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Universidad de La Frontera
Av. Francisco Salazar 01145, Temuco – Chile

Fomin Sergey

fomin@umich.edu

Department of Mathematics
University of Michigan
525 East University Ave. Ann Arbor
MI 48109 - 1109 – USA

Jurdjevic Velimir

jurdj@math.utoronto.ca

Department of Mathematics
University of Toronto
Ontario – Canadá
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ABSTRACT

In this article, we investigate the Kenmotsu manifold when

applied to a D↵-homothetic deformation. Then, given a sub-

manifold in a D↵-homothetically deformed Kenmotsu mani-

fold, we derive the generalized Wintgen inequality. Addition-

ally, we find this inequality for submanifolds such as slant,

invariant, and anti-invariant in the same ambient space.

RESUMEN

En este artículo estudiamos la variedad de Kenmotsu

cuando se aplica a una deformación D↵-homotética. Luego,

dada una subvariedad en una variedad de Kenmotsu D↵-

homotéticamente deformada, derivamos la desigualdad de

Wintgen generalizada. Adicionalmente, encontramos esta

desigualdad para subvariedades tales como oblicuas, inva-

riantes y anti-invariantes en el mismo espacio ambiente.

Keywords and Phrases: Normalized scalar curvature, scalar curvature, mean curvature, D↵-homothetic defor-

mation.
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1 Introduction

The Wintgen inequality is a sharp geometric inequality for surfaces in a 4-dimensional Euclidean

space E4 involving Gauss curvature K (intrinsic invariants), normal curvature and square mean

curvature (extrinsic invariants). The intrinsic and extrinsic curvature of a surface can be combined

in the second fundamental form. This is a quadratic form in the tangent plane to the surface at a

point.

Quadratic forms occupy a central place in various branches of mathematics, including number

theory, linear algebra, group theory (orthogonal groups), differential geometry (the Riemannian

metric, the second fundamental form), differential topology (intersection forms of four-manifolds),

Lie theory (the Killing form), and statistics (where the exponent of a zero-mean multivariate

normal distribution has the quadratic form xT⌃�1x).

P. Wintgen [25], proved that the Gauss curvature K, the normal curvature K
? and the squared

mean curvature ||H||
2 for any surface M

2 in E
4 satisfy the following inequality [1]:

||H||
2
� K + |K

?
|

and the equality holds if and only if the ellipse of curvature of M̃2 in E4 is a circle. Later, it was

extended by I. V. Guadalupe et al. [12] for arbitrary codimension m in real space forms M̃(m+2)(c)

as

||H||
2 + c � K + |K

?
|.

In 1999, De Smet et al. conjectured the generalized Wintgen inequality for submanifolds in real

space form. The conjecture is known as DDVV conjecture. It has been proved by Zhiqin Lu

in [16] and Jianquan Ge-Zizhou Tang in [11], independently and differently. Ion Mihai [17, 18]

established such inequality for Lagrangian submanifold in complex space form and for Legendrian

submanifolds in Sasakian space forms. Since then numerous authors studied such inequality for

several kinds of submanifolds in different ambient space forms (for example, see [3, 12,19–22]).

In 1971, Kenmotsu investigated a class of contact Riemannian manifolds, named Kenmostu man-

ifolds, which satisfy some special conditions [15]. After that Kenmotsu manifolds have been dis-

cussed by Jun et al. [14] and many authors.

In 1968 Tanno [24] introduced the notion of D-homothetic deformation (for more details see [23]).

In [8] Carriazo and Martin-Molina studied D-homothetic deformation of generalized (k, µ)-space

forms. De and Ghosh studied D-homothetic deformation of almost contact metric manifolds [10].

In the present article, we obtain the generalized Wintgen inequalities for submanifolds of a D↵-
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homothetically deformed Kenmotsu manifold. We also discuss such inequality for various slant

submanifolds as an application of the inequality obtained.

2 Preliminaries

An odd dimensional (2n + 1) smooth manifold (M̃, g) is said to be an almost contact metric

manifold [5], if it admits a (1, 1)-tensor field ', a structure vector field ⇣, a 1-form ⌘ and a

Riemannian metric g such that [26]

'
2
E = �E + ⌘(E)⇣, (2.1)

⌘(⇣) = 1, '(⇣) = 0, ⌘ � ' = 0, (2.2)

⌘(E) = g(E, ⇣), (2.3)

g('E,'F ) = g(E,F )� ⌘(E)⌘(F ), (2.4)

for any vector fields E,F on M̃.

If a contact metric manifold satisfies

(r̃E')F = �g(E,'F )⇣ � ⌘(F )'E, (2.5)

where r̃ denotes the Levi-Civita connection with respect to g, then M̃ is called a Kenmotsu

manifold [15].

An almost contact metric manifold is Kenmotsu manifold if and only if

r̃E⇣ = E � ⌘(E)⇣. (2.6)

Moreover, we suppose that the Riemannian curvature tensor R̃, the Ricci tensor S̃ of type (0, 2)

in Kenmotsu manifold M̃ with respect to r̃ satisfy [15]

(r̃E⌘)F = g('E,'F ) = g(E,F )� ⌘(E)⌘(F ), (2.7)

(r̃⇣⌘)F = 0, (2.8)

R̃(E,F )⇣ = ⌘(E)F � ⌘(F )E, (2.9)

R̃(⇣, E)F = ⌘(F )E � g(E,F )⇣, (2.10)

R̃(⇣, E)⇣ = �R̃(E, ⇣)⇣ = E � ⌘(E)⇣, (2.11)
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⌘(R̃(E,F )G) = g(E,G)⌘(F )� g(F,G)⌘(E), (2.12)

S̃(E, ⇣) = �2n⌘(E), (2.13)

S̃('E,'F ) = S̃(E,F ) + 2n⌘(E)⌘(F ). (2.14)

An odd dimensional Kenmotsu manifold M̃(', ⇣, ⌘, g) is said to be ⌘-Einstein manifold if S̃ is of

the form

S̃ = ag + b⌘ ⌦ ⌘,

where a and b are smooth functions on M̃.

Definition 2.1 ([24]). If an (2n+1)-dimensional contact metric manifold M̃ with almost contact

metric structure (', ⇣, ⌘, g) is transformed into (']
, ⇣

]
, ⌘

]
, g

]), where

'
] = ', ⇣

] =
1

↵
⇣, ⌘

] = ↵⌘, g
] = ↵g + ↵(↵� 1)⌘ ⌦ ⌘ (2.15)

and ↵ is a positive constant, then the transformation is called a D↵-homothetic deformation.

The relation between the Levi-Civita connection r̃ of g and the Levi-Civita connection r
] of g]

is given by [2]

r
]
EF = r̃EF +

↵� 1

↵
g('E,'F )⇣ (2.16)

for all vector fields E,F on M̃.

3 Curvature tensor on Kenmotsu manifold under a D↵-homo-

thetic deformation

Let M̃ be Kenmotsu manifold of dimension (2n + 1). The curvature tensor R
] of M̃ under a

D↵-homothetic deformation r
] is defined by [13]

R
](E,F )G = r

]
Er

]
FG�r

]
Fr

]
EG�r

]
[E,F ]G. (3.1)

In the work by Blaga [4], the curvature tensors of forms (1, 3) and (0, 4), along with the Ricci

curvature tensor and scalar curvature are presented.

R
](E,F,G,H) = R̃(E,F,G,H) +

↵� 1

↵
[g('F,'G)g(E,H)� g('E,'G)g(F,H)], (3.2)
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R
](E,F,G,H) = ↵R̃(E,F,G,H) + (↵� 1)

⇢
⌘(G)[⌘(E)g(F,H)� ⌘(F )g(E,H)]

� g(E,G)[g(F,H)� ⌘(F )⌘(H)] + g(F,G)[g(E,H)� ⌘(E)⌘(H)]

�
, (3.3)

S
](E,F ) = S̃(E,F ) + 2n

✓
↵� 1

↵

◆
g('E,'F ), (3.4)

where S
] and S̃ indicate Ricci curvature tensors with respect to r

] and r̃. Also, the scalar

curvatures ⌧
] and ⌧̃ with respect to r

] and r̃ are related by

⌧
] =

1

↵
⌧̃ +

2n(2n+ 1)(↵� 1)

↵2
. (3.5)

Thus, we have the following result:

Proposition 3.1. In an ⌘-Einstein Kenmotsu manifold of dimension (2n + 1), the Ricci tensor

is given by

S̃(E,F ) =


⌧̃ + 2n

2n

�
g(E,F ) +


� (2n+ 1)�

⌧̃

2n

�
⌘(E)⌘(F ),

for any vector fields E,F on M̃. Here Q̃ is the Ricci operator defined by S̃(E,F ) = g(Q̃E, F ).

By equation (3.4) and Proposition 3.1, we have

Theorem 3.2. Let M̃(', ⇣, ⌘, g) be a (2n+ 1)-dimensional ⌘-Einstein Kenmotsu manifold. Then

the manifold M̃(']
, ⇣

]
, ⌘

]
, g

]) is again an ⌘-Einstein manifold under a D↵-homothetic deformation

with

S
](E,F ) =


⌧̃ + 2n

2n
+ 2n

↵� 1

↵

�
g(E,F ) +


2n

1� ↵

↵
� (2n+ 1)�

⌧̃

2n

�
⌘(E)⌘(F ),

for all E,F 2 �(M̃).

4 Wintgen inequality for submanifolds in Kenmotsu manifold

under D↵-homothetic deformation

The present section deals with the derivation of generalized Wintgen inequalities for submanifolds

in D↵-homothetically deformed Kenmotsu manifold.

Let M be m-dimensional submanifold of (2n+ 1)-dimensional D↵-homothetically deformed Ken-

motsu manifolds M̃. Let r and r
? represent the induced connections on the tangent bundle

TM and T
?
M of M, respectively and denote by h the second fundamental form of M for all
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E,F 2 �(TM) and N 2 �(T?
M), recall the Gauss and Weingarten formulas by

r̃EF = rEF + h(E,F ),

and

r̃EN = �ANE +r
?
EN,

where AN is used for notation of the shape operator of M with respect to N . The following

equation is well known

g(ANE,F ) = g(h(E,F ), N), for all E,F 2 �(TM), N 2 �(T?
M).

Let R is the Riemannian curvature tensor of M. Then we recall the equation of Gauss given by

R̃(E,F,G,H) = R(E,F,G,H)� g(h(E,H), h(F,G)) + g(h(E,G), h(F,H)), (4.1)

for all E,F,G,H 2 �(TM).

On combining (3.2) and (4.1), we arrive at

R
](E,F,G,H) = R(E,F,G,H)� g(h(E,H), h(F,G)) + g(h(E,G), h(F,H))

+
↵� 1

↵
[g('F,'G)g(E,H)� g('E,'G)g(F,H)],

which gives

R(E,F,G,H) = R
](E,F,G,H) + g(h(E,H), h(F,G))� g(h(E,G), h(F,H))

�

✓
↵� 1

↵

◆
[g('F,'G)g(E,H)� g('E,'G)g(F,H)]. (4.2)

Assume that {e1, . . . , em} and {em+1, . . . , e2n+1} represent local orthonormal tangent frame of the

tangent bundle TM of M and a local orthonormal normal frame of the normal bundle T
?
M of

M in M̃. Define the mean curvature vector H of M by

H =
mX

i=1

1

m
h(ei, ei) (4.3)

and squared norm of second fundamental form by

||h||
2 =

mX

i,j=1

g
�
h(ei, ej), h(ei, ej)

�2
. (4.4)
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Here we note that a submanifold M in M̃ is called minimal if H = 0.

We write the scalar curvature ⌧ of M at p 2 M as

⌧ =
X

1i<jm

R(ei, ej , ej , ei) (4.5)

and define the normalized scalar curvature ⇢ of M by

⇢ =
2⌧

m(m� 1)
=

2

m(m� 1)

X

1i<jm

K(ei ^ ej), (4.6)

where K is the sectional curvature function on M.

The scalar normal curvature Knor in terms of the components of the second fundamental form by

the following expression [17]:

Knor =
X

1r<s2n�m+1

X

1i<jm

 
mX

k=1

h
r
jkh

s
ik � h

r
ikh

s
jk

!2

. (4.7)

We also have the following relation for the normalized scalar normal curvature [17]

⇢nor =
2

m(m� 1)

p
Knor. (4.8)

Now, we prove the generalized Wintgen inequality for submanifolds of D↵-homothetically deformed

Kenmotsu manifold M̃.

Theorem 4.1. Let M be an m-dimensional submanifold of a D↵-homothetically deformed Ken-

motsu manifold M̃ of dimension (2n+ 1). Then

⇢� ⇢
] + ⇢nor  ||H||

2
�

✓
m� 1

m

◆✓
↵� 1

↵

◆
, (4.9)

where ⇢
] denotes the normalized scalar curvature with respect to r

].

Moreover, the equality case holds uniformly in (4.9) if and only if the shape operators Ar, r =

{1, . . . , 2n�m+ 1} take the following forms with the suitable orthonormal frames:

A =

0

BBBBBBBB@

µ1 µ 0 . . . 0

µ µ1 0 . . . 0

0 0 µ1 . . . 0
...

...
...

. . .
...

0 0 0 . . . µ1

1

CCCCCCCCA

, (4.10)
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A2 =

0

BBBBBBBB@

µ2 + µ 0 0 . . . 0

0 µ2 � µ 0 . . . 0

0 0 µ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . µ2

1

CCCCCCCCA

, (4.11)

A3 =

0

BBBBBBBB@

µ3 0 0 . . . 0

0 µ3 0 . . . 0

0 0 µ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . µ3

1

CCCCCCCCA

, A4 = · · · = A2n�m+1 = 0, (4.12)

for some suitable orthonormal basis {e1, . . . , em} of TpM and {E1, . . . , E2n�m+1} of T?
p M. Here

µ1, µ2, µ3, and µ are real numbers.

Proof. Assume that {e1, . . . , em} and {em+1, . . . , e2n+1 = ⇣} denote the local orthonormal tangent

frame and local orthonormal normal frame on M respectively. Then, in view of (4.2), we have

⌧ =
X

1i<jm

R(ei, ej , ej , ei)

=
X

1i<jm

⇢
R

](ei, ej , ej , ei) + g(h(ei, ei), h(ej , ej))� g(h(ei, ej), h(ej , ei))

�

✓
↵� 1

↵

◆
g('ej ,'ej)g(ei, ei)� g('ei,'ej)g(ej , ei)

��

= ⌧
]
� (m� 1)2

✓
↵� 1

2↵

◆
+

2n�m+1X

r=1

X

1i<jm

h
h
r
iih

r
jj � (hr

ij)
2
i
. (4.13)

On the other hand, we note that

m
2
||H||

2 =
2n�m+1X

r=1

⇣ mX

i=1

h
r
ii

⌘
2

=
1

m� 1

2n�m+1X

r=1

X

1i<jm

✓
h
r
ii � h

r
jj

◆2

+
2m

m� 1

2n�m+1X

r=1

X

1i<jm

h
r
iih

r
jj . (4.14)
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But from [16], it is known

2n�m+1X

r=1

X

1i<jm

(hr
ii � h

r
jj)

2 + 2m
2n�m+1X

r=1

X

1i<jm

(hr
ij)

2

� 2m

2

4
X

1r<s2n�m

X

1i<jm

 
mX

k=1

✓
h
r
jkh

s
ik � h

r
ikh

s
jk

◆!2
3

5

1
2

. (4.15)

On combining (4.14), (4.15) and (4.7), we have

m
2
||H||

2
�m

2
⇢nor �

2m

m� 1

2n�m+1X

r=1

X

1i<jm

✓
h
r
iih

r
jj � (hr

ij)
2

◆

=
2m

m� 1


⌧ � ⌧

] + (m� 1)2
✓
↵� 1

2↵

◆�
. (4.16)

Hence, by substituting (4.8), (4.13) into (4.16), we arrive

||H||
2
� ⇢nor � ⇢� ⇢

] +

✓
m� 1

m

◆✓
↵� 1

↵

◆
,

whereby proving the inequality (4.9).

An immediate consequence of the Theorem 4.1 yields the following:

Corollary 4.2. Let M be a minimal m-dimensional submanifold in a D↵-homothetically deformed

Kenmotsu manifold M̃ of dimension (2n+ 1). Then

⇢� ⇢
] + ⇢nor +

✓
m� 1

m

◆✓
↵� 1

↵

◆
 0.

5 Wintgen inequality for ✓-slant submanifolds in Kenmotsu

manifold under D↵-homothetic deformation

Let M be a submanifold of a D↵-homothetically deformed Kenmotsu manifold M̃. For each

nonzero vector U tangent to M̃ at any point p if the slant angle between TM and 'U is independent

of the choice of p 2 M, then M is said to be slant submanifold. Observe that submanifold M

becomes '-invariant and '-anti-invariant if the slant angle ✓ = 0 and ✓ = ⇡
2 , respectively. A slant

submanifold which is neither invariant nor anti-invariant is called proper slant (or ✓-slant proper)

submanifold.

Recall the results of [6, 7, 9] the following properties of slant submanifolds in an almost contact

metric manifolds holds.
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Theorem 5.1 ([7]). Let M be a submanifold of an almost contact metric manifold (M,', ⌘, ⇣, g)

such that ⇣ 2 �(TM). Then

(1) M is slant if and only if there exists a constant � 2 [0, 1] such that P
2 = ��(I � ⌘ ⌦ ⇣).

Furthermore, if the ✓ is the slant angle of M , then � = cos2 ✓

(2) g(PU, PV ) = cos2 ✓[g(U, V )� ⌘(U)⌘(V )], for any U, V 2 �(TM).

Now, we prove the generalized Wintgen inequality for ✓-slant submnaifolds of D↵-homothetically

deformed Kenmotsu manifold M̃.

Theorem 5.2. Let M be an m-dimensional ✓-slant submanifold of a D↵-homothetically deformed

Kenmotsu manifold M̃ of dimension (2n+ 1). Then

⇢nor + ⇢� ⇢
]
 ||H||

2
� cos2 ✓

✓
m� 1

m

◆✓
↵� 1

↵

◆
. (5.1)

Proof. Suppose that the local orthonormal tangent frame field on M is as follows: {e1, e2 =

sec ✓Pe1, . . . , em�2, em�1 = sec ✓Pem�2, em = ⇣} and the local orthonormal normal frame field on

M is given by {em+1, . . . , e2n+1}. Then we have

⌧ =
X

1i<jm

R(ei, ej , ej , ei)

=
X

1i<jm

⇢
R

](ei, ej , ej , ei) + g(h(ei, ei), h(ej , ej))� g(h(ei, ej), h(ej , ei))

�

✓
↵� 1

↵

◆⇥
g(Pej , P ej)g(ei, ei)� g(Pei, P ej)g(ej , ei)

⇤�

= ⌧
]
� (m� 1)2 cos2 ✓

✓
↵� 1

2↵

◆
+

2n�m+1X

r=1

X

1i<jm

h
h
r
iih

r
jj � (hr

ij)
2
i
. (5.2)

By using similar arguments as in the proof of Theorem 4.1 and (5.2), we get the desired inequality

(5.1).

Remark 5.3. In case of an m-dimensional ✓-slant submanifold M of a D↵-homothetically de-

formed Kenmotsu manifold M̃ of dimension (2n + 1). The equality case holds uniformly if and

only if the shape operators take the following forms with the suitable orthonormal frames as in

Theorem 4.1.

Now, we classify the geometrical bearing of invariant and anti-invariant submanifolds a D↵-

homothetically deformed Kenmotsu manifold M̃ of dimension (2n + 1) in terms of slant angle

✓ and in light of Theorem 5.2.

If M is an invariant submanifold, then ✓ = 0. Then we turn up
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Corollary 5.4. Let M be an m-dimensional invariant submanifold of a D↵-homothetically de-

formed Kenmotsu manifold M̃ of dimension (2n+ 1). Then

⇢nor + ⇢� ⇢
]
 ||H||

2
�

✓
m� 1

m

◆✓
↵� 1

↵

◆
. (5.3)

If M is an ant-invariant submanifold, then ✓ = ⇡
2 . Then we have

Corollary 5.5. Let M be an m-dimensional anti-invariant submanifold of a D↵-homothetically

deformed Kenmotsu manifold M̃ of dimension (2n+ 1). Then

⇢nor + ⇢� ⇢
]
 ||H||

2
. (5.4)

Remark 5.6. The equality case holds uniformly if and only if the shape operators take the following

forms with the suitable orthonormal frames as in Theorem 4.1.
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ABSTRACT

In this research article, we delimitate the definition of mild

solution for abstract fractional differential equations with

state-dependent delay (AFDEw/SDD) of order ↵ 2 (1, 2)

with impulsive effects and compare the solution to the

second-order impulsive differential equations. Further, we

obtain sufficient conditions of the existence of mild solu-

tion for instantaneous and non-instantaneous impulsive frac-

tional functional differential inclusions with state-dependent

delay (IFDIw/SDD) using the multi-valued fixed point theory

and operator techniques. Furthermore, we study the trajec-

tory controllability (T �controllability) of the AFDEw/SDD.

At last, we present some examples to illustrate the sufficient

conditions involving partial and ordinary derivatives.

RESUMEN

En este artículo de investigación, delimitamos la definición de

solución mild para ecuaciones diferenciales fraccionarias con

retardo dependiente del estado (AFDEw/SDD) de orden ↵ 2
(1, 2) con efectos impulsivos y comparamos la solución con

aquellas de ecuaciones diferenciales impulsivas de segundo

orden. Además obtenemos condiciones suficientes para la

existencia de soluciones mild de inclusiones funcionales difer-

enciales fraccionales instantánea y no-instantáneamente im-

pulsivas con retardo dependiente del estado (IFDIw/SDD) us-

ando la teoría de punto fijo multivaluados y técnicas de ope-

radores. Más aún, estudiamos la controlabilidad por trayec-

toria (T �controlabilidad) de los AFDEw/SDD. Finalmente,

presentamos algunos ejemplos para ilustrar las condiciones

suficientes que involucran derivadas parciales y ordinarias.

Keywords and Phrases: Fractional differential equation, functional-differential equations with fractional deriva-

tives, initial value problems, fixed point theorems, controllability.
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1 Introduction

In the last few decades, many researchers paid attention on impulsive differential equations, because

the models subject to abrupt changes are not described by classical models, so such type equations

simulated in term of impulsive models. In the nature, there are lots of systems in which the

time evolution of the state variable depends on the past history in some arbitrary way subject to

abrupt changes are modeled in impulsive functional differential equations, see [12–14,16,19,41,43]

for update. These equations arise in several fields of science and engineering which describe the

evolution processes. The impulsive effects may be instantaneous or non-instantaneous (more details

[2, 25, 37]) which is shown in many biological phenomena involving thresholds, optimal control

models in economics, etc.

The reason of receiving great attention of fractional calculus is that it describes the memory and

hereditary property. Due to this property fractional mathematical models give the more realistic

and practical results than the ordinary models. For the fractional calculus and its applications

see the monographs and papers [7, 30, 31, 34, 38–40] and references therein. Further, more specific

type of functional differential equations are state dependent delay equations which arise in applied

model when traditional simplifications are abandoned. For recent development theory of functional

differential equations with state dependent delay reader can see the papers [1, 6, 8, 17, 18, 21] and

references therein.

In additional, fractional differential inclusion is the generalization of fractional differential equa-

tion; therefore, all problems which contain the property of solution such as existence, uniqueness,

stability, periodicity and controllability are presented in the theory of inclusion. A differential

inclusion usually has many solutions which start from a given point and pass through others. It is

recently seen that new issue appear in the differential inclusion for the investigation of topological

properties of the set of solution, and selection of solutions. One can see the articles [9, 10, 15] for

more info about this hot topic.

In this appraise, we describe the existence of solution for fractional order case. Feckan et al. [19]

gave the suitable definition of solution for impulsive nonlinear fractional differential equation of

order ↵ 2 (0, 1), and Wang [43] extended the problem considered in [19] for the order ↵ 2 (1, 2).

Wang et al. [41] defined the mild solution using the probability density function for impulsive

fractional evolution equations of order ↵ 2 (0, 1), and motivated by [41] authors [16] extended the

definition of mild solution for neutral impulsive fractional functional differential equation with order

↵ 2 (0, 1) using analytic operator theory. Shu et al. [40] determined the definition of mild solution

for fractional differential equations with nonlocal conditions to order ↵ 2 (1, 2) without impulse.

The existence results of mild solution for impulsive fractional differential inclusions with nonlocal

conditions investigated by Wang et al. [42] when the linear part is a fractional sectorial operator

for convex and nonconvex of nonlinear term. Liu and Ahmad [32] analyzed an impulsive multi-
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term fractional differential equations with single and multiple base points for Caputo’s fractional

derivative. Recently, Feckan et al. [20] proposed two type Caputo’s fractional derivative named as

generalized Caputo’s derivative for single base point with the lower bound at zero and classical

Caputo’s derivative for multiple base points with lower bounded at non-zero.

Controllability is one of the contemplated properties of fractional dynamical systems (FDSs) that

confirm the steering of a FDS from an arbitrary initial state to a desired arbitrary final state via a

set of certain admissible control. In 1963, Kalman [28], first time gave the notion of controllability.

Based on the available literature, we found that there are various concepts of controllability, some

like

• approximate controllability (any state vector may be steered arbitrarily close to another state

vector)

• exact controllability (any pair of state vectors may be connected by a trajectory)

• the null controllability (any state vector may be steered to 0)

• T �controllability (we look for a control which steers the system along a prescribed trajectory

rather than a control steering a given initial state to desired final state.)

It is obvious that T �controllability is a stronger notion than other controllability notions. For

example: To launch a rocket in space sometimes it may be desirable a precise path along with

desired destination for cost effectiveness and so on, which is based on T �controllability notation.

For more details on T �controllability one can see the papers [11,23,27,35] and reference therein.

We found that there is no literature available on existence of mild solution for instantaneous and

non-instantaneous impulsive fractional differential inclusion of order ↵ 2 (1, 2). By inspiration of

works [11, 16, 19, 23, 27, 29, 33, 35, 36, 40, 41, 43–45], we consider the following fractional functional

differential inclusion with instantaneous and non-instantaneous impulsive effects.

First, we obtain the sufficient conditions of existence of mild solution for the following problem

with instantaneous impulse

C
0 D

↵
t u(t) 2 Au(t) + f(t, u⇢(t,ut)), 0 < t  T, t 6= tk, k = 1, 2, . . . ,m, (1.1)

u(t) = �(t), t 2 (�1, 0]; u
0(0) = u0 2 X, (1.2)

�u(tk) = Ik(u(t
�
k )); �u

0(tk) = Jk(u(t
�
k )), (1.3)

where C
0 D

↵
t denotes the generalized Caputo’s fractional derivative of order ↵ 2 (1, 2) for the state

u(t) belong to complex Banach space X and A : D(A) ⇢ X ! X is the closed linear densely defined

operator of sectorial type defined on X. The functions f : [0, T ]⇥Be ! F(X); ⇢ : [0, T ]⇥Be !
(�1, T ]; �(t) : (�1, 0] ! X satisfy some assumptions, and �(t) in to a abstract phase space Be.
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The notation (0, T ] denotes operational interval such that 0  t0 < t1 < · · · < tm < tm+1  T < 1.

The history function ut : (�1, 0] ! X defined by ut(✓) = u(t+✓), ✓ 2 (�1, 0] belongs to Be and

u
0(t) denotes the ordinary derivative of u(t). The jump functions Ik, Jk 2 C(X,X), k = 1, 2, . . . ,m,

are bounded and 4u(tk) = u(t+k )�u(t�k ) where u(t+k ) and u(t�k ) represent the right-hand and left-

hand limits of u(t) at t = tk with u(t�k ) = u(tk). Also, we have 4u
0(tk) = u

0(t+k ) � u
0(t�k ) where

u
0(t+k ) and u

0(t�k ) represent the right-hand and left-hand limits of u
0(t) at t = tk, also we take

u
0(t�k ) = u

0(tk) respectively.

Second, we give the sufficient conditions for problem with non-instantaneous impulsive fractional

functional differential equation

C
0 D

↵
t u(t) = Au(t) + f(t, u⇢(t,ut), Bu⇢(t,ut)), t 2 (si, ti+1] ✓ (0, T ], i = 0, 1, . . . , N, (1.4)

u(t) = gi(t, u(t)), u
0(t) = qi(t, u(t)), t 2 (ti, si], i = 1, 2, . . . , N, (1.5)

u(t) +G(u) = �(t), t 2 (�1, 0] u
0(0) = u1 2 X, (1.6)

where C
0 D

↵
t is classical Caputo’s fractional derivative. f : [0, T ] ⇥ Be ⇥ Be ! X,G : X ! X

are given functions and satisfy some assumptions and the term Bu⇢(t,ut) is given by Bu⇢(t,ut) =
R t
0 K(t, s)(u⇢(s,us)) ds where K 2 C(D,R+) is the set of all positive functions which are continuous

on D = {(t, s) 2 R2 : 0  s  t < T} and B
⇤ = supt2[0,t]

R t
0 K(t, s) ds < 1. Here 0 = t0 = s0 <

t1  s1  t2 < · · · < tN  sN  tN+1 = T are pre-fixed numbers, and gi, qi 2 C((ti, si]⇥X;X) for

all i = 1, 2, . . . , N. The nonlocal condition G(u) defined as G(u) =
Pr

k=1 cku(tk), where ck, k =

1, . . . , r, are given constants and 0 < t1 < t2 < · · · < tr < T respectively.

Finally, we consider nonlinear fractional delay differential equation with non-local condition and

provide some sufficient conditions for T �controllability for the equation of the form:

C
0 D

↵
t u(t) = Au(t) + B̧$(t) + f(t, u⇢(t,ut), Bu⇢(t,ut)), t 2 (si, ti+1] ✓ (0, T ], i = 0, 1, . . . , N,(1.7)

u(t) = gi(t, u(t)), u
0(t) = qi(t, u(t)), t 2 (ti, si], i = 1, 2, . . . , N, (1.8)

u(t) +G(u) = �(t), t 2 (�1, 0] u
0(0) = u1 2 X, (1.9)

The linear operator B̧ : U(Banach space) ! X is a bounded operator and $(t) 2 L2(J,U) is a

control function of the system.

Moreover, a strong motivation to study the model problem (1.1), (1.4) and, (1.7) with aftereffect

and subject to impulsive conditions (1.3), (1.5) and (1.9) comes from physics because this model

represents the inverse heat condition problem. In this paper, we have used the standard fixed point

technique taking generalized and classical Caputo’s fractional derivative in abstract phase space

to established the results.

Further, motivation is that in dynamical models, generally we assume that the linear or non-linear
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terms are smooth or continuous functions. However, in many modern models, the underlying

dynamical models are not necessarily even continuous. For examples, models of friction and Low

dimensional climate models do not belong to above models so to remove the restriction or for non-

smooth systems with the discontinuous terms are frequently remodeled as a differential inclusion.

This is the advantage to study the qualitative analysis of this paper.

A strong motivation to prove the existence results that the knowledge of existence does not prove

the uniqueness of solutions also. For example, we have some fractional differential equation model

like C
0 D

1/2
t x(t) = x

1/2(t) with initial condition x(0) = 0 for t 2 [0, T ] has a trivial solution x ⌘ 0

and non trivial solution x(t) = ⇡
4 t. This shows that the solution obviously exists and is not unique

because it fails to satisfy the Lipschitz continuity condition. Hence, in a differential equation,

solution can exist and can be not unique. In other words, the knowledge of existence does not

ensure the uniqueness of the solution.

Further information about this work, it has five sections. Section 2 provides some basic definitions,

theorems, notations and lemmas. Section 3 is equipped with existence results of the mild solution

for the considered problems (1.1)-(1.6). Section 4 contributes to the Trajectory controllability

results for the considered fractional delay differential equation. In Section 5 examples are provided

to illustrate our results.

2 Preliminaries

Let X be a arbitrary complex Banach space with norm k · kX and L(X) denotes the Banach space

of bounded linear operators from X into X with norm k · kL(X) and both are equipped with its

natural topology. Let C([0, T ], X) be the space of all real valued (or complex valued) continuous

functions from [0, T ] into X with the sup norm

kukC([0,T ],X) = sup
t2[0,T ]

{ku(t)kX : u 2 C([0, T ], X)}.

is a Banach space.

For the general setting of abstract phase space Be,B0
e with impulse effects we refer the work [16,24]

and for further notations like C
a D

↵
t (Caputo’s derivative), aJ ↵

t (Riemann-Liouville integral) and

E↵,�(·) (Mittag-Leffler function) we refer [34, 38]. For A : D(A) ✓ X ! X (Sectorial operator)

see [40], and for S↵(t), T↵(t) (Operators) [40] particular case of W↵,�(t) (Operator functions) we

refer [22] respectively.

Let T be the set of all functions #(·) 2 B0
e defined on J = [0, T ] such that #(0) = �(0), #0(0) = u1

and #(T ) = �T , #
0(T ) = uT for all t 2 J and the fractional derivative C

D
↵
t #(t) exist almost

everywhere. The set T is called the set of all feasible trajectories for the fractional dynamical
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system.

Lemma 2.1 ([24]). Let u : (�1, T ] ! X be a function such that u0 = �, u |(tk,tk+1]2 C
2((tk, tk+1], X),

then for all t 2 (tk, tk+1], the following conditions hold:

(C1) ut 2 Be.

(C2) ku(t)kX  HkutkBe .

(C3) kutkBe  K(t) sup {ku(s)k : 0  s  t} + M(t)k�kBe , where H > 0 is constant; K,M :

[0,1) ! [0,1), K(·) is continuous, M(·) is locally bounded and K,M are independent of

u(t).

(C4) The function t! �t is well defined and continuous from the set

<(⇢�) = {⇢(s, ) : (s, ) 2 [0, T ]⇥Be}

into Be and there exists a continuous and bounded function J
� : <(⇢�) ! (0,1) such that

k�tkBe  J
�(t)k�kBe for every t 2 <(⇢�).

Lemma 2.2 ([8]). Let u : (�1, T ] ! X be function such that u0 = �, u |(tk,tk+1]2 C
2((tk, tk+1], X)

and if (C4) hold, then

kuskBe  (Me + J
�)k�kBe +Ke sup {ku(✓)k; ✓ 2 [0,max{0, s}]} , s 2 <(⇢�) [ (tk, tk+1],

where J
� = supt2<(⇢�) J

�(t), Me = sups2[0,T ] M(s) and Ke = sups2[0,T ] K(s).

To use the multi-valued analysis that is discussed in reference [9], we have some properties which

are required to prove our main result. Denote by F(X) = {Y ⇢ X : Y 6= ;},Fcl(X) =

{Y ⇢ F(X) : Y is closed},Fb(X) = {Y ⇢ F(X) : Y is bounded},Fcv(X) = {Y ⇢ F(X) :

Y is convex},Fcp(X) = {Y ⇢ F(X) : Y is compact}.

A multi-valued map G : X ! F(X) is convex (closed) valued if G(x) is convex (closed) for all

x 2 X. G is bounded on bounded sets if G(B) = [x2BG(x) is bounded in X for any bounded set

B of F(X) (i.e. supx2B{sup{kyk : y 2 G(x)}} < 1).

A multi-valued map G : [0, T ] ! Pcl(X) is said to be measurable if for each y 2 X the function

Y : [0, T ] ! R defined by

Y (t) = d(y,G(t)) = inf{|y � z| : z 2 G(t)},

belongs to L
1([0, T ],R).
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Definition 2.3 ([9]). A multi-valued map F : [0, T ]⇥X ! F(X) is Caratheódory if

(i) t ! F (t, u) is measurable for each u 2 X, and

(ii) u ! F (t, u) is upper semi continuous (u.s.c.) for almost all t 2 [0, T ].

For each y 2 C([0, T ], X), define the set of selections for F by

SFy = {v 2 L
1([0, T ], X) : v(t) 2 F (t, y(t)) for a.e. t 2 [0, T ]}.

Let (X, d) be a metric space induced by the norm space (X, k ·kX). Consider Hd : F(X)⇥F(X) !
R+ [1 given by

Hd(A,B) = max

⇢
sup
a2A

d(a,B), sup
b2B

d(A, b)

�
,

where d(A, b) = infa2A d(a, b) and d(a,B) = infb2B d(a, b). Then (Fb,cl(X), Hd) is a metric space

and (Fcl(X), Hd) is a generalized metric space.

Definition 2.4 ([9]). A multi-valued operator N : X ! Fcl(X) is called:

(i) ��Lipschitz if there exists � > 0 such that

Hd(N (x),N (y))  �d(x, y) for all x, y 2 X;

(ii) a contraction if it is �-Lipschitz with � < 1.

Lemma 2.5 ([9]). Let (X, d) be a complete metric space. If N : X ! Fcl(X) is a contraction,

then Fix N 6= ;.

Lemma 2.6 ([9]). Let f satisfy the uniform Holder condition with exponent � 2 (0, 1] and A is

a sectorial operator of the type (M, ✓,↵, µ). Consider differential equation of order ↵ 2 (1, 2) with

instantaneous impulse

C
0 D

↵
t u(t) = Ay(t) + f(t), t 2 [0, T ], t 6= tk, (2.1)

u(0) = u0 2 X; u
0(0) = u1 2 X, (2.2)

�u(tk) = Ik(u(t
�
k )); �u

0(tk) = Jk(u(t
�
k )), t 6= tk, k = 1, 2, . . . ,m. (2.3)

and with non-instantaneous impulse

C
a D

↵
t u(t) = Au(t) + f(t), t 2 (si, ti+1] ⇢ J = (a, T ], a � 0, i = 0, 1, . . . , N, (2.4)

u(a) = u0 2 X; u
0(a) = u1 2 X, (2.5)

u(t) = gi(t, u(t)); u
0(t) = qi(t, u(t)), t 2 (ti, si], i = 1, 2, . . . , N. (2.6)
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Then a function u(t) 2 PC([0, T ], X) is a solution of the system (2.1)-(2.3) if it satisfies following

integral equation

u(t) =

8
>>>><

>>>>:

S↵(t)u0 + u1

R t
0 S↵(s)ds+

R t
0 T↵(t� s)f(s)ds, t 2 (0, t1]

S↵(t)u0 + u1

R t
0 S↵(s)ds+

Pk
i=1 S↵(t� ti)Ii(u(t

�
i ))

+
Pk

i=1 Ji(u(t
�
i ))

R t
ti
S↵(s� ti)ds+

R t
0 T↵(t� s)f(s)ds, t 2 (tk, tk+1],

(2.7)

and a function u(t) 2 PC([a, T ], X) is a solution of system (2.4)-(2.6) if it satisfies the following

integral equation

u(t) =

8
><

>:

S↵(t� a)u0 + u1

R t
a S↵(s� a)ds+

R t
a T↵(t� s)f(s)ds t 2 (a, t1],

S↵(t� si)gi(si, u(si)) + qi(si, u(si))
R t
ti
S↵(s� ti)ds+

R t
si
T↵(t� s)f(s)ds t 2 (si, ti+1]

(2.8)

Remark 2.7. The ↵-resolvent family T↵(t) associated with solution operator S↵(t) can be defined

as Z t

0
S↵(✓)x d✓ = 0J 1

tS↵(✓)x d✓; T↵(t)x = 0J ↵�1
t S↵(✓)x d✓, x 2 X, t 2 [0, T ].

