (H⇠)(t))

+

Z t

0
 2(t� ✓)⇠(✓) d✓ + Cu(t); if t 2 ⇥j , j = 0, 1, . . . ,

⇠(t) = $j

�
t, ⇠

�
t�j
��

; if t 2 ⇥̃j , j = 1, 2, . . . ,

⇠(0) = ⇠0,

(3.1)

where u 2 L2(⇥,S) is the control function, S is the Banach space of admissible control functions

and C is a bounded linear operator from S into ⌅. Before proceeding further, we define the

solution for the problem (3.1).

Definition 3.3. The system (3.1) is said to be controllable on the interval ⇥, if for every initial

function ⇠0 = ⇠(0) 2 ⌅ and ⇠̂ 2 ⌅, there is some control u 2 L2([0;n];⌅) for some n > 0, such that

the mild solution ⇠(·) of the system (3.1) satisfies the terminal condition ⇠(n) = ⇠̂.

To obtain the controllability of mild solutions of (3.1), we assume the following conditions.
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(A5) There exists a positive constant ⇢n, such that

max

(
'⇢
1;'

⇢
2;

$0

1� L$j

⌧

)
 ⇢n,

where

'⇢
1 =

⇢
jR

k⇠0k+  (K⇤

⇢n
)kpkL1 + c5c6

✓
⇢n
jR

+ k⇠0k+  (K⇤
⇢n
)kpkL1

◆��
,

'⇢
2 =

⇢
jR

L$j

⌧
⇢n +$0 +  (K⇤

⇢n
)kpkL1 + c5c6

✓
⇢n
jR

+ k⇠0k+  (K⇤
⇢n
)kpkL1

◆��
,

and

K⇤
⇢n

=
�
(c1 + 1)⇢n + a~⇤

�
kpkL1 .

(A6) (i) For each n, the linear operator W : L2(⇥̃n,S) ! F, defined by

Wu =

Z n

0
R(n� ✓)Cu(✓) d✓,

has a pseudo inverse operator W�1, which takes values in L2(⇥̃n,S)� ker(W ).

(ii) There exist positive constants c5, c6, such that

kCk  c5 and kW�1k  c6.

(iii) There exist pw 2 L1(⇥,R+), kC � 0, and for any bounded sets V1 ⇢ ⌅, V2 ⇢ S,

�((W�1V1)(t))  pw(t)�(V1), �((CV2)(t))  kC�(V2(t)).

Theorem 3.4. Suppose that the hypotheses (A1)� (A5) hold. Then the problem (3.1) is control-

lable.

Proof. For n 2 N, we define a family of measures of non compactness in PC(⇥,F) as

e�n(⇧) = max
i=0,...,`

�0 (�
p
i ,⇧) + sup

t2⇥̃n

n
e�⌧ e{(t)�(⇧(t))

o
, p = 0, 1, 2 and ` = 0, 1, . . . ,

where e{(t) =
Z t

0
{(✓) d✓, {(t) = 4jR(l}(t) + kC(jRkl}k1)pw(t)), ⌧ > 1. Using (A5), we define

the control:
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u⇠(t) =

8
>>>>>>><

>>>>>>>:

W�1


⇠(n)�R(n)⇠0 �

Z n

0
R(n� ✓)}(✓, ⇠(✓), (H⇠)(✓)) d✓

�
; if t 2 ⇥0,

W�1


⇠(n)�R(n� ✓j)

⇥
$j(✓, ⇠(✓

�
j ))

⇤ Z

�
Z n

✓j

R(t� ✓)}(✓, ⇠(✓), (H⇠)(✓)) d✓

#
; if t 2 ⇥j , j = 1, 2, . . .

Using the above control, it will be shown that the operator defined by

⌥⇠(t) =

8
>>>>>>>>><

>>>>>>>>>:

R(t)⇠0 +

Z t

0
R(t� ✓)}(✓, ⇠(✓), (H⇠)(✓)) d✓ +

Z t

0
R(t� ✓)Cu⇠(✓) d✓; if t 2 ⇥0,

R(t� ✓j)
⇥
$j(✓, ⇠(✓

�
j ))

⇤
+

Z t

✓j

R(t� ✓)}(✓, ⇠(✓), (H⇠)(✓)) d✓

+

Z t

✓j

R(t� ✓)Cu⇠(✓) d✓; if t 2 ⇥j , j = 1, 2, . . . ,

$j(t, ⇠(t
�
j )); if t 2 ⇥̃j , j = 1, 2, . . . ,

has a fixed point which is a mild solution to the system (3.1), and hence the system is controllable.

By (A4), we define a closed, bounded and convex subset B⇢n for any n 2 N as follows: B⇢n =

B(0, ⇢n) = {x 2 PC : kxkn  ⇢n}. We establish the proof in several steps.

Step 1: @(B⇢n) ⇢ B⇢n . For any ⇠ 2 B⇢n , we accomplish the following cases by using the assump-

tions (A1), (A4) and (A5).

• Case 1: Let t 2 ⇥0 \ ⇥̃n. For any n 2 N, ⇠ 2 B⇢n , t 2 ⇥0 \ ⇥̃n, it follows by (A1) that

k⌥⇠(t)k  jR
✓
k⇠0k+  ((c1 + 1)⇢n + a~⇤)kpkL1 + c5c6

�⇢n
jR

+ k⇠0k+  (K⇤
⇢n
)kpkL1

�◆

 ⇢n.

• Case 2: For t 2 ⇥j \ ⇥̃n, and for each ⇠ 2 B⇢n , by (A1), (A2) and (A3), we obtain

k⌥⇠(t)k  jR

L$j

⌧
⇢n +$0 +  ((c1 + 1)�n + a~⇤)kpkL1

+c5c6

✓
⇢n
jR

+ k⇠0k+  (K⇤
⇢n
)kpkL1

◆�

 ⇢n.

• Case 3: Let t 2 ⇥̃j \ ⇥̃n. Then, for each ⇠ 2 B⇢n , it follows by (A3) that

k⌥⇠(t)k 
L$j

⌧
⇢n +$0  ⇢n.
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Thus, we get

k⌥⇠kn  ⇢n,

which implies that ⌥(B⇢n) ⇢ B⇢n and ⌥(B⇢n) is bounded.

Step 2: ⌥ is continuous on B⇢n . Let ⇠n be a sequence such that ⇠n ! ⇠⇤ in B⇢n . Since }, ~,$j , C

are continuous, therefore, it follows by the Lebesgue dominated convergence theorem that

Z t

0
R(t� ✓)Cu⇠n(✓) d✓ !

Z t

0
R(t� ✓)Cu⇠⇤(✓) d✓,

which yields

k(⌥⇠n)� (⌥⇠⇤)kn ! 0, as n ! +1.

Thus, we deduce that ⌥ is continuous.

Step 3: Let ⇧ be a bounded equicontinuous subset of B⇢n , then {⌥(⇧)} is equicontinuous, and

that �0 (�pi ,⌥(⇧)) = 0. Now, for any % > 0, there exists a sequence {⇠j}1j=0 ⇢ ⇧. Then we

complete the proof for several cases.

• Case 1: For t 2 ⇥0 \ ⇥̃n, we have

�(⌥(⇧)(t))  2�

✓⇢Z t

0
R(t� ✓)(}(✓, ⇠j(✓), H⇠j(✓)) + u⇠j (✓)) d✓ ; ⇠ 2 ⇧

�◆
+ %

 4

Z t

0
jR(l}(✓) + kC(jRkl}k1L)pw(✓))�({⇧(✓)}) d✓ + %

 e⌧ e{(t)

⌧
e�n(⇧) + %.

Since % is arbitrary, we have

�(⌥(⇧)(t))  e⌧L(t)

⌧
e�n(⇧),

and hence

e�n(⌥(⇧)) 
1

⌧
e�n(⇧).

• Case 2: Let t 2 ⇥j \ ⇥̃n. Then, as in the proof of Case 1, we get

�(⌥(⇧)(t))  4

Z t

0
jR(l}(✓) + kC(jRkl}k1L)pw(✓))�({⇧(✓)})d✓ + %+

jRL$j

⌧
�(
�
⇧(t)

 
)


e⌧ e{(t)(jRL$j + 1)

⌧
e�n(⇧) + %.

Since % is arbitrary, we obtain

e�n(⌥(⇧)) 
jRL$j + 1

⌧
e�n(⇧).
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• Case 3: Let t 2 ⇥̃j \ ⇥̃n. Then, by (A3), the set
�
$j(t, z

�
j )
 n

j=1
is equicontinuous, and

that �0 (�pi , G(⇧)) = 0, with {Gz(t)} =
�
$j(t, z

�
j )
 
. On the other hand, we have

k$j(t, z(.))�$j(t, z(.))k 
L$j

⌧
kz(.)� z(.)k,

which implies that

e�⌧e⇣(t)k$j(t, z(t
�
j ))�$j(t, z(t

�
j ))k 

L$j

⌧
e�⌧e⇣(t)kz(t�j )� z(t�j )k.

Therefore, we have

e�n(⌥(⇧)) 
L$j

⌧
e�n(⇧),

which shows that ⌥ is contraction in view of the assumption

jRL$j + 1 < ⌧.

Hence, by Darbo’s fixed point theorem [16], the operator ⌥ has a fixed point, which

implies that the given system is controllable.

4 An example

Consider the following impulsive integro-differential equations:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

@

@t
�(t, x) = � @

@x
�(t, x)� ⇡�(t, x)�

Z t

0
�(t� ✓)

✓
@

@x
�(✓, x) + ⇡�(✓, x)

◆
d✓

+
k�(t, x)kL2

1 + t3 sin2(t)
+ (1 + t3 sin2(t))

�1
sin

Z a

0
cos2(✓t)|�(✓, x)| d✓

�

+Cu(t, x), if t 2 ⇥j , x 2 (0, 1),

�(t, x) =
k�(2j� � 1, x)kL2

1 + 17(k�(2j� � 1, x)kL2 + 1)
, if t 2 ⇥̃j , x 2 (0, 1),

�(t, 0) = �(t, 1) = 0, t 2 R+,

�(0, x) = ex, x 2 (0, 1),

(4.1)

where ⇥0 = (0, 1], ⇥j = (2j; 2j + 1], j = 0, 1, . . . , ⇥̃j = (2j � 1; 2j], j = 1, 2, . . . Set F = L2(0, 1)

and let  1 be defined by

( 1')(x) = �
✓

d

dx
'(x) + ⇡'(x)

◆
,

and

D( 1) = {' 2 L2(0, 1) / ', 1' 2 L2(0, 1) ; '(0) = '(1) = 0}.
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The operator  1 is the infinitesimal generator of a C0-semigroup on F with domain D( 1). Now,

we define the operator  2(t) : F 7! F as follows:

 2(t)z = �(t) 1z, for t � 0, z 2 D( 1).

As argued in [14], for some r2 > r1 > 0, it follows that k�(t)k  e�r2t

r1
, and k�0(t)k  e�r2t

r21
.

From [18], we have that the resolvent operator (R(t))t�0 exists on F which is norm continuous and

kR(t)k  e(r
�1
1 �1)t. Therefore, the assumption (A4) holds with jR = 1 and b = 1� r�1

1 . Now, we

define

�(t)(x) = �(t, x),

}(t, �(t), H�(t))(x) =
k�(t, x)kL2

1 + t3 sin2(t)
+ (1 + t3 sin2(t))

�1
sin

 Z a

0
cos2(✓t)|�(✓, x)| d✓

�
,

H�(t)(x) =

Z a

0
cos2(✓t)|�(✓, x)| d✓,

and

$j(t, �(tj� , x)) =
k�(2j� � 1, x)kL2

1 + 17(k�(2j� � 1, x)kL2 + 1)
.

Case 01: Cu = 0. With the above setting, the system (4.1) can be expressed in the following

abstract form:

8
>>><

>>>:

�0(t) =  1�(t) + } (t, �(t), (H�)(t)) +

Z t

0
 2(t� ✓)�(✓) d✓, if t 2 ⇥j ,

�(t) = $j

�
t, �

�
t�j
��

, if t 2 ⇥̃j ,

�(0) = �0.

(4.2)

On the other hand, we have

|}(t, �1(t), �2(t))|  (1 + t3 sin2(t))�1

✓
|�1(t)|+ |�2(t)|+ 1

◆
.

Also, for any bounded set ⌃ ⇢ F, we have

�(}(t,⌃, H(⌃)))  (1 + t3 sin2(t))�1�(⌃).

So

p(t) = (1 + t3 sin2(t))�1, which certainly belongs to L1(⇥,R+),

and  (t) = 1 + t is a continuous nondecreasing function from ⇥ to [1,+1). Moreover, we

have the estimates:

k~(t, ✓, �1)� ~(t, ✓, �2)kF  ak�1 � �2kF,
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and

k$j(�1)�$j(�2)kF  1

18
k�1 � �2kF.

For jR < 3, all the assumptions of Theorem 3.2 are satisfied. Hence, the problem (4.1) has

at least one mild solution defined on R+.

Case 02 : Cu = {u(t, �) for { > 0. Let the operator C : L2(0, 1) ! L2(0, 1) be defined by

Cu = {u(t, �). Then, the system (4.1) takes the form:

8
>>><

>>>:

�0(t) =  1�(t) + } (t, �(t), (H�)(t)) +

Z t

0
 2(t� ✓)�(✓) d✓ + Cu(t), if t 2 ⇥j ,

�(t) = $j

�
t, �

�
t�j
��

, if t 2 ⇥̃j ,

�(0) = �0.

(4.3)

As argued in Case 01, we can easily verify the assumptions (A1)� (A5). If we assume that

the operator W given by Wu =

Z n

0
R(n�✓){u(✓) d✓, satisfies (A6), then all the assumptions

given in Theorem 3.4 are verified. Therefore, the problem (4.1) is controllable.

5 Conclusions

In this research, we investigated existence of mild solutions for a non-instantaneous integrodiffer-

ential equation via resolvent operators in the sense of Grimmer in a Fréchet space. We applied

Darbo’s fixed point theorem in conjunction with the technique of measures of noncompactness

to establish the desired results. The controllability of the given problem is also discussed. An

example is presented for illustrating the application of our key findings. Our results are novel in

the given configuration and contribute significantly to the literature on the topic. We believe that

the present study can lead to new avenues for research, such as coupled systems, problems with

infinite delays, and their fractional counterparts. Thus, this article will serve as a starting point

for future endeavors in aforementioned areas.
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ABSTRACT

It has been shown that, under suitable hypotheses, boundary

value problems of the form, Ly + �y = f, BCy = 0 where L

is a linear ordinary or partial differential operator and BC

denotes a linear boundary operator, then there exists ⇤ > 0

such that f � 0 implies �y � 0 for � 2 [�⇤,⇤] \ {0}, where

y is the unique solution of Ly + �y = f, BCy = 0. So, the

boundary value problem satisfies a maximum principle for

� 2 [�⇤, 0) and the boundary value problem satisfies an anti-

maximum principle for � 2 (0,⇤]. In an abstract result, we

shall provide suitable hypotheses such that boundary value

problems of the form, D↵
0 y + �D↵�1

0 y = f, BCy = 0 where

D↵
0 is a Riemann-Liouville fractional differentiable operator

of order ↵, 1 < ↵  2, and BC denotes a linear boundary

operator, then there exists B > 0 such that f � 0 implies

�D↵�1
0 y � 0 for � 2 [�B,B] \ {0}, where y is the unique

solution of D↵
0 y+�D↵�1

0 y = f, BCy = 0. Two examples are

provided in which the hypotheses of the abstract theorem

are satisfied to obtain the sign property of �D↵�1
0 y. The

boundary conditions are chosen so that with further analysis

a sign property of �y is also obtained. One application of

monotone methods is developed to illustrate the utility of

the abstract result.
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RESUMEN

Se ha demostrado que, bajo hipótesis apropiadas, problemas

de valor en la frontera de la forma Ly + �y = f, BCy = 0,

donde L es un operador diferencial lineal ordinario o parcial

y BC denota un operador lineal de frontera, entonces existe

⇤ > 0 tal que f � 0 implica �y � 0 para � 2 [�⇤,⇤] \ {0},

donde y es la única solución de Ly + �y = f, BCy = 0.

Así, el problema de valor en la frontera satisface un prin-

cipio del máximo para � 2 [�⇤, 0) y el problema de valor

en la frontera satisface un anti-principio del máximo para

� 2 (0,⇤]. En un resultado abstracto, entregaremos hipóte-

sis apropiadas tales que los problemas de valor en la fron-

tera de la forma D↵
0 y + �D↵�1

0 y = f, BCy = 0 donde D↵
0

es un operador diferencial fraccionario de Riemann-Liouville

de orden ↵, 1 < ↵  2, y BC denota un operador lineal

de frontera, entonces existe B > 0 tal que f � 0 implica

�D↵�1
0 y � 0 para � 2 [�B,B] \ {0}, donde y es la única

solución de D↵
0 y + �D↵�1

0 y = f, BCy = 0. Se entregan dos

ejemplos en los cuales las hipótesis del teorema abstracto se

satisfacen para obtener la propiedad de signo de �D↵�1
0 y.

Las condiciones de frontera se eligen de tal forma de obtener

también una propiedad de signo para �y con un análisis adi-

cional. Se desarrolla una aplicación de métodos monótonos

para ilustrar la utilidad del resultado abstracto.

Keywords and Phrases: Maximum principle, anti-maximum principle, Riemann-Liouville fractional differential

equation, boundary value problem, monotone methods, upper and lower solution.

2020 AMS Mathematics Subject Classification: 34B08, 34B18, 34B27, 34L15.



CUBO
25, 2 (2023)

Maximum, anti-maximum principles 253

1 Introduction

For � > 0, y 2 L[0, 1], the space of Lebesgue integrable functions, the expression

I�0 y(t) =

Z t

0

(t� s)��1

�(�)
y(s) ds, 0  t  1,

denotes a Riemann-Liouville fractional integral of y of order �, where � denotes the special gamma

function. For � = 0, I00 is defined to be the identity operator.

Let n denote a positive integer and assume n � 1 < ↵  n. Then D↵
0 y(t) = DnIn�↵

0 y(t), where

Dn =
dn

dtn
and if this expression exists, denotes a Riemann-Liouville fractional derivative of y of

order ↵. So, if 1 < ↵ < 2, D↵
0 y(t) =

d2

dt2

Z t

0

(t� s)1�↵

�(2� ↵)
y(s) ds if the right hand side exists. In

the case ↵ is a positive integer, we may write D↵
0 y(t) = D↵y(t) or I↵0 y(t) = I↵y(t) since the

Riemann-Liouville derivative or integral agrees with the classical derivative or integral if ↵ is a

positive integer.

For authoritative accounts on the development of fractional calculus, we refer to the monographs

[11, 16, 20]. For the sake of self-containment, we state properties that we shall employ in this study.

It is well-know that the Riemann-Liouville fractional integrals commute; that is if �1, �2 > 0, and

y 2 L[0, 1], then

I�1
0 I�2

0 y(t) = I�1+�2
0 y(t) = I�2

0 I�1
0 y(t).

A power rule is valid for the Riemann-Liouville fractional integral; if � > �1 and � � 0, then

I�0 t
� = I�0 (t� 0)� =

�(� + 1)

�(� + 1 + �)
t�+� .

A power rule is valid for the Riemann-Liouville fractional derivative; if � > �1 and � � 0 then

D�
0 t

� =
�(� + 1)

�(� + 1� �)
t��� .

Since the gamma function is unbounded at 0, it is the convention that if � + 1 � � = 0, then

D�
0 t

� = 0. Note that if 1 < ↵  2, and if D↵
0 y(t) exists, then D↵�1

0 y(t) exists and

D↵
0 y(t) = D2I2�↵

0 y(t) = DDI1�(↵�1)
0 y(t) = DD↵�1

0 y(t).

In [12], a boundary value problem,

D↵
0 y(t) = f(t, y(t)), 0 < t  1, (1.1)

y(0) = 0, D↵�1
0 y(0) = D↵�1

0 y(1), (1.2)
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where 1 < ↵  2, was studied. This is an example of a boundary value problem at resonance

since < t↵�1 >, the linear span of t↵�1, denotes the solution space of the homogeneous problem,

D↵
0 y = 0, with homogeneous boundary conditions, (1.2). In [12], the purpose of that article was

to consider an equivalent shifted equation, D↵
0 y(t) � K2y(t) = f(t, y(t)) � K2y(t), 0 < t  1,

and apply the method of quasilinearization to the shifted boundary value problem. The method

of quasilinearization is ideally suited when the boundary value problem, in this case the shifted

boundary value problem, satisfies a maximum principle [19]. In particular, in [12], a nonpositive

Green’s function for the shifted boundary value problem was explicitly constructed. Not surpris-

ingly, Mittag-Leffler functions were key to the construction and signing of the Green’s function.

The case, D↵
0 y(t) +K2y(t) = f(t, y(t)) +K2y(t), 0 < t  1, was not addressed in [12].

The maximum principle is well-known and is an important tool in the qualitative study of dif-

ferential equations; we refer the reader to the well-known monograph [19] for many applications.

In recent years, the maximum principle has become an important tool in the study of boundary

value problems for fractional differential equations. Early applications appear in [24] and [3] where

explicit Green’s functions, expressed in terms of power functions, where constructed and sign prop-

erties were analyzed so that fixed point theorems could be applied. Many authors have continued

the strategy to construct and analyze explicit Green’s functions and apply fixed point theory to

nonlinear boundary value problems for fractional differential equations.

In the example, y00+�y = f , with Neumann boundary conditions, y0(0) = 0, y0(1) = 0, if � < 0,

then this boundary value problem satisfies a maximum principle. In particular, for f 2 L[0, 1],
the boundary value problem is uniquely solvable and f nonnegative implies y is nonpositive where

y is the unique solution associated with f . Clément and Peletier [9] were the first to discover an

anti-maximum principle. They were primarily interested in partial differential equations, but they

illustrated the anti-maximum principle with the the same boundary value problem, y00 + �y = f ,

y0(0) = 0, y0(1) = 0, but now, 0 < � < ⇡2

4 . For this particular boundary value problem, if

0 < � < ⇡2

4 and if f 2 L[0, 1], then the boundary value problem is uniquely solvable and f

nonnegative implies y is nonnegative where y is the unique solution associated with f . At � = 0,

the boundary value problem is at resonance, and more precisely, � = 0 denotes a simple eigenvalue

of the linear problem. So there has been a change in the sign property, maximum principle or

anti-maximum principle, through the simple eigenvalue � = 0. Since the publication of [9] there

have been many studies of boundary value problems with parameter and the change of behavior

from maximum to anti-maximum principles as a function of the parameter. In the case of partial

differential equations, we refer to [1, 2, 8, 10, 14, 17, 18, 21]. In the case of ordinary differential

equations we refer to [4, 5, 6, 7, 13, 22].

In this article, we intend to study this change in behavior for a boundary value problem for a

Riemann-Liouville fractional differential equation. We shall modify the methods developed in [8],
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where in [8], those authors began with an ordinary differential equation

y00(t) + �y(t) = f(t), t 2 [0, 1], (1.3)

and considered either periodic boundary conditions or Neumann boundary conditions. Key to

their argument is that for f = 0, at � = 0, the boundary value problem, (1.3) with periodic or

Neumann boundary conditions, is at resonance since constant functions are nontrivial solutions.

That is, � = 0 is a simple eigenvalue for the problem, (1.3) with periodic or Neumann boundary

conditions, and the eigenspace is < 1 >, where < 1 > denotes the linear span of the 1 function.

Rewriting the boundary value problem as an abstract equation and employing the resolvent, the

inverse of (D2+�I) for � 6= 0, under the imposed boundary conditions, if it exists, and the partial

resolvent for � = 0, then under the assumption that f � 0 (with f 2 L[0, 1]), the authors in [8]

exhibited sufficient conditions for the existence of ⇤ > 0, and a constant K > 0, independent of f ,

such that

�y(t) � K|f |1, � 2 [�⇤,⇤] \ {0}, 0  t  1,

where y is the unique solution of the boundary value problem associated with (1.3) and |f |1 =
R 1
0 |f(s)| ds. With this one inequality the authors showed that for �⇤  � < 0 the boundary value

problem, (1.3) with periodic or Neumann boundary conditions, satisfies a maximum principle and

for 0 < �  ⇤, the boundary value problem (1.3) with periodic or Neumann boundary conditions,

satisfies an anti-maximum principle. They referred to this principle as a maximum principle (we

shall take the liberty to refer to it as a signed maximum principle in y) and then proceeded to

produce many nice examples.

Recently, [13], the arguments developed in [8] were adapted to study boundary value problems for

the ordinary differential equation

y00(t) + �y0(t) = f(t), t 2 [0, 1]; (1.4)

sufficient conditions for a signed maximum principle in Dy, where Dy = y0, were obtained. That

is, under the assumption that f � 0 (with f 2 L[0, 1]), sufficient conditions were exhibited to

imply the existence of B > 0, and a constant K > 0, independent of f such that

�Dy(t) � K|f |1, � 2 [�B,B] \ {0}, 0  t  1.

Two examples of boundary value problems were presented in which if a solution y of the boundary

value problem is such that Dy = y0 has constant sign on [0, 1], then y has constant sign on

[0, 1]. For one of the examples, an appropriate partial order in C1[0, 1], depending on the sign of

�, was defined and the method of upper and lower solutions, coupled with monotone methods,

was employed to obtain sufficient conditions for the existence of solutions of the boundary value
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problem for a nonlinear differential equation,

y00(t) = f(t, y(t), y0(t)), t 2 [0, 1].

