
2024
VOLUME 26 · ISSUE 1

I S S N  0 7 1 9 - 0 6 4 6

Departamento de Matemática y Estadística

Facultad de Ingeniería y Ciencias

Temuco - Chile

O N L I N E  V E R S I O N



CUBO

A Mathematical Journal

a
EDITOR-IN-CHIEF

a
Rub́ı E. Rodŕıguez
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ABSTRACT

In this paper we examine some inequalities of Frame’s type

on the interval (0,⇡/2). By observing this domain we simply

obtain the results using the appropriate families of stratified

functions and MTP - Mixed Trigonometric Polynomials. Ad-

ditionally, from those families we specify a minimax approx-

imant as a function with some optimal properties.

RESUMEN

En este artículo examinamos algunas desigualdades de tipo

Frame en el intervalo (0,⇡/2). Observando este dominio

simplemente obtenemos los resultados usando las familias

apropiadas de funciones estratificadas y PTM - Polinomios

Trigonométricos Mezclados. Adicionalmente, a partir de esas

familias, especificamos un aproximante minimax como una

función con algunas propiedades optimales.

Keywords and Phrases: Frame’s type inequalities, stratified families of functions, mixed trigonometric polynomial

functions.
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1 Introduction

This paper deals with some inequalities that are discussed in [10, 19], see also the monograph

[11, part 3.4.20]. In [1, 13] is stated the Cusa-Huygens approximation:

x ⇡ 3 sinx

2 + cosx
, for x 2 (0,⇡),

which in the paper [9] is specified using families of stratified functions on the domain (0,⇡/2). L.

Zhu in [19] gives the following two inequalities:

x� 3 sinx

2 + cosx
>

1

180
x5, for x 2 (0,⇡) (1.1)

and

x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
>

1

2100
x7, for x 2 (0,⇡), (1.2)

and names them Frame’s inequalities. In the monograph Analytic Inequalities by D.S. Mitrinović

[11, part 3.4.20.] inequalities (1.1) and (1.2) appear with the wrong relation, which L. Zhu corrects

in [19].

Based on inequality (1.1) the following assertion is proved in the paper [10].

Theorem 1.1. The following inequalities are true:

1

180
x5  x� 3 sinx

2 + cosx
 1

m1
x5 , (1.3)

where x 2 [0,⇡] and m1 = 92.96406 . . . = 1/f(x0) . The value f(x0) is determined for the function

f(x) =

✓
x� 3 sinx

2 + cosx

◆
/x5 : (0,⇡) �! R

at the point x0 = 2.83982 . . . at which the function reaches its maximum f(x0) on the interval

(0,⇡). The equality in (1.3) holds for both sides when x = 0 and holds for the right hand side when

x = x0.

Inequality (1.3) is used to estimate the Cusa-Huygens function '(x) = x � 3 sinx

2 + cosx
over (0,⇡)

[10].

The motivation for this paper is to improve the previous results, by finding the minimax approx-

imant for unconsidered values of parameters. We will observe the shorter interval (0,⇡/2), for a

more precise estimate in the origin’s neighbourhood. The used approach combines the concept of

stratification [9] with a method for proving MTP inequalities [8]. This way we can simply prove

the known results, and also establish novel ones. Analogously, this procedure can be applied to

consider other types of MTP inequalities. In addition, it is possible to apply this approach in
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solving concrete practical problems such as in [5] and [12].

This paper is organized as follows. The required theoretical background is presented in section

2. In subsection 2.1 are given definitions of stratification and the minimax approximant, as well

as Nike theorem in two forms. In subsection 2.2 is explained the used method for proving MTP

inequalities. In section 3 are analyzed two inequalities of Frame’s type using stratification and

MTP method. In subsection 3.1 are given improved results regarding the inequality (1.1). In

subsection 3.2 are given improved results regarding the inequality (1.2), obtained analogously to

subsection 3.1. Section 4 concludes the paper.

2 Preliminaries

2.1 Stratification and Nike theorem

In this subsection we state relevant concepts and assertions from the paper [9].

The functions 'p(x), where x 2 (a, b) ✓ R and p 2 D ✓ R+, are increasingly stratified if p1 >

p2 () 'p1(x) > 'p2(x) holds for each x 2 (a, b), and conversely, decreasingly stratified if p1 >

p2 () 'p1(x) < 'p2(x) holds for each x 2 (a, b) (p1, p2 2 D).

Our aim is to determine the maximal subset I ✓ D such that, for p 2 I, we have 'p(x) > 0 for

each x 2 (a, b). Likewise, we want to determine the maximal subset J ✓ D such that, for p 2 J ,

we have 'p(x) < 0 for each x 2 (a, b). We will assume that D = R+, I [ J $ D, I 6= ; and J 6= ;.
In that case, it is important to examine the sign of the function 'p(x) in terms of the parameter

p 2 D \ (I [ J), for x 2 (a, b).

The value sup
x2(a,b)

|'p(x)| is called the approximation error on the interval (a, b) and denoted by

d(p) = sup
x2(a,b)

|'p(x)| , (2.1)

for p 2 D. Our aim is to determine the unique value of the parameter p = p0 2 D for which the

infimum of the error d(p) is attained:

d0 = inf
p2R+

sup
x2(a,b)

|'p(x)| . (2.2)

For such a value p0 of the parameter p, the function 'p0(x) is called the minimax approximant on

(a, b).
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If the family 'p(x) allows us to consider x 2 [a, b] and p 2 D = [c, d] ⇢ R+, then we have

d0 = min
p2[c,d]

max
x2[a,b]

|'p(x)| .

The following assertions are proved in [9].

Theorem 2.1 ([9]). Let 'p(x) be a family of functions that are continuous with respect to x 2 (a, b)

for each p 2 R+
and increasingly (decreasingly) stratified for p 2 R+

, and let c, d 2 R+
, where

c < d. If:

(a) 'c(x) < 0 ('c(x) > 0) and 'd(x) > 0 ('d(x) < 0) for each x 2 (a, b), and at the endpoints

'c(a+) = 'd(a+) = 0, 'c(b�) = 0 ('d(b�) = 0) and 'd(b�) 2 R+ ('c(b�) 2 R+) hold;

(b) the functions 'p(x) are continuous with respect to p 2 (c, d) for each x 2 (a, b) and 'p(b�)

are also continuous with respect to p 2 (c, d);

(c) for each p 2 (c, d), there is a right neighbourhood of the point a in which 'p(x) < 0;

(d) for each p 2 (c, d) the function 'p(x) has exactly one extremum at t(p) on (a, b), which is

minimum;

then there is exactly one solution p0, for p 2 R+
, to the following equation:

|'p(t
(p))| = 'p(b�),

and for d0 = |'p0(t
(p0))| = 'p0(b�) we have

d0 = inf
p 2 R+

sup
x 2 (a, b)

|'p(x)| .

Theorem 2.2 (Nike theorem, [7, 9]). Let 'p(x) : (a, b) �! R be at least m times differentiable

function, for some m � 2, m 2 N, which satisfies the following conditions:

(a) f (m) > 0 for x 2 (0, c);

(b) there is a right neighbourhood of zero in which the following inequalities hold:

f < 0, f 0 < 0, . . . , f (m�1) < 0;

(c) there is a left neighbourhood of the point c in which the following inequalities hold:

f > 0, f 0 > 0, . . . , f (m�1) > 0 .
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Then the function f has exactly one root x0 2 (0, c) and f(x) < 0 for x 2 (0, x0) and f(x) > 0

for x 2 (x0, c). Additionally, the function f has exactly one local minimum on the interval (0, c).

More precisely, there is exactly one point t 2 (0, x0) ⇢ (0, c) such that f(t) < 0 is the smallest

value of the function f on the interval (0, x0) ⇢ (0, c).

Theorem 2.3 (Nike theorem, II form, [9]). Let 'p(x) : (a, b) �! R be at least m times differen-

tiable function, for some m � 2, m 2 N, which satisfies the following conditions:

(a) f (m)
has exactly one root xm on (0, c) such that f (m) > 0 on (0, xm) and f (m) < 0 on (xm, c);

(b) there is a right neighbourhood of zero in which the following inequalities hold:

f < 0, f 0 < 0, . . . , f (m�1) < 0;

(c) there is a left neighbourhood of the point c in which the following inequalities hold:

f > 0, f 0 > 0, . . . , f (m�1) > 0.

Then the function f has exactly one root x0 2 (0, c) and f(x) < 0 for x 2 (0, x0) and f(x) > 0

for x 2 (x0, c). Additionally, the function f has exactly one local minimum on the interval (0, c).

More precisely, there is exactly one point t 2 (0, x0) ⇢ (0, c) such that f(t) < 0 is the smallest

value of the function f on the interval (0, x0) ⇢ (0, c).

2.2 A method for proving MTP inequalities

In this subsection we present relevant assertions from the paper [8] for proving inequalities of the

form

f(x) =
nX

i=1

↵ix
pi cosqi x sinri x > 0 , (2.3)

where x 2 (�1, �2), �1  0  �2 and �1 < �2, where ↵i 2 R \ {0}, pi, qi, ri 2 N0 and n 2 N. The

function f(x) we denote as MTP - Mixed Trigonometric Polynomial [4], and the corresponding

inequality (2.3) we denote as MTP inequality.

Let the function f(x) be approximated by Taylor polynomial Tk(x) of degree k in the neighbour-

hood of some point a. If there is ⌘ > 0 such that on the interval x 2 (a � ⌘, a + ⌘), it holds that

Tk(x) � f(x), then Tk(x) denotes the upward approximation of the function f(x) in the neigh-

bourhood of the point a. In this case, the polynomial Tk(x) is denoted by T
f,a
k (x), or short T k(x).

Analogously, if there is ⌘ > 0 such that on the interval x 2 (a�⌘, a+⌘), it holds that Tk(x)  f(x),

then Tk(x) denotes the downward approximation of the function f(x) in the neighbourhood of the

point a. In this case, the polynomial Tk(x) we also denote by T f,a
k (x), or short T k(x).
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The following assertions are proved in [8].

Lemma 2.4. (a) For the polynomial

Tn(t) =

(n�1)/2X

i=0

(�1)it2i+1

(2i+ 1)!
,

where n = 4k + 1, k 2 N0 , it holds:

Tn(t) � Tn+4(t) � sin t, 8t 2
h
0,
p

(n+ 3)(n+ 4)
i

Tn(t)  Tn+4(t)  sin t, 8t 2
h
�
p

(n+ 3)(n+ 4), 0
i
.

For t = 0 the inequalities turn into equalities. For t = ±
p

(n+ 3)(n+ 4) the equalities

Tn(t) = Tn+4(t) and Tn(t) = Tn+4(t) hold, respectively.

(b) For the polynomial

Tn(t) =

(n�1)/2X

i=0

(�1)it2i+1

(2i+ 1)!
,

where n = 4k + 3, k 2 N0 , it holds:

Tn(t)  Tn+4(t)  sin t, 8t 2
h
0,
p

(n+ 3)(n+ 4)
i
,

Tn(t) � Tn+4(t) � sin t, 8t 2
h
�
p

(n+ 3)(n+ 4), 0
i
.

For t = 0 the inequalities turn into equalities. For t = ±
p

(n+ 3)(n+ 4) the equalities

Tn(t) = Tn+4(t) and Tn(t) = Tn+4(t) hold, respectively.

(c) For the polynomial

Tn(t) =

n/2X

i=0

(�1)it2i

(2i)!
,

where n = 4k, k 2 N0 , it holds:

Tn(t) � Tn+4(t) � cos t, 8t 2
h
�
p
(n+ 3)(n+ 4),

p
(n+ 3)(n+ 4)

i
.

For t = 0 the inequalities turn into equalities. For t = ±
p

(n+ 3)(n+ 4) the equality Tn(t) =

Tn+4(t) holds.

(d) For the polynomial

Tn(t) =

n/2X

i=0

(�1)it2i

(2i)!
,
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where n = 4k + 2, k 2 N0 , it holds:

Tn(t)  Tn+4(t)  cos t, 8t 2
h
�
p
(n+ 3)(n+ 4),

p
(n+ 3)(n+ 4)

i
.

For t = 0 the inequalities turn into equalities. For t = ±
p

(n+ 3)(n+ 4) the equality Tn(t) =

Tn+4(t) holds.

The main idea of the method described in [8] is to, for a given MTP function f(x) defined on

(0,⇡/2), find a polynomial P (x) using Lemma 1, such that f(x) > P (x) and P (x) > 0 when

x 2 (0,⇡/2). If such polynomial exists, then f(x) > 0 for x 2 (0,⇡/2).

For example, all results from the paper [20] can be proved by reduction to the appropriate MTP

inequalities with the application of this method.

3 Main results

3.1 Improved results for inequality (1.1)

In this subsection we prove the results regarding the family of functions

'p(x) = x� 3 sinx

2 + cosx
� px5,

�
x 2 (0,⇡/2) and p 2 R+

�
,

with the aim of improving the results for Frame’s inequality (1.1) on the interval (0,⇡/2). The

following assertions are true.

Lemma 3.1. The family of functions

'p(x) = x� 3 sinx

2 + cosx
� p x5, for x 2 (0,⇡/2)

is decreasingly stratified with respect to parameter p 2 R+
.

Proof. It holds that
@'p(x)

@p
= �x5 < 0, for each x 2 (0,⇡/2).

Proposition 3.2. Let

A =
1

180
= 0.005 and B =

16 (⇡ � 3)

⇡5
= 0.00740306 . . .

Then for x 2 (0,⇡/2), it holds:

'A(x) > 0 and 'B(x) < 0.
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Proof. Let us write 'A(x) in the form:

'A(x) = x� 3 sinx

2 + cosx
� x5

180
=

fA(x)

180(2 + cosx)
,

where

fA(x) = �540 sinx+ (�x5 + 180x) cosx+ 2(�x5 + 180x)

is a MTP function defined on [0,⇡/2].

Since 180(2+cosx) > 0 for each x 2 (0,⇡/2), it is sufficient to prove that fA(x) > 0 for x 2 (0,⇡/2).

We will use a method given in subsection 2.2.

The following inequalities are true based on Lemma 2.4:

sin t < T
sin,0
5 (t) for t 2 (0,

p
72) = (0, 8.485 . . .)

and

cos t > T cos,0
6 (t) for t 2 (0,

p
90) = (0, 9.4868 . . .).

For each x 2 (0,⇡/2) it holds:

fA(x) > P11(x) = �540| {z }
< 0

T
sin,0
5 (x) + (�x5 + 180x)| {z }

> 0

T cos,0
6 (x) + 2(�x5 + 180x)| {z }

> 0

.

The polynomial P11(x) can be written in the following way:

P11(x) =
1

720
x11 � 1

24
x9 +

1

4
x7 =

x7

720

�
x4 � 30x2 + 180

�
=

x7

720
P4(x).

The first positive root of the biquadratic equation P4(x) = 0 is x1 =
p
15� 3

p
5 = 2.879 . . . > ⇡/2.