For the special case when ↵! 2, we get following results

(1) T↵(t) is the cosine function C(t) and S↵(t) is the sine function S(t) defined as

S(t)x =

Z t

0
C(✓)x d✓, x 2 X, t 2 [0, T ]

(2) Solution of system (2.1)-(2.3) for t 2 (0, T ] can be reduced as

u(t) =

8
>>>><

>>>>:

C(t)u0 + S(t)u1 +
R t
0 S(t� s)f(s)ds t 2 (0, t1]

C(t)u0 + S(t)u1 +
Pk

i=1 C(t� ti)Ii(u(t
�
i ))

+
Pk

i=1 S(t� ti)Ji(u(t
�
i )) +

R t
0 S(t� s)f(s)ds t 2 (tk, tk+1],

which is the same as Definition 2.1 in [26].

(3) Solution of system (2.4)-(2.6) for t 2 (a, T ] can be reduced as

u(t) =

8
><

>:

C(t� a)u0 + u1

R t
a S(s� a)ds+

R t
a S(t� s)f(s)ds t 2 (a, t1],

C(t� si)gi(si, u(si)) + qi(si, u(si))
R t
ti
S(s� ti)ds+

R t
si
S(t� s)f(s)ds t 2 (si, ti+1]

which is the same as Definition 2.1 in [25].
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Definition 2.8. A function u : (�1, T ] ! X such that u 2 B0
e, is called a mild solution of

problem (1.1)-(1.3) if u(0) = �(0) and it satisfies the following integral equation

u(t) =

8
>>>><

>>>>:

S↵(t)�(0) + u0

R t
0 S↵(s)ds+

R t
0 T↵(t� s)f(s, u⇢(s,us))ds, t 2 (0, t1]

S↵(t)�(0) + u0

R t
0 S↵(s)ds+

Pk
i=1 S↵(t� ti)Ii(u(t

�
i ))

+
Pk

i=1 Ji(u(t
�
i ))

R t
ti
S↵(s� ti)ds+

R t
0 T↵(t� s)f(s, u⇢(s,us))ds, t 2 (tk, tk+1].

Definition 2.9. A function u : (�1, T ] ! X such that u 2 B0
e is called a mild solution of the

problem (1.4)-(1.6) if u(0) = �(0)�G(u) and satisfies the following integral equation

u(t) =

8
>>>>><

>>>>>:

(�(0)�G(u))S↵(t) + u1

R t
0 S↵(s)ds

+
R t
0 T↵(t)f(s, u⇢(s,us), Bu⇢(s,us))ds, t 2 (0, t1],

gi(si, u(si))S↵(t� si) + qi(si, u(si))
R t
ti
S↵(s� ti)ds

+
R t
si
T↵(t� s)f(s, u⇢(s,us), Bu⇢(s,us))ds, t 2 (si, ti+1],

for i = 1, 2, . . . , N.

Definition 2.10. The system (1.1) is said to be T �controllable if for any u(·) 2 T there exists

a control function $(t) 2 L2(J,U) such that the corresponding solution u(·) of Eq. (1.1) satisfies

u(t) = #(t) almost everywhere.

Definition 2.11. A function u : (�1, T ] ! X such that u 2 B0
e is called a mild solution of the

problem (1.7)-(1.9) if u(0) = �(0)�G(u) and satisfies the following integral equation

u(t) =

8
>>>>><

>>>>>:

(�(0)�G(u))S↵(t) + u1

R t
0 S↵(s)ds

+
R t
0 T↵(t� s)[B̧$(s) + f(s, u⇢(s,us), Bu⇢(s,us))]ds, t 2 (0, t1],

gi(si, u(si))S↵(t� si) + qi(si, u(si))
R t
ti
S↵(s� ti)ds

+
R t
si
T↵(t� s)[B̧$(s) + f(s, u⇢(s,us), Bu⇢(s,us))]ds, t 2 (si, ti+1],

for i = 1, 2, . . . , N.

3 Existence result of mild solution

In this section, we shall establish the existence result of solution for the problems (1.1)-(1.6) for

the both case of impulsive effects and also prove the continuous dependent of solution on initial

conditions. Further, if A is a sectorial operator then strongly continuous functions are bounded -

i.e.,

kS↵(t)kL(X)  M ; kT↵(t)kL(X)  M.
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3.1 Instantaneous case

In this case, we prove the existence of mild solution for problem (1.1)-(1.3) with a non-convex

valued right-hand side. Due to this analysis we can make the following assumptions:

(H1) f : [0, T ]⇥Be ! Fcp(X) is Caratheódory and has the property that f(·, ) : [0, T ] ! Fcp(X)

is measurable, for each  2 Be.

(H2) There exists l 2 L
1([0, T ],R+) such that

Hd(f(t, ), f(t, ⇠))  l(t)k � ⇠kBe for every  , ⇠ 2 Be

and

d(0, f(t, 0))  l(t) a.e. t 2 [0, T ].

Our result is based on contraction multi-valued fixed point theorem given by Covitz and Nadler [15].

Theorem 3.1. Let the assumptions (H1) and (H2) hold. Then problem (1.1)-(1.3) has at least

one mild solution u(t) on [0, T ].

Proof. Consider the space B00
e = {u 2 B0

e : u(0) = �(0)} and y(t) = �(t) for t 2 (�1, 0] endowed

with the uniform convergence topology. We shall show that P has fixed points, where the multi-

valued operator P : B00
e ! F(B00

e ) defined as P(u) = {ē 2 B00
e} with

ē(t) =

8
>>>><

>>>>:

S↵(t)�(0) + u0

R t
0 S↵(s)ds+

R t
0 T↵(t� s)v(s)ds, t 2 (0, t1],

S↵(t)�(0) + u0

R t
0 S↵(s)ds+

Pk
i=1 S↵(t� ti)Ii(u(t

�
i ))

+
Pk

i=1 Ji(u(t
�
i ))

R t
ti
S↵(s� ti)ds+

R t
0 T↵(t� s)v(s)ds, t 2 (tk, tk+1],

where v(s) 2 Sf,ū⇢(s,ūs)
for t 2 [0, T ] and ū : (�1, T ] ! X is such that ū(0) = �(0) and ū = u

on [0, T ]. We shall show that P has fixed points. Let P(u) 2 Fcl(B00
e ) for all u 2 B00

e . Let

{un}n�0 2 P(u) be such that un ! u 2 B000
e . Then there exists vn 2 Sf,ū⇢(s,ūs)

such that, for each

t 2 (tk, tk+1],

un(t) =

8
><

>:

S↵(t)�(0) + u0

R t
0 S↵(s)ds+

Pk
i=1 S↵(t� ti)Ii(un(t

�
i ))

+
Pk

i=1 Ji(un(t
�
i ))

R t
ti
S↵(s� ti)ds+

R t
0 T↵(t� s)vn(s)ds.

Using the fact that f has compact values, we may pass to a subsequence if necessary to obtain

that vn converges to v in L
1([0, T ], X) and hence v 2 Sf,ū⇢(s,ūs)

. Thus, for each t 2 (tk, tk+1]

un(t) ! u(t) =

8
><

>:

S↵(t)�(0) + u0

R t
0 S↵(s)ds+

Pk
i=1 S↵(t� ti)Ii(u(t

�
i ))

+
Pk

i=1 Ji(u(t
�
i ))

R t
ti
S↵(s� ti)ds+

R t
0 T↵(t� s)v(s)ds,
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which implies that u 2 P(u).

There exist � < 1 such that

Hd(f(u1), f(u2))  �ku1 � u2kB000
e

for all u1, u2 2 B00
e .

Let u1, u2 2 B00
e and ē 2 P(u). Then there exists v(t) 2 f(t, ū⇢(t,ūt)) such that, for each t 2

(tk, tk+1],

ē(t) =

8
><

>:

S↵(t)�(0) + u0

R t
0 S↵(s)ds+

Pk
i=1 S↵(t� ti)Ii(u(t

�
i ))

+
Pk

i=1 Ji(u(t
�
i ))

R t
ti
S↵(s� ti)ds+

R t
0 T↵(t� s)v(s)ds.

From (H2) it follows that

Hd(f(t, ū1⇢(t,ū1t)), f(t, ū2⇢(t,ū2t)))  l(t)ku1 � u2kB00
e
.

Hence, there exists w 2 f(t, ū⇢(t,ūt)) such that

kv � wkB00
e
 l(t)ku1 � u2kB00

e
.

Consider U : [0, T ] ! F(X) given by

U(t) = {w 2 X : kv � wk  l(t)ku1 � u2kB00
e
}.

Since the multi-valued operator V (t) = U(t) \ f(t, ū2⇢(t,ū2t)) is measurable [10], there exists a

function v2(t) which is a measurable selection for V. Thus, v̄(t) 2 f(t, ū2⇢(t,ū2t)) and for each

t 2 (tk, tk+1],

v(t)� v̄(t)  l(t)ku1 � u2kB00
e
.

For each t 2 (tk, tk+1] we define

ē(t) =

8
><

>:

S↵(t)�(0) + u0

R t
0 S↵(s)ds+

Pk
i=1 S↵(t� ti)Ii(u(t

�
i ))

+
Pk

i=1 Ji(u(t
�
i ))

R t
ti
S↵(s� ti)ds+

R t
0 T↵(t� s)v̄(s)ds.

Then, we have

ke(t)� ē(t)kB00
e


Z t

0
kT↵(t� s)kL(X)kv(s)� v̄(s)kds  M

Z t

0
l(s)ku1 � u2kds


Z t

0
l̄(s)ku1 � u2kds 

1

⌧
e
⌧L(t)ku1 � u2kB00

e
,
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where ⌧ > 1, L(t) =
R t
0 Ml(s)ds and k · kB00

e
is the Bielecki-type norm on B00

e defined by

kukB00
e
= sup{e�⌧L(t)ku(t)k : t 2 [0, T ]}.

Therefore

ke(t)� ē(t)kB00
e
 1

⌧
ku1 � u2kB00

e
.

Obtained by interchanging of u1 and u2, and by an analogous relation, it follows that

Hd(P(u1),P(u2)) 
1

⌧
ku1 � u2kB00

e
,

which implies that P is a contraction, and thus, by Lemma 2.5 there exists a fixed point u(t) 2 B00
e ,

which is a mild solution to the problem (1.1)-(1.3). This completes the proof.

3.2 Non-instantaneous Case

In this case, we shall establish the existence result of solution for the problem (1.4)-(1.6). Now,

we introduce the following assumption.

(H3) The function f is jointly continuous and there exist positive constants Lf1, Lf2 such that

kf(t, , µ)� f(t, ⇠, ⌫)kX  Lf1k � ⇠kBe + Lf2kµ� ⌫kBe , 8  , ⇠, µ, ⌫ 2 Be.

(H4) The functions gi, qi and G are continuous and there exist positive constants Lgi , Lqi and LG

such that

kgi(t, x)� gi(t, y)kX  Lgikx� ykX ; kqi(t, x)� qi(t, y)kX  Lqikx� ykX ;

kG(x)�G(y)kX  LGkx� ykX ,

for all x, y 2 X, t 2 (ti, si] and each i = 1, 2, . . . , N.

Theorem 3.2. If the assumptions (H3) and (H4) hold and constant

� = (� + TMKe(Lf1 +B
⇤
Lf2)) < 1,

where � = max{LGM,LgiM + LqiMT} for i = 1, . . . , N. Then there exists a unique mild solution

u(t) of the problem (1.4)-(1.6) on [0, T ].
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Proof. Consider the space B00
e as given in Theorem 3.1 and we define an operator P : B00

e ! B00
e as

Pu(t) =

8
>>>>><

>>>>>:

(�(0)�G(ū))S↵(t) + u1

R t
0 S↵(s)ds

+
R t
0 T↵(t� s)f(s, ū⇢(s,ūs), Bū⇢(s,ūs))ds, t 2 (0, t1],

gi(si, ū(si))S↵(t� si) + qi(si, ū(si))
R t
ti
S↵(s� ti)ds

+
R t
si
T↵(t� s)f(s, ū⇢(s,ūs), Bū⇢(s,ūs))ds, t 2 (si, ti+1],

(3.1)

where ū : (�1, T ] ! X is such that ¯u(0) = �(0)�G(ū), ¯u0(0) = u1 and ū = u on [0, T ]. We shall

show that the operator P has a fixed point. So let u(t), u⇤(t) 2 B0
e for t 2 (0, t1], we get

kPu� Pu
⇤kB0

e
 kG(ū)�G(ū⇤)kkS↵(t)kL(X) +

Z t

0
kT↵(t� s)kL(X)

⇥kf(s, ū⇢(s,ūs), Bū⇢(s,ūs))� f(s, ū⇤
⇢(s,ū⇤

s)
, Bū

⇤
⇢(s,ū⇤

s)
)kXds,

kPu� Pu
⇤kX  {LGM + TMKe(Lf1 +B

⇤
Lf2)}ku� u

⇤kX .

For t 2 (si, ti+1], we have

kPu� Pu
⇤kB0

e
 kgi(si, ū(si))� gi(si, ū

⇤(si))kXkS↵(t� s)kL(X)

+kqi(si, ū(si))� qi(si, ū
⇤(si))kX

Z t

0
kS↵(t� s)kL(X)ds

+

Z t

si

kT↵(t� s)kL(X)kf(s, ū⇢(s,ūs), Bū⇢(s,ūs))� f(s, ū⇤
⇢(s,ū⇤

s)
, Bū

⇤
⇢(s,ū⇤

s)
)kXds,

kPu� Pu
⇤kX  (LgiM + LqiMT + TMKe(Lf1 +B

⇤
Lf2))ku� u

⇤kX .

Let � = max{LGM,LgiM + LqiMT}, then for all t 2 [0, T ], we obtain

kPu� Pu
⇤kX  (� + TMKe(Lf1 +B

⇤
Lf2))ku� u

⇤kX .

We have

kPu� Pu
⇤kX  �ku� u

⇤kX .

Since � < 1, which implies that P is a contraction map and there exists a unique fixed point u(t)

which is the mild solution of system (1.4)-(1.6) on [0, T ].
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3.3 Continuous Dependence of Mild Solutions

This section is concerned with continuous dependence of mild solutions consider the system (1.4)-

(1.6).

Theorem 3.3. Suppose that the assumptions (H3) and (H4) are satisfied and the following con-

dition hold:

⇥
max{MLG,MLgi +MTLqi}+MT (Lf1 + Lf2B

⇤)(Me + J
�)
⇤
< 1.

Then for each �,�
⇤
, let u, u

⇤
be the corresponding mild solutions of the system (1.4)-(1.6), then

the following inequalities hold:

ku� u
⇤kX  MT (M + Lf1 + Lf2B

⇤)

1� [MLG +MT (Lf1 + Lf2B
⇤)(Me + J�)]

k�� �
⇤k, t 2 (0, t1],

ku� u
⇤kX  MT (M + Lf1 + Lf2B

⇤)

1� [MLgi +MTLqi +MT (Lf1 + Lf2B
⇤)(Me + J�)]

k�� �
⇤k, t 2 (si, ti+1],

for i = 1, 2, . . . , N.

Proof. The proof is similar as Theorem 3.2.

4 Trajectory Controllability

This section deals with the T �controllability results of the considered nonlinear fractional delay

differential equation with non-local condition and non-instantaneous impulses.

Theorem 4.1. Let the assumption (H3) and (H4) hold, then problem (1.7)-(1.9) is T �controllable

on [0, T ].

Proof. Let #(t) be any given trajectory in T and we choose the feedback control $(t) given as

$(t) = B̧�1[C0 D
↵
t #(t)�A#(t)� f(t,#⇢(t,#t), B#⇢(t,#t))], t 2 (si, ti+1] ✓ (0, T ]. (4.1)

Plugging the control $(t) from Eq. (4.1) in Eq. (1.7) and we get

C
0 D

↵
t u(t) = Au(t) + f(t, u⇢(t,ut), Bu⇢(t,ut)) +

C
0 D

↵
t #(t)�A#(t)� f(t,#⇢(t,#t), B#⇢(t,#t)),

t 2 (si, ti+1] ✓ (0, T ].



CUBO
25, 3 (2023)

Fractional differential inclusion 377

From the equation above, we have

C
0 D

↵
t [u(t)� #(t)] = A[u(t)� #(t)] + f(t, u⇢(t,ut), Bu⇢(t,ut))� f(t,#⇢(t,#t), B#⇢(t,#t)),

t 2 (si, ti+1] ✓ (0, T ].

Again, if we choose �(t) = u(t)� #(t), without loss of generality, then our original problem (1.7)-

(1.9) is modified as follows:

C
0 D

↵
t �(t) = A�(t) + f(t, u⇢(t,ut), Bu⇢(t,ut))� f(t,#⇢(t,#t), B#⇢(t,#t)), (4.2)

t 2 (si, ti+1] ✓ (0, T ], i = 0, 1, . . . , N,

�(t) = gi(t, u(t))� gi(t,#(t)), �
0(t) = qi(t, u(t))� qi(t,#(t)), (4.3)

t 2 (ti, si], i = 1, 2, . . . , N, (4.4)

�(t) = �G(u) +G(#), t 2 (�1, 0], �
0(0) = 0. (4.5)

The mild solution of the problem (4.2)-(4.5) is given by

�(t) =

8
>>>>><

>>>>>:

(�G(u) +G(#))S↵(t) +
R t
0 T↵(t� s)[f(s, u⇢(s,us), Bu⇢(s,us))� f(s,#⇢(s,#s), B#⇢(s,#s))]ds,

t 2 (0, t1],

S↵(t� si)[gi(t, u(t))� gi(t,#(t))] +
R t
ti
S↵(s� ti)ds[qi(t, u(t))� qi(t,#(t))]

+
R t
si
T↵(t� s)[f(s, u⇢(s,us), Bu⇢(s,us))� f(s,#⇢(s,#s), B#⇢(s,#s))]ds, t 2 (si, ti+1],

For the trajectory control, we will show that k�(t)k = 0. Now, without loss of generality, we

consider the subinterval (si, ti+1], to estimate

(LgiM + LqiMT + TMKe(Lf1 +B
⇤
Lf2))ku� u

⇤kX .

k�(t)k  kS↵(t� si)kkgi(t, u(t))� gi(t,#(t))k+
Z t

ti

kS↵(s� ti)kdskqi(t, u(t))� qi(t,#(t))k

+

Z t

si

kT↵(t� s)kkf(s, u⇢(s,us), Bu⇢(s,us))� f(s,#⇢(s,#s), B#⇢(s,#s))kds,

 LgiMk�(t)k+ LqiM

Z t

ti

|�(t)kds+MKe(Lf1 +B
⇤
Lf2)

Z t

ti

k�(t)kds

= LgiMk�(t)k+ [LqiM +MKe(Lf1 +B
⇤
Lf2)]

Z t

ti

k�(t)kds

= �k�(t)k+ 
Z t

ti

k�(s)kds,

where � = LgiM ,  = [LqiM + MKe(Lf1 + B
⇤
Lf2)] are constants. Now, applying Gronwall’s
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inequality, we get

�(t) = 0.

Hence u(t) = #(t) almost everywhere. Thus, the control problem (1.7)-(1.9) is T �controllable.

5 Examples

This section contains examples to validate the derived results (existence and T �controllability) of

the considered systems.

5.1 Example

To prove the theoretical existence result, we shall consider the following impulsive fractional order

partial differential inclusion of the form

@
↵
u(t, x)

@t↵
2 @

2
u(t, x)

@y2
+

Z t

�1
e
2(s�t) cos

✓
u(s� ⇢1(s)⇢2(kuk), x)

16

◆
ds, t 6= 1

2
, (5.1)

u(t, 0) = u(t,⇡) = 0; u
0(t, 0) = u

0(t,⇡) = 0, t � 0, (5.2)

u(t, x) = �(t, x); u
0(0, x) = u0, t 2 (�1, 0], x 2 [0,⇡], (5.3)

�u|t= 1
2

=

Z 1
2

�1
g

✓
1

2
� s

◆
u(s, x) ds; �u

0|t= 1
2
=

Z 1
2

�1
q

✓
1

2
� s

◆
u(s, x) ds, (5.4)

are fixed numbers and �(t) 2 Be. Let X = L
2[0,⇡] and define the operator A : D(A) ⇢ X ! X

by Aw = w
00 with the domain D(A) := {w 2 X : w,w

0 are absolutely continuous, w
00 2 X,

w(0) = 0 = w(⇡)}. Then

Aw =
1X

n=1

n
2(w,wn)wn, w 2 D(A),

where wn(x) =
q

2
⇡ sin(nx), n 2 N is the orthogonal set of eigenvectors of A. It is well known that

A is the infinitesimal generator of an analytic semigroup (T (t))t�0 in X and is given by

T (t)! =
1X

n=1

e
�n2t(!,!n)!n, for all ! 2 X, and every t > 0.

Let h(s) = e
2s
, s < 0 then l =

R 0
�1 h(s)ds = 1

2 < 1, for t 2 (�1, 0] and define

k�kBe =

Z 0

�1
h(s) sup

✓2[s,0]
k�(✓)kL2ds.

Hence for (t,�) 2 [0, 1] ⇥Be, where �(✓)(x) = �(✓, x), (✓, x) 2 (�1, 0] ⇥ [0,⇡]. We assume that

⇢i : [0,1) ! [0,1), i = 1, 2, are continuous functions.
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Set u(t)(x) = u(t, x), and ⇢(t,�) = ⇢1(t)⇢2(k�(0)k) we have

f(t,�)(x) =

Z 0

�1
e
2(s) cos

✓
�

16

◆
ds.

Then with above setting the problem (5.1)-(5.4) can be written in the abstract form of equation

(1.1)-(1.3). Further, we can estimate

kf(t,�)(x)� f(t,')(x)kL2 =

"Z ⇡

0

⇢Z 0

�1
e
2(s)

����cos
✓
�

16

◆
� cos

⇣
'

16

⌘���� ds
�2

dx

# 1
2

 1

16

"Z ⇡

0

⇢Z 0

�1
e
2(s)(k�� 'kL2)ds

�2

dx

# 1
2


p
⇡

16
k�� 'kBe .

This shows that the multivalued map f follows the assumption H2. This implies that there exists

at least one mild solution of problem (5.1)-(5.4).

5.2 Example

Consider the following fractional order functional differential equation

@
↵

@t↵
u(t, x) =

@
2

@y2
u(t, x) +

Z t

�1
e
2(⌫�t)u(⌫ � �(kuk), x)

24
d⌫

+

Z t

0
cos(t� s)

Z ⇠

�1
e
2(⌫�⇠)u(⌫ � �(kuk), x)

25
d⌫ ds,

(t, x) 2 [N
i=1[si, ti+1]⇥ [0,⇡], (5.5)

u(t, 0) = u(t,⇡) = 0, t � 0, (5.6)

u(t, x) +
rX

k=1

cku(sk, x) = �(t, x), t 2 (�1, 0]; u
0(t, x) = 0, x 2 [0,⇡], (5.7)

u(t, x) = Gi(t, y); u
0(t, x) = Hi(t, y), t 2 (ti, si], (5.8)

are fixed numbers and � 2 Be. Setting u(t)(x) = u(t, x), and

⇢(t,�) = t� �(k�(0)k), (t,�) 2 [0, T ]⇥Be,

we have

f(t,�, B�) =

Z 0

�1
e
2(⌫) �

24
d⌫ +

Z t

0
cos(t� s)

Z 0

�1
e
2(⌫) �

25
d⌫ ds,

gi(t, y) = Gi(t, y); qi(t, y) = Hi(t, y), G(y) =
rX

k=1

cku(sk, x).
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Then the above equations (5.5)-(5.8) can be written in the abstract form as (1.4)-(1.6). Further-

more, we can see that for (t,�, B�), (t, , B ) 2 [0, T ]⇥Be ⇥Be, may verify that

kf(t,�, B�)� f(t, , B )kL2 
"Z ⇡

0

⇢Z 0

�1
e
2(s)

����
�

24
�  

24

���� ds
�2

dy

+

Z ⇡

0

⇢����
Z t

0
cos(t� s)

Z 0

�1
e
2(⌫) �

25
�  

25
d⌫ ds

����

�
dy

�1/2


"Z ⇡

0

⇢
1

24

Z 0

�1
e
2(s) sup k��  kds

�2

dy

+

Z ⇡

0

⇢
1

25

Z 0

�1
e
2(s) sup k��  kds

�2

dy

#1/2


p
⇡

24
k��  k+

p
⇡

25
k��  k.

Hence, function f satisfies (H3). Similarly, we can show that the functions gi, qi, h(y) satisfy (H4).

All the condition of Theorem 3.2 have fulfilled, so we deduced that the system (5.5)-(5.8) has a

unique mild solution on [0, T ].

5.3 Example

Consider the following example for fractional functional ordinary differential equation

C
0 D

↵
t u(t) = u(t) +

e
t
u(t� �(u(t))) + 2

1 + u2(t� �(u(t)))
+

Z t

0
sin(t� s)u(s� �(u(s)))ds, t 2 (0, 1], (5.9)

u(t) +
rX

k=1

cku(sk) =
1

2
, t 2 (�1, 0], u

0(t) = 0, (5.10)

u(t) =
u(t)

16(1 + u(t))
; u

0(t) =
u(t)

25(1 + u(t))
, t 2 (1, 2], (5.11)

where C
0 D

↵
t is classical Caputo’s fractional derivative of order ↵ 2 (1, 2), 0 = t0 = s0 < t1 = 1 <

s1 = 2 are prefixed numbers and 1
2 2 Be. Setting

⇢(t,') = t� �('(0)),

f(t,', B') =
e
t
'+ 2

1 + '2
+

Z t

0
sin(t� s)' ds,

gi(t, y) =
u(t)

16(1 + u(t))
; qi(t, y) =

u(t)

25(1 + u(t))
, G(y) =

rX

k=1

cku(sk),

then the problem (5.9)-(5.11) can be written in the abstract form as (1.4)-(1.6), which implies that

the system (5.9)-(5.11) has a unique mild solution on [0, 2].
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5.4 Example

Consider the following control system

@
↵

@t↵
u(t, x) =

@
2

@y2
u(t, x) +

Z t

�1
e
4(⌫�t)u(⌫ � �(kuk), x)

12
d⌫ + 14$(t, x) (5.12)

+

Z t

0
sin(t� s)

Z ⇠

�1
e
4(⌫�⇠)u(⌫ � �(kuk), x)

28
d⌫ ds, (t, x) 2 [N

i=1[si, ti+1]⇥ [0,⇡],

with initial, history and impulsive conditions given as (5.6)-(5.8). With these settings as given in

example 5.2, the problem (5.12) with conditions (5.6)-(5.8) can be written in the abstract form of

equation (1.7)-(1.9). Therefore the problem (5.12) is T �controllable on J .

Thus, examples provided in this paper demonstrate the authenticity of our results. In first ex-

ample, we considered fractional order partial differential inclusion with instantaneous impulsive

and showed that considered problem has least one mild solution. Non-instantaneous impulse with

partial derivative and nonlocal condition is taken in second examples and proved that there exists

a unique mild solution for it. In third example, we considered the functional ordinary differential

equation with infinite delay and demonstrate the uniqueness of mild solution for the system.

6 Conclusion

In this investigation, we observed that the Definition 2.8 is more reasonable and suitable by using

the generalized Caputo’s derivative in compare to classical and it is generalized form. Furthermore,

we have proved the existence, uniqueness and continuous dependence results of mild solutions for

fractional differential inclusion and equations with state dependent delay subject to instantaneous

and non-instantaneous impulse. We showed T �controllability. Also, we have illustrated the exis-

tence and T �controllability theory from some examples.
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1 Introduction

In the present paper, we are interested in the existence of solutions for the following problem

8
><

>:

M (Tu)
�
��p(·,·)

�s
u+ w(x)|u|p(x,x)�2

u = �a(x)|u|q(x)�2
u� "b(x)|u|r(x)�2

u in ⌦,

u = 0 in RN\⌦,
(PM

�,")

where ⌦ ⇢ RN is a bounded smooth domain, p : ⌦ ⇥ ⌦ ! (1,+1), q, r : ⌦ ! (1,+1) are

continuous functions, s 2 (0, 1) with N > sp(x, y) for all (x, y) 2 ⌦, �, " > 0 are parameters,

a, b, w 2 L
1(⌦), M models a Kirchhoff coefficient,

Tu =

Z

R2N

|u(x)� u(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

and
�
��p(·,·)

�s is the fractional p(·, ·)-Laplacian defined as

�
��p(x,·)

�s
u(x) = p.v.

Z

RN

|u(x)� u(y)|p(x,y)�2(u(x)� u(y))

|x� y|N+sp(x,y)
dy, x 2 RN

,

where p.v. is used as abbreviation in the principal value sense.

In the past few decades, nonlinear problems involving nonlocal and pseudo-differential operators

have gained considerable popularity and importance. The interest in investigating such problems

is stimulated by their applications in numerous fields of applied sciences, such as the description

of some phenomena in physics and engineering, population dynamics, finance, chemical reaction

design, optimization, minimal surfaces and game theory (see [12,29,32,38]). Moreover, differential

equations and variational problems with variable exponent have a strong physical motivation. As

can be seen in [5, 22, 35], they emerge from the mathematical description of the dynamics fluids

like the electrorhelogical and the thermorheological. They also appear in elastic mechanics, image

restoration and biology (see [14, 16, 37, 43]). Some recent results on p(·, ·)-Laplacian problems can

be found in [1, 4, 6, 13,15,19,25,27,30,36,42].

Recently, great attention has been focused in extending some results on p(·, ·)-Laplacian problems

to the fractional case. For example, we cite [11, 26]. In [26] Kaufmann et al. introduced the

fractional Sobolev space with variable exponent, and established the existence and uniqueness of

solutions for the fractional p(·, ·)-Laplacian problem

8
<

:

�
��p(·,·)

�s
u+ |u|q(x)�2

u = f(x) in ⌦

u = 0 on @⌦.

Bahrouni et al. [11] established some results on the following fractional p(·, ·)-Laplacian equation
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with the nonlocal Robin boundary condition

8
<

:

�
��p(·,·)

�s
u+ |u|p(x,x)�2

u = f(x, u) in ⌦

Ns,p(·,·)u+ �(x)|u|p(x,x)�2
u = g(x) on RN\⌦,

where Ns,p(·,·) is the nonlinear modification of the following Neumann boundary condition

Nsu(x) := cN,s

Z

⌦

u(x)� u(y)

|x� y|N+2s
dy, x 2 RN\⌦,

which was first introduced by Dipierro et al. in [17]. The latter nonlocal normal derivative is used

in [18] to describe the diffusion of a biological population living in an ecological niche and subject

to both local and nonlocal dispersals.

We also refer the reader to [9, 10,23,24] for more information.

Problem (PM
�,") is a fractional version related to the following hyperbolic equation

⇢
@
2
u

@t2
�
 
⇢0

h
+

E

2L

Z L

0

����
@u

@x

����
2

dx

!
@
2
u

@x2
= 0,

which was initially introduced by Kirchhoff [28] as a generalization of the classical D’Alembert

wave equation taking into consideration the change in length of the strings produced by transverse

vibrations. For additional discussions and physical phenomena described by nonlinear vibration

theory, we mention [31]. It was mainly after the work [21], where Fiscella and Valdinoci proposed a

stationary fractional Kirchhoff model, that the existence and multiplicity of solutions for Kirchhoff-

type fractional p-Laplacian and p(·, ·)-Laplacian problems were well investigated by many authors,

one can see [8, 34,39,41,44]. In particular, Zhang et al. [41] studied the following problem

8
<

:
M (Tu)

�
��p(·,·)

�s
u = f(x, u) in ⌦

u = 0 in RN\⌦.
(1.1)

By means of variational methods and mountain pass theorem, they proved the existence of at

least one nontrivial solution for (1.1). In [2], Akkoyunlu and Ayazoglu considered the following

fractional p-Kirchhoff problem with potential

M(||u||p)
�
(��)spu+ V (x)|u|p�2

u
�
= f(x, u) in RN

, (1.2)

where

||u||p =

Z

R2N

|u(x)� u(y)|p

|x� y|N+sp
dx dy +

Z

RN

V (x)|u|pdx.

By using the variational approach, (S+) mapping theory and Krasnoselskii’s genus theory, the

authors have established the existence of infinitely many nontrivial weak solutions. After that,
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the equation (1.2) was generalized by Ayazoglu et al. in [7] considering the following fractional

Schrödinger-Kirchhoff equation

M(As,q(·),p(·,·)(u))
⇣
(��)sp(·,·)u+ V (x)|u|q(x)�2

u

⌘
= f(x, u) in RN

,

where

As,q(·),p(·,·)(u) =

Z

R2N

|u(x)� u(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy +

Z

RN

V (x)

q(x)
|u|q(x)dx,

N � 2, M : (0,+1) ! (1,1) is a continuous and monotone Kirchhoff function, f : RN ⇥
R ! R is a Carathéodory function and V is a potential function. They obtained the existence

and multiplicity of solutions by applying the variational approach combined with Mountain Pass

Theorem and Krasnoselskii’s genus theory.

Inspired by the above cited papers, we will consider problem (PM
�,") with sub-supercritical non-

linearities, and prove the existence of solutions via the variational methods combined with the

fibering method that was introduced by Pohozaev [33]. We also give the behavior of the solution

for problem (P�,"), and so of the energy functional associated, as " ! 0. The Pohozaev’s fibering

method is centered on representing solutions in the form u = tv, where t is a real number (t 6= 0),

and v 2 X \ {0}, satisfying the condition:

@�

@t
(t, v) = 0. (1.3)

Here, � denotes a functional defined on R ⇥ X. Consequently, the fundamental concept of the

Pohozaev’s fibering method involves embedding the space X of the original problem within the

larger space R ⇥X and subsequently exploring the new problem of conditional solvability within

the R⇥X space, subject to the condition (1.3).

2 Preliminaries

At first, we give some useful notations and basic results on variable exponent Lebesgue spaces that

will be used in proving the main theorems (see [20]). We denote by C+(⌦) the set of all continuous

functions q : ⌦! (1,1). For q 2 C+(⌦), we write

q
+ := max

x2⌦
q(x) and q

� := min
x2⌦

q(x).

Define the variable exponent Lebesgue space as follows:

L
q(·)(⌦) =

⇢
u : ⌦! R measurable :

Z

⌦
|u|q(x)dx < 1

�
.



CUBO
25, 3 (2023)

A class of fractional p(·, ·)�Laplacian problems 391

L
q(·)(⌦) endowed with the norm

||u||q(·) = inf

⇢
⌧ > 0 :

Z

⌦

���
u

⌧

���
q(x)

dx  1

�
.

is a separable and reflexive Banach space. Let L
q0(·)(⌦) be the conjugate space of Lq(·)(⌦) with

1
q(x) +

1
q0(x) = 1. Then the following Hölder-type inequality holds.

Lemma 2.1 ([20]). Let u 2 L
q(·)(⌦) and v 2 L

q0(·)(⌦). Then

Z

⌦
|uv| dx 

✓
1

q�
+

1

(q0)�

◆
||u||q(·)||v||q0(·).

On the space L
q(·)(⌦), we consider the modular function given by

⇢q(·)(u) =

Z

⌦
|u|q(x)dx.

Lemma 2.2 ([20]). For any u 2 L
q(·)(⌦), we have

min
⇣
||u||q

�

q(·), ||u||
q+

q(·)

⌘
 ⇢q(·)(u)  max

⇣
||u||q

�

q(·), ||u||
q+

q(·)

⌘
.

Lemma 2.3 ([20]). Let u 2 L
q(·)(⌦) and {un} ⇢ L

q(·)(⌦). Then the following properties are

equivalent:

(1) lim
n!1

||un � u||q(·) = 0;

(2) lim
n!1

⇢q(·)(un � u) = 0.

Lemma 2.4 ([3]). Let q, r 2 C+(⌦) with q(x)  r(x) in ⌦ and u 2 L
r(·)(⌦). Then |u|q(·) 2 L

r(·)
q(·) (⌦)

and

k|u|q(·)k r(·)
q(·)

 max
⇣
kukq

+

r(·), kuk
q�

r(·)

⌘
.

Next, we define the convenient variable exponent fractional Sobolev space to supply a variational

structure for handling our problems. Let p : ⌦⇥ ⌦! (1,1) be as mentioned above and put

p(x) = p(x, x) for all x 2 ⌦.

Let W
s,p(·,·)(⌦) be the variable exponent fractional Sobolev space defined as follows:

W := W
s,p(·,·)(⌦) =

⇢
u 2 L

p(·)(⌦) :

Z

⌦⇥⌦

|u(x)� u(y)|p(x,y)

⇠p(x,y)|x� y|N+sp(x,y)
dx dy < 1, for some ⇠ > 0

�
.

Equip W with the norm

||u||W = [u]W + ||u||p(·),
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where

[u]W = inf

⇢
⇠ > 0 :

Z

⌦⇥⌦

|u(x)� u(y)|p(x,y)

⇠p(x,y)|x� y|N+sp(x,y)
dx dy  1

�
.

Then (W, ||u||W) is a Banach space. For any u 2 W, we set

⇢p,p(u) =

Z

⌦⇥⌦

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy +

Z

⌦
|u|p(x)dx

and

||u||p,p = inf

⇢
⇠ > 0 : ⇢p,p

✓
u

⇠

◆
 1

�
.

The norm ||·||p,p is equivalent to ||·||W. Furthermore, from [41, Lemma 2.2], (W, || · ||W) is uniformly

convex and hence W is a reflexive Banach space. The following lemma states the compactness of

the embedding W into the variable exponent Lebesgue spaces.

Lemma 2.5 ([40, 41]). Let ⌦ ⇢ RN be a smooth bounded domain and s 2 (0, 1). Assume that

p : ⌦⇥ ⌦ ! (1,1) is continuous and symmetric (i.e. p(x, y) = p(y, x)) with sp(x, y) < N for all

x, y 2 ⌦. Let q 2 C+(⌦) such that

q(x) < p
⇤
s(x) :=

Np(x)

N � sp(x)
for all x 2 ⌦.

Then, there exists C = C(N, s, p, q,⌦) such that

||u||q(·)  C||u||W for all u 2 W.

Therefore, the space W is continuously embedded into L
q(·)(⌦). Moreover, this embedding is com-

pact.