Motivated by the work in [13], we shall adapt the methods developed in [8] and exhibit suffi-

cient conditions to obtain a signed maximum principle in D↵�1
0 y, for the boundary value problem

D↵
0 y(t) + �D↵�1

0 y(t) = f(t), with boundary conditions

BCy = 0, D↵�1
0 y(0) = D↵�1

0 y(1), (1.5)

where BC denotes a linear boundary operator mapping a function y to the reals. In particular,

we shall exhibit sufficient conditions that imply the existence of B > 0, and a constant K > 0,

independent of f , such that

�D↵�1
0 y(t) � K|f |1, � 2 [�B,B] \ {0}, 0  t  1. (1.6)

In two examples, the boundary condition BC will be such that if y satisfies the boundary conditions

(1.5) and �D↵�1
0 y(t) > 0 on [0, 1], then �y(t) � 0 on (0, 1]. In one of the examples, an appropriate

partial order in a Banach space is defined and the method of upper and lower solutions, coupled

with monotone methods, is applied to obtain sufficient conditions for the existence of solutions of

the nonlinear differential equation

D↵
0 y(t) = f(t, y(t),�D↵�1

0 y(t)), t 2 (0, 1],

satisfying the boundary conditions, (1.5).

In Section 2, following the lead of [8], we shall first define the concept of a signed maximum

principle in D↵�1
0 y. Then analogous to Lemma 1, Lemma 2 and Lemma 3 in [8], we shall prove the

main theorem and obtain sufficient conditions for (1.6) and hence, obtain sufficient conditions for

adherence to a signed maximum principle in D↵�1
0 y. In Section 3, we shall exhibit two examples

that adhere to a strong signed maximum principle in D↵�1
0 y and furthermore (1.6) implies �y(t) � 0

on (0, 1]. We shall close in Section 4 with an application of a monotone method applied to a

nonlinear problem related to one of the examples produced in Section 4. At � = 0, the problem is

at resonance. The problem is shifted [15] by �D↵�1
0 y and � > 0 or � < 0 is chosen as a function

of the monotonicity properties of the nonlinear term f(t, y(t),�D↵�1
0 y(t)).
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2 The main theorem

As is standard, let C[0, 1] denote the Banach space of continuous functions defined on [0, 1] with

the supremum norm, | · |0, and let L[0, 1] denote the space of Lebesgue integrable functions with

the usual L1 norm. Employing notation introduced in [23], assume 1 < ↵  2 and define

C↵�2[0, 1] =

⇢
y : (0, 1] ! R : y(t) is continuous for t 2 (0, 1], and lim

t!0+
t2�↵y(t) exists

�
.

It is clear that y 2 C↵�2[0, 1] if, and only if, there exists z 2 C[0, 1] such that y(t) = t↵�2z(t) for

t 2 (0, 1]. Define |y|↵�2 = |z|0 and C↵�2[0, 1] with norm | · |↵�2 is a Banach space.

Let X↵�2 denote the Banach space

X↵�2 = {y : (0, 1] ! R : y 2 C↵�2[0, 1], D
↵�1
0 y 2 C[0, 1]},

with

||y|| = max{|y|↵�2, |D↵�1
0 y|0}.

The following definition is motivated by Definition 1 found in [8].

Definition 2.1. Assume A is a linear operator with Dom(A) ⇢ X↵�2 and Im(A) ⇢ L[0, 1]. For

� 2 R \ {0}, the operator A + �D↵�1
0 satisfies a signed maximum principle in D↵�1

0 y if for

each f 2 L[0, 1], the equation

(A+ �D↵�1
0 )y = f, y 2 Dom(A),

has unique solution, y, and f(t) � 0, 0  t  1, implies �D↵�1
0 y(t) � 0, 0  t  1. The operator

A + �D↵�1
0 satisfies a strong signed maximum principle in D↵�1

0 y if f(t) � 0, 0  t  1,

and f(t) 6= 0 a.e., implies �D↵�1
0 y(t) > 0, 0  t  1.

Remark 2.2. Throughout this article, the phrases “maximum principle” or “anti-maximum prin-

ciple” may be used loosely. If so, we mean the following. If f � 0 implies D↵�1
0 y  0 the phrase

maximum principle may be used. This is precisely the case for the classical second order ordinary

differential equation with Dirichlet boundary conditions. If f � 0 implies D↵�1
0 y � 0 the phrase

anti-maximum principle may be used. This is the case observed in [9] for ↵ = 2, where the phrase

anti-maximum principle was coined.

For f 2 L[0, 1] (or f 2 C[0, 1]), let |f |1 =

Z 1

0
|f(s)| ds and define f =

Z 1

0
f(t) dt. Define

C̃ ⇢ C[0, 1] = {f 2 C[0, 1] : f = 0}, L̃ ⇢ L[0, 1] = {f 2 L[0, 1] : f = 0}.
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Assume A : Dom(A) ! L[0, 1] denotes a linear operator satisfying

Dom(A) ⇢ X↵�2, ker(A) =< t↵�1 + ct↵�2 >, Im(A) = L̃, (2.1)

for some real constant c, where < t↵�1 + ct↵�2 > denotes the linear span of t↵�1 + ct↵�2. Assume

further that for f̃ 2 L̃, the problem Ay = f̃ is uniquely solvable with solution y 2 Dom(A) and

such that
R 1
0 D↵�1

0 y(t) dt = (D↵�1
0 y) = 0. In particular, define

Dom(Ã) =
n
y 2 Dom(A) : (D↵�1

0 y) = 0
o
,

and then

A|Dom(Ã) : Dom(Ã) ! L̃

is one to one and onto. Moreover, if Aỹ = f̃ for f̃ 2 L̃, ỹ 2 Dom(Ã), assume there exists a constant

M > 0 depending only on A such that

|D↵�1
0 ỹ|0  M |f̃ |1. (2.2)

For f 2 L, define

f̃ = f � f,

which implies f̃ 2 L̃, and for y 2 Dom(A) define

ỹ = y � (D↵�1
0 y)

t↵�1

�(↵)
,

which implies ỹ 2 Dom(Ã) since

D↵�1
0 (ỹ) = D↵�1

0 y � (D↵�1
0 y).

Finally assume there exists A0 : Dom(A0) ! L such that A = A0D↵�1
0 . In this context, we rewrite

Ay + �D↵�1
0 y = f, y 2 Dom(A), (2.3)

as

(A0 + �I)D↵�1
0 y = f, D↵�1

0 y 2 Dom(A0). (2.4)

Define Dom(Ã0) = {v 2 Dom(A0) : v = 0} ⇢ C[0, 1] and it follows that

A0|Dom(Ã0) : Dom(Ã0) ! L̃
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is one to one and onto. With the decompositions f̃ = f � f and ỹ = y �D↵�1
0 y

t↵�1

�(↵)
, it follows

that f̃ 2 L̃ and ỹ 2 Dom(Ã), or more appropriately, D↵�1
0 ỹ 2 Dom(Ã0). So, equation (2.3) or

equation (2.4) decouples as follows:

A0D↵�1
0 ỹ + �D↵�1

0 ỹ = (A0 + �I)D↵�1
0 ỹ = f̃ , (2.5)

�D↵�1
0

✓
D↵�1

0 y
t↵�1

�(↵)

◆
= �D↵�1

0 y = f. (2.6)

Denote the inverse of (A0 + �I), if it exists, by R� and denote the inverse of A0|Dom(Ã0) by R0.

So, R0 : L̃ ! C[0, 1] and

D↵�1
0 ỹ = R0f̃ if, and only if, A0(D↵�1

0 ỹ) = f̃ . (2.7)

Note that (2.7) implies that since D↵�1
0 ỹ 2 Dom(Ã0), then

D↵�1
0 ỹ = R0A0D↵�1

0 ỹ. (2.8)

Since C̃ ⇢ L̃, we can also consider R0 : C̃ ! C[0, 1]. Let

||R0||C̃!C̃ = sup
|v|0=1

|R0v|0, v,R0v 2 C[0, 1],

and

||R0||L̃!C̃ = sup
|v|1=1

|R0v|0, v 2 L[0, 1], R0v 2 C[0, 1].

Since D↵�1
0 ỹ 2 C̃ then |R0D

↵�1
0 ỹ|0  ||R0||C̃!C̃ |D

↵�1
0 ỹ|0. Similarly, f̃ 2 L̃ implies |R0f̃ |0 

||R0||L̃!C̃ |f̃ |1.

The following theorem is proved in [13] for the case ↵ = 2 and closely models the motivating lemmas

and proofs found in [8]. We supply the proof again for 1 < ↵  2, for the sake of self-containment.

Theorem 2.3. Assume A : Dom(A) ! L[0, 1] denotes a linear operator satisfying (2.1) and (2.2),

and assume that for f̃ 2 L̃, the problem Ay = f̃ is uniquely solvable with solution y 2 Dom(A)

such that D↵�1
0 y = 0. Further, assume there exists A0 : Dom(A0) ! L[0, 1] such that A = A0D↵�1

0 .

Assume Ã0|
Dom(Ã0) : Dom(Ã0) ! L̃ is one to one and onto. Then there exists B1 > 0 such if

0 < |�|  B1, then R�, the inverse of (A0 + �I), exists. Moreover, if f̃ 2 L̃, if B1||R0||C̃!C̃ < 1,

where R0 denotes the inverse of A0|
Dom(Ã0), and if 0 < |�|  B1, then

|R� f̃ |0 
||R0||L̃!C̃

1�B1||R0||C̃!C̃
|f̃ |1. (2.9)

Further, there exists B 2 (0, B1) such that if 0 < |�|  B, then the operator (A+ �D↵�1
0 ) satisfies
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a strong signed maximum principle in D↵�1
0 y.

Proof. Employ (2.8) and apply R0 to (2.5) to obtain

D↵�1
0 ỹ + �R0D

↵�1
0 ỹ = R0f̃ .

Note that (2.2) implies that R0 : L̃ ! C̃ is continuous and hence, bounded. Assume |�|||R0||C̃!C̃ <

1. Then (I + �R0) : C̃ ! C̃ is invertible and

D↵�1
0 ỹ = (I + �R0)

�1R0f̃ .

So, assume 0 < B1 <
1

||R0||C̃!C̃
and assume |�|  B1. Then R� = (I + �R0)�1R0 exists.

Moreover,

|D↵�1
0 ỹ|0 �B1||R0||C̃!C̃ |D

↵�1
0 ỹ|0  |D↵�1

0 ỹ|0 � |�|||R0||C̃!C̃ |D
↵�1
0 ỹ|0

 |(I + �R0)Dỹ|0 = |R0f̃ |0  ||R0||L̃!C̃ |f̃ |1

and (2.9) is proved since R� f̃ = D↵�1
0 ỹ ⇢ C[0, 1].

Now assume f 2 L and assume f � 0 a.e. Then f̄ = |f |1. Let 0 < |�|  B1 <
1

||R0||C̃!C̃
, write

f = f̄ + f̃ and consider

�D↵�1
0 y = �R�f = �R�(f̄ + f̃).

Note that �R� f̄ = f̄ since (A0 + �I)f̄ = �f̄ . So,

�D↵�1
0 y = �R�f = �R�(f̄ + f̃)

= f̄ + �R� f̃ � |f |1 � |�||R� f̃ |0.

Continuing to assume that 0 < |�|  B1, it now follows from (2.9) that

�D↵�1
0 y � |f |1 � |�|

⇣ ||R0||L̃!C̃
1�B1||R0||C̃!C̃

⌘
|f̃ |1.

Since f̃ = f � f̄ , and |f̃ |1  |f |1 + f̄ = 2|f |1, the theorem is proved with

B < min
n
B1,

⇣1�B1||R0||C̃!C̃
2||R0||L̃!C̃

⌘o
.

In particular, if 0 < |�|  B, then

�D↵�1
0 y(t) � K|f |1 =

⇣
1� B

⇣ 2||R0||L̃!C̃
1�B1||R0||C̃!C̃

⌘⌘
|f |1.



CUBO
25, 2 (2023)

Maximum, anti-maximum principles 261

3 Two examples

This article is modeled after [13] and in [13] the conclusion of the theorem analogous to Theorem

2.3 is that the operator (A + �D) satisfies a strong signed maximum principle in Dy. So the

elementary observation that �Dy > 0 on an interval implies that �y is monotone increasing on

that interval is employed to consider boundary value problems for which �Dy > 0 on [0, 1] implies

that �y has constant sign on (0, 1). In the following lemma, we state and prove a modest extension

of this principle to the fractional Riemann-Liouville derivative of order � = ↵� 1, 0 < �  1.

Lemma 3.1. Assume 0 < �  1. Assume � 6= 0. Assume y 2 C��1[0, 1] and assume D�
0y(t) 2

C[0, 1]. Assume �D�
0y(t) > 0, 0  t  1, and assume � limt!0+ t1��y(t) � 0. Then �y(t) > 0,

0 < t  1.

Proof. If � = 1, then y can be extended continuously to [0, 1] and �y(0) � 0. Then �y is increasing

on [0, 1] and the result is true.

So, assume 0 < � < 1 and define a = lim
t!0+

t1��y(t). Thus, �a � 0. Then [11, Theorem 2.23] or [23,

Proposition 6.1],

y(t) = at��1 + I�0D
�
0y(t), 0 < t  1,

and

�y(t) = �at��1 + I�0 �D
�
0y(t), 0 < t  1.

If a = 0, then I�0 �D
�
0y(t) > 0 if 0 < t  1 and the statement is proved. If �a > 0, then both terms

�at��1 and I�0 �D
�
0y(t) are positive for t 2 (0, 1], and the statement is proved.

Example 3.2. Let 1 < ↵  2, and consider the linear boundary value problem

D↵
0 y(t) + �D↵�1

0 y(t) = f(t), 0  t  1, (3.1)

y(0) = 0, D↵�1
0 y(0) = D↵�1

0 y(1). (3.2)

For the boundary value problem (3.1), (3.2), A = D↵
0 , A0 = D = d

dt , ker(A) =< t↵�1 > . We show

that the operators A and A0 satisfy the hypotheses of Theorem 2.3.

One can show directly that Im(A) = L̃. If f 2 Im(A) then there exists a solution y of

D↵
0 y(t) = f(t), 0  t  1, y(0) = 0, D↵�1

0 y(0) = D↵�1
0 y(1),

which implies

0 = D↵�1
0 y(1)�D↵�1

0 y(0) =

Z 1

0
D↵

0 y(t) dt =

Z 1

0
f(t) dt,
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and f 2 L̃. Likewise, if f 2 L̃, then

y(t) =
1

�(↵)

Z t

0
(t� s)↵�1f(s) ds = I↵0 f(t) 2 Dom(Ã) (3.3)

is a solution of

D↵
0 y(t) = f(t), 0  t  1, y(0) = 0, D↵�1

0 y(0) = D↵�1
0 y(1).

To see that y 2 Dom(Ã), note that

D↵�1
0 y(t) = D↵�1

0 I↵0 f(t) = D↵�1
0 I↵�1

0 I1f(t) =

Z t

0
f(s) ds.

So, D↵�1
0 y = f = 0. To see that the boundary conditions are satisfied, y(0) = I↵0 y|t=0, and the

condition y(0) = 0 is clear. Moreover, D↵�1
0 I↵0 f(t) =

Z t

0
f(s) ds, which implies D↵�1

0 I↵0 f |t=0 =

D↵�1
0 I↵0 f |t=1 = 0 since f 2 L̃.

To argue that Ay = f̃ is uniquely solvable with solution y 2 Dom(Ã), (3.3) implies the solvability.

For uniqueness, if y1 and y2 are two such solutions, then (y1�y2)(t) = ct↵�1 and y1�y2 2 Dom(Ã)

implies c = 0.

Finally, (3.3) implies (2.2) is satisfied with M = 1 since

|D↵�1
0 y(t)| =

����
Z t

0
f(s) ds

����  |f |1.

Theorem 2.3 applies and there exists B > 0 such that if 0 < |�|  B then (A + �D↵�1
0 y) has

the strong maximum principle in D↵�1
0 y. Thus, f � 0 implies �D↵�1

0 y � 0. To apply Lemma 3.1,

recall [11, Theorem 2.23] or [23, Theorem 6.8], that

y(t) = at↵�2 +
D↵�1

0 y|t=0

�(↵)
t↵�1 + I↵0 D

↵
0 y(t)

= at(↵�1)�1 +
D↵�1

0 y|t=0

�(↵)
t↵�1 + I↵�1

0 IDD↵�1
0 y(t)

= at(↵�1)�1 +
D↵�1

0 y|t=0

�(↵)
t↵�1 + I↵�1

0 (D↵�1
0 y(t)�D↵�1

0 y|t=0)

= at(↵�1)�1 + I↵�1
0 D↵�1

0 y(t).

where a = lim
t!0+

t2�↵y(t) = lim
t!0+

t1�(↵�1)y(t). Since y(0) = 0 implies a = 0, Lemma 3.1 applies

with � = ↵ � 1 and �a = 0. Thus, �y(t) � 0, for 0 < t  1, and if |f |1 > 0, then �y(t) > 0, for

0 < t  1.



CUBO
25, 2 (2023)

Maximum, anti-maximum principles 263

Hence, a natural partial order on X↵�2 in which to apply the method of upper and lower solutions

and monotone methods to a nonlinear boundary value problem is

y 2 X↵�2 ⌫ 0 () �y(t) � 0, 0 < t  1, and �D↵�1
0 y(t) � 0, 0  t  1, (3.4)

and

y 2 X↵�2 � 0 () �y(t) > 0, 0 < t  1, and �D↵�1
0 y(t) > 0, 0  t  1.

In Section 4, we shall employ monotone methods with respect to this partial order and obtain

sufficient conditions for existence of maximal and minimal solutions of a nonlinear boundary value

problem

D↵
0 y(t) = f(t, y(t), D↵�1

0 y(t)), t 2 (0, 1],

associated with the boundary conditions (3.2).

Example 3.3. For the second example, let 0 < h < 1, and consider a family of boundary conditions

lim
t!0+

t2�↵y(t) = hy(1), D↵�1
0 y(0) = D↵�1

0 y(1). (3.5)

Remark 3.4. Note that the boundary condition y(1) can be expressed as t2�↵y(t)|t=1 and so, if

h = 1 in (3.5), we intend that these boundary conditions represent a Riemann-Liouville fractional

analogue of periodic boundary conditions. In this example however, we require that 0 < h < 1.

For the boundary value problem (3.1), (3.5), A = D↵
0 , A0 = D = d

dt and

ker(A) =

⌧
t↵�1 +

h

1� h
t↵�2

�
.

Precisely as in Example (3.2), Im(A) = L̃. Again, f 2 L̃ implies

Dom(Ã) =
n
y 2 X↵�2 : D↵�1

0 y = 0
o
.

Again, M in (2.2) can be computed since if f 2 L̃, then

ỹ(t) = I↵0 f(t) +
h

1� h
I↵0 f(1)t

↵�2

denotes the unique solution y 2 Dom(Ã) of the boundary value problem D↵
0 y = f , (3.5). Thus,

Theorem 2.3 applies and there exists B > 0 such that if 0 < |�|  B then (A+ �D↵�1
0 ) satisfies a

strong maximum principle in D↵�1
0 y.

To determine a sign condition on �y we appeal to Lemma 3.1. Let a = lim
t!0+

t2�↵y(t). We first rule

out the case a = 0. Assume 0 < |�|  B, and 0 < h < 1. If a = 0, then y(t) = I↵�1
0 D↵�1

0 y(t) and
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�y(1) > 0. In particular, y(1) 6= 0. Since lim
t!0+

t2�↵y(t) = a = 0, y does not satisfy the boundary

condition, lim
t!0+

t2�↵y(t) = hy(1). Thus, a 6= 0.

Now, continue to assume 0 < |�|  B, and assume 0 < h < 1. If �D↵�1
0 y(t) > 0, 0  t  1, we rule

out the case �a < 0. The condition 0 < h < 1, the boundary condition, lim
t!0+

t2�↵y(t) = hy(1) and

the identity y(t) = at↵�2 + I↵�1
0 D↵�1

0 y(t) imply that with a = lim
t!0+

t2�↵y(t) = lim
t!0+

t1�(↵�1)y(t),

then

0 <
a

a+ I↵�1
0 D↵�1

0 y|t=1
< 1,

or

0 <
�a

�a+ I↵�1
0 �D↵�1

0 y|t=1
< 1.

If �a < 0, then �a < �a+ I↵�1
0 �D↵�1

0 y|t=1 < 0 and |�a| >
���a+ I↵�1

0 �D↵�1
0 y|t=1

��, which implies

�a

�a+ I↵�1
0 �D↵�1

0 y|t=1
> 1,

and so the condition 0 < h < 1 is contradicted. So, �a > 0 and Lemma 3.1 applies with � = ↵� 1.

Thus, if 0 < |�|  B and 0 < h < 1, then a natural partial order in which to apply the method of

upper and lower solutions and monotone methods to a nonlinear problem is

y 2 X↵�2 ⌫ 0 () �y(t) � 0, 0 < t  1, and �D↵�1
0 y(t) � 0, 0  t  1,

and

y 2 X↵�2 � 0 () �y(t) > 0, 0 < t  1, and �D↵�1
0 y(t) > 0, 0  t  1.

In particular, there is a transition from a maximum principle to an anti-maximum principle at

� = 0.

Remark 3.5. The work in this article extends the work produced in [13], where ↵ = 2. In [13],

it is shown if 1 < h, then �D↵�1
0 y(t) = �D1y(t) � 0, 0  t  1, implies �y(t)  0, 0  t  1.

In [13], the sign of the derivative implies monotonicity of the function. For the fractional case,

1 < ↵ < 2, the case 1 < h remains open.

4 A Monotone Method

Assume 1 < ↵  2. Let f : [0, 1]⇥ R2 ! R be continuous. Consider the boundary value problem

D↵
0 y(t) = f(t, y(t), D↵�1

0 y(t)), 0  t  1, (4.1)

y(0) = 0, D↵�1
0 y(0) = D↵�1

0 y(1). (4.2)
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Assume that f satisfies the following monotonicity properties.

f(t, y, z1) < f(t, y, z2) for (t, y) 2 [0, 1]⇥ R, z1 > z2, (4.3)

f(t, y1, z) < f(t, y2, z) for (t, z) 2 [0, 1]⇥ R, y1 > y2;

that is, f is monotone decreasing in each of the third component and second component.

Note for y 2 C↵�2, one should initially consider the differential equation D↵
0 y(t) = f(t, y(t), D↵�1

0 y(t))

on (0, 1]. The boundary condition y(0) = 0 implies the functions produced in the following iterative

schemes exist on [0, 1] and so, we assume (4.1) on [0, 1].

Apply a shift [15] to (4.1) and consider the equivalent boundary value problem,

D↵
0 y(t) + �D↵�1

0 y(t) = f(t, y(t), D↵�1
0 y(t)) + �D↵�1

0 y(t), 0  t  1,

with boundary conditions (4.2), where �B  � < 0 and B > 0 is shown to exist in Theorem 2.3.

Note that if g(t, y, z) = f(t, y, z) + �z and f satisfies (4.3), then g satisfies (4.3) if � < 0.

Assume the existence of solutions, w1, v1 2 X↵�2, of the following boundary value problems for

fractional differential inequalities

D↵
0w1(t) � f(t, w1(t), D

↵�1
0 w1(t)), D↵

0 v1(t)  f(t, v1(t), D
↵�1
0 v1(t)), 0  t  1, (4.4)

w1(0) = 0, D↵�1
0 w1(0) = D↵�1

0 w1(1), v1(0) = 0, D↵�1
0 v1(0) = D↵�1

0 v1(1).

Assume further that

(v1(t)� w1(t)) � 0, 0  t  1, (D↵�1
0 v1(t)�D↵�1

0 w1(t)) � 0, 0  t  1. (4.5)

Motivated by (3.4) and noting that � < 0, define a partial order ⌫�<0 on X↵�2 by

u 2 X↵�2 ⌫�<0 0 () u(t) < 0, 0 < t  1, and D↵�1
0 u(t)  0, 0  t  1.

Then the assumption (4.5) implies w1 ⌫�<0 v1.

Define iteratively, the sequences {vk}1k=1, {wk}1k=1, where

D↵
0 vk+1(t) + �D↵�1

0 vk+1(t) = f(t, vk(t), D
↵�1
0 vk(t)) + �D↵�1

0 vk(t), 0  t  1, (4.6)

vk+1(0) = 0, D↵�1
0 vk+1(0) = D↵�1

0 vk+1(1),
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and

D↵
0wk+1(t) + �D↵�1

0 wk+1(t) = f(t, wk(t), D
↵�1
0 wk(t)) + �D↵�1

0 wk(t), 0  t  1, (4.7)

wk+1(0) = 0, D↵�1
0 wk+1(0) = D↵�1

0 wk+1(1).

Theorem 2.3 implies the existence of each vk+1, wk+1 since if |�|  B, the inverse of (A + �D)

exists.

Theorem 4.1. Assume f : [0, 1]⇥R2 ! R is continuous and assume f satisfies the monotonicity

properties (4.3). Assume the existence of functions v1, w1 2 X↵�2 satisfying (4.4) and (4.5).

Define the sequences of iterates {vk}1k=1, {wk}1k=1 by (4.6) and (4.7) respectively. Then, for each

k 2 N1,

wk ⌫�<0 wk+1 ⌫�<0 vk+1 ⌫�<0 vk. (4.8)

Moreover, {vk}1k=1 converges in X↵�2 to a solution v of the boundary value problem (4.1), (4.2) and

{wk}1k=1 converges in X↵�2 to a solution w of the boundary value problem (4.1), (4.2) satisfying

wk ⌫�<0 wk+1 ⌫�<0 w ⌫�<0 v ⌫�<0 vk+1 ⌫�<0 vk. (4.9)

Proof. Since v1 satisfies a differential inequality given in (4.5), then for 0  t  1,

D↵
0 v2(t) + �D↵�1

0 v2(t) = f(t, v1(t), D
↵�1
0 v1(t)) + �D↵�1

0 v1(t) � D↵
0 v1(t) + �D↵�1

0 v1(t).