Since P4(x1/2) = P4(1.439) = 122.108 > 0, it follows that P4(x) > 0 for x 2 (0,⇡/2). Furthermore,

fA(x) > P11(x) > 0 for x 2 (0,⇡/2). Therefore, 'A(x) > 0 for each x 2 (0,⇡/2).

We prove 'B(x) < 0 in a similar way. Let us write 'B(x) in the form:

'B(x) = x� 3 sinx

2 + cosx
� 16(⇡ � 3)x5

⇡5
=

fB(x)

⇡5(2 + cosx)
.

Since ⇡5(2 + cosx) > 0 for each x 2 (0,⇡/2), the requested inequality is equivalent to fB(x) < 0

for x 2 (0,⇡/2), where

fB(x) = �3⇡5 sinx+ (16(3� ⇡)x5 + ⇡5x) cosx+ 2(16(3� ⇡)x5 + ⇡5x)

is a MTP function defined on [0,⇡/2]. Let us notice that fB(0) = fB(⇡/2) = 0. For that reason,
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we consider two cases:

(1) x 2 (0, 1.199) : We have 16(3� ⇡)x5 + ⇡5x = x
�
16(3� ⇡)x4 + ⇡5

�
> 0 on (0, 1.199). The

following inequalities are true based on Lemma 2.4:

sin t > T sin,0
7 (t) for t 2 (0,

p
110) = (0, 10.488 . . .)

and

cos t < T
cos,0
4 (t) for t 2 (0,

p
56) = (0, 7.483 . . .).

For each x 2 (0, 1.199) it holds:

fB(x) < Q9(x) = �3⇡5
| {z }
< 0

T sin,0
7 (x) + (16(3� ⇡)x5 + ⇡5x)| {z }

> 0

T
cos,0
4 (x) + 2(16(3� ⇡)x5 + ⇡5x)| {z }

> 0

.

The polynomial Q9(x) can be written in the following way:

Q9(x) =
x5

1680

⇣
� 1120(⇡ � 3)x4 + (⇡5 + 13440⇡ � 40320)x2 + 28⇡5 � 80640⇡ + 241920

⌘

=
x5

1680
Q4(x) .

The first positive root of the biquadratic equation Q4(x) = 0 is x1 = 1.1993 . . . > 1.199.

Since Q4(x1/2) = Q4(0.599 . . .) = �2075.583 . . . < 0, it follows that Q4(x) < 0 on (0, 1.199).

Furthermore, fB(x) < Q9(x) < 0. Therefore, 'B(x) < 0 for x 2 (0, 1.199).

(2) x 2 [1.199,⇡/2) : Let us define a function

gB(x) = fB
⇣⇡
2
� x

⌘
= �3⇡5 cosx+ r(x) sinx+ 2 r(x) ,

where r(x) is the polynomial

r(x) =
⇣⇡
2
� x

⌘✓
16(3� ⇡)

⇣⇡
2
� x

⌘4
+ ⇡5

◆
,

for x 2 [1.199,⇡/2). It is easy to show that r(x) > 0 for each x 2 [1.199,⇡/2).

Here we prove the inequality fB(x) < 0 for x 2 [1.199,⇡/2), which is equivalent to the MTP

inequality gB(x) < 0 for x 2 (0, c], where c = ⇡/2� 1.199 = 0.371796 . . .

The following inequalities are true based on Lemma 2.4:

sin t < T
sin,0
5 (t) for t 2 (0,

p
72) = (0, 8.485 . . .)
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and

cos t > T cos,0
2 (t) for t 2 (0,

p
30) = (0, 5.477 . . .).

For each x 2 (0, c], it holds:

gB(x) < �3⇡5
| {z }
< 0

T cos,0
2 (x) + r(x)|{z}

> 0

T
sin,0
5 (x) + 2r(x)| {z }

> 0

= xR(x) ,

where R(x) is the polynomial

R(x) =

✓
2⇡

15
� 2

5

◆
x9 +

✓
�⇡2

3
+ ⇡

◆
x8 +

✓
⇡3

3
� ⇡2 � 8⇡

3
+ 8

◆
x7

+

✓
�⇡4

6
+

⇡3

2
+

20⇡2

3
� 20⇡

◆
x6 +

✓
⇡5

30
� ⇡4

8
� 20⇡3

3
+ 20⇡2 + 16⇡ � 48

◆
x5

+

✓
⇡5

80
+

10⇡4

3
� 10⇡3 � 40⇡2 + 152⇡ � 96

◆
x4

+

✓
�2⇡5

3
+

5⇡4

2
+ 40⇡3 � 200⇡2 + 240⇡

◆
x3

+

✓
�⇡5

4
� 20⇡4 + 140⇡3 � 240⇡2

◆
x2 +

✓
11⇡5

2
� 55⇡4 + 120⇡3

◆
x+

✓
19⇡5

2
� 30⇡4

◆
.

It is sufficient to prove that R(x) < 0 for x 2 (0, c]. Let us denote the coefficients of the

polynomial R(x) respectively by a9, . . . , a0 :

R(x) = a9x
9 + a8x

8 + a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0

= (a9x+ a8)x
8 + (a7x

2 + a6x+ a5)x
5 + (a4x

4 + a3x
3 + a2x

2 + a1x+ a0)

= (a9x+ a8)x
8 + (a7x

2 + a6x+ a5)x
5 + S(x).

It holds:

a9x+ a8 =

✓
2⇡

15
� 2

5

◆
x+

✓
�⇡2

3
+ ⇡

◆
< 0

and

a7x
2 + a6x+ a5 = �

✓
⇡2 +

8⇡

3

◆
x2 �

✓
⇡4

6
� ⇡3

2
� 20⇡2

3
+ 20⇡

◆
x

+

✓
11⇡5

2
� 55⇡4 + 120⇡3

◆
< 0,

for each x 2 (0, c]. Let us prove that

S(x) = a4x
4 + a3x

3 + a2x
2 + a1x+ a0

=
⇣⇡5

80
+

10⇡4

3
� 10⇡3 � 40⇡2 + 152⇡ � 96

⌘
x4
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+
⇣
� 2⇡5

3
+

5⇡4

2
+ 40⇡3 � 200⇡2 + 240⇡

⌘
x3 +

⇣
� ⇡5

4
� 20⇡4 + 140⇡3 � 240⇡2

⌘
x2

+
⇣11⇡5

2
� 55⇡4 + 120⇡3

⌘
x+

⇣19⇡5

2
� 30⇡4

⌘
< 0

for each x 2 (0, c]. The third derivative of the polynomial S(x) is

S000(x) =

✓
3

10
⇡5 + 80⇡4 � 240⇡3 � 960⇡2 + 3648⇡ � 2304

◆
x� 4⇡5 + 15⇡4

+ 240⇡3 � 1200⇡2 + 1440⇡.

It holds that S000(x) > 0 for x 2 (0, c]. Thus, S00(x) is a monotonically increasing function

for x 2 (0, c]. Furthermore, S00(x) is a quadratic function with roots x1 = �6.034 . . . and

x2 = 0.279 . . . This implies that S0(x) has exactly one extremum on (0, c] which is minimum

at the point x2. Since we have S0(x2) = 31.480 . . . > 0 at the point of minimum, it follows

that S0(x) > 0 for each x 2 (0, c]. Thus, the function S(x) is monotonically increasing for

each x 2 (0, c]. Since S(c) = �1.933 . . . < 0, it follows that S(x) < 0 for each x 2 (0, c].

Therefore:

R(x) < 0 , for x 2 (0, c] =) gB(x) < 0 , for x 2 (0, c]

=) fB(x) < 0, for x 2 [1.199,⇡/2)

=) 'B(x) < 0 , for x 2 [1.199,⇡/2).

This completes the proof that 'B(x) < 0 for each x 2 (0,⇡/2).

Proposition 3.3. Let

A =
1

180
= 0.005 and B =

16 (⇡ � 3)

⇡5
= 0.00740306 . . .

(i) If p 2 (0, A], then

x 2 (0,⇡/2) =) x� 3 sinx

2 + cosx
> Ax5 � p x5 .

(ii) If p 2 (A,B), then 'p(x) = x� 3 sinx

2 + cosx
� p x5

has a unique root x(p)
0 on (0,⇡/2). Also,

x 2 (0, x(p)
0 ) =) x� 3 sinx

2 + cosx
< px5

and

x 2 (x(p)
0 ,⇡/2) =) x� 3 sinx

2 + cosx
> px5 .

Every function 'p(x) has exactly one minimum t(p)0 2 (0, x(p)
0 ), for p 2 (A,B).



12 B. Malešević & D. Jovanović CUBO
26, 1 (2024)

(iii) If p 2 [B,1), then

x 2 (0,⇡/2) =) x� 3 sinx

2 + cosx
< B x5  p x5 .

(iv) There is exactly one solution to the equation

|'p(t
(p)
0 )| = 'p (⇡/2�)

with respect to parameter p 2 (A,B), determined numerically as

p0 = 0.0072274 . . .

For the value

d0 = 'p0 (⇡/2�) = 0.0016797 . . .

it holds:

d0 = min
p2[0,1)

max
x2[0,⇡/2]

|'p(x)|.

(v) For the value p0 = 0.0072274 . . . the minimax approximant of the family 'p(x) is

'p0(x) = x� 3 sinx

2 + cosx
� p0 x

5,

which determines the appropriate minimax approximation

x� 3 sinx

2 + cosx
⇡ 0.0072274x5.

Proof. It has been shown in Proposition 3.2 that the inequalities 'A(x) > 0 and 'B(x) < 0 hold

for each x 2 (0,⇡/2). Since the family of functions 'p(x) is decreasingly stratified, it follows that

'p(x) � 'A(x) > 0 for p 2 (0, A) and 'p(x)  'B(x) < 0 for p 2 (B,1), for each x 2 (0,⇡/2).

That proves the assertions (i) and (iii).

In order to prove the assertion (ii), we will use the Theorem 2.3 (Nike theorem, II form). Namely,

for p 2 (A,B), the functions 'p(x) satisfy the conditions of Theorem 2.3:

(a) For m = 6, we have

'(vi)
p (x) =

d6'p

d x6
=

6 sinx

(2 + cosx)7
h(x) , (3.1)

where h(x) is the following MTP function:

h(x) = �(cos5 x� 98 cos4 x+ 886 cos3 x� 892 cos2 x� 1216 cosx+ 104) .
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Since
6 sinx

(2 + cosx)7
> 0 for each x 2 (0,⇡/2), functions '(vi)

p (x) and h(x) have the same roots

and sign on (0,⇡/2).

By introducing the substitute t = cosx , we get

H(t) = h(arccos t) = �(t5 � 98t4 + 886t3 � 892t2 � 1216t+ 104) .

It can be shown by numerical methods that H(t) has a root t1 = 0.081088 . . . Since H(t) is

a polynomial with rational coefficients on the interval with rational endpoints (0, 1), using

Sturm’s algorithm [3, 14], we can conclude that H(t) has exactly one root t1 = 0.081088 . . .

on the interval (0, 1). Thus, h(x) also has exactly one root x1 = arccos t1 = 1.489619 . . . on

the interval (0,⇡/2).

Let us notice again that h(x) has only one root x1 = 1.489619 . . . on (0,⇡/2). Since h(1) =

681.964 . . . > 0 and h(1.5) = �13.831 . . . < 0, it follows that

h(x) > 0 on (0, x1) and h(x) < 0 on (x1,⇡/2).

Considering (3.1), the previous conclusion is equivalent to

'(vi)
p (x) > 0 on (0, x1) and '(vi)

p (x) < 0 on (x1,⇡/2),

which satisfies the first condition of Theorem 2.3.

(b) Taylor approximations of functions 'p(x) around x = 0 are:

'p(x) =

✓
1

180
� p

◆
x5 +

1

1512
x7 +O(x9) .

Since we consider p 2 (A,B) =
⇣

1
180 ,

16(⇡�3)
⇡5

⌘
, the coefficient next to x5 in the approximation

is negative, so we conclude that there is a right neighbourhood U0 of the point 0 such that

'p(x),'
0
p(x),'

00
p(x),'

000
p (x),'(iv)

p (x),'(v)
p (x) < 0, x 2 U0.

(c) Taylor approximations of functions 'p(x) around x =
⇡

2
are:

'p(x) =

✓
�⇡5p

32
+

⇡ � 3

2

◆
+

✓
�5⇡4p

16
+

1

4

◆⇣
x� ⇡

2

⌘
+

✓
�5⇡3p

4
+

3

8

◆⇣
x� ⇡

2

⌘2

+

✓
�5⇡2p

2
+

5

16

◆⇣
x� ⇡

2

⌘3
+

✓
�5⇡p

2
+

5

32

◆⇣
x� ⇡

2

⌘4

+

✓
�p+

13

320

◆⇣
x� ⇡

2

⌘5
� 13

1920

⇣
x� ⇡

2

⌘6
+O

✓⇣
x� ⇡

2

⌘7
◆

.
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Since we consider p 2 (A,B), it is easy to show that in the approximation all coefficients

next to
�
x� ⇡

2

�n, 0  n  5, are positive, so we conclude that there is a left neighbourhood

U⇡/2 of the point ⇡

2
such that

'p(x),'
0
p(x),'

00
p(x),'

000
p (x),'(iv)

p (x),'(v)
p (x) > 0, x 2 U⇡/2.

Since the conditions of Theorem 2.3 are satisfied, the function 'p(x) has exactly one ex-

tremum t(p), which is minimum, on (0,⇡/2)
�
and one root x(p)

0 on (0,⇡/2)
�
, and it holds

that 'p(x) < 0 for x 2 (0, x(p)
0 ) and 'p(x) > 0 for x 2 (x(p)

0 ,⇡/2). That proves the assertion

(ii).

(iv), (v): The family of functions 'p(x), for values p 2 (A,B), satisfies the conditions of Theorem

2.1, which means that the minimax approximant exists. The minimax approximant and its error

(infimum of the approximation error) can be numerically determined using Maple software. Let

f(x, p) := 'p(x). Based on Maple code

fsolve({diff(f(x,p),x)=0,abs(f(x,p)=f(Pi/2,p)},{x=0..Pi/2,p=A..B});

we get numerical values

{p = 0.007227413, x = 1.272430755}.

For the value p0 = 0.0072274 . . . we obtain the minimax approximant of the family

'p0(x) = x� 3 sinx

2 + cosx
� p0 x

5

and numerical value of the minimax error

d0 = f(⇡/2, p0) = 0.0016797 . . . .

This completes the proof.

The following statement holds based on previous conclusions.

Proposition 3.4. For each 0 < x < ⇡/2, it holds:

1

180
x5 < x� 3 sinx

2 + cosx
<

16 (⇡ � 3)

⇡5
x5 , (3.2)

where the constants A =
1

180
= 0.005 and B =

16 (⇡ � 3)

⇡5
= 0.00740306 . . . are the best possible.
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3.2 Improved results for inequality (1.2)

In this subsection we present the appropriate results for the family of functions

'p(x) = x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
� p x7, x 2 (0,⇡/2) and p 2 R+,

with the aim of improving the results for the Frame’s inequality (1.2) on the interval (0,⇡/2). The

following statements are proved analogously to statements from the previous subsection.