Due to the presence of the Dirichlet boundary condition u = 0 in RN\⌦, we need to encode this

condition in the weak formulation of (PM
�,") and (P�,"). For this, let us define the new space

X := X
s,p(·,·)(⌦) =

⇢
u : RN ! R, u|⌦ 2 L

p(·)(⌦),

Z

Q

|u(x)� u(y)|p(x,y)

⇠p(x,y)|x� y|N+sp(x,y)
dx dy < 1, for some ⇠ > 0

�
,

where Q = RN ⇥ RN\(⌦c ⇥ ⌦c). Endow X with the norm

||u||X = [u]X + ||u||p(·),

where

[u]X = inf

⇢
⇠ > 0 :

Z

Q

|u(x)� u(y)|p(x,y)

⇠p(x,y)|x� y|N+sp(x,y)
dx dy  1

�
.

In the same way (X, || · ||X) is a separable reflexive Banach space.

Since the variable exponent p, p and q are continuous, we can extend p to RN ⇥ RN and p, q to
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RN continuously with conditions given in Lemma 2.5. Let X0 be the linear space:

X0 = {u 2 X : u = 0 a.e. in RN\⌦}

equipped with the norm

||u||X0 = [u]X = inf

⇢
⇠ > 0 :

Z

R2N

|u(x)� u(y)|p(x,y)

⇠p(x,y)|x� y|N+sp(x,y)
dx dy  1

�
.

Obviously, (X0, || · ||X0) is a reflexive Banach space. Set

⇢0(u) =

Z

R2N

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy for all u 2 X0.

Lemma 2.6 ([41]). For all u, un 2 X0, the following properties hold true:

(1) ||u||X0 > 1 =) ||u||p
�

X0
 ⇢0(u)  ||u||p

+

X0
;

(2) ||u||X0  1 =) ||u||p
+

X0
 ⇢0(u)  ||u||p

�

X0
;

(3) ||un � u||X0 ! 0 () ⇢0(un � u) ! 0.

Lemma 2.7 ([41]). Let ⌦ ⇢ RN be a smooth bounded domain and s 2 (0, 1). Assume that p :

⌦ ⇥ ⌦ ! (1,1) is continuous and symmetric with sp(x, y) < N for all x, y 2 ⌦. Let q 2 C+(⌦)

such that

q(x) < p
⇤
s(x) :=

Np(x)

N � sp(x)
for all x 2 ⌦.

Then, there exists C = C(N, s, p, q,⌦) > 0 such that

||u||q(·)  C||u||X0 for all u 2 X0.

Therefore, the space X0 is continuously embedded into L
q(·)(⌦). Moreover, this embedding is com-

pact.

Remark 2.8. Since 1 < p(x) = p(x, x) < p
⇤
s(x) for all x 2 ⌦, by Lemma 2.7, the norms || · ||X0

and || · ||X are equivalent in X0.

We look for solutions of problems (PM
�,") and (P�,") in the separable reflexive Banach space X =

X0 \ L
r(·)(⌦) which is equipped with the norm

||u||X = ||u||X + ||u||r(·).
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3 Hypotheses and main results

Before stating what we believe that are the main contributions, we first list some assumptions on

the data of (PM
�,"). Concerning the Kirchhoff function M : R+ ! R+, we use the following two

assumptions:

(M0) M is a C
1 nondecreasing function;

(M1) M is a continuous function such that M(t) � m0 > 0 for all t > 0.

For the functions a, b, w, p, q and r, we make the following hypotheses:

(H1) q, r : ⌦ ! (1,1) and p : ⌦ ⇥ ⌦ ! (1,1) are continuous such that sp(x, y) < N, p(x, y) =

p(y, x) and q(x) < p
⇤
s(x) < r

� := min
x2⌦

r(x) for all (x, y) 2 ⌦⇥ ⌦, where

p
⇤
s(x) :=

Np(x, x)

N � sp(x, x)
;

(H2) a, b, w 2 L
1(⌦) with b and w are nonnegative and |⌦+

a | > 0, where ⌦+
a = {x 2 ⌦ : a(x) > 0};

(H3) ab
� q(·)

r(·) 2 L
r(·)

r(·)�q(·) (⌦+
a );

(H4) q
�(r� � q

+) < p
+(r� � p

�) and r
+  min

n
q�p+(q+�p�)

p+(r��p�)�q�(r��q+) ,
q�(r��p�)

q+�p�

o
;

The main results can be stated as follows.

Theorem 3.1. Assume that (M0)� (M1) and (H1)� (H2) hold. If q+ < p
�
, then problem (PM

�,")

admits at least one nontrivial solution.

Theorem 3.2. Assume that (M1) and (H1)� (H2) hold. If p+ < q
�
, a(x) � 0 for a.e. x 2 ⌦ and

b(x) > b0 > 0 for a.e. x 2 ⌦, then for all " > 0 there exists �" > 0 such that problem (PM
�,") has

no nontrivial solution for all � 2 (0,�").

The following two theorems concern problem (PM
�,") with M ⌘ 1, that is,

8
<

:

�
��p(·,·)

�s
u+ w(x)|u|p(x,x)�2

u = �a(x)|u|q(x)�2
u� "b(x)|u|r(x)�2

u in ⌦

u = 0 in RN\⌦.
(P�,")

Theorem 3.3. Assume that (H1)� (H4) hold. If q(·) = q is constant with p
+
< q or p(·) and r(·)

are constants, then for all " > 0 there exists �⇤" > 0 such that problem (P�,") admits at least one

nontrivial solution provided � > �
⇤
".

Theorem 3.4. Assume that (H1) � (H4) hold and q(·) = q is constant with p
+

< q or p(·) and

r(·) are constants. Let "0 > 0 and � > �
⇤
"0 . Then, there exists "1 2 (0, "0) such that for all
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" 2 (0, "1), problem (P�,") admits at least one nontrivial solution u" verifying ||u"||X ! +1 and

I"(u") ! �1 as "! 0, where I" is the associated energy functional to (P�,").

Remark 3.5. The conclusions of Theorems 3.1 and 3.2 also hold for problem (P�,").

4 Proof of theorems

Proof of Theorem 3.1. It is well known that the weak solution of (PM
�,") corresponds to the

critical point of the energy functional defined on X by

I"(u) = cM
✓Z

R2N

|u(x)� u(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆
+

Z

⌦

w(x)

p(x)
|u|p(x)dx

��
Z

⌦

a(x)

q(x)
|u|q(x)dx+ "

Z

⌦

b(x)

r(x)
|u|r(x)dx, (4.1)

where cM(t) =
R t
0 M(⌧)d⌧. By standard arguments, one can verify that I" 2 C

1(X,R). For any

(t, v) 2 (0,1)⇥X, we define

�"(t, v) := I"(tv)

= cM
✓Z

R2N

t
p(x,y) |v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆
+

Z

⌦

w(x)

p(x)
t
p(x)|v|p(x)dx

��
Z

⌦

a(x)

q(x)
t
q(x)|v|q(x)dx+ "

Z

⌦

b(x)

r(x)
t
r(x)|v|r(x)dx.

Observe that if u = tv is a nontrivial critical of I", then
@�"

@t
(t, v) = 0. Moreover, if for each

v 2 X \ {0}, there is a unique t = t(v) satisfying

@�"

@t
(t, v) = 0 (4.2)

and t : v 7! t(v) is continuously differentiable on X \ {0}, we can infer that

eI"(v) := I"(t(v)v)

is a well-defined C
1 functional. The following result plays a key role in the proof of our main

theorem.

Lemma 4.1 ([33]). Let  : X ! R be a functional of class C
1 on X\{0} verifying

h 0(v), vi 6= 0 if  (v) = 1.

If v is a conditional critical point of eI" under the constraint  (v) = 1, then u := t(v)v is a critical

point of I".
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Consider the functional  " : X ! R given by

 "(v) = M

✓Z

R2N

|v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

|v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
w(x)|v|p(x)dx+ "

Z

⌦
b(x)|v|r(x)dx. (4.3)

It is obvious that  " satisfies hypotheses of Lemma 4.1, therefore the problem of finding solutions

of (PM
�,") will be reduced to that of locating the critical points of eI" on the set

U" = {v 2 X :  "(v) = 1}.

Note that (4.2) is equivalent to

'v(t) := M

✓Z

R2N

t
p(x,y)|v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t
p(x,y) |v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
t
p(x)

w(x)|v|p(x)dx+ "

Z

⌦
t
r(x)

b(x)|v|r(x)dx� �

Z

⌦
t
q(x)

a(x)|v|q(x)dx

= 0. (4.4)

Let

⇥a :=

⇢
v 2 X :

Z

⌦
a(x)|v|q(x)dx > 0

�
.

Claim 4.2. For any v 2 ⇥a, equation (4.4) admits a unique positive solution t(v). Moreover,

'v(t) < 0 for all t < t(v) and 'v(t) > 0 for all t > t(v).

Indeed, by (M0), for all t � 1,

'v(t) � t
p�

M

✓Z

R2N

|v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

|v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+t
p�
Z

⌦
w(x)|v|p(x)dx+ "t

r�
Z

⌦
b(x)|v|r(x)dx� �t

q+
Z

⌦
a(x)|v|q(x)dx

and for all 0 < t  1,

'v(t)  t
p�

M

✓Z

R2N

|v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

|v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+t
p�
Z

⌦
w(x)|v|p(x)dx+ "t

r�
Z

⌦
b(x)|v|r(x)dx� �t

q+
Z

⌦
a(x)|v|q(x)dx

Since q
+
< p

�
, we can choose t1 > 1 such that 'v(t1) > 0 and by (H2), we can find 0 < t0  1

satisfying 'v(t0)  0. Therefore, by virtue of the continuity of 'v, equation (4.4) has at least one

solution t(v) > 0. The uniqueness of t(v) follows from (H2) and using the fact that q
+
< p

� and
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M is nondecreasing. Furthermore, for all t < t(v),

M

✓Z

R2N

t
p(x,y)|v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t
p(x,y) |v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
t
p(x)

w(x)|v|p(x)dx+ "

Z

⌦
t
r(x)

b(x)|v|r(x)dx

< �

Z

⌦
t
q(x)

a(x)|v|q(x)dx (4.5)

and for all t > t(v),

M

✓Z

R2N

t
p(x,y)|v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t
p(x,y) |v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
t
p(x)

w(x)|v|p(x)dx+ "

Z

⌦
t
r(x)

b(x)|v|r(x)dx

> �

Z

⌦
t
q(x)

a(x)|v|q(x)dx. (4.6)

Then, the function t : v 7! t(v) is well defined, and by applying the implicit function theorem, we

deduce that t(·) 2 C
1 (X \ {0}, (0,+1)) . If v 2 U" \ ⇥a and t(v) � 1, it holds from (H1), the

nondecreasing of M and (4.4) that

t(v)p
�

= t(v)p
�
 "(v)

= M

✓Z

R2N

|v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t(v)p
� |v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+t(v)p
�
Z

⌦
w(x)|v|p(x)dx+ "t(v)p

�
Z

⌦
b(x)|v|r(x)dx

 M

✓Z

R2N

t(v)p(x,y)
|v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t(v)p(x,y)
|v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
t(v)p(x)w(x)|v|p(x)dx+ "

Z

⌦
t(v)r(x)b(x)|v|r(x)dx

= �

Z

⌦
t(v)q(x)a(x)|v|q(x)dx

 �t(v)q
+
Z

⌦
a(x)|v|q(x)dx,

thus

t(v)p
��q+  �

Z

⌦
a(x)|v|q(x)dx.

This shows that t(·) is bounded in U"\⇥a. Since M is nondecreasing, cM(⌧)  ⌧M(⌧) for all ⌧ � 0.
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Then, by (H1) and (4.4) for any v 2 U" \⇥a, we have

eI"(v)  1

p�
M

✓Z

R2N

t
p(x,y) |v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t
p(x,y) |v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+
1

p�

Z

⌦
t
p(x)

w(x)|v|p(x)dx+
"

r�

Z

⌦
t
r(x)

b(x)|v|r(x)dx� �

q+

Z

⌦
t
q(x)

a(x)|v|q(x)dx

=

✓
1

p�
� 1

q+

◆
M

✓Z

R2N

t
p(x,y) |v(x)� v(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t
p(x,y) |v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

✓
1

p�
� 1

q+

◆Z

⌦
t
p(x)

w(x)|v|p(x)dx+ "

✓
1

r�
� 1

q+

◆Z

⌦
t
r(x)

b(x)|v|r(x)dx

< 0.

Then

↵0 := inf
v2U"\⇥a

eI"(v) < 0.

Let {vn} ⇢ U" \⇥a be a sequence such eI"(vn) ! ↵0. From (M1), we have

1 =  "(vn) � m0

Z

R2N

|vn(x)� vn(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy,

thus from Lemma 2.6, we deduce that {vn} is bounded in X0. Therefore, up to a subsequence, we

may assume that 8
>>><

>>>:

vn * v0 in X0,

vn ! v0 in L
p(·)(⌦) and L

q(·)(⌦),

vn ! v0 a.e. in ⌦.

(4.7)

We may also assume that t(vn) ! t0, since {t(vn)} is bounded. Then

cM
✓Z

R2N

t
p(x,y)
0

|v0(x)� v0(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆
 lim inf

n!+1
cM
✓Z

R2N

t(vn)
p(x,y) |vn(x)� vn(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆
,

lim
n!+1

Z

⌦

t(vn)p(x)w(x)

p(x)
|vn|p(x)dx =

Z

⌦

t
p(x)
0 w(x)

p(x)
|v0|p(x)dx,

lim
n!+1

Z

⌦

t(vn)q(x)a(x)

q(x)
|vn|q(x)dx =

Z

⌦

t
q(x)
0 a(x)

q(x)
|v0|q(x)dx

and Z

⌦

t
r(x)
0 b(x)

r(x)
|v0|r(x)dx  lim inf

n!+1

Z

⌦

t(vn)r(x)b(x)

r(x)
|vn|r(x)dx.

Therefore

I"(t0v0)  lim inf
n!+1

I"(t(vn)vn) = lim inf
n!+1

eI"(vn) = ↵0 < 0, (4.8)

from which, we deduce that v0 6= 0 and t0 > 0. Recall that the pair (t(vn), vn) verifies (4.4), so by
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sending n to +1 and using (4.7), we arrive at

M

✓Z

R2N

t
p(x,y)
0

|v0(x)� v0(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t
p(x,y)
0

|v0(x)� v0(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy (4.9)

+

Z

⌦
t
p(x)
0 w(x)|v0|p(x)dx+ "

Z

⌦
t
r(x)
0 b(x)|v0|r(x)dx (4.10)

 �

Z

⌦
t
q(x)
0 a(x)|v0|q(x)dx. (4.11)

Thus
R
⌦ a(x)|t0v0|q(x)dx > 0. Furthermore, t0v0 2 L

r(·)(⌦), and hence t0v0 2 X. In view of Claim

4.2 and (4.9), we have t0  t(v0). Suppose by contradiction that t0 < t(v0). Let  v0 : t 7! I"(tv0).
Then t 

0
v0(t) = 'v0(t), therefore by Claim 4.2, t 0

v0(t) < 0 for all 0 < t < t(v0), which yields that

the function  v0 is decreasing on [0, t(v0)]. It follows from (4.8) that

eI"(v0) = I"(t(v0)v0) < I"(t0v0)  ↵0. (4.12)

By definition of t(·), for any ⌧ > 0, we have

M

✓Z

R2N

t(⌧v0)p(x,y)|⌧(v0(x)� v0(y))|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

t(⌧v0)
p(x,y) |⌧(v0(x)� v0(y))|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
t(⌧v0)

p(x)
w(x)|⌧v0|p(x)dx+ "

Z

⌦
t(⌧v0)

r(x)
b(x)|⌧v0|r(x)dx

= �

Z

⌦
t(⌧v0)

q(x)
a(x)|⌧v0|q(x)dx,

so that

M

✓Z

R2N

(⌧ t(⌧v0))p(x,y)|v0(x)� v0(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

(⌧ t(⌧v0))
p(x,y) |v0(x)� v0(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
(⌧ t(⌧v0))

p(x)
w(x)|v0|p(x)dx+ "

Z

⌦
(⌧ t(⌧v0))

r(x)
b(x)|v0|r(x)dx

= �

Z

⌦
(⌧ t(⌧v0))

q(x)
a(x)|v0|q(x)dx.

Hence, by the uniqueness of the solution t(v0) of equation (4.4), we have

⌧ t(⌧v0) = t(v0). (4.13)

We next choose ⌧ > 0 such that ⌧v0 2 U". From (4.12) and (4.13), we obtain

eI"(⌧v0) = I"(t(⌧v0)⌧v0) = I"(t(v0)v0) = eI"(v0) < ↵0,

which contradicts the definition of ↵0, and consequently t0 = t(v0). By (4.8) and (4.13), we have

↵0  eI"(⌧v0) = I"(t(⌧v0)⌧v0) = I"(t(v0)v0) = eI"(v0)  ↵0,
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thus eI"(v0) = ↵0. Hence v0 is a conditional critical point of eI". Applying Lemma 4.1, we conclude

that u := t(v0)v0 is a solution of (PM
�,"). The proof of Theorem 3.1 is finished.

Proof of Theorem 3.2. Suppose that problem (PM
�,") has a nontrivial solution u. Then, taking

u as a test function,

M

✓Z

R2N

|u(x)� u(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
w(x)|u|p(x)dx+ "

Z

⌦
b(x)|u|r(x)dx = �

Z

⌦
a(x)|u|q(x)dx (4.14)

Since b(x) > b0 > 0, for a.e. x 2 ⌦, by Young’s inequality, we can write

�

Z

⌦
a(x)|u|q(x)dx  "

Z

⌦

q(x)

r(x)
b(x)|u|r(x)dx+

Z

⌦

r(x)� q(x)

r(x)
"

�q(x)
r(x)�q(x) (�a(x))

r(x)
r(x)�q(x) b(x)

q(x)
q(x)�r(x) dx

 "q
+

r�

Z

⌦
b(x)|u|r(x)dx+

r
+ � q

�

r�

Z

⌦
"

�q(x)
r(x)�q(x) (�a(x))

r(x)
r(x)�q(x) b(x)

q(x)
q(x)�r(x) dx

 "q
+

r�

Z

⌦
b(x)|u|r(x)dx+

r
+ � q

�

r�
"
�
�
%||a||�1

Z

⌦
b(x)

r(x)
r(x)�q(x) dx,

where

 :=

8
<

:

q+

r��q+ if "  1
q�

r+�q� if " > 1,
% :=

8
<

:

r�

r+�q� if � < 1
r+

r��q+ if � � 1

and

� :=

8
<

:

r�

r+�q� if ||a||1 < 1
r+

r��q+ if ||a||1 � 1.

It holds then from (4.14) that

M

✓Z

R2N

|u(x)� u(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆Z

R2N

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

 "(q+ � r
�)

r�

Z

⌦
b(x)|u|r(x)dx+

r
+ � q

�

r�
"
�
�
%||a||�1

Z

⌦
b(x)

r(x)
r(x)�q(x) dx

 r
+ � q

�

r�
"
�
�
%||a||�1

Z

⌦
b(x)

r(x)
r(x)�q(x) dx, (4.15)

since q
+
< r

�
. On the other hand, by Lemmas 2.2, 2.6 and 2.7, for some C0 > 0, we have

Z

⌦
|u|q(x)dx  C0

✓Z

R2N

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

◆#

, (4.16)
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where

# :=

8
>>>>><

>>>>>:

q�

p+ if ||u||q(x)  1 and ||u||X0  1
q+

p+ if ||u||q(x) > 1 and ||u||X0  1
q�

p� if ||u||q(x)  1 and ||u||X0 > 1
q+

p� if ||u||q(x) > 1 and ||u||X0 > 1.

Note that # > 1, since p
+
< q

�
. From (M1), (4.14) and (4.16), we get

m0

✓
1

C0||a||1

Z

⌦
a(x)|u|q(x)dx

◆ 1
#

 M

✓Z

R2N

|u(x)� u(y)|p(x,y)

p(x, y)|x� y|N+sp(x,y)
dx dy

◆

⇥
Z

R2N

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy (4.17)

 �

Z

⌦
a(x)|u|q(x)dx,

which implies
✓

m
#
0

�C0||a||1

◆ 1
#�1

 m0

✓
1

C0||a||1

Z

⌦
a(x)|u|q(x)dx

◆ 1
#

. (4.18)

Combining (4.15), (4.17) and (4.18), we obtain

✓
m

#
0

�C0||a||1

◆ 1
#�1

 r
+ � q

�

r�
"
�
�
%||a||�1

Z

⌦
b(x)

r(x)
r(x)�q(x) dx,

hence

� � �" :=

0

@ r
�
"

m

#
#�1

0

C

1
#�1

0 ||a||
�(#�1)+1

#�1
1 (r+ � q�)

R
⌦ b(x)

r(x)
r(x)�q(x) dx

1

A

#�1
%(#�1)+1

,

and the proof of Theorem 3.2 is completed.

Proof of Theorem 3.3. Assume q(·) = q is constant. For v 2 ⇥a and t > 0, we set

⌥",v(t) :=

R
R2N

tp(x,y)�q|v(x)�v(y)|p(x,y)

|x�y|N+sp(x,y) dx dy +
R
⌦ t

p(x)�q
w(x)|v|p(x)dx+ "

R
⌦ t

r(x)�q
b(x)|v|r(x)dx

R
⌦ a(x)|v|qdx

,

F (v) :=

R
R2N

|v(x)�v(y)|p(x,y)

|x�y|N+sp(x,y) dx dy +
R
⌦ w(x)|v|p(x)dx

R
⌦ a(x)|v|qdx

and

H(v) :=
"
R
⌦ b(x)|v|r(x)dxR
⌦ a(x)|v|qdx

.

Then
8
<

:
t
p��q

F (v) + t
r��q

H(v)  ⌥",v(t)  t
p+�q

F (v) + t
r+�q

H(v) if t � 1

t
p+�q

F (v) + t
r+�q

H(v)  ⌥",v(t)  t
p��q

F (v) + t
r��q

H(v) if t < 1.
(4.19)
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Having in mind that p
+
< q < r

�
, it follows that

lim
t!0+

⌥",v(t) = lim
t!+1

⌥",v(t) = +1. (4.20)

On the other hand, it is not difficult to see that the function ⌥",v admits a global minimum t
⇤(v),

which is a unique solution of the equation

Z

R2N

(q � p(x, y)) tp(x,y)|v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy +

Z

⌦
(q � p(x)) tp(x)w(x)|v|p(x)dx

= "

Z

⌦
(r(x)� q) tr(x)b(x)|v|r(x)dx. (4.21)

By (4.20), for � > 0 large enough, there are exactly two positive reals t1(v) < t
⇤(v) < t2(v)

such that ⌥",v(t1(v)) = ⌥",v(t2(v)) = �. Clearly t1(v) and t2(v) satisfy (4.4) with M ⌘ 1, and

t(v) := t2(v) increases as � increases or " decreases. Let

⇥"
a(�) := {v 2 ⇥a : � > ⌥",v(t

⇤(v))}.

Then, for � sufficiently large, ⇥"
a(�) 6= ;. By (4.21), for v 2 ⇥"

a(�), we have

Z

R2N

p(x, y)t⇤(v)p(x,y)|v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy +

Z

⌦
p(x)t⇤(v)p(x)w(x)|v|p(x)dx

+"

Z

⌦
r(x)t⇤(v)r(x)b(x)|v|r(x)dx < �qt

⇤(v)q
Z

⌦
a(x)|v|qdx,

it holds then

t
⇤(v) <

8
><

>:

⇣
�q

R
⌦ a(x)|v|qdx

"r�
R
⌦ b(x)|v|r(x)dx

⌘ 1
r��q if t

⇤(v) � 1
⇣

�q
R
⌦ a(x)|v|qdx

"r�
R
⌦ b(x)|v|r(x)dx

⌘ 1
r+�q if t

⇤(v) < 1.
(4.22)

Claim 4.3. If v 2 U" \⇥"
a(�), then

1 < "

Z

⌦
b(x)|v|r(x)dx+ �

✓Z

⌦
b(x)|v|r(x)dx

◆✓

.

for some � > 0 and

✓ :=

8
>>>>><

>>>>>:

q(r��p�)�r+(q�p�)
r+(r��q) if ||v||q < 1 and t

⇤(v) � 1,
p+

r+ if ||v||q < 1 and t
⇤(v) < 1,

q(r+�p+)�r+(q�p+)
r+(r+�q) if ||v||q � 1 and t

⇤(v) < 1,
q(r��p�)�r+(q�p�)

r+(r��q) if ||v||q � 1 and t
⇤(v) � 1.

We just prove the case ||v||q < 1 and t
⇤(v) � 1, since others cases can be treated similarly. In fact,
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we have ⌥",v(t⇤(v)) < �, thus

Z

R2N

t
⇤(v)p(x,y)|v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy +

Z

⌦
t
⇤(v)p(x)w(x)|v|p(x)dx < �t

⇤(v)q
Z

⌦
a(x)|v|qdx,

(4.23)

which yields

t
⇤(v)p

�
✓Z

R2N

|v(x)� v(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy +

Z

⌦
w(x)|v|p(x)dx

◆
< �t

⇤(v)q
Z

⌦
a(x)|v|qdx. (4.24)

Taking into account that  "(v) = 1, from (4.3) with M ⌘ 1 and (4.24), we get

1� "

Z

⌦
b(x)|v|r(x)dx < �t

⇤(v)q�p�
Z

⌦
a(x)|v|qdx

and hence in view of (4.22),

✓
"

Z

⌦
b(x)|v|r(x)dx

◆ q�p�

r��q
✓
1� "

Z

⌦
b(x)|v|r(x)dx

◆
<

⇣
q

r�

⌘ q�p�

r��q

✓
�

Z

⌦
a(x)|v|qdx

◆ r��p�

r��q

.

(4.25)

By Lemmas 2.1, 2.4 and (H3), we can find C1 > 0 such that

Z

⌦
a(x)|v|qdx  C1

✓Z

⌦
b(x)|v|r(x)dx

◆ q

r+

. (4.26)

Combining this inequality with (4.25), we deduce

1 < "

Z

⌦
b(x)|v|r(x)dx+ �

✓Z

⌦
b(x)|v|r(x)dx

◆ q(r��p�)�r+(q�p�)

r+(r��q)

and the claim follows. Therefore, for some C2 > 0,

Z

⌦
b(x)|v|r(x)dx > C2 for all v 2 ⇥"

a(�).

So, according to (4.22) and (4.26), the set {t(v) : v 2 U" \⇥"
a(�)} is bounded above. Let v1 be

fixed in U". Then, v1 2 ⇥"
a(�) for all � > �

1
" := ⌥",v1(t

⇤(v1)). From (4.4) with M ⌘ 1, we have

eI"(v1) 
✓

1

p�
� 1

r�

◆Z

R2N

t(v1)
p(x,y) |v1(x)� v1(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

+

✓
1

p�
� 1

r�

◆Z

⌦
t(v1)

p(x)
w(x)|v1|p(x)dx� �

✓
1

q
� 1

r�

◆Z

⌦
t(v1)

q
a(x)|v1|qdx. (4.27)

Recalling that � 7! t�(v1) := t(v1) increases as � increases and p
�  p

+
< q < r

�
, we choose

�
2
" > 0 large enough such that for all � > �

2
",
eI"(v1) < 0. Hence, for all � > �

⇤
" := max(�1",�

2
"),

↵1 := inf
v2U"\⇥"

a(�)

eI"(v) < 0. Now, we show that the minimum of eI" is achieved in U" \⇥"
a(�) with
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� > �
⇤
". Indeed, let {vn} ⇢ U" \⇥"

a(�) such that eI"(vn) ! ↵1. Since {vn} is bounded in X0, going

to a subsequence if necessary, there exists v0 2 X0 satisfying (4.7). As previously argued in the

proof of Theorem 3.1, we deduce that v0 6= 0, v0 2 L
r(·)(⌦) and {t(vn)} converges to t0 = t(v0) > 0

with
eI"(v0) = I"(t(v0)v0) = I"(t0v0)  ↵1. (4.28)

Since {t⇤(vn)} is also bounded, up to a subsequence, t⇤(vn) ! t
⇤
0. By (4.19) and direct computation,

we obtain

⌥",v0(t
⇤(vn)) � min

t>0

⇣
t
p��q

F (v0) + t
r��q

H(v0)
⌘

=

2

4
✓
q � p

�

r� � q

◆ p��q

r��p�

+

✓
q � p

�

r� � q

◆ r��q

r��p�

3

5F (v0)
r��q

r��p� H(v0)
q�p�

r��p� if t⇤(vn) � 1

⌥",v0(t
⇤(vn)) � min

0<t<1

⇣
t
p+�q

F (v0) + t
r+�q

H(v0)
⌘

=

2

4
✓
q � p

+

r+ � q

◆ p+�q

r+�p+

+

✓
q � p

+

r+ � q

◆ r+�q

r+�p+

3

5F (v0)
r+�q

r+�p+ H(v0)
q�p+

r+�p+ if t⇤(vn) < 1.

Therefore, passing to the limit as n ! +1, we get ⌥",v0(t
⇤
0) > 0, thus t

⇤
0 > 0. On the other hand,

by (4.7) and Fatou’s lemma, we entail � � ⌥",v0(t
⇤
0) � ⌥",v0(t

⇤(v0)). Suppose by contradiction

that � = ⌥",v0(t
⇤(v0)). We have � = ⌥",vn(t(vn)), thus

Z

R2N

t(vn)p(x,y)|vn(x)� vn(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy +

Z

⌦
t(vn)

p(x)
w(x)|vn|p(x)dx

+"

Z

⌦
t(vn)

r(x)
b(x)|vn|r(x)dx = �t(vn)

q

Z

⌦
a(x)|vn|qdx,

and so, by (4.7),

Z

R2N

t(v0)p(x,y)|v0(x)� v0(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy +

Z

⌦
t(v0)

p(x)
w(x)|v0|p(x)dx

+"

Z

⌦
t(v0)

r(x)
b(x)|v0|r(x)dx  �t(v0)

q

Z

⌦
a(x)|v0|qdx,

which means that ⌥",v0(t
⇤(v0)) = � � ⌥",v0(t(v0)). Therefore,

t
⇤(v0) = t(v0) = t0. (4.29)

From (4.21), we have

�
q � p

��
✓Z

R2N

t
⇤(v0)p(x,y)|v0(x)� v0(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy +

Z

⌦
t
⇤(v0)

p(x)
w(x)|v0|p(x)dx

◆

�
�
r
� � q

�
"

Z

⌦
t
⇤(v0)

r(x)
b(x)|v0|r(x)dx. (4.30)
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By virtue of (4.4) with M ⌘ 1, (4.29)-(4.30) and (H4), we get

↵1 = lim
n!+1

I"(t(vn)vn) � I"(t(v0)v0) = I"(t⇤(v0)v0)

� "

q

✓
(q � p

+)(r� � q)

p+(q � p�)
� r

+ � q

r+

◆Z

⌦
t
⇤(v0)

r(x)
b(x)|v0|r(x)dx

=
" (qp+(q � p

�)� r
+ [p+(r� � q)� q(r� � q)])

r+p+q(q � p�)

Z

⌦
t
⇤(v0)

r(x)
b(x)|v0|r(x)dx

� 0,

which contradicts ↵1 < 0. Then � > ⌥",v0(t
⇤(v0)), and consequently v0 2 ⇥"

a(�). We choose

⌧ > 0 such that ⌧v0 2 U". Using the uniqueness of the solution t
⇤(v0) of equation (4.21), we

infer ⌧ t⇤(⌧v0) = t
⇤(v0). Therefore ⌥",⌧v0(t

⇤(⌧v0)) = ⌥",v0(t
⇤(v0)) < �, thus ⌧v0 2 ⇥"

a(�). Hence

⌧v0 2 U" \⇥"
a(�). It holds from (4.13) and (4.28) that

↵1  eI"(⌧v0) = I"(t(⌧v0)⌧v0) = I"(t(v0)v0) = eI"(v0)  ↵1,

thus eI"(v0) = ↵1. Thanks again to Lemma 4.1, we see that u := t(v0)v0 is a solution of (P�,").

Suppose now that p(x, y) = p, r(x) = r are constant and q(x) varies. Let

�v(t) := A(v) + "t
r�p

B(v)� �

Z

⌦
t
q(x)

a(x)|v|q(x)�p
dx,

where

A(v) :=

Z

R2N

|v(x)� v(y)|p

|x� y|N+sp
dx dy +

Z

⌦
w(x)|v|pdx

and

B(v) :=

Z

⌦
b(x)|v|rdx.

Then �v is continuous, �v(0) = A(v) > 0 and �v(t) ! +1 as t ! +1, since p < q(x) < r for all

x 2 ⌦. On the other hand, for � large enough, we have inf
t>0
�v(t) < 0. Therefore, by (H2), there

are exactly two positive reals t1(v) < t2(v) such that �v(t1(v)) = �v(t2(v)) = 0. So, by using the

same arguments as above, we obtain a solution of (P�,"). The proof of Theorem 3.3 is completed.

Proof of Theorem 3.4. Let "0 > 0. In view of Theorem 3.3, for � > �
⇤
"0 , problem (P�,") with

" = "0 admits a solution u"0 = t(v"0)v"0 with v"0 2 ⇥"0
a (�). In the case q(x) = q, for all " 2 (0, "0),

problem (P�,") has a solution u" = t(v")v". In fact, from (4.19), we have

⌥",v(t
⇤(v)) 

2

4
✓
q � p

+

r+ � q

◆ p+�q

r+�p+

+

✓
q � p

+

r+ � q

◆ r+�q

r+�p+

3

5F (v)
r+�q

r+�p+

⇥
 R

⌦ b(x)|v|r(x)dxR
⌦ a(x)|v|qdx

! q�p+

r+�p+

"

q�p+

r+�p+ if t
⇤(v) � 1
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and

⌥",v(t
⇤(v)) 

2

4
✓
q � p

�

r� � q

◆ p��q

r��p�

+

✓
q � p

�

r� � q

◆ r��q

r��p�

3

5F (v)
r��q

r��p�

⇥
 R

⌦ b(x)|v|r(x)dxR
⌦ a(x)|v|qdx

! q�p�

r��p�

"

q�p�

r��p� if t
⇤(v) < 1.

Since p
�  p

+
< q < r

�, ⌥",v(t⇤(v)) # 0 as " # 0. Thus � > ⌥",v"0
(t⇤(v"0)) for any " 2 (0, "0).

Hence v"0 2 ⇥"
a(�). By (4.21), we have

min
⇣
(t⇤"(v"0))

p�
, (t⇤"(v"0))

p+
⌘Z

R2N

(q � p(x, y)) |v"0(x)� v"0(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

 "max
⇣
(t⇤"(v"0))

r�
, (t⇤"(v"0))

r+
⌘Z

⌦
(r(x)� q) b(x)|v"0 |r(x)dx,

which yields

1

"

Z

R2N

(q � p(x, y)) |v"0(x)� v"0(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

 max
⇣
(t⇤"(v"0))

r+�p�
, t

⇤
"(v"0)

r��p+
⌘Z

⌦
(r(x)� q) b(x)|v"0 |r(x)dx.

It holds that t
⇤
"(v"0) ! +1 as " ! 0, since p

+
< r

�
. Noting that t

⇤
"(v"0) < t"(v"0), we deduce

that t"(v"0) ! +1 as " ! 0. Therefore, in view of (4.27), for some "1 2 (0, "0) small enough,
eI"(v"0) < 0 for all " 2 (0, "1). Let ⌧ > 0 such that ⌧v"0 2 U"\⇥"

a(�). Since eI"(⌧v"0) = eI"(v"0) < 0,

inf
v2U"\⇥"

a(�)

eI"(v) < 0 for all " 2 (0, "1).

Through a similar reasoning to that of Theorem 3.1, we can show that for any " 2 (0, "1), problem

(P�,") has a solution u" = t"(v")v", with v" 2 U" \ ⇥"
a(�). Moreover, I"(u") = eI"(v") ! �1 as

" ! 0. By (4.1) with M ⌘ 1 and (4.16), we conclude that ||u"||X ! +1 as " ! 0. The proof of

Theorem 3.4 is completed.
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RESUMEN

Presentamos aproximaciones multivariadas cuantitativas de

funciones multivariadas continuas con valores en un espa-

cio de Banach definidas en una caja o en RN , N 2 N, a

través de operadores de redes neuronales multivariados nor-

malizados, de cuasi-interpolación, de tipo Kantorovich y de

tipo cuadratura. También tratamos el caso de aproximación

usando operadores iterados de los últimos cuatro tipos. Estas

aproximaciones se derivan estableciendo desigualdades mul-

tidimensionales de tipo Jackson que involucran el módulo

de continuidad multivariado de la función comprometida o

sus derivadas de Fréchet de alto orden. Nuestros operadores

multivariados son definidos usando una función de densidad

multidimensional inducida por varias funciones sigmoidales

generales diferentes entre sí. Esto se hace con el propósito de

activar la mayor cantidad de neuronas posible. Las aproxi-

maciones son puntutales y uniformes. La red neuronal preali-

mentada relacionada tiene un nivel oculto. Concluimos con

aproximaciones Lp relacionadas.

Keywords and Phrases: General sigmoid functions, multivariate neural network approximation, quasi-interpola-

tion operator, Kantorovich type operator, quadrature type operator, multivariate modulus of continuity, abstract

approximation, iterated approximation, Lp approximation.
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1 Introduction

The author in [2, 3], see chapters 2-5, was the first to establish neural network approximations to

continuous functions with rates by very specifically defined neural network operators of Cardaliaguet-

Euvrard and “Squashing” types, by employing the modulus of continuity of the engaged function or

its high order derivative, and producing very tight Jackson type inequalities. He treats there both

the univariate and multivariate cases. The defining these operators “bell-shaped” and “squashing”

functions are assumed to be of compact support. Also in [3] he gives the Nth order asymptotic

expansion for the error of weak approximation of these two operators to a special natural class of

smooth functions, see chapters 4-5 there.

For this article the author is motivated by the article [14] of Z. Chen and F. Cao, also by [4–12,

15,16].

The author here performs multivariate multiple general sigmoid functions based neural network

approximations to continuous functions over boxes or over the whole RN , N 2 N. Also he does

iterated and Lp approximations. All convergences here are with rates expressed via the multivariate

modulus of continuity of the involved function or its high order Fréchet derivative and given by

very tight multidimensional Jackson type inequalities.

The author here comes up with the “right” precisely defined multivariate normalized, quasi-

interpolation neural network operators related to boxes or RN , as well as Kantorovich type and

quadrature type related operators on RN . Our boxes are not necessarily symmetric to the origin.