Set u = v2 � v1 and u satisfies a boundary value problem for a differential inequality,

D↵
0 u(t) + �D↵�1

0 u(t) � 0, 0  t  1, u(0) = 0, D↵�1
0 u(0) = D↵�1

0 u(1).

The signed maximum principle applies and u ⌫�<0 0; in particular, v2 ⌫�<0 v1. Similarly, w1 ⌫�<0

w2. Now set u = w2 � v2 and

D↵
0 u(t) + �D↵�1

0 u(t) =
⇣
f(t, w1(t), D

↵�1
0 w1(t))� f(t, v1(t), D

↵�1
0 v1(t))

⌘

+ �(D↵�1
0 w1(t)�D↵�1

0 v1(t)), 0  t  1,

u(0) = 0, D↵�1
0 u(0) = D↵�1

0 u(1).

Since f satisfies (4.3) and w1 ⌫�<0 v1, then

D↵
0 u(t) + �D↵�1

0 u(t) � 0, 0  t  1,

and again the signed maximum principle applies and u ⌫�<0 0. In particular, w2 ⌫�<0 v2. Thus,
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(4.8) is proved for k = 1. A straightforward induction implies that (4.8) is valid using the arguments

presented in this paragraph.

To obtain the existence of limiting solutions v and w satisfying (4.9), note that the sequence

{D↵�1
0 vk} is monotone decreasing and bounded below by {D↵�1

0 w1}. So the sequence {D↵�1
0 vk}

is converging pointwise on [0, 1] to some function g defined on [0, 1]. Moreover, D↵
0 vk = DD↵�1

0 vk

is uniformly bounded on

⌦ = {(t, y, z) : w1(t)  y  v1(t), D
↵�1
0 w1(t)  z  D↵�1

0 v1(t), 0  t  1},

and so the pointwise limit g is continuous on [0, 1]. Dini’s theorem applies and {D↵�1
0 vk} is con-

verging uniformly to g on [0, 1]. Note a = 0, and so, we can define vk(0) = 0 and extend vk to a

continuous function on [0, 1]. The sequence {vk} is monotone decreasing and bounded below, and

so there exists v such that {vk} is converging pointwise to v on [0, 1]. Note that since vk(0) = 0,

then vk = I↵�1
0 D↵�1

0 vk which converges uniformly I↵�1
0 g. So v = I↵�1

0 g which implies D↵�1
0 v = g.

To summarize, vk is converging to v in C↵�2 and {D↵�1
0 vk} is converging to {D↵�1

0 v} in C[0, 1].

Finally, using D↵
0 vk+1(t) = f(t, vk(t), D

↵�1
0 vk(t)) + �(D↵�1

0 vk(t) � D↵�1
0 vk+1(t)), it now follows

that the sequence {D↵
0 vk} converges uniformly on [0, 1] to f(t, v(t), D↵�1

0 v(t)). Since D↵
0 vk =

D1D↵�1
0 vk, we conclude that lim

k!1
D↵

0 vk = D↵
0 v.

Similar details apply to {wk} and the theorem is proved.

Suppose now f satisfies the “anti”-inequalities to (4.3); that is suppose f satisfies

f(t, y, z1) > f(t, y, z2) for (t, y) 2 [0, 1]⇥ R, z1 > z2, (4.10)

f(t, y1, z) > f(t, y2, z) for (t, z) 2 [0, 1]⇥ R, y1 > y2.

One can appeal to the signed maximum principle and apply a shift to (4.1) and consider the

equivalent boundary value problem, D↵
0 y(t) + �D↵�1

0 y(t) = f(t, y(t), D↵�1
0 y(t)) + �D↵�1

0 y(t), 0 
t  1, where 0 < � < B. Note, if f satisfies (4.10) and � > 0, then g(t, y, z) = f(t, y, z) + �z

satisfies (4.10).

Now, assume the existence of solutions, w1, v1 2 X↵�2, of the following differential inequalities

D↵
0w1(t)  f(t, w1(t), D

↵�1
0 w1(t)), D↵

0 v1(t) � f(t, v1(t), D
↵�1
0 v1(t)), 0  t  1, (4.11)

w1(0) = 0, D↵�1
0 w1(0) = D↵�1

0 w1(1), v1(0) = 0, D↵�1
0 v1(0) = D↵�1

0 v1(1).

Assume further that

(v1(t)� w1(t)) � 0, 0 < t  1, (D↵�1
0 v1(t)�D↵�1

0 w1(t)) � 0, 0  t  1. (4.12)
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Noting that � > 0 define a partial order ⌫�>0 on X↵�2 by

u 2 X↵�2 ⌫�>0 0 () u(t) � 0, 0 < t  1, and D↵�1
0 u(t) � 0, 0  t  1.

In particular, in (4.12), assume v1 ⌫�>0 w1.

Theorem 4.2. Assume f : [0, 1]⇥R2 ! R be continuous and assume f satisfies the monotonicity

properties, (4.10). Assume the existence of w1, v1 2 X↵�2 satisfying (4.11) and (4.12). Define the

sequences of iterates {vk}1k=1, {wk}1k=1 by (4.6) and (4.7) respectively. Then, for each k 2 N1,

vk ⌫�>0 vk+1 ⌫�>0 wk+1 ⌫�>0 wk.

Moreover, {vk}1k=1 converges in X↵�2 to a solution v of (4.1) and {wk}1k=1 converges in X↵�2 to

a solution w of (4.1) satisfying

vk ⌫�>0 vk+1 ⌫�>0 v ⌫�>0 w ⌫�>0 wk+1 ⌫�>0 wk.

We close the article with two corollaries of Theorem 4.2 in which upper and lower solutions, v1
and w1 are explicitly produced.

Corollary 4.3. Let B be given by Theorem 2.3. Assume f : [0, 1]⇥R2 ! R be continuous, assume

there exists � 2 (0,B] such that f(t, y, z) + �z is bounded on [0, 1] ⇥ R2, and assume g(t, y, z) =

f(t, y, z) + �z satisfies the monotonicity conditions (4.10). Then v1(t) =
M

��(↵)
t↵�1 2 X↵�2 and

w1(t) = �v1(t) 2 X↵�2 satisfy (4.11) and (4.12) where M = sup
[0,1]⇥R2

|f(t, y, z) + �z|; in particular,

there exists a solution y 2 X↵�2 of the boundary value problem (4.1), (4.2) satisfying

v1 ⌫�>0 y ⌫�>0 w1.

Remark 4.4. Remove the hypothesis that g satisfies (4.10), and the Schauder fixed point theorem

implies the existence of a solution of the boundary value problem (4.1), (4.2) in the case g is

bounded.

Corollary 4.5. Let B be given by Theorem 2.3. Assume f : [0, 1]⇥R2 ! R be continuous, assume

there exists � 2 (0,B] such that g(t, y, z) = f(t, y, z) + �z satisfies the monotonicity conditions

(4.10). Assume there exist � 2 C[0, 1] and a nondecreasing function  : R+ ! R+
such that

|g(t, y, z)|  �(t) (|y|), (t, y, z) 2 [0, 1]⇥ R2.
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Moreover, assume there exists M > 0 such that

�M

|�|0 
⇣

M
�(↵)

⌘ > 1.

Then there exists a solution of the boundary value problem (4.1), (4.2).

Proof. Set v1(t) =
M

�(↵)
t↵�1 2 X↵�2. Then

D↵
0 v1(t) + �D↵�1

0 v1(t) = �M > |�|0 
✓

M

�(↵)

◆
� g(t, v1, D

↵�1
0 v1(t)).

Set w1(t) = �v1(t) and v1(t), w1(t) 2 X↵�2 satisfy (4.11) and (4.12).
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ABSTRACT

In this paper, we introduce the concept of ternary antideriva-

tion on ternary Banach algebras and investigate the stability

of ternary antiderivation in ternary Banach algebras, associ-

ated to the (↵,�)-functional inequality:

kF(x+ y + z)� F(x+ z)� F(y � x+ z)� F(x� z)k

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z)

+ F(x)� F(z))k

where ↵ and � are fixed nonzero complex numbers with |↵|+
|�| < 2 by using the fixed point method.

RESUMEN

En este arículo, introducimos el concepto de antiderivación

ternaria en álgebras de Banach ternarias e investigamos la es-

tabilidad de las antiderivaciones ternaria en álgebras de Ba-

nach ternarias, asociadas a la (↵,�)- desigualdad funcional:

kF(x+ y + z)� F(x+ z)� F(y � x+ z)� F(x� z)k

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z)

+ F(x)� F(z))k

donde ↵ y � son números complejos no cero fijos, con |↵|+

|�| < 2 usando el método de punto fijo.
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1 Introduction

A ternary Banach algebra is a complex Banach space A, endowed with a ternary product (x, y, z) !
[x, y, z] of A3 into A, which is C�linear in each variable, and associative in the sense that

[x, y, [z, w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v], and satisfies k[x, y, z]k  kxk · kyk · kzk for all

x, y, z, w, u 2 A.

If a ternary Banach algebra (A, [·, ·, ·]) has an unit, i.e., an element e 2 A such that x = [x, e, e] =

[e, e, x] for all x 2 A, then it is routine to verify that A, endowed with x � y := [x, e, y] and

x
⇤ := [e, x, e], is a unital algebra. Conversely, if (A, �) is a unital algebra, then [x, y, z] := x � y⇤ � z

makes A into a ternary Banach algebra.

A C�linear mapping H : A ! B is called a ternary homomorphism if H([x, y, z]) = [H(x), H(y), H(z)]

for all x, y, z 2 A. A C�linear mapping � : A ! A is called a ternary derivation if

�([x, y, z]) = [�(x), y, z] + [x, �(y), z] + [x, y, �(z)]

for all x, y, z 2 A.

We say that an equation is stable if any function satisfying the equation approximately is near to

an exact solution of the equation.

The stability problem of functional equations started from a question of Ulam, in 1940, on the

stability of group homomorphisms. In 1941, Hyers [17] gave an answer to the question of Ulam

in the context of Banach spaces in the case of additive mappings, that was an major step toward

further solutions in this field.

During the last two decades, a number of articles and research monographs have been published on

various generalizations and applications of the Hyers-Ulam stability to a number of functional equa-

tions and mappings, for example, Cauchy-Jensen mappings, k-additive mappings, multiplicative

mappings, bounded nth differences, Euler-Lagrange functional equations, differential equations,

and Navier-Stokes equations (see [1, 2, 4, 5, 19, 22, 25, 26, 27, 28, 29]).

Also, approximate generalized Lie derivations have been already established in [6, 7].

Ternary algebraic structures appear in various domains of theoretical and mathematical physics,

such as the quark model and Nambu mechanics [18, 21]. Today, many physical systems can be

modeled as a linear system. The principle of additivity has various applications in physics especially

in calculating the internal energy in thermodynamic and also the meaning of the superposition

principle.
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In recent years, the Hyers-Ulam stability of various (among others functional, differential and

integral) equations and other objects (for example in groups, Banach algebra, ternary Banach

algebras and C
⇤�ternary algebras) has been intensively studied (see [8, 9, 10, 11, 15, 16, 30]).

Fixed-point theory has been studied by various methods. The study on fixed point theory provides

essential tools for solving problems arising in various fields of functional analysis, such as dynamical

systems, equilibrium problems and differential equations (see for instance [3, 14, 24]).

We recall a fundamental result in fixed point theory.

Definition 1.1 ([12]). Let X be a non-empty set and d : X ⇥ X ! [0,1] a mapping such that

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x) for all x, y 2 X ,

(3) d(x, z)  d(x, y) + d(y, z) for all x, y, z 2 X .

Then d is called a generalized metric and (X , d) is a generalized metric space.

Theorem 1.2 ([12]). Let (X , d) be a complete generalized metric space and T : X ! X be a

strictly contractive mapping, that is,

d(T x, T y)  Ld(x, y)

for some L < 1 and all x, y 2 X . Then for each given element x 2 X , either

d(T n
x, T n+1

x) = +1

for all n � 0 or

d(T n
x, T n+1

x) < +1, 8n � n0,

for some positive integer n0. Moreover, if the second alternative holds, then

(i) the sequence {T n
x} is convergent to a fixed point y⇤ of T ;

(ii) y
⇤ is the unique fixed point of T in the set Y := {y 2 X , d(T n0x, y) < +1} and d(y, y⇤) 
1

1� L
d(y, T y) for all y 2 Y .

In this paper, we consider the following functional inequality

kF(x+ y + z)� F(x+ z)� F(y � x+ z)� F(x� z)k

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z) + F(x)� F(z))k (1.1)

for all x, y, z 2 A, where ↵ and � are fixed nonzero complex numbers with |↵|+ |�| < 2.
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Throughout this paper, assume that A is a ternary Banach algebra and ↵ and � are fixed nonzero

complex numbers with |↵|+ |�| < 2.

The aim of the present paper is to establish the stability problem of ternary antiderivations in

complex ternary Banach algebras by using the fixed point method.

2 Stability of (↵, �)-functional inequality (1.1)

In this section, we prove the Hyers-Ulam stability of the additive (↵,�)-functional inequality (1.1)

by using the fixed point method.

Lemma 2.1. Let F : A ! A be a mapping satisfying

kF(x+ y + z)� F(x+ z)� F(y � x+ z)� F(x� z)k

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z)� F(x) + F(z))k (2.1)

for all x, y, z 2 A. Then the mapping F : A ! A is additive.

Proof. Assume that F : A ! A satisfies (2.1).

Putting x = y = z = 0 in (2.1), we have

2kF(0)k  (|↵|+ |�|)kF(0)k

and thus F(0) = 0, since |↵|+ |�| < 2.

Letting z = x in (2.1), we obtain

kF(2x+ y)� F(2x)� F(y)k  0

and so F(2x+ y) = F(2x) + F(y) for all x, y 2 A. Therefore F is additive.

Theorem 2.2. Suppose that ⇤ : A⇥A⇥A ! [0,1) is a function such that there exists an L < 1

with

⇤(x, y, z)  L

2
⇤(2x, 2y, 2z) (2.2)

for all x, y, z 2 A. Let F : A ! A be a mapping satisfying

kF(x+ y + z)� F(x+ z)� F(y � x+ z)� F(x� z)k (2.3)

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z) + F(x)� F(z))k+ ⇤(x, y, z)
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for all x, y, z 2 A. Then there exists a unique additive mapping � : A ! A such that

kF(x)��(x)k  L

2(1� L)
⇤
⇣
x

2
, x,

x

2

⌘
(2.4)

for all x 2 A.

Proof. Setting x = y = z = 0 in (2.3), we have

2kF(0)k  (|↵|+ |�|)kF(0)k+ ⇤(0, 0, 0)

and thus F(0) = 0, since |↵|+ |�| < 2 and by (2.2) ⇤(0, 0, 0) = 0.

Letting x = z = t
2 and y = t in (2.3), we get

kF(2t)� 2F(t)k  ⇤

✓
t

2
, t,

t

2

◆
(2.5)

for all t 2 A.

Now, consider the set ⌦ = {! : A ! A : !(0) = 0} and the mapping d defined on ⌦⇥ ⌦ by

d(�,!) = inf
n
k 2 R+ : k�(x)� !(x)k  k⇤

⇣
x

2
, x,

x

2

⌘
, 8x 2 A

o
,

where as usual, inf ; = +1. d is a complete generalized metric on ⌦ (see [20]).

Now, let us consider the linear mapping T : ⌦ ! ⌦ such that

T �(x) := 2�
⇣
x

2

⌘

for all x 2 A. Thus d(�,!) = " implies that

k�(x)� !(x)k  ✏⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A. Hence

kT �(x)� T !(x)k =
���2�

⇣
x

2

⌘
� 2!

⇣
x

2

⌘���  2"⇤
⇣
x

4
,
x

2
,
x

4

⌘
 L"⇤

⇣
x

2
, x,

x

2

⌘

for all x 2 A, that is d(�,!) = " implies that d(T �(x), T !(x))  L". This means that

d(T �(x), T !(x))  Ld(�,!)

for all �,! 2 ⌦.
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Next, from (2.5), we get

���F(x)� 2F
⇣
x

2

⌘���  ⇤
⇣
x

4
,
x

2
,
x

4

⌘
 L

2
⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A, it follows that d(F , T F)  L
2 .

Using the fixed point alternative we deduce the existence of a unique fixed point of T , that is, the

existence of a mapping � : A ! A such that

�(x) = 2�
⇣
x

2

⌘

with the following property: there exists a k 2 (0,1) satisfying

kF(x)��(x)k  k⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A.

Since limn!1 d(T nF ,�) = 0,

lim
n!1

2nF
⇣
x

2n

⌘
= �(x)

for all x 2 A.

Also, d(F ,�)  1

1� L
d(F , T F) which implies

kF(x)��(x)k  L

2(1� L)
⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A. It follows from (2.2) and (2.3) that

k�(x+ y + z)��(x+ z)��(y � x+ z)��(x� z)k

= lim
n!1

2n
����F

✓
x+ y + z

2n

◆
� F

✓
x+ z

2n

◆
� F

✓
y � x+ z

2n

◆
� F

✓
x� z

2n

◆����

 lim
n!1

2n
����↵

✓
F
✓
x+ y � z

2n

◆
+ F

✓
x� z

2n

◆
� F

⇣
y

2n

⌘◆����

+ lim
n!1

2n
�����

✓
F
✓
x� z

2n

◆
+ F

⇣
x

2n

⌘
� F

⇣
z

2n

⌘◆����+ lim
n!1

2n⇤
⇣
x

2n
,
y

2n
,
z

2n

⌘

= k↵(�(x+ y � z) +�(x� z)��(y))k+ k�(�(x� z) +�(x)��(z))k

for all x, y, z 2 A. Therefore, by Lemma 2.1, the mapping � is additive.
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Corollary 2.3. Let F : A ! A be a mapping satisfying

kF(x+ y + z)� F(x+ z)� F(y � x+ z)� F(x� z)k

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z) + F(x)� F(z))k+ k[x, y, z]k

for all x, y, z 2 A. Then there exists a unique additive mapping � : A ! A such that

kF(x)��(x)k  k[x, x, x]k

for all x 2 A.

Proof. The proof follows from Theorem 2.2 by taking L = 8
9 and ⇤(x, y, z) = k[x, y, z]k for all

x, y, z 2 A.

3 Stability of ternary antiderivations in ternary algebras

In this section we introduce the concept of ternary antiderivation in ternary Banach algebras and

prove the stability of ternary antiderivations associated to (1.1) in ternary Banach algebras.

Definition 3.1. Let A be a ternary Banach algebra. A C�linear mapping I : A ! A is called a

ternary antiderivation if it satisfies

[I(x), I(y), I(z)] = I[I(x), y, z] + I[x, I(y), z] + I[x, y, I(z)]

for all x, y, z 2 A.

Example 3.2. The complex number set C with a ternary product [x, y, z] = xyz for all x, y, z 2 C,

is a ternary Banach algebra.

Define I : C ! C by

I(x) = 3x

for all x 2 C. Then I is a ternary antiderivation.

Definition 3.3 ([13]). Let A be a ternary Banach algebra. A double sequence {an,m} in A con-

verges to L 2 A and we write lim
n,m!1

an,m = L if for every ✏ > 0 there is an integer N such that

for all n,m � N ,

|an,m � L| < ✏.

If no such number L exists, we say that {an,m} diverges.
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Lemma 3.4 ([23]). Let A be complex Banach algebra and let f : A ! A be an additive mapping

such that f(µx) = µf(x) for all µ 2 T1 := {� 2 C : |�| = 1} and all x 2 A, then f is C�linear.

Theorem 3.5. Let ⇤ : A ⇥ A ⇥ A ! [0,1) be a function, and let there exists an L < 1 with

satisfying

⇤ (x, y, z)  L

8
⇤(2x, 2y, 2z) (3.1)

for all x, y, z 2 A. Assume that F : A ! A is a mapping such that

kF(µ(x+ y + z))� µF(x+ z)� µF(y � x+ z)� µF(x� z)k (3.2)

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z) + F(x)� F(z))k+ ⇤(x, y, z)

and

k[F(x),F(y),F(z)]� F [F(x), y, z]� F [x,F(y), z]� F [x, y,F(z)]k  ⇤(x, y, z) (3.3)

for all µ 2 T1 and all x, y, z 2 A. If F is continuous and in addition, Fn(x) := 2nF
�

x
2n

�
converges

uniformly for all x 2 A, double sequences {2n+mF
�
F
�

x
2n

� y
2m

�
} and {2n+mF

�
x
2nF

� y
2m

��
} are

convergent for all x, y 2 A, then there exists a unique continuous ternary antiderivation I : A ! A
such that

kF(x)� I(x)k  L

2(4� L)
⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A.

Proof. Assume that F : A ! A satisfies (3.2).

Putting µ = 1 and x = y = z = 0 in (3.2), we obtain

2kF(0)k  (|↵|+ |�|)kF(0)k+ ⇤(0, 0, 0)

and thus F(0) = 0, since |↵|+ |�| < 2 and by (3.1), ⇤(0, 0, 0) = 0.

Letting x = z = t
2 and y = t in (3.2), we have

kF(2µt)� 2µF(t)k  ⇤

✓
t

2
, t,

t

2

◆
(3.4)

for all µ 2 T1 and all t 2 A.

Next, consider the set

⌦ := {! : A ! A : !(0) = 0}
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and define the generalized metric on ⌦

d(✓,!) = inf
n
k 2 R�0 : k✓(x)� !(x)k  k⇤

⇣
x

2
, x,

x

2

⌘
, 8x 2 A

o
,

where as usual, inf ; = +1. By [20, Lemma 1.2], (⌦, d) is a complete generalized metric space.

Now we define the linear mapping T : ⌦ ! ⌦ such that

T ✓(x) = 2✓
⇣
x

2

⌘

for all x 2 A.

Let ✓,! 2 ⌦ be given such that d(✓,!) = ". Then

k✓(x)� !(x)k  "⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A. Hence

kT ✓(x)� T !(x)k =
���2✓

⇣
x

2

⌘
� 2!

⇣
x

2

⌘���  2"⇤
⇣
x

4
,
x

2
,
x

4

⌘
 L

4
"⇤

⇣
x

2
, x,

x

2

⌘

for all x 2 A. So d(✓,!) = " implies that d(T ✓(x), T !(x))  L
4 ". Hence

d(T ✓(x), T !(x))  L

4
d(✓,!)

for all ✓,! 2 ⌦. It follows from (3.4) that

���F(x)� 2F
⇣
x

2

⌘���  ⇤
⇣
x

4
,
x

2
,
x

4

⌘
 L

8
⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A and so d(F , T F)  L
8 .

Using the fixed point alternative we deduce the existence of a unique fixed point of T , that is, the

existence of a mapping I : A ! A such that

I(x) = 2I
⇣
x

2

⌘

with the following property: there exists a k 2 (0,1) satisfying

kF(x)� I(x)k  k⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A.

Since lim
n!1

d(T nF , I) = 0,

lim
n!1

2nF
⇣
x

2n

⌘
= I(x)
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for all x 2 A. Also, d(F , I)  1
1�L

4
d(F , T F) which implies

kF(x)� I(x)k  L

2(4� L)
⇤
⇣
x

2
, x,

x

2

⌘

for all x 2 A. It follows from (3.1) and (3.2) that

kI(x+ y + z)� I(x+ z)� I(y � x+ z)� I(x� z)k

= lim
n!1

����2
n

✓
F
✓
x+ y + z

2n

◆
� F

✓
x+ z

2n

◆
� F

✓
y � x+ z

2n

◆
� F

✓
x� z

2n

◆◆����

 lim
n!1

2n
����↵

✓
F
✓
x+ y � z

2n

◆
+ F

✓
x� z

2n

◆
� F

⇣
y

2n

⌘◆����

+ lim
n!1

2n
�����

✓
F
✓
x� z

2n

◆
+ F

⇣
x

2n

⌘
� F

⇣
z

2n

⌘◆����+ lim
n!1

2n⇤
⇣
x

2n
,
y

2n
,
z

2n

⌘

= k↵(I(x+ y � z) + I(x� z)� I(y))k+ k�(I(x� z) + I(x)� I(z))k

for all x, y, z 2 A. By Lemma 2.1, the mapping I is additive.

Letting x = z = t
2 and y = 0 in (3.2), we get

kF(µt)� µF(t)k  ⇤

✓
t

2
, 0,

t

2

◆

for all µ 2 T1 and all t 2 A. Thus

kI(µx)� µI(x)k = lim
n!1

2n
���F

⇣
µ
x

2n

⌘
� µF

⇣
x

2n

⌘���

 lim
n!1

2n⇤
⇣

x

2n+1
, 0,

x

2n+1

⌘
 lim

n!1

✓
L

4

◆n

⇤
⇣
x

2
, 0,

x

2

⌘
,

which tends to zero as n ! 1 and so I(µx) = µI(x) for all µ 2 T1 and all x 2 A. Therefore, by

Lemma 3.4, the mapping I is C�linear.