Lemma 3.5. The family of functions:

'p(x) = x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
� p x7, for x 2 (0,⇡/2)

is decreasingly stratified with respect to parameter p 2 R+
.

Proposition 3.6. Let:

A =
1

2100
= 0.000476190 and B =

64(9⇡ � 28)

9⇡7
= 0.0006459 . . .

Then for x 2 (0,⇡/2), it holds:

'A(x) > 0 and 'B(x) < 0 .

Proposition 3.7. Let:

A =
1

2100
= 0.000476190 and B =

64(9⇡ � 28)

9⇡7
= 0.0006459 . . .

(i) If p 2 (0, A], then

x 2 (0,⇡/2) =) x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
> Ax7 � p x7 .

(ii) If p 2 (A,B), then 'p(x) = x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
� p x7

has a unique root x(p)
0

on (0,⇡/2). Also:

x 2 (0, x(p)
0 ) =) x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
< px7

and

x 2 (x(p)
0 ,⇡/2) =) x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
> px7 .

Every function 'p(x) has exactly one minimum t(p)0 2 (0, x(p)
0 ), for p 2 (A,B).
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(iii) If p 2 [B,1), then:

x 2 (0,⇡/2) =) x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
< B x7  p x7 .

(iv) There is exactly one solution to the equation:

|'p(t
(p)
0 )| = 'p (⇡/2�)

with respect to parameter p 2 (A,B), determined numerically as:

p0 = 0.000632762 . . .

For the value:

d0 = 'p0 (⇡/2�) = 0.000310091 . . .

it holds:

d0 = min
p2[0,1)

max
x2[0,⇡/2]

|'p(x)|.

(v) For the value p0 = 0.000632762 . . . the minimax approximant of the family 'p(x) is:

'p0(x) = x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
� p0 x

7,

which determines the appropriate minimax approximation:

x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
⇡ 0.000632762x7.

The following statement holds based on previous conclusions.

Proposition 3.8. For each 0 < x < ⇡/2, it holds:

1

2100
x7 < x� 3 sinx

2 + cosx

✓
1 +

(1� cosx)2

9(3 + 2 cosx)

◆
<

64(9⇡ � 28)

9⇡7
x7, (3.3)

where the constants A =
1

2100
= 0.000476190 and B =

64(9⇡ � 28)

9⇡7
= 0.0006459 . . . are the best

possible.

4 Conclusion

Inequalities that we study in this paper are mainly used to estimate the precision of the Cusa-

Huygens approximation. The Cusa-Huygens inequality and the estimate of the quality of approx-
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imation may be relevant to concrete applications such as [5, 12], see also the monograph [2]. The

known results related to Frame’s inequalities are obtained for special cases of parameters only. In

this paper, we achieve the previous results based on the concept of stratification, and also expand

the conclusions for unconsidered values of parameters. In analogy with this approach over families

of stratified functions, it is possible to examine other types of inequalities and get new results in

the Theory of Analytic Inequalities.

It should be noted that one part of the given method is limited to MTP inequalities (subsection

2.2). The aim of future research is to consider other classes of inequalities in a similar way, by

combining different methods with the concept of stratification. In that regard, we refer the reader

to papers [6, 15–18] for understanding the latest progress in the field.
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ABSTRACT

Asymptotic estimates for the generalized Wallis ratio

W ⇤(x) := 1p
⇡
· �(x+ 1

2 )

�(x+1) are presented for x 2 R+
on the

basis of Stirling’s approximation formula for the � function.

For example, for an integer p � 2 and a real x > � 1
2 we have

the following double asymptotic inequality

A(p, x) < W ⇤(x) < B(p, x),

where

A(p, x) :=Wp(x)
⇣
1� 1

8(x+p) +
1

128(x+p)2
+ 1

379(x+p)3

⌘
,

B(p, x) :=Wp(x)
⇣
1� 1

8(x+p) +
1

128(x+p)2
+ 1

191(x+p)3

⌘
,

Wp(x) :=
1p

⇡ (x+ p)
· (x+ 1)(p)

(x+ 1
2 )

(p)
,

with y(p) ⌘ y(y + 1) · · · (y + p � 1), the Pochhammer rising

(upper) factorial of order p.

RESUMEN

Se presentan estimaciones asintóticas para la razón generali-

zada de Wallis W ⇤(x) := 1p
⇡
· �(x+ 1

2 )

�(x+1) para x 2 R+
sobre

la base de la fórmula de aproximación de Stirling para la

función �. Por ejemplo, para un entero p � 2 y un real

x > � 1
2 , tenemos la siguiente desigualdad doble asintótica

A(p, x) < W ⇤(x) < B(p, x),

donde

A(p, x) :=Wp(x)
⇣
1� 1

8(x+p) +
1

128(x+p)2
+ 1

379(x+p)3

⌘
,

B(p, x) :=Wp(x)
⇣
1� 1

8(x+p) +
1

128(x+p)2
+ 1

191(x+p)3

⌘
,

Wp(x) :=
1p

⇡ (x+ p)
· (x+ 1)(p)

(x+ 1
2 )

(p)
,

con y(p) ⌘ y(y+1) · · · (y+ p� 1), el factorial ascendiente de

Pochhammer (superior) de orden p.
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1 Introduction

In pure and applied mathematics, e.g in number theory, probability, combinatorics, statistics, and

also in several exact sciences as, for example in statistical physics and quantum mechanics, we

often encounter the Wallis ratios wn,

wn :=
1 · 3 · · · (2n� 1)

2 · 4 · · · (2n) = 4�n (2n)!

(n!)2
= 4�n

✓
2n

n

◆

=
2n
Qn

k=1(k � 1
2 )

2n · n! =
�(n+ 1

2 )

�( 12 )�(n+ 1)
=

�(n+ 1
2 )p

⇡ �(n+ 1)
(n 2 N). (1.1)

The sequence n 7! Wn := 1
2n+1

⇣Qn
k=1

2k
2k�1

⌘2
, called the Wallis sequence, is closely connected to

the sequence of the Wallis ratios wn by the identity Wn = w
�2
n /(2n+1). The Wallis sequence was

intensively studied by several mathematicians, see e.g. [9–11,14,19].

According to (1.1), the continuous version W
⇤(x) of the Wallis ratio is defined as

W
⇤(x) :=

1p
⇡
·
�(x+ 1

2 )

�(x+ 1)

�
x > � 1

2

�
. (1.2)

Thus, we have W
⇤(0) = 1 and, referring to [11,19], we have also

W
⇤(x) =

2

⇡
·H(2x), (1.3)

where H(x) is the “Wallis-cos-sin” function, defined as

H(x) :=

Z ⇡/2

0

�
cos t

�x
dt =

Z ⇡/2

0

�
sin t

�x
dt (x � �1). (1.4)

Here, for x > �1, we have the derivatives

H
0(x) =

Z ⇡/2

0

�
ln cos t

��
cos t

�x
dt < 0 , H

00(x) =

Z ⇡/2

0

�
ln cos t

�2�
cos t

�x
dt > 0.

Consequently, using (1.3), we conclude that W
⇤(x) is strictly decreasing and convex on the open

interval (� 1
2 ,1).

Referring to (1.2), we have

W
⇤(x) =

1p
⇡
·Q�(x,

1
2 , 1)

�
x > � 1

2

�
, (1.5)

where the ratio Q�(x, a, b) is defined as

Q�(x, a, b) :=
�(x+ a)

�(x+ b)
, for x > �max{a, b}. (1.6)
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The ratio1
Q�(x, a, b) was studied by many researchers, see e.g. the papers [2,3,5–7,12,13,15–18,

20–27, 29, 30, 32]. Just recently several accurate estimates of Q�(x, a, b) were presented in [16], as

for example in the following proposition.

Proposition 1 ([16, Theorem 1]). For a, b 2 [0, 1], r 2 N [ {0} and x 2 R+ we have2

Q�(x, a, b) =
⇣
1 +

a

x

⌘x✓
1 +

b

x

◆�x (x+ a)a�1/2

(x+ b)b�1/2
exp(b� a) (1.7)

· exp
 

rX

i=1

B2i

2i(2i� 1)

⇣
(x+ a)1�2i � (x+ b)1�2i

⌘
+ �r(x, a, b)

!
,

where
���r(x, a, b)

�� < �r(x, a, b) :=

��B2r+2

��

(2r + 1)(2r + 2)
�
x+min{a, b}

�2r+1 (1.8)

and the symbol Bk denotes the k-th Bernoulli coefficient [1, 23.1.2].

Thus, for a = 1
2 and b = 1, the Proposition produces the formula

W
⇤(x) =

1p
⇡(x+ 1)

·
✓
1 +

1

2x

◆x✓
1 +

1

x

◆�x p
e

· exp
✓ rX

i=1

B2i

2i(2i� 1)

⇣
(x+ 1/2)1�2i � (x+ 1)1�2i

⌘◆
· exp

⇣
�r(x,

1
2 , 1)

⌘
, (1.9)

where
���r(x, 1

2 , 1)
�� <

��B2r+2

��

(2r + 1)(2r + 2)
�
x+ 1

2

�2r+1 , (1.10)

for integers r � 0 and x > 0 with r being a parameter that affects the magnitude of the error term

�r(x, 1/2, 1).

In this paper we will introduce a formula that is more compact than that given by (1.9)–(1.10).

Our results are close to some formulas given in [4] and [31], where the main role is played by

complete monotonicity of suitable functions. Unfortunately, using these articles, our results cannot

be achieved easily/quickly. In this paper, we offer a simple and fast derivation using the Stirling

approximation formula for the gamma function.

Remark 1.1. In 2011, the Wallis quotient function W (x, s, t) := �(x+t)
�(x+s) was introduced3 in [2].

In this paper and also in the subsequent articles [3,7], the authors investigate the qualitative profile

of W (x, s, t) using asymptotic expansions. Quantitative estimates were mostly not given there.

However, for us, the quantitative estimates are essential.

1
Instead of the symbol Q� there was used in [2, 3, 7] the letter W : Q�(x, a, b) = W (x, a, b).

2
Consider that

P0
i=1 xi = 0, by definition.

3
Clearly, W ⇤(x) = W (x, 1, 1

2 ).
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2 Background

Using the definition (1.2) and the equality �(y + 1) = y�(y), valid for y 2 R+, by induction we

note the identity

W
⇤(x) =

(x+ 1)(p)

(x+ 1
2 )

(p)
W

⇤(x+ p), (2.1)

valid for an integer p � 0 and real x > � 1
2 , where y

(p) denotes the Pochhammer rising (upper)

factorial, defined as

y
(0) := 1, y

(p) :=
p�1Y

i=0

(y + i) = y(y + 1) · · · (y + p� 1) (for p � 1).

Using the duplication formula [1, 6.1.18], we have, for x > 0,

2x�(2x) = 2x · (2⇡)�1/2 22x�1/2 �(x)�(x+ 1
2 ) = ⇡

�1/222x�(x+ 1)�(x+ 1
2 ).

Hence, using (1.2), we obtain, for x > 0,

W
⇤(x) =

1p
⇡
·
�(x+ 1

2 )

�(x+ 1)
= 2�2x 2x�(2x)

�
�(x+ 1)

�2 = 2�2x 2x�(2x)
�
x�(x)

�2 . (2.2)

The continuous version of Stirling’s factorial formula of order r � 0, for x 2 R+, can be given in

the following way [8, Sect. 9.5]

x�(x) =
⇣
x

e

⌘x p
2⇡x · exp

�
sr(x) + dr(x)

�
, (2.3)

where

s0(x) ⌘ 0 and sr(x) =
rX

i=1

ci

x2i�1
for r � 1, (2.4)

ci =
B2i

2i(2i� 1)
for i � 1, (2.5)

and, for some #r(x) 2 (0, 1),

dr(x) = #r(x) ·
cr+1

x2r+1
. (2.6)

Here B2, B4, B6, . . . are the Bernoulli coefficients, alternating in sign as

B2i = (�1)i+1
��B2i

�� for i � 1, (2.7)

thanks to [1, 23.1.15, p. 805]. For example, using Mathematica [28],

B2 =
1

6
, B4 = B8 = � 1

30
, B6 =

1

42
, B10 =

5

66
, B12 = � 691

2 730
, B14 =

7

6
,



CUBO
26, 1 (2024)

Double asymptotic inequalities for the generalized Wallis ratio 25

with the estimates |B12| < 1
3 , |B16| < 7, B18 < 55, |B20| < 530, B22 < 6200.

3 Result

According to (2.2) and (2.3), we calculate, for x > 0,

W
⇤(x) = 2�2x 2x�(2x)

x
�
�(x)

�2

= 2�2x

✓
2x

e

◆2x p
2⇡ · 2x · exp

�
sr(2x) + dr(2x)

�
·
⇣

e

x

⌘x 1p
2⇡x

· exp
�
� sr(x)� dr(x)

��2

=
1p
⇡ x

exp
⇣
sr(2x)� 2sr(x)| {z }+ dr(2x)� 2dr(x)| {z }

⌘
. (3.1)

Referring to (3.1) and (2.3)–(2.6), we derive the following lemma.

Lemma 3.1. For any r 2 N [ {0} and x 2 R+ we have4

W
⇤(x) =

1p
⇡ x

· exp
✓
�

rX

i=1

(1� 4�i)B2i

i(2i� 1)x2i�1

◆
· exp

�
�r(x)

�
, (3.2)

where
���r(x)

�� <
��B2r+2

��
(r + 1)(2r + 1)x2r+1

. (3.3)

Proof. According to (2.4)–(2.5), we have

sr(2x)� 2sr(x) =
rX

i=1

ci

(2x)2i�1
� 2

rX

i=1

ci

x2i�1
= �

rX

i=1

ci

x2i�1

�
2� 2 · 4�i

�
= �

rX

i=1

(1� 4�i)B2i

i(2i� 1)x2i�1
.

Similarly, referring to (2.5)–(2.6), we have the error

�r(x) := dr(2x)� 2dr(x) = #
⇤
r(x) ·

cr+1

(2x)2r+1
� 2#r(x) ·

cr+1

x2r+1
=

cr+1

x2r+1

✓
#
⇤
r(x)

22r+1
� 2#r(x)

◆
,

for some #r(x),#⇤
r(x) 2 (0, 1). Thus, using (2.5), we get, for x > 0,

���r(x)
�� <

��B2r+2

��
(2r + 2)(2r + 1)x2r+1

· 2 .

Remark 3.2. The formula for W
⇤(x), given in (3.2)–(3.3), is more compact, but slightly less

accurate, than the formula, given in (1.9)–(1.10), where x = 0 is a regular point as opposed to

(3.2)–(3.3), where this point is seemingly singular.

4
Consider that

P0
i=1 xi = 0, by definition.
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Thanks to (3.3), the absolute value of �r(x) is small for large x and any r � 0. But, for small

x > 0, the formula in Lemma 3.1 becomes useless. This problem can be avoided by replacing x

in Lemma 3.1 by x + p, for p large, p 2 N. In fact, using (2.1) and replacing x by x
0 = x + p in

Lemma 3.1, immediately follows the next theorem, with �
⇤
p,r(x) = �r(x+ p, a, b).