In preparation to prove our results we establish important properties of the basic multivariate

density functions induced by multiple general sigmoid functions and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type of networks we deal

with in this article, are mathematically expressed as

Nn (x) =
nX

j=0

cj� (haj · xi+ bj) , x 2 Rs
, s 2 N,

where for 0  j  n, bj 2 R are the thresholds, aj 2 Rs are the connection weights, cj 2 R
are the coefficients, haj · xi is the inner product of aj and x, and � is the activation function of

the network. In many fundamental network models, the activation function is a general sigmoid

function, but here we use a multiple number of them simultaneously for the first time, so we can

activate a maximum number of neurons. About neural networks read [17–19].
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2 Basics

Let i = 1, . . . , N 2 N and hi : R ! [�1, 1] be a general sigmoid function, such that it is strictly

increasing, hi (0) = 0, hi (�x) = �hi (x), hi (+1) = 1, hi (�1) = �1. Also hi is strictly convex

over (�1, 0] and striclty concave over [0,+1), with h
(2)
i 2 C (R, [�1, 1]).

We consider the activation function

 i (x) :=
1

4
(hi (x+ 1)� hi (x� 1)) , x 2 R, i = 1, . . . , N. (2.1)

As in [11, p. 285], we get that  i (�x) =  i (x) , thus  i is an even function. Since x+ 1 > x� 1,

then hi (x+ 1) > hi (x� 1), and  i (x) > 0, all x 2 R.

We see that

 i (0) =
hi (1)

2
, i = 1, . . . , N. (2.2)

Let x > 1, we have that

 
0
i (x) =

1

4
(h0

i (x+ 1)� h
0
i (x� 1)) < 0,

by h
0
i being strictly decreasing over [0,+1).

Let now 0 < x < 1, then 1 � x > 0 and 0 < 1 � x < 1 + x. It holds h
0
i (x� 1) = h

0
i (1� x) >

h
0
i (x+ 1), so that again  0

i (x) < 0. Consequently  i is strictly decreasing on (0,+1).

Clearly,  i is strictly increasing on (�1, 0), and  0
i (0) = 0.

See that

lim
x!+1

 i (x) =
1

4
(hi (+1)� hi (+1)) = 0, (2.3)

and

lim
x!�1

 i (x) =
1

4
(hi (�1)� hi (�1)) = 0. (2.4)

That is the x-axis is the horizontal asymptote on  i.

Conclusion,  is a bell symmetric function with maximum

 i (0) =
hi (1)

2
.

We need

Theorem 2.1. We have that

1X

i=�1
 i (x� i) = 1, 8x 2 R, i = 1, . . . , N. (2.5)

Proof. As exactly the same as in [11, p. 286], is omitted.
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Theorem 2.2. It holds Z 1

�1
 i (x) dx = 1, i = 1, . . . , N. (2.6)

Proof. Similar to [11, p. 287]. It is omitted.

Thus  i (x) is a density function on R, i = 1, . . . , N.

We give

Theorem 2.3. Let 0 < ↵ < 1, and n 2 N with n
1�↵

> 2. It holds

1X

k=�1
|nx�k|�n1�↵

 i (nx� k) <

�
1� hi

�
n
1�↵ � 2

��

2
, i = 1, . . . , N. (2.7)

Notice that

lim
n!+1

�
1� hi

�
n
1�↵ � 2

��

2
= 0, i = 1, . . . , N.

Proof. Let x � 1. That is 0  x� 1 < x+ 1. Applying the mean value theorem we get

 i (x)
(2.1)
=

1

4
· 2 · h0

i (⇠) =
h
0
i (⇠)

2
, (2.8)

for some x� 1 < ⇠ < x+ 1.

Since h
0
i is strictly decreasing we obtain h

0
i (⇠) < h

0
i (x� 1) and

 i (x) <
h
0
i (x� 1)

2
, 8 x � 1. (2.9)

Therefore we have

1X

k=�1
|nx�k|�n1�↵

 i (nx� k) =
1X

k=�1
|nx�k|�n1�↵

 i (|nx� k|) < 1

2

1X

k=�1
|nx�k|�n1�↵

h
0
i (|nx� k|� 1)

 1

2

Z +1

(n1�↵�1)
h
0
i (x� 1) d (x� 1) =

1

2

⇣
hi (x� 1) |+1

(n1�↵�1)

⌘

=
1

2

⇥
hi (+1)� hi

�
n
1�↵ � 2

�⇤
=

1

2

�
1� hi

�
n
1�↵ � 2

��
. (2.10)

The claim is proved.

Denote by b·c the integral part of the number and by d·e the ceiling of the number.

We further give
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Theorem 2.4. Let x 2 [a, b] ⇢ R and n 2 N so that dnae  bnbc. It holds

1
Pbnbc

k=dnae  i (nx� k)
<

1

 i (1)
, 8 x 2 [a, b] , i = 1, . . . , N. (2.11)

Proof. As similar to [11, p. 289] is omitted.

Remark 2.5. We have that

lim
n!1

bnbcX

k=dnae

 i (nx� k) 6= 1, i = 1, . . . , N, (2.12)

for at least some x 2 [a, b].

See [11, p. 290], same reasoning.

Note 2.6. For large enough n we always obtain dnae  bnbc. Also a  k
n  b, iff dnae  k  bnbc.

In general it holds (by (2.5))

bnbcX

k=dnae

 i (nx� k)  1, i = 1, . . . , N. (2.13)

We make

Remark 2.7. We define

Z (x1, . . . , xN ) := Z (x) :=
NY

i=1

 i (xi) , x = (x1, . . . , xN ) 2 RN
, N 2 N. (2.14)

It has the properties:

(i)

Z (x) > 0, 8x 2 RN
, (2.15)

(ii)
1X

k=�1
Z (x� k) :=

1X

k1=�1

1X

k2=�1
· · ·

1X

kN=�1
Z (x1 � k1, . . . , xN � kN ) =

1X

k1=�1

1X

k2=�1
· · ·

1X

kN=�1

NY

i=1

 i (xi � ki) =
NY

i=1

 1X

ki=�1
 i (xi � ki)

!
(2.5)
= 1.

Hence 1X

k=�1
Z (x� k) = 1. (2.16)
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That is

(iii)
1X

k=�1
Z (nx� k) = 1, 8x 2 RN

, n 2 N. (2.17)

and

(iv)
Z

RN

Z (x) dx =

Z

RN

 
NY

i=1

 i (xi)

!
dx1 · · · dxN =

NY

i=1

✓Z 1

�1
 i (xi) dxi

◆
(2.6)
= 1, (2.18)

thus Z

RN

Z (x) dx = 1, (2.19)

that is Z is a multivariate density function.

Here denote kxk1 := max {|x1| , . . . , |xN |}, x 2 RN , also set 1 := (1, . . . ,1), �1 :=

(�1, . . . ,�1) upon the multivariate context, and

dnae := (dna1e , . . . , dnaNe)

bnbc := (bnb1c , . . . , bnbNc) ,

where a := (a1, . . . , aN ), b := (b1, . . . , bN ) .

We obviously see that

bnbcX

k=dnae

Z (nx� k) =

bnbcX

k=dnae

 
NY

i=1

 i (nxi � ki)

!
=

bnb1cX

k1=dna1e

· · ·
bnbNcX

kN=dnaNe

 
NY

i=1

 i (nxi � ki)

!

=
NY

i=1

0

@
bnbicX

ki=dnaie

 i (nxi � ki)

1

A . (2.20)

For 0 < � < 1 and n 2 N, a fixed x 2 RN , we have that

bnbcX

k=dnae

Z (nx� k) =

bnbcX

k=dnae
k k

n�xk1
 1

n�

Z (nx� k) +

bnbcX

k=dnae
k k

n�xk1
> 1

n�

Z (nx� k) . (2.21)

In the last two sums the counting is over disjoint vector sets of k’s, because the condition
�� k
n � x

��
1 >

1
n� implies that there exists at least one

��kr
n � xr

�� > 1
n� , where r 2 {1, . . . , N}.
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(v) We notice that

bnbcX

k=dnae
k k

n�xk1
> 1

n�

Z (nx� k) =

bnb1cX

k1=dna1e

· · ·
bnbNcX

kN=dnaNe
k k

n�xk1
> 1

n�

 
NY

i=1

 i (nxi � ki)

!

=
NY

i=1

0

BBB@

bnbicX

k=dnae
k k

n�xk1
> 1

n�

 i (nxi � ki)

1

CCCA



0

B@
NY

i=1
i 6=r

 1X

ki=�1
 i (nxi � ki)

!1

CA

0

BBB@

bnbrcX

kr=dnare
| kr

n �xr|> 1
n�

 r (nxr � kr)

1

CCCA

=

0

BBB@

bnbrcX

kr=dnare
| kr

n �xr|> 1
n�

 r (nxr � kr)

1

CCCA
(2.22)


1X

kr=�1
| kr

n �xr|> 1
n�

 r (nxr � kr) =
1X

kr=�1
|nxr�kr|>n1��

 r (nxr � kr)

(2.7)
<

1� hr

�
n
1�� � 2

�

2
 max

i2{1,...,N}

 
1� hi

�
n
1�� � 2

�

2

!
,

where 0 < � < 1.

That is we get:

bnbcX

k=dnae
k k

n�xk1
> 1

n�

Z (nx� k) < max
i2{1,...,N}

 
1� hi

�
n
1�� � 2

�

2

!
, (2.23)

0 < � < 1, with n 2 N : n1��
> 2, 8 x 2

QN
i=1 [ai, bi] .

(vi) It is clear that

1X

k=�1
k k

n�xk1
> 1

n�

Z (nx� k) < max
i2{1,...,N}

 
1� hi

�
n
1�� � 2

�

2

!
, (2.24)

0 < � < 1, n 2 N : n1��
> 2, 8 x 2

QN
i=1 [ai, bi] .
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(vii) By Theorem 2.4 we get that

0 <
1

Pbnbc
k=dnae Z (nx� k)

=
1

QN
i=1

⇣Pbnbic
ki=dnaie  i (nxi � ki)

⌘ <
1

QN
i=1  i (1)

,

thus

0 <
1

Pbnbc
k=dnae Z (nx� k)

<
1

QN
i=1  i (1)

, (2.25)

8 x 2
⇣QN

i=1 [ai, bi]
⌘
, n 2 N.

Furthermore it holds

lim
n!1

bnbcX

k=dnae

Z (nx� k) = lim
n!1

NY

i=1

0

@
bnbicX

ki=dnaie

 i (nxi � ki)

1

A (2.26)

=
NY

i=1

0

@ lim
n!1

bnbicX

ki=dnaie

 i (nxi � ki)

1

A 6= 1,

for at least some x 2
⇣QN

i=1 [ai, bi]
⌘
.

We state

Definition 2.8. We denote by

�N (�, n) := max
i2{1,...,N}

 
1� hi

�
n
1�� � 2

�

2

!
, (2.27)

where 0 < � < 1.

We make

Remark 2.9. Here
⇣
X, k·k�

⌘
is a Banach space.

Let f 2 C

⇣QN
i=1 [ai, bi] , X

⌘
, x = (x1, . . . , xN ) 2

QN
i=1 [ai, bi] , n 2 N such that dnaie  bnbic,

i = 1, . . . , N.

We introduce and define the following multivariate linear normalized neural network operator (x :=

(x1, . . . , xN ) 2
⇣QN

i=1 [ai, bi]
⌘
):

An (f, x1, . . . , xN ) := An (f, x) :=

Pbnbc
k=dnae f

�
k
n

�
Z (nx� k)

Pbnbc
k=dnae Z (nx� k)

=

Pbnb1c
k1=dna1e

Pbnb2c
k2=dna2e · · ·

PbnbNc
kN=dnaNe f

�
k1
n , . . . ,

kN
n

� ⇣QN
i=1  i (nxi � ki)

⌘

QN
i=1

⇣Pbnbic
ki=dnaie  i (nxi � ki)

⌘ . (2.28)
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For large enough n 2 N we always obtain dnaie  bnbic, i = 1, . . . , N . Also ai  ki
n  bi, iff

dnaie  ki  bnbic, i = 1, . . . , N .

When g 2 C

⇣QN
i=1 [ai, bi]

⌘
we define the companion operator

eAn (g, x) :=

Pbnbc
k=dnae g

�
k
n

�
Z (nx� k)

Pbnbc
k=dnae Z (nx� k)

. (2.29)

Clearly eAn is a positive linear operator. We have that

eAn (1, x) = 1, 8x 2
 

NY

i=1

[ai, bi]

!
.

Notice that An (f) 2 C

⇣QN
i=1 [ai, bi] , X

⌘
and eAn (g) 2 C

⇣QN
i=1 [ai, bi]

⌘
.

Furthermore it holds

kAn (f, x)k� 
Pbnbc

k=dnae
��f
�
k
n

���
�
Z (nx� k)

Pbnbc
k=dnae Z (nx� k)

= eAn

⇣
kfk� , x

⌘
, (2.30)

8 x 2
QN

i=1 [ai, bi] . Clearly kfk� 2 C

⇣QN
i=1 [ai, bi]

⌘
.

So, we have that

kAn (f, x)k�  eAn

⇣
kfk� , x

⌘
, (2.31)

8 x 2
QN

i=1 [ai, bi], 8 n 2 N, 8 f 2 C

⇣QN
i=1 [ai, bi] , X

⌘
.

Let c 2 X and g 2 C

⇣QN
i=1 [ai, bi]

⌘
, then cg 2 C

⇣QN
i=1 [ai, bi] , X

⌘
.

Furthermore it holds

An (cg, x) = c eAn (g, x) , 8x 2
NY

i=1

[ai, bi] . (2.32)

Since eAn (1) = 1, we get that

An (c) = c, 8c 2 X. (2.33)

We call eAn the companion operator of An.

For convenience we call

A
⇤
n (f, x) :=

bnbcX

k=dnae

f

✓
k

n

◆
Z (nx� k)

=

bnb1cX

k1=dna1e

bnb2cX

k2=dna2e

· · ·
bnbNcX

kN=dnaNe

f

✓
k1

n
, . . . ,

kN

n

◆ NY

i=1

 i (nxi � ki)

!
, (2.34)
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8 x 2
⇣QN

i=1 [ai, bi]
⌘
.

That is

An (f, x) :=
A

⇤
n (f, x)Pbnbc

k=dnae Z (nx� k)
, (2.35)

8 x 2
⇣QN

i=1 [ai, bi]
⌘
, n 2 N.

Hence

An (f, x)� f (x) =
A

⇤
n (f, x)� f (x)

⇣Pbnbc
k=dnae Z (nx� k)

⌘

Pbnbc
k=dnae Z (nx� k)

. (2.36)

Consequently we derive

kAn (f, x)� f (x)k�
(2.25)


 
NY

i=1

 i (1)

!�1
������
A

⇤
n (f, x)� f (x)

bnbcX

k=dnae

Z (nx� k)

������
�

, (2.37)

8 x 2
⇣QN

i=1 [ai, bi]
⌘
.

We will estimate the right hand side of (2.37).

For the last and others we need

Definition 2.10 ([11, p. 274]). Let M be a convex and compact subset of
⇣
RN

, k·kp
⌘
, p 2 [1,1],

and
⇣
X, k·k�

⌘
be a Banach space. Let f 2 C (M,X) . We define the first modulus of continuity of

f as

!1 (f, �) := sup
x,y2M

kx�ykp�

kf (x)� f (y)k� , 0 < �  diam (M) . (2.38)

If � > diam (M), then

!1 (f, �) = !1 (f, diam (M)) . (2.39)

Notice !1 (f, �) is increasing in � > 0. For f 2 CB (M,X) (continuous and bounded functions)

!1 (f, �) is defined similarly.

Lemma 2.11 ([11, p. 274]). We have !1 (f, �) ! 0 as � # 0, iff f 2 C (M,X), where M is a

convex compact subset of
⇣
RN

, k·kp
⌘
, p 2 [1,1] .

Clearly we have also: f 2 CU

�
RN

, X
�

(uniformly continuous functions), iff !1 (f, �) ! 0 as � # 0,

where !1 is defined similarly to (2.38). The space CB

�
RN

, X
�

denotes the continuous and bounded

functions on RN
.
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When f 2 CB

�
RN

, X
�

we define,

Bn (f, x) := Bn (f, x1, . . . , xN ) :=
1X

k=�1
f

✓
k

n

◆
Z (nx� k)

:=
1X

k1=�1

1X

k2=�1
· · ·

1X

kN=�1
f

✓
k1

n
,
k2

n
, . . . ,

kN

n

◆ NY

i=1

 i (nxi � ki)

!
, (2.40)

n 2 N, 8 x 2 RN
, N 2 N, the multivariate quasi-interpolation neural network operator.

Also for f 2 CB

�
RN

, X
�

we define the multivariate Kantorovich type neural network operator

Cn (f, x) := Cn (f, x1, . . . , xN ) :=
1X

k=�1

 
n
N

Z k+1
n

k
n

f (t) dt

!
Z (nx� k) = (2.41)

1X

k1=�1

1X

k2=�1
· · ·

1X

kN=�1

 
n
N

Z k1+1
n

k1
n

Z k2+1
n

k2
n

· · ·
Z kN+1

n

kN
n

f (t1, . . . , tN ) dt1 . . . dtN

!
·
 

NY

i=1

 i (nxi � ki)

!
,

n 2 N, 8 x 2 RN
.

Again for f 2 CB

�
RN

, X
�
, N 2 N, we define the multivariate neural network operator of quadra-

ture type Dn (f, x), n 2 N, as follows.

Let ✓ = (✓1, . . . , ✓N ) 2 NN
, r = (r1, . . . , rN ) 2 ZN

+ , wr = wr1,r2,...,rN � 0, such that
✓P

r=0
wr =

✓1P
r1=0

✓2P
r2=0

· · ·
✓NP

rN=0
wr1,r2,...,rN = 1; k 2 ZN and

�nk (f) := �n,k1,k2,...,kN (f) :=
✓X

r=0

wrf

✓
k

n
+

r

n✓

◆

=
✓1X

r1=0

✓2X

r2=0

· · ·
✓NX

rN=0

wr1,r2,...,rN f

✓
k1

n
+

r1

n✓1
,
k2

n
+

r2

n✓2
, . . . ,

kN

n
+

rN

n✓N

◆
, (2.42)

where r
✓ :=

⇣
r1
✓1
,
r2
✓2
, . . . ,

rN
✓N

⌘
.

We set

Dn (f, x) := Dn (f, x1, . . . , xN ) :=
1X

k=�1
�nk (f)Z (nx� k) (2.43)

=
1X

k1=�1

1X

k2=�1
· · ·

1X

kN=�1
�n,k1,k2,...,kN (f)

 
NY

i=1

 i (nxi � ki)

!
, 8x 2 RN

.

In this article we study the approximation properties of An, Bn, Cn, Dn neural network operators

and as well of their iterates. That is, the quantitative pointwise and uniform convergence of these

operators to the unit operator I.
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3 Multivariate general sigmoid neural network approxima-

tions

Here we present several vectorial neural network approximations to Banach space valued functions

given with rates.

We give

Theorem 3.1. Let f 2 C

⇣QN
i=1 [ai, bi] , X

⌘
, 0 < � < 1, x 2

⇣QN
i=1 [ai, bi]

⌘
, N, n 2 N with

n
1��

> 2. Then

1)

kAn (f, x)� f (x)k� 
 

NY

i=1

 i (1)

!�1 
!1

✓
f,

1

n�

◆
+ 2�N (�, n)

���kfk�
���
1

�
=: �1 (n) ,

(3.1)

and

2) ���kAn (f)� fk�
���
1

 �1 (n) . (3.2)

We notice that lim
n!1

An (f)
k·k�
= f , pointwise and uniformly.

Above !1 is with respect to p = 1 and the speed of convergence is max
�

1
n� , �N (�, n)

�
.

Proof. As similar to [12] is omitted. Use of (2.37).

We make

Remark 3.2 ([11, pp. 263–266]). Let
⇣
RN

, k·kp
⌘
, N 2 N; where k·kp is the Lp-norm, 1  p  1.

RN is a Banach space, and
�
RN
�j denotes the j-fold product space RN ⇥ · · · ⇥ RN endowed with

the max-norm kxk(RN )j := max
1�j

kx�kp, where x := (x1, . . . , xj) 2
�
RN
�j

.

Let
⇣
X, k·k�

⌘
be a general Banach space. Then the space Lj := Lj

⇣�
RN
�j

;X
⌘

of all j-multilinear

continuous maps g :
�
RN
�j ! X, j = 1, . . . ,m, is a Banach space with norm

kgk := kgkLj
:= sup✓

kxk
(RN )j

=1

◆ kg (x)k� = sup
kg (x)k�

kx1kp · · · kxjkp
. (3.3)

Let M be a non-empty convex and compact subset of Rk and x0 2 M is fixed.

Let O be an open subset of RN : M ⇢ O. Let f : O ! X be a continuous function, whose Fréchet

derivatives (see [20]) f
(j) : O ! Lj = Lj

⇣�
RN
�j

;X
⌘

exist and are continuous for 1  j  m,

m 2 N.
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Call (x� x0)
j := (x� x0, . . . , x� x0) 2

�
RN
�j, x 2 M .

We will work with f |M .

Then, by Taylor’s formula [13], [20, p. 124] , we get

f (x) =
mX

j=0

f
(j) (x0) (x� x0)

j

j!
+Rm (x, x0) , all x 2 M, (3.4)

where the remainder is the Riemann integral

Rm (x, x0) :=

Z 1

0

(1� u)m�1

(m� 1)!

⇣
f
(m) (x0 + u (x� x0))� f

(m) (x0)
⌘
(x� x0)

m
du, (3.5)

here we set f (0) (x0) (x� x0)
0 = f (x0) .

We consider

w := !1

⇣
f
(m)

, h

⌘
:= sup

x,y2M
kx�ykph

���f (m) (x)� f
(m) (y)

��� , (3.6)

h > 0.

We obtain

���
⇣
f
(m) (x0 + u (x� x0))� f

(m) (x0)
⌘
(x� x0)

m
���
�


���f (m) (x0 + u (x� x0))� f
(m) (x0)

��� · kx� x0kmp  w kx� x0kmp
⇠
u kx� x0kp

h

⇡
, (3.7)

by [1, Lemma 7.1.1, p. 208], where d·e is the ceiling.

Therefore for all x 2 M (see [1, pp. 121-122]):

kRm (x, x0)k�  w kx� x0kmp
Z 1

0

⇠
u kx� x0kp

h

⇡
(1� u)m�1

(m� 1)!
du = w�m

⇣
kx� x0kp

⌘
(3.8)

by a change of variable, where

�m (t) :=

Z |t|

0

l
s

h

m (|t|� s)m�1

(m� 1)!
ds =

1

m!

0

@
1X

j=0

(|t|� jh)m+

1

A , 8t 2 R, (3.9)

is a (polynomial) spline function, see [1, p. 210-211].

Also from there we get

�m (t) 
 

|t|m+1

(m+ 1)!h
+

|t|m

2m!
+

h |t|m�1

8 (m� 1)!

!
, 8t 2 R, (3.10)
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with equality true only at t = 0.

Therefore it holds

kRm (x, x0)k�  w

 
kx� x0km+1

p

(m+ 1)!h
+

kx� x0kmp
2m!

+
h kx� x0km�1

p

8 (m� 1)!

!
, 8x 2 M. (3.11)

We have found that

������
f (x)�

mX

j=0

f
(j) (x0) (x� x0)

j

j!

������
�

 !1

⇣
f
(m)

, h

⌘ kx� x0km+1
p

(m+ 1)!h
+

kx� x0kmp
2m!

+
h kx� x0km�1

p

8 (m� 1)!

!

< 1, (3.12)

8 x, x0 2 M.

Here 0 < !1

�
f
(m)

, h
�
< 1, by M being compact and f

(m) being continuous on M .

One can rewrite (3.12) as follows:

������
f (·)�

mX

j=0

f
(j) (x0) (·� x0)

j

j!

������
�

 !1

⇣
f
(m)

, h

⌘ k·� x0km+1
p

(m+ 1)!h
+

k·� x0kmp
2m!

+
h k·� x0km�1

p

8 (m� 1)!

!
,

(3.13)

8x0 2 M , a pointwise functional inequality on M .

Here (·� x0)
j maps M into

�
RN
�j and it is continuous, also f

(j) (x0) maps
�
RN
�j into X and it

is continuous. Hence their composition f
(j) (x0) (·� x0)

j is continuous from M into X.

Clearly f (·)�
Pm

j=0
f(j)(x0)(·�x0)

j

j! 2 C (M,X), hence
���f (·)�

Pm
j=0

f(j)(x0)(·�x0)
j

j!

���
�
2 C (M).

Let
n
eLN

o

N2N
be a sequence of positive linear operators mapping C (M) into C (M) .

Therefore we obtain

0

@eLN

0

@

������
f (·)�

mX

j=0

f
(j) (x0) (·� x0)

j

j!

������
�

1

A

1

A (x0) 

!1

⇣
f
(m)

, h

⌘
2

4

⇣
eLN

⇣
k·� x0km+1

p

⌘⌘
(x0)

(m+ 1)!h
+

⇣
eLN

⇣
k·� x0kmp

⌘⌘
(x0)

2m!
+

h

⇣
eLN

⇣
k·� x0km�1

p

⌘⌘
(x0)

8 (m� 1)!

3

5 ,

(3.14)

8 N 2 N, 8 x0 2 M .

Clearly (3.14) is valid when M =
NQ
i=1

[ai, bi] and eLn = eAn, see (2.29).
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All the above is preparation for the following theorem, where we assume Fréchet differentiability

of functions.

This will be a direct application of Theorem 10.2 in [11, pp. 268-270]. The operators An,
eAn fulfill

its assumptions, see (2.28), (2.29), (2.31), (2.32) and (2.33).

We present the following high order approximation results.

Theorem 3.3. Let O open subset of
⇣
RN

, k·kp
⌘
, p 2 [1,1], such that

NQ
i=1

[ai, bi] ⇢ O ✓ RN ,

and let
⇣
X, k·k�

⌘
be a general Banach space. Let m 2 N and f 2 C

m (O,X), the space of m-

times continuously Fréchet differentiable functions from O into X. We study the approximation of

f | NQ
i=1

[ai,bi]
. Let x0 2

✓
NQ
i=1

[ai, bi]

◆
and r > 0. Then

1) ������
(An (f)) (x0)�

mX

j=0

1

j!

⇣
An

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0)

������
�



!1

✓
f
(m)

, r

⇣⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

⌘ 1
m+1

◆

rm!

⇣⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

⌘( m
m+1 )


1

(m+ 1)
+

r

2
+

mr
2

8

�
, (3.15)

2) additionally if f (j) (x0) = 0, j = 1, . . . ,m, we have

k(An (f)) (x0)� f (x0)k� 

!1

✓
f
(m)

, r

⇣⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

⌘ 1
m+1

◆

rm!

⇣⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

⌘( m
m+1 )

(3.16)


1

(m+ 1)
+

r

2
+

mr
2

8

�
,

3)

k(An (f)) (x0)� f (x0)k� 
mX

j=1

1

j!

���
⇣
An

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0)
���
�
+

!1

✓
f
(m)

, r

⇣⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

⌘ 1
m+1

◆

rm!

⇣⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

⌘( m
m+1 )

(3.17)


1

(m+ 1)
+

r

2
+

mr
2

8

�
,
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4)
���kAn (f)� fk�

���
1,

NQ
i=1

[ai,bi]


mX

j=1

1

j!

����
���
⇣
An

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0)
���
�

����
1,x02

NQ
i=1

[ai,bi]

+

!1

0

@f
(m)

, r

���
⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

���
1

m+1

1,x02
NQ

i=1
[ai,bi]

1

A

rm!

���
⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

���
( m

m+1 )

1,x02
NQ

i=1
[ai,bi]


1

(m+ 1)
+

r

2
+

mr
2

8

�
. (3.18)

We need

Lemma 3.4. The function
⇣
eAn

⇣
k·� x0kmp

⌘⌘
(x0) is continuous in x0 2

✓
NQ
i=1

[ai, bi]

◆
, m 2 N.

Proof. By Lemma 10.3, [11, p. 272].

We make

Remark 3.5. By [11, Remark 10.4, p. 273], we get that

���
⇣
eAn

⇣
k·� x0kkp

⌘⌘
(x0)

���
1,x02

NQ
i=1

[ai,bi]

���
⇣
eAn

⇣
k·� x0km+1

p

⌘⌘
(x0)

���
( k

m+1 )

1,x02
NQ

i=1
[ai,bi]

, (3.19)

for all k = 1, . . . ,m.

We give

Corollary 3.6 (to Theorem 3.3, case of m = 1). Then

1)

k(An (f)) (x0)� f (x0)k� 
���
⇣
An

⇣
f
(1) (x0) (·� x0)

⌘⌘
(x0)

���
�

+
1

2r
!1

✓
f
(1)

, r

⇣⇣
eAn

⇣
k·� x0k2p

⌘⌘
(x0)

⌘ 1
2

◆⇣⇣
eAn

⇣
k·� x0k2p

⌘⌘
(x0)

⌘ 1
2


1 + r +

r
2

4

�
,

(3.20)

2) ���k(An (f))� fk�
���
1,

NQ
i=1

[ai,bi]

����
���
⇣
An

⇣
f
(1) (x0) (·� x0)

⌘⌘
(x0)

���
�

����
1,x02

NQ
i=1

[ai,bi]

+

1

2r
!1

0

@f
(1)

, r

���
⇣
eAn

⇣
k·� x0k2p

⌘⌘
(x0)

���
1
2

1,x02
NQ

i=1
[ai,bi]

1

A

���
⇣
eAn

⇣
k·� x0k2p

⌘⌘
(x0)

���
1
2

1,x02
NQ

i=1
[ai,bi]


1 + r +

r
2

4

�
, r > 0. (3.21)
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We make

Remark 3.7. We estimate (0 < ↵ < 1, m,n 2 N : n1�↵
> 2),

eAn

⇣
k·� x0km+1

1

⌘
(x0) =

Pbnbc
k=dnae

�� k
n � x0

��m+1

1 Z (nx0 � k)
Pbnbc

k=dnae Z (nx0 � k)

(2.25)
<

 
NY

i=1

 i (1)

!�1 bnbcX

k=dnae

����
k

n
� x0

����
m+1

1
Z (nx0 � k) (3.22)

=

 
NY

i=1

 i (1)

!�1

8
>>><

>>>:

bnbcX

k=dnae
k k

n�x0k1
 1

n↵

����
k

n
� x0

����
m+1

1
Z (nx0 � k)

+

bnbcX

k=dnae
k k

n�x0k1
> 1

n↵

����
k

n
� x0

����
m+1

1
Z (nx0 � k)

9
>>>=

>>>;

(2.23)


 
NY

i=1

 i (1)

!�1⇢
1

n↵(m+1)
+ �N (↵, n) kb� akm+1

1

�
, (3.23)

(where b� a = (b1 � a1, . . . , bN � aN )).

We have proved that (8 x0 2
NQ
i=1

[ai, bi])

eAn

⇣
k·� x0km+1

1

⌘
(x0) <

 
NY

i=1

 i (1)

!�1⇢
1

n↵(m+1)
+ �N (↵, n) kb� akm+1

1

�
=: '1 (n) (3.24)

(0 < ↵ < 1, m,n 2 N : n1�↵
> 2).

And, consequently it holds

��� eAn

⇣
k·� x0km+1

1

⌘
(x0)

���
1,x02

NQ
i=1

[ai,bi]
<

 
NY

i=1

 i (1)

!�1⇢
1

n↵(m+1)
+ �N (↵, n) kb� akm+1

1

�

= '1 (n) ! 0, as n ! +1. (3.25)

So, we have that '1 (n) ! 0, as n ! +1. Thus, when p 2 [1,1], from Theorem 3.3 we have the

convergence to zero in the right hand sides of parts (1), (2).

Next we estimate
���
⇣
eAn

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0)
���
�
.
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We have that

⇣
eAn

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0) =

Pbnbc
k=dnae f

(j) (x0)
�
k
n � x0

�j
Z (nx0 � k)

Pbnbc
k=dnae Z (nx0 � k)

. (3.26)

When p = 1, j = 1, . . . ,m, we obtain

�����f
(j) (x0)

✓
k

n
� x0

◆j
�����
�


���f (j) (x0)

���
����
k

n
� x0

����
j

1
. (3.27)

We further have that ���
⇣
eAn

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0)
���
�

(2.25)
<

 
NY

i=1

 i (1)

!�1
0

@
bnbcX

k=dnae

�����f
(j) (x0)

✓
k

n
� x0

◆j
�����
�

Z (nx0 � k)

1

A 

 
NY

i=1

 i (1)

!�1
0

@
bnbcX

k=dnae

���f (j) (x0)
���
����
k

n
� x0

����
j

1
Z (nx0 � k)

1

A = (3.28)

 
NY

i=1

 i (1)

!�1 ���f (j) (x0)
���

0

@
bnbcX

k=dnae

����
k

n
� x0

����
j

1
Z (nx0 � k)

1

A =

 
NY

i=1

 i (1)

!�1 ���f (j) (x0)
���

8
>>><

>>>:

bnbcX

k=dnae
k k

n�x0k1
 1

n↵

����
k

n
� x0

����
j

1
Z (nx0 � k)

+

bnbcX

k=dnae
k k

n�x0k1
> 1

n↵

����
k

n
� x0

����
j

1
Z (nx0 � k)

9
>>>=

>>>;

(2.23)
 (3.29)

 
NY

i=1

 i (1)

!�1 ���f (j) (x0)
���
⇢

1

n↵j
+ �N (↵, n) kb� akj1

�
! 0, as n ! 1.

That is ���
⇣
eAn

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0)
���
�
! 0, as n ! 1.
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Therefore when p = 1, for j = 1, . . . ,m, we have proved:

���
⇣
eAn

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0)
���
�
<

 
NY

i=1

 i (1)

!�1 ���f (j) (x0)
���
⇢

1

n↵j
+ �N (↵, n) kb� akj1

�


 

NY

i=1

 i (1)

!�1 ���f (j)
���
1

⇢
1

n↵j
+ �N (↵, n) kb� akj1

�

=: '2j (n) < 1, (3.30)

and converges to zero, as n ! 1.

We conclude:

In Theorem 3.3, the right hand sides of (3.26) and (3.18) converge to zero as n ! 1, for any

p 2 [1,1].

Also in Corollary 3.6, the right hand sides of (3.20) and (3.21) converge to zero as n ! 1, for any

p 2 [1,1] .

Conclusion 3.8. We have proved that the left hand sides of (3.15), (3.16), (3.17), (3.18) and

(3.20), (3.21) converge to zero as n ! 1, for p 2 [1,1]. Consequently An ! I (unit operator)

pointwise and uniformly, as n ! 1, where p 2 [1,1]. In the presence of initial conditions we

achieve a higher speed of convergence, see (3.16). Higher speed of convergence happens also to the

left hand side of (3.15).

We give

Corollary 3.9 (to Theorem 3.3). Let O open subset of
�
RN

, k·k1
�
, such that

NQ
i=1

[ai, bi] ⇢ O ✓ RN ,

and let
⇣
X, k·k�

⌘
be a general Banach space. Let m 2 N and f 2 C

m (O,X), the space of m-

times continuously Fréchet differentiable functions from O into X. We study the approximation of

f | NQ
i=1

[ai,bi]
. Let x0 2

✓
NQ
i=1

[ai, bi]

◆
and r > 0. Here '1 (n) as in (3.24) and '2j (n) as in (3.30),

where n 2 N : n1�↵
> 2, 0 < ↵ < 1, j = 1, . . . ,m. Then

1) ������
(An (f)) (x0)�

mX

j=0

1

j!

⇣
An

⇣
f
(j) (x0) (·� x0)

j
⌘⌘

(x0)

������
�



!1

⇣
f
(m)

, r ('1 (n))
1

m+1

⌘

rm!
('1 (n))

( m
m+1 )


1

(m+ 1)
+

r

2
+

mr
2

8

�
, (3.31)



CUBO
25, 3 (2023)

Multiple general sigmoids based Banach space ... 431

2) additionally, if f (j) (x0) = 0, j = 1, . . . ,m, we have

k(An (f)) (x0)� f (x0)k� 
!1

⇣
f
(m)

, r ('1 (n))
1

m+1

⌘

rm!
('1 (n))

( m
m+1 )


1

(m+ 1)
+

r

2
+

mr
2

8

�
,

(3.32)

3)

���kAn (f)� fk�
���
1,

NQ
i=1

[ai,bi]


mX

j=1

'2j (n)

j!
+
!1

⇣
f
(m)

, r ('1 (n))
1

m+1

⌘

rm!
('1 (n))

( m
m+1 )

·


1

(m+ 1)
+

r

2
+

mr
2

8

�
=: '3 (n) ! 0, as n ! 1. (3.33)

We continue with

Theorem 3.10. Let f 2 CB

�
RN

, X
�
, 0 < � < 1, x 2 RN

, N, n 2 N with n
1��

> 2, !1 is for

p = 1. Then

1)

kBn (f, x)� f (x)k�  !1

✓
f,

1

n�

◆
+ 2�N (�, n)

���kfk�
���
1

=: �2 (n) , (3.34)

2) ���kBn (f)� fk�
���
1

 �2 (n) . (3.35)

Given that f 2
�
CU

�
RN

, X
�
\ CB

�
RN

, X
��

, we obtain lim
n!1

Bn (f) = f , uniformly. The

speed of convergence above is max
�

1
n� , �N (�, n)

�
.

Proof. As similar to [12] is omitted.

We give

Theorem 3.11. Let f 2 CB

�
RN

, X
�
, 0 < � < 1, x 2 RN

, N, n 2 N with n
1��

> 2, !1 is for

p = 1. Then

1)

kCn (f, x)� f (x)k�  !1

✓
f,

1

n
+

1

n�

◆
+ 2�N (�, n)

���kfk�
���
1

=: �3 (n) , (3.36)

2) ���kCn (f)� fk�
���
1

 �3 (n) . (3.37)

Given that f 2
�
CU

�
RN

, X
�
\ CB

�
RN

, X
��

, we obtain lim
n!1

Cn (f) = f , uniformly.

Proof. As similar to [12] is omitted.
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We also present

Theorem 3.12. Let f 2 CB

�
RN

, X
�
, 0 < � < 1, x 2 RN

, N, n 2 N with n
1��

> 2, !1 is for

p = 1. Then

1)

kDn (f, x)� f (x)k�  !1

✓
f,

1

n
+

1

n�

◆
+ 2�N (�, n)

���kfk�
���
1

= �4 (n) , (3.38)

2) ���kDn (f)� fk�
���
1

 �4 (n) . (3.39)

Given that f 2
�
CU

�
RN

, X
�
\ CB

�
RN

, X
��

, we obtain lim
n!1

Dn (f) = f , uniformly.

Proof. As similar to [12] is omitted.

We make

Definition 3.13. Let f 2 CB

�
RN

, X
�
, N 2 N, where

⇣
X, k·k�

⌘
is a Banach space. We define

the general neural network operator

Fn (f, x) :=
1X

k=�1
lnk (f)Z (nx� k) =

8
>><

>>:

Bn (f, x) , if lnk (f) = f
�
k
n

�
,

Cn (f, x) , if lnk (f) = n
N
R k+1

n
k
n

f (t) dt,

Dn (f, x) , if lnk (f) = �nk (f) .