Since F is continuous and Fn converges uniformly, I is continuous. It follows from (3.1) and (3.3)

that

k[I(x), I(y), I(z)]� I[I(x), y, z]� I[x, I(y), z]� I[x, y, I(z)]k

= lim
n!1

���23n
h
F
⇣
x

2n

⌘
,F

⇣
y

2n

⌘
,F

⇣
z

2n

⌘i
� 2nI

h
F
⇣
x

2n

⌘
, y, z

i

�2nI
h
x,F

⇣
y

2n

⌘
, z

i
� 2nI

h
x, y,F

⇣
z

2n

⌘i���

= lim
n!1

23n
���
h
F
⇣
x

2n

⌘
,F

⇣
y

2n

⌘
,F

⇣
z

2n

⌘i
� F

h
F
⇣
x

2n

⌘
,
y

2n
,
z

2n

i

�F
h
x

2n
,F

⇣
y

2n

⌘
,
z

2n

i
� F

h
x

2n
,
y

2n
,F

⇣
z

2n

⌘i���

 lim
n!1

23n⇤
⇣
x

2n
,
y

2n
,
z

2n

⌘
 lim

n!1
L
n⇤(x, y, z)
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for all µ 2 T1 and all x, y, z 2 A. Since L < 1, the C�linear mapping I is a ternary antiderivation.

Corollary 3.6. Let F : A ! A be a mapping satisfying

kF(µ(x+ y + z))� µF(x+ z)� µF(y � x+ z)� µF(x� z)k

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z) + F(x)� F(z))k+ k[[x, x, y], y, z]k,

k[F(x),F(y),F(z)]� F [F(x), y, z] + F [x,F(y), z] + F [x, y,F(z)]k  k[[x, x, y], y, z]k

for all x, y, z 2 A. If F is continuous and in addition, Fn(x) := 2nF
�

x
2n

�
converges uniformly for

all x 2 A, double sequences {2n+mF
�
F
�

x
2n

� y
2m

�
} and {2n+mF

�
x
2nF

� y
2m

��
} are convergent for

all x, y 2 A, then there exists a unique continuous ternary antiderivation I : A ! A such that

kF(x)� I(x)k  1

50
kxk5

for all x 2 A.

Proof. The proof follows from Theorem 3.5 by taking L = 32
33 and ⇤(x, y, z) = k[[x, x, y], y, z]k for

all x, y, z 2 A.

4 Stability of continuous ternary antiderivations in ternary

Banach algebras

In this section, we prove the stability of continuous ternary antiderivations in ternary Banach

algebras.

Theorem 4.1. Let ⇤ : A⇥A⇥A ! [0,1) be a function. If there exists an L < 1 with satisfying

⇤ (x, y, z)  L

8
⇤(2x, 2y, 2z) (4.1)

for all x, y, z 2 A. Assume that F : A ! A is a mapping satisfying

kF(µ(x+ y + z))� µF(x+ z)� µF(y � x+ z)� µF(x� z)k (4.2)

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z) + F(x)� F(z))k+ ⇤(x, y, z)

and (3.3) for all µ with |µ| < 1 (resp. |µ| > 1). If F is continuous and in addition, Fn(x) :=

2nF
�

x
2n

�
converges uniformly for all x 2 A, double sequences {2n+mF

�
F
�

x
2n

� y
2m

�
} and
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{2n+mF
�

x
2nF

� y
2m

��
} are convergent for all x, y 2 A, then there exists a unique continuous ternary

antiderivation I : A ! A such that

kF(x)� I(x)k  L

2(4� L)
⇤
⇣
x

2
, x,

x

2

⌘
(4.3)

for all x 2 A.

Proof. Let µ 2 T1. Then there exists a sequence {µn}1n=1 with |µn| < 1 (resp. |µn| > 1) such that

lim
n!1

µn = µ.

By (4.2) we get

kF(µn(x+ y + z))� µnF(x+ z)� µnF(y � x+ z)� µnF(x� z)k

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z) + F(x)� F(z))k+ ⇤(x, y, z)

for all positive integers n, all µn with |µn| < 1 (resp. |µn| > 1) and all x, y, z 2 A.

Passing to the limit as n ! 1, and using the continuity of F and k · k, we obtain

kF(µ(x+ y + z))� µF(x+ z)� µF(y � x+ z)� µF(x� z)k

 k↵(F(x+ y � z) + F(x� z)� F(y))k+ k�(F(x� z) + F(x)� F(z))k+ ⇤(x, y, z)

for all µ 2 T1 and all x, y, z 2 A

Therefore, by the same reasoning as in the proof of Theorem 3.5, there exists a unique ternary

antiderivation I : A ! A satisfying (4.3).
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1 Introduction

The foundations of the real Hardy space H
p(Rn), p 2 [1,+1[, were started with the works of

C. Fefferman and E. M. Stein [10]. Hardy spaces were deeply developed later by R. Coifman

and G. Weiss [8]. The theory of Hardy spaces H
p(Rn), plays a very important role in harmonic

analysis and operator theory and it is shown that it has many interesting applications, for more

details we refer the reader to [20]. In the euclidean case, there are many equivalent definitions of

the Hardy spaces H
p(Rn) either by using the Poisson maximal function or by using the atomic

decomposition. Uchiyama [19] characterized also the Hardy spaces Hp(Rn) by means of Littlewood-

Paley g-function.

In [5], Baccar, Ben Hamadi and Rachdi have considered the following singular partial differential

operators 8
>><

>>:

�1 =
@

@x
,

�2 =
@
2

@r2
+

2↵+ 1

r

@

@r
�

@
2

@x2
; (r, x) 2]0,+1[⇥R; ↵ > 0,

and they associated to �1 and �2 the so called Riemann-Liouville operator R↵ defined on Ce(R2)
�
The space of continuous functions on R2, even with respect to the first variable

�
, by

R↵(f)(r, x) =

8
>>>><

>>>>:

↵

⇡

Z 1

�1

Z 1

�1
f(rs

p
1� t2, x+ rt)(1� t

2)↵�
1
2 (1� s

2)↵�1
dt ds, if ↵ > 0,

1

⇡

Z 1

�1
f(r
p
1� t2, x+ rt)

dtp
(1� t2)

, if ↵ = 0.

The Riemann-Liouville operator R↵ generalizes the spherical mean operator given by

R0(f)(r, x) =
1

2⇡

Z 2⇡

0
f(r sin ✓, x+ r cos ✓) d✓,

which plays an important role in image processing of the so-called synthetic aperture radar (SAR)

data, and in the linearized inverse scattering problem in acoustics, as well as in the interpretation

of many physical phenomena in quantum mechanics, see [9, 11, 12].

According to [5], the Fourier transform F↵ associated with the Riemann-Liouville operator is

defined for every (s, y) 2 ⌥, by

F↵(f)(s, y) =

Z +1

0

Z

R
f(r, x)R↵

�
cos(s.)e�iy.

�
(r, x)

r
2↵+1

dr dx

2↵�(↵+ 1)
p
2⇡

,

for a suitable integrable function, where ⌥ is a set that will be defined later.
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Many harmonic analysis results have been already proved by Baccar, Ben Hamadi, Rachdi, Rouz

and Omri for the Riemann-Liouville operator and its Fourier transform [3, 4, 5, 6, 7, 18]. Hleili,

Mejjaoli, Omri and Rachdi have also established several uncertainty principles for the same Fourier

transform F↵ [13, 15, 16, 17] .

Our purpose in this work is to define and study the Hardy’s spaces H
p
↵ related to the Riemann-

Liouville operator and to characterize theses spaces for p 2 [1,+1[ by using Poisson maximal

operator associated to R↵ and by using atomic decomposition as well.

The paper is organized as follows. In the second section, we give some classical harmonic analysis

results related to the Riemann-Liouville operator, the third section is devoted to the characteriza-

tion of the Hardy spaces related to R↵ by using its Poisson maximal function. In the last section,

we introduce the atomic decomposition which allows us to characterize H
1
↵.

2 Riemann-Liouville operator

In this section we give and develop some harmonic analysis results related to the Riemann-Liouville

operator that we will use later. For the proofs of these results we refer the reader to [5] and [7].

In [5] Baccar, Ben Hamadi and Rachdi considered the following system

8
>><

>>:

41u = �i�u(r, x)

42u = �µ
2
u(r, x)

u(0, 0) = 1, @u
@x (0, x), 8x 2 R

and showed that for all (µ,�) 2 C2, this system admits a unique infinitely differentiable solution

given by

'µ,�(r, x) = j↵

⇣
r

p
µ2 + �2

⌘
e
�i�x

,

where j↵ is the modified Bessel function of the first kind and index ↵, see [14, 21].

The function 'µ,� is bounded on [0,+1[⇥R if and only if (µ,�) belongs to the set

⌥ = R2
[
�
(ir, x), (r, x) 2 ⇥R2

, |r| 6 |x|
 
.

In this case, we have

sup
(r,x)2R2

|'µ,�(r, x)| = 1.

In the following we denote by
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• ⌫↵ the measure defined on [0,+1[⇥R by

d⌫↵(r, x) =
r
2↵+1

2↵�(↵+ 1)
p
2⇡

dr dx,

• L
p(d⌫↵), p 2 [1,+1], is the Lebesgue space of all measurable functions f on [0,+1[⇥R such

that kfkp,⌫↵ < +1, where

kfkp,⌫↵ =

8
>>><

>>>:

✓Z +1

0

Z

R
|f(r, x)|pd⌫↵(r, x)

◆ 1
p

, if p 2 [1,+1[

ess sup
(r,x)2[0,+1[⇥R

|f(r, x)|, if p = +1.

• L
1
loc(d⌫↵) the space of measurable functions on [0,+1[⇥R that are locally integrable on

[0,+1[⇥R with respect to the measure ⌫↵.

According to [2], the eigenfunction 'µ,� satisfies the following product formula

'µ,�(r, x)'µ,�(s, y) =
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0

⇣
'µ,�(

p
r2 + s2 + 2rs cos ✓, x+ y)

⌘
sin2↵ ✓ d✓.

• h.|.i↵is the inner product on the Hilbert space L
2(d⌫↵) defined by

hf |gi↵ =

Z +1

0

Z

R
f(r, x)g(r, x) d⌫↵(r, x).

This allows us to define the translation operators as follows.

Definition 2.1. For every (r, x) 2 [0,+1[⇥R, the translation operator T(r,x) associated with the

operator R↵ is defined on L
1(d⌫↵) by, for every (s, y) 2 [0,+1[⇥R

T(r,x)(f)(s, y) =
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0
f

⇣p
r2 + s2 + 2rs cos ✓, x+ y

⌘
(sin ✓)2↵d✓,

whenever the integral on the right hand side is well defined.

Proposition 2.2. Let f be in L
1(d⌫↵), then for every (r, x) 2 [0,+1[⇥R, we have

Z +1

0

Z

R
T(r,x)(f)(s, y) d⌫↵(s, y) =

Z +1

0

Z

R
f(s, y) d⌫↵(s, y).

Proposition 2.3. For every f 2 L
p(d⌫↵), 1 6 p 6 +1, and for every (r, x) 2 [0,+1[⇥R, the

function T(r,x)(f) belongs to L
p(d⌫↵) and we have

kT(r,x)(f)kp,⌫↵ 6 kfkp,⌫↵ . (2.1)
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Definition 2.4. The convolution product of two measurable functions f and g on [0,+1[⇥R is

defined on [0,+1[⇥R, by

(f ⇤ g)(r, x) =

Z +1

0

Z

R
T(r,�x)(f̌)(s, y)g(s, y) d⌫↵(s, y),

where f̌(s, y) = f(s,�y), whenever the integral an the right hand side is well defined.
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Theorem 2.5. If p, q, r 2 [1,+1] are such that 1
r +1 = 1

p+
1
q then, for every function f 2 L

p(d⌫↵)

and g 2 L
q(d⌫↵), f ⇤ g belongs to L

r(d⌫↵) and we have the Young’s inequality

kf ⇤ gkr,d⌫↵ 6 kfkp,⌫↵kgkq,⌫↵ .

Definition 2.6. The Fourier transform F↵ associated with the operator R↵ is defined for every

integrable function f on [0,+1[⇥R with respect to the measure ⌫↵, by

8(µ,�) 2 ⌥, F↵(f)(µ,�) =

Z +1

0

Z

R
f(r, x)'µ,�(r, x) d⌫↵(r, x).

Proposition 2.7.

(i) Let f 2 L
1(d⌫↵) and (r, x) 2 [0,+1[⇥R we have

8(µ,�) 2 ⌥, F↵(T(r,�x)(f))(µ,�) = 'µ,�(r, x)F↵(f)(µ,�).

(ii) Let f, g 2 L
1(d⌫↵), then we have

8(µ,�) 2 ⌥, F↵(f ⇤ g)(µ,�) = F↵(f)(µ,�)F↵(g)(µ,�).

In the following, we denote by

• ⌥+ the subspace of ⌥ given by

⌥+ = [0,+1[⇥R [
�
(ir, x), (r, x) 2 [0,+1[⇥R, 0 6 r 6 |x|

 
.

• B⌥+ the ��algebra defined on ⌥+ by

B⌥+ = {✓
�1(B), B 2 Bor([0,+1[⇥R)}

where Bor([0,+1[⇥R) is the usual Borel ��algebra on [0,+1[⇥R and ✓ is bijective function

defined by
✓ : ⌥+ �! [0,+1[⇥R

(µ,�) 7�!

⇣p
µ2 + �2,�

⌘
.

• �↵ the mesure defined on B⌥+ by

�↵(A) = ⌫↵(✓(A)), 8A 2 B⌥+ .
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• L
p(d�↵), p 2 [1,+1] is the Lebesgue space of measurable functions f defined on ⌥+ satisfying

kfkp,�↵ < +1, where

kfkp,�↵ =

8
>>>><

>>>>:

 Z

⌥+

|f(µ,�)|pd�↵(µ,�)

! 1
p

, if p 2 [1,+1[

ess sup
(µ,�)2⌥+

|f(µ,�)|, if p = +1.

• Se(R2) the space of infinitely differentiable functions on R2, rapidly decreassing together with

all their derivatives, even with respect the first variable.

The space Se(R2) is equipped with the topology associated to the countable family of norms

8m 2 N, ⇢m(') = sup
(r,x)2[0,+1[⇥R

k+|�|m

(1 + r
2 + x

2)k|D�(')(r, x)|.

• De(R2) the space of infinitely differentiable functions on R2 with compact support, even with

respect the first variable.

Proposition 2.8. Let f 2 L
1(d⌫↵). For every (µ,�) 2 ⌥, we have

F↵(f)(µ,�) = eF↵(f) � ✓(µ,�),

where
eF↵(f)(µ,�) =

Z +1

0

Z

R
f(r, x)j↵(rµ)e

�i�x
d⌫↵(r, x).

Theorem 2.9. eF↵ is an isomorphism from Se(R2) onto itself.

Proposition 2.10. For every f 2 L
1(d⌫↵) and for all (r, x), (µ,�) 2 [0,+1[⇥R, we have

eF↵(T(r,x)f)(µ,�) = j↵(rµ)e
�ix� eF↵(f)(µ,�).

Theorem 2.11 (Inversion formula for F↵). Let f 2 L
1(d⌫↵) such that F↵(f) belongs to L

1(d�↵),

then for almost every (r, x) 2 [0,+1[⇥R,

f(r, x) =

Z

⌥+

F↵(f)(µ,�)'µ,�(r, x) d�↵(µ,�).

Theorem 2.12 (Plancherel’s theorem). The Fourier transform F↵ can be extended to an isometric

isomorphism from L
2(d⌫↵) onto L

2(d�↵).
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3 Hardy space associated with the Riemann-Liouville oper-

ator

Definition 3.1. For every t > 0, the Poisson kernel pt, associated with the Riemann-Liouville

operator R↵ is defined on R2 by

pt(r, x) =

Z

⌥+

e
�t
p

s2+2y2
's,y(r, x) d�↵(s, y) = F�1

↵

⇣
e
�t

p
.2+2.2

⌘
(r, x).

Lemma 3.2. For every t > 0, the Poisson kernel pt is given by

8(r, x) 2 R2
, pt(r, x) = 2↵+

3
2�(↵+ 2)

t

(t2 + r2 + x2)↵+2
.

Proof. See [2].

Definition 3.3 (Bounded distribution). Let v 2 S0

e(R2), we say that v is a bounded tempered

distribution, if

8' 2 Se(R2), ' ⇤ v 2 L
1(d⌫↵)

and if the operator
�v : Se(R2) �! L

1(d⌫↵)

' 7�! ' ⇤ v

is bounded.

Proposition 3.4. Let v 2 S0

e(R2) be a bounded tempered distribution and f 2 L
1(d⌫↵). Then, for

every ' 2 Se(R2)

hf ⇤ v,'i =

Z +1

0

Z

R
'̆ ⇤ v(r, x)f̌(r, x) d⌫↵(r, x).

where '̆(r, x) = '(�r,�x), is well defined. Moreover, f ⇤ v is a tempered distribution.

Proof. Let v be a bounded tempered distribution. For all f 2 L
1(d⌫↵) and ' 2 Se(R2), we have

Z +1

0

Z

R
|'̆ ⇤ v(r, x)||f̌(r, x)| d⌫↵(r, x)  k'̆ ⇤ vk1,⌫↵kfk1,⌫↵ < +1

and consequently, the integral

hf ⇤ v,'i =

Z +1

0

Z

R
'̆ ⇤ v(r, x)f̌(r, x) d⌫↵(r, x)

is well defined.
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It is clear that f ⇤ v is a linear operator. Now, for every ' 2 Se(R2), we have

|hf ⇤ v,'i| 6
Z +1

0

Z

R
|'̆ ⇤ v(r, x)||f̌(r, x)| d⌫↵(r, x)

6 k'̆ ⇤ vk1,d⌫↵kf̌k1,⌫↵ 6 C⇢m('̆)kfk1,⌫↵

6 Ckfk1,d⌫↵⇢m(').

Then, f ⇤ v is a tempered distribution.

Proposition 3.5. For every bounded tempered distribution v 2 S0

e(R2) and for every t > 0,

pt ⇤ v 2 L
1(d⌫↵).

Proof. By Urysohn’s lemma, we know that there exits a function f 2 De(R2) such that

8
>>>><

>>>>:

f ⌘ 1, on B(0, 1/2)

f ⌘ 0, on B
c(0, 1)

0 6 f 6 1.

Let ' = eF�1
↵ (f) then ' 2 Se(R2) and eF↵(') = f = 1 on B(0, 1/2), hence for ⌘ = 1 � eF↵('),

we deduce that ⌘ 2 C1

e (R2) and ⌘ = 0 on B(0, 1/2). Finally, let g the function defined by

g(r, x) = e
�|(r,x)|

⌘(r, x) and  = eF�1
↵ (g), then for all t > 0 and for all (r, x) 2 R2, we have

eF↵(pt)(r, x) = e
�t

p
r2+x2

= e
�t

p
r2+x2

⇣
eF↵(')(tr, tx) + ⌘(tr, tx)

⌘

= e
�t

p
r2+x2 eF↵('t)(r, x) + eF↵( t)(r, x)

= eF↵(pt)(r, x) eF↵('t)(r, x) + eF↵( t)(r, x)

= eF↵(pt ⇤ 't +  t)(r, x)

Consequently, by the fact that eF↵ is injective, we get

pt = pt ⇤ 't +  t

and therefore

pt ⇤ v = pt ⇤ 't ⇤ v +  t ⇤ v.

Since 't and  t belongs to Se(R2), 't ⇤ v and  t ⇤ v are bounded on R2 and pt 2 L
1(⌫↵), then

pt ⇤ 't ⇤ v is a bounded function and the same holds for pt ⇤ v.
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Definition 3.6. Let f 2 S0

e(R2) be a bounded tempered distribution. The Poisson maximal function

P
↵
f associated with the Riemann-Liouville operator R↵ is defined on R2 by

P
↵
f (r, x) = sup

t>0
|pt ⇤ f(r, x)|.

Definition 3.7 (Hardy space). For every p 2 [1,+1[, the Hardy space H
p
↵ associated with the

Riemann-Liouville operator is the space of all the bounded tempered distributions f on R2 satisfying

P
↵
f 2 L

p(d⌫↵).

We set

kfkHp
↵
= kP

↵
f kp,⌫↵ . (3.1)

Proposition 3.8. Let f 2 S0

e(R2) be a bounded tempered distribution. Then,

lim
t!0

pt ⇤ f = f in S0

e(R2).

Proof. Let ⌘ 2 Se(R2). First, we will show that lim
t!0

pt ⇤ ⌘ ⇤ f = ⌘ ⇤ f in S0

e(R2), thus by using

Fubini’s theorem, we deduce that for every  2 Se(R2), we have

hpt ⇤ ⌘ ⇤ f, i↵ =

Z +1

0

Z

R
(pt ⇤ ⌘ ⇤ f)(r, x) (r, x) d⌫↵(r, x)

=

Z +1

0

Z

R

✓Z +1

0

Z

R
T(r,�x)(p̌t)(s, u)⌘ ⇤ f(s, u)d⌫↵(s, u)

◆
 (r, x) d⌫↵(r, x)

=

Z +1

0

Z

R

✓Z +1

0

Z

R
T(r,�x)(p̌t)(s, u) (r, x) d⌫↵(r, x)

◆
⌘ ⇤ f(s, u) d⌫↵(s, u)

=

Z +1

0

Z

R

✓Z +1

0

Z

R
T(s,�u)(p̌t)(r, x)) (r, x) d⌫↵(r, x)

◆
⌘ ⇤ f(s, u) d⌫↵(s, u)

=

Z +1

0

Z

R
pt ⇤  (s, t)⌘ ⇤ f(s, t) d⌫↵(s, t).

Using the dominated convergence theorem, we have

lim
t!0

hpt ⇤ ⌘ ⇤ f, i↵ = lim
t!0

Z +1

0

Z

R
pt ⇤  (s, t)⌘ ⇤ f(s, t) d⌫↵(s, t)

=

Z +1

0

Z

R
lim
t!0

pt ⇤  (s, t)⌘ ⇤ f(s, t) d⌫↵(s, t)

=

Z +1

0

Z

R
 (s, t) ⌘ ⇤ f(s, t) d⌫↵(s, t)

= h⌘ ⇤ f, i↵.
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Then,

lim
t!0

pt ⇤ ⌘ ⇤ f = ⌘ ⇤ f in S0

e(R2). (3.2)

Now, we want to show that

lim
t!0

F↵(pt)(1�F↵(⌘))F↵(f) = (1�F↵(⌘))F↵(f) in S0

e(R2).

F↵(pt)(1�F↵(⌘)) is a infinitely differentiable function on R2, then for any  2 Se(R2), we have

lim
t!0

hF↵(pt)(1�F↵(⌘))F↵(f), i↵ = lim
t!0

hF↵(f),F↵(pt)(1�F↵(⌘)) i↵

=
D
F↵(f), lim

t!0
F↵(pt)(1�F↵(⌘)) 

E

↵

= hF↵(f), (1�F↵(⌘)) i↵

= h(1�F↵(⌘))F↵(f), i↵.

Hence,

lim
t!0

F↵(pt)(1�F↵(⌘))F↵(f) = (1�F↵(⌘))F↵(f) in S0

e(R2). (3.3)

Consequently,

lim
t!0

F↵(pt ⇤ f � pt ⇤ ⌘ ⇤ f) = F↵(f � ⌘ ⇤ f) in S0

e(R2),

which implies that

lim
t!0

pt ⇤ f � pt ⇤ ⌘ ⇤ f = f � ⌘ ⇤ f.

Then,

lim
t!0

pt ⇤ f � lim
t!0

pt ⇤ ⌘ ⇤ f = f � ⌘ ⇤ f.

From the Relation (3.2), we have

lim
t!0

pt ⇤ f � ⌘ ⇤ f = f � ⌘ ⇤ f.

Then,

lim
t!0

pt ⇤ f = f � ⌘ ⇤ f + ⌘ ⇤ f = f,

which achieves the proof.

Definition 3.9 (Hardy-Littlewood maximal function). Let f 2 L
1
loc(d⌫↵). The Hardy-Littlewood

maximal function M↵(f) associated with the Riemann-Liouville operator R↵ is defined on

[0,+1[⇥R, by

M↵(f)(r, x) = sup
⌘>0

1

⌫↵(B((0, 0), ⌘))

Z

B((0,0),⌘)
T(r,�x)(|f̌ |)(s, y) d⌫↵(s, y).
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Theorem 3.10 (The boundedness of M↵). For every p 2]1,+1], the maximal operator M↵ is of

strong type (p, p) from L
p(d⌫↵) into itself, that is for every p 2]1,+1[ there exists Cp > 0 such

that for every f 2 L
p(d⌫↵)

kM↵(f)kp,⌫↵ 6 Cpkfkp,⌫↵

Proof. See [1].

Proposition 3.11. Let k be a nonnegative decreasing funtion on [0,+1[ which is continuous

except possibly at finite number of points. We define the function K on [0,+1[⇥R by

K(r, x) = k

⇣p
r2 + x2

⌘
.

Then, for every locally integrable function f on [0,+1[⇥R we have

sup
✏>0

(K✏ ⇤ |f |(r, x)) 6 kKk1,⌫↵M↵(f)(r, x), (3.4)

where K✏(r, x) =
1

✏2↵+3
K

⇣
r

✏
,
x

✏

⌘
.

Proof. First, we prove the relation (3.4), when K is continuous with compact support such that

supp(K) ⇢ B(0, R), where R > 0 and f 2 L
1
loc(d⌫↵). We will prove that

sup
✏>0

(K✏ ⇤ |f |(0, 0)) 6
1

(2⇡)
1
2 2↵�(↵+ 1)

M↵(f)(0, 0)kKk1,⌫↵ . (3.5)

K✏ ⇤ |f |(0, 0) =

Z +1

0

Z

R
|f(s, x)|K✏(s, x) d⌫↵(s, x)

=

Z +1

0

Z

R
|f(s, x)|K✏(s, x)

s
2↵+1

2↵
p
2⇡ �(↵+ 1)

ds dx

=

Z +1

0

Z ⇡
2

�
⇡
2

|f(r cos ✓, r sin ✓)|K✏(r, 0)r
(r cos(✓))2↵+1

2↵
p
2⇡ �(↵+ 1)

dr d✓.