Theorem 3.3. For integers p, r � 1 and for x > � 1
2 , the ratio W

⇤(x) can be expressed in the

form

W
⇤(x) =W

⇤
p,r(x) · exp

�
�
⇤
p,r(x)

�
, (3.4)

where

W
⇤
p,r(x) :=

1p
⇡ (x+ p)

· (x+ 1)(p)

(x+ 1
2 )

(p)
exp

✓
�

rX

i=1

(1� 4�i)B2i

i(2i� 1)(x+ p)2i�1

◆
(3.5)

and
���⇤p,r(x)

�� <
��B2r+2

��
(r + 1)(2r + 1)(x+ p)2r+1

. (3.6)

Here, p and r are parameters that affect the magnitude of the error term �
⇤
p,r(x).

Example 3.4. Setting p = 3 and r = 5 in Theorem 3.3, we obtain

W
⇤(x) :=

(x+ 1)(x+ 2)

(x+ 1
2 )(x+ 3

2 )(x+ 5
2 )

·
r

x+ 3

⇡
· exp

✓
� 1

8(x+ 3)
+

1

192(x+ 3)3

� 1

640(x+ 3)5
+

17

14 336(x+ 3)7
� 31

18 432(x+ 3)9

◆
· exp

�
�
⇤
3,5(x)

�
,

where
���⇤3,5(x)

�� < 1
260(x+3)11 , for all x > � 1

2 . Consequently,
���⇤3,5(x)

�� < 2 · 10�7 for x 2 (� 1
2 , 0],���⇤3,5(x)

�� < 3 · 10�8, for x 2 [0, 1], and
���⇤3,5(x)

�� < 10�9, for x � 1 .

A direct, immediate consequence of Theorem 3.3 is the sequence of asymptotic expansions given

in the following corollary.

Corollary 3.5. For any integer p � 1 we have the asymptotic expansion

ln
�
W

⇤(x)
�
⇠ ln

(x+ 1)(p)

(x+ 1
2 )

(p)
� 1

2
ln
�
⇡(x+ p)

�
�

1X

i=1

(1� 4�i)B2i

i(2i� 1)(x+ p)2i�1
,

as x ! 1.

Theorem 3.6. For an integer p � 2 and real x > � 1
2 there holds the following double asymptotic

inequality

A(p, x) < W
⇤(x) < B(p, x), (3.7)
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where

A(p, x) := W
⇤
p (x)

✓
1� 1

8(x+ p)
+

1

128(x+ p)2
+

1

379(x+ p)3

◆
, (3.8)

B(p, x) := W
⇤
p (x)

✓
1� 1

8(x+ p)
+

1

128(x+ p)2
+

1

191(x+ p)3

◆
, (3.9)

W
⇤
p (x) := W

⇤
p,0(x) =

1p
⇡ (x+ p)

· (x+ 1)(p)

(x+ 1
2 )

(p)
. (3.10)

Proof. We use Theorem 3.3 with r = 2, when
���⇤p,2(x)

�� < 1
630(x+p)5 and thus we estimate

y�(p, x) < �
2X

i=1

(1� 4�i)B2i

i(2i� 1)(x+ p)2i�1
+ �

⇤
p,2(x) < y+(p, x) < 0, (3.11)

for p 2 N and x 2 R+, where

y�(p, x) := � 1

8(x+ p)
+

1

192(x+ p)3
� 1

630(x+ p)5
, (3.12)

y+(p, x) := � 1

8(x+ p)
+

1

192(x+ p)3
+

1

630(x+ p)5
. (3.13)

Furthermore, by Taylor’s formula of orders 3 and 2 we have, for y < 0,

1 + y +
y
2

2
+

y
3

6
< e

y
< 1 + y +

y
2

2
.

Thus, referring to (3.11)–(3.13), we have, for p 2 N,

exp
�
y�(p, x)

�
> 1 + y�(p, x) +

1

2
y
2
�(p, x) +

1

6
y�(p, x))

3
, (3.14)

exp
�
y+(p, x)

�
< 1 + y+(p, x) +

1

2
y
2
+(p, x). (3.15)

Now, due to (3.12), we estimate, for x > � 1
2 and x+ p > � 1

2 + 2 > 1, as follows:

1 + y�(p, x) +
1

2
y
2
�(p, x) +

1

6
y�(p, x))

3

= 1� 1
8(x+p) +

1
128(x+p)2 + 5

1 024(x+p)3 � 1
1 536(x+p)4 +

XXXXXX
1

24 576(x+p)5

+
XXXXXX

1
73 728(x+p)6 � 1

589 824(x+p)7 +
XXXXXXX

1
42 467 328(x+p)9 � 1

630(x+p)5

> 1� 1
8(x+p) +

1
128(x+p)2 + 5

1 024(x+p)3 � 1
1 536(x+p)3 � 1

589 824(x+p)3

� 1
630(x+p)3 > 1� 1

8(x+p) +
1

128(x+p)2 + 1
379(x+p)3 , (3.16)
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and

1 + y+(p, x) +
1

2
y
2
+(p, x)

= 1� 1
8(x+p) +

1
128(x+p)2 + 1

192(x+p)3 �XXXXX
1

1 536(x+p)4 + 1
73 728(x+p)6

< 1� 1
8(x+p) +

1
128(x+p)2 + 1

191(x+p)3 . (3.17)

Using Theorem 3.3, (3.11), (3.14)–(3.15) and (3.16)–(3.17) we note the double inequality (3.7).

Example 3.7. We have A(2,� 49
100 ) = 32.25 . . . < W (� 49

100 ) = 32.27 . . . < B(2,� 49
100 ) = 32.28 . . .

However, A(1,� 49
100 ) = 32.42 . . . > W (� 49

100 ) = 32.27 . . .

Example 3.8. We have B(2, 49
100 )�A(2, 49

100 ) < 3 ·10�2, B(2, 0)�A(2, 0) < 4 ·10�4 and B(2,⇡)�
A(2,⇡) < 6 · 10�6.

Example 3.9. We have exactly W (3) = w3 = 5
16 = 0.3125 and, thanks to Theorem 3.6, we

estimate 0.312 499 6 < A(9, 3) < W (3) < B(9, 3) < 0.312 500 1.

Figure 1 illustrates the estimate (3.7) by plotting5 the graphs of the functions x 7! A(2, x), x 7!
W (x) and x 7! B(2, x), where all graphs practically coincide.

!0.42!0.42!0.48 !0.46 !0.44 !0.42 !0.4

5

10

15

20

25

30

!0.49 " x " !0.40

2 4 6 8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

!0.4 " x " 8.0

Figure 1: The graphs of the functions x 7! A(2, x), x 7! W (x) and x 7! B(2, x).

Corollary 3.10. For an integer p � 2 and x > � 1
2 the approximation W

⇤(x) ⇡ A(p, x) has the

relative error

⇢(p, x) :=
W

⇤(x)�A(p, x)

W ⇤(x)

estimated as

0 < ⇢(p, x) <
B(p, x)�A(p, x)

A(p, x)
<

1

330(x+ p)3
.

Proof. Thanks to Theorem 3.6 we have

0 < ⇢(p, x) <
B(p, x)�A(p, x)

A(p, x)
=

B(p, x)

A(p, x)
� 1 =

S +�2

S +�1
� 1,

5
All figures and more demanding computations made in this paper were produced using Mathematica [28].
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where

S = 1� 1

8(x+ p)
+

1

128(x+ p)2
(3.18)

and

�1 =
1

379
(x+ p)�3

, �2 =
1

191
(x+ p)�3

. (3.19)

Thus,

0 < ⇢(p, x) <

✓
1 +

�2 ��1

S +�1

◆
� 1 <

�2 ��1

S
,

where the assumptions x > � 1
2 and p � 2 imply the estimate x + p > 1, which, due to (3.18),

implies the inequalities

S � 1� 1

8(x+ p)
+

1

128(x+ p)
> 1� 1

7(x+ p)
� 6

7
.

Consequently, thanks to (3.19),

�2 ��1

S
<

7

6

✓
1

191
� 1

379

◆
1

(x+ p)3
<

1

330(x+ p)3
.
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ABSTRACT

Let R and R0
be two associative rings (not necessarily with

identity elements). A bijective map ' of R onto R0
is

called an m-multiplicative isomorphism if '(x1 · · ·xm) =

'(x1) · · ·'(xm) for all x1, . . . , xm 2 R. In this article, we

establish a condition on generalized matrix rings, that as-

sures that multiplicative maps are additive. And then, we

apply our result for study of m-multiplicative isomorphisms

and m-multiplicative derivations on generalized matrix rings.

RESUMEN

Sean R y R0
dos anillos asociativos (no necesariamente

con elementos identidad). Una aplicación biyectiva '

de R en R0
se llama un isomorfismo m-multiplicativo si

'(x1 · · ·xm) = '(x1) · · ·'(xm) para todos x1, . . . , xm 2 R.

En este artículo, establecemos una condición en anillos de

matrices generalizadas que asegura que las aplicaciones mul-

tiplicativas sean aditivas. Luego aplicamos nuestro resultado

para estudiar isomorfismos m-multiplicativos y derivaciones

m-multiplicativas de anillos de matrices generalizadas.
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1 Introduction

Let R and R0 be two associative rings (not necessarily with identity elements). We denote by Z(R)

the center of R. A bijective map ' of R onto R0 is called an m-multiplicative isomorphism if

'(x1 · · ·xm) = '(x1) · · ·'(xm)

for all x1, . . . , xm 2 R. In particular, if m = 2 then ' is called a multiplicative isomorphism.

Similarly, a map d of R is called an m-multiplicative derivation if

d(x1 · · ·xm) =
mX

i=1

x1 · · · d(xi) · · ·xm

for all x1, . . . , xm 2 R. If d(xy) = d(x)y+xd(y) for all x, y 2 R, we just say that d is a multiplicative

derivation of R.

In last few decades, the multiplicative mappings on rings and algebras have been studied by many

authors [1, 4–7, 10]. Martindale [7] established a condition on a ring such that multiplicative

isomorphisms on this ring are all additive. In particular, every multiplicative isomorphism from

a prime ring containing a nontrivial idempotent onto an arbitrary ring is additive. Lu [6] studied

multiplicative isomorphisms of subalgebras of nest algebras which contain all finite rank operators

but might contain no idempotents and proved that these multiplicative mappings are automatically

additive and linear or conjugate linear. Further, Wang in [9, 10] considered the additivity of

multiplicative maps on rings with idempotents and triangular rings respectively. Recently, in

order to generalize the result in [10] the second author [3], defined a class of ring called triangular

n-matrix ring and studied the additivity of multiplicative maps on that class of rings. In view

of above discussed literature, in this article we discuss the additivity of multiplicative maps on a

more general class of rings called generalized n-matrix rings.

We adopt and follow the same structure and demonstration presented in [3], in order to preserve the

author ideas and to highlight the generalization of the triangular n-matrix results to the generalized

n-matrix results.

Definition 1.1. Let R 1,R 2, . . . ,R n be rings and M ij be an (R i,R j)-bimodule with M ii = R i

for all i, j 2 {1, . . . , n}. Let 'ijk : M ij ⌦R j M jk �! M ik be (R i,R k)-bimodule homomorphisms
with 'iij : R i ⌦R i M ij �! M ij and 'ijj : M ij ⌦R j R j �! M ij the canonical isomorphisms for
all i, j, k 2 {1, . . . , n}. Write a � b = 'ijk(a⌦ b) for a 2 M ij , b 2 M jk. Let

G =

8
>>>>>><

>>>>>>:

0

BBBBBB@

r11 m12 . . . m1n

m21 r22 . . . m2n

.

.

.

.

.

.
. . .

.

.

.

mn1 mn2 . . . rnn

1

CCCCCCA

n⇥n

: rii 2 R i (= M ii), mij 2 M ij| {z }
(i,j2{1,...,n})

9
>>>>>>=

>>>>>>;
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be the set of all n ⇥ n matrices (mij) with (i, j)-entry mij 2 M ij for all i, j 2 {1, . . . , n}. Observe that,

with the obvious matrix operations of addition and multiplication, G is a ring iff a � (b � c) = (a � b) � c for

all a 2 M ik, b 2 M kl and c 2 M lj for all i, j, k, l 2 {1, . . . , n}. When G is a ring, it is called a generalized

n-matrix ring.

Note that if n = 2, we get the definition of generalized matrix ring. We denote by
Ln

i=1 rii the

element 0

BBBBB@

r11

r22
. . .

rnn

1

CCCCCA

in G .

Set

G ij =

8
<

:(mkt) : mkt =

8
<

:
mij , if (k, t) = (i, j)

0, if (k, t) 6= (i, j)
, i, j 2 {1, . . . , n}

9
=

; .

Then we can write G =
M

i,j2{1,...,n}

G ij . Note that, this special structure allows us to use the

argument given in [7] even if non-trivial idempotents exist. Henceforth the element aij belongs to

G ij and the corresponding elements are in R 1, . . . ,R n or M ij . By a direct calculation aijakl = 0

if j 6= k. We define natural projections ⇡i : G �! R i (1  i  n) by

0

BBBBB@

r11 m12 . . . m1n

m21 r22 . . . m2n

...
...

. . .
...

mn1 mn2 · · · rnn

1

CCCCCA
7�! rii.

The following result is a characterization of the center of a generalized n-matrix ring. Henceforth,

we will consider

(i) M ij is faithful as a left R i-module and faithful as a right R j-module with i 6= j,

(ii) if mij 2 M ij is such that R imijR j = 0 then mij = 0 with i 6= j.

We will call them special conditions.

Proposition 1.2. Let G be a generalized n-matrix ring. The center of G is

Z(G ) =
nLn

i=1 rii
��� riimij = mijrjj for all mij 2 M ij , i 6= j

o
.

Furthermore, Z (G )ii ⇠= ⇡i(Z(G )) ✓ Z (R i), and there exists a unique ring isomorphism ⌧ ji from

⇡i(Z (G )) to ⇡iR j
(Z (G )), i 6= j, such that riimij = mij⌧

j
i (rii) for all mij 2 M ij .

Proof. Let S =
nLn

i=1 rii
��� riimij = mijrjj for all mij 2 M ij , i 6= j

o
. By a direct calculation we
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have that if rii 2 Z (R i) and riimij = mijrjj for every mij 2 M ij with i 6= j, then
Ln

i=1 rii 2
Z (G ); that is, (

Ln
i=1 Z (R i)) \ S ✓ Z (G ). To prove that S = Z (G ), we only need to show that

Z (G ) ✓ S and S ✓
Ln

i=1 Z (R i).

Suppose that x =

0

BBBBB@

r11 m12 . . . m1n

m21 r22 . . . m2n

...
...