(3.40)

Clearly lnk (f) is an X-valued bounded linear functional such that klnk (f)k� 
���kfk�

���
1

.

Hence Fn (f) is a bounded linear operator with
���kFn (f)k�

���
1


���kfk�

���
1

.

We need

Theorem 3.14. Let f 2 CB

�
RN

, X
�
, N � 1. Then Fn (f) 2 CB

�
RN

, X
�
.

Proof. Very lengthy and as similar to [12] is omitted.

Remark 3.15. By (2.28) it is obvious that
���kAn (f)k�

���
1


���kfk�

���
1

< 1, and An (f) 2

C

✓
NQ
i=1

[ai, bi] , X

◆
, given that f 2 C

✓
NQ
i=1

[ai, bi] , X

◆
.

Call Ln any of the operators An, Bn, Cn, Dn.

Clearly then

���
��L2

n (f)
��
�

���
1

=
���kLn (Ln (f))k�

���
1


���kLn (f)k�

���
1


���kfk�

���
1

, (3.41)

etc.
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Therefore we get ���
��Lk

n (f)
��
�

���
1


���kfk�

���
1

, 8 k 2 N, (3.42)

the contraction property.

Also we see that

���
��Lk

n (f)
��
�

���
1


���
��Lk�1

n (f)
��
�

���
1

 · · · 
���kLn (f)k�

���
1


���kfk�

���
1

. (3.43)

Here L
k
n are bounded linear operators.

Notation 3.16. Here N 2 N, 0 < � < 1. Denote by

cN :=

8
><

>:

✓
NQ
i=1

 i (1)

◆�1

, if Ln = An,

1, if Ln = Bn, Cn, Dn,

(3.44)

' (n) :=

8
<

:

1
n� , if Ln = An, Bn,

1
n + 1

n� , if Ln = Cn, Dn,
(3.45)

⌦ :=

8
><

>:

C

✓
NQ
i=1

[ai, bi] , X

◆
, if Ln = An,

CB

�
RN

, X
�
, if Ln = Bn, Cn, Dn,

(3.46)

and

Y :=

8
><

>:

NQ
i=1

[ai, bi] , if Ln = An,

RN , if Ln = Bn, Cn, Dn.

(3.47)

We give the condensed

Theorem 3.17. Let f 2 ⌦, 0 < � < 1, x 2 Y ; n, N 2 N with n
1��

> 2. Then

(i)

kLn (f, x)� f (x)k�  cN

h
!1 (f,' (n)) + 2�N (�, n)

���kfk�
���
1

i
=: ⌧ (n) , (3.48)

where !1 is for p = 1,

(ii) ���kLn (f)� fk�
���
1

 ⌧ (n) ! 0, as n ! 1. (3.49)

For f uniformly continuous and in ⌦ we obtain

lim
n!1

Ln (f) = f,

pointwise and uniformly.
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Proof. By Theorems 3.1, 3.10, 3.11, 3.12.

Next we do iterated neural network approximation (see also [9]).

We make

Remark 3.18. Let r 2 N and Ln as above. We observe that

L
r
nf � f =

�
L
r
nf � L

r�1
n f

�
+
�
L
r�1
n f � L

r�2
n f

�
+

�
L
r�2
n f � L

r�3
n f

�
+ · · ·+

�
L
2
nf � Lnf

�
+ (Lnf � f) .

Then ���kLr
nf � fk�

���
1


���
��Lr

nf � L
r�1
n f

��
�

���
1

+
���
��Lr�1

n f � L
r�2
n f

��
�

���
1

+

���
��Lr�2

n f � L
r�3
n f

��
�

���
1

+ · · ·+
���
��L2

nf � Lnf
��
�

���
1

+
���kLnf � fk�

���
1

=

���
��Lr�1

n (Lnf � f)
��
�

���
1

+
���
��Lr�2

n (Lnf � f)
��
�

���
1

+
���
��Lr�3

n (Lnf � f)
��
�

���
1

+ . . .+
���kLn (Lnf � f)k�

���
1

+
���kLnf � fk�

���
1

 r

���kLnf � fk�
���
1

. (3.50)

That is ���kLr
nf � fk�

���
1

 r

���kLnf � fk�
���
1

. (3.51)

We give

Theorem 3.19. All here as in Theorem 3.17 and r 2 N, ⌧ (n) as in (3.48). Then

���kLr
nf � fk�

���
1

 r⌧ (n) . (3.52)

So that the speed of convergence to the unit operator of Lr
n is not worse than of Ln.

Proof. By (3.51) and (3.49).

We make

Remark 3.20. Let m1, . . . ,mr 2 N : m1  m2  · · ·  mr, 0 < � < 1, f 2 ⌦. Then

' (m1) � ' (m2) � · · · � ' (mr), ' as in (3.45).

Therefore

!1 (f,' (m1)) � !1 (f,' (m2)) � · · · � !1 (f,' (mr)) . (3.53)

Assume further that m1��
i > 2, i = 1, . . . , r. Then

�N (�,m1) � �N (�,m2) � · · · � �N (�,mr) . (3.54)
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Let Lmi as above, i = 1, . . . , r, all of the same kind.

We write

Lmr

�
Lmr�1 (. . . Lm2 (Lm1f))

�
� f =

Lmr

�
Lmr�1 (. . . Lm2 (Lm1f))

�
� Lmr

�
Lmr�1 (. . . Lm2f)

�
+

Lmr

�
Lmr�1 (. . . Lm2f)

�
� Lmr

�
Lmr�1 (. . . Lm3f)

�
+

Lmr

�
Lmr�1 (. . . Lm3f)

�
� Lmr

�
Lmr�1 (. . . Lm4f)

�
+ · · ·+ (3.55)

Lmr

�
Lmr�1f

�
� Lmrf + Lmrf � f =

Lmr

�
Lmr�1 (. . . Lm2)

�
(Lm1f � f) + Lmr

�
Lmr�1 (. . . Lm3)

�
(Lm2f � f)+

Lmr

�
Lmr�1 (. . . Lm4)

�
(Lm3f � f) + · · ·+ Lmr

�
Lmr�1f � f

�
+ Lmrf � f.

Hence by the triangle inequality property of
���k·k�

���
1

we get

���
��Lmr

�
Lmr�1 (. . . Lm2 (Lm1f))

�
� f

��
�

���
1


���
��Lmr

�
Lmr�1 (. . . Lm2)

�
(Lm1f � f)

��
�

���
1

+
���
��Lmr

�
Lmr�1 (. . . Lm3)

�
(Lm2f � f)

��
�

���
1

+
���
��Lmr

�
Lmr�1 (. . . Lm4)

�
(Lm3f � f)

��
�

���
1

+ · · ·+
���
��Lmr

�
Lmr�1f � f

���
�

���
1

+
���kLmrf � fk�

���
1

(repeatedly applying (3.41))


���kLm1f � fk�

���
1

+
���kLm2f � fk�

���
1

+
���kLm3f � fk�

���
1

+ · · ·+
���
��Lmr�1f � f

��
�

���
1

+
���kLmrf � fk�

���
1

=
rX

i=1

���kLmif � fk�
���
1

. (3.56)

That is, we proved

���
��Lmr

�
Lmr�1 (. . . Lm2 (Lm1f))

�
� f

��
�

���
1


rX

i=1

���kLmif � fk�
���
1

. (3.57)

We give

Theorem 3.21. Let f 2 ⌦; N, m1,m2, . . . ,mr 2 N : m1  m2  · · ·  mr, 0 < � < 1;

m
1��
i > 2, i = 1, . . . , r, x 2 Y, and let (Lm1 , . . . , Lmr ) as (Am1 , . . . , Amr ) or (Bm1 , . . . , Bmr ) or

(Cm1 , . . . , Cmr ) or (Dm1 , . . . , Dmr ), p = 1. Then

��Lmr

�
Lmr�1 (. . . Lm2 (Lm1f))

�
(x)� f (x)

��
�

���
��Lmr

�
Lmr�1 (. . . Lm2 (Lm1f))

�
� f

��
�

���
1



436 G. A. Anastassiou CUBO
25, 3 (2023)


rX

i=1

���kLmif � fk�
���
1

 cN

rX

i=1

h
!1 (f,' (mi)) + 2�N (�,mi)

���kfk�
���
1

i

 rcN

h
!1 (f,' (m1)) + 2�N (�,m1)

���kfk�
���
1

i
. (3.58)

Clearly, we notice that the speed of convergence to the unit operator of the multiply iterated operator

is not worse than the speed of Lm1 .

Proof. Using (3.57), (3.53), (3.54) and (3.48), (3.49).

We continue with

Theorem 3.22. Let all as in Corollary 3.9, and r 2 N. Here '3 (n) is as in (3.33). Then

���kAr
nf � fk�

���
1

 r

���kAnf � fk�
���
1

 r'3 (n) . (3.59)

Proof. By (3.51) and (3.33).

Next we present some Lp1 , p1 � 1, approximation related results.

Theorem 3.23. Let p1 � 1, f 2 C

✓
NQ
i=1

[ai, bi] , X

◆
, 0 < � < 1; N,n 2 N with n

1��
> 2, and

�1 (n) as in (3.1), !1 is for p = 1. Then

���kAn (f)� fk�
���
p1,

NQ
i=1

[ai,bi]
 �1 (n)

 
NY

i=1

(bi � ai)

! 1
p1

. (3.60)

We notice that lim
n!1

���kAn (f)� fk�
���
p1,

NQ
i=1

[ai,bi]
= 0.

Proof. Obvious, by integrating (3.1), etc.

It follows

Theorem 3.24. Let p1 � 1, f 2 CB

�
RN

, X
�
, 0 < � < 1; N,n 2 N with n

1��
> 2, and !1 is for

p = 1; �2 (n) as in (3.34) and K a compact subset of RN . Then

���kBn (f)� fk�
���
p1,K

 �2 (n) |K|
1
p1 , (3.61)

where |K| < 1, is the Lebesgue measure of K.

We notice that lim
n!1

���kBn (f)� fk�
���
p1,K

= 0, for f 2
�
CU

�
RN

, X
�
\ CB

�
RN

, X
��

.

Proof. By integrating (3.34), etc.
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Next come

Theorem 3.25. All as in Theorem 3.24, but now we use �3 (n) of (3.36). Then

���kCn (f)� fk�
���
p1,K

 �3 (n) |K|
1
p1 . (3.62)

We have that lim
n!1

���kCn (f)� fk�
���
p1,K

= 0, for f 2
�
CU

�
RN

, X
�
\ CB

�
RN

, X
��

.

Proof. By (3.36).

Theorem 3.26. All as in Theorem 3.24, but now we use �4 (n) of (3.38). Then

���kDn (f)� fk�
���
p1,K

 �4 (n) |K|
1
p1 . (3.63)

We have that lim
n!1

���kDn (f)� fk�
���
p1,K

= 0, for f 2
�
CU

�
RN

, X
�
\ CB

�
RN

, X
��

.

Proof. By (3.38).

Application 3.27. A typical application of all of our results is when
⇣
X, k·k�

⌘
= (C, |·|), where

C are the complex numbers.
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1 An integral operator

The solution to Problem 12340 in [1, p. 686] tells us that for g : [0, 1] ! R continuous,

lim
n!1

n

2n

Z 1

0

g(x)

xn + (1� x)n
dx =

⇡

4
g

✓
1

2

◆
. (1.1)

We shall prove the following additional properties:

Proposition 1.1. Let f 2 L1
loc(R) and for t > 0 and x 2 [0, 1], let

kt(x) :=
1

⇡

1

2t
4t

xt + (1� x)t
.

Then

(i) lim
t!1

kt(x) =

8
><

>:

0 if x 6= 1/2

1 if x = 1/2.

(ii) lim
t!1

Z 1

0
kt(x) dx = 1.

(iii) lim
t!1

Z 1

0
kt(x)f

✓
s� 1

2
+ x

◆
dx = f(s) for each continuity point s of f .

(iv) lim
t!1

Z 1

�1
Kt

✓
y � s+

1

2

◆
f(y) dy = f(s) for each continuity point s of f , where Kt coincides

with kt extended outside [0, 1] by 0.

Thus we may call k(t, x) := kt(x) a shifted asymptotic reproducing kernel for L1[0, 1] or C[0, 1] for

example (see also at the end of this note).

Proof. (i) is evident

(ii) We show, more generally, that for any continuous function g on [0, 1] we have

lim
t!1

Z 1

0
kt(x)g(x) dx = g(1/2). (1.2)

Note that (1.1) is just the discrete version of (1.2) by taking t = n 1. So, to prove (1.2), we

split the integral into two parts and use two different changes of variables. Let t � 1. Then

1
This was submitted by myself and Rudolf Rupp as solution to the Monthly problem above.
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It :=
t

2t

Z 1/2

0

g(x)

xt + (1� x)t
dx

| {z }
x=: 12�

s
2t

+
t

2t

Z 1

1/2

g(x)

xt + (1� x)t
dx

| {z }
x=: 12+

s
2t

=
t

2t

Z t

0

g( 12 � s
2t )

( 12 � s
2t )

t
+ ( 12 + s

2t )
t

1

2t
ds+

t

2t

Z t

0

g( 12 + s
2t )

( 12 + s
2t )

t + ( 12 � s
2t )

t

1

2t
ds

=
1

2

Z t

0

g( 12 � s
2t ) + g( 12 + s

2t )

(1� s
t )

t + (1 + s
t )

t
ds.

Note that t 7! (1 + s
t )

t is increasing; so the integrand is dominated for s � 1 by

||g||1
(1 + s

2 )
2
 ||g||14s�2.

Hence, as t ! 1,

lim
t!1

It =
1

2
2g(1/2)

Z 1

0

1

e�s + es
ds

= g(1/2)

Z 1

0

es

1 + (es)2
ds

= g(1/2)
⇥
arctan es

⇤1
0

= g(1/2)
⇣⇡
2
� ⇡

4

⌘

=
⇡

4
g(1/2).

If we take g ⌘ 1, we finally obtain (ii):

Z 1

0
kt(x)dx =

4

⇡
It ! 1.

(iii) Let f 2 L1[0, 1] and suppose that 1/2 is a continuity point of f . Given ✏ > 0, choose � > 0 so

that |f(x)� f(1/2)| < ✏ for |x� 1/2| < �. For 0  x  1 and t � 1, let h(x) := xt + (1� x)t.

Then h is a convex function with minimum at x = 1/2. Hence, whenever 0 < � < 1/2, the

condition |x� 1/2| � � with 0  x  1 implies that

xt + (1� x)t � (1/2 + �)t + (1/2� �)t.

Thus, as � 6= 0,

t

2t
1

xt + (1� x)t
 t

(1 + 2�)t + (1� 2�)t
=: mt ! 0 as t ! 1.



444 R. Mortini CUBO
25, 3 (2023)

Consequently
����
Z 1

0
kt(x)f(x) dx�

Z 1

0
kt(x)f(1/2) dx

����



�����

 Z

|x�1/2|��
0x1

+

Z

|x�1/2|�

!
kt(x)|f(x)� f(1/2)| dx

�����

 4mt

⇡

Z

|x�1/2|��
0x1

�
|f(x)|+ |f(1/2)|

�
dx+ ✏

Z

|x�1/2|�
kt(x)dx

 4mt

⇡

�
||f ||1 + |f(1/2)|

�
+ ✏

Z 1

0
kt(x)dx

 2✏ for t � t0.

As lim
t!1

Z 1

0
kt(x)f

✓
1

2

◆
dx = f

✓
1

2

◆
by (ii), we deduce that

lim
t!1

Z 1

0
kt(x)f(x) dx = f

✓
1

2

◆
.

If f 2 L1
loc(R) satisfies the assumptions above, we put F (x) := f(s� 1

2+x). Then F 2 L1[0, 1]

and 1/2 is a continuity point of F . Hence

lim
t!1

Z 1

0
kt(x)F (x) dx = F (1/2) = f(s).

(iv) is obtained from (iii) by a linear change of the variable.

We may ask what happens if s is a jump point. Do we have a similar behaviour as in the Dirichlet-

Jordan Theorem for Fourier series?

It is interesting to discuss the relations that exist between our shifted asymptotic reproducing

kernel kt(x) = k(t, x) and the so-called “summability kernels" in [2, p. 9], respectively “good

kernels" in [3, p. 48], the most prominent examples being the Fejér kernel and the Poisson kernel

for L1(T) concerning 2⇡-periodic functions. In fact, using suitable transformations, in particular

the new variable y = 2⇡(x� 1
2 ), equivalently x = 1

2 +
y
2⇡ , we get the following relations (we restrict

w.l.o.g. to the discrete case): let In :=
R 1
0 kn(x)dx and

K⇤
n(y) := I�1

n · kn
✓
1

2
+

y

2⇡

◆
, �⇡  y < ⇡,

and extend this function 2⇡-periodically. Then K⇤
n is continuous on R as

K⇤
n(�⇡) = lim

y!�⇡
K⇤

n(y) = kn(0) = kn(1) = lim
y!⇡

K⇤
n(y) = K⇤

n(⇡).
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Observe that for |y| < ⇡,

K⇤
n(y) = I�1

n · 4n⇡n�1

(⇡ + y)n + (⇡ � y)n
.

Moreover, K⇤
n � 0,

1

2⇡

Z ⇡

�⇡
K⇤

n(y)dy = 1,

and, by the proof of (iii) and (ii),

Z

�|y|⇡
K⇤

n(y)dy ! 0 as n ! 1

for every � > 0, � small. Hence, according to [3, p. 48], (K⇤
n) is a family of good kernels.

Consequently, by [3, Theorem 4.1, p. 49],

(f ⇤K⇤
n)(x) =

1

2⇡

Z ⇡

�⇡
f(x� y)K⇤

n(y)dy ! f(x)

for every continuity point x of f 2 Lloc(R), f 2⇡-periodic.

Readers having a good command of the Chinese language (unfortunately I don’t), may also consult

the classroom survey [4] for studies on summability/good kernels.
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ABSTRACT

A rationally elliptic space X is called an F0-space if its ra-

tional cohomology is concentrated in even degrees. The aim

of this paper is to characterize such a space in terms of the

homotopy groups of its skeletons as well as the rational co-

homology of its Postnikov sections.

RESUMEN

Un espacio racionalmente elíptico X se llama un espacio F0

si su cohomología racional está concentrada en grados pares.

El propósito de este artículo es caracterizar dichos espacios

en términos de los grupos de homotopía tanto de sus es-

queletos como de la cohomología racional de sus secciones

de Postnikov.
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1 Introduction

Along this paper space means a simply connected CW-complex X of finite type, i.e., dim H
n
(X;Q)

<1 for all n. A space X is called rationally elliptic if both the graded vector spaces H⇤
(X;Q) and

⇡⇤(X)⌦Q are finite dimensional. Furthermore, if Hodd
(X;Q) = 0, then X is called an F0-space.

For instance, products of even spheres, complex Grassmannian manifolds and homogeneous spaces

G/H such that rank G = rank H are F0-spaces.

Given a rationally elliptic space X. For any positive integer n, let X
[n] denote the n-Postnikov

section of X and X
n its n-skeleton. The aim of this paper is to characterize an F0-space in terms of

the homotopy groups of its skeletons and the rational cohomology of its Postnikov sections. More

precisely, let:

�n(X) = ker(⇡n(X
n
)⌦Q �! ⇡n(X

n
;X

n�1
)⌦Q), n � 2.

By exploiting the properties of the Whitehead exact sequences associated respectively with the

Sullivan model and the Quillen model of X, we prove the following result

Theorem 1.1. Let X be a rationally elliptic space. If ⇡even(X) ⌦ Q 6= 0, then the following

statements are equivalent.

(1) X is an F0-space.

(2) �2n(X) = 0 for all n � 1.

(3) H
2n+1

(X
[2n�1]

;Q) = 0 for all n � 1.

Note that if X is a (non-trivial) rationally elliptic space such that ⇡even (X) ⌦ Q = 0, then X

cannot be an F0-space as it is mentioned in Remark 3.3.

We show our results using standard tools of rational homotopy theory by working algebraically

on the models of Quillen and Sullivan of X. We refer to [8] for a general introduction to these

techniques. We recall some of the notation here. By a Sullivan algebra we mean a free graded

commutative algebra ⇤V , for some finite-type graded vector space V = (V
�2

), i.e., dim V
n
<1

for all n � 2, together with a differential @ of degree +1 that is decomposable, i.e., satisfies

@ : V ! ⇤
�2

V . Here ⇤
�2

V denotes the graded vector space spanned by all the monomials

v1 · · · vr such that v1, . . . , vr 2 V and r � 2.

Every space X has a corresponding Sullivan algebra called the Sullivan model of X, unique up

to isomorphism, that encodes the rational homotopy of X. In particular, we have the following

identifications valid for every n � 2,

H
n
(X;Q) ⇠= H

n
(⇤V ), V

n ⇠= Hom(⇡n(X)⌦Q,Q). (1.1)
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Dually, by a free differential graded Lie algebra (L(W ), �) (DGL for short), we mean a free graded

Lie algebra L(W ), for some finite-type vector space W = (W�1), together with a decomposable

differential � of degree �1, i.e., �(W ) ! L�2
(W ). Here L�2

(W ) denotes the graded vector space

spanned by all the brackets of lengths � 2.

Every space X has a corresponding DGL, called the Quillen model of X, unique up to isomorphism,

and which determines completely the rational homotopy type of X. In particular, we have the

following identifications valid for every n � 2,

⇡n(X)⌦Q ⇠= Hn�1(L(W )), Hn(X;Q) ⇠= Wn�1. (1.2)

2 Whitehead exact sequences in rational homotopy theory

2.1 Whitehead exact sequence of a DGL

Let (L(W ), �) be a DGL. For any positive integer n, we define the linear maps

jn : Hn(L(Wn))!Wn, bn : Wn ! Hn�1(L(Wn�1)),

by setting

jn([w + y]) = w, bn(w) = [�(w)], (2.1)

were [�(w)] denotes the homology class of �(w) in the sub-Lie algebra Ln�1(Wn�1). Recall that

if x 2 Hn(L(Wn)), then x = [w + y], where w 2Wn, y 2 Ln(Wn�1) and �(w + y) = 0.

To every DGL (L(W ), �), we can assign (see [2, 6, 7] for more details) the following long exact

sequence

· · ·!Wn+1
bn+1�! �n ! Hn(L(W ))

hn�!Wn
bn�! · · · (2.2)

called the Whitehead exact sequence of (L(W ), �), where

�n = ker(jn : Hn(L(Wn))!Wn), 8n. (2.3)

Remark 2.1. If (L(W ), �) is the Quillen model of a space X, then by the properties of this model,

the DGL (L(Wn), �) can be chosen as the Quillen model of the (n+ 1)-skeleton X
n+1

. Thus, we

derive the following identification

�n+1(X) ⇠= �n, 8n � 1 (2.4)

where

�n+1(X) = ker(⇡n+1(X
n+1

)⌦Q �! ⇡n+1(X
n+1

;X
n
)⌦Q). (2.5)
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2.2 Whitehead exact sequence of a Sullivan algebra

Likewise, let (⇤V, @) be a Sullivan algebra. In [1, 4, 5], it is shown that with (⇤V, @), we can

associate the following long exact sequence

· · ·! V
n bn�! H

n+1
(⇤V

n�1
) �! H

n+1
(⇤V ) �! V

n+1 bn+1

�! · · · (2.6)

called the Whitehead exact sequence of (⇤V, @). Recall that the linear map b
n is defined by setting

b
n
(v) = [@(v)]. Here [@(v)] denotes the cohomology class of @(v) 2 ⇤V

n�1.

Remark 2.2. If (⇤V, @) is the Sullivan minimal of a given space X, then by virtue of the properties

of this model, (⇤V
n�1

, @) can be chosen as the Sullivan model of the (n � 1)-Postnikov section

X
[n�1]

. Thus, we derive the following identification

H
n+1

(X
[n�1]

;Q) ⇠= H
n+1

(⇤V
n�1

), 8n � 2. (2.7)

Proposition 2.3. If (⇤V, @) is the Sullivan model of a space X and (L(W ), �) its Quillen model,

then we have

�n = H
n+2

(⇤V
n

), 8n � 2. (2.8)

where �n is defined in (2.3).

Proof. Applying the exact functor Hom(·,Q) to the exact sequence (2.2) we obtain

· · · Hom(Wn+1,Q) Hom(�n,Q) Hom(Hn(L(W )),Q) Hom(Wn,Q)
bn · · · (2.9)

Taking into account that by virtues of the Quillen and Sullivan models we have

• Any vector space involved in this paper is of finite dimension which implies that it has the

same dimension as its dual.

• Hom(Wn,Q) ⇠= H
n+1

(⇤V ) ⇠= H
n+1

(X;Q) for all n � 1.

• Hom(Hn(L(W ));Q) ⇠= V
n+1 ⇠= ⇡n+1(X)⌦Q for all n � 1.

• The two maps H
n+1

(⇤V ) ! V
n+1 and Hom(Wn,Q) ! Hom(Hn(L(W )),Q) appearing in

(2.6) and (2.9) are the same linear map because they can be identified with the following

linear map

Hom(Hn+1(X;Q);Q) ⇠= H
n+1

(X;Q)! Hom(⇡n+1(X)⌦Q;Q),

which is the dual of the Hurewicz homomorphism ⇡n+1(X)⌦Q! Hn+1(X;Q). Here we use

the well-known universal coefficient theorem.
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Finally, by comparing the sequences (2.6), (2.9) we get (2.8).

Corollary 2.4. If X is a given space, then

�n+1(X) ⇠= H
n+2

(X
[n]
;Q), as vector spaces, 8n � 1. (2.10)

Proof. It suffices to apply the identifications (2.4), (2.7) and Proposition 2.3 to the Sullivan model

and the Quillen model of the space X.

3 The main result

As it is stated in the introduction, a space X is called rationally elliptic if both the graded vector

spaces H
⇤
(X;Q) and ⇡⇤(X)⌦Q are finite dimensional.

Proposition 3.1 ([8, Proposition 32.10]). If X is a rationally elliptic space and (⇤V, @) its Sul-

livan model, then dim H
even

(⇤V ) � dim H
odd

(⇤V ). Furthermore, the following statements are

equivalent

(1) X is an F0-space.

(2) dimV
even

= dimV
odd

and (⇤V, @) is pure, i.e., @(V
even

) = 0 and @(V
odd

) ✓ ⇤V
even

.

Using the identification (1.1) and (1.2), we can translate the above Proposition in terms of the

Model of the Quillen. Thus, we have the following result.

Proposition 3.2. If (L(W ), �) is the Quillen model of a rationally elliptic space X, then dim Wodd �
dim Weven. Moreover, the following statements are equivalent

(1) X is an F0-space.

(2) Weven = 0.

(3) Heven(L(W )) = Heven(L(W )).

Subsequently, we need the following obvious remark.

Remark 3.3. Let (L(W ), �) be the Quillen model of a rationally elliptic space X.

(1) If Wodd = 0, then X is rationally trivial. Indeed, Since X is a rationally elliptic space,

using Proposition 3.1, it follows that dim Wodd � dim Weven. Hence, if Wodd = 0, then

W = Wodd �Weven = 0 implying that X is rationally trivial.
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(2) If X is a (non-trivial) rationally elliptic space such that ⇡even(X) ⌦ Q = 0, then X cannot

be an F0-space. Indeed, if so, then we must have

dim ⇡even(X)⌦Q = dim ⇡odd(X)⌦Q.

Therefore, dim ⇡⇤(X) ⌦ Q = dim ⇡even(X) ⌦ Q + dim ⇡odd(X) ⌦ Q = 0. As a result, X is

rationally trivial.

Proposition 3.4. Let (L(W ), �) be the Quillen model of a rationally elliptic space such that

Hodd(L(W )) 6= 0. If �odd = 0, then Weven = 0.

Proof. Assume by contradiction that Weven 6= 0 and let w0 2Weven such that

|w0| = max{|w|, w 2Weven}. (3.1)

Let us consider the Whitehead exact sequence (2.2) of (L(W ), �). Since �odd = 0, it follows that

b|w0|(w0) = 0 and from the relation (2.1) there exists a decomposable element in q0 2 L(W ) such

that �(w0 + q0) = 0.

Next, as Hodd(L(W )) 6= 0, there exists a non-trivial homology class {w + y} 2 H2m+1(L(W )),

where w 2W2m+1 and y is a decomposable element in L2m+1(W ), for a certain m 2 N.

Therefore, the bracket [w0 + q0, w + y] is a decomposable cycle of degree |w0|+ 2m� 1 providing

a homology class in the vector space

�|w0|+2m+1 ⇢ H|w0|+2m+1(L(W|w0|+2m+1)).

It is worth noting that as |w0| is even, then |w0| + 2m + 1 is odd and by taking into account

the relation (3.1), the cycle [w0 + q0, w + y] cannot be a boundary in �|w0|+2m+1 implying that

�odd 6= 0. Contradiction.

Corollary 3.5. Let X be a rationally elliptic space such that ⇡even(X)⌦Q 6= 0 and let �⇤(X) as

in (2.5). If �even(X) = 0, then X is an F0-space.

Proof. Working algebraically, let (L(W ), �) be the Quillen model of X. Since �even(X) = 0, the

identifications (2.4) implies that �odd = 0. Next, by applying Proposition 3.4, it follows that

Weven = 0 and by the identifications (1.2), we deduce that H
even

(X;Q) = 0. Hence, X is an

F0-space.

Corollary 3.5 implies the following result which gives a characterization of an F0-space X in terms

of the homotopy groups of its skeletons.
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Corollary 3.6. Let X be a rationally elliptic space such that ⇡even(X)⌦Q 6= 0. If

⇡2n(X
2n
)⌦Q = 0, 8n � 1, (3.2)

then X is an F0-space.

Proof. First, according to (2.5), we know that �2n(X) ⇢ ⇡2n(X
2n
) ⌦ Q for all n � 1. Therefore,

the relation (3.2) implies that �even(X) = 0. Then, it suffices to apply Corollary 3.5.

The next result gives characterization of an F0-space X in terms of the rational cohomology of its

Postnikov sections.

Corollary 3.7. Let X be a rationally elliptic space such that ⇡even(X)⌦Q 6= 0. If

H
2n+1

(X
[2n�1]

;Q) = 0, 8n � 1,

then X is an F0-space.

Proof. First, by Corollary 2.4, if H
2n+1

(X
[2n�1]

;Q) = 0 for all n, then �even(X) = 0. Next, it

suffices to apply Corollary 3.6.

Proposition 3.8. If X is an F0-space, then �2n(X) = 0, 8n � 1.

Proof. Let (⇤V, @) be the Sullivan model of X. By (2.6), the Whitehead exact sequence of (⇤V, @)

can be written as

· · ·! V
2n b2n�! H

2n+1
(⇤V

2n�1
) �! H

2n+1
(⇤V ) �! V

2n+1 b2n+1

�! · · ·

As X is an F0-space, then by Proposition 3.1, the Sullivan model (⇤V, @) of X satisfies Hodd
(⇤V ) =

0 and @(V
even

) = 0, it follows that the maps b
even

= 0. Consequently, H2n+1
(⇤V

2n�1
) = 0 for

every n � 1. Hence, the result follows from the formula (2.10).

Proof of Theorem 1.1. It follows from Corollaries 3.5, 3.7 and Proposition 3.8 after taking Remark

3.3 into account.

Conflict of interest

The author has not disclosed any competing interests.



454 M. Benkhalifa CUBO
25, 3 (2023)

References

[1] M. Benkhalifa, “On the group of self-homotopy equivalences of an elliptic space,” Proc. Amer.

Math. Soc., vol. 148, no. 6, pp. 2695–2706, 2020, doi: 10.1090/proc/14900.

[2] M. Benkhalifa, “The effect of cell-attachment on the group of self-equivalences of an elliptic

space,” Michigan Math. J., vol. 71, no. 3, pp. 611–617, 2022, doi: 10.1307/mmj/20195840.

[3] M. Benkhalifa, “On the Euler-Poincaré characteristics of a simply connected rationally el-

liptic CW-complex,” J. Homotopy Relat. Struct., vol. 17, no. 2, pp. 163–174, 2022, doi:

10.1007/s40062-022-00301-2.

[4] M. Benkhalifa, “The group of self-homotopy equivalences of a rational space cannot be

a free abelian group,” J. Math. Soc. Japan, vol. 75, no. 1, pp. 113–117, 2023, doi:

10.2969/jmsj/87158715.

[5] M. Benkhalifa, “On the characterization of F0-spaces,” Commun. Korean Math. Soc., vol. 38,

no. 2, pp. 643–648, 2023, doi: 10.4134/CKMS.c220179.

[6] M. Benkhalifa, “On the group of self-homotopy equivalence of a formal F0-space,” Bollettino

dell’Unione Matematica Italiana, vol. 16, no. 3, pp. 641–647, 2023, doi: 10.1007/s40574-023-

00354-y.

[7] M. Benkhalifa, “On the group of self-homotopy equivalences of an almost formal space,” Quaest.

Math., vol. 46, no. 5, pp. 855–862, 2023, doi: 10.2989/16073606.2022.2044405.

[8] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, ser. Graduate Texts in

Mathematics. New York, USA: Springer-Verlag, 2001, vol. 205, doi: 10.1007/978-1-4613-

0105-9.

https://doi.org/10.1090/proc/14900
https://doi.org/10.1307/mmj/20195840
https://doi.org/10.1007/s40062-022-00301-2
https://doi.org/10.2969/jmsj/87158715
https://doi.org/10.4134/CKMS.c220179
https://doi.org/10.1007/s40574-023-00354-y
https://doi.org/10.1007/s40574-023-00354-y
https://doi.org/10.2989/16073606.2022.2044405
https://doi.org/10.1007/978-1-4613-0105-9
https://doi.org/10.1007/978-1-4613-0105-9


CUBO, A Mathematical Journal

Vol. 25, no. 03, pp. 455–465, December 2023

DOI: 10.56754/0719-0646.2503.455

Quotient rings satisfying some identities

Mohammadi El Hamdaoui
1

Abdelkarim Boua
1,B

1Department of Mathematics,

Polydisciplinary Faculty, LSI, Taza, Sidi

Mohammed Ben Abdellah University,Fes,

Morocco.

mathsup2011@gmail.com B

abdelkarimboua@yahoo.fr B

ABSTRACT

This paper investigates the commutativity of the quotient

ring R/P , where R is an associative ring with a prime ideal

P , and the possibility of forms of derivations satisfying cer-

tain algebraic identities on R. We provide some results for

strong commutativity-preserving derivations of prime rings.

RESUMEN

Este artículo investiga la conmutatividad del anillo cociente

R/P , donde R es un anillo asociativo con un ideal primo

P , y la posibilidad de formas de derivaciones que satisfacen

ciertas identidades algebraicas en R. Entregamos algunos

resultados para derivaciones de anillos primos que preservan

la conmutatividad fuerte.

Keywords and Phrases: Derivations, prime ideals, prime rings.

2020 AMS Mathematics Subject Classification: 13N15, 16N40, 16N60, 16U10, 16W25.

Published: 29 December, 2023

Accepted: 20 November, 2023

Received: 17 September, 2022

©2023 M. E. Hamdaoui et al. This open access article is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2503.455
https://orcid.org/0000-0002-6397-4713
mailto:mathsup2011@gmail.com
mailto:abdelkarimboua@yahoo.fr


456 M. E. Hamdaoui & A. Boua CUBO
25, 3 (2023)

1 Introduction

In all that follows, R always denotes an associative ring with center Z(R) and C is the extended

centroid of R (we refer the reader to [3] for more information about these objects). As usual, the

symbols [s, t] and s� t denote the commutator st� ts and the anticommutator st+ ts, respectively.

Recall that a ring R is prime if xRy = {0} implies x = 0 or y = 0, and R is semiprime if xRx = {0}
implies x = 0.

A map D : R ! R is called a multiplicative derivation if D(xy) = D(x)y + xD(y) for all x, y 2 R,

if D is also additive, we say that D is a derivation of R.

The study of commutativity preserving mappings has been an active research area in matrix

theory, operator theory, and ring theory (see [8, 19] for references). According to [5], let S be a

subset of R. A map ' : R ! R is said to be strongly commutativity preserving (SCP) on S
if ['(x),'(y)] = [x, y] for all x, y 2 S. In [4], Bell and Daif investigated commutativity in rings

admitting a derivation which is SCP on a nonzero right ideal. In particular, they proved that if a

semiprime ring R admits a derivation D satisfying [D(x),D(y)] = [x, y] for all x, y in a right ideal

I of R, then I ✓ Z(R) (see [9] for more information). In particular, R is commutative if I = R.

Later, Deng and Ashraf [10] proved that if there exists a derivation D of a semiprime ring R and

a map ' : I ! R defined on a non-zero ideal I of R such that ['(x),D(y)] = [x, y] for all x, y 2 I,

then R contains a non-zero central ideal. In particular, they showed that R is commutative if

I = R. Recently, this result was extended to Lie ideals and symmetric elements of prime rings by

Lin and Liu in [12] and [13]. There is also a growing literature on strong commutativity preserving

(SCP) maps and derivations (for references see [4, 8, 16], etc.) In [1], Ali et al. showed that

if R is a semiprime ring and f is an endomorphism that is a strong commutativity preserving

(simple, SCP) map on a non-zero ideal U of R, then f commutes on U . In [18], Samman proved

that an epimorphism of a semiprime ring is strongly commutativity preserving if and only if it

is centralizing. Derivations and SCP mappings have been extensively studied in the context of

operator algebras, prime rings, and semiprime rings. Many related generalizations of these results

can be found in the literature (see for example [8, 11,14,15,17]).

In this paper, we discuss the notion of a derivation that satisfies one of the following conditions:

(i) [D(x),D(y)] +H([x, y]) 2 P , for all x, y 2 R,

(ii) D(x) �D(y) +H(x � y) 2 P , for all x, y 2 R,

(iii) [D(x), F (y)] +H(x � y) 2 P , for all x, y 2 R,

(iv) D(x) �D(y) +H([x, y]) 2 P , for all x, y 2 R,

where P is a prime ideal of R, D is a derivation, and H is a multiplier of R.



CUBO
25, 3 (2023)

Quotient rings satisfying some identities 457

2 Results

In this section, we discuss some well-known results in the rings theory, which will be used in the

following sections.

(i) [x, yz] = y[x, z] + [x, y]z.

(ii) [xy, z] = [x, z]y + x[y, z].

(iii) xy � z = (x � z)y + x[y, z] = x(y � z)� [x, z]y.

(iv) x � yz = y(x � z) + [x, y]z = (x � y)z + y[z, x].

Lemma 2.1 ([2], Lemma 2.1). Let R be a ring, P be a prime ideal of R, and D a derivation of

R. If [D(x), x] 2 P for all x 2 R, then D(R) ✓ P or R/P is commutative.

Lemma 2.2 ([6]). Let R be a prime ring. If functions F : R ! R and G : R ! R are such that

F(x)yG(z) = G(x)yF(z) for all x, y, z 2 R, and F 6= 0, then there exists � in the extended centroid

of R such that G(x) = �F(x) for all x 2 R.