Let F and G be the functions defined on [0,+1[ by

F (r) =

Z ⇡
2

�
⇡
2

|f(r cos ✓, r sin ✓))| cos2↵+1
✓

d✓
p
2⇡

G(r) =

Z r

0
F (y)y2↵+2 dy

2↵�(↵+ 1)
.
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By integration by parts, we obtain

K✏ ⇤ |f |(0, 0) =

Z +1

0
F (r)K✏(r, 0)r

2↵+2 dr

2↵�(↵+ 1)

=

Z ✏R

0
F (r)K✏(r, 0)r

2↵+2 dr

2↵�(↵+ 1)

= G(✏R)K✏(✏R, 0)�G(0)K✏(0, 0)�

Z ✏R

0
G(r)dK✏(r, 0)

= �

Z ✏R

0
G(r)dK✏(r, 0)

=

Z +1

0
G(r)d (�K✏) (r, 0),

where the last integrals are understood in the Lebesgue-Stieltjes sense.

On the other hand,

G(r) =

Z r

0
F (y)

y
2↵+2

2↵�(↵+ 1)
dy

=

Z r

0

Z ⇡
2

�
⇡
2

|f(r cos ✓, r sin ✓))|
y
2↵+2 cos2↵+1

✓

2↵
p
2⇡ �(↵+ 1)

d✓ dy

=

Z

{(s,x)2[0,+1[⇥R:
p
s2+x26r}

|f(s, x)| d⌫↵(s, x)

6 M↵(f)(0, 0)⌫↵
⇣n

(s, x) 2 [0,+1[⇥R :
p
s2 + x2 6 r

o⌘

= M↵(f)(0, 0)⌫↵
⇣n

(s, x) 2 [0,+1[⇥R :
p
s2 + x2 6 1

o⌘
r
2↵+3

.

Consequently, we use the integration by parts, we obtain

Z +1

0
G(r)d (�K✏) (r, 0)

6 M↵(f)(0, 0)⌫↵
⇣n

(s, x) 2 [0,+1[⇥R :
p

s2 + x2 6 1
o⌘✓Z +1

0
r
2↵+3

d (�K✏) (r, 0)

◆

= (2↵+ 3)M↵(f)(0, 0)⌫↵
⇣n

(s, x) 2 [0,+1[⇥R :
p
s2 + x2 6 1

o⌘Z +1

0
r
2↵+2

K✏(r, 0) dr

Since,

⌫↵

⇣n
(s, x) 2 [0,+1[⇥R :

p
s2 + x2 6 1

o⌘
=

Z

{(r,x)2[0,+1[⇥R:
p
s2+x261}

s
2↵+1

2↵
p
2⇡ �(↵+ 1)

ds dx

=
1

2↵
p
2⇡ �(↵+ 1)

Z 1

0

Z ⇡
2

�
⇡
2

(r cos ✓)2↵+1
r dr d✓

=
1

2↵
p
2⇡ �(↵+ 1)

Z ⇡
2

�
⇡
2

1

2↵+ 3
cos2↵+1

✓ d✓.
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Then,

Z +1

0
G(r)d(�K✏)(r, 0)

6 2↵+ 3

(2⇡)
1
2 2↵�(↵+ 1)

M↵(f)(0, 0)

Z +1

0

Z ⇡
2

�
⇡
2

1

2↵+ 3
(r cos ✓)2↵+1

rK✏(r, 0) dr d✓

= M↵(f)(0, 0)kK✏k1,⌫↵

= M↵(f)(0, 0)kKk1,⌫↵ .

For the general case, let us consider an integrable function K on [0,+1[⇥R. We know that Cc(R) is

dense in L
1(R). Then, for every K 2 L

1(d⌫↵), there exists a sequence (Kj)j2N of radial, compactly

supported, continuous functions increase to K such that

lim
j!+1

Kj = K

From the Relation (3.5), we have

lim
j!+1

sup
✏>0

(Kj,✏ ⇤ |f |(0, 0)) 6 lim
j!+1

M↵(f)(0, 0)kKjk1,⌫↵ .

Then,

sup
✏>0

(K✏ ⇤ |f |(0, 0)) 6 M↵(f)(0, 0)kKk1,⌫↵ .

Let f 2 L
1
loc(d⌫↵) and (µ,�) 2 [0,+1[⇥R, we denote by

g(x, y) = T(µ,��)(|f̌ |)(x, y), 8(x, y) 2 [0,+1[⇥R.

M↵(g)(0, 0) = sup
⌘>0

1

⌫↵(B((0, 0), ⌘))

Z

B((0,0),⌘)
T(0,0)(|ǧ|)(s, y) d⌫↵(s, y)

= sup
⌘>0

1

⌫↵(B((0, 0), ⌘))

Z

B((0,0),⌘)
|ǧ|(s, y) d⌫↵(s, y)

= sup
⌘>0

1

⌫↵(B((0, 0), ⌘))

Z

B((0,0),⌘)
T(µ,��)(|f̌ |)(s, y) d⌫↵(s, y)

= M↵(f)(µ,�).

Moreover, for all ✏ > 0 we have

K✏ ⇤ |g|(0, 0) =

Z +1

0

Z

R
T(0,0)(|ǧ|)(s, y)K✏(s, x) d⌫↵(s, x) =

Z +1

0

Z

R
|ǧ|(s, y)K✏(s, x) d⌫↵(s, x)

= K✏ ⇤ |f |(r, x).
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Using the Relation (3.5)

sup
✏>0

(K✏ ⇤ |f |(r, x)) 6 M↵(f)(r, x)kKk1,⌫↵ .

Theorem 3.12. For every p 2]1,+1[, H
p
↵ coincides with L

p(d⌫↵). Moreover, there exists a

constant Cp > 0 such that for every f 2 H
p
↵, we have

kfkp,⌫↵ 6 kfkHp
↵
6 Cpkfkp,⌫↵ .

Proof. Let f 2 H
p
↵. Using the Relation (3.1),

|pt ⇤ f(r, x)| 6 P
↵
f (r, x), 8(r, x) 2 R2

.

This implies that

kpt ⇤ fkp,⌫↵ 6 kP
↵
f kp,⌫↵ = kfkHp

↵
< +1.

We deduce that the set {pt ⇤ f, t > 0} lies in the closed ball B(0, kfkHp
↵
) of Lp(d⌫↵). Moreover,

L
p(d⌫↵) is the dual space of Lq(d⌫↵), where q is the conjugate exponent of p.

We define
� : L

p(d⌫↵) �! (Lq(d⌫↵))⇤

f 7�! �f

where,
�f : L

q(d⌫↵) �! C

g 7�!

Z +1

0

Z

R
f(r, x)g(r, x) d⌫d(r, x).

We know that for every f 2 L
p(d⌫↵),

k�fk(Lq(d⌫↵))⇤ = kfkp,⌫↵ .

Then,

k�pt⇤fk(Lq(d⌫↵))⇤ = kpt ⇤ fkp,⌫↵ 6 kfkHp
↵
< +1.

We deduce that the set {�pt⇤f , t > 0} lies in the closed ball B(0, kfkHp
↵
) of Lp(d⌫↵). Hence, by

Banach-Alaoglu theorem, there exist a sequence (tj)j2N and f0 2 L
p(d⌫↵) such that

lim
tj!0

�ptj ⇤f
= �f0

in the the weak* topology of Lp(d⌫↵). Then,

lim
tj!0

ptj ⇤ f = f0 in L
p(d⌫↵).
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By Proposition 3.8, we obtain that for every f 2 S
0

e(R2) bounded tempered distribution

lim
t!0

pt ⇤ f = f in S
0

e(R2).

Thus, f and f0 coincides. We have (see [2])

lim
t!0

kpt ⇤ f � fkp,⌫↵ = 0.

Moreover, we have

kfkp,⌫↵ 6 kpt ⇤ f � fkp,⌫↵ + kpt ⇤ fkp,⌫↵

6 kpt ⇤ f � fkp,⌫↵ + kP
↵
f kp,⌫↵ .

Then,

kfkp,⌫↵ 6 kP
↵
f kp,⌫↵ = kfkHp

↵
.

Using Proposition 3.11 for the function pt, we have

sup
t>0

|pt ⇤ f | 6 M↵(f).

Then,

kP
↵
f kp,⌫↵ 6 kM↵(f)kp,↵.

Thus,

kfkHp
↵
6 kM↵(f)kp,↵.

Now, from Theorem 3.10 we know that M↵ is of strong type (p, p), p 2]1,+1], we deduce that

there exists a constant Cp > 0 such that

kfkHp
↵
6 kM↵(f)kp,⌫↵ 6 Cpkfkp,⌫↵ ,

which achieves the proof.

Throughout this paper C denotes a positive constant that can change frome one line to next.
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4 Atomic Decomposition of Hardy Spaces

Definition 4.1 (Cube). A cube of [0,+1[⇥R is a subset of R2 such that

Q = [a0, b0]⇥ [a1, b1],

where b0 � a0 = b1 � a1 = L > 0.

Definition 4.2 (Atomic Decomposition). A measurable function f on R2 even with respect to the

first variable is called an L
1-atom for H

1
↵, if there exists a cube Q satisfying

(i) Supp(f) ⇢ Q.

(ii) kfk1,⌫↵ 6 1

⌫↵(Q)
.

(iii)
Z

Q
f(r, x)d⌫↵(r, x) = 0.

In the next we define the atomic space H
↵
atomic

Definition 4.3. The space H
↵
atomic is defined as the vector space of all functions f 2 L

1(d⌫↵) for

which there exists a sequence {fi}i2N of L
1-atoms of H

1
↵ and a sequence (�i)i2N 2 `

1(N), such

that

f =
+1X

i=1

�ifi.

We set

kfkH↵
atomic

= inf

(
+1X

i=1

|�i| | f =
+1X

i=1

�ifi

)
.

Now we introduce the following notations

• Z
[↵] the set of functions ' 2 C

1([0,+1[⇥R,C) satisfying '(0, 0) > 0 and for every (x, y) 2

[0,+1[⇥R.

⌅ 0 6 '(x, y) 6 C

(1 + x2 + y2)↵+2
.

⌅ 0 6 @'

@x
(x, y) 6 Cx

(1 + x2 + y2)↵+3
.

⌅ 0 6 @'

@y
(x, y) 6 Cy

(1 + x2 + y2)↵+3
.

Where C a positive constant depending on '.

• We define the function h on ]0,+1[⇥]0,+1[ by

h(r, �) =

8
><

>:

�r
�2↵�1 if � < r

2↵+2
,

�
1

2↵+2 if � > r
2↵+2

.
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• For every � > 0 and for every ' 2 Z
[↵]

, (r, x) 2]0,+1[⇥R and (s, y) 2 [0,+1[⇥R, we set

��((r, x), (s, y)) = �T(r,x)('h(r,�))(�s,�y),

where 'h(r,�)(r, x) =
1

(h(r,�))2↵+2'

⇣
r

h(r,�) ,
x

h(r,�)

⌘
.

• d↵((r, x), (s, y)) = max

✓����
Z s

r
t
2↵+1

dt

���� , |x� y|

◆
, where (r, x), (s, y) 2 [0,+1[⇥R.

• p((r, x), (s, y)) = max(|r � s|, |x� y|), where (r, x), (s, y) 2 [0,+1[⇥R.

• p
0((r, x), (y, y0)) = max(|r � s|

1
2↵+2 , |x� y|), where (r, x), (s, y) 2 [0,+1[⇥R.

Our goal now, is to prove that k.kH1
↵

and k.kH↵
atomic

are equivalent. To do this, we need some

preparation.

Proposition 4.4. Let f 2 L
1(d⌫↵). For every � > 0 and (r, x), (s, y) 2 [0,+1[⇥R, we have

T(�r,�x)(f)(�s,�y) = �
�2↵�2

T(r,x)(f��1)(s, y).

Proof.

T(�r,�x)(f)(�s,�y) =
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0
f

⇣p
(�r)2 + (�s)2 + 2�2rs cos ✓,�x+ �y

⌘
sin2↵ ✓ d✓

=
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0
f

⇣
�

p
r2 + s2 + 2rs cos ✓,�(x+ y)

⌘
sin2↵ ✓ d✓

=
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0
�
�2↵�2

f��1

⇣
�

p
r2 + s2 + 2rs cos ✓,�(x+ y)

⌘
sin2↵ ✓ d✓

= �
�2↵�2

T(r,x)(f��1)(s, y).

Proposition 4.5. For every �,� > 0 and (r, x), (s, y) 2 [0,+1[⇥R, we have

(i) h(�x,�2↵+2
�) = �h(r, �).

(ii) d↵((�r,�2↵+2
x), (�s,�2↵+2

y)) = �
2↵+2

d↵((r, x), (s, y)).

(iii) ��((�r,�x), (�s,�y)) = ���2↵�2�((r, x), (s, y)).

Proof. (i)

h(�x,�2↵+2
�) =

8
><

>:

�
2↵+2

�(�x)�2↵�1; if �
2↵+2

� < (�x)2↵+2
,

��
1

2↵+2 ; if � > x
2↵+2

.

=

8
><

>:

��x
�2↵�1; if � < x

2↵+2
,

��
1

2↵+2 ; if � > x
2↵+2

.

= �h(r, �).
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(ii)

d↵((�r,�
2↵+2

x), (�s,�2↵+2
y)) = max

 �����

Z �r

�s
t
2↵+1

dt

����� , |�
2↵+2

x� �
2↵+2

y|

!

= max

✓
�
2↵+2

����
Z r

s
t
2↵+1

dt

���� ,�
2↵+2

|x� y|

◆

= �
2↵+2

d↵((r, x), (s, y)).

(iii) Using Proposition 4.4, we get

��((�r,�x), (�s,�y)) = �T(�r,�x)('h(�r,�))(��s,��y)

= �T(r,x)('�h(r,��2↵�2�))(��s,��y)

= �
�2↵�2

�T(r,x)('h(r,��2↵�2�))(�s,�y)

= ���2↵�2�((r, x), (s, y)).

Lemma 4.6. There exist constants C > 0, � > 0 such that for every (r, x), (s, y), (t, z) 2

[0,+1[⇥R and � > 0 we have

|��((r, x), (s, y))� ��((r, x), (t, z))| 6 C

✓
d↵((s, y), (t, z))

�

◆�

. (4.1)

Proof. It is sufficient to prove the Relation (4.1) for d↵((s, y), (t, z)) <
�
C , where C is a fixed

constant large enough.

First, we will show that

L = |��((1, x), (s, y))� ��((1, x), (t, z))| 6 C

✓
d↵((s, y), (t, z))

r

◆�

. (4.2)

L = C�

����
Z ⇡

0
'h(1,�)

⇣p
1 + s2 � 2s cos ✓, x� y

⌘
sin2↵ ✓ d✓

�

Z ⇡

0
'h(1,�)

⇣p
1 + t2 � 2t cos ✓, x� z

⌘
sin2↵ ✓ d✓

����

= C
�

(h(1, �))2↵+2

�����

Z ⇡

0

 
'

 p
1 + s2 � 2s cos ✓

h(1, �)
,
x� y

t(1, �)

!

� '

 p
1 + t2 � 2t cos ✓

h(1, �)
,
x� z

h(1, �)

!!
sin2↵ ✓ d✓

����� .

Let f be a function defined by

g : [0,+1[⇥R �! R

(s, t) 7�! (g1(s, t), g2(s, t)) =

 p
1 + s2 � 2s cos ✓

h(1, �)
,
x� t

h(1, �)

!
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@(' � g)

@s
(s, t) =

@'

@s
(g(s, t))

@g1

@s
(s, t) +

@'

@t
(g(s, t))

@g2

@s
(s, t)

=
1

h(1, �))

✓
s� cos ✓

p
1 + s2 � 2s cos ✓

@'

@s
(g(s, t))�

@'

@t
(g(s, t))

◆

@(' � g)

@t
(s, t) =

@'

@s
(g(s, t))

@g1

@t
(s, t) +

@'

@t
(g(s, t))

@g2

@t
(s, t)

= �
1

h(1, �)

@'

@t
(g(s, t)).

Since ' 2 Z
[↵], we use the mean value theorem , there exist (u, u0) 2 [(s, y), (t, z)] such that

|' � g(s, y)� ' � g(t, z)| 6 k(s, y)� (t, z)k1 sup
(u,u0)2[0,+1[⇥R

kd(' � g)(u, u0)k

= p((s, y), (t, z)) sup
(u,u0)2[0,+1[⇥R

kd(' � g)(u, u0)k

Then,

L 6 C
�

(h(1, �))2↵+2
p((s, y), (t, z))

�����

Z ⇡

0

sup
(u,u0)2[0,+1[⇥R

kd(' � g)(u, u0)k sin2↵ ✓ d✓

�����

6 C
�

(h(1, �))2↵+3
p((s, y), (t, z))

⇥ sup
(u,u0)2[0,+1[⇥R

Z ⇡

0

����
u� cos ✓p

1 + u2 � 2u cos ✓

@'
@s

✓p
1 + u2 � 2u cos ✓

h(1, �)
,
x� u0

h(1, �)

◆����

+ 2

����
@'
@t

✓p
1 + u2 � 2u cos ✓

h(1, �)
,
x� u0

h(1, �)

◆���� sin
2↵ ✓ d✓

6 C�(h(1, �))2p((s, y), (t, z))

⇥ sup
(u,u0)2[0,+1[⇥R

Z ⇡

0

(|u� cos ✓|+ 2|x� u0|)
((h(1, �))2 + 1 + u2 � 2u cos ✓ + (x� u0)2)↵+3

sin2↵ ✓ d✓

6 C�(h(1, �))2p((s, y), (t, z))

⇥ sup
(u,u0)2[0,+1[⇥R

Z ⇡

0

(1� cos ✓) + |u� 1|+ 2|x� u0|)
((h(1, �))2 + 1 + u2 � 2u cos ✓ + (x� u0)2)↵+3

sin2↵ ✓ d✓

6 C�(h(1, �))2p((s, y), (t, z))

⇥ sup
(u,u0)2[0,+1[⇥R

Z ⇡

0

(1� cos ✓) + 3p((1, x), (u, u0))
((h(1, �))2 + 1 + u2 � 2u cos ✓ + (x� u0)2)↵+3

sin2↵ ✓ d✓

6 C�(h(1, �))2p((s, y), (t, z))

sup
(u,u0)2[0,+1[⇥R

Z ⇡

0

(1� cos ✓) + 3p((1, x), (u, u0))
((h(1, �))2 + (p((1, x), (u, u0)))2 + 2u(1� cos ✓))↵+3

sin2↵ ✓ d✓
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Set

E(�, u, u0, ✓) =
(1� cos ✓) + 3p((1, x), (u, u0))

((h(1, �))2 + (p((1, x), (u, u0)))2 + 2u(1� cos ✓))↵+3
.

Case 1 � > 1: we have h(1, �) = �
1

2↵+2

• If p((1, x), (u, u0)) 6 �
1

2↵+2 . Then,

E(�, u, u0, ✓) 6 (2 + 3�
1

2↵+2 )�� 2↵+6
2↵+2 = 3�� 2↵+5

2↵+2 (�� 1
2↵+2 + 1) 6 6�� 2↵+5

2↵+2 .

We have

p((s, y), (t, z)) 6 (d↵((s, y), (t, z)))
1

2↵+2 .

Then,

L 6 C��
2

2↵+2 �� 2↵+5
2↵+2 p((y, y0), (z, z0)) 6 C

p((y, y0), (z, z0))

�
1

2↵+2

6 C

✓
d↵((y, y

0), (z, z0))
�

◆ 1
2↵+2

• If p((1, x), (u, u0)) > �
1

2↵+2 . Then,

E(r, u, u0, ✓) 6 3
1 + p((1, x), (u, u0))

(p((1, x), (u, u0)))2↵+6
6 6

p((1, x), (u, u0))
(p((1, x), (u, u0)))2↵+6

= 6(p((1, x), (u, u0)))�2↵�5

Thus,

L 6 C�p((s, y), (t, z))�
2

2↵+2 sup
(u,u0)2[0,+1[⇥R

(p((1, x), (u, u0)))�2↵�5

6 C
p((s, y), (t, z))

�
1

2↵+2

6 C

✓
d↵((s, y), (t, z))

�

◆ 1
2↵+2

.

Case 2 � < 1: h(1, �) = �.

• p((1, x), (u, u0)) > 1
4

E(�, u, u0, ✓) =
(1� cos ✓) + 3p((1, x), (u, u0))

(�2 + (p((1, x), (u, u0))2 + 2u(1� cos ✓))↵+3

6 2 + 3p((1, x), (u, u0))
(p((1, x), (u, u0)))2↵+6

6 11(p((1, x), (u, u0)))�2↵�5

6 42↵+511.

Then,

L 6 C�2p((s, y), (t, z)) 6 C

✓
d↵((s, y), (t, z))

�

◆ 1
2↵+2

.
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• If p((1, x), (u, u0)) < 1
4 and p((1, x), (u, u0)) > �

4 .

L 6 C�3p((s, y), (t, z)) sup
(u,u0)2[0,+1[⇥R

Z p((1,x),(u,u0))

0

✓2↵( ✓
2

2 + 3p((1, x), (u, u0)))

(p((1, x), (u, u0)))2↵+6
d✓

+

Z ⇡

p((1,x),(u,u0))

✓2↵( ✓
2

2 + 3p((1, x), (u, u0)))

✓2↵+6
d✓

6 C�3p((s, y), (t, z)) sup
(u,u0)2[0,+1[⇥R

p((1, x), (u, u0)) + 1
(p((1, x), (u, u0)))4

+

Z ⇡

p((1,x),(u,u0))

1
2✓4

+
3p((1, x), (u, u0))

✓5
d✓

6 C�3p((s, y), (t, z)) sup
(u,u0)2[0,+1[⇥R

5
4(p((1, x), (u, u0)))4

+
2

(p((1, x), (u, u0)))3

6 C�3p((s, y), (t, z)) sup
(u,u0)2[0,+1[⇥R

1
(p((1, x), (u, u0)))4

6 C
p((s, y), (t, z))

�
.

• If p((1, x), (u, u0)) < �
4

L 6 C�3p((s, y), (t, z)) sup
(u,u0)2[0,+1[⇥R

Z �

0

✓2↵( ✓
2

2 + 2p((1, x), (u, u0)))

�2↵+6
d✓

+

Z ⇡
2

�

✓2↵( ✓
2

4 + 2p((1, x), (u, u0)))

✓2↵+6
d✓ +

Z ⇡

⇡
2

✓2↵( ✓
2

4 + 2p((1, x), (u, u0)))

✓2↵+6
d✓

6 C�3p((s, y), (t, z))

⇥ sup
(u,u0)2[0,+1[⇥R

✓
1

4�3
+

2p((1, x), (u, u0))
�5

+
1

8�3
+

p((1, x), (u, u0))
2�5

+ 2p((1, x), (u, u0))

◆

6 C�3p((s, y), (t, z))

✓
3

8�3
+

1
�4

+
�
2

◆

6 Cp((s, y), (t, z))

✓
3
8
+

1
�
+

�3

2

◆

6 C
p((s, y), (t, z))

�
.

Using (ii) and (iii) of Proposition 4.5 and the Relation (4.2), we get

|��((r, x), (s, y))� ��((r, x), (t, z))| 6 C

✓
d↵((s, y), (t, z))

�

◆�

.

Proposition 4.7. There exist constants A > 0 and � > 0 such that

(i) ��((r, x), (r, x)) > 1
A , � > 0 and (r, x) 2 [0,+1[⇥R.

(ii) 0 6 ��((r, x), (s, y)) 6 A

⇣
1 + d↵((r,x),(s,y))

�

⌘�1��
, � > 0 and (r, x), (s, y) 2 [0,+1[⇥R.

(iii) For every � > 0 and (r, x), (s, y), (t, z) 2 [0,+1[⇥R, such that

d↵((s, y), (t, z)) 6
1

4A
(� + d↵((r, x), (s, y))),
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we have

|��((r, x), (s, y))� ��((r, x), (t, z))| 6 A

✓
d↵((s, y), (t, z))

�

◆� ✓
1 +

d↵((r, x), (s, y))

�

◆�1�2�

.

Proof. Let ' 2 Z
[↵]

(i) First, we will show that there exists a constant A > 0 such that

8x 2 R, ��((1, x), (1, x)) >
1

A
.

We know that '(0, 0) > 0. Then, there exist constants a > 0 and b > 0 such that for every

0 < r < b we have

'(r, 0) > a. (4.3)

- If � < 1, then h(1, �) = �.

��((1, x), (1, x)) = �T(1,x)('�)(�1,�x)

= �
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0
'�

⇣p
2(1� cos ✓), 0

⌘
sin2↵ ✓ d✓.

=
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0

1

�2↵+1
'

 p
2(1� cos ✓)

�
, 0

!
sin2↵ ✓ d✓.

By the Relation (4.3), there exists b
0 such that for every 0 < ✓ < �b

0, we have

'

 p
2(1� cos ✓)

�
, 0

!
> a.

Then,

��((1, x), (1, x)) > �(↵+ 1)
p
⇡ �(↵+ 1

2 )

Z �b0

0

a

�2↵+1
sin2↵ ✓ d✓.

> �(↵+ 1)
p
⇡ �(↵+ 1

2 )

Z �b0

0
a sin2↵ ✓ d✓.

- If � > 1, then h(1, �) = �
1

2↵+2 .