. . .
...

mn1 mn2 . . . rnn

1

CCCCCA
2 Z (G ). Since x

�Ln
i=1 aii

�
=

�Ln
i=1 aii

�
x for

all aii 2 R i, we have aiimij = mijajj for i 6= j. Making ajj = 0 we conclude aiimij = 0 for

all aii 2 R i and so mij = 0 for all i 6= j which implies that x =
Ln

i=1 rii. Moreover, for any

mij 2 M ij as

x

0

BBBBBBBBBBBBBBB@

0 . . . 0 . . . 0 · · · 0
...

. . .
...

...
...

0 . . . 0 . . . mij . . . 0
...

...
. . .

...
...

0 . . . 0 . . . 0 . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 0

1

CCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBB@

0 . . . 0 . . . 0 · · · 0
...

. . .
...

...
...

0 . . . 0 . . . mij . . . 0
...

...
. . .

...
...

0 . . . 0 . . . 0 . . . 0
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 0

1

CCCCCCCCCCCCCCCA

x,

then riimij = mijrjj for all i 6= j which results in Z (G ) ✓ S. Now suppose x =
Ln

i=1 rii 2 S.

Then for any aii 2 R i (i = 1, . . . , n� 1), we have (riiaii � aiirii)mij = rii(aiimij)� aii(riimij) =

(aiimij)rjj � aii(mijrjj) = 0 for all mij 2 M ij (i 6= j) and hence riiaii � aiirii = 0 as M ij is a

left faithful R i-module.

The fact that ⇡i(Z (G )) ✓ Z (R i) for i = 1, . . . , n are direct consequences of Z (G ) = S ✓
Ln

i=1 Z (R i). Now we prove the existence of the ring isomorphism ⌧ ji : ⇡R i(Z (G )) �! ⇡R j (Z (G ))

for i 6= j. For this, let us consider a pair of indices (i, j) such that i 6= j. For any r =
Ln

k=1 rkk 2
Z (G ) let us define ⌧ ji (rii) = rjj . The map is well defined because if s =

Ln
k=1 skk 2 Z (G ) is such

that sii = rii, then we have mijrjj = riimij = siimij = mijsjj for all mij 2 M ij . Since M ij is a

right faithful R j-module, we conclude that rjj = sjj . Therefore, for any rii 2 ⇡R i(Z (G )), there

exists a unique rjj 2 ⇡R j (Z (G )), denoted by ⌧ ji (rii). It is easy to see that ⌧ ji is bijective. Moreover,

for any rii, sii 2 ⇡R i(Z (G )) we have mij⌧
j
i (rii+sii) = (rii+sii)mij = mij(rjj+sjj) = mij

�
⌧ ji (rii)+

⌧ ji (sii)
�

and mij⌧
j
i (riisii) = (riisii)mij = rii(siimij) = (siimij)⌧

j
i (rii) = sii

�
mij⌧

j
i (rii)

�
=

mij

�
⌧ ji (rii)⌧

j
i (sii)

�
. Thus ⌧ ji (rii + sii) = ⌧ ji (rii) + ⌧ ji (sii) and ⌧ ji (riisii) = ⌧ ji (rii)⌧

j
i (sii) and so

⌧ ji is a ring isomorphism.



CUBO
26, 1 (2024)

Multiplicative maps on generalized n-matrix ring 37

Proposition 1.3. Let G be a generalized n-matrix ring such that:

(i) aiiR i = 0 implies aii = 0 for aii 2 R i;

(ii) R jbjj = 0 implies bjj = 0 for bjj 2 R j.

Then uG = 0 or Gu = 0 implies u = 0 for u 2 G .

Proof. First, let us observe that if i 6= j and R iaii = 0, then we have R iaiimijR j = 0, for all

mij 2 M ij , which implies aiimij = 0 by condition (ii) of the special conditions. It follows that

aiiM ij = 0 resulting in aii = 0. Hence, suppose u =
L

i,j2{1,...,n} uij , with uij 2 G ij , satisfying

uG = 0. Then ukkR k = 0 which yields ukk = 0 for k = 1, . . . , n � 1, by condition (i). Now for

k = n, unnR n = 0, we have R iminunnR n = 0, for all min 2 M in, which implies minunn = 0 by

condition (ii) of the special conditions. It follows that M inunn = 0 which implies unn = 0. Thus

uijR j = 0 and then uij = 0 by condition (ii) of special conditions. Therefore u = 0. Similarly, we

prove that if Gu = 0 then u = 0.

2 The main theorem

Follows our main result, where we are suppose that the special conditions hold. This generalizes

the Theorem 2.1 in [3]. Our main result reads as follows.

Theorem 2.1. Let B : G ⇥G �! G be a biadditive map such that:

(i) B(G pp,G qq) ✓ G pp \ G qq; B(G pp,G rs) 2 G rs, B(G ip,G pq) 2 G iq and B(G rs,G pp) 2
G rs; B(G pq,G rs) = 0;

(ii) if B(
L

1p 6=qn cpq,G nn) = 0 or B(
L

1r<n G rr,
L

1p 6=qn cpq) = 0, then
L

1p 6=qn cpq =

0;

(iii) B(G nn, ann) = 0 implies ann = 0 and B(
Ln

i=1 G ip, apq) = 0 implies apq = 0;

(iv) if B(
Ln

p=1 cpp,G rs) = B(G rs,
Ln

p=1 cpp) = 0 for all 1  r 6= s  n, then
Ln�1

p=1 cpp �
(�cnn) 2 Z (G );

(v) B(cpp, dpp) = B(dpp, cpp) and B(cpp, dpp)dpndnn = dppdpnB(cnn, dnn) for all c =
Ln

p=1 cpp 2
Z (G );

(vi) B
�
crr, B(ckl, cnn)

�
= B

�
B(crr, ckl), cnn

�
.

Suppose f : G ⇥G �! G is a map satisfying the following conditions:

(vii) f(G , 0) = f(0,G ) = 0;
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(viii) B
�
f(x, y), z

�
= f

�
B(x, z), B(y, z)

�
;

(ix) B
�
z, f(x, y)

�
= f

�
B(z, x), B(z, y)

�

for all x, y, z 2 G . Then f = 0.

Proof. Following the ideas of Ferreira in [3] we divide the proof into four cases. Then, let us

consider arbitrary elements xkl, ukl, akl 2 G kl (k, l 2 {1, . . . , n}).

First case. In this first case the reader should keep in mind that we want to show

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A = 0.

From the hypotheses of the theorem, we have

B

0

@f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A , ann

1

A = f

0

@B

0

@
X

1i<n

xii, ann

1

A , B

0

@
X

1j 6=kn

xjk, ann

1

A

1

A

= f

0

@0, B

0

@
X

1j 6=kn

xjk, ann

1

A

1

A

= 0.

In other words,

B

0

@
X

1p,qn

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pq

, ann

1

A = 0.

Since by condition (i),

B

0

@
X

1p<n

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pp

, ann

1

A = 0,

B

0

@
X

1p 6=qn

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pq

, ann

1

A 2
M

1p 6=qn

G pq

and

B

0

@f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

nn

, ann

1

A 2 G nn,

then
X

1p 6=qn

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pq

= 0 by condition (ii).
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Next, we have

B

0

@ann, f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

1

A = f

0

@B

0

@ann,
X

1i<n

xii

1

A , B

0

@ann,
X

1j 6=kn

xjk

1

A

1

A

= f

0

@0, B

0

@ann,
X

1j 6=kn

xjk

1

A

1

A

= 0

which implies
X

1p,qn

B

0

@ann, f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pq

1

A = 0.

It follows that

B

0

@ann,
X

1p<n

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pp

1

A = 0,

B

0

@ann,
X

1p 6=qn

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pq

1

A 2
M

1p 6=qn

G pq

and

B

0

@ann, f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

nn

1

A 2 G nn.

Hence,

B

0

@ann, f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

nn

1

A = 0

which yields

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

nn

= 0

by condition (iii). Yet, we have

B

0

@
X

1p<n

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pp

, ars

1

A = B

0

@f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A , ars

1

A

= f

0

@B

0

@
X

1i<n

xii, ars

1

A , B

0

@
X

1j 6=kn

xjk, ars

1

A

1

A

= f

0

@B

0

@
X

1i<n

xii, ars

1

A , 0

1

A

= 0
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and

B

0

@ars,
X

1p<n

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pp

1

A = B

0

@ars, f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

1

A

= f

0

@B

0

@ars,
X

1i<n

xii

1

A , B

0

@ars,
X

1j 6=kn

xjk

1

A

1

A

= f

0

@B

0

@ars,
X

1i<n

xii

1

A , 0

1

A

= 0.

It follows the condition (iv) that
X

1p<n

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pp

+ 0 2 Z (G ) and so

X

1p<n

f

0

@
X

1i<n

xii,
X

1j 6=kn

xjk

1

A

pp

= 0

by Proposition 1.2. Consequently, we have f
⇣P

1i<n xii,
P

1j 6=kn xjk

⌘
= 0.

Second case. In the second case it must be borne in mind that we want to show

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A = 0.

From the hypotheses of the theorem, we have

B

0

@
X

1p,qn

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pq

,
X

1i 6=jn

ars

1

A = B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ars

1

A

= f

0

@B

0

@
X

1i 6=jn

xij , ars

1

A , B

0

@
X

1k 6=ln

ykl, ars

1

A

1

A

= f(0, 0)

= 0.

Since

B

0

@
X

1p 6=qn

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pq

, ars

1

A = 0,

then

B

0

@
X

1pn

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pp

, ars

1

A = 0.
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Smilarly, we prove that

B

0

@ars,
X

1pn

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pp

1

A = 0.

By condition (iv), it follows that

X

1p<n

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pp

+

0

@�f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

1

A 2 Z (G ). (2.1)

Now, we observe that

B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A = f

0

@B

0

@
X

1i 6=jn

xij , ann

1

A , B

0

@
X

1k 6=ln

ykl, ann

1

A

1

A

= f

0

@
X

1i 6=jn

B(xij , ann),
X

1k 6=ln

B(ykl, ann)

1

A .

With (2.1), this implies that

X

1p<n

B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A

pp

+

0

@�B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A

nn

1

A 2 Z (G ).

Since B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A 2
M

1p 6=qn

G pq

M
G nn then

X

1p<n

B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A

pp

= 0

which results in

eB

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A

nn

= 0

by Proposition 1.2. Hence B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A 2
M

1p 6=qn

G pq.
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It follows that

B

0

@arr, B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A

1

A

= B

0

@arr, f

0

@B

0

@
X

1i 6=jn

xij , ann

1

A , B

0

@
X

1k 6=ln

ykl, ann

1

A

1

A

1

A

= f

0

@B

0

@arr, B

0

@
X

1i 6=jn

xij , ann

1

A

1

A , B

0

@arr, B

0

@
X

1k 6=ln

ykl, ann

1

A

1

A

1

A

= f

0

@B

0

@arr, B

0

@
X

1i 6=jn

xij , ann

1

A

1

A , B

0

@B

0

@arr,
X

1k 6=ln

ykl

1

A , ann

1

A

1

A

= f

0

@B

0

@arr, ann +B

0

@
X

1i 6=jn

xij , ann

1

A

1

A ,

B

0

@B

0

@arr,
X

1k 6=ln

ykl

1

A , ann +B

0

@
X

1i 6=jn

xij , ann

1

A

1

A

1

A

= B

0

@f

0

@arr, B

0

@arr,
X

1k 6=ln

ykl

1

A

1

A , ann +B

0

@
X

1i 6=jn

xij , ann

1

A

1

A

= B

0

@0, ann +B

0

@
X

1i 6=jn

xij , ann

1

A

1

A

= 0

by first case, for all 1  r < n.

So B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A , ann

1

A = 0, by condition (ii). It follows that

X

1pn

B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pp

, ann

1

A

+
X

1p 6=qn

B

0

@f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pq

, ann

1

A = 0

which yields

B

0

@
X

1p 6=qn

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pq

, ann

1

A = 0

and so
X

1p 6=qn

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pq

= 0 by condition (ii).
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Hence,

B

0

@ann, f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

1

A = B

0

@ann, f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

1

A

= f

0

@B

0

@ann,
X

1i 6=jn

xij

1

A , B

0

@ann,
X

1k 6=ln

ykl

1

A

1

A

and by (2.1) above we have

X

1p<n

B

0

@ann, f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

1

A

pp

+

0

@�B

0

@ann, f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

1

A

nn

1

A 2 Z (G ).

Since

B

0

@ann, f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

1

A 2 G nn

then we have
X

1p<n

B

0

@ann, f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

1

A

pp

= 0

and so

B

0

@ann, f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

1

A = B

0

@ann, f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

1

A

nn

= 0,

by Proposition 1.2. It follows that f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

nn

= 0, by condition (iii),

which implies
X

1p<n

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A

pp

= 0,

by (2.1). Consequently, we have

f

0

@
X

1i 6=jn

xij ,
X

1k 6=ln

ykl

1

A = 0.
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Third case. Here, in the third case, we are interested in checking

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A = 0.

In view of second case, we observe that

B

0

@f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A , ars

1

A

= f

0

@B

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq, ars

1

A , B

0

@
X

1k<n

ukk +
X

1k 6=ln

ukl, ars

1

A

1

A

= f

0

@
X

1p<n

B(xpp, ars),
X

1k<n

B(ukk, ars)

1

A

= 0.

It follows that

X

1tn

B

0

@f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

tt

, ars

1

A = 0.

Similarly, we have

X

1tn

B

0

@ars, f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

tt

1

A = 0.

It follows that

X

1t<n

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

tt

+

0

@�f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

nn

1

A 2 Z (G )

by condition (iv). But

B

0

@f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A , ann

1

A

= f

0

@B

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq, ann

1

A , B

0

@
X

1k<n

ukk +
X

1k 6=ln

ukl, ann

1

A

1

A
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= f

0

@B

0

@
X

1p 6=qn

xpq, ann

1

A , B

0

@
X

1k 6=ln

ukl, ann

1

A

1

A

= f

0

@
X

1p 6=qn

B (xpq, ann) ,
X

1k 6=ln

B (ukl, ann)

1

A

= 0

by second case. As a result, we have

X

1r 6=sn

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

rs

= 0 by condition (ii).

Hence from the second case

B

0

@ann, f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

1

A

= f

0

@B

0

@ann,
X

1p<n

xpp +
X

1p 6=qn

xpq

1

A , B

0

@ann,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

1

A

= f

0

@B

0

@ann,
X

1p 6=qn

xpq

1

A , B

0

@ann,
X

1k 6=ln

ukl

1

A

1

A

= f

0

@
X

1p 6=qn

B (ann, xpq) ,
X

1k 6=ln

B (ann, ukl)

1

A

= 0.

This implies

B

0

@ann, f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

nn

1

A = 0.

Thus

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

nn

= 0

implying

X

1t<n

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

tt

= 0



46 A. Jabeen & B. L. M. Ferreira CUBO
26, 1 (2024)

by Proposition 1.2. Therefore,

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A = 0.

Now we are interested in checking

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A = 0.

In view of second case, we Observe that

B

0

@f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq ++
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A , ars

1

A

= f

0

@B

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq, ars

1

A , B

0

@
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull, ars

1

A

1

A

= 0.