The following two Lemmas are also used to prove our theorems. The primary goal is to establish

a connection between the commutativity of rings R/P and the behavior of their derivations.

Lemma 2.3. Let R be a ring and P be a prime ideal of R. If R admits a derivation D such that

R satisfies one of the following assertions:

(i) [x,D(y)] 2 P for all x, y 2 R,

(ii) x �D(y) 2 P for all x, y 2 R,

then D(R) ✓ P or R/P is commutative.

Proof. (i) Suppose that

[x,D(y)] 2 P for all x, y 2 R. (2.1)

Replacing y by yt in (2.1), we obtain

D(y)[x, t] + [x,D(y)]t+ y[x,D(t)] + [x, y]D(t) 2 P for all x, y, t 2 R.

Using (2.1), we get

D(y)[x, t] + [x, y]D(t) + y[x,D(t)] 2 P for all x, y, t 2 R. (2.2)
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For x = t in (2.2), it follows that

[t, y]D(t) + y[t,D(t)] 2 P for all y, t 2 R. (2.3)

Taking ry instead of y in (2.3) and using (2.3), we conclude that

[t, r]yD(t) 2 P for all r, y, t 2 R.

Equivalently,

[t, r]RD(t) ✓ P for all r, t 2 R.

By primeness of P, we arrive at

[t, r] 2 P or D(t) 2 P for all r, t 2 R. (2.4)

If there exists t0 2 R such that D(t0) 2 P , then (2.3) implies that y[t0,D(t0)] 2 P for all

y 2 R which implies that [t0,D(t0)]y[t0,D(t0)] 2 P for all y 2 R. Since P is prime, then

[t0,D(t0)] 2 P. So, (2.4) becomes [t,D(t)] 2 P for all t 2 P, in this case Lemma 2.1 forces

that D(R) ✓ P or R/P is commutative.

(ii) Using the same techniques as those used in the proof of (i) with minor modifications, we can

easily arrive at our result.

Lemma 2.4. Let R be a ring and P be a prime ideal of R. If R admits a derivation D such that

R satisfies any of the following assertions:

(i) [x,D(x)] 2 P for all x 2 R,

(ii) x �D(x) 2 P for all x 2 R,

then D(R) ✓ P or R/P is commutative.

Proof. (i) Assuming that

[x,D(x)] 2 P for all x 2 R. (2.5)

Linearizing Eq. (2.5), we obtain

[x,D(y)] + [y,D(x)] 2 P for all x, y 2 R. (2.6)

Replacing y by yx in (2.6), and using it with (2.5) we obtain

y[x,D(x)] + [x, y]D(x) 2 P for all x, y 2 R. (2.7)
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Putting yz instead of y in (2.7), where z 2 R and using it again, we get

[x, y]zD(x) 2 P for all x, y, z 2 R.

Since P is prime ideal of R, we arrive at

[x, y] 2 P or D(x) 2 P for all x, y 2 R. (2.8)

Suppose that D(R) * P. There exists x 2 R such that D(x) /2 P. By (2.8), we get [x, y] 2 P

for all y 2 R which implies that x̄ 2 Z(R/P ). Let z 2 R such that z̄ /2 Z(R/P ). Then,

there exists y0 2 R such that [z, y0] /2 P. Therefore, from (2.8), we find that D(z) 2 P. On

the other hand, since D(x) /2 P, we can derive D(x + z) /2 P. Using (2.8) again, the last

expression gives [x + z, y] 2 P for all y 2 R, which forces that [z, y] 2 P for all y 2 R, a

contradiction.

(ii) Suppose that

x �D(x) 2 P for all x 2 R. (2.9)

Linearizing (2.9), we get

x �D(y) + y �D(x) 2 P for all x, y 2 R. (2.10)

Substituting yx for y in (2.10), and using it again, we find that

y(x �D(x)) + [x, y]D(x) + y[x,D(x)] 2 P for all x, y 2 R. (2.11)

Replacing y by yz in (2.11), where z 2 R and using it again, we obtain

[x, y]zD(x) 2 P for all x, y, z 2 R. (2.12)

Continuing with the same techniques as used in (i), and we get the required result.

Corollary 2.5. Let R be a prime ring. If R admits a nonzero derivation D, then the following

assertions are equivalent:

(i) [x,D(x)] = 0 for all x 2 R.

(ii) R is commutative.

Corollary 2.6. Let R be a prime ring. If R admits a nonzero derivation D then the following

assertions are equivalent:

(i) x �D(x) = 0 for all x 2 R.
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(ii) R is commutative of characteristic equal 2.

Proof. By Lemma 2.4 we get that R is commutative. In this case, our identity becomes 2xD(x) = 0

for all x, y 2 R. Linearizing the last equation, we find 2xD(y) + 2yD(x) = 0 for all x, y 2 R.

Replacing y by yx, we obtain 2xD(yx) = 0 for all x, y 2 R. This implies that 2xD(y)x = 0 for all

x, y 2 R. Replacing yt with y and using the last expression, we get 2xRyRD(t)Rx = {0} for all

x, y 2 R. Since D 6= 0, we conclude that 2x = 0 for all x 2 R.

Theorem 2.7. Let R be a ring and P a prime ideal of R. Suppose that R admits a multiplier H

and a derivation D of R such that D(P ) ✓ P. If [D(x),D(y)]+H([x, y]) 2 P for all x, y 2 R, then

one of the following assertions holds:

(i) H(R) ✓ P.

(ii) There exists � 2 C such that D�� maps R into P with (�2+H)([x, y]) 2 P for all x, y 2 R.

(iii) R/P is a commutative ring.

Proof. Suppose that R/P is not a commutative ring and

[D(x),D(y)] +H([x, y]) 2 P for all x, y 2 R. (2.13)

Replacing x by xt in (2.13) and using it, we conclude that

D(x)[t,D(y)] + x[D(t),D(y)] + [x,D(y)]D(t) +H(x)[t, y] 2 P for all x, y, t 2 R. (2.14)

Substituting ux for x in (2.14), we find that

D(u)x[t,D(y)]+uD(x)[t,D(y)]+ux[D(t),D(y)]+u[x,D(y)]D(t)+[u,D(y)]xD(t)+uH(x)[t, y] 2 P.

(2.15)

Left-multiplying (2.14) by u and comparing it with (2.15), we get

(D(u)x� uD(x))[t,D(y)] + uD(x)[t,D(y)] + [u,D(y)]xD(t) 2 P for all x, y, u, t 2 R. (2.16)

Taking t = D(y) in (2.16), we obtain [u,D(y)]RD(D(y)) ✓ P for all u, y 2 R.

By primeness of P, it follows that for each y in R either [u,D(y)] 2 P for all u 2 R or D(D(y)) 2 P.

Let A = {y 2 R | [u,D(y)] 2 P for all u 2 R} and B = {y 2 R | D(D(y)) 2 P}. Clearly, A and

B are additive subgroups of R such that A [B = R. The fact that a group cannot be a union of

two of its proper subgroups, forces us to conclude that either R = A or R = B.
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Assume that R = A. Then by Lemma 2.3 (i) and our hypothesis, we get D(R) ✓ P. In the latter

case, from our assumption we get

[u,D(yw)] = D(y)[u,w] + [u,D(y)]w + [u, yD(w)] 2 P for all y, u, w 2 R.

Since [u,D(yw)] 2 P and [u,D(y)] 2 P for all w, u, y 2 P , it is easy to notice that D(y)[u,w] 2 P

for all y, u, w 2 R. From this, we can easily arrive at D(y)R[u,w] ✓ P for all u,w, y 2 R. Hence,

it follows that D(R) ✓ P . From our initial hypothesis (2.13), we get

H([x, y]) 2 P for all x, y 2 R. (2.17)

In (2.17), replacing x by xt and using it again, we find that [x, y]H(t) 2 P for all x, y, t 2 R.

Replacing y by yr, where r 2 R, we get [x, y]rH(t) 2 P for all x, y, r, t 2 R, which implies that by

the primeness of P that H(R) ✓ P .

Next, we consider the case R = B, it follows that D(D(y)) 2 P for all y 2 R. It implies that for

each x, y 2 R, we have D([D(x),D(y)]) 2 P. Applying d to equation (2.13) and using the condition

d(P ) ✓ P, we get

D(H([x, y])) 2 P for all x, y 2 R. (2.18)

Replacing x by xy in (2.18) and using it, we find that

H([x, y])D(y) 2 P for all x, y 2 R.

Replacing x by xt and using it, we find H([x, y])tD(y) 2 P for all x, y, t 2 R. Therefore, either

H([R,R]) ✓ P or D(R) ✓ P . If H([R,R]) ✓ P , then as in (2.17) we have H(R) ✓ P . Let us

suppose that D(R) ✓ P , from (2.16) we have (D(u)x � uD(x))[t,D(y)] 2 P for all x, y, t, u 2 R,

which means that (D(u)x � uD(x)) 2 P for all x, u 2 R or [t,D(y)] 2 P for all y, t 2 R (the

second case is already discussed above). So, we assume that D(u)x� uD(x) 2 P for all u, x 2 R.

Replacing u by uy, we get

D(u)yIR(x) = IR(u)yD(x) for all x, y, u 2 R,

where IR is the identity map of R.

Using Lemma 2.2, there exists � 2 C such that D(x) = �x for all x 2 R. It implies that D(x)��x 2
P for all x 2 R. Hence,

[{D � �}(x), {D + �}(y)] 2 P.

In view of our hypothesis, we get (�2 +H)([x, y]) 2 P for all x, y 2 R.
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In the same way, we can get the following result:

Theorem 2.8. Let R be a ring and P a prime ideal of R. If R admits a multiplier H and a

derivation D with D(P ) ✓ P, such that any one of the following assertions holds:

(a) D(x) �D(y) +H([x, y]) 2 P for all x, y 2 R,

(b) D(x) �D(y) +H(x � y) 2 P for all x, y 2 R,

(c) [D(x),D(y)] +H(x � y) 2 P for all x, y 2 R,

then one of the following holds:

(i) H(R) ✓ P.

(ii) There exists � 2 C such that D�� maps R into P with (�2+H)([x, y]) 2 P for all x, y 2 R.

(iii) R/P is a commutative ring.

Proof. (a) By our assumption

D(x) �D(y) +H([x, y]) 2 P for all x, y 2 R.

Replacing x by xt in the above expression and using it, we conclude that

D(x)[t,D(y)] + (x �D(y))D(t) + x[D(t),D(y)] +H(x)[t, y] 2 P. (2.19)

Substituting ux for x in (2.19), we find that

D(u)x[t,D(y)] + uD(x)[t,D(y)] + u(x �D(y))D(t)� [u,D(y)]xD(t)

+ux[D(t),D(y)] + uH(x)[t, y] 2 P for all x, y, t, u 2 R.

(2.20)

From the Left multiplying (2.19) by u and comparing with (2.20), we get

(D(u)x� uD(x))[t,D(y)] + uD(x)[t,D(y)]� [u,D(y)]xD(t) 2 P for all x, y, t, u 2 R. (2.21)

We process using the same approach as in Theorem 2.7, and finally, we arrive at our result. We

can reach the conclusions of (b) and (c) by using similar techniques as before, with the necessary

variations of (c).

It is easy to prove that the maps IR and �IR are multipliers of R. We get the following results

by replacing H with ⌥IR:
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Corollary 2.9. Let R be a ring and P be a proper prime ideal of R. If R admits a derivation D
with D(P ) ✓ P, such that R satisfies one of the following assertions:

(a) [D(x),D(y)]± [x, y] 2 P for all x, y 2 R,

(b) D(x) �D(y)± [x, y] 2 P for all x, y 2 R,

(c) D(x) �D(y)± (x � y) 2 P for all x, y 2 R,

(d) [D(x),D(y)]± (x � y) 2 P for all x, y 2 R,

then one of the following holds:

(i) there exists � 2 C such that D� � maps R into P with (�2 ⌥ I)([x, y]) 2 P for all x, y 2 R;

(ii) R/P is a commutative ring.

Replacing H by �IR in the Theorem 2.7 and P by {0}, we get the following corollary:

Corollary 2.10. If R is a prime ring admitting a strong commutativity preserving (SCP) deriva-

tion D, then one of the following assertions holds:

(1) There exists � 2 C such that D(x) = �x for all x 2 R with �
2 = 1;

(2) R is a commutative ring.

Replacing H by �IR in the Theorem 2.8 and P by {0}, we obtain the following corollary:

Corollary 2.11. Let R be a prime ring. If R admits a derivation D, such that any one of the

following assertions hold:

(a) D(x) �D(y) = [x, y] for all x, y 2 R,

(b) D(x) �D(y) = x � y for all x, y 2 R,

(c) [D(x),D(y)] = x � y for all x, y 2 R,

then one of the following holds:

(i) There exists � 2 C such that D(x) = �x for all x 2 R with �
2 = 1;

(ii) R is a commutative ring.
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ABSTRACT

In this work, we investigate the existence of a mild solution
and the approximate controllability of non-instantaneous im-
pulsive stochastic integrodifferential equations driven by the
Rosenblatt process in Hilbert space with the Hurst parame-
ter H 2 (1/2, 1). We achieve the result using the semigroup
theory of bounded linear operators, Grimmer’s resolvent op-
erator theory, and stochastic analysis. Using Krasnoselskii’s
and Schauder’s fixed point theorems, we demonstrate the ex-
istence of mild solutions and the approximate controllability
of the system. Finally, an example shows the potential for
significant results.

RESUMEN

En este trabajo investigamos la existencia de una solución
mild y la controlabilidad aproximada de ecuaciones integro-
diferenciales estocásticas no-instantáneas impulsivas dirigi-
das por el proceso de Rosenblatt en espacios de Hilbert con
el parámetro de Hurst H 2 (1/2, 1). Logramos este resultado
usando la teoría de semigrupos de operadores lineales acota-
dos, la teoría del operador resolvente de Grimmer y análisis
estocástico. Usando los teoremas de punto fijo de Krasnosel-
skii y Schauder, demostramos la existencia de soluciones mild
y la controlabilidad aproximada del sistema. Finalmente, un
ejemplo muestra el potencial para resultados significativos.
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grodifferential equations, resolvent operator, non-instantaneous impulses.
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1 Introduction

Stochastic differential equations have become an active field of study because of their various ap-

plications in fields such as electrical engineering, mechanics, medical biology, economic systems,

etc. For more information, see [2, 11, 18, 29]. The mathematical description of the phenomenon

under investigation must account for randomness since many real-world events, such as stock

prices, heat conduction in memory materials, and rising population, are unpredictable or noisy.

It has been demonstrated that stochastic differential systems are especially powerful methods for

describing and understanding this kind of event. Stochastic differential systems theory has been

applied to model various phenomena in this life. Numerous authors have also investigated the ex-

istence, uniqueness, stability, controllability, approximate controllability, and other qualitative and

quantitative properties of SDEs and stochastic integrodifferential equations (SIEs) using stochastic

analysis, the fixed point approach, and the concept of resolvent operators in the case of SIEs. See

for example, [6,9,15,17]. In the last decades the theory of impulsive partial equations or inclusions

seems to be a natural description of many real processes that are exposed to some disturbances,

the duration of which is insignificant in comparison to the duration of the process. In addition

to impulsive effects, stochastic effects also exist in real systems. Thus, impulsive stochastic dif-

ferential equations describing these dynamical systems subject to both impulsive and stochastic

changes have attracted significant attention. In particular, the papers [3, 26, 40] have studied the

existence of smooth solutions for certain impulsive neutral stochastic functional integrodifferential

equations with infinite delay in Hilbert spaces.

Let us consider (⇣n)n2Z a stationary Gaussian sequence with correlation function holds R(n) =

E(⇣0⇣n) = n
2H�2

k L(n), with H 2
�
1
2 , 1

�
and L ! 1. Let G denote the Hermite function of rank

H. Also, if G admits the following,

G(⇢) =
X

j�0

cjHj(⇢), cj =
1

j!
E(G(⇣0H(⇣0))),

then H = min{j|cj 6= 0} � 1. Hj(⇢) = (�1)je
⇢2

2
@j

@⇢j
e
� ⇢2

2 , where Hj(⇢) is the Hermite polynomial

of degree j. Then by the Non-central Limit Theorem, 1
nH

Pj=1
[nt] G(⇣j) converges as n ! 1 in the

sense of finite-dimensional distributions to the process

R
H

K
(⇢) = c(H,K)

Z

R

Z 1

0

0

@
KY

j=1

(⇠ � #)
�( 1

2+
1�H

K
)

+

1

A dW (#1) · · · dW (#K), (1.1)

The (1.1) is a Wiener integral of order K with respect to the standard Brownian motion (W (#))#2R

and c(H,K) is normalizing constant depends on H and K. The process (RH

K
(⇢))⇢�0 is known as the

Hermite process.
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• If K = 1, the process (1.1) is the fractional Brownian motion with Hurst index H 2
�
1
2 , 1

�
.

• If K = 2, the process given by (1.1) is called the Rosenblatt process, and it is not a Gaussian

process, see [36,37].

Fractional Brownian motion is a Gaussian stochastic process, which depends on a parameter H 2
(0, 1) called the Hurst index established by Kolmogorov [24]. For further reference on fractional

Brownian motion, we refer the reader to [28]. There is another process like Rosenblatt’s process

with a non-Gaussian character, which contributes to the other properties for H > 1/2, the long

memory property. Self-similar processes with long-range dependence are seen in a variety of fields,

including econometrics, internet traffic, hydrology, turbulence, and finance. The Rosenblatt process

is a self-similar process with stationary increments that occurs as the limit of long-range-dependent

stationary series. Still, it is not a Gaussian process, however, in real situations when the Gaussianity

is not plausible for the model, one can use the Rosenblatt process. Comparatively, Rosenblatt

process gains its interest due to its convolution of the dependence structures and the property of

non-Gaussianity. Therefore, it seems stimulating to establish the SDEs with Rosenblatt process.

Observations of stock price processes suggest that they are not self-similar. In particular, in [5,22],

the authors established the existence and uniqueness of mild solutions for stochastic differential

equations driven by the Rosenblatt process with finite delay. Recently, in [7, 8, 34, 35, 38], the

authors analyzed the stability and controllability of the stochastic functional differential equation

driven by the Rosenblatt process. Also, many real-life phenomena and processes are characterized

by abrupt changes in their state variable. These changes can be classified into two types: (i) In the

first type, the changes take place over a relatively short period compared to the overall duration of

the whole process, known as instantaneous impulses. (ii) In the second type, these changes start

impulsively at certain times and remain active for certain intervals, known as non-instantaneous

impulses. A well-known application of non-instantaneous impulses is the introduction of insulin

into the bloodstream, which is an abrupt change. The resulting absorption is gradual because it

remains active for a finite time interval. Models of this situation are created using differential and

integrodifferential equations of non-instantaneous pulses detailed in [21,23].

Approximate controllability refers to moving a system from an arbitrary initial state to a state

arbitrarily close to a final state using only certain admissible controls. Recently, many authors have

established results on the approximate controllability of first, second, and fractional-order differen-

tial equations with impulses; [1,14,32], and the references cited there. In references [12,16,39], the

authors studied the approximate controllability of fractional stochastic Hilfer integrodifferential

equations.

Motivated by this consideration, in this paper, we investigate the existence of mild solutions and

approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations
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driven by the Rosenblatt process having the following form:

8
>>>>>>>><

>>>>>>>>:

d#(⇢) = [A#(⇢) +

Z ⇢

0
�(⇢� s)#(s)ds+ Bu(⇢) + F(⇢,#(⇢))]d⇢+ G(⇢,#(⇢))dRH(⇢),

⇢ 2 [m
i=0(si, ⇢i+1),

#(⇢) = pi(⇢,#(⇢
�
i )), ⇢ 2 [m

i=1(⇢i, si],

#(0) = #0,

(1.2)

where 0 = ⇢0 = s0 < ⇢1 < · · · < sm < ⇢m+1 = b, J = [0, b], #(·) takes values in the separable

Hilbert space H with inner product h·, ·i and norm k·k. A : D(A) ⇢ H ! H and �(⇢) : D(�(⇢)) ⇢
H ! H are closed linear unbounded operators with D(�(⇢)) � D(A). {RH(⇢)}⇢�0 is Q-Rosenblatt

process with Hurst index H 2 ( 12 , 1) defined in a complete probability space (⌦, ,F , {F⇢}⇢�0;P)
with values in a Hilbert space K. The functions pi(⇢,#(⇢�i )) represent non-instantaneous impulses

in the intervals (⇢i, si], i = 1, 2, . . . ,m, and the functions F : [0, b] ⇥ H ! H, G : [0, b] ⇥ H !
L
2
0(K,H) are appropriate functions wich will be specified later. The control function u(·) is given

in L
2
F⇢

([0, b],U) of admissible control functions, where L
2
F⇢

([0, b],U) is the Hilbert space of all F⇢-

adopted, square integrable processes; U is a Hilbert space; B is a bounded linear operator from U

into H.

More specifically, our work focuses on developing a set of new, good criteria for the existence of

mild solutions and approximate controllability of non-instantaneous impulsive stochastic integro-

differential equations driven by the Rosenblatt process having the following abstract form (1.2).

The main contributions of our work, in particular, are summarized in the three aspects listed

below:

• A new class of non-instantaneous impulsive partial stochastic integrodifferential equations

driven by the Rosenblatt process in Hilbert spaces is formulated.

• Initially, we establish the existence and uniqueness of mild solutions of the system above using

stochastic analysis theory and the fixed point technique combined with resolvent operator

theory.

• In comparison to [6, 17,23], we enhance the approach and ease the conditions.

• Non-instantaneous impulsive partial stochastic integrodifferential equations driven by the

Rosenblatt process in Hilbert spaces have received little attention in the literature. In order

to bridge this gap, we have looked into the approximate controllability of (1.2).

This paper is organized as follows. In Section 2, we give some preliminaries, basic definitions, and

results, which will be used in the sequel. In Section 3, the existence and approximate controllability

outcomes of the considered system (1.2) are discussed. Section 4 illustrates the derived theoretical
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results through an example. Section 5 presents the conclusion and future direction of works in the

last part of this work.

2 Preliminaries

Throughout this paper, X, Y, H represent the real separable Hilbert spaces and (⌦,F , {F⇢}⇢�0;P)
be a complete probability space with natural filtration (F⇢)⇢�0, where F⇢, the Random variables

generate �-algebra
n
�
H(s),W (s), s 2 [0, ⇢]

o
and P-null sets. We denote by L

2
F⇢

([0, b],H) the

space of all square integrable and F⇢-adapted process from [0, b] to H and L(X,H), L(Y,H) are

respectively, the space of bounded linear operators from X to H and Y to H. For convenience, the

same notation k·k is used to denote the norms in X, H, Y, L(X,H) and L(Y,H) and the inner

product of X, H, Y is denoted by h·, ·i.

Let C([0, b], L2(⌦,H)) be the space of all continuous F⇢-adapted measurable processes from [0, b]

to L
2(⌦,H) that satisfy sup

⇢2[0,b]
Ek#(⇢)k2 < 1. Then, it is easy to see that C

⇣
[0, b], L2(⌦,H)

⌘
is a

Banach space equipped with the following norm :

k#kC =

 
sup

⇢2[0,b]
Ek#(⇢)k2

! 1
2

. (2.1)

Let

Vq =
n
# 2 C([0, b], L2(⌦,H)) : k#k2

C
 q

o
. (2.2)

2.1 Rosenblatt process

Consider a time interval [0, b] with arbitrary fixed horizon b and {RH(⇢), ⇢ 2 [0, b]} the one dimen-

sional Rosenblatt process with parameter H 2 ( 12 , 1), R
H has the following integral representation

[37]

RH(⇢) = q(H)

Z ⇢

0

Z ⇢

0

"Z ⇢

#1_#2

@K
H

0

@u
(u,#1)

@K
H

0

@u
(u,#2)du

#
dW1(#1)dW1(#2), (2.3)

where K
H(⇢, s) is given by

K
H(⇢, s) = cHs

1
2�H

Z ⇢

s
(u� s)H�3/2

u
H�1/2

du for ⇢ > s,

with

cH =

s
H(2H� 1)

�(2� 2H,H� 1
2 )

,
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�(·, ·) denotes the Beta function, K
H(⇢, s) = 0 when ⇢  s, {W1(⇢), ⇢ 2 [0, b]} is a Brownian

motion, H
0 = H+1

2 and q(H) = 1
H+1

q
H

2(2H�1) is a normalizing constant. The covariance of the

Rosenblatt process {RH(⇢), ⇢ 2 [0, b]} satisfies

E(RH(⇢)RH(s)) =
1

2

�
s
2H + ⇢

2H � |s� ⇢|2H
�

and this structure of {RH(⇢)}⇢2[0, b] allows us to represent it as a Wiener integral.

Let R
H

Q(⇢) be a K-valued Rosenblatt process with covariance Q as

R
H

Q(⇢) = RQ(⇢) =
1X

n=1

p
�n⇠n(⇢)en, ⇢ � 0.

Next, we introduce the space L
2
0(K,H) of all Q-Hilbert-Schmidt operators  : K ! H. Recall that

 2 L(K,H) is called a Q-Hilbert-Schmidt operator if

k k =
1X

n=1

k
p
�n enk2 < 1,

and that the space L
2
0 equipped with the inner product < �, >L2

0
=

1P
n=1

< �en, en >, is a

Hilbert space.

Let ⇢ : [0, b] ! L
2(Q1/2K,H) such that

1X

n=1

kK⇤
H
(⇢Q1/2

en)kL2([0,b];H) < 1. (2.4)

Definition 2.1 (Tudor [37]). Let (l) : [0, b] ! L
2(Q1/2K,H) satisfy (2.4). In that case, the

stochastic integral of  with respect to the Rosenblatt process R
H

Q(⇢) is defined for ⇢ � 0 as follows

Z ⇢

0
(l)dRH

Q(l) :=
1X

n=1

Z ⇢

0
(s)Q1/2

endRn(l) =
1X

n=1

Z ⇢

0

Z ⌧

0
(K⇤

H
(Q1/2

en))(#1,#2)dW1(#1)dW1(#2).

Lemma 2.2 ([34]). For any  : [0, b] ! L
2(Q1/2K,H) such that

P1
n=1 kQ1/2

enkL1/H([0,b];V) < 1
holds, and for any ↵,� 2 [0, b] with � > ↵, we have

E

�����

Z �

↵
(⇢)dRQ(⇢)

�����

2

 cH(� � ↵)2H�1
1X

n=1

Z �

↵
k(⇢)Q1/2

enk2d⇢.

If, in addition,
1X

n=1

k(⇢)Q1/2
enk is uniformly convergent for ⇢ 2 [0, b],
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then, it holds that

E

�����

Z �

↵
(⇢)dRQ(⇢)

�����

2

 cH(� � ↵)2H�1

Z �

↵
k(⇢)k2L2(Q1/2K,V)d⇢.

For further references, we refer to [19,37].

2.2 Integrodifferential equations in Banach spaces

We recall some knowledge of partial integrodifferential equations and the related resolvent opera-

tors. Let D be the Banach space D(A) equipped with the graph norm defined by

k#kD := kA#k+ k#k for # 2 D.

We denote by C(R+
,D), the space of all functions from R+ into D which are continuous. Let us

consider the following system for further purposes:

8
><

>:

#
0(⇢) = A#(⇢) +

Z ⇢

0
�(⇢� s)#(s)ds for ⇢ � 0

#(0) = #0 2 D.

(2.5)

Definition 2.3 ([20]). A resolvent operator for equation (2.5) is a bounded linear operator valued

function  (⇢) 2 L(H) for ⇢ � 0, having the following properties :

(i)  (0) = I (the identity map of H) and k (⇢)k  Ne
�⇢ for some constants N > 0 and � 2 R.

(ii) For each # 2 H,  (⇢)# is strongly continuous for ⇢ � 0.

(iii) For # 2 H, (·)# 2 C1(R+;H) \ C(R+;D) and

 0(⇢)# = A (⇢)#+

Z ⇢

0
�(⇢� s) (s)#ds =  (⇢)A#+

Z ⇢

0
 (⇢� s)�(s)#ds, for ⇢ 2 [0, b].

Next, we assume A and (�(⇢))⇢�0 satisfy the following conditions:

(R1) The operator A is the infinitesimal generator of a strongly continuous semigroup (T(⇢))⇢�0

on H.

(R2) For all ⇢ � 0, the operator �(⇢) is closed and linear from D(A) to Y and �(⇢) 2 L(B,H).

For any # 2 H, the map ⇢ 7! �(⇢)# is bounded, differentiable and the derivative ⇢ 7! �
0(⇢)#

is bounded and uniformly continuous for ⇢ � 0.

Theorem 2.4 ([20]). Assume that (R1)-(R2) hold. Then, there exists a unique resolvent operator

of the Cauchy problem (2.5).
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We have the following useful results.

Theorem 2.5 ([13]). Let the assumptions (R1) and (R2) be satisfied. Let the C0-semigroup

(T(⇢))⇢�0 generated by A be compact for ⇢ > 0. Then the corresponding resolvent operator

( (⇢))⇢�0 of equation (1.2) is also compact for ⇢ > 0.

Lemma 2.6 ([13]). Let the assumptions (R1) and (R2) be satisfied. Then, there exists a constant

L = L(b) such that

k (⇢+ ")� (") (⇢)kL(H)  L("), for 0 < "  ⇢  b.

Based on these, we have the following Theorem establishing the equivalence between operator-norm

continuity of the semigroup generated by A and the resolvent operator ( (⇢))⇢�0 corresponding

to the linear equation (2.5).

Theorem 2.7 ([25]). Let A be the infinitesimal generator of a C0-semigroup (T(⇢))⇢�0 and let

(�(⇢))⇢�0 satisfy (R2). Then the resolvent operator ( (⇢))⇢�0 for Eq. (2.5) is operator-norm

continuous (or continuous in the uniform operator topology) for ⇢ > 0 if and only if (T(⇢))⇢�0 is

operator-norm continuous for ⇢ > 0.

Now, we introduce the space Cb = PC([0, b], L2(⌦,H)) formed by all H�valued stochastic processes

{#(⇢), ⇢ 2 [0, b] such that #|Ii 2 C(Ii,H) for all w 2 ⌦, i = 0, 1, . . . ,m, and there exist

#(⇢�i ) and #(⇢+i ), i = 1, 2, . . . ,m with #(⇢�i ) = #(⇢i) and sup⇢2[0,b] Ek#(⇢)k2 < 1}

endowed with the norm

k#kPC =

 
sup

⇢2[0,b]
Ek#(⇢)k2

!1/2

, (2.6)

where Ii = (⇢i, ⇢i+1], i = 0, 1, . . . ,m.

Now, we define the mild solution of Eq. (1.2) expressed by the resolvent operator  (⇢) as follows.

Definition 2.8. A H-valued stochastic process # 2 C([0, b], L2(⌦,H)) is called a mild solution of

the stochastic problem (1.2), if

(1) #(⇢) is F⇢�adapted and measurable for each ⇢ � 0.

(2) #(⇢) has càdlàg paths on ⇢ 2 [0, b] a.s. and for each ⇢ 2 [0, b],#(⇢) satisfies #(⇢) =

pi(⇢,#(⇢
�
i )) for all ⇢ 2 (⇢i, si], i = 1, 2, . . . ,m and #(⇢) is the solution of the following

integral equations
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#(⇢) =  (⇢)#0 +

Z ⇢

0
 (⇢� s) F(s,#(s)) ds +

Z ⇢

0
 (⇢� s) Bu(s) ds

+

Z ⇢

0
 (⇢� s)G(s,#(s))dRH(s) ds, for ⇢ 2 [0, ⇢1], (2.7)

#(⇢) =  (⇢� si)pi(si,#(⇢
�
i )) +

Z ⇢

si

 (⇢� s) F(s,#(s)) ds +

Z ⇢

si

 (⇢� s) Bu(s) ds

+

Z ⇢

si

 (⇢� s)G(s,#(s))dRH(s) ds, for ⇢ 2 [si, ⇢i+1], i = 1, 2, . . . ,m.

Let us denote the state value of the system (1.2) at the time ⇢ by #⇢ = #(⇢;#0, u) with respect to

initial value #0 and the control function u. The set of all final states is known as reachable set of

the system (1.2) and defined as M(b,#0, u) =
n
#b = #(b;#0, u) : u 2 L

2([0, b],U)
o
.

Definition 2.9. Eq. (1.2) is said to be approximately controllable on the interval [0, b], if

M(b,#0, u) = L
2(⌦,H),

that is, for arbitrary " > 0, it is possible to steer the state from the point #0 to within a distance "

from all points in the state space L
2(⌦,H) at time b.

To discuss the approximate controllability of system (1.2) we introduce the following operators.

(1) The controllability Grammian ⇧
b

0 is defined by:

⇧
⇢i+1
si =

Z ⇢i+1

si

 (⇢i+1 � s)BB
⇤ ⇤(⇢i+1 � s)ds,

where B
⇤ and  ⇤(⇢) denote the adjoint of the operators B and  (⇢).

(2) W (�,⇧⇢i+1
si ) = (� Id +⇧

⇢i+1
si )�1

.

In the sequel we assume that the operator W (�,⇧⇢i+1
si ) satisfies

(H0) �W (�,⇧⇢i+1
si ) ! 0 as � ! 0+ in the strong operator topology.

The above condition (H0) is equivalent to the approximate controllability of the linear system.

8
><

>:

d#(⇢)

d⇢
= A#(⇢) +

Z ⇢

0
�(⇢� s)#(s)ds+ Bu(⇢), ⇢ 2 [0, b],

#(0) = #0.

(2.8)
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In fact, we have that

Theorem 2.10 ([4, 10]). The following statements are equivalent:

(i) The control system (2.8) is approximately controllable on [0, b].

(ii) B
⇤ ⇤(⇢)# = 0 for all ⇢ 2 [0, b] imply # = 0.

(iii) The condition (H0) holds.

Lemma 2.11 ([27]). For any #⇢i+1 2 L
2(⌦,F⇢i+1 ,H), there exist �i 2 L

2(⌦; L2([si, ⇢i+1];L0
2(Y,H))),

such that #⇢i+1 = E#⇢i+1 +

Z ⇢i+1

si

�i(s)dR
H(s).

Our results are based on the following Krasnoselskii’s and Schauder’s fixed point theorem.

Theorem 2.12 (Krasnoselskii’s theorem [32]). Let B be a closed, bounded and convex subset of a

Banach space H, and let �1,�2 be maps of B into H such that �1#1+�2#2 2 B, for all #1,#2 2 B.

If �1 is a contraction and �2 is continuous and compact, then the equation # = �1#+ �2# has a

solution on B.

Theorem 2.13 (Schauder’s theorem [33]). If B is a closed, bounded and convex subset of a Banach

space H and F : B ! B is completely continuous, then F has a fixed point in B.

3 Approximate controllability results

This section proves the approximate controllability of the stochastic control system (1.2). Let

M = sup⇢2[0,b]k (⇢)k. In order to establish the results, we impose the following hypotheses.

(C1) T(⇢) is compact for ⇢ > 0.

(C2) The maps pi : bi ⇥H ! H, bi = [⇢i, si], i = 1, 2, . . . ,m are continuous functions and satisfy

(a) There exist constants Dpi > 0, i = 1, 2, . . . ,m, such that

Ekpi(⇢,#)k2  Dpi(1 + Ek#k2), 8⇢ 2 bi and # 2 H.

(b) There exist constants Rpi > 0, i = 1, 2, . . . ,m, such that

Ekpi(⇢,#1)� pi(⇢,#2)k2  RpiEk#1 � #2k2, 8⇢ 2 bi and #1,#2 2 H.

(C3) The map F : b0 ⇥H ! H, b0 =
m[

i=0

[si, ⇢i+1] is a continuous function and satisfies
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(a) There exists a constant MF > 0 such that

EkF(⇢,#)k2  MF(1 + Ek#k2), 8⇢ 2 b0 and # 2 H.

(b) There exists a constant RF > 0 such that

EkF(⇢,#1)� F(⇢,#2)k2  RFEk#1 � #2k2, 8⇢ 2 b0 and #1,#2 2 H.

(C4) The map G : b0 ⇥H ! L
0
2, is a continuous function and satisfies

(a) There exists a constant MG > 0 such that

EkG(⇢,#)k2  MG(1 + Ek#k2), 8⇢ 2 b0 and # 2 H.

(b) There exists a constant RG > 0 such that

EkG(⇢,#1)� G(⇢,#2)k2  RGEk#1 � #2k2, 8⇢ 2 b0 and #1,#2 2 H.

(C5) The following inequalities hold

(a) max
0im

Ni < 1,

(b) max
1im

Dpi < 1,

(c) max
1im

{M2kBk2Ru0⇢
2
1, Rpi , 2

�
M

2
Rpi +M

2kBk2Rui⇢
2
i+1

�
} < 1.

(C6) The linear control system (2.8) is approximately controllable on [0, b].

For any � > 0, we define the operator S(�) : C([0, b], L2(⌦,H)) ! C([0, b], L2(⌦,H)) by

(S(�)
#)(⇢) =  (⇢)#0 +

Z ⇢

0
 (⇢� s) F(s,#(s)) ds +

Z ⇢

0
 (⇢� s) Bu(�)(s,#) ds

+

Z ⇢

0
 (⇢� s)G(s,#(s))dRH(s), 8⇢ 2 [0, ⇢1]

and

(S(�)
#)(⇢) =  (⇢� si)pi(si,#(⇢

�
i )) +

Z ⇢

si

 (⇢� s) F(s,#(s)) ds +

Z ⇢

si

 (⇢� s) Bu(�)(s,#) ds

+

Z ⇢

si

 (⇢� s)G(s,#(s))dRH(s), 8⇢ 2 [si, ⇢i+1], i = 1, 2, . . . ,m,
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where,

u
(�)(s,#) = B

⇤ ⇤(⇢i+1 � s)(�Id +⇧
⇢i+1
si )�1

⇢
E#⇢i+1 +

Z ⇢i+1

si

�i(s)dR
H(s)� (b� si)pi(si,#(⇢

�
i ))

�

� B
⇤ ⇤(⇢i+1 � s)

Z ⇢i+1

si

(�Id +⇧
⇢i+1
si )�1 (⇢i+1 � s) F(s,#(s)) ds

� B
⇤ ⇤(⇢i+1 � s)

Z ⇢i+1

si

(�Id +⇧
⇢i+1
s )�1 (⇢i+1 � s)G(s,#(s))dRH(s)

and J0(0, ·) = #0, #(⇢m+1) = #⇢m+1 = #b.