��((1, x), (1, x)) = �T(1,x)

⇣
'
�

1
2↵+2

⌘
(�1,�x)

= �
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0
'
�

1
2↵+2

⇣p
2(1� cos ✓), 0

⌘
sin2↵ ✓ d✓

= �
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0

1

�
'

 p
2(1� cos ✓)

�
1

2↵+2

, 0

!
sin2↵ ✓ d✓
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=
�(↵+ 1)

p
⇡ �(↵+ 1

2 )

Z ⇡

0
'

 p
2(1� cos ✓)

�
1

2↵+2

, 0

!
sin2↵ ✓ d✓

> �(↵+ 1)
p
⇡ �(↵+ 1

2 )

Z b0

0
a sin2↵ ✓ d✓.

Thus,

��((1, x), (1, x)) >
1

A
, 8x 2 R.

Let (r, x) 2]0,+1[⇥R. Using (iii) of Proposition 4.5 we have

��((r, x), (r, x)) = ��r�2↵�3
⇣⇣

1,
x

r

⌘
,

⇣
1,

x

r

⌘⌘
> 1

A
.

For r = 0 is obvious .

(ii) First, we have to show that

0 6 ��((1, x), (s, y)) 6 C

✓
1 +

d↵((1, x), (s, y))

�

◆�1��

. (4.4)

Case 1 � < 1: h(1, �) = �.

��((1, x), (s, y)) = �T(1,x)('�)(�s,�y)

= �
�(↵+ 1)p
⇡ �(↵+ 1

2 )

Z ⇡

0

'�

✓p
1 + s2 � 2s cos ✓,

x� y
�

◆
sin2↵ ✓ d✓

= �
�(↵+ 1)p
⇡ �(↵+ 1

2 )

Z ⇡

0

1
�2↵+2

'

✓p
1 + s2 � 2s cos ✓

�
,
x� y
�

◆
sin2↵ ✓ d✓

6 �
�(↵+ 1)p
⇡ �(↵+ 1

2 )

Z ⇡

0

1
�2↵+2

�2↵+4

(�2 + 1 + s2 � 2s cos ✓ + (x� y)2)↵+2
sin2↵ ✓ d✓

6 �3 �(↵+ 1)p
⇡ �(↵+ 1

2 )

Z ⇡

0

1
(�2 + (1� s)2 + 2s� 2s cos ✓ + (x� y)2)↵+2

sin2↵ ✓ d✓.

• If �
2 6 |1� s| and 1

2 6 s 6 2, then

d↵((1, x), (s, y)) s p ((1, x), (s, y)) .

In fact,
1

22↵+1
|1� s| 6

����
Z s

1
t
2↵+1

dt

���� 6 22↵+1
|1� s|.

Then,

1

22↵+1
p ((1, x), (s, y)) 6 d↵ ((1, x), (s, y)) 6 22↵+1

p ((1, x), (s, y)) .
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��((1, x), (s, y))

6 �
3 �(↵+ 1)
p
⇡ �(↵+ 1

2 )

Z ⇡

0

1

(�2 + (p ((1, x), (s, y)))2 + 2s(1� cos ✓))↵+2
sin2↵ ✓ d✓

6 C�
3

 Z p((1,x),(s,y))

0

sin2↵(✓)

(p ((1, x), (s, y)))2↵+4
d✓ +

Z ⇡

p((1,x),(s,y))

sin2↵ ✓

✓2↵+4
d✓

!

6 C�
3

 Z p((1,x),(s,y))

0

✓
2↵

(p ((1, x), (s, y)))2↵+4
d✓ +

Z ⇡

p((1,x),(s,y))

✓
2↵

✓2↵+4
d✓

!

6 C�
3

✓
1

(p ((1, x), (s, y)))3
�

1

3⇡2
+

1

3(p ((1, x), (s, y)))3

◆

6 C�
3 1

(p ((1, x), (s, y)))3
.

Since, �
2 6 |1� s| 6 p ((1, x), (s, y)) then

� + p ((1, x), (s, y)) 6 3p ((1, x), (s, y)) .

Then,

��((1, x), (s, y)) 6 C�
3 1

(� + p ((1, x), (s, y)))2

= C�
3

✓
1 +

p ((1, x), (s, y))

�

◆�3

6 C

✓
1 +

d↵ ((1, x), (s, y))

�

◆�3

.

• If �
2 6 |1� s|, |x� y| > 1 and |1� s| >

1
2 , then

d↵((1, x), (s, y)) 6 22↵+1 (p ((1, x), (s, y)))2↵+2
.

In fact, we have

1

22↵+1

����
Z s

1
t
2↵+1

dt

���� 6 |1� s||1� s|
2↵+1 6 (p ((1, x), (s, y)))2↵+2

,

and

|x� y| 6 |x� y|
2↵+2

.

��((1, x), (s, y)) 6 �
3
C

Z ⇡

0

sin2↵ ✓

(p ((1, x), (s, y)))2↵+4
d✓

6 �
3
C

1

(p ((1, x), (s, y)))2↵+4

6 �
3
C

1

(d↵((1, x), (s, y)))
2↵+4
2↵+2
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= �
3
C

1

(d↵((1, x), (s, y)))
1+ 1

↵+1

6 �
3
C

1

(r + d↵((1, x), (s, y)))
1+ 1

↵+1

6 �
1+ 1

↵+1C
1

(� + d↵((1, x), (s, y)))
1+ 1

↵+1

= C

✓
1 +

d↵((1, x), (s, y))

�

◆�1� 1
↵+1

• If �
2 6 |1� s|, |x� y| 6 1 and |1� s| >

1
2 , then

1

22↵+1
d↵((1, x), (s, y)) 6 (p0 ((1, x), (s, y)))

2↵+2
.

In fact, we have

1

22↵+1

����
Z s

1
t
2↵+1

dt

���� 6 |1� s||1� s|
2↵+1 6 |1� s|

2↵+2
,

and

|x� y| 6
⇣
|x� y|

1
2↵+2

⌘2↵+2
.

��((1, x), (s, y)) 6 �
3
C

Z ⇡

0

sin2↵ ✓

(p0 ((1, x), (s, y)))2↵+4
d✓

6 �
3
C

1

(p ((1, x), (s, y)))2↵+4

6 �
3
C

1

(d↵((1, x), (s, y)))
2↵+4
2↵+2

= �
3
C

1

(d↵((1, x), (s, y)))
1+ 1

↵+1

6 �
3
C

1

(� + d↵((1, x), (s, y)))
1+ 1

↵+1

6 �
1+ 1

↵+1C
1

(� + d↵((1, x), (s, y)))
1+ 1

↵+1

= C

✓
1 +

d↵((1, x), (s, y))

�

◆�1� 1
↵+1

• If �
2 > |1�s| and |x�y| <

�
2 then 1

2 < s <
3
2 and p ((1, x), (s, y)) ⇠ d↵ ((1, x), (s, y)) .

In fact, we have

✓
1

2

◆2↵+1

|1� s| 6
����
Z s

1
t
2↵+1

dt

���� 6
✓
3

2

◆2↵+1

|1� s|.
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Then,

✓
1

2

◆2↵+1

p ((1, x), (s, y)) 6 d↵ ((1, x), (s, y)) 6
✓
3

2

◆2↵+1

p ((1, x), (s, y)) .

��((1, x), (y, y0)) 6 �
3
C

✓Z �

0

sin2↵ ✓

�2↵+4
d✓ +

Z ⇡

�

sin2↵ ✓

✓2↵+4
d✓

◆

6 �
3
C

✓Z �

0

✓
2↵

�2↵+4
d✓ +

Z ⇡

�

✓
2↵

✓2↵+4
d✓

◆

6 �
3
C

✓
�
2↵+1

�2↵+4
+

Z ⇡

�

1

✓4
d✓

◆

6 C.

Since �
2 > p ((1, x), (s, y)) then

1 +
p ((1, x), (s, y))

�
<

3

2
.

Thus,
8

27

✓
1 +

p ((1, x), (s, y))

�

◆�3

> 1.

Then

��((1, x), (s, y)) 6 C

✓
1 +

p ((1, x), (s, y))

r

◆�3

6 C

✓
1 +

d↵ ((1, x), (s, y))

�

◆�3

• If �
2 > |1� s| and |x� y| > �

2 then, we have

1

2
< s <

3

2
and p ((1, x), (s, y)) 6 d↵ ((1, x), (s, y)) .

��((1, x), (s, y)) 6 �
3 1

(p ((1, x), (s, y)))3
.

Since, �
2 6 p ((1, x), (s, y)) then, we have

� + p ((1, x), (s, y)) 6 3p ((1, x), (s, y)) .
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Then,

��((1, x), (s, y)) 6 C�
2 1

(� + p ((1, x), (s, y)))3

= C

✓
1 +

p ((1, x), (s, y))

�

◆�3

6 C

✓
1 +

d↵ ((1, x), (s, y))

�

◆�3

.

Case 2 � > 1: h(1, �) = �
1

2↵+2 .

��((1, x), (s, y)) = �T(1,x)

⇣
'
�

1
2↵+2

⌘
(�s,�y)

6 �
2↵+4
2↵+2C

Z ⇡

0

sin2↵ ✓

(�
2

2↵+2 + (p ((1, x), (s, y)))2 + 2s(1� cos ✓))↵+2
d✓

• If �
1

2↵+2 6 |1� s| and |x� y| > �
1

2↵+2 , then s > 2 and

d↵((1, x), (s, y))
1

2↵+2 s p ((1, x), (s, y)) .

In fact, we have

|1� s|
2↵+2 6

����
Z s

1
t
2↵+1

dt

����

and

|x� y|
2↵+2 6 |x� y|.

Then,

p ((1, x), (s, y))2↵+2 6 d↵((1, x), (s, y)).

We use the fact that f(y) =
y
2↵+2

� 1

(y � 1)2↵+2
is a bounded function in [2,+1[. Then,

����
Z s

1
t
2↵+1

dt

���� 6 C|1� s|
2↵+2 (4.5)

|1� x| 6 |1� x|
2↵+2

.

Then,

d↵((1, x), (s, y)) 6 Cp ((1, x), (s, y))2↵+2
.

��((1, x), (s, y)) 6 �
2↵+4
2↵+2C

Z ⇡

0

sin2↵ ✓

(p ((1, x), (s, y)))2↵+4
d✓

6 �
2↵+4
2↵+2C

1

(p ((1, x), (s, y)))2↵+4
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6 C
1

⇣
d↵((1,x),(s,y))

�

⌘ 2↵+4
2↵+2

6 C

✓
1 +

d↵((1, x), (s, y))

�

◆�1� 1
↵+1

.

• If �
1

2↵+2 6 |1� s| and |x� y| 6 �
1

2↵+2 , then s > 2 and |x� y| 6 |1� s|. Using the

Relation (4.5), we get

����
Z s

1
t
2↵+1

dt

���� 6 C|1� s|
2↵+2 6 Cp ((1, x), (s, y))2↵+2

|x� y| 6 |1� s| 6 |1� s|
2↵+2 6 p ((1, x), (s, y))2↵+2

d↵((1, x), (s, y))
1

2↵+2 6 p ((1, x), (s, y)) .

Thus,

��((1, x), (s, y)) 6 C

✓
1 +

d↵((1, x), (s, y))

�

◆�1� 1
↵+1

.

• If �
1

2↵+2 > |1� s| and �
1

2↵+2 > |x� y| , then

d↵((1, x), (s, y)) 6 22↵+2
�.

In fact,
����
Z s

1
t
2↵+1

dt

���� 6 (�
1

2↵+2 + 1)|1� s| 6 (�
1

2↵+2 + 1)�
1

2↵+2 6 (�
1

2↵+2 + 1)� 6 22↵+2
�,

and

|x� y| 6 �
1

2↵+2 6 �

��((1, x), (s, y)) 6 �
2↵+4
2↵+2C

Z ⇡

0

sin2↵ ✓

�
2↵+4
2↵+2

d✓ 6 C 6 C

✓
1 +

d↵((1, x), (s, y))

�

◆�3

.

• If �
1

2↵+2 > |1� s| and �
1

2↵+2 6 |x� y| , then

d↵((1, x), (s, y)) 6 (p((1, x), (s, y)))2↵+2
.

In fact, we have

|1� s| < |x� y|.

This implies that

p((1, x), (s, y)) = |x� y|

����
Z s

1
t
2↵+1

dt

���� 6 (�
1

2↵+2 + 1)2↵+1 6 22↵(� + 1) 6 22↵+1
� 6 22↵+1

|x� y|
2↵+2

,
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and

|x� y| < |x� y|
2↵+2

�̃r((1, x), (s, y)) 6 C

✓
1 +

d↵((1, x), (s, y))

�

◆�1� 1
↵+1

.

From (4.4), we get

0 6 ��((r, x), (s, y)) 6 C

✓
1 +

d↵((r, x), (s, y))

�

◆�1��

.

Now, we will prove (iii) of the Proposition 4.7. Assume that for every � > 0 and (r, x), (s, y), (t, z) 2

[0,+1[⇥R, we have

d↵((s, y), (t, z)) 6
r + d↵((r, x), (s, y))

4C
.

Then for every �0 > 0, we have

✓
1 +

d↵((r, x), (t, z))

�

◆�1��0

6
✓
1 +

d↵((r, x), (s, y))

�

◆�1��0

. (4.6)

Using (ii) and the Relation (4.6) , we have

|��((r, x), (s, y))� ��((r, x), (t, z))| 6 C

✓
d↵((s, y), (t, z))

�

◆�1��

. (4.7)

Finally, using Lemma 4.1 and the Relation (4.8) we have

|��((r, x), (s, y))� ��((r, x), (t, z)))| 6 C

✓
d↵((s, y), (t, z))

�

◆� ✓
1 +

d↵((r, x), (s, y))

�

◆�1�2�

.

Proposition 4.8. There exists a constant C > 0 such that for every f 2 L
1(d⌫↵) we have

1

C
kfkH1

↵
6 kfkH↵

atomic
6 CkfkH1

↵
. (4.8)

Proof. It is clear that pt 2 Z
[↵]. Using Proposition 4.7, Corollary 1 of [19]. Thus, we have show

that (4.6) holds.
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ABSTRACT

In this work, by combining Carlson-type and Nash-type in-
equalities for the Weinstein transform FW on K = Rd�1 ⇥
[0,1), we show Laeng-Morpurgo-type uncertainty inequali-
ties. We establish also local-type uncertainty inequalities for
the Weinstein transform FW , and we deduce a Heisenberg-
Pauli-Weyl-type inequality for this transform.

RESUMEN

En este trabajo, combinando desigualdades de tipo Carlson
y de tipo Nash para la transformada de Weinstein FW en
K = Rd�1 ⇥ [0,1), demostramos desigualdades de incer-
tidumbre de tipo Laeng-Morpurgo. Establecemos también
desigualdades de incertidumbre de tipo local para la trans-
formada de Weinstein FW , y deducimos una desigualdad de
tipo Heisenberg-Pauli-Weyl para esta transformada.
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1 Introduction

Uncertainty principles are mathematical arguments that give limitations on the simultaneous con-

centration of a function and its Fourier transform. They have implications in quantum physics

and signal analysis. They also play an important role in harmonic analysis, many of them have

already been studied from several points of view for the Fourier transform, Heisenberg-Pauli-Weyl

inequality and local uncertainty [9, 10]. Laeng-Morpurgo and Morpurgo [4, 7] obtained Heisenberg

inequality involving a combination of L1 and L2 norms.

In this paper, we consider the Weinstein transform FW [2, 5, 6] defined on L1(K, ⌫k) by

FW (f)(⇠) :=

Z

K
f(x) ⇠(x)d⌫k(x), ⇠ = (⇠0, ⇠d) 2 K,

where K := Rd�1 ⇥ [0,1), d⌫k(x) :=
x2k+1
d

⇡(d�1)/22k+(d�1)/2�(k+1)
dx0dxd and

 ⇠(x) = e�ihx0,⇠0ijk(xd⇠d), x = (x0, xd) 2 K.

Here jk is the spherical Bessel function.

Many uncertainty principles have already been proved for the Weinstein transform FW on K,

namely Mejjaoli and Salhi are the first that describe the uncertainty principles for the Wein-

stein transform [6]. Next, Ben Salem and Nasr obtained Heisenberg-type inequalities [3] for the

Weinstein transform FW . Saoudi [11] proved a variation of Lp uncertainty principles for the We-

instein transform FW . In this work, by using Carlson-type inequality and Nash-type inequality

[2, 8] for the Weinstein transform FW on L1 \ L2(K, ⌫k); we deduce uncertainty inequalities of

Heisenberg-type for the Weinstein transform FW on L1 \ L2(K, ⌫k). Next, due to a local uncer-

tainty inequality for the Weinstein transform FW on L2(K, ⌫k), we show uncertainty inequality of

Heisenberg-Pauli-Weyl-type for the transform FW on L2(K, ⌫k).

The analog uncertainty inequalities are also proved, for the Dunkl transform Fk on Rd by Soltani

[12, 13].

This paper is organized as follows. In Section 2, we recall some results about the Weinstein

transform FW on K. In Section 3, we prove uncertainty inequalities of Heisenberg-type for the

Weinstein transform FW on L1 \ L2(K, ⌫k). We show also uncertainty inequality of Heisenberg-

Pauli-Weyl-type for the transform FW on L2(K, ⌫k). In the last section, we summarize the obtained

results and describe the future work.
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2 Weinstein transform

In this section we recall some basic results related to the Weinstein analysis.

We consider the Weinstein operator �W [1, 3, 8] defined on Rd�1 ⇥ (0,1) by

�W :=
dX

i=1

@2

@x2
i

+
2k + 1

xd

@

@xd
= �d�1 + Lk, d � 2, k > �1/2,

where �d�1 is the Laplacian operator in Rd�1 and Lk is the Bessel operator with respect to the

variable xd defined on (0,1) by

Lk :=
@2

@x2
d

+
2k + 1

xd

@

@xd
.

The Weinstein operator (also called Laplace-Bessel operator) has several applications in pure and

applied mathematics. The harmonic analysis associated to this operator is studied in [1, 2, 3, 5, 6, 8]

and references therein.

Throughout this subsection, let k > �1/2 and K := Rd�1 ⇥ [0,1). We denote by Lp(K, ⌫k),

p 2 [1,1], the space of measurable functions f on K, such that

kfkLp(K,⌫k) :=

✓Z

K
|f(x0, xd)|pd⌫k(x0, xd)

◆1/p

< 1, p 2 [1,1),

kfkL1(K,⌫k) := ess sup
(x0,xd)2K

|f(x0, xd)| < 1,

where

d⌫k(x) := d⌫k(x0, xd) =
x2k+1
d

⇡(d�1)/22k+(d�1)/2�(k + 1)
dx0dxd,

and dx0 = dx1dx2 · · · dxd�1.

Let r > 0, the measure ⌫k satisfies [3]:

⌫k(|x| < r) = cr↵, (2.1)

where

c =
1

2
↵
2 �(↵2 + 1)

and ↵ = 2k + d+ 1. (2.2)
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For all ⇠ 2 K, the system

Lku(x) = �⇠2du(x),
@2u

@x2
j

(x) = �⇠2ju(x), j = 1, . . . , d� 1,

u(0) = 1,
@u

@xd
(0) = 0,

@u

@xj
(0) = �i⇠j , j = 1, . . . , d� 1,

admits a unique solution  ⇠(x), given by

 ⇠(x) = e�ihx0,⇠0ijk(xd⇠d), x 2 K,

where jk is the spherical Bessel function given by

jk(x) := �(k + 1)
1X

n=0

(�1)n

n!�(n+ k + 1)

⇣x
2

⌘2n
.

For all x, ⇠ 2 K, the Weinstein kernel  ⇠(x) satisfies

| ⇠(x)|  1.

The Weinstein (or Laplace-Bessel) transform FW [2, 5, 6] is defined for f 2 L1(K, ⌫k) by

FW (f)(⇠) :=

Z

K
f(x) ⇠(x) d⌫k(x), ⇠ 2 K.

The transform FW initially defined on L1\L2(K, ⌫k) extends uniquely to an isometric isomorphism

on L2(K, ⌫k), that is,

kFW (f)kL2(K,⌫k) = kfkL2(K,⌫k), f 2 L2(K, ⌫k). (2.3)

Moreover if f 2 L1(K, ⌫k), then

kFW (f)kL1(K,⌫k)  kfkL1(K,⌫k). (2.4)

Finally, if f and FW (f) are both in L1(K, ⌫k), the inverse Weinstein transform is defined by

f(x) =

Z

K
FW (f)(⇠) �⇠(x) d⌫k(⇠), a.e x 2 K.
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3 Heisenberg-type uncertainty principles

Similar results have been appeared in the literature by Soltani [13], he proved a Laeng-Morpurgo-

type uncertainty inequalities for the Dunkl transform Fk on Rd. In the following, we will give

Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform FW on K.

Proposition 3.1 ([2, 8]).

(i) (Carlson-type inequality). Let a > 0. There exists a constant A(a,↵) > 0 such that for every

f 2 L1 \ L2(K, ⌫k), we have

kfkL1(K,⌫k)  A(a,↵)kfk
2a

↵+2a

L2(K,⌫k)
k |x|afk

↵
↵+2a

L1(K,⌫k)
. (3.1)

(ii) (Nash-type inequality). Let b > 0. There exists a constant B(b,↵) > 0 such that for every

f 2 L1 \ L2(K, ⌫k), we have

kfkL2(K,⌫k)  B(b,↵)kfk
2b

↵+2b

L1(K,⌫k)
k |⇠|bFW (f)k

↵
↵+2b

L2(K,⌫k)
. (3.2)

Thanks to the above proposition, by combining and multiplying the two relations (3.1) and (3.2)

we obtain the following uncertainty inequalities of Laeng-Morpurgo-type [4, 7] for the Weinstein

transform FW on L1 \ L2(K, ⌫k).

Theorem 3.2. Let a, b > 0. There exist three constants C(a, b,↵) > 0, N(a, b,↵) > 0 and

D(a, b,↵) > 0 such that for every f 2 L1 \ L2(K, ⌫k), we have

(i) kfk↵+2a+2b
L2(K,⌫k)

 C(a, b,↵)k |x|afk2bL1(K,⌫k)
k |⇠|bFW (f)k↵+2a

L2(K,⌫k)
,

(ii) kfk↵+2a+2b
L1(K,⌫k)

 N(a, b,↵)k |x|afk↵+2b
L1(K,⌫k)

k |⇠|bFW (f)k2aL2(K,⌫k)
,

(iii) kfk↵+2a
L1(K,⌫k)

kfk↵+2b
L2(K,⌫k)

 D(a, b,↵)k |x|afk↵+2b
L1(K,⌫k)

k |⇠|bFW (f)k↵+2a
L2(K,⌫k)

.

By application of the two relations (3.1) and (3.2) we deduce also the following results which are

a local-type uncertainty inequalities for the Weinstein transform FW on L1 \ L2(K, ⌫k).

Theorem 3.3. Let E be a measurable subset of K such that 0 < ⌫k(E) < 1, and let a, b > 0. If

f 2 L1 \ L2(K, ⌫k), then

(i) k1EFW (f)kL2(K,⌫k)  A(a,↵)(⌫k(E))1/2kfk
2a

↵+2a

L2(K,⌫k)
k |x|afk

↵
↵+2a

L1(K,⌫k)
, where A(a,↵) is the con-

stant given by Proposition 3.1 (i).

(ii) k1EFW (f)kL1(K,⌫k)  B(b,↵)(⌫k(E))1/2kfk
2b

↵+2b

L1(K,⌫k)
k |⇠|bFW (f)k

↵
↵+2b

L2(K,⌫k)
, where B(b,↵) is

the constant given by Proposition 3.1 (ii).

Being 1E the characteristic function of the set E.
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Proof. Let f 2 L1 \ L2(K, ⌫k) and a, b > 0.

(i) From (2.4) we have

k1EFW (f)kL2(K,⌫k)  (⌫k(E))1/2kFW (f)kL1(K,⌫k)  (⌫k(E))1/2kfkL1(K,⌫k).

The desired result follows from Proposition 3.1 (i).

(ii) From (2.3) we have

k1EFW (f)kL1(K,⌫k)  (⌫k(E))1/2kFW (f)kL2(K,⌫k)  (⌫k(E))1/2kfkL2(K,⌫k).

The desired result follows from Proposition 3.1 (ii).

Soltani [12] proved a Heisenberg-Pauli-Weyl uncertainty principle for the Dunkl transform Fk on

Rd. In the following, we will give Heisenberg-Pauli-Weyl uncertainty principle for the Weinstein

transform FW on L2(K, ⌫k).

Proposition 3.4. (local-type inequality). Let a > 0 and let f 2 L2(K, ⌫k). If E be a measurable

subset of K such that 0 < ⌫k(E) < 1, then

k1EFW (f)kL2(K,⌫k)  A(a,↵)(⌫k(E))
a

↵+2a kfk
2a

↵+2a

L2(K,⌫k)
k |x|afk

↵
↵+2a

L2(K,⌫k)
, (3.3)

where A(a,↵) is the constant given by Proposition 3.1 (i).

Proof. Let f 2 L2(K, ⌫k) and a > 0. The inequality holds if k |x|afkL2(K,⌫k) = 1. Assume that

k |x|afkL2(K,⌫k) < 1. For all r > 0, we have

k1EFW (f)kL2(K,⌫k)  k1EFW (1Brf)kL2(K,⌫k) + k1EFW ((1� 1Br )f)kL2(K,⌫k)

 (⌫k(E))1/2kFW (1Brf)kL1(K,⌫k) + kFW ((1� 1Br )f)kL2(K,⌫k).