It follows that

X

1tn

B

0

@f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

tt

, ars

1

A = 0.

Similarly, we have

X

1tn

B

0

@ars, f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

tt

1

A = 0.

It follows that

X

1t<n

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

tt

+

0

@�f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

nn

1

A 2 Z (G )
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by condition (iv). But

B

0

@f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A , ann

1

A

= f

0

@B

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq, ann

1

A , B

0

@
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull, ann

1

A

1

A

= 0

by second case. As a result, we have

X

1r 6=sn

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq,
X

1k<n

ukk +
X

1k 6=ln

ukl

1

A

rs

= 0 by condition (ii).

Hence from the second case

B

0

@ann, f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

1

A

= f

0

@B

0

@ann,
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq

1

A , B

0

@ann,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

1

A

= 0.

This implies

B

0

@ann, f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

nn

1

A = 0.

Thus

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

nn

= 0

implying

X

1t<n

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A

tt

= 0

by Proposition 1.2. Therefore,

f

0

@
X

1p<n

xpp +
X

1p 6=qn

xpq +
X

1q<n

xqq,
X

1k<n

ukk +
X

1k 6=ln

ukl +
X

1l<n

ull

1

A = 0.
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Fourth case. Finally in the last case we show that f = 0.

Since B

0

@
X

1p,qn

xpq, yrs

1

A ✓ G rs we have B(f(x, u), ars) = f(B(x, ars), B(u, ars)) = 0.

Then by second case, we obtain

B

0

@
X

1pn

f(x, u)pp, ars

1

A = 0.

Similarly, we have

B

0

@ars,
X

1pn

f(x, u)pp

1

A = 0.

It follows from condition (iv) that
X

1p<n

f(x, u)pp + (�f(x, u)nn) 2 Z (G ).

Now as B

0

@
X

1r<n

yrr, y

1

A ✓
X

1r<n

G rr +
X

1r 6=sn

G rs then by third case, we have

B

0

@
X

1r<n

arr, f(x, u)

1

A = f

0

@B

0

@
X

1r<n

arr, x

1

A , B

0

@
X

1r<n

arr, u

1

A

1

A = 0.

It follows that B

0

@
X

1r<n

arr,
X

1r<n

f(x, u)rr +
X

1r 6=sn

f(x, u)rs

1

A = 0 implying

(1) B

0

@
X

1r<n

arr,
X

1r<n

f(x, u)rr

1

A = 0,

(2) B

0

@
X

1r<n

arr,
X

1r 6=sn

f(x, u)rs

1

A = 0.

By identity (1) above we have
X

1r<n

B
�
arr, f(x, u)rr

�
= 0 resulting B

�
arr, f(x, u)rr

�
= 0 for

all 1  r < n. We deduce

0 = B
�
arr, f(x, u)rr

�
arnann = B

�
f(x, u)rr, arr

�
arnann

= arrarnB
�
� f(x, u)nn, ann

�
= arrarnB

�
ann,�f(x, u)nn

�

for all r < n, by condition (v). It follows that B
�
ann, f(x, u)nn

�
= 0 which implies

f(x, u)nn = 0, by condition (iii). Thus, we have
X

1p<n

f(x, u)pp = 0. Now, by identity

(2), we have
X

1r 6=sn

f(x, u)rs = 0 by condition (ii). Hence, we conclude that f = 0.

As a consequence, we can apply our result to a particular case, i.e. the n-generalized matrix ring
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that satisfy the special conditions and G pqG qs = 0 as follows:

Corollary 2.2. Let G be a n-generalized matrix ring such that

(i) for aii 2 R i, if aiiR i = 0, then aii = 0;

(ii) for bjj 2 R j , if R jbjj = 0, then bjj = 0.

Let k be a positive integer. If a map f : G ⇥G �! G satisfies

(i) f(G , 0) = f(0,G ) = 0;

(ii) f(x, y)z1z2 · · · zk = f(xz1z2 · · · zk, yz1z2 · · · zk);

(iii) z1z2 · · · zkf(x, y) = f(z1z2 · · · zkx, z1z2 · · · zky),

for all x, y, z1, z2, . . . , zk 2 G , then f = 0.

Proof. We first claim that f(x, y)z = f(xz, yz) and zf(x, y) = f(zx, zy) for all x, y, z 2 G . Indeed,

since

f(x, y)(zz1)z2 · · · zk = f(xzz1z2 · · · zk, yzz1z2 · · · zk) = f(xz, yz)z1z2 · · · zk,

that is, (f(x, y)z� f(xz, yz))G k = 0. Hence f(x, y)z = f(xz, yz) by Proposition 1.3. Analogously,

zf(x, y) = f(zx, zy). Define B : G ⇥G �! G by B(x, y) = xy. It is easy to check that B and f

satisfy the all conditions of Theorem 2.1. Hence f = 0.

3 Applications

In this section we apply our main result to the case of n-generalized matrix ring satisfying the

special conditions and G pqG qs = 0.

Theorem 3.1. Let G be a n-generalized matrix ring such that

(i) For aii 2 R i, if aiiR i = 0, then aii = 0;

(ii) For bjj 2 R j , if R jbjj = 0, then bjj = 0.

Then every m-multiplicative isomorphism from G onto a ring R is additive.

Proof. Suppose that ' is a m-multiplicative isomorphism from G onto a ring R . Since ' is onto,

'(x) = 0 for some x 2 G . Then '(0) = '(0 · · · 0x) = '(0) · · ·'(0)'(x) = '(0) · · ·'(0)0 = 0 and so

'�1(0) = 0. Let us check that the conditions of the Corollary 2.2 are satisfied. For every x, y 2 G

we define f(x, y) = '�1('(x+ y)�'(x)�'(y)), we see that f(x, 0) = f(0, x) = 0 for all x 2 G . It
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is easy to check that '�1 is also a m-multiplicative isomorphism. Thus, for any u1, . . . , um�1 2 G ,

we have

f(x, y)u1 · · ·um�1 = '�1('(x+ y)� '(x)� '(y))'�1('(u1)) · · ·'�1('(um�1))

= '�1(('(x+ y)� '(x)� '(y))'(u1) · · ·'(um�1))

= f(xu1 · · ·um�1, yu1 · · ·um�1).

Similarly we have u1 · · ·um�1f(x, y) = f(u1 · · ·um�1x, u1 · · ·um�1y). Therefore by Corollary 2.2,

f = 0. That is, '(x+ y) = '(x) + '(y) for all x, y 2 G .

Theorem 3.2. Let G be a n-generalized matrix ring such that

(i) For aii 2 R i, if aiiR i = 0, then aii = 0;

(ii) For bjj 2 R j , if R jbjj = 0, then bjj = 0.

Then any m-multiplicative derivation d of G is additive.

Proof. We define f(x, y) = d(x+ y)� d(x)� d(y), for any x, y 2 G . Hence f defined in this way

satisfy the conditions of Corollary 2.2. Therefore f = 0 and so d(x+ y) = d(x) + d(y).

It is worth noting that the technique used to prove the main result of this article is still not enough

to answer the result obtained in Corollary 2.2, without the G pqG qs = 0 condition.

We therefore end our work with two open questions:

(a) When are m-multiplicative isomorphism additive?

(b) When are m-multiplicative derivation additive?



CUBO
26, 1 (2024)

Multiplicative maps on generalized n-matrix ring 51

References

[1] X. Cheng and W. Jing, “Additivity of maps on triangular algebras,” Electron. J. Linear Alge-

bra, vol. 17, pp. 597–615, 2008, doi: 10.13001/1081-3810.1285.

[2] M. N. Daif, “When is a multiplicative derivation additive?” Internat. J. Math. Math. Sci.,

vol. 14, no. 3, pp. 615–618, 1991, doi: 10.1155/S0161171291000844.

[3] B. L. M. Ferreira, “Multiplicative maps on triangular n-matrix rings,” Internat. J. Math.,

Game Theory and Algebra, vol. 23, no. 2, pp. 1–14, 2014.

[4] Y. Li and Z. Xiao, “Additivity of maps on generalized matrix algebras,” Electron. J. Linear

Algebra, vol. 22, pp. 743–757, 2011, doi: 10.13001/1081-3810.1471.

[5] F. Y. Lu and J. H. Xie, “Multiplicative mappings of rings,” Acta Math. Sin. (Engl. Ser.),

vol. 22, no. 4, pp. 1017–1020, 2006, doi: 10.1007/s10114-005-0620-7.

[6] F. Lu, “Multiplicative mappings of operator algebras,” Linear Algebra Appl., vol. 347, pp.

283–291, 2002, doi: 10.1016/S0024-3795(01)00560-2.

[7] W. S. Martindale, III, “When are multiplicative mappings additive?” Proc. Amer. Math. Soc.,

vol. 21, pp. 695–698, 1969, doi: 10.2307/2036449.

[8] G. Tang and Y. Zhou, “A class of formal matrix rings,” Linear Algebra Appl., vol. 438, no. 12,

pp. 4672–4688, 2013, doi: 10.1016/j.laa.2013.02.019.

[9] Y. Wang, “The additivity of multiplicative maps on rings,” Comm. Algebra, vol. 37, no. 7, pp.

2351–2356, 2009, doi: 10.1080/00927870802623369.

[10] Y. Wang, “Additivity of multiplicative maps on triangular rings,” Linear Algebra Appl., vol.

434, no. 3, pp. 625–635, 2011, doi: 10.1016/j.laa.2010.09.015.

https://doi.org/10.13001/1081-3810.1285
https://doi.org/10.1155/S0161171291000844
https://doi.org/10.13001/1081-3810.1471
https://doi.org/10.1007/s10114-005-0620-7
https://doi.org/10.1016/S0024-3795(01)00560-2
https://doi.org/10.2307/2036449
https://doi.org/10.1016/j.laa.2013.02.019
https://doi.org/10.1080/00927870802623369
https://doi.org/10.1016/j.laa.2010.09.015




CUBO, A Mathematical Journal

Vol. 26, no. 01, pp. 53–73, April 2024

DOI: 10.56754/0719-0646.2601.053

On a class of fractional �(.)-Kirchhoff-Schrödinger

system type

Hamza El-Houari
1,B

Lalla Saádia Chadli
1

Hicham Moussa
1

1Faculty of Sciences and Techniques,

Research Laboratory “Applied

Mathematics and Scientific Computing”,

Beni Mellal, Morocco.

h.elhouari94@gmail.com

sa.chadli@yahoo.fr

hichammoussa23@gmail.com

ABSTRACT

This paper focuses on the investigation of a Kirchhoff-

Schrödinger type elliptic system involving a fractional �(.)-

Laplacian operator. The primary objective is to establish

the existence of weak solutions for this system within the

framework of fractional Orlicz-Sobolev Spaces. To achieve

this, we employ the critical point approach and direct varia-

tional principle, which allow us to demonstrate the existence

of such solutions. The utilization of fractional Orlicz-Sobolev

spaces is essential for handling the nonlinearity of the prob-

lem, making it a powerful tool for the analysis. The results

presented herein contribute to a deeper understanding of the

behavior of this type of elliptic system and provide a foun-

dation for further research in related areas.

RESUMEN

Este artículo se enfoca en la investigación de sistemas elíp-

ticos de tipo Kirchhoff-Schrödinger que involucran un ope-

rador fraccionario �(.)-Laplaciano. El objetivo principal es

establecer la existencia de soluciones débiles para este sis-

tema en el marco de espacios de Orlicz-Sobolev fracciona-

rios. Para lograrlo, empleamos el enfoque de punto crítico

y el principio variacional directo, que nos permiten de-

mostrar la existencia de dichas soluciones. El uso de espacios

de Orlicz-Sobolev fraccionarios es esencial para lidiar con

la nolinealidad del problema, convirtiéndolo en una herra-

mienta poderosa para el análisis. Los resultados presentados

contribuyen a una comprensión más profunda del compor-

tamiento de este tipo de sistemas elípticos y entregan una

base para investigación futura en áreas relacionadas.
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1 Introduction

The objective of this paper is to establish the existence of weak solutions for a non-local elliptic

systems, as described below:
8
>>>><

>>>>:

K1

⇥
F1(u) +⌥1(u)

⇤⇣
(��)s�1

u+ a1(x)�1(u)u
⌘
= Fu(x, u, v) in ⌦,

K2

⇥
F2(v) +⌥2(v)

⇤⇣
(��)s�2

v + a2(x)�2(v)v
⌘
= Fv(x, u, v) in ⌦,

u = v = 0 on RN
\⌦,

(1.1)

where ⌦ is a bounded open subset of RN with Lipschitz boundary @⌦, N � 2, s 2 (0, 1),

Fi=1,2,⌥i=1,2 : Ei ! R are two functionals, respectively defined by

Fi(w) =

Z

⌦2

�i

✓
|w(x)� w(y)|

|x� y|s

◆
dx dy

|x� y|N
, ⌥i(w) =

Z

⌦
ai(x)�i(|w|)dx,

and Ki=1,2 are two bounded continuous Kirchhoff functions, F belongs to C
1(⌦⇥R2) and satisfies

certain suitable growth assumptions, and Fu (respectively, Fv) is the partial derivative of F with

respect to u (respectively, v). Additionally, ai with i = 1, 2, are two continuous functions that

satisfy the following conditions:

(A1): ai 2 C(⌦,R) and inf
x2⌦

ai(x) � a0 > 0.

(A2): meas(x 2 ⌦ : ai(x)  H) < 1, for all H > 0, where meas(.) denotes the Lebesgue measure

in ⌦.

The stationary version of the Kirchhoff equation

⇢
@
2
u

@t2
�

✓
P0

h
+

E

2L

Z L

0

����
@u

@x

����
2◆

@
2
u

@x2
= 0, (1.2)

presented by Kirchhoff [19] in 1883. Later (1.2) was developed to form

utt �K

✓Z

⌦
|ru|

2
dx

◆
�u = f(x, u), x 2 ⌦. (1.3)

After that, many authors studied the following nonlocal elliptic boundary value problem

�K

✓Z

⌦
|ru|

2
dx

◆
�u = f(x, u), x 2 ⌦. (1.4)

In recent years, considerable research attention has been dedicated to investigating the existence of

solutions for elliptic problems within the fractional Sobolev space. This growing interest is evident

in the works of various researchers, such as those referenced in [8,9,18,24]. In a similar vein, Azroul

et al. explored the existence of a solution for the following fractional (p, q)-Schrödinger-Kirchhoff
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system type, as documented in [2].