Lemma 3.1. There exist positive constants Rui and Rvi i = 0, 1, . . . ,m, such that for all #1,#2 2
Cb, we have

Eku(�)(⇢,#1)� u
(�)(⇢,#2)k2  Ruik#1 � #2kPC , (3.1)

Eku(�)(⇢,#)k2  Rvi , (3.2)

where

Rui = 3
kBk2M4

�2

�
Rpi + (⇢i+1 � si)

2
RF + 2RGcH(⇢i+1 � si)

2H
 
, (3.3)

Rvi =
4kBk2M4

�2

⇥
Ek#⇢i+1k2 +Dpi(1 +M) + (⇢i+1 � si)

2
DF(1 +M)

+ cH(⇢i+1 � si)
2H
DG(1 +M)

⇤
, k#k2PC  M. (3.4)

Proof. Let #1,#2 2 Cb

Eku(�)(s,#2)� u
(�)(s,#1)k2

 E
����B

⇤ ⇤(⇢i+1 � s)(�Id +⇧
⇢i+1
si )�1

�
 (b� si)

⇥
pi(si,#1(⇢

�
i ))� pi(si,#2(⇢

�
i ))

⇤ 

�B
⇤ ⇤(⇢i+1 � s)

Z ⇢i+1

si

(�Id +⇧
⇢i+1
si )�1 (⇢i+1 � s)

⇥
F(s,#1(s))� F(s,#2(s))

⇤
ds

�B
⇤ ⇤(⇢i+1 � s)

Z ⇢i+1

si

(�Id +⇧
⇢i+1
s )�1 (⇢i+1 � s)

⇥
G(s,#1(s))� G(s,#2(s))

⇤
dR

H(s)

����
2

 3kBk2M2

�2


M

2E
��pi(si,#1(⇢�i ))� pi(si,#2(⇢

�
i ))

��2

+M
2(⇢i+1 � si)

Z ⇢i+1

si

EkF(s,#1(s))� F(s,#2(s))k2 ds

+M
2
cH(⇢i+1 � si)

2H�1

Z ⇢i+1

si

EkG(s,#1(s))� G(s,#2(s))k2 ds

�

 3
kBk2 M4

�2
RpiEk#2 � #1k2 + 3(⇢i+1 � si)RF

kBk2 M4

�2

Z ⇢i+1

si

Ek#2(s)� #1(s)k2 ds

+ 6 RGcH(⇢i+1 � si)
2H�1 kBk2 M4

�2

Z ⇢i+1

si

Ek#2(s)� #1(s)k2 ds
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 3
kBk2 M4

�2

�
Rpi + (⇢i+1 � si)

2
RF + 2 RGcH(⇢i+1 � si)

2H
 
k#2 � #1k2PC . (3.5)

Hence,

Eku(�)(s,#2)� u
(�)(s,#1)k2  Ruik#2 � #1k2PC .

The proof of inequality (3.2) is

Eku(�)(s,#2)k2  E
����B

⇤ ⇤(⇢i+1 � s)(�Id +⇧
⇢i+1
si )�1

�
#⇢i+1 � (b� si)pi(si,#(⇢

�
i ))

 

� B
⇤ ⇤(⇢i+1 � s)

Z ⇢i+1

si

(�Id +⇧
⇢i+1
si )�1 (⇢i+1 � s) F(s,#(s)) ds

� B
⇤ ⇤(⇢i+1 � s)

Z ⇢i+1

si

(�Id +⇧
⇢i+1
s )�1 (⇢i+1 � s)G(s,#(s))dRH(s)

����
2

 4kBk2M2

�2


M

2
Dpi(1 + Ek#k2) +M

2(⇢i+1 � si)

Z ⇢i+1

si

DF(1 + Ek#k2) ds

+M
2
cH(⇢i+1 � si)

2H�1

Z ⇢i+1

si

DG(1 + Ek#k2) ds
�

 4kBk2M4

�2

⇥
Dpi(1 + Ek#k2) + (⇢i+1 � si)

2
DF(1 + Ek#k2)

cH(⇢i+1 � si)
2H

DG(1 + Ek#k2)
⇤
.

 4kBk2M4

�2

⇥
Ek#⇢i+1k2 +Dpi(1 +M) + (⇢i+1 � si)

2
DF(1 +M)

cH(⇢i+1 � si)
2H

DG(1 +M)
⇤
.

Hence,

Eku(�)(s,#)k2  Rvi .

Let the constant M satisfy the inequality

M � max
1im


Q0

1�N0
,

Dpi

1�Dpi

,
Qi

1�Ni

�
, (3.6)

where

Qi =
16⇢4i+1kBk4M4

�2
Ek#⇢i+1k2 +

✓
1 +

4kBk4M4
⇢
2
i+1

�2

◆⇥
4M2

Dpi + 4M2
⇢
2
i+1MF + 4cH⇢

2H
i+1M

2MG

⇤
,

DJ0 = 0,

Ni =

✓
1 +

4kBk4M4
⇢
2
i+1

�2

◆�
4M2

Dpi + 4M2
⇢
2
i+1MF + 4cH⇢

2H
i+1M

2MG

 

N0 =

✓
1 +

4kBk4M4
⇢
2
1

�2

◆�
4M2

⇢
2
1MF + 4cH⇢

2H
1 M

2MG

 

Q0 =
16⇢41kBk4M4

�2
Ek#⇢1k2 +

✓
1 +

4kBk4M4
⇢
2
1

�2

◆⇥
4M2Ek#0k2 + 4M2

⇢
2
1MF + 4cH⇢

2H
1 M

2MG

⇤
.
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Theorem 3.2. Assume that hypotheses (C1)–(C5) hold. Then the system (1.2) has at least one

mild solution on [0, b].

Proof. First, we define two operators �1 and �2 on

SM = {# 2 Cb : k#k2PC  M} ✓ Cb.

as follows

(�1#)(⇢) =

8
>>>>><

>>>>>:

 (⇢)#0 +

Z ⇢

0
 (⇢� s)Bu�(s,#)ds, ⇢ 2 [0, ⇢1],

pi(⇢,#(⇢
�
i )), ⇢ 2 (⇢i, si],

 (⇢� si)pi(si,#(⇢
�
i )) +

Z ⇢

si

 (⇢� s)Bu�(s,#)ds ⇢ 2 (si, ⇢i+1] ,

and

(�2#)(⇢) =

8
>>>>><

>>>>>:

Z ⇢

0
 (⇢� s)F(s,#(s))ds+

Z ⇢

0
 (⇢� s)G(s,#(s))dRH(s) ⇢ 2 [0, ⇢1],

0 ⇢ 2 (⇢i, si],Z ⇢

si

 (⇢� s)F(s,#(s))ds+

Z ⇢

si

 (⇢� s)G(s,#(s))dRH(s) ⇢ 2 (si, ⇢i+1] .

The set SM is a bounded closed and convex set in Cb. Next, we prove that the operators �1 and

�2 satisfy all the conditions of Krasnoselskii’s theorem. For the sake of convenience, we split the

proof into several steps.

Step 1. We prove that �1#1 + �2#2 2 SM for any #1,#2 2 SM.

For any #1,#2 2 SM and ⇢ 2 [0, ⇢1], we have

Ek(�1#1)(⇢) + (�2#2)(⇢)k2  4Ek (⇢)#0k2 + 4E
����
Z ⇢

0
 (⇢� s)Bu�(s,#)ds

����
2

+ 4E
����
Z ⇢

0
 (⇢� s)F(s,#(s))ds

����
2

+ 4E
����
Z ⇢

0
 (⇢� s)G(s,#(s))dRH(s)

����
2

 4M2Ek#0k2 + 4M2kBk2⇢
Z ⇢

0
E ku�(s,#)k2 ds

+ 4M2

Z ⇢

0
E kF(s,#(s))k2 ds+ 4M2

cH⇢
2H�1

Z ⇢

0
E kG(s,#(s))k2 ds

 4M2Ek#0k2 +
4kBk4M4

⇢
2
1

�2


4Ek#⇢1k2 + 4M2Ek#0k2 + 4M2

⇢
2
1 DF(1 +M)

+ 4M2
cH⇢

2H
1 DG(1 +M)

�
+ 4M2

⇢
2
1 DF(1 +M) + 4M2

cH⇢
2H
1 DG(1 +M)
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 16⇢41kBk4M4

�2
Ek#⇢1k2 +

✓
1 +

4kBk4M4
⇢
2
1

�2

◆

⇥
�
4M2Ek#0k2 + 4M2

⇢
2
1MF(1 +M) + 4cH⇢

2H
1 M

2MG(1 +M)
 
.

Hence,

Ek(�1#1)(⇢) + (�2#2)(⇢)k2  Q0 +N0M  M. (3.7)

For any #1,#2 2 SM, and ⇢ 2 (⇢i, si], i = 1, 2, . . . ,m, we have

Ek(�1#1)(⇢) + (�2#2)(⇢)k2 = Ekpi(⇢,#1(⇢�i ))k2  Dpi(1 + Ek#1k2).

Hence,

Ek(�1#1)(⇢) + (�2#2)(⇢)k2  Dpi(1 +M)  M. (3.8)

For any #1,#2 2 SM, and ⇢ 2 (si, ⇢i+1], i = 1, 2, . . . ,m, we have

Ek(�1#1)(⇢) + (�2#2)(⇢)k2  4M2Ekpi(si,#(⇢�i ))k2 + 4E
����
Z ⇢

si

 (⇢� s)Bu�(s,#)ds

����
2

+ 4E
����
Z ⇢

si

 (⇢� s)kF(s,#(s))ds
����
2

+ 4E
����
Z ⇢

si

 (⇢� s)G(s,#(s))dRH(s)

����
2


16⇢4i+1kBk4M4

�2
Ek#⇢i+1k2 +

✓
1 +

3kBk4M4
⇢
2
i+1

�2

◆

⇥
�
4M2

Dpi(1 +M) + 4M2
⇢
2
i+1MF(1 +M) + 4cH⇢

2H
i+1M

2MG(1 +M)
 


16⇢4i+1kBk4M4

�2
Ek#⇢i+1k2

+

✓
1 +

4kBk4M4
⇢
2
i+1

�2

◆⇥
4M2

Dpi + 4M2
⇢
2
i+1MF + 4cH⇢

2H
i+1M

2MG

⇤

+

✓
1 +

4kBk4M4
⇢
2
i+1

�2

◆�
4M2

Dpi + 4M2
⇢
2
i+1MF + 4cH⇢

2H
i+1M

2MG

 
M.

Hence,

Ek(�1#1)(⇢) + (�2#2)(⇢)k2  Qi +NiM  M. (3.9)

Equations (3.7)–(3.9) implies that

k�1#1 + �2#2k2PC  M.

Hence, �1#1 + �2#2 2 SM.
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Step 2. �2 is continuous on SM. Let {#n}1n=1 be a sequence such that #n ! # in SM.

For any ⇢ 2 (si, ⇢i+1], i = 0, 1, . . . ,m, we have

Ek(�2#n)(⇢)� (�2#)(⇢)k2  2M2
⇢i+1

Z ⇢

si

EkF(s,#n(s))� F(s,#(s))k2ds

+ 4cHM
2
⇢
2H�1
i+1

Z ⇢

si

EkG(s,#n(s)� G(s,#(s))k2L0
2
ds


⇥
2M2

RF ⇢
2
i+1 + 4cHM

2
⇢
2H
i+1

⇤
k#n � #k2PC .

Hence, Ek(�2#n)(⇢)� (�2#)(⇢)k2 ! 0 as n ! 1, thus, �2 is continuous on SM.

Step 3. We show {(�2#)(⇢) : # 2 SM} is equicontinuous.

For any ⌧1, ⌧2 2 (si, ⇢i+1], i = 0, 1, . . . ,m, ⌧1 < ⌧2 and # 2 SM, we obtain

Ek(�2#)(⌧2) + (�2#)(⌧1)k2  4MF⌧1

Z ⌧1

si

k (⌧2 � s)� (⌧1 � s)k2(1 +M)ds

+ 4M2MF(1 +M)(⌧2 � ⌧1)
2

+ 8cH⇢
2H�1
i+1 MG

Z ⌧1

si

k (⌧2 � s)� (⌧1 � s)k2(1 +M)ds

+ 8M2
cH⇢

2H�1
i+1 MG(⌧2 � ⌧1). (3.10)

We conclude that Ek(�2#)(⌧2) � (�2#)(⌧1)k2 ! 0 as ⌧2 ! ⌧1, since the operator  (⇢) is

compact, which implies the continuity of the operator  (⇢). Hence {(�2#)(⇢) : # 2 SM} is

equicontinuous. Also, clearly {(�2#)(⇢) : # 2 SM} is bounded.

Step 4. We show that Z(⇢) = {(�2#)(⇢) : # 2 SM} is relatively compact in H.

Clearly, Z(0) = {0} is compact. Let " be a real number and ⇢ 2 (si, ⇢i+1], i = 0, 1, . . . ,m be

fixed with 0 < " < ⇢. For any # 2 SM, we define

(�"
2#)(⇢) =

8
>>>>><

>>>>>:

Z ⇢�"

0
 (⇢� "� s)kF (s,#(s))ds+

Z ⇢�"

0
 (⇢� "� s)G(s,#(s))dRH(s) ⇢ 2 [0, ⇢1],

0 ⇢ 2 (⇢i, si],Z ⇢�"

si

 (⇢� "� s)F(s,#(s))ds+

Z ⇢�"

si

 (⇢� "� s)G(s,#(s))dRH(s) ⇢ 2 (si, ⇢i+1] ,
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and

(�⇤"
2 #)(⇢) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

 (")

Z ⇢�"

0
 (⇢� "� s)F(s,#(s))ds

+ (")

Z ⇢�"

0
 (⇢� "� s)G(s,#(s))dRH(s) ⇢ 2 [0, ⇢1],

0 ⇢ 2 (⇢i, si],

 (")

Z ⇢�"

si

 (⇢� "� s)F(s,#(s))ds

+ (")

Z ⇢�"

si

 (⇢� "� s)G(s,#(s))dRH(s) ⇢ 2 (si, ⇢i+1] .

By Lemma 2.6 and using the compactness of
�
 (")

�
">0

, we deduce that the set Z"(⇢) =

{(�"
2#)(⇢) : # 2 SM} is precompact in H for every ", 0 < " < ⇢. Moreover, by Lemma 2.6

and Hölder’s inequality, for every ⇢ 2 (0, ⇢1], we obtain:

Ek(�"
2#)(⇢)�

�
�⇤"

2 #
�
(⇢)k2

 2E
���� (")

Z ⇢�"

0
 (⇢� s� ")F(s,#(s))ds�

Z ⇢�"

0
 (⇢� s)F(s,#(s))ds

����
2

+ 2E
���� (")

Z ⇢�"

0
 (⇢� s� ")G(s,#(s))dRH

Q(s)�
Z ⇢�"

0
 (⇢� s)G(s,#(s))dRH

Q(s)

����
2

= 2E
����
Z ⇢�"

0

⇥
 (") (⇢� s� ")� (⇢� s)

⇤
F(s,#(s))ds

����
2

+ 2E
����
Z ⇢�"

0

⇥
 (") (⇢� s� ")� (⇢� s)

⇤
G(s,#(s))dRH

Q(s)

����
2

 2E
Z ⇢�"

0

�� (") (⇢� s� ")� (⇢� s)
��2��F(s,#(s))

��2ds

+ 2E
Z ⇢�"

0

�� (") (⇢� s� ")� (⇢� s)
��2��G(s,#(s))

��2dRH

Q(s)

 2L(")2⇢

Z ⇢�"

0
E
��F(s, z(s))

��2ds+ 2L(")2
Z ⇢�"

0
E
��G(s,#(s))

��2dRH

Q(s)

 3L(")2
Z ⇢�"

0
MF(1 + k#(s)k2)ds+ 3L(")2cHb

2H�1

Z ⇢�"

0
MG(1 + k#(s)k2)ds

 3L(")2b2MF(1 +M) + 3L(")2cHb
2HMG(1 +M) �!

"!0
0.

So the set Z"(⇢) = {(�"
2#)(⇢) : # 2 SM} is precompact in H by using the total boundedness.

Using this idea again, we obtain

Ek(�2#)(⇢)� (�"
2#)(⇢)k2  3E

����
Z ⇢

0
 (⇢� s)F(s,#(s))ds�

Z ⇢�"

0
 (⇢� s)F(s,#(s))ds

����
2

+ 3E
����
Z ⇢

0
 (⇢� s)G(s,#(s))dRH

Q(s)�
Z ⇢�"

0
 (⇢� s)G(s,#(s))dRH

Q(s)

����
2
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 3E
����
Z ⇢

⇢�"
 (⇢� s)F(s,#(s))ds

����
2

+ 3E
����
Z ⇢

⇢�"
 (⇢� s)G(s,#(s))dRH

Q(s)

����
2

 3M2
"

 Z ⇢

⇢�"
EkF(s,#(s))k2ds+ 2cH"

2H�1

Z ⇢

⇢�"
EkG(s,#(s))k2ds

�

 2M2
"
2MF(1 +M) + 2M2

cH"
2HMG(1 +M) ! 0 as "! 0.

Similarly, for any ⇢ 2 (ei, ⇢i+1] with i = 1, . . . ,m. Let ei < ⇢  s  ⇢i+1 be fixed and let " be

a real number satisfying 0 < " < ⇢. If we use Lemma 2.6 and compactness of
�
 (")

�
">0

, we

deduce that the set Z"(⇢) is precompact in H for every ", 0 < " < ⇢. Moreover, by Lemma

2.6 and Hölder’s inequality, for every # 2 SM we have:

Ek(�"
2#)(⇢)�

�
�⇤"

2 #
�
(⇢)k2

 2E
���� (")

Z ⇢�"

si

 (⇢� s� ")F(s,#(s))ds�
Z ⇢�"

si

 (⇢� s)F(s,#(s))ds

����
2

+ 2E
���� (")

Z ⇢�"

si

 (⇢� s� ")G(s,#(s))dRH

Q(s)�
Z ⇢�"

si

 (⇢� s)G(s,#(s))dRH

Q(s)

����
2

 3
�
L(")

�2

b

Z ⇢�"

si

EkkF(s,#(s))k2ds+ cHb
2H�1

Z ⇢�"

si

EkG(s,#(s))k2ds
�

 3
�
L(")

�2

b
2MF(1 +M) + cHb

2HMG(1 +M)

�
�!
"!0

0.

So the set Z"(⇢) = {(�"
2#)(⇢) : # 2 SM} is precompact in H by using the total boundedness.

Using this idea again, we obtain

Ek(�2#)(⇢)� (�"
2#)(⇢)k2  2E

����
Z ⇢

⇢�"
 (⇢� s)F(s,#(s))ds

����
2

+ 2E
����
Z ⇢

⇢�"
 (⇢� s)G(s)dRH

Q(s)

����
2

 2M2
"
2MF(1 +M) + 2M2

cH"
2HMG(1 +M) ! 0 as "! 0.

Therefore, as "! 0, there are precompact sets arbitrarily close to the set Z(⇢) = {(�2#)(⇢) :

# 2 SM}. Thus, the set Z(⇢) = {(�2#)(⇢) : # 2 SM} is precompact in H. Finally, by the

Arzelà-Ascoli theorem, we can conclude that the operator �2 is continuous and compact.

Step 5. �1 is a contraction.

For any #1,#2 2 SM and ⇢ 2 [0, ⇢1], we have

Ek(�1#1)(⇢)� (�1#2)(⇢)k2  M
2
Ru0⇢

2
1k#2 � #1k2PC . (3.11)

For any #1,#2 2 SM and ⇢ 2 (⇢i, si], i = 1, 2, . . . ,m, we have

Ek(�1#1)(⇢)� (�1#2)(⇢)k2 = Ekpi(⇢,#1(⇢�i ))� pi(⇢,#2(⇢
�
i ))k

2  Rpik#2 � #1k2PC . (3.12)
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For any #1,#2 2 SM and ⇢ 2 (si, ⇢i+1], i = 1, 2, . . . ,m, we have

Ek(�1#1)(⇢)� (�1#2)(⇢)k2  2M2
Rpik#2 � #1k2PC + 2M2kBk2Rui⇢

2
i+1k#2 � #1k2PC

= 2M2
�
Rpi + kBk2Rui⇢

2
i+1

�
k#2 � #1k2PC . (3.13)

Equations (3.11)–(3.13) and hypothesis (C5) imply that �1 is a contraction. The operators

�1,�2 satisfy all the conditions of Theorem 2.12, then there exists a fixed point # on SM.

Therefore, the system (1.2) has at least on mild solution on [0, b].

Theorem 3.3. Assume that hypotheses (C1)–(C6) hold and the functions F,G are uniformly

bounded on their respective domains. Then the system (1.2) is approximately controllable on [0, b].

Proof. Let #� be a fixed point of �1 + �2. By using the stochastic Fubini theorem, we obtain

#
(�)(⇢i+1) = #⇢i+1 � �(�Id +⇧

⇢i+1
si )�1

�
E#⇢i+1 � (⇢i+1 � si)pi(si,#(⇢

�
i ))

 

� �

Z ⇢i+1

si

(�Id +⇧
⇢i+1
si )�1�i(s)dR

H(s) + �

Z
b

0
(�Id +⇧

⇢i+1
si )�1 (⇢i+1 � s) F(s,#(s)) ds

+ �

Z ⇢i+1

si

(�Id +⇧
⇢i+1
si )�1 (⇢i+1 � s)G(s,#(s))dRH(s), i = 0, 1, 2, . . . ,m. (3.14)

Moreover, hypotheses F and G are uniformly bounded. Then there are subsequences, still denoted

by F(s,#�) and G(s,#�), which converge weakly to say F(s) and G(s) respectively in H and L
0
2.

From the above equation, we obtain

Ek#(�)(⇢i+1)� #⇢i+1k2  7E
���(�Id +⇧

⇢i+1
si )�1E#⇢i+1

��2

+ 7E
�����

Z ⇢i+1

si

(�Id +⇧
⇢i+1
si )�1�i(s)dR

H(s)

����
2

+ 7E
���(�Id +⇧

⇢i+1
si )�1 (⇢i+1 � si)pi(si,#(⇢

�
i ))

��2

+ 7E

������
Z b

0
(�Id +⇧

⇢i+1
si )�1 (⇢i+1 � s) F(s) ds

�����

2

+ 7E
�����

Z ⇢i+1

si

(�Id +⇧
⇢i+1
si )�1 (⇢i+1 � s)G(s)dRH(s)

����
2

+ 7E

������
Z b

0
(�Id +⇧

⇢i+1
si )�1 (⇢i+1 � s) F(s,#�(s)) ds

�����

2

+ 7E
�����

Z ⇢i+1

si

(�Id +⇧
⇢i+1
si )�1 (⇢i+1 � s)G(s,#�(s))dRH(s)

����
2

.

It follows from (H0), for all 0  s  b the operator �(�Id + ⇧
⇢i+1
s )�1 ! 0 as � ! 0+, and

k(�Id +⇧
⇢i+1
s )�1k2  1 and by using the Arzelà-Ascoli theorem, one can prove that the operator
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l̄(·) !
Z ⇢i+1

si

 (·� s)l̄(s)ds is compact, we obtain

Ek#(�)(⇢i+1)� #⇢i+1k2 ! 0 as � ! 0+.

This gives the approximate controllability of system (1.2) on [0, b].

Now, we are going to prove the approximate controllability of the stochastic system (1.2) by using

another method, namely Schauder’s fixed point theorem with some other hypotheses, which are

different from hypotheses of the Theorems 3.2 and 3.3. In order to establish the approximate

controllability results, we impose the following hypotheses.

(C7) T(⇢) is compact for ⇢ > 0.

(C8) The function F : J ⇥H ! H satisfy the following conditions

(a) for each ⇢ 2 J the function F(⇢, ·) : H ! H is continuous for each # 2 H the function

F(·,#) : J ! H is strongly measurable,

(b) for each positive number M, there exists µM 2 L
1(J ,R+) such that

sup
Ek#k2M

EkF(⇢,#)k2  µM(⇢)

and there exists a ⇤1 > 0 such that

lim
M�!1

Z ⇢

0
µM(s)d⇢

M
= ⇤1 < 1.

(C9) The function G : J ⇥ L
0
2 satisfies the following conditions

(a) for each ⇢ 2 J the function G(⇢, ·) : H ! L
0
2 is continuous for each # 2 H the function

G(·,#) : J ! L
0
2 is strongly measurable,

(b) for each positive number M, there exists vM 2 L
1(J ,R+) such that

sup
Ek#k2M

EkG(⇢,#)k2L0
2
 vM(⇢)

and there exists a ⇤2 > 0 such that

lim
M�!1

Z ⇢

0
vM(s)d⇢

M
= ⇤2 < 1.
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Theorem 3.4. Assume that hypotheses (C2) and (C7)–(C9) hold. Then, the system (1.2) has at

least one mild solution on [0, b], provided that

max
1im


Dpi

✓
4kBk2M4

b
2

�2

◆�
4M2

Dpi + 4M2
b⇤1 + 8M2

cHb
2H�1⇤2

��
< 1. (3.15)

Proof. Consider a set

S
0
M = {# 2 Cb : k#k2PC  M} ✓ Cb,

where M is constant. The set S
0
M is a bounded closed and convex set in Cb.

Now, we define an operator F on Cb by

(F#)(⇢) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

 (⇢)#0 +

Z ⇢

0
 (⇢� s)Bu�(s,#)ds

+

Z ⇢

0
 (⇢� s)F(s,#(s))ds+

Z ⇢

0
 (⇢� s)G(s,#(s))dRH(s), ⇢ 2 [0, ⇢1],

pi(⇢,#(⇢
�
i )), ⇢ 2 (⇢i, si],

 (⇢� si)pi(si,#(⇢
�
i )) +

Z ⇢

si

 (⇢� s)Bu�(s,#)ds

+

Z ⇢

si

 (⇢� s)F(s,#(s))ds+

Z ⇢

si

 (⇢� s)G(s,#(s))dRH(s), ⇢ 2 (si, ⇢i+1].

Next, we prove that the operator F satisfies all Schauder’s fixed point theorem conditions.

Now, we prove that there exists M > 0 such that F(S0
M) ✓ S

0
M. If we assume that this assertion is

false, then for any M > 0, we can choose #M 2 S
0
M and ⇢ 2 [0, b] such that EkF(#M)(⇢)k2 > M.

For any ⇢ 2 [0, ⇢1], we have

M < EkF(#M)(⇢)k2  16kBk2M4
⇢
2
1

�2
Ek#⇢1k2 +

✓
1 +

4kBk4M4
⇢
4
1

�2

◆(
4M2Ek#0k2

+ 4M2
⇢1

Z ⇢

0
µM(s)ds+ 8M2

cH⇢
2H�1
1

Z ⇢

0
vM(s)ds

)
.

For any ⇢ 2 (⇢i, si], i = 1, 2, . . . ,m, we have

M < EkF(#M)(⇢)k2 = Ekpi(⇢,#M(⇢�i ))k
2  Dpi(1 +M).

Similarly, for ⇢ 2 (si, ⇢i+1], i = 1, 2, . . . ,m, we have

M < EkF(#M)(⇢)k2  16kBk2M4
⇢
2
1

�2
Ek#⇢1k2 +

✓
1 +

4kBk4M4
⇢
2
i+1

�2

◆(
4M2

Dpi(1 +M)

+ 4M2
⇢i+1

Z ⇢

0
µM(s)ds+ 8M2

⇢
2H�1
i+1

Z ⇢

0
vM(s)ds

)
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From the above equations we have for ⇢ 2 [0, b]

M < Ek(F#M)(⇢)k2  Q+DpiM+

✓
1 +

4kBk4M4
b
2

�2

◆(
4M2

DpiM

+ 4M2
b

Z ⇢

0
µM(s)ds+ 8M2

cHb
2H�1

Z ⇢

0
vM(s)ds

)
,

where

Q = max
1im


16kBk2M2

�2
[⇢21Ek#⇢1k2 + ⇢

2
i+1Ek#⇢i+1k2] + 4c0M

2Ek#0k2 +Dpi + 4ciM
2
Dpi

�
.

Dividing both sides of above by M and taking M ! 1, we obtain

1 < Dpi +

✓
1 +

4kBk4M4
b
2

�2

◆�
4M2

Dpi + 4M2
b⇤1 + 8M2

cHb
2H�1⇤2

�
.

This contradicts (3.15). Hence, there exists M > 0 such that F(S0
M) ✓ S

0
M.

Adopting the method used in the Theorem 3.1 of the paper [31], one can easily show that F is

a continuous operator. Hence, operator F satisfies all the conditions of the Theorem 2.13, then

there exists a fixed point # on S
0
M. Therefore, the system (1.2) has at least one mild solution on

[0, b].

Theorem 3.5. Assume that hypotheses (C2), (C7)–(C9) hold and the functions F,G are uniformly

bounded on their respective domains. Then the stochastic system (1.2) is approximately controllable

on [0, b].

Proof. Using the same arguments as in the Theorem 3.3, one can prove the approximate control-

lability of stochastic system (1.2).

Remark 3.6. We can see that the hypotheses of the Theorem (1.2) and Theorem (3.5) are sufficient

conditions but not necessary to prove the approximate controllability of the stochastic system (1.2).
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4 Application

For an illustration of the obtained theory, we consider the following stochastic integrodifferential

system

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

d z(⇢, ⇠) =


@
2
z(⇢, ⇠)

@⇠2
+

Z ⇢

0
�(⇢� s)

@
2
z(s, ⇠)

@⇠2
ds+ f1(⇢, z(⇢, ⇠)) + u(⇢, ⇠)

+g1(⇢, z(⇢, ⇠))
dR

H(⇢)

d⇢

�
d⇢, 0  ⇠  ⇡, ⇢ 2 (2i, 2i+ 1], i = 0, 1, . . . ,m,

z(⇢, 0) = z(⇢,⇡) = 0, ⇢ � 0,

z(⇢, ⇠) = sin it.z((2i� 1)�, ⇠), ⇢ 2 (2i� 1, 2i], i = 1, 2, . . . ,m,

z(0, ⇠) = z0(⇠), ⇠ 2 [0,⇡].

(4.1)

where 0 = s0 = ⇢0 < ⇢1 < s1 < · · · < sm < ⇢m+1 = b < 1 with ⇢1 = 1, si = 2i, ⇢i = 2i� 1, RH is

a Rosenblatt process. The functions f1, g1 and � will be described below.

Let H = Y = U = L
2([0,⇡]) with the norm k · k. Define A : D(A) ⇢ H ! H by A# = #

00 with

domain

D(A) = H
2(0,⇡) \H

1
0 (0,⇡).

The spectrum of A consists of the eigenvalues �n
2 for n 2 N?, with associated eigenvectors

en :=
q

2
⇡ sin(n#), (n = 1, 2, 3, . . . ). Furthermore, the set {en : n 2 N?} is an orthogonal basis in

H. Then

A# =
1X

n=1

�n
2h#, enien, # 2 H.

It is well known that A is the infinitesimal generator of a strongly continuous semigroup {T(⇢)}⇢�0

on H, which is compact and is given by

T(⇢)# =
1X

n=1

e
�n2⇢h#, enien, # 2 H.

In order to define the operator Q : Y ! Y, we choose a sequence {vn}n�1 ⇢ R+, set Qen = vnen

and assume that Tr(Q) =
P1

n=1

p
vn < 1. Define the process R

H

Q(s) by

R
H

Q(s) =
1X

n=1

p
vn�

H

n (⇢)en

where H 2 ( 12 , 1) and {�H

n}n2N is a sequence of mutually independent two-sided one-dimensional

fBm and an infinite dimensional space.
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Let � : D(A) ⇢ H ! H be the operator defined by

�(⇢)(z̃) = �(⇢)Az̃ for ⇢ � 0 and z̃ 2 D(A).

In order to rewrite system (4.1) in an abstract form inH, we introduce the following notations

8
<

:
#(⇢) = z(⇢, ⇠) for ⇢ � 0 and ⇠ 2 [0,⇡],

#(0) = z(0, ⇠) for ⇠ 2 [0,⇡],

and the bounded linear operator B : L2([0,⇡]) ! L
2([0,⇡]) as

Bu(⇢)(⇠) = u(⇢, ⇠), ⇢ 2 [0, b], ⇠ 2 [0,⇡].

Next, we define the functions F : b0 ⇥H ! H and G : b0 ⇥H ! L2(X,H) as

F(⇢,#(⇢))(⇠) = f1(⇢,#(⇢))(⇠), # 2 H, ⇠ 2 [0,⇡], (4.2)

G(⇢,#)(⇠) = g1(⇢,#(⇢))(⇠), # 2 H, ⇠ 2 [0,⇡]. (4.3)

The functions pi : bi ⇥ H ! H are given by pi(⇢,#(t
�
i ))(⇠) = sin it.z((2i � 1)�, ⇠). From the

above choices of the functions and operator �(⇢) with B = Id, the system (4.1) takes the following

abstract form

8
>>>><

>>>>:

d#(⇢) = A#(⇢) +

Z ⇢

0
�(⇢� s)#(s)ds+ F(⇢,#(⇢)) + Bu(⇢) + G(s,#(s))

dR
H(⇢)

d⇢
, ⇢ 2 [m

i=0(si, ⇢i+1),

#(⇢) = pi(⇢,#(⇢
�
i )), ⇢ 2 [m

i=1(⇢i, si],

#(0) = #0.

(4.4)

Moreover, �(⇢) satisfies (R2) and hence, by Theorem 2.4, Eq. (2.5) has a resolvent operator

( (⇢))⇢�0 on H. In particular, if we take F(⇢,#(⇢))(⇠) =
sin ⇢

1 + sin ⇢
#(⇢)(⇠), and G(⇢,#)(⇠) =

#(⇢)(⇠)

e(1 + e⇢)
, we see that, F and G satisfy assumptions (C1) and (C2). Therefore all conditions of

Theorem 3.2 are satisfied. Since the semigroup T(⇢) is compact for ⇢ > 0, it is clear from Theorem

2.5 that the resolvent operator  (⇢) is compact for all ⇢ > 0. Therefore, the associated linear

system of (4.1) can not be exactly controllable but may be approximately controllable.

It remains now to verify that (H0) is fulfilled. To this end, we have the following result:

Lemma 4.1 ([30]). Let �(⇢) 2 L
1(R+) \ C

1(R+) with primitive O(⇢) 2 L
1
loc(R+) such that O(⇢)

is non-positive, non-decreasing and O(0) = �1. If operator A is self-adjoint and positive semi-

definite, then the resolvent operator  (⇢) associated to (2.5) is self-adjoint as well.
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By Lemma 4.1 above, the resolvent operator  (⇢) of (2.5) is self-adjoint. Thus

 ⇤(⇢)y =  (⇢)y, y 2 H.

If  ⇤(⇢)y = 0, for all ⇢ 2 J , thus

 ⇤(⇢)y =  (⇢)y = 0, ⇢ 2 J .

It follows from the fact  (0) = Id that y = 0, so by virtue of Theorem 2.10, (H0) holds. Therefore,

in view of Theorem 3.2 and Theorem 3.3, the stochastic integrodifferential system (4.4) is approx-

imately controllable on J .

Remark 4.2. In this above example, if we choose F(⇢,#) =
1

⇢1/3
sin#, we observe that F (⇢,#)

does not satisfy the Lipschitz condition (C3) � b near 0, but it satisfies the hypotheses (C8) (see

[36]). With this setting, Theorem 3.2 can not be applied to the system (4.4), but we can apply the

Theorem 3.3 to the (4.4).

5 Conclusion

In this research, we investigated the approximate controllability for a class of non-instantaneous

impulsive integrodifferential equations driven by the Rosenblatt process. The proposed results

have been carried out using Grimmer resolvent operator, stochastic analysis theory, and fixed

point techniques (Krasnoselskii’s and Schauder’s fixed point theorem). Finally, an example is

provided to illustrate the applicability of our results. We believe our study can open new research

routes in stochastic integrodifferential systems with state-dependent delay and fractional cases.

This article will initiate future work in the above categories.
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ABSTRACT

In this article, we have mainly focused on the uniqueness prob-
lem of an L-function L with an L-function or a meromorphic
function f under the condition of sharing the sets, generated
from the zero set of some strong uniqueness polynomials. We
have introduced two new definitions, which extend two exist-
ing important definitions of URSM and UPM in the literature
and the same have been used to prove one of our main results.
As an application of the result, we have exhibited a much im-
proved and extended version of a recent result of Khoai-An-
Phuong [13]. Our remaining results are about the uniqueness
of L-function under weighted sharing of sets generated from
the zeros of a suitable strong uniqueness polynomial, which
improve and extend some results in [12].

RESUMEN

En este arículo nos hemos enfocado principalmente en el
problema de unicidad de una L-función L con una L-función
o una función meromorfa f bajo la condición de compartir
los conjuntos, generados a partir del conjunto de ceros de
algunos polinomios de unicidad fuerte. Hemos introducido
dos definiciones nuevas, que extienden dos importantes defini-
ciones existentes en la literatura de URSM y UPM, y las mis-
mas han sido usadas para probar uno de nuestros resultados
principales. Como una aplicación del resultado, exhibimos
una versión mejorada y extendida de un resultado reciente
de Khoai-An-Phuong [13]. Nuestros resultados restantes son
sobre la unicidad de una L-función bajo la condición de com-
partir conjuntos pesados generados a partir de los ceros de un
polinomio de unicidad fuerte apropiado, que mejora y extiende
algunos resultados en [12].
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1 Introduction

Riemann hypothesis can be generalized by replacing Riemann’s zeta function by the formally

similar, but much more general L-functions. Considering ⇣(s) =
P1

n=1
1
ns as a prototype in 1989,

Selberg defined a rather general class S of convergent Dirichlet series L(s) =
P1

n=1
a(n)
ns which

are absolutely convergent for Re(s) > 1. In the meantime, this so-called Selberg class L-function

became important object of research as it plays a pivotal role in analytic number theory. An

L-function in S need to satisfy the following axioms (see [18]):

(i) Ramanujan hypothesis: a(n) ⌧ n✏ for every ✏ > 0.

(ii) Analytic continuation: There is a non-negative integer k such that (s� 1)kL(s) is an entire

function of finite order.

(iii) Functional equation: L satisfies a functional equation of type

⇤L(s) = !⇤L(1� s),

where

⇤L(s) = L(s)Qs
KY

j=1

�(�js+ ⌫j)

with positive real numbers Q, �j and complex numbers ⌫j ,! with Re ⌫j � 0 and |!| = 1.

(iv) Euler product hypothesis: L can be written over prime as

L(s) =
Y

p

exp

 1X

k=1

b(pk)/pks
!

with suitable coefficients b(pk) satisfying b(pk) ⌧ pk✓ for some ✓ < 1/2, where the product

is taken over all prime numbers p. The degree dL of an L-function L is defined to be

dL = 2
KX

j=1

�j ,

where �j and K are respectively the positive real number and the positive integer as in axiom

(iii) above.