Hence it follows from (2.3) and (2.4) that

k1EFW (f)kL2(K,⌫k)  (⌫k(E))1/2k1BrfkL1(K,⌫k) + k(1� 1Br )fkL2(K,⌫k). (3.4)

On the other hand, by Hölder’s inequality and (2.1), we obtain

k1BrfkL1(K,⌫k)  (cr↵)1/2kfkL2(K,⌫k), (3.5)

where c is the constant given by (2.2).
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Moreover,

k(1� 1Br )fkL2(K,⌫k)  r�ak |x|afkL2(K,⌫k). (3.6)

Combining the relations (3.4), (3.5) and (3.6), we deduce that

k1EFW (f)kL2(K,⌫k)  (⌫k(E))1/2(cr↵)1/2kfkL2(K,⌫k) + r�ak |x|afkL2(K,⌫k).

By choosing

r =

✓
2ak |x|afkL2(K,⌫k)

↵c1/2kfkL2(K,⌫k)

◆ 2
↵+2a

(⌫k(E))�
1

↵+2a ,

we obtain the desired inequality.

We shall use the local uncertainty principle to obtain uncertainty principle of Heisenberg-Pauli-

Weyl-type for the Weinstein transform FW on L2(K, ⌫k). We note that the following theorem is

given in [3] but in the proof, the approach is not the same.

Theorem 3.5. Let a, b > 0. There exists a constant K(a, b,↵) > 0 such that for every f 2
L2(K, ⌫k), we have

kfka+b
L2(K,⌫k)

 K(a, b,↵)k |x|afkbL2(K,⌫k)
k |⇠|bFW (f)kaL2(K,⌫k)

.

Proof. Let a, b > 0 and let r > 0. Then

kfk2L2(K,⌫k)
= k1BrFW (f)k2L2(K,⌫k)

+ k(1� 1Br )FW (f)k2L2(K,⌫k)
. (3.7)

Firstly,

k(1� 1Br )FW (f)k2L2(K,⌫k)
 r�2bk |⇠|bFW (f)k2L2(K,⌫k)

. (3.8)

From (2.1) and (3.3), we get

k1BrFW (f)k2L2(K,⌫k)
 (A(a,↵))2(cr↵)

2a
↵+2a kfk

4a
↵+2a

L2(K,⌫k)
k |x|afk

2↵
↵+2a

L2(K,⌫k)
, (3.9)

where c is the constant given by (2.2).

Combining the relations (3.7), (3.8) and (3.9), we obtain

kfk2L2(K,⌫k)
 (A(a,↵))2(cr↵)

2a
↵+2a kfk

4a
↵+2a

L2(K,⌫k)
k |x|afk

2↵
↵+2a

L2(K,⌫k)
+ r�2bk |⇠|bFW (f)k2L2(K,⌫k)

.

By setting

r =

0

@ b(↵+ 2a)k |⇠|bFW (f)k2L2(K,⌫k)

a↵(A(a,↵))2c
2a

↵+2a kfk
4a

↵+2a

L2(K,⌫k)
k |x|afk

2↵
↵+2a

L2(K,⌫k)

1

A

↵+2a
2a↵+2b(↵+2a)

,
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we get the inequality with

K(a, b,↵) = (A(a,↵))2b(↵+2a)c2ab
✓
b(↵+ 2a)

a↵

◆a↵ ✓
1 +

a↵

b(↵+ 2a)

◆a↵+b(↵+2a)

.

This completes the proof of the theorem.

4 Conclusion and perspective

The manuscript deals with some uncertainty inequalities associated with the Weinstein transform

FW . Especially, we studied Laeng-Morpurgo type uncertainty inequalities for this transform. As

it is well known, uncertainty inequalities are of great interest in harmonic analysis, in applied

mathematics and in several areas of mathematical physics. The results given in Section 3 are

complements to those given in references [3, 6, 8] and others. They also represent our contribution

in the study of local-type uncertainty inequalities and the Heisenberg type inequality for the

Weinstein transform FW . Finally, in a future paper, we have the idea to study the Weinstein-

Stockwell transform Sg, g 2 L2(K, ⌫↵), in which we will prove some uncertainty inequalities for

this transform analogous to those proven for the Weinstein transform FW in this paper.
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ABSTRACT

Let X ⇢ Pr
be an integral projective variety. We study

the dimensions of the joins of several copies of the osculating

varieties J(X,m) of X. Our methods are general, but we give

a full description in all cases only if X is a linearly normal

embedding of P1 ⇥ P1
. For these embeddings of P1 ⇥ P1

we

give several examples and then study the joins of one copy

of J(X,m) and an arbitrary number of copies of X.

RESUMEN

Sea X ⇢ Pr
una variedad proyectiva entera. Estudiamos

la dimensión de las adjunciones de varias copias de las va-

riedades osculantes J(X,m) de X. Nuestros métodos son

generales, pero damos una descripción completa en todos los

casos solo si X es un embebimiento linealmente normal de

P1 ⇥ P1
. Para estos embebimientos de P1 ⇥ P1

damos varios

ejemplos y luego estudiamos las adjunciones de una copia de

J(X,m) y un número arbitrario de copias de X.
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1 Introduction

Let X ⇢ Pr be an integral projective variety defined over a fixed algebraically closed field K such

that char(K) = 0. We consider the classical problem about the dimension of joins of varieties

related to X. Let J(X,m) ✓ Pr, m � 0, denote the m-osculating variety of X, i.e. the closure

in Pr of the union of all m-osculating spaces to the smooth points of X. With our convention of

m-osculating linear spaces we have J(X, 0) = X, while J(X, 1) is the tangential variety of X, i.e.

the with the convention and the dimension of the joins of several J(X,mi), i varying in a finite

set. Our notation calls J(X, 1) the tangential variety ⌧(X) ✓ Pr of X, i.e. the closure in Pr of the

union in Pr of the tangent spaces TpX of X at all p 2 Xreg. For us J(X,m) is the closure in Pr of

the union of the m-osculating spaces at all p in a non-empty open subset of Xreg at which these

m-osculating spaces have constant dimension.

Take integral varieties T, Y ⇢ Pr. The join J(T, Y ) of T and Y is defined in the following way.

If T = Y and Y is a point, p, then J({p}, {p}) = {p}. In all other cases J(T, Y ) is the closure

of the union of all lines spanned by a point of T and a different point of Y . The algebraic set

J(T, Y ) is always an irreducible variety and dim(T, Y )  min{r, dimT + dimY + 1} if dimT >

0. The integer min{r, dimT + dimY + 1} is the expected dimension of J(T, Y ). One defines

inductively the join J(T1, . . . , Ts) of s � 3 integral varieties Ti ⇢ Pr by the formula J(T1, . . . , Ts) :=

J(J(T1, . . . , Ts�1), Ts) ([1]). If dimT1 > 0 we have dim J(T1, . . . , Ts)  min{r, dimT1 + · · · +

dimTs+s�1}. If dim J(T1, . . . , Ts) = min{r, dimT1+· · ·+dimTs+s�1} we say that J(T1, . . . , Ts)

has the expected dimension. The most famous and useful join is the case Ti = T1 for all i, i.e., the

s-secant variety of T1. However, other cases appear. For instance when X is the Veronese variety

the join of the tangential variety J(X, 1) of X and s�1 copies of X is related to a certain additive

decomposition of forms ([4]).

By the Terracini lemma for joins ([1, Corollary 1.11]) to compute the dimension of the join of

s varieties J(X,mi), 1  i  s, it is sufficient to compute the dimension of the linear span

of the tangent spaces TQiJ(X,mi) at a general Qi 2 J(X,mi). Obviously, we first need to

compute dimTQiJ(X,mi), but in all our examples these integers are known and hence the only

problem is to see how linearly independent are these linear spaces TQiJ(X,mi). Fix a general

Qi 2 J(X,mi) and let pi 2 Xreg the point of Xreg corresponding to Qi. A key property of the

osculating spaces TQiJ(X,mi), is that even for m > 1 there is a zero-dimensional scheme Zi ⇢ X

such that (Zi) = {pi} and TQiJ(X,mi) is the linear span of Zi (Remark 2.1). If m > 0 the scheme

is not unique, it is associated to the choice of a line of TpiX containing pi (Remark 3.4). Fix a

general (p1, . . . , ps) 2 X
s

reg. For each i with mi > 0 choose a “general” Zi. As always in this type of

problems ([3, 6, 7, 8, 9, 10, 11, 12]) it is sufficient to find the schemes Zi ⇢ X, 1  i  s, and then

to prove that the dimension of the linear span of Z1[ · · ·[Zs is the expected one,
P

s

i=1 deg(Zi)�1.
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Set n := dimX. For the joins of several copies of X it is sufficient to take as schemes the first

infinitesimal neighborhood 2p, p 2 Xreg, i.e. the closed subscheme of X with (Ip)2 as its ideal

sheaf (this is the classical Terracini lemma for secant varieties [1, Corollary 1.11]); in this case the

scheme has degree n + 1. We call it the case m = 0. For the tangential variety the scheme Z1

has degree 2n + 1 and it was used in several papers ([3, 6, 7, 8, 10, 11, 12]), some of them also

considering the general case with any mi > 0. Contrary to the case m = 0 the schemes Zi ⇢ Xreg

are not uniquely determined by the point p 2 Xreg such that (Zi) = {p}. For any m > 0 the

scheme W (m, p) associated to J(X,m) at p has degree n +
�
n+m

n

�
and it is implicitly computed

in [6] (and by the classical algebraic geometers quoted in [5, 6]) and given in full generality in

[7, 8, 10] at least for the Veronese embeddings of projective spaces. It depends on the choice of

some p 2 Xreg and a line through p of the embedded tangent space of X at p (Remark 2.1).

Of course, to define the osculating spaces we also need to fix an embedding of X in a projective

space or, more generally, a line bundle L on X and a linear subspace V ✓ H
0(L). This set-up

was described in a modern language by R. Piene ([18]), first defining the bundles of principal parts

Pm

X
(L) of L and then considering an evaluation map OX ⌦ V �! Pm

X
(L). Thus for a fixed m � 0

and a general p 2 Xreg we may choose an irreducible family of zero-dimensional schemes Z(m, p)

such that for each Z 2 Z(m, p) we have Z = {p} and deg(Z) = n+
�
n+m

m

�
. Moreover, for any s > 0

and any mi � 0, the join of J(X,m1), . . . , J(X,ms) has dimension hW (m1, p1)[ · · ·[W (ms, ps)i,

where h i denote the linear span and (p1, . . . , ps) is general in X
s.

The freedom in the choice to define W (m, p) for m > 0 will be used several times in our proofs.

We only consider the case X = P1
⇥ P1 with all its Segre-Veronese embedding. We prove the

following result.

Theorem 1.1. Fix integers c � 0, m � 0 and a � b � m+ 3. Let W ⇢ X be a general union of

one element of Z(m) and c 2-points. Then either h
0(IW (a, b)) = 0 or h

1(IW (a, b)) = 0.

The following result may also be proved using the tools in [9, 12].

Proposition 1.2. Fix integer c � 0, m � 2 and a � b � m. Let W ⇢ X be a general union of

one m-point and c 2-points. Then either h
0(IW (a, b)) = 0 or h

1(IW (a, b)) = 0, except in the case

m = 2, b = 2, a even and c = a/2.

In section 3 (again with X = P1
⇥P1) we give several examples of our tools and tricks to compute

the dimensions of several joins.
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2 General tools

In this section we collect the necessary tools lifted from the literature and add some remarks which

greatly improve their use to compute the dimensions of joins.

For all p 2 X and all integers m > 0 let mp denote the closed subscheme of X with (Ip)m as its

ideal sheaf. For any Y ✓ X and any p 2 Yreg \Xreg set (mp, Y ) := mp \ Y . Since p is a smooth

point of both X and Y , (mp, Y ) is the closed subscheme of Y whose ideal sheaf is (Ip,Y )m ⇢ OY .

Let X be an integral projective variety, L a line bundle on X and V ✓ H
0(L) a linear subspace.

Let Z ✓ W ⇢ X be a zero-dimensional scheme. Obviously if V \ H
0(IZ ⌦ L) = 0, then V \

H
0(IW ⌦L) = 0. Since W is zero-dimensional, the restriction map H

0(OW ⌦L) �! H
0(OZ ⌦L)

is surjective. Thus h
1(IZ ⌦ L)  h

1(IW ⌦ L).

Remark 2.1. Let X be an integral projective variety. Set n := dim(X). The schemes Z 2

Z(X,m), m � 0, used to detect the tangent space TQJ(X,n) at a general Q 2 J(X,m) are

all schemes obtained in the following way. Set Z(X, 0) := {2p}p2Xreg . Now assume m > 0.

Set Z(X,m) := [p2XregZ(X, p,m), where each Z(X, p,m) is defined in the following way. Fix

p 2 Xreg. Any zero-dimensional scheme Z 2 Z(X, p,m) will have Z = {p} and hence to define

each element Z of Z(X, p,m) it is sufficient to define the ideal J of the local ring OX,p such that

OZ = OX,p/J . Let µ be the maximal ideal of OX,p. The ideal J is constructed taking a germ at

p of a smooth curve contained in a neighborhood of p in X and containing p, i.e. taking a regular

system of parameters t1, . . . , tn of the local ring OX,p, i.e. any system of n generators t1, . . . , tn of

the maximal ideal µ of OX,p and taking any germ of curve with (t2, . . . , tn) as its ideal in OX,p.

As ideal of Z we take µ
m+2 + t

m+1
1 µ. With obvious conventions (i.e. taking as LZ the germ of X

at p) this ideal gives the ideal µm+2 if n = 1, i.e. for n = 1 it gives the correct answer J = µ
m+2.

The scheme Z is uniquely determined by the choice of a one-dimensional linear subspace of the

n-dimensional vector space µ/µ
2, i.e. by the choice of a non-zero element of µ/µ2. We will say

that Z depends on the choice of a tangent vector LZ of X at p. Each Z 2 Z(X,m) has as its

reduction a unique p 2 Xreg. We have

(m+ 1)p ⇢ Z ⇢ (m+ 2)p, deg(Z) = n+ deg((m+ 1)p) = n+

✓
m+ n

n

◆
.

We say that Z is defined by p and the tangent vector LZ , because LZ is uniquely determined by a

connected degree 2 scheme E ⇢ X such that E = {p}.

We often write Z(m) (resp. Z(p,m)) instead of Z(X,m) (resp. Z(X, p,m)).

Remark 2.2. Let X be an integral projective variety and D an effective Cartier divisor of X. For

any zero-dimensional scheme Z ⇢ X the residual scheme ResD(Z) of Z with respect to D is the

closed zero-dimensional subscheme of X with IZ : ID as its ideal scheme. We have ResD(Z) ✓ Z,
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deg(Z) = deg(ResD(Z))+deg(Z \D) and for every line bundle L on X there is an exact sequence

0 �! IResD(Z) ⌦ L(�D) �! IZ ⌦ L �! IZ\D,D ⌦ L|D �! 0 (2.1)

For any Z and L we will say that (2.1) is the residual exact sequence of D. Fix Z 2 Z(X,m),

m > 0, and set {p} := Z. Let LZ be the tangent vector of X at p defining Z and call t1, . . . , tn
a regular system of generators of the maximal ideal of µ of OX,p such that LV is defined by

t2 = · · · = tn = 0, t21 = 0. Now assume p 2 Dreg.

(a) Assume that LZ is not contained in the tangent space of D at p. Then D\Z = ((m+1)p,D)

and hence deg(ResD(Z)) = n +
�
m+n

n

�
�

�
m+n�1
n�1

�
= n +

�
m+n�1

n

�
. Moreover, ResD(Z) 2

Z(X,m� 1) and if m � 2 the scheme ResD(Z) is defined by the same tangent vector LZ .

(b) Assume that LZ is contained in the tangent space of D at p. Then D \ Z 2 Z(D,m) and

hence deg(ResD(Z)) = n+
�
m+n

n

�
�n+1�

�
m+n�1
n�1

�
= 1+

�
m+n�1

n

�
. We have ResD(Z) � mp

and deg(ResD(Z)) = deg(mp) + 1. The scheme ResD(Z) is the union of mp and the scheme

t
m+2
1 = t2 = · · · = tn = 0.

In both cases the scheme Z is vertically graded with respect to D in the sense of [2] and hence we

may apply the Differential Horace Horace Lemma to Z ([2]).

For any line bundle L on X, any closed subscheme B of X and any vector space V ✓ H
0(L) set

V (�B) := V \H
0(IB ⌦ L).

We describe the case of 2-points of the Differential Horace Lemma ([2]). The reader will find in

that paper explicitly the case of points with higher multiplicities and the case (vertically graded

subschemes) sufficient to handle all Z 2 Z(m). Let X be an integral projective n-dimensional

variety, D an effective Cartier divisor of X, L a line bundle on X, V ✓ H
0(L) a linear subspace.

Let VD be the image of V by the restriction map ⇢ : H0(L) �! H
0(D,L|D). Set n := dimX. Let

V (�D) be the set of all f 2 H
0(L(�D)) such that zf 2 V , where z 2 H

0(OX(D)) is the equation

of D. Take a general p 2 Xreg\Dreg. To prove that dimV (�Z�2q) = max{0, dimV (�Z)�n�1}

for a general q 2 Xreg it is sufficient to prove that one of the following sets of conditions is satisfied:

(a) dimVD(�Z \D)  1 and

dimV (�D)(�ResD(Z)� (2p,D)) = max{0, dimW (�ResD(Z))� n};

(b) dimVD(�Z \D) > 0 and

dimV (�D)(�ResD(Z)� (2p,D)) = dimV (�D)(�ResD(Z))� n.
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Remark 2.3. Take any projective variety X, any line bundle L on X and any vector space

V ✓ H
0(L). Fix (u, v) 2 N2. Let B ⇢ X be a general union of u tangent vectors of Xreg and v

points of X. By [14] we have dimV (�B) = max{0, dimV � 2u� v}.

Remark 2.3 is useful because it applies to non-complete linear systems, too. We will use this key

feature in the proof of the next lemma.

Lemma 2.4. Take a projective variety X, a line bundle L on X and an integral Cartier divisor

D ⇢ X. Assume h
1(L) = h

1(L(�D)) = h
1(D,L|D) = 0. Fix (u, v) 2 N2. Let Z ⇢ X be a

zero-dimensional scheme. Let B ⇢ D be a general union of u tangent vectors of Dreg and v points

of X. Assume h
1(IZ ⌦ L) = 0, h

1(D, ID\Z,D ⌦ L|D) = 0 and h
0(D, IZ\D,D ⌦ L|D) � 2u + v.

Then h
0(IZ[B ⌦ L) = max{0, h0(IZ ⌦ L)� 2u� v}.

Proof. Remark 2.3 applied to D, L|D, H0
X, (IZ ⌦ L) and H

0(D, IZ\D ⌦ L|D) gives

h
0(D, I(Z\D)[B,D ⌦ L|D) = h

0(D, IZ\D,D ⌦ L|D)� 2u� v.

Use twice the residual exact sequence of D, first with IZ⌦L in the middle and then with IZ[B⌦L

in the middle. Use that ResD(Z [B) = ResD(Z), because B ⇢ D (as schemes).

If we take the set-up and assumptions of Lemma 2.4 except the inequality on h
0(D, IZ[D,D⌦L|D)

and we have h
0(D, IZ[D,D ⌦L|D)  2u+ v, then Remark 2.3 gives h0(D, I(Z\D)[B,D ⌦L|D) = 0.

Thus the residual exact sequence of D gives h
0(IZ[B ⌦ L) = h

0(IResD(Z) ⌦ L(�D)).

Remark 2.5. Fix a line bundle L on an integral projective variety X. Let Z1 ✓ Z2 be zero-

dimensional schemes. Note that h1(IZ1⌦L)  h
1(IZ2⌦L). If h0(IZ2⌦L) = h

0(L)�deg(Z2), then

h
0(IZ1 ⌦L) = h

0(L)�deg(Z1). Set n := dimX. Let U (resp. V) be the set of all triples (e, f, g) 2

N3 such that h0(L)  e(n+
�
n+2
n

�
)+f(2n+1)+g(n+1) (resp. h

0(L) � e(n+
�
n+2
n

�
)+f(2n+1)+g(n+

1)). Fix (e, f, g) 2 U . Let Z ⇢ X be a general union of e elements of Z(2), f elements of Z(1) and

g 2-points. Suppose you want to prove that h0(IZ⌦L) = h
0(L)�e(n+

�
n+2
n

�
)�f(2n+1)�g(n+1).

It is sufficient to show that h0(IZ ⌦ L) = h
0(L) � e(n +

�
n+2
n

�
) � f(2n + 1) � g

0(n + 1) for some

integer g
0
� g, where Z

0 is the union of Z and g
0
� g general 2-points. Thus to check for all

(e, f, g) 2 U that a general union of e elements of Z(2), f element of Z(1) and g 2-points imposes

independent conditions to h
0(L) it is sufficient to check all (e, f, g) 2 N3 such that

h
0(L)� n  e

✓
n+

✓
n+ 2

n

◆◆
+ f(2n+ 1) + g(n+ 1) (2.2)

Suppose you want to prove that h
0(IW ⌦ L) = 0 for all (u, v, w) 2 V, where W is a general

union of u elements of Z(2), v elements of Z(1) and w 2-points. Decreasing if necessary the zero-

dimensional scheme, it is sufficient to check all (u, v, w) 2 N3 satisfying one of the following sets
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of conditions:

h
0(L)  e

✓
n+

✓
n+ 2

n

◆◆
+ f(2n+ 1) + g(n+ 1)  h

0(L) + n (2.3)

g = 0, h
0(L)  e

✓
n+

✓
n+ 2

n

◆◆
+ f(2n+ 1)  h

0(L) + 2n (2.4)

f = g = 0, h
0(L)  e

✓
n+

✓
n+ 2

n

◆◆
+ f(2n+ 1)  h

0(L) + n� 1 +

✓
n+ 2

n

◆
(2.5)

With minimal modifications the interested reader may state similar statements for general unions

of prescribed numbers of osculating spaces and multiple points with arbitrary multiplicities and for

m-points instead of just 2-points (see Remark 3.2).

Fix a linear subspace V ✓ H
0(L). Suppose dimV = 1. Thus V (�p) = 0 for a general p 2 X.

Hence V (�2p) = 0 for a general p 2 Xreg. Suppose dimV = 2. By [14] V (�A) = 0 for a general

tangent vector A of Xreg. Thus V (�2p) = 0 for a general p 2 Xreg. Thus in (2.3) it is not necessary

to check all cases with e > 0 and e(n+
�
n+2
n

�
) + f(2n+1)+ g(n+1) 2 {h

0(L) + n� 1, h0(L) + n}

(Remark 3.2).

Remark 2.6. Let X be an integral projective variety, L a line bundle on X and V ✓ H
0(L).

Set n := dimX. Fix a general p 2 Xreg. The function f : N �! N defined by the formula

f(m) := dimV (�mp) is non-increasing. Since we take p general in Xreg, the semicontinuity

theorem for cohomology shows that this function does not depend upon the choice of the general p.

Consider its first difference g : N �! N, i.e. set g(0) := f(0) = dimV and g(m) = f(m�1)�f(m)

for all m > 0.

Observation 1: If f(m) 6= 0, then g(m + 1) > 0, i.e. f(m + 1) < f(m), unless f(m) = 0 ([13,

Proposition 2.3]).

Now we fix an arbitrary o 2 Xreg, set R := OX,o and call µ the maximal ideal of the local ring

R. Thus R/µ ⇠= K and, since X is smooth at o, the graded ring GRo :=
L

t�0 µ
t
/µ

t+1 (with

the convention µ
0 = R) is isomorphic to a polynomial ring in n variables over K. Taking a

regular system of parameters t1, . . . , tn, we may see each µ
m
/µ

m+1 as the K-vector space of all

degree m homogeneous polynomials in the variables t1, . . . , tn. Thus dimK µ
m
/µ

m+1 =
�
n+m�1
n�1

�
.

Set fo(m) := dimV (�mo) and go(m) := fo(m + 1) � fo(m). There is an evaluation map eo,m :

V (�m)/V (�(m + 1)o) �! µ
m
/µ

m+1 and go(m) is the rank of the evaluation map eo,m. For

a general o we write em instead of eo,m. For any integer v such that 0  v 
�
n+m�1
n�1

�
let

G(v, µm
/µ

m+1) denote the Grassmannian of all v-dimensional linear subspaces of µm
/µ

m+1. Call

⇡ : µ
m

�! µ
m+1 the quotient map. Fix v and W 2 G(v, µm

/µ
m+1). Set IW := ⇡

�1(o) ⇢

R and ZW := Spec(R/IW ). Note that ZW is a connected degree 0 subscheme of X of degree
�
n+m

n

�
+ dimW . The integer dimV (�ZW ) is the number of conditions that ZW imposes to V .
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We have µ
k+1

✓ IZ ⇢ µ
k+1. The integer dimV (�ZW ) depends on the integers go(m) and dimW

and on the position of W with respect to the linear subspace Im(em,o). Concerning the integer

dimV (�ZW ) we only know the trivial inequalities coming from the Grassmann formula. Since

the Grassmannian is an irreducible variety, it makes sense to speak about the general element of

G(v, µm
/µ

m+1). For such a general W we have dimV (�ZW ) = dimV (�mo) � min{v, go(m)}.

For a general o we have gm(o) > 0. In this case any W of positive dimension imposes at least

one condition to V (�mo). The m-spread sp
m
(X,V ) of (X,V ) at its general point is the minimal

integer x such that 0  x  n and there is an x-dimensional linear subspace E ✓ K[t1, . . . , tn] such

that Im(em) ✓ S
m(E). Obviously sp

m
(X,V )  min{n, g(m)}. When g(m) < n the pair (X,V )

has a very particular behaviour ([5, Proposition 1]). We do not know (we lack an integrability

condition) if something similar is true just assuming sp
m
(X,V ) < n.