8
>>>><

>>>>:

K1

⇥
IMp

⇤
((��)spu+ a(x)|u|p�2

u) = �Fu(x, u, v) + µGu(x, u, v) in RN
,

K2

⇥
IMq

⇤
((��)sqv + a(x)|v|q�2

v) = �Fv(x, u, v) + µGv(x, u, v) in RN
,

(u, v) 2 W
p
⇥W

q
,

(1.5)

where

IMr (w) =

Z

RN⇥RN

|w(x)� w(y)|rMr(x� y)dx dy +

Z

RN

a(x)|w|rdx,

when we take Mr(x) = |x|
�N�sr. In this case, problem (1.5) become

8
>>>><

>>>>:

K1

⇥
I
s
r (u)

⇤
((��)spu+ |u|

p�2
u) = �Fu(x, u, v) + µGu(x, u, v) in RN

,

K2

⇥
I
s
r (v)

⇤
((��)sqv + |v|

q�2
v) = �Fv(x, u, v) + µGv(x, u, v) in RN

,

u = v = 0 on RN
\⌦,

(1.6)

where

I
s
r (w) =

Z

⌦2

|w(x)� w(y)|r

|x� y|sr+N
dx dy +

Z

RN

a(x)|w|rdx.

In 2017, Bonder et al. in [17] made a significant advancement by introducing an extension of the

fractional Sobolev space, known as the fractional Orlicz-Sobolev space. This extension involved

the generalization of the conventional fractional Laplacian operator to the fractional �(.)-Laplacian

operator, which is defined as follows:

(��)s�(.)u(x) = p.v.

Z

RN

�

✓
|u(x)� u(y)|

|x� y|s

◆
u(x)� u(y)

|x� y|s+N
dy, for all x 2 RN

, (1.7)

where � : R+
! R+ is a non-decreasing and right continuous function, with

�(0) = 0, �(t) > 0 for t > 0 and lim
t!1

�(t) = 1. (1.8)

The replacement of the �(.)-Laplace operator with a fractional �(.)-Laplacian operator raises the

question of what results can be achieved. Currently, there are only a few results available regarding

the fractional Orlicz-Sobolev spaces. For instance, in [9], we studied a nonlocal Kirchhoff type

problem within this space.

8
>>>><

>>>>:

K1

⇥
F1(u)

⇤
(��)s�1

u = Fu(x, u, v) in ⌦,

K2

⇥
F2(v)

⇤
(��)s�2

v = Fu(x, u, v) in ⌦,

u = v = 0 on RN
\⌦,

where Ki is the Kirchhoff function. In our problem (1.1), the function F is presumed to be
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a member of C
1(⌦ ⇥ R2) and complies with appropriate growth conditions, but notably does

not satisfy the well-known Ambrosetti-Rabinowitz condition. For further problems related to the

fractional Orlicz-Sobolev spaces, we refer to [6, 7, 10–16]. By setting �i(t) = |t|r
r , our problem

(1.1) can be reduced to the fractional (p, q)-Schrödinger-Kirchhoff elliptic system given in (1.6).

In this paper, preceding works of the Kirchhoff-Schrödinger system are extended in fractional

Orlicz-Sobolev spaces.

This article is divided into four sections. In the second section, we offer a brief review of the

fractional Orlicz-Sobolev spaces, outlining their essential properties and results. Following that,

the third section presents the specific assumptions made on the data. In the fourth section, we

present our primary result concerning the existence of a weak solution and its proof, which relies

on a contradiction argument.

2 Some preliminary results and hypotheses

In this section, we will briefly introduce the definitions and fundamental properties of FOSS. For

detailed information and proofs, interested readers can refer to [1, 17,20].

We take notice of N the set of all N -functions. The function � 2 N is defined for z 2 R by setting

�(z) =

Z |z|

0
t�(t)dt.

We point out that � 2 �2 if for a certain constant k > 0,

�(2z)  k �(z), for every z > 0. (2.1)

We observe that � and � satisfy the following Young’s inequality:

rz  �(r) + �(z) for all z, r � 0 and x 2 ⌦. (2.2)

In the Orlicz space L�(⌦) is well-know, the Hölder inequality

Z

⌦
|u(z)v(z)| dz  ||u||�||v||(�) for all u 2 L�(⌦) and v 2 L�(⌦), (2.3)

where L�(⌦) is defined as the set of equivalence classes of measurable functions u : ⌦ ! R such

that: Z

⌦
�
⇣
u(z)

⌧

⌘
dz < +1 for certain ⌧ > 0.

where ||.||(�) is the Orlicz norm defined by

||u||(�) := sup
||v||�1

Z

⌦
u(z)v(z) dz.
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L�(⌦) is a Banach space under the following norm,

kuk� = inf
n
� > 0 /

Z

⌦
�
⇣
|u(x)|

�

⌘
dx  1

o
.

We assume that:

(A0)

Z 1

0

��1 (t)

t
1+ s

N
dt < 1 and (A1)

Z +1

1

��1 (t)

t
1+ s

N
dt = +1 for s 2(0,1).

Under the hypotheses (A0) and (A1), we can insert an N -function �⇤, given by the following

expression of its inverse in R+:

(�⇤)�1(t) =

Z t

0

��1(r)

r
N+s
N

dr for t � 0. (2.4)

The fact that � 2 �2-condition globally implies that:

uk ! u in L�(⌦) ()

Z

⌦
�(|uk � u|)dx ! 0. (2.5)

Now we set an useful lemma which we need in the proof.

Lemma 2.1 ([4]). Let � be the complementary of the N -functions �. Then we have

�(�(t))  (n� 1)�(t), for all t > 0, (2.6)

where n = supt>0
t2�(t)
�(t) .

We define the fractional Orlicz-Sobolev spaces as follows

W
s,�(⌦) =

n
u 2 L�(⌦) :

Z

⌦

Z

⌦
�
⇣
�|u(x)� u(y)|

|x� y|s

⌘
|x� y|

�N
dx dy < 1 for some � > 0

o
.

This space is equipped with the norm,

||u||s,� = ||u||� + [u]s,�, (2.7)

where [.]s,� defined by

[u]s,� = inf
n
� > 0 :

Z

⌦

Z

⌦
�
⇣
|u(x)� u(y)|

�|x� y|s

⌘
|x� y|

�N
dx dy  1

o
.

To deal with this problem, we choose

W
s,�
0 (⌦) =

�
u 2 W

s,�(RN ) : u = 0 a.e. RN
\ ⌦

 
,
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which can be equivalently renormed by setting ||.|| = [.]s,� and

Ei =
n
u 2 W

s,�i(RN ) :

Z

⌦
ai(x)�i(|u|)dx < 1; u = 0 a.e. RN

\ ⌦
o
,

equipped with the following norm ||.||Ei,�i = [.]s,�i + ||.||ai,�i , where

||u||ai,�i = inf
n
� > 0,

Z

⌦
ai(x)�i

⇣
|u(x)|

�

⌘
dx  1

o
.

Throughout this paper ⌦ is a bounded open subset of RN and s 2 (0, 1).

In W
s,�
0 (⌦) we have the following Poincaré inequality

||u||�  ⌧ [u]s,�, 8u 2 W
s,�
0 (⌦). (2.8)

where ⌧ is a positive constant.

Remark 2.2. [.]s,� is a norm of W s,�
0 (⌦) equivalent to ||.||s,�.

Lemma 2.3 ([7]). The representation given by

�i=1;2(t) :=

Z |t|

0
r�i(r)dr for all t 2 R, (2.9)

exists and it is an N -function where �i=1;2 verified (1.8).

3 Hypotheses

We use through our paper that �i 2 N defined in (2.9) and we suppose that �i 2 �2. Then by

lemma 2.1 in [23] we have for all t > 0 that

1 < li := inf
t>0

t
2
�i(t)

�i(t)
 sup

t>0

t
2
�i(t)

�i(t)
:= ni < N. (3.1)

Related to functions �i, Ki and F our hypotheses are the following:

(�1): The function t ! �i(
p
t) where t 2 [0,+1) is convex.

(�2): There exists 1 < ⌘i < li, such that

lim
t!+1

|t|
⌘i

�i(t)
= 0,

and the Kirchhoff function Ki : [0,1) ! (0,1) is a nondecreasing continuous function such that:
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(A3): There exist ↵1,↵2 > 0 such that:

↵2 � Ki(t) � ↵1 for all t 2 [0,1).

And F satisfies:

(F1): F : ⌦⇥ R⇥ R ! R is a C
1 function such that F (x, 0, 0) = 0 for all x 2 ⌦

8
><

>:

|Fu(x, u, v)|  c1|u|
r1�1 + c2|v|

r2(r1�1)
r1 ,

|Fv(x, u, v)|  c1|u|
r1(r2�1)

r2 + c2|v|
r2�1

,

(3.2)

where ri 2 (1, li).

(F2): There exist an open set ⌦ ⇢ RN with |⌦| > 0, and positive constants ↵0 2 [1, l1), �0 2 [1, l2),

c > 0 and ⇢,� 2 R with ⇢+ � 6= 0 such that

F (x, ⇢t,�t) � c(|⇢t|↵0 + |�t|
�0), for all (x, t) 2 ⌦⇥ [0, 1).

Remark 3.1 ([17, Proposition 2.11]). W
s,�
0 (⌦) is a separable and reflexive Banach space.

Lemma 3.2 ([5, Lemma 4.3]). The following properties hold true:

1) Fi

⇣
u

[u]s,�i

⌘
 1, for all u 2 Ei \ {0}.

2) ⇣0([u]s,�i)  Fi(u)  ⇣1([u]s,�i), for all u 2 Ei.

3) ⇣0(||u||ai,�i)  ⌥i(u)  ⇣1(||u||ai,�i), for all u 2 Ei.

Lemma 3.3 ([5, Lemma 4.7]). Fi and ⌥i are two weak lower semi-continuous functions.

Lemma 3.4 ([7, Lemma 3.3]). Under assumption (�1) we have that (E, ||.||Ei) is a real uniformly

convex Banach space.

Now we state the embedding compactness result.

Theorem 3.5 ([5, Theorem 1.2.]). Let � be an N-function.

i) If (A0), (A1) and (3.1) hold, then the embedding W
s,�i(⌦) ,! L�⇤

i
(⌦) is continuous, and

the embedding W
s,�i(⌦) ,! L�(⌦) is compact for any N -function � ⌧ �i.

ii) If (A1), (A2) and (3.1) hold, then the embedding Ei ,! L�i(⌦) is continuous, and the

embedding E ,! L�(⌦) is compact for any N-function � ⌧ �i.

Remark 3.6. The assumption (�2) implies that |t|
⌘i ⌧ �i, then by Theorem 3.5 the following

embeddings Ei ! L
⌘i(⌦) are compact, i.e., there exist constants C⌘i > 0 such that

||u||⌘i  C⌘i ||u||Ei,�i for all u 2 Ei. (3.3)
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4 Main results

In this section, we present the existence result.

Theorem 4.1. Assume that (A1)-(A3), (F1)-(F3), (3.1) and (�2) hold true. Then system (1.1)

possesses a nontrivial weak solution.

In order to prove Theorem 4.1, we will use the following Lemma:

Lemma 4.2 ([22]). Let X be a real Banach space and J 2 C
1(X,R) satisfies (PS)-condition. If

J is bounded from below, then c = infX J is a critical value of J .

In fact, since

F (x, u, v) =

Z u

0
Fp(x, p, v)dp+

Z v

0
Ft(x, 0, t)dt+ F (x, 0, 0), 8(x, u, v) 2 ⌦⇥ R⇥ R.

By (3.2) and the fact that F (x, 0, 0) = 0, we show that:

|F (x, u, v)| 

Z |u|

0
|Fp(x, p, v)|dp+

Z |v|

0
|Ft(x, 0, t)|dt

 c1

Z |u|

0
|p|

r1�1
dp+ c2

Z |u|

0
|v|

r2(r1�1)
r1 dp+ c2

Z |v|

0
|t|

r2�1
dt

=
c1

r1
|u|

r1 + c2|u||v|
r2(r1�1)

r1 +
c2

r2
|v|

r2


c1

r1
|u|

r1 +
c2

r1
|u|

r1 + c2
r1 � 1

r1
|v|

r2 +
c2

r2
|v|

r2

= c3|u|
r1 + c4|v|

r2 ,

(4.1)

where c3 =
c1 + c2

r1
and c4 =

c2r2(r1 � 1) + r1

r1r2
.

Now we have all tools to study our problem (1.1). For that we shall define our working space

W := E1 ⇥ E2 with the norm

||(u, v)|| := ||u||E1,�1 + ||v||E2,�2 .

We can show that W is a separable and reflexive Banach space. We observe that the energy

functional I on W corresponding to system (1.1) is

I(u, v) := K̃1

h
F1(u) +⌥1(u)

i
+ K̃2

h
F2(v) +⌥2(v)

i
�

Z

⌦
F (x, u, v)dx, 8(u, v) 2 W.

Where

K̃(t) :=

Z t

0
K(⌧)d⌧.
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Denote by Ii : W ! R, i = 1, 2, the functionals I1(u, v) = (K̃oH)1(u) + (K̃oH)2(v) where

(K̃oH)i(w) := K̃i

 Z

⌦⇥⌦
�i

✓
w(x)� w(y)

|x� y|s

◆
dx dy

|x� y|N
+

Z

⌦
ai(x)�i(w)dx

�

and

I2(u, v) =

Z

⌦
F (x, u, v)dx.

Then

I(u, v) = I1(u, v)� I2(u, v).

Lemma 4.3. The function I is well define and it is C
1(Ei,R) and we have

hI
0(u, v), (u, v)i = K1

h
F1(u) +⌥1(u)

i⇣ Z

⌦⇥⌦
�1(hu)huhu dµ+

Z

⌦
a1(x)�1(u)uu dx

⌘

+K2

h
F2(v) +⌥2(v)

i⇣ Z

⌦⇥⌦
�2(hv)hvhv dµ+

Z

⌦
a2(x)�2(v)vv dx

⌘

�

Z

⌦
(Fu(x, u, v)u+ Fv(x, u, v)v)dx,

for all u, v 2 Ei, where hu =
u(x)� u(y)

|x� y|s
and dµ =

dx dy

|x� y|N
(i.e, regular Borel measure on the

set ⌦⇥ ⌦).

Lemma 4.4. The function I is well define and it is C
1(Ei,R) and we have

hI
0(u, v), (u, v)i = K1

h
F1(u) +⌥1(u)

i⇣ Z

⌦⇥⌦
�1(hu)huhu dµ+

Z

⌦
a1(x)�1(u)uu dx

⌘

+K2

h
F2(v) +⌥2(v)

i⇣ Z

⌦⇥⌦
�2(hv)hvhv dµ+

Z

⌦
a2(x)�2(v)vv dx

⌘

�

Z

⌦
(Fu(x, u, v)u+ Fv(x, u, v)v)dx,

for all u, v 2 Ei, where hu =
u(x)� u(y)

|x� y|s
and dµ =

dx dy

|x� y|N
(i.e, regular Borel measure on the

set ⌦⇥ ⌦).

Proof. First, we can see that

h(K̃oH)0i(u), vi = Ki

h Z

⌦⇥⌦
�i(hu)dµ+

Z

⌦
ai(x)�i(u)dx

i

⇥

⇣Z

⌦⇥⌦
�i(hu)huhv dµ+

Z

⌦
ai(x)�i(u)uv dx

⌘
,

(4.2)

for all u, v 2 Ei. It follows from (4.2) that for each u 2 Ei, (K̃oH)0i(u) 2 (Ei)⇤.