In this paper we are going to discuss some results under the periphery of value distribution of

L-functions in S. Throughout this paper by an L-function we will mean an L-function of non-zero

degree with the normalized condition a(1) = 1. On the other hand, by meromorphic function f

we mean meromorphic function in the whole complex plane C. Let C = C [ {1}, C⇤ = C \ {0}
and N = N [ {0}, where C and N denote the set of all complex numbers and natural numbers
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respectively and by Z we denote the set of all integers. Before entering into the detail literature,

let us assume M(C) as the field of meromorphic functions over C and assume f , g be two non-

constant meromorphic functions in M(C). The proofs of the theorems of the paper are heavily

depending on Nevanlinna theory and we assume that the readers are familiar with the standard

notations like the characteristic function T (r, f), the proximity function m(r, f), counting (reduced

counting) function N(r, f) (N(r, f)) that are also explained in [9, 20]. By S(r, f) we mean any

quantity that satisfies S(r, f) = O(log(rT (r, f))) when r ! 1, except possibly on a set of finite

Lebesgue measure. When f has finite order, then S(r, f) = O(log r) for all r. For any f 2 M(C),
the order of f is defined as

⇢(f) := lim sup
r!1

log T (r, f)

log r
.

2 Definitions

Before proceeding further, we require the following definitions.

Definition 2.1. For some a 2 C [ {1}, we define Ef (S) = [a2S{z : f(z) � a = 0}, where

each point is counted according to its multiplicity. If we do not count the multiplicity then the set

[a2S{z : f(z)� a = 0} is denoted by Ef (S). If Ef (S) = Eg(S), then we say f and g share the set

S Counting Multiplicity (CM). On the other hand, if Ef (S) = Eg(S) then we say f and g share

the set S Ignoring Multiplicity (IM).

The following definition is more generalized than Definition 2.1 and somehow been inspired from

the idea in [11].

Definition 2.2. Let S1, S2 ⇢ C and if Ef (S1) = Eg(S2) (Ef (S1) = Eg(S2)) holds then we say that

f , g have the same inverse image with respect to the sets S1 and S2 respectively, counting multiplic-

ity (ignoring multiplicity) and abbreviated it as IICM {(S1)(f), (S2)(g)} (IIIM{(S1)(f), (S2)(g)}).

Definition 2.3 ([14]). Let k be a positive integer, b 2 C and Ek(0; f � b) be the set of all zeros

of f � b, where a zero of multiplicity p is counted p times if p  k, and k + 1 times if p > k. If

Ek(0; f�b) = Ek(0; g�b), we say that f�b, g�b share the 0 with weight k and we write it as f�b

and g�b share (0, k) or f and g share (b, k). For S ⇢ C[{1}, we define Ef (S, k) = [a2SEk(a; f),

where k is a non-negative integer or infinity. Clearly Ef (S) = Ef (S,1). In particular, Ef (S, k) =

Eg(S, k) and Ef ({a}, k) = Eg({a}, k) implies f and g share the set S and the value a with weight

k.

Definition 2.4 ([14]). Let b 2 C, by N(r, b; f |� s) (N(r, b; f | s)) we denote the counting

function of those zeros of f � b of multiplicity � s ( s). Also N(r, b; f |� s) (N(r, b; f | s)) are

defined analogously.
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Definition 2.5 ([21]). If for some set S ⇢ C, Ef (S) = Eg(S) implies f = g, then we will say S

unique range set of meromorphic function and denote it as URSM.

Definition 2.6. If for two sets S1, S2 ⇢ C, Ef (S1) = Eg(S2) implies f = g, then we will say

{S1, S2} belong to the extended class unique range set of meromorphic function and we denote it

by ECURSM. Similarly we can define extended class unique range set of L-function and denote it

as ECURSL.

Definition 2.7 ([4]). A set S ⇢ C is called a unique range set for meromorphic (entire) functions

with weight k if for any two non-constant meromorphic (entire) functions f and g, Ef (S, k) =

Eg(S, k) implies f = g. We write S is URSMk (URSEk) in short. In case of L-function it is

reasonable to write it as URSLk.

Definition 2.8 ([1]). For a non-zero constant c, if P (f) = cP (g) implies f = g then P is called

a strong uniqueness polynomial for meromorphic function and denote it by SUPM.

Definition 2.9 ([15]). A polynomial P is called a uniqueness polynomial for meromorphic func-

tions if P (f) = P (g) implies f = g and we denote it as UPM.

Definition 2.10. Let P , Q be two polynomials of same degree. Now if f = g for all f , g satisfying

P (f) = Q(g) then, then we call {P,Q} belong to the the extended class of uniqueness polynomial

of meromorphic function and denote it as ECUPM. Similarly we can define extended class of

uniqueness polynomial of L-function and denote it as ECUPL.

Definition 2.11 ([4]). Let P (z) be a polynomial of derivative index k, i.e., P
0
(z) has mutually

k distinct zeros given by d1, d2, . . . , dk with multiplicities q1, q2, . . . , qk respectively. Then P (z) is

said to satisfy the critical injection property if P (di) 6= P (dj) for i 6= j, where i, j 2 {1, 2, . . . , k}.

3 Background and main results

Recently the value distributions of L-functions have been studied exhaustively by many researchers

([10,16,19], etc.). The value distribution of L-function is all about the roots of L(s) = c. In 2007,

regarding uniqueness problem of two L functions, Steuding [19] proved that the number of shared

values can be reduced significantly than that happens in case of ordinary meromorphic function.

Below we invoke the result.

Theorem 3.1 ([19]). Let L1 and L2 be two non-constant L-functions and c 2 C. If EL1(c) =

EL2(c) holds, then L1 = L2.

Since L-functions possess meromorphic continuations, it will be interesting to investigate under

which conditions an L-function can share a set with an arbitrary meromorphic function. Inspired
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by the question of Gross [8] for meromorphic functions, Yuan-Li-Yi [22] proposed the analogous

question for a meromorphic function f and an L-function L sharing one or two finite sets. Yuan-

Li-Yi [22] answered the question by themselves by proving the following uniqueness result.

Theorem 3.2 ([22]). Let f be a meromorphic function having finitely many poles in C and let

L 2 S be a non-constant L-function. Let us consider the set S = {w : wn + awm + b = 0}, where

(n,m) = 1, n > 2m+ 4. If Ef (S) = EL(S), then we will have f = L.

Motivated by the results of [22], Khoai-An-Phuong [13] considered a different polynomial, whose

zero set is not same with the set as in Theorem 3.2. Under the CM sharing of this set, they [13]

obtained a uniqueness relation between an L-function and an arbitrary meromorphic function. In

their paper, Khoai-An-Phuong ([13]) consider the polynomial.

P (z) = (m+ n+ 1)

 
nX

i=0

✓
m

i

◆
(�1)i

m+ n+ 1� i
zm+n+1�iai

!
+ 1, (3.1)

and (m+ n+ 1)

✓Pn
i=0

✓
m

i

◆
(�1)i

m+n+1�i

◆
an+m+1 6= �1,�2. Then P 0(z) = (n+m+ 1)zn(z � a)m.

In their recent paper, Khoai-An-Phuong ([13]) obtained the following result.

Theorem 3.3 ([13]). Let f be a non-constant meromorphic function, L be an L-function, P (z)

be defined as in (3.1) and S = {z : P (z) = 0}. If n � 2, m � 2, n+m � 8, then Ef (S) = EL(S)

implies f = L.

Now from Theorem 3.3, the following questions are inevitable:

(1) The considered set in Theorem 3.3 is a particular one and it is clear by Example 6.1 given in

the application part afterwards, that the set is actually a zero set of a particular SUPM. So

it is obvious to explore, whether the set can be generalized by the set of zeros of an arbitrary

SUPM.

(2) In Theorem 3.3, to obtain the uniqueness result between f and L, the authors considered

CM sharing of the set. So is it possible to relax the CM sharing of the set?

(3) The minimum cardinality of the set in Theorem 3.3 is nine. Is it possible to decrease the

cardinality of the set?

In this article, inspired by Theorem 3.3, we have tried to explore and provide the best possible

answer of the above questions. Before going to the result, let us consider the following polynomial,

P (z) = a0 + a1z + a2z
2 + · · ·+ atz

t, (3.2)

of simple zeros with P 0(z) = (z � d1)q1(z � d2)q2 · · · (z � dl)qk , satisfying the following properties:
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(i) P (z) is a critically injective polynomial of degree t � 5 with simple zeros and the derivative

index of it is k � 2 and for k = 2, min{q1, q2} � 2.

(ii) P (z) be a SUPM.

Theorem 3.4. Let f be a non-constant meromorphic function, L be a non-constant L-function,

and P (z) be defined as in (3.2) satisfying properties (i) and (ii) such that S = {z : P (z) = 0}.
Now if Ef (S, 2) = EL(S, 2) and t � 2k + 4, then we have f = L.

In the application part of this article in Example 6.1 , we have considered a more general version

of polynomial (3.1) and by means of Example 6.1 , we have shown that our result Theorem 3.4

improves Theorem 3.3. Also in [12], the authors explored the things in a new direction. They found

some sufficient conditions for a general polynomial to be a uniqueness polynomial for L-function

and found a general unique range sets for L-functions as well. The following result extends the

perimeter of unique range sets for L-functions.

Theorem 3.5 ([12]). Let P (z) be a uniqueness polynomial for L-functions. Suppose that P (z)

has no multiple zeros, and P (1) 6= 0. Then the set S = {z : P (z) = 0}, is a unique range set for

L-functions, counting multiplicities.

From the statement of Theorem 3.5, it will be interesting to ponder over the answer of the following

question:

Question 3.1. What happens in Theorem 3.5, if P (1) = 0?

In the following theorem, we will deal with the answer of the above question. In fact, in view of

Definition 2.6 and Definition 2.10, we will re-investigate Theorem 3.5 under a broader perspective,

so that the same theorem will automatically be included in our result and at the same time the

question will be answered. Now for the next theorem let us consider Z�(L) to denote the set of

trivial zeros of L in the negative half plane, where each zero is counted according to its multiplicity.

Theorem 3.6. Let S1 = {z : Po(z) = 0} and S2 = {z : Qo(z) = 0} where Po be a uniqueness

polynomial of L-function and Qo = k1Po + k2 and having no multiple zeros. If

(i) k2 = 0 and either Po(1) 6= 0 or Po(0) 6= 0 together with Z�(L1) = Z�(L2),

(ii) k2 6= 0 and Z�(L1) = Z�(L2), Po(1) 6= Po(0). Also either Po(1)Qo(1) 6= 0 or Po(0)Qo(0) 6=
0; then {Po, Qo} belong to ECUPL and {S1, S2} belong to ECURSL.

Clearly in the above theorem, when k2 = 0 and Po(1) 6= 0, then Theorem 3.6 is actually Theorem

3.5. Hence this result is an extension of Theorem 3.5.

Considering the IM sharing of set, in [12] the following result was obtained.
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Theorem 3.7 ([12]). Let P (z) be a strong uniqueness polynomial for L-functions, and assume

that P (z) has no multiple zeros, and the degree q, the derivative index k of P satisfy inequality

q � 2k+6. Then the zero set of P (z) is a unique range set, ignoring multiplicities, for L-functions.

As usual it will be interesting to further reduce the cardinality of the set. In the next theorem, we

will show that with the help of weighted sharing of weight two the cardinality of the range set can

significantly be reduced.

Theorem 3.8. Let P (z) be a strong uniqueness polynomial for L-functions with simple zeros, of

degree t and of derivative index k such that t � 2k+3. Then the set S = {z : P (z) = 0} is URSL2.

4 Lemma

Next, we present some lemmas that will be needed in the sequel. Henceforth, we denote by H, the

following function :

H =

✓
F 00

F 0 � 2F 0

F

◆
�
✓
G00

G0 � 2G0

G

◆
,

Lemma 4.1 ([5]). Let F = P (f) and G = P (g) be non-constant meromorphic functions where

P (z) is defined same as in (3.2). Also let F , G share (0,m) Then,

N1)
E (r, 0;F )  N(r,1;H) + S(r, F ) + S(r,G).

Lemma 4.2. Let F and G be defined same as in Lemma 4.1 and share (0,m). Then,

N(r,1;H)  N⇤(r, 0;F,G) +N(r,1; f) +N(r,1; g) +
kX

i=1

N(r,↵i; f) +
kX

i=1

N(r,↵i; g)

+N0(r, 0; f
0) +N0(r, 0; g

0) + S(r, f) + S(r, g),

where N0(r, 0; f 0) is the reduced counting function of those zeros of F 0
where F

Qk
i=1(f � ↵i) 6= 0

and N0(r, 0; g0) is similarly defined and ↵i , i = 1, 2, . . . , k are distinct zeros of P 0(z).

Proof. Here we are not giving the proof as the similar proof can be found in [14].

Lemma 4.3 ([3]). Let F and G be non-constant meromorphic functions and let F , G share (0,m).

Then,

N(r, 0;F ) +N(r, 0;G)�N1)
E (r, 0;F ) +

✓
m� 1

2

◆
N⇤(r, 0;F,G)  1

2
[N(r, 0;F ) +N(r, 0;G)].

Proof. Here we are not giving the proof as the similar proof can be found in [3].
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Lemma 4.4 ([6]). Let P (z) be a polynomial defined as in (3.2) with property (i). Also assume f

and g be two non-constant meromorphic functions such that,

1

P (f)
=

c0
P (g)

+ c1,

c0 6= 0. Then we will have c1 = 0.

Lemma 4.5 ([7]). Let P (z) be a polynomial defined as in (3.2) with property (i). Then P (z) will

be a UPM if and only if

X

1l<mk

qlqm >
kX

l=1

ql.

In particular, the above inequality is always satisfied whenever k � 4. When k = 3 and max{q1, q2, q3} �
2 or when k = 2, min{q1, q2} � 2 and q1 + q2 � 5, then also the above inequality holds.

Lemma 4.6 ([17]). Let f be a non-constant meromorphic function and let

R(f) =

nP
k=0

akfk

mP
j=0

bjf j

,

be an irreducible rational function in f with constant coefficients {ak} and {bj}, where an 6= 0 and

bm 6= 0. Then

T (r,R(f)) = dT (r, f) + S(r, f),

where d = max{n,m}.

Lemma 4.7 ([20]). Let f , g 2 M(C) and let ⇢(f), ⇢(g) be the order of f and g, respectively. Then

⇢(f · g)  max{⇢(f), ⇢(g)}.

Lemma 4.8. Let L1 and L2 be two non-constant L-functions and for some A > 0, in � < �A,

Z�(L1) = Z�(L2). Then we can find a infinite sequence of zeros in the same half plane of both

Li, i = 1, 2.

Proof. It is given that in � < �A, Z�(L1) = Z�(L2). From axiom (iii), let us assume

Li(s) = �i(s)Li(1� s), where

�i(s) = !iQ
1�2s
i

Qki

j=1 �(�ij(1� s) + ⌫ij)
Qki

j=1 �(�ijs+ ⌫ij)
, for i = 1, 2.
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In particular, in � < �A, the poles of
Qk1

j=1 �(�1js+⌫1j) and
Qk2

j=1 �(�2js+⌫2j) must match, also

the poles of
Qk1

j=1 �(�1j(1� s) + ⌫1j) and
Qk2

j=1 �(�2j(1� s) + ⌫2j) must match in � > A. Also in

�A < � < 0,
Qk1

j=1 �(�1js+ ⌫1j) and
Qk2

j=1 �(�2js+ ⌫2j) can have finitely many poles. It follows

that �1

�2
is a meromorphic function with finitely many poles and zeros. So here we can write it as

�1(s)
�2(s)

= R(s)eas, where R is a rational function and a is a complex constant. Therefore here we

have,

L1(s) = �1(s)L1(1� s),

L2(s) = �1(s)R(s)easL2(1� s).

Then in some � < �B, where B � A, it is possible to find a sequence {sn(= �n+⌫1j

�1j
)} for some

fixed j, of zeros of �1(s), which are also zeros of Li(s) and Li(1� s) never vanish in � > B for

i = 1, 2. Also it can be seen that Re(sn) ! �1 as n ! 1.

5 Proofs of the theorems

Proof of Theorem 3.4. Let us consider the following cases.

Case 1: First assume H = 0. Then integrating we have,

1

P (L) =
c

P (f)
+ d, (5.1)

where c ( 6= 0), d are constants. Clearly from Lemma 4.4 we have, d = 0. As from the

hypothesis of the theorem we know P (z) is a SUPM, from P (f) = cP (L), we have f = L.

Case 2: Next assume H 6= 0. Using the Second Fundamental Theorem we have,

(t� 1)T (r,L)  N(r, 0;P (L)) +N(r,1;L) + S(r,L) (5.2)

 N(r, 0;P (f)) +O(log r) + S(r,L)

 nT (r, f) + S(r,L).

Similarly, we can have,

(t� 2)T (r, f)  nT (r,L) + S(r, f). (5.3)

Clearly (5.2) and (5.3) we have, ⇢(f) = ⇢(L) = 1 and hence S(r, f) = S(r,L) = S(r) (say).
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Using the Second Fundamental theorem we have,

(t+ k � 1)(T (r, f) + T (r,L))  N(r, 0;P (f)) +N(r, 0;P (L)) +N(r,1; f) +N(r,1;L)

+
kX

i=1

(N(r,↵i; f)) +N(r,↵i;L))�N0(r, 0; f
0)�N0(r, 0;L0) + S(r).

i.e.,

(t� 1)T (r,L) + (t� 2)T (r, f)  N(r, 0;P (f))N(r, 0;P (L))�N0(r, 0; f
0) (5.4)

�N0(r, 0;L0) + S(r).

Using Lemmas 4.3, 4.1, 4.2 and 4.6, from (5.4) we have,

(t� 1)T (r,L) + (t� 2)T (r, f)  n

2
{T (r, f) + T (r,L)}+N(r,1; f) +N(r,1;L)

+
kX

i=1

(N(r,↵i, f) +N(r,↵i;L)) + S(r),

i.e.,

✓
t

2
� 2

◆
T (r, f) +

✓
t

2
� 1

◆
T (r,L) + S(r)  kT (r,L) + (k + 1)T (r, f) + S(r),

(t� 2k � 6)T (r, f) + (t� 2� 2k)T (r,L)  S(r). (5.5)

Using (5.2) we have

(t� 2k � 6)
t� 1

t
T (r,L) + (t� 2� 2k)T (r,L)  S(r). (5.6)

From (5.6) for t � 2k + 4 we arrive at a contradiction.

Proof of Theorem 3.8. Let us consider two non-constant L-functions L1 and L2 such that EL1(S, 2) =

EL2(S, 2) where S is the zero set of strong uniqueness polynomial for L-function. Also assume,

F = P (L1) and G = P (L2).

If H = 0, then from Case 1 of Theorem 3.4 we will have, L1 = L2. If H 6= 0, then proceeding

similarly as done in (5.4), (5.5) we will have a contradiction for t � 2k + 3. Hence finally we will

have L1 = L2.
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Proof of Theorem 3.6. Let us assume for two non-constant L-functions, L1, L2; EL1(S1) = EL2(S2).

Clearly then we can set the auxiliary function

G =
Po(L1)

Qo(L2)
= (s� 1)lep1(s), (5.7)

for some integer l and from Lemma 4.7 we will have p1(s) = as+ b, for some complex constants a,

b. Now let us consider the following cases.

Case 1: First let k2 = 0, i.e., Qo = k1Po.

Subcase 1.1: Po(1) 6= 0. Then,

G =
(L1 � ↵1)(L1 � ↵2) · · · (L1 � ↵t)

(L2 � ↵1)(L2 � ↵2) · · · (L2 � ↵t)
= k1(s� 1)leas+b, (5.8)

from (5.8) taking limit � ! +1 we have,

lim
�!+1

k1(s� 1)leas+b = 1,

which implies a = l = 0 and then simply k1eb = 1. Finally we have, Po(L1)
Po(L2)

= 1 and

hence L1 = L2.

Subcase 1.2: Let us assume Po(1) = 0 but Po(0) 6= 0. Without loss of generality assume

↵1 = 1. Again Li can be represented by a Dirichlet series, i.e., Li(s) =
P1

n=1
ai(n)
ns , i =

1, 2, absolutely convergent for � > 1, where ai(1) = 1. Also let n1, n2 be two integers

such that ni = min{n (� 2) : ai(n) 6= 0, i = 1, 2}. So,

L1 � 1

L2 � 1
=

1
ns
1

�
a1(n1) +

P1
n>n1

a1(n)(
n1
n )s

�

1
ns
2

�
a2(n2) +

P1
n>n2

a2(n)(
n2
n )s

� =

✓
n2

n1

◆s

G0(s), (5.9)

where,

G0(s) =
a1(n1) +

P1
n>n1

a1(n)(
n1
n )s

a2(n2) +
P1

n>n2
a2(n)(

n2
n )s

.

By the construction of G0(s) we note that lim�!+1 G0(s) =
a1(n1)
a2(n2)

. In view of (5.7),

let us consider the following function

G1 = G0(s) ·
(L1 � ↵2) · · · (L1 � ↵t)

(L2 � ↵2) · · · (L2 � ↵t)
=

L1 � 1

L2 � 1
· qs · (L1 � ↵2) · · · (L1 � ↵t)

(L2 � ↵2) · · · (L2 � ↵t)
(5.10)

= qs
(L1 � 1)(L1 � ↵2) · · · (L1 � ↵t)

(L2 � 1)(L2 � ↵2) · · · (L2 � ↵t)
= qsG = k1q

s(s� 1)leas+b,

for some q = n1
n2

(2 Q+). We can write q = elog q = eq
0
, then we can write it as,
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G1 = k1qs(s� 1)leas+b = k1(s� 1)le(q
0+a)s+b = k1(s� 1)lea

0s+b where a0 = q0 + a. Let

us consider a0 = a1 + ia2 and b = b1 + ib2. With respect to the first equality of (5.10),

taking limit � ! +1, we have lim�!+1 G1 = C1, for some constant C1 2 C⇤. Next

from the second and last equality of (5.10), taking limit � ! +1, we have

lim
�!+1

����q
s (L1 � 1)

(L2 � 1)
· (L1 � ↵2) · · · (L1 � ↵t)

(L2 � ↵2) · · · (L2 � ↵t)

���� = |C1| = lim
�!+1

|(s� 1)lea
0s+b̂|

= Constant = lim
�!+1

|� � 1 + it|lea1��a2t+b1 .

Therefore we must have a1 = 0 = l, otherwise lim�!+1 |�� 1+ it|lea1��a2t+b1 = 1 or

0 according as a1 > or < 0 and with the same argument it can be shown that l = 0.

Also,

lim
�!+1

e�a2t+b1 = |C1|, 8t 2 R,

implies a2 = 0. Hence we have a = a1 + ia2 = 0 and l = 0. Therefore, G1 = k1eb and

from the last equality of (5.10), we get G = q�sk1eb, i.e., from (5.8) we have

(L1 � 1)

(L2 � 1)
· (L1 � ↵2) · · · (L1 � ↵t)

(L2 � ↵2) · · · (L2 � ↵t)
= q�sk1e

b. (5.11)

Now from Lemma 4.8, it is possible to find a sequence sn of trivial zeros in � < �A,

whose real part diverges, i.e., Re(sn) ! �1, as n ! 1. From (5.11) putting s = sn

we have qRe(�sn)|k1|eRe(b) = 1, taking limit as n ! 1 we will have qRe(�sn) ! 1 or

0, according as q > 1 or < 1. So we must have q = 1 and hence k1eb = 1. Therefore

Po(L1) = Po(L2) =) L1 = L2.

Case 2: Next let k2 6= 0. Then we can write G as,

G =
Po(L1)

k1Po(L2) + k2
=

(L1 � ↵1)(L1 � ↵2) · · · (L1 � ↵t)

(L2 � �1)(L2 � �2) · · · (L2 � �t)
= (s� 1)leas+b. (5.12)

Subcase 2.1: Let us assume Po(1).Qo(1) 6= 0. From (5.11) taking � ! +1, we will have,

G = C = non-zero constant. Hence we have, Po(L1) = k01Po(L2) + k02. In view of

Lemma 4.8, Putting s = sn we have, k02 = Po(0)(1� k01).

Subcase 2.1.1: First let Po(0) = 0, then k02 = 0. Using the fact Po(1) 6= 0, with the

same argument as in Subcase 1.1 we will have, Po(L1) = Po(L2) and hence L1 = L2.

Subcase 2.1.2: Next let Po(0) 6= 0. Then we have Po(L1)�Po(0) = k01(Po(L2)�Po(0)).

Taking � ! +1 and noting that Po(0) 6= Po(1), we have, k01 = 1 and hence k02 = 0.

And the from Subcase 1.1 we will have the result.
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Subcase 2.2: Assume Po(1)Qo(1) = 0 but Po(0)Qo(0) 6= 0.

Subcase 2.2.1: Let us assume Po(1) = 0 = Qo(1). Without loss of generality assume

↵1 = �1 = 1. Then proceeding similarly as done in Subcase 1.2 we will have
Po(L1)
Qo(L2)

= constant. Noting that Po(0) 6= 0, like Subcase 2.1 we can show that the

constant is 1 and so we have L1 = L2.

Subcase 2.2.2: Next let Po(1) = 0 but Qo(1) 6= 0. Then let ↵1 = 1 and we can have,

L1 � 1 =
1

ns
1

 
a1(n1) +

1X

n>n1

a1(n)
⇣n1

n

⌘s
!

=
1

ns
1

G1(s),

where G1(s) = ns
1(L1�1) = a1(n1)+

P1
n>n1

a1(n)(
n1
n )s and lim�!+1 G1 = a1(n1).

Now, G =
(L1 � 1)(L1 � ↵2) · · · (L1 � ↵n)

(L2 � �1)(L2 � �2) · · · (L2 � �n)
= (s� 1)leas+b.

Let us set a function

G2 = G1
(L1 � ↵2) · · · (L1 � ↵n)

(L2 � �1)(L2 � �2) · · · (L2 � �n)
(5.13)

= ns
1
(L1 � 1)(L1 � ↵2) · · · (L1 � ↵n)

(L2 � �1)(L2 � �2) · · · (L2 � �n)
= ns

1G = (s� 1)lns
1e

as+b.

Therefore we can write, G2 = (s � 1)lea
00seb, where a00 = a + log n1. Next the

first equality of (5.13) implies, lim�!+1 G2 = Constant. But lim�!+1 |(s �
1)lea

00s+b| = 0 or 1, according as Re(a00) < or > 0, it follows that Re(a00) = 0.

Since the limit is independent of t, we will have Im(a00) = 0. With similar argu-

ments we will have l = 0. Therefore a00 = 0 = l and we will have from the last

equality of (5.13),

G2 = eb =) G = n�s
1 eb

i.e.,
(L1 � 1)(L1 � ↵2) · · · (L1 � ↵n)

(L2 � �1)(L2 � �2) · · · (L2 � �n)
= n�s

1 eb.

Proceeding similarly as in (5.11) we will have, n1 = 1 and then we have G = eb =

Constant. With the help of Subcase 2.1 we will have L1 = L2.

Subcase 2.2.3: Next let Po(1) 6= 0 but Qo(1) = 0, proceeding in a same way as done

in Subcase 2.2.2 and then using Subcase 2.1 we will have L1 = L2.

Hence {Po, Qo} belong to ECUPL and {S1, S2} belong to ECURSL.
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6 Application

In this section, we show the application of Theorem 3.4. Not only that, next we are going to show

that the much improved version of Theorem 3.3 falls under a special case of our Theorem 3.4.

Below we explain this fact via the following example.

Example 6.1. We are going to consider a new polynomial of degree m+n+1 recently introduced

in [2] as follows:

P (z) =
nX

j=0

✓
n

j

◆
(�1)j

m+ n+ 1� j
zm+n+1�jaj (6.1)

+
mX

i=1

nX

j=0

✓
m

i

◆✓
n

j

◆
(�1)i+j

m+ n+ 1� i� j
zm+n+1�i�jajbi � c = Q(z)� c,

where a and b be distinct such that a, b 2 C, c 6= 0, Q(a), Q(b) and m � n + 2 and n � 2. It is

easy to verify that,

P 0(z) = (z � a)n(z � b)m.

Clearly from the choice of c, P (z) has only simple zeros. First we will show that (6.1) is critically

injective, strong uniqueness polynomial with derivative index 2 with m � n+ 2 and n � 2. From

Remark 1 [2, p. 506] it can be shown that P (z) is critically injective polynomial. Next, let us

assume for some constant A 6= 0 and for two non-constant meromorphic functions f , g with finitely

many poles we have

P (f) = AP (g). (6.2)

By Lemma 4.4, we get,

T (r, f) = T (r, g) +O(1). (6.3)

Also here, N(r,1; f) = S(r, f) = N(r,1; g) = S(r, g).

Now, consider the cases,

Case 1: Suppose A 6= 1. Then

P (f) + c = A(P (g) + c)� c(A� 1), (6.4)

i.e.,

Q(f) = AQ(g)� c(A� 1) =) Q(f)�Q(b) = AQ(g)� (Q(b) + c(A� 1)).

Recall that the only zeros of Q0(z) are a and b. So only possible multiple zeros of �(z) =
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AQ(z) � (Q(b) + c(A � 1)) could be a and b. First assume b is one multiple zero of �(z).

Thus �(b) = 0, i.e.,

AQ(b)� (Q(b) + c(A� 1)) = 0 =) (Q(b)� c)(A� 1) = 0 =) Q(b) = c,

a contradiction as Q(b) 6= c.

Next assume a is the multiple zero of �(z). It is easy to see that �(z) = (z � a)n+1�1(z),

where �1(a) 6= 0 and all zeros of �1(z) are simple, namely µj , j = 1, 2, . . . ,m. Notice that

Q(z) � Q(b) = (z � b)m+1�2(z), where �2(b) 6= 0 and all zeros of �2(z) are simple, namely

⌫j , j = 1, 2, . . . , n. From (6.4) we have,

N(r, b; f) +
nX

i=1

N(r, ⌫j ; f) = N(r, a; g) +
mX

i=1

N(r, µj ; g). (6.5)

Now using the Second Fundamental Theorem we have,

mT (r, g)  N(r, a; g) +
mX

i=1

N(r, µj ; g) +N(r,1; g) + S(r, g)

 N(r, b; f) +
nX

i=1

N(r, ⌫j ; f) + S(r, g)

 (n+ 1)T (r, f) = (n+ 1)T (r, g) + S(r, g),

this contradicts the fact m � n+ 2.

Hence we see neither a nor b be the multiple zeros of �(z) and hence all the zeros of �(z) are

simple, say �j , j = 1, 2, . . . ,m+ n+ 1. From (6.4) we have,

(m+ n)T (r, g) 
m+n+1X

j=1

N(r, �j ; g) +N(r,1; g) + S(r, g)

 N(r, b; f) +
nX

i=1

N(r, ⌫j ; f) + S(r, g)

 (n+ 1)T (r, f) = (n+ 1)T (r, g) + S(r, g),

a contradiction as m � n+ 2 and n � 2.

Case 2: Assume A = 1.

P (f) = P (g).

Now the zeros of P 0(z) has multiplicities m � 4, n � 2 and m+ n � 6. Hence from Lemma

4.5 we have from above, f = g. Now if we take m = 5, n = 2, then P (z) becomes a
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polynomial of degree 8. So clearly from the above discussion if f be a meromorphic function

and L be an L-function satisfying Ef (S, 2) = EL(S, 2) such that the degree of P (z) becomes

m+n+1 � 8, then by Theorem 3.4, we have f = L. As putting b = 0 in (6.1), we obtain the

polynomial (3.1), for m + n � 7, the result in Theorem 3.3 holds as well. Clearly Theorem

3.4 is a three step improvements of Theorem 3.3:

(1) In Theorem 3.4, we have considered the zero set of an arbitrary SUPM satisfying prop-

erties (i) and (ii). By means of Example 6.1 we know that the polynomial (3.1) is itself

a critically injective SUPM, so in terms of choice of SUPM, Theorem 3.4 is quite a

generalization of Theorem 3.3.

(2) In the light of relaxation of sharing of the zero set Theorem 3.4 improves Theorem 3.3.

(3) Most importantly, it can be verified that the minimum cardinality of the considered set

in Theorem 3.3 is nine, where as we have been able to show that in Theorem 3.3 still

holds for the cardinality of the range set as n +m + 1 � 8. That is the cardinality of

the range set in Theorem 3.3 can further be diminished.

Again since L can be analytically continued as a meromorphic function with only one pole,

then from the above discussion it can be observed that if L1 and L2 share the zero set S of

the polynomial (6.1) with weight two, i.e., EL1(S, 2) = EL2(S, 2) where n+m+ 1 � 7, then

according to Theorem 3.8 we will have L1 = L2.
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ABSTRACT

In this note we prove a result that highlights an interesting

connection between the structure of the zeros of a polynomial

p(z) and Sendov’s conjecture.

RESUMEN

En esta nota demostramos un resultado que da luces sobre

una conexión interesante entre la estructura de los ceros de

un polinomio p(z) y la conjetura de Sendov.
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1 Introduction

Let p(z) :=
Pn

j=0 ajz
j , where aj 2 C be a polynomial with complex coefficients. If we plot the

zeros of a polynomial p(z) and the zeros of its derivative p0(z) (the critical points of p(z)) in the

complex plane, there are interesting geometric relations between the two sets of points. To start

with they have the same centroid. We also have the Gauss-Lucas Theorem which states that the

critical points of a polynomial p lie in the convex hull of its zeros. Regarding the distribution of

critical points of p within the convex hull of its zeros the well known Sendov’s Conjecture asserts:

“If all the zeros of a polynomial p lie in |z|  1 and if z0 is any zero of p(z), then there is a critical

point of p in the disk |z � z0|  1.”

The conjecture was posed by Bulgarian mathematician Blagovest Sendov in 1958, but is often

attributed to Ilieff because of a reference in Hayman’s Research Problems in Function Theory [6]

in 1967. A large number of papers have been published on this conjecture (for details see [9])

but the general conjecture remains open. Rubinstein [10] in 1968 proved the conjecture for all

polynomials of degree 3 and 4. In 1969 Schmeisser [11] showed that, if the convex hull containing

all zeros of p has its vertices on |z| = 1, then p satisfies the conjecture (for the proof see [9, Theorem

7.3.4]). Later Schmeisser [12] also proved the conjecture for the Cauchy class of polynomials. In

1996 Borcea [2] showed that the conjecture holds true for polynomials with atmost six distinct

zeros and in 1999 Brown and Xiang [3] proved the conjecture for polynomials of degree up to

eight. Dégot [5] proved that for every zero (say) z0 of a polynomial p there exists lower bound

N0 depending upon the modulus of z0 such that |z � z0|  1 contains a critical point of p if

deg(p) > N0. Chalebgwa [4] gave an explicit formula for such a N0. More recent work in this area

includes that of Kumar [7], Sofi, Ahanger and Gardner [14], and Sofi and Shah [13]. As for the

latest, Terence Tao [15] following on the work of Dégot [5], proved that the Sendov’s conjecture

holds for polynomials with sufficiently high degree.

In this paper we prove an interesting connection between the geometric structure of the zeros of a

polynomial and Sendov’s conjecture.

2 Statement and proof of the theorem

Theorem 2.1. Let p(z) :=
Pn

j=0 ajz
j
be a polynomial of degree n � 2 with all its zeros z1, z2, . . . , zn

lying inside the closed unit disk. Suppose that for all j = 1, 2, . . . , n

nX

i=1,i 6=j

����1�
1

zj � zi

����
2


nX

i=1,i 6=j

����
1

zj � zi

����
2

(2.1)

then |z � zj |  1 contains some critical point of p, that is, Sendov’s conjecture holds for p.
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[One prime (but not the only) example of polynomials satisfying the hypotheses of Theorem 2.1

are the polynomials whose zeros lie on a circle within the closed unit disk. In this case we may

assume without loss of generality that |zi| = |zj | for all 1  i, j  n and that for a fixed but

arbitrary 1  j  n, 0 < zj  1. Hence for all 1  i  n

|zi � (zj � 1)|  |zi|+ |zj � 1| = |zi|+ 1� zj = 1

and the required condition

nX

i=1,i 6=j

����1�
1

zj � zi

����
2


nX

i=1,i 6=j

����
1

zj � zi

����
2

is satisfied.]

Proof. Let ⇣1, ⇣2 . . . , ⇣n�1 be the critical points of p and assume to the contrary. Then there exists

a zero of p say z1 such that |z1 � ⇣i| > 1 for 1  i  n� 1 . We note that z1 cannot be a repeated

zero of p and hence z1 � zi 6= 0 for all i = 2, 3, . . . , n and

1

|z1 � ⇣i|
< 1 for all 1  i  n� 1.

Also we can write

p0(z) = nan

n�1Y

i=1

(z � ⇣i)

so that
p00(z)

p0(z)
=

n�1X

i=1

1

z � ⇣i
.

This gives
p00(z1)

p0(z1)
=

n�1X

i=1

1

z1 � ⇣i
.

Hence ����
p00(z1)

p0(z1)

���� =

�����

n�1X

i=1

1

z1 � ⇣i

����� 
n�1X

i=1

1

|z1 � ⇣i|
< n� 1.

That is ����
p00(z1)

p0(z1)

���� < n� 1. (2.2)

Now suppose

p(z) = an(z � z1)q(z), where q(z) =
nY

i=2

(z � zi).

This gives
q0(z)

q(z)
=

nX

i=2

1

z � zi
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so that
q0(z1)

q(z1)
=

nX

i=2

1

z1 � zi
.

Also

p0(z1) = q(z1) and p00(z1) = 2q0(z1).

Therefore from (2.2), we obtain

����
2q0(z1)

q(z1)

���� =
����
p00(z1)

p0(z1)

���� < n� 1

and hence ����
q0(z1)

q(z1)

���� <
n� 1

2
.

Thus �����

nX

i=2

1

z1 � zi

����� <
n� 1

2
. (2.3)

Now

Re

✓
1

z1 � zi

◆
=

1

2
+

1� |z1 � zi � 1|2

2|z1 � zi|2

for all i = 2, 3, . . . , n. This gives

nX

i=2

Re

✓
1

z1 � zi

◆
=

n� 1

2
+

nX

i=2

1� |z1 � zi � 1|2

2|z1 � zi|2

=
n� 1

2
+

1

2

 
nX

1=2

����
1

z1 � zi

����
2

�
nX

i=2

����
z1 � zi � 1

z1 � zi

����
2
!

=
n� 1

2
+

1

2

 
nX

i=2

����
1

z1 � zi

����
2

�
nX

1=2

����1�
1

z1 � zi

����
2
!

Now from (2.1)

 
nX

i=2

����
1

z1 � zi

����
2

�
nX

i=2

����1�
1

z1 � zi

����
2
!

� 0

Therefore

Re

 
nX

i=2

1

z1 � zi

!
=

nX

i=2

Re

✓
1

z1 � zi

◆
� n� 1

2

and hence
�����

nX

i=2

1

z1 � zi

����� �
n� 1

2
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which contradicts (2.3) and the contradiction proves the result.
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