3 Examples

In this section we take X := P1
⇥ P1. As a warming up for the next section we give 2 cases

(Propositions 3.4 and 3.5) in which the congruence classes for some of the integer a, b of the line

bundle OX(a, b) greatly help and then a case (Proposition 3.6) which shows how to use the lucky

cases to prove more general ones. We also show how to handle some zero-dimensional schemes

with a very particular shape (Lemmas 3.7 and 3.8 and Proposition 3.9).

Remark 3.1. Fix integers a � b > 0. Let W ⇢ X be a general union of c 2-points. Then

either h
0(IW (a, b)) = 0 or h

1(IW (a, b)) = 0, except in the case b = 2, a even and c = a/2 + 1

([10, 16, 17]). In the exceptional case h
0(IW (a, b)) = h

1(IW (a, b)) = 1 and |IW (a, 2)| = {2C}

where C ⇠= P1 and {C} = |IW(a/2, 1)|.

The following observation simplifies many proofs and it is essential to do by computer in a cheap

way some small degrees cases to be used for inductive proofs for other joins.

Remark 3.2. Fix positive integers a, b and w and a zero-dimensional scheme W ⇢ X such that

deg(W ) = w and h
1(IW (a, b)) > 0. To prove that for all integers c 2 N a general union Z of

W and c 2-points satisfies either h
1(IZ(a, b)) = 0 or h

0(IW (a, b)) = 0 it is sufficient to check the

integers c 2 {b((a+ 1)(b+ 1)�w)/3c, d((a+ 1)(b+ 1)�w)/3e}. Hence it is sufficient to check all

c 2 N such that

(a+ 1)(b+ 1)� 2  w + 3c  (a+ 1)(b+ 1) + 2 (3.1)

We can do better. Indeed, any 2-point at a general p 2 X contains a general connected degree 2 zero-

dimensional scheme v. Thus for any V ✓ H
0(OX(a, b)) we have dimV (�2p)  min{0, dimV �2}.

Thus it is sufficient to check all integers c such that

(a+ 1)(b+ 1)� 1  w + 3c  (a+ 1)(b+ 1) + 1 (3.2)
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Now assume w+ 3c = (a+ 1)(a+ 1) + 1 and that we know that h1(IW[E(a, b)) = 0 for all unions

of c0 general 2-points with c
0 satisfying w + 3c0  (a + 1)(b + 1). Let E ⇢ X be a general union

of c� 1 2-points. Thus h
0(IW[E(a, b)) = 2. Thus a general union E

0 of E and a general 2-point

satisfies h
0(IW[E0(a, b)) = 0. Thus it is sufficient to check all integers c such that

(a+ 1)(b+ 1)� 1  w + 3c  (a+ 1)(b+ 1) (3.3)

Thus it is sufficient to check the integer c := b((a+ 1)(b+ 1)� w)/3c.

Lemma 3.3. Fix (a, b) 2 N2, L 2 |OX(1, 0)| and a zero-dimensional scheme W ⇢ X such

that h1(IW (a, b)) = 0. Set u := deg(W \ L). Let E ⇢ L be a zero-dimensional scheme such that

E\W = ; and set x := deg(E). Assume h
1(IResL(W )(a�1, b))  b+1�u. Then h

1(IW[E(a, b)) =

max{0, h0(IW (a, b))� x}.

Proof. First assume x = b+1�u. Thus hi(L, IL\(W[E)(a, b)) = 0, i = 0, 1. Hence hi(IW[E(a, b)) =

h
i(IResL(W )(a� 1, b)), i = 0, 1.

If x < b+1� u, then we reduce the proof to the case just proved taking instead of E the union of

E and b+ 1� u� x points.

Now assume x > b+1. Instead of E we use any subscheme E0
⇢ E such that deg(E0) = b+1�u.

Proposition 3.4. Fix positive integers a and b such that a is odd and b ⌘ 4 (mod 5). Then for

all c > 0 the join of c copies of J(1) has the expected dimension min{(a+ 1)(b+ 1)� 1, 5c� 1}.

Proof. Let Z ⇢ X be a general union of c elements of Z(1). It is sufficient to do the case

c = (a+ 1)(b+ 1)/5 and prove that h
i(IZ(a, b)) = 0, i = 0, 1. We fix L 2 |OX(1, 0)|. Let Z

0
⇢ X

be a general union of (a� 1)(b+ 1)/5 elements of Z(1) with the convention Z
0 = ; if a = 1. Take

a general A [ B ⇢ L such that #A = #B = (b+ 1)/5 and A \ B = ;. Let W be the union of Z 0

and the scheme Z
00 obtained in the following way. We degenerate (b+1)/5 connected components

of Z to elements of Z(p, 1), p 2 A, with respect to a tangent vector not tangent to L and (b+1)/5

connected components of Z to elements of Z(p, 1), p 2 B, with respect to the tangent vector of

L. Remark 2.2 gives deg(Z 00
\ L) = b + 1 and deg(ResL(Z) \ L) = b + 1. Thus using twice the

residual exact sequence of L we get that it is sufficient to prove that hi(IZ0(a� 1, b)) = 0, i = 0, 1.

This is true if a = 1 (and hence Z
0 = ;), while if a � 3 we use induction on a.

Proposition 3.5. Fix positive integers a and b such that b ⌘ 4 (mod 5) and a � 3. The join of

(b+ 1)/5 copies of J(2) and an arbitrary number, c, of copies of X has the expected dimension.

Proof. Let Z1 be a general union of c 2-points. Since each element of J(2) has degree 8, it is

sufficient to check the positive integers c such that 8(b + 1)/5 + 3c  (a + 1)(b + 1) (Remark

3.2). Fix L 2 |OX(1, 0)|. For every p 2 L, let E(p) be an element of Z(p, 2) with as tangent
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vector the one associated to L. We have deg(E(p) \ L) = 4, deg(ResL(E(p)) \ L) = 3 and

ResL(ResL(E(p))) = {p}. Set E :=
S

p2A
E(p). By semicontinuity to prove the proposition for

the integer c it is sufficient to prove that h
j(IE[Z1(a, b)) = 0.

Take a general A [ B ⇢ L such that #A = #B = (b + 1)/5 and A \ B = ;. Let E be the

union of all E(p), p 2 A. By semicontinuity to prove the proposition for the integer c it is

sufficient to prove h
1(IE[Z1(a, b)) = 0. Let (2B,L) denote the union of all 2-points of L with

a point of B as their reduction. We apply the Differential Horace Lemma for 2-points at each

p 2 B. Since h
i(L, IB[(E\L)(a, b)) = 0, i = 0, 1, the Differential Horace Lemma gives that to

prove that h1(IE[E0(a, b)) = 0 for a general union E
0 of 2(b+1)/5 2-points, it is sufficient to prove

h
1(IResL(E)[(2B,L)(a � 1, b)) = 0. Since deg((ResL(E) [ (2B,L)) = b + 1, it is sufficient to prove

h
1(IA(a� 2, b)) = 0. Since a � 2, we proved the case c  2(b+ 1)/5.

Now assume c > 2(b + 1)/5 and set x := c � 2(b + 1)/5. Let W ⇢ X be a general union of x

2-points. Either h
0(IW (a � 2, b)) = 0 or h

1(IW (a � 2, b)) = 0 or a and b are even, x = b + 1 and

h
1(IW (a� 2, b)) = h

0(IW (a� 2, b)) = 1 (Remark 3.1).

If h0(IW (a� 2, b))  1, then h
0(IE0[W (a, b)) = 0, concluding the proof in this case.

Now assume h
1(IW (a� 2, b)) = 0 and hence h

0(IW (a� 2, b)) = (a� 1)(b+ 1)� 3x. To prove this

case we need to prove that either h
0(IW[A(a � 2, b)) = 0 or h

1(IW[A(a � 2, b) = 0. Since W is

general, W \ L = ;. Since A is general in L and #A = (b + 1)/5, it is sufficient to prove that

h
0(IW (a� 3, b))  min{0, (a� 1)(b+ 1)� 3x� (b+ 1)/5}.

If a � 4, the inequality h
0(IW (a� 3, b))  min{0, (a� 1)(b+ 1)� 3x� (b+ 1)/5} is true, because

either h
0(IW (a � 3, b)) = 0 or h

1(IW (a � 3, b)) = 0 or h
0(IW (a � 3, b)) = h

1(IW (a � 3, b)) = 1

(Remark 3.1).

Now assume a = 3. We have h
0(IW (1, b)) = 2b+2�3x and h

0(IW (0, b)) = b+1 < h
0(IW (1, b))�

(b+ 1)/5.

Fix the bidegree a, b of the line bundle OX(a, b). Instead of a prescribed number of copies of J(2)

we may use an arbitrary, but small with respect to b, number of copies of J(2) as in the following

statement (taking all possible e  b� 2 with e ⌘ 4 (mod 5)).

Proposition 3.6. Fix positive integers a, e and b such that e ⌘ 4 (mod 5), a � 3 and b � e+ 4.

The join of (e + 1)/5 copies of J(2) and an arbitrary number, c, of copies of X has the expected

dimension.

Proof. Let Z1 be a general union of s 2-points. Since each element of J(2) has degree 8, it is

sufficient to check the positive integer c such that 8(e+ 1)/5 + 3c  (a+ 1)(b+ 1) (Remark 3.2).

Fix L 2 |OX(1, 0)|. For every p 2 L let E(p) be an element of Z(p, 2) with as tangent vector the one

associated to L. We have deg(E(p)\L) = 4, deg(ResL(E(p))\L) = 3 and ResL(ResL(E(p))) = {p}.
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Set E1 :=
S

p2A
E(p). Set e1 := b(b � e)/2c, f1 := b � e � 2e1, e2 := b(b � e � e1 � 2f1)/2c and

f2 := b�e�e1�f1�2f1. Note that 0  f1  1 and 0  f2  1. Since b � e+2, (e1, f1) 6= (0, 1) and

hence 2e1+f1 � e1+2f1. Since b � e+4, we have e1+2f1 � 2. Take a general A[B[E[F ⇢ L

such that #A = #B = (e + 1)/10, #E = e1, #F = f1 and the sets A, B, E and F are pairwise

disjoint. Let U be the union of all E(p), p 2 A. By semicontinuity to prove the proposition for the

integer c it is sufficient to prove h
j(IU[Z1(a, b)) = 0.

Let (2B,L) (resp. (2F,L), resp. (2E,L)) denote the union of all 2-points of L with a point of B

(resp. F ) as their reduction. We apply the Differential Horace Lemma for 2-points at each p 2

B[F , while add all 2-points 2p of X with p 2 E. Since hi(L, IB[(U\L)[(2E,L)[F (a, b)) = 0, i = 0, 1,

the Differential Horace Lemma gives that to prove that h1(IU[U 0(a, b)) = 0 for a general union U
0 of

(e+1)/10+ e1+f1 2-points, it is sufficient to prove h
1(IResL(E1)[(2B,L)[(E,L)[(2F,L)(a�1, b)) = 0.

We have deg(ResL(E) \ L) + deg((2B,L)) + deg((2F,L))  b + 1. Thus the intersection ⌧ of

ResL(E)[ (2B,L)[ (E,L)[ (2F,L) with L satisfies h
1(L, I⌧ (a� 1, b)) = 0, while its residue is A.

If c  (e+ 1)/5 + e1 + f1, then we get that the join has the expected dimension e+ 1 + 3c� 1.

Assume for the moment c � (e+1)/5+e1+f1+e2+f2. Fix a general G[H ⇢ L such that #G = e2

and #H = f2  1. We apply the Differential Horace Lemma to H (if f2 = 1) and specialize e2

2-points to the 2-points 2p, p 2 G. Let Z2 be a general union of c� (e1 + 1)/5� e1 � f1 � e2 � f2.

To prove that h
1(IU[Z1(a, b)) = 0 it is sufficient to prove that h

j(IZ2[A[F[(2H,L)(a � 2, b)) = 0.

This is done as in the proof of Proposition 3.5, even if H 6= ;, by Remark 2.3 applied to L or by

Lemma 3.3.

If (e+ 1)/5 + e1 + f1 < c < (e+ 1)/5 + e1 + f1 + e2 + f2 (and hence c  (e+ 1)/5 + e1 + f1 + e2)

instead of G and H we take G
0 with #G

0 = c� (e+ 1)/5� e1 � f1 � e2 and H
0 = ;.

We explain why a general union of 2 m-points (plus other objects) are easy to handle.

Lemma 3.7. Let Z ⇢ X be a general union of 2 m-points, m � 2. Then h
i(IZ(m,m � 1)) = 0,

i = 0, 1.

Proof. Fix L 2 |OX(0, 1)| and o, o
0
2 L, o 6= o

0. We take mo and apply the Differential Horace

Lemma with respect to L and o
0. Thus on L we add {o}, at the first residual with respect to L

intersected with L we add (2o, L) and so on. Thus the intersection with L of the union W of mo

with this virtual scheme has degree m + 1 and the same holds for the intersection of L with the

first m residual with respect to L. Thus we get the lemma taking several residual exact sequences

of L.

In the same way we get the following result.

Lemma 3.8. Let Z ⇢ X be a general union of one m-point, m > 0, and one (m+1)-point. Then

h
i(IZ(m,m)) = 0, i = 0, 1.
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Proposition 3.9. Fix integer m � 3, c � 0, and a � b � m + 3. Let Z ⇢ X be a general union

of 2 m-points and c 2-points. Then either h
0(IZ(a, b)) = 0 or h

1(IZ(a, b)) = 0.

Proof. It is sufficient to check the positive integers c such that (m + 1)m + 3c  (a + 1)(b + 1)

(Remark 3.2). Fix L 2 |OX(0, 1)| and o, o
0
2 L, o 6= o

0. We take mo and apply the Differential

Horace Lemma with respect to L and o
0. Thus on L we add {o}, at the first residual with respect

to L intersected with L we add (2o, L) and so on. Thus the intersection with L of the union W of

mo with this virtual scheme has degree m + 1 and the same holds for the intersection of L with

the first m residual with respect to L. We call W this virtual degeneration of a general union

of 2 m-points. Recall (Lemma 3.7) that h
i(IW (m,m � 1)) = 0, i = 0, 1. We set W0 := W and

for each i � 1 define recursively the virtual scheme Wi by the formula Wi := ResL(Wi�1). Thus

Wj = ; for all j � m and deg(Wi \ L) = m + 1 for all i < m. The proof of Lemma 3.7 gives

h
i(IWj (m,m� 1� j)) = 0, 0  j  m.

Set e := b(a�m)/2c and f := a�m� 2e. Fix a general A [ B ⇢ L such that #A = e, #B = f

and A \B = ;.

We call Hi, 0  i  m, the assertion that a general union of Wi and an arbitrary number of

2-points has the expected postulation with respect to OX(a, b � i). The case i = m is true by

Remark 3.1. Since H0 proves the proposition for c, we prove all Hi by descending induction on i,

Thus (changing b and m) we may assume H1.

Assume for the moment c � e+ f . Let E ⇢ X be a general union of c� e� f 2-points. We take

as e of the 2-points the 2-points 2p, p 2 A. If f 6= 0 we apply the Differential Horace Lemma to

F . Since 2e+ f +deg(W \L) = a+1, the Differential Horace Lemma shows that to show that to

prove the proposition it is sufficient to prove that h
j(IW1[E[A[(2F,L)(a, b� 1)) = 0.

Claim 1: h
1(IW1[E(a, b� 1)) = 0.

Proof of Claim 1: By the inductive assumption either h1(IW1[E(a, b�1)) = 0 or h0(IW1[E(a, b�

1)) = 0. Since deg(W1 [ E)� e� 2f = deg(W ) + 3c  (a+ 1)(b+ 1), h1(IW1[E(a, b� 1)) = 0.

Claim 1 gives h
0(IW1[E(a, b� 1)) = (a+ 1)b�m(m+ 1)� 3(c� e� f). Claim 1 and Remark 2.3

applied to L or Lemma 3.3 show that to prove H0 it is sufficient to prove that h0(IW1[E(a, b�2)) 

max{0, (a+1)b�m(m+1)�3(c�e�f)�e�2f}. Since 2e+f = a�m and f  1, 3e+3f+2  2(a+1).

Thus h
0(IW2[E(a, b� 2)) = 0.

In the case c < e+f (and hence c  e) instead of A and B we take B = ; and A with #A = c.
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4 The proofs

In this section we take X = P1
⇥ P1. Since dimX = 2, for each m � 0, any p 2 X and any

Z 2 Z(m) we have deg((m+ 1)p) =
�
m+2
2

�
and deg(Z) = 2 +

�
m+2
2

�
.

Remark 4.1. Fix integers a � b � 0 and z � 2. Fix homogeneous coordinates x0, x1 and y0, y1 of

P1. The vector space H
0(OX(a, b)) is formed by all f 2 K[x0, x1, y0, y1] which are bihomogenous

of bidegree (a, b), i.e. homogenous of degree a with respect to x0, x1 and homogeneous of degree b

with respect to y0, y1. Thus H
0(OX(a, b)) has as a basis all monomials x

↵0
0 x

↵1
1 y

�0
0 y

�1
1 such that

(↵0,↵1,�0,�1) 2 N4, ↵0 + ↵1 = a and �0 + �1 = b. Fix p 2 X and choose bihomogeneous

coordinates x0, x1, y0, y1 such that p = ((1 : 0), (1 : 0)). Set x := x1/x0 and y := y1/y0. The vector

space H
0(Izp(a, b)) is isomorphic to the subspace of the polynomial ring K[x, y] with as a bases all

monomials x
u
y
v with u + v � z, 0  u  a and 0  v  b. Since deg(Ozp) =

�
z+1
2

�
and a � b,

h
1(Izp(a, b)) = 0 if and only if b � z � 1. If a > b = z � 2, then h

1(Izp(a, z � 2)) = 1.

Proposition 4.2. Fix positive integers a � b and m.

(1) If b < m, then h
1(IZ(a, b)) > 0 for all Z 2 Z(m).

(2) If b > m, then h
1(IZ(a, b)) = 0 for all Z 2 Z(m).

(3) If a > m, then h
1(IZ(a,m)) = 0 for a general Z 2 Z(m).

(4) There is Z 2 Z(m) such that h1(IZ(a,m)) > 0.

Proof. Fix p 2 X. We consider Z 2 Z(p,m). Thus (m + 1)p ⇢ Z ⇢ (m + 2)p. Parts (1) and (2)

follow from Remark 4.1.

Let L denote the only element of |OX(1, 0)| passing through p.

(a) Now we prove part (4). Use L as LZ to define the scheme Z. Note that L ⇠= P1 and

deg(OL(a,m)) = m. Thus h
0(L,OL(a,m)) = m + 1. By part (b) of Remark 2.2 we have

deg(Z \ L) = m+ 2 and hence h
1(L, IZ\L,L(a,m)) = 1. Thus h

1(IZ(a,m)) > 0.

(b) Now we prove part (3). Thus a > m. By the semicontinuity theorem for cohomology

it is sufficient to find one Z 2 Z(p,m) such that h
1(IZ(a,m)) = 0. Take Z 2 Z(p,m)

whose tangent vector is not contained in L. We have deg(Z \ L) = m + 1 and ResL(Z) 2

Z(m � 1) (even if m = 1) by Remark 2.2. Use the residual exact sequence of L and that

h
1(IResL(Z)(a� 1,m)) = 0, because a� 1 � m.

Proof of Proposition 1.2: The case m = 2, i.e. the case of c + 1 general 2-points is described in

Remark 3.1. Assume m > 2 and that the proposition is true for smaller multiplicities. In step (b)
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we check the case m = 3 and see that the exceptional case b = 2 and a even of the case m = 2

gives no problem for the inductive proof.

(a) Fix L 2 |OX(0, 1)|, p 2 L, and take mp. For any x 2 Z we have h
0(OL(a, x)) = a + 1.

Note that deg(mp \ L) = m and ResL(mp) = (m � 1)p. Since deg(mp) = (m + 1)m/2,

it is sufficient we may assume 3c  (a + 1)(b + 1) � (m + 1)m/2. Thus we need to prove

that h
1(Imp[G(a, b)) = 0 for a general union of c 2-points. Set e := b(a + 1 � m)/2c and

f := a+ 1�m� 2e. Thus 0  f  1. Assume for the moment c � e+ f . Let E ⇢ X be a

general union of c � e � f 2-points. Take a general A [ B ⇢ L such that #A = e, #B = f

and A \ B = ;. We degenerate e 2-points to the 2-points 2q, q 2 A and, if f = 1, apply

the Differential Horace Lemma to F . Since m + 2e + f = a + 1, ResL(mp) = (m � 1)p

and ResL(q) = {q} for all q 2 A, the Differential Horace Lemma shows that to prove

h
1(Imp[G(a, b)) = 0 it is sufficient to prove h

1(I(m�1)p[E[A[(2B,L)(a, b� 1)) = 0.

Claim 1: h
1(I(m�1)p[E(a, b� 1)) = 0.

Proof of Claim 1: Since b � 1 � (m � 1) = b �m, we may use the inductive assumption.

We have deg(mp) + deg(G) � deg((m � 1)p) � 2e + f = h
0(OX(a, b)) � h

0(OX(a, b � 1)).

Thus to prove Claim 1 it is sufficient to observe that e+ 2f  2e+ f , which is true because

a+ 1�m � 2 and 0  f  1.

Claim 1 implies h
0(I(m�1)p[E(a, b� 1)) = (a+ 1)b�m(m� 1)/2� 3(c� e� f). Note that

ResL((m�1)p) = (m�2)p and that deg(A[ (2B,L)) = e+2f . By Lemma 2.3 to prove that

h
1(I(m�1)p[E[A[(2B,L)(a, b� 1)) = 0 it is sufficient to prove that h

0(I(m�2)p[E(a, b� 2)) 

max{0, (a + 1)b � m(m � 1)/2 � 3(c � e � f) � e � 2f}. Recall that (m + 1)m/2 + 3c 

(a + 1)(b + 1). We have deg((m � 1)p) + deg(E) � deg((m � 2)p) � deg(E) = m. We have

a + 1 � (m � 1) � e � 2f � 0, because e > 0, f  1 and hence 2e + f � e + 2f . Since

m � 2 � b + 2 = m � 2, we may use the inductive assumption (or Remark 3.1 for m = 4 or

that h
0(Ip[E(a, b� 2)) = max{0, h0(IE(a, b� 2))� 1} for a general p 2 X if m = 3).

If c < e+ f (and hence c  e) the proof works taking B = ; and #A = c.

(b) Assume m = 3. Take L, p, A, B and E as in step (a). We first check Claim 1. Taking a

general L and a general p 2 L and then taking a general E we see that 2p [ E is a general

union of c� e� f + 1 2-points of X. We have a > b > 0 and deg(2p[E) = 3c+ 3� 3e� 3f

with 6 + 3c  (a + 1)(b + 1) and 2e + f = a � 2. To conclude the proof of Claim 1 it is

sufficient to use Remark 3.1 and that e + 2f � 2. By Claim 1 to conclude it is sufficient to

check that h
0(Ip[E(a, b� 2))  max{0, (a+ 1)b� 3� 3(c� e� f)� e� 2f}. The generality

of p gives h0(Ip[E(a, b� 2)) = max{0, h0(IE(a, b� 2))� 1}. Since m = 3, b� 2 > 0. Remark

3.1 gives that either h0(IE(a, b�2))  1 or h0(IE(a, b�2)) = (a+1)(b�1)�3(c�e�f).
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Proof of Theorem 1.1: Since the case m = 0 is true by Remark 3.1, we may use induction on m

even if m = 1. Fix L 2 |OX(0, 1)| and o 2 L. Take U 2 Z(o,m) with L not as its tangent vector.

By (3.3) it is sufficient to take a positive integer c such that
�
m+1
2

�
+ 2 + 3c  (a+ 1)(b+ 1) and

prove that h
1(IU[W (a, b)) = 0 for a general union W of c 2-points. By part (a) of Remark 2.2

W := ResL(U) 2 Z(o,m � 1), L is not the tangent vector of W and deg(W \ L) = m + 1. Set

e := b(a � m)/2c and f = a � m � 2e. We have 0  f  1. Since a � m + 2, e > 0 and hence

2e+ f � e+ 2f .

Claim 1: h
1(IG[E(a, b� 1)) = 0.

Proof of Claim 1: We have b�m = (b�1)�(m�1) and hence it is sufficient to use the inductive

assumption. We have deg(U [W )�deg(G[E) = m+1�3(e+f) and h
0(OX(a, b))�h

0(OX(a, b�

1)) = a+ 1. Since a+ 1 = m+ 1 + 2e+ f , Claim 1 follows from the inductive assumption.

Claim 1 implies h
0(IG[E(a, b� 1)) = (a+ 1)b�

�
m

2

�
� 2� 3(c� e� f). We have G

0 = ResL(G) 2

Z(o,m � 2) if m � 2 and G
0 = {o} if m = 1. We use Lemma 2.4 applied to the image of the

restriction map H
0(IG[E[A[(2B,L)(a, b� 1)) �! H

0(OL(a, b� 1)). To conclude the proof for m, c,

a and b using it is sufficient to prove that h0(IG0[E(a, b�2))  max{0, (a+1)b�
�
m

2

�
�2�3(c�e�

f)� e� 2f} and that deg(G0
[E)  (a+1)(b� 1). The first inequality follows from the inductive

assumption, while the second one follows from the following facts: deg(U) + 3c  (a + 1)(b + 1),

deg(U)� deg(G0) = 2m+ 1, 3c� deg(E) = 3e+ 3f , m+ 1 + 2e+ f = a+ 1 and f  1.

If c < e+ f (and hence c  e) the proof works taking B = ; and #A = c.
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