Next we prove that (K̃oH)i 2 C
1(Ei,R). Let {uk} ⇢ Ei with uk ! u strongly in Ei, for v 2 Ei
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we have hv 2 L�i(⌦⇥ ⌦, dµ) and by Hölder inequality

����
Z

⌦⇥⌦
(�i(huk)huk � �i(hu)hu)hv dµ+

Z

⌦
(ai(x)�i(uk)uk � ai(x)�i(u)u)v

����

 2k�i(huk)huk � �i(hu)hukL�i
||hv||L�i

+ 2||a||1k�i(uk)uk � �i(u)ukL�i
||v||L�i

.

(4.3)

On the other hand, uk ! u in Ei, then huk ! hu in L�i(⌦ ⇥ ⌦), so by dominated convergence

theorem, there exists a subsequence {hunk
} and a function h in L�i(⌦⇥ ⌦) such that

|�i(hunk
)hunk

|  |�i(h)h| 2 L�i
(⌦⇥ ⌦) a.e. in ⌦⇥ ⌦.

And

�i(hunk
)hunk

! �i(hu)hu a.e. in ⌦⇥ ⌦. (4.4)

Then by dominated convergence theorem we obtain that

sup
||v||s,�i1

����
Z

⌦⇥⌦
(�i(huk)huk � �i(hu)hu)hv dµ

���� ! 0. (4.5)

By same techniques we obtain that

sup
||v||�i1

����
Z

⌦
(�i(uk)uk � �i(u)u)v dx

���� ! 0. (4.6)

By (A1), (A2), (2.5), ii) in Theorem 3.5 and boundedness of sequence {uk, vk} and using similar

argument in the proof of Lemma 3.3 in [7] we show that

lim
n!1

Z

⌦
ai(x)Mi

�
un

�
dx =

Z

⌦
ai(x)Mi

�
u
�
dx. (4.7)

According to the last equation and the continuity of Ki, we have

Ki

✓Z

⌦⇥⌦
�i(huk)dµ+

Z

⌦
ai(x)�i(uk)dx

◆
! Ki

✓Z

⌦⇥⌦
�i(hu)dµ+

Z

⌦
ai(x)�i(u)dx

◆
. (4.8)

Combining (4.5), (4.6) in (4.3) and with the fact (4.8) we get (K̃oH)0i is continuous. Now we turn

to prove that

hI
0
2(u, v), (u, v)i =

Z

⌦
(Fu(x, u, v)u+ Fv(x, u, v)v)dx for all (u, v), (u, v) 2 W. (4.9)
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By (4.1) and 3.3 we have

Z

⌦
F (x, u, v)dx 

Z

⌦
|F (x, u, v|dx  c3

Z

⌦
|u|

r1dx+ c4

Z

⌦
|v|

r2dx

= c3||u||
r1
r1 + c4||v||

r2
r2

 c3Cr1 ||u||
r1
E1,�1

+ c4Cr2 ||v||
r2
E2,�2

.

(4.10)

Then I2 is well defined in W . Now by (3.2), (3.3) and the similar argument in [23, Lemma 3.1] we

see that (4.9) holds.

Lemma 4.5. Suppose that (�1) is fulfilled. Moreover, we assume that the sequence (uk) converges

weakly to u in E1 and

lim
k!1

suph(K̃oH)01(uk), uk � ui  0. (4.11)

Then (uk) converge strongly to u 2 E1.

Proof. Since (uk) converges weakly to u in E1, then ([uk]s,�1) and (||uk||a1,�1) are bounded se-

quences of real numbers. That fact and relations 2) and 3) from Lemma 3.2, imply that the

sequences (Fi(uk)) and (⌥i(uk)) are bounded. This means that the sequence (K̃oH)1(uk) is

bounded. Then, up to a subsequence, (K̃oH)1(uk) ! c. Furthermore, Lemma 3.3 implies

(K̃oH)1(u)  lim
k!1

inf(K̃oH)1(uk) = c. (4.12)

Since (K̃oH)1 is convex, we have

(K̃oH)1(u) � (K̃oH)1(uk) + h(K̃oH)01(uk), uk � ui. (4.13)

Therefore, combining (4.11), (4.12) and (4.13), we conclude that (K̃oH)1(u) = c.

Taking into account that uk+u
2 converges weakly to u in E1 and using again the weak lower semi-

continuity of (K̃oH)1, we get

c = (K̃oH)1(u)  lim
k!1

inf(K̃oH)1
⇣
uk + u

2

⌘
. (4.14)

We argue by contradiction, and suppose that (uk) does not converge to u in E1. Then, there exists

� > 0 and a subsequence (ukr ) of (uk) such that

���
ukr � u

2

���
a1,�1

� �.
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By 2) and 3) in Lemma 3.2 we infer that

(K̃oH)1
⇣
uk + u

2

⌘
� ⇣0

⇣���
ukr � u

2

���
a1,�1

⌘
+ ⇣0

⇣h
ukr � u

2

i

s,�1

⌘
� ⇣0

⇣���
ukr � u

2

���
a1,�1

⌘

� ⇣0(�).

On the other hand, the �2-condition and relation (�1) enable us to apply Theorem 1.2 in [21] to

obtain

1
2
(K̃oH)1(u) +

1
2
(K̃oH)1(ukr )� (K̃oH)1

⇣ukr + u
2

⌘
� (K̃oH)1

⇣ukr � u
2

⌘
� ⇣0(�), (4.15)

for all r 2 N.

Letting r ! 1 in the above inequality, we get

c� ⇣0(�) � lim
r!1

sup(K̃oH)1
⇣
ukr + u

2

⌘
� c. (4.16)

That is a contradiction. It follows that (uk) converges strongly to u in E1.

Similary we can obtain that, vk ! v in E2. Therefore {(uk, vk)} ! (u, v) in W .

Lemma 4.6. If a sequence (uk, vk) converges to (u0, v0) in W weakly, then

Z

⌦

✓
1

↵1
Fu(x, uk, vk)�

1

↵2
Fu(x, u0, v0)

◆
(uk � u0)dx ! 0 (4.17)

and Z

⌦

✓
1

↵1
Fv(x, uk, vk)�

1

↵2
Fv(x, u0, v0)

◆
(vk � v0)dx ! 0. (4.18)

Proof. By (3.2), remark 3.6 and Hölder inequality we have:

Z

⌦

✓
1

↵1
Fu(x, uk, vk)�

1

↵2
Fu(x, u0, v0)

◆
(uk � u0)dx



Z

⌦

����
1

↵1
Fu(x, uk, vk)�

1

↵2
Fu(x, u0, v0)

���� |uk � u0|dx


1

↵1

Z

⌦
|Fu(x, uk, vk)||uk|dx+

1

↵1

Z

⌦
|Fu(x, uk, vk)||u0|dx

+
1

↵2

Z

⌦
|Fu(x, u0, v0)||uk|dx+

1

↵2

Z

⌦
|Fu(x, u0, v0)||u0|dx


c1

↵1

Z

⌦
|uk|

r1dx+
c2

↵1

Z

⌦
|vk|

r2(r1�1)
r1 |uk|dx+

c1

↵1

Z

⌦
|uk|

r1�1
|u0|dx

+
c2

↵1

Z

⌦
|vk|

r2(r1�1)
r1 |u0|dx+

c1

↵2

Z

⌦
|u0|

r1�1
|uk|dx+

c2

↵2

Z

⌦
|v0|

r2(r1�1)
r1 |uk|dx

+
c1

↵2

Z

⌦
|u0|

r1dx+
c2

↵2

Z

⌦
|v0|

r2(r1�1)
r1 |u0|dx
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 c
0
1

⇣Z

⌦
|uk|

r1dx

⌘
+ c

0
2

⇣Z

⌦
|uk|

r1dx

⌘ 1
r1
⇣Z

⌦
|vk|

r2dx

⌘ r1�1
r1

+ c
0
1

⇣Z

⌦
|uk|

r1dx

⌘ r1�1
r1

⇣Z

⌦
|u0|

r1dx

⌘ 1
r1 + c

0
2

⇣Z

⌦
|u0|

r1dx

⌘ 1
r1

⇥

⇣Z

⌦
|vk|

r2dx

⌘ r1�1
r1 + c

0
1

⇣Z

⌦
|u0|

r1dx

⌘ r1�1
r1

⇣Z

⌦
|uk|

r1dx

⌘ 1
r1

+ c
0
2

⇣Z

⌦
|uk|

r1dx

⌘ 1
r1
⇣Z

⌦
|v0|

r2dx

⌘ r1�1
r1 + c

0
1

⇣Z

⌦
|u0|

r1dx

⌘

+ c
0
2

⇣Z

⌦
|u0|

r1dx

⌘ 1
r1
⇣Z

⌦
|v0|

r2dx

⌘ r1�1
r1

. (4.19)

Since (uk, vk) * (u0, v0) in W , it is clear that uk * u0 in E1 and vk * v0 in E2, then {||uk||E1}

and {||vk||E2} are bounded. By remark 3.6, there exists G > 0 such that

||uk||E1 , ||vk||E2 , ||uk||r1 , ||vk||r2  G, for n 2 N. (4.20)

Combining (4.19) and (4.20), then we have

Z

⌦

✓
1

↵1
Fu(x, uk, vk)�

1

↵2
Fu(x, u0, v0)

◆
(uk � u0)dx  c

0
1||uk||

r1
r1 + c

0
2||uk||r1 ||vk||

r2(r1�1)
r1

r2

+ c
0
1||uk||

r2(r1�1)
r1

r1 ||u0||r1 + c
0
2||u0||r1 ||vk||

r2(r1�1)
r1

r2 + c
0
1||u0||

r2(r1�1)
r1

r1 ||uk||r1

+ c
0
2||uk||r1 ||v0||

r2(r1�1)
r1

r2 + c
0
1||u0||

r1
r1 + c

0
2||u0||r1 ||v0||

r2(r1�1)
r1

r2

 c
0
1G

r1 + c
0
2G

r2(r1�1)
r1

+1 + c
0
1G

r2(r1�1)
r1

+1 + c
0
2G

r2(r1�1)
r1

+1 + c
0
1c

0
2G

r2(r1�1)
r1

+1

+ c
0
2c

0
1G

r2(r1�1)
r1

+1 + c
0
1G

r1 + c
0
2c

0
1G

r2(r1�1)
r1

+1
. (4.21)

Using again Remark 3.6, then for any positive ✏, we can choose n0 2 N such that

⇣Z

⌦
|uk � u0|

r1dx

⌘ 1
r1

< ✏ for all n > n0.

Furthermore,

Z

⌦

����
1

↵1
Fu(x, uk, vk)�

1

↵2
Fu(x, u0, v0)

���� |uk � u0|dx



⇣Z

⌦

����
1

↵1
Fu(x, uk, vk)�

1

↵2
Fu(x, u0, v0)

����

r1
r1�1

dx

⌘ r1�1
r1

⇣Z

⌦
|uk � u0|

r1dx

⌘ 1
r1

 C

⇣Z

⌦
|Fu(x, uk, vk)|

r1
r1�1 + |Fu(x, u0, v0)|

r1
r1�1 dx

⌘ r1�1
r1

✏

 ✏C

⇣Z

⌦

⇣
(c1|uk|

r1�1 + c2|vk|
r2(r1�1)

r1 )
r1

r1�1 + (c1|u0|
r1�1 + c2|v0|

r2(r1�1)
r1 )

r1
r1�1

⌘
dx

⌘ r1�1
r1
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 ✏C

⇣Z

⌦

⇣
c

r1
r1�1

1 |uk|
r1 + c

r1
r1�1

2 |vk|
r2 + c

r1
r1�1

1 |u0|
r1 + c

r1
r1�1

2 |v0|
r2
⌘
dx

⌘ r1�1
r1

 ✏C

⇣
c

r1
r1�1

1 G
r1 + c

r1
r1�1

2 G
r2 + c

r1
r1�1

1 G
r1 + c

r1
r1�1

2 G
r2
⌘ r1�1

r1
. (4.22)

for all n > n0. As ✏ is arbitrary, combining (4.21) with (4.22), we conclude that (4.17) holds. With

a similar discussion as above, we can prove that (4.18) holds.

Lemma 4.7. I(u, v) is coercive on W , that is, I(u, v) ! +1 as ||(u, v)|| ! +1.

Proof. Using (A3), (4.1), Remark 3.6, and Lemma 3.2 we obtain

I(u, v) = (K̃oH)1(u) + (K̃oH)2(v)�

Z

⌦
F (x, u, v)dx

� ↵1(F1 +⌥1)(u) + ↵1(F2 +⌥2)(v)�

Z

⌦
F (x, u, v)dx

� ↵1 min{[u]l1s,�1
, [u]n1

s,�1
}+ ↵1 min{kukl1a,�1

, kuk
n1
a,�1

}

+ ↵1 min{[v]l2s,�2
, [v]n2

s,�2
}+ ↵1 min{kvkl2a,�2

, kvk
n2
a,�2

}� c1

Z

⌦
|u|

r1dx� c2

Z

⌦
|v|

r2dx

= ↵1

�
[u]l1s,�1

+ kuk
l1
a,�1

�
+ ↵1

�
[v]l2s,�2

+ kvk
l2
a,�2

�
� c3||u||

r1
E1,�1

� c4||u||
r2
E2,�2

�
↵1

2l1�1
kuk

l1
E1,�1

+
↵1

2l2�1
kvk

l2
E2,�2

� c3||u||
r1
E1,�1

� c4||v||
r2
E2,�2

.

Since ri 2 (1, li), then the last inequality implies that I(u, v) ! +1 as ||(u, v)|| = ||u||E1,�1 +

||v||E2,�2 ! +1.

Lemma 4.8. Assume that li = ni, (3.1), (4.11) (�1)-(�2) and (F1) hold. Then the energy func-

tional I satisfies (PS)-condition.

Proof. Let {(uk, vk)} be any (PS)-sequence in W for I. It follows from Lemma 4.7 that sequence

{(uk, vk)} is bounded in W . Therefore, going if necessary to a subsequence, we can assume that

(uk, vk) * (u0, v0) in W . Then uk * u0 in E1 and vk * v0 in E2 respectively. Since (uk, vk) is a

(PS)-sequence, there is c 2 R such that

I(uk, vk) ! c as j ! 1 and hI
0(uk, vk), (�, )i = 0 for all �, 2 C

1
c (Rn), (4.23)

which follows that,

ok(1) =

⌧
1

↵1
I
0(uk, vk)�

1

↵2
I
0(u0, v0), (uk � u0, vk � v0)

�

=
1

↵1
K1

�
F1(uk) +⌥1(uk)

�⇣ Z

⌦⇥⌦
�1(huk)hukhuk�u0dµ+

Z

⌦
a1(x)�1(uk)uk(uk � u0)dx

⌘

+
1

↵1
K2

�
F2(vk) +⌥2(vk)

�⇣ Z

⌦⇥⌦
�2(hvk)hvkhvk�v0dµ+

Z

⌦
a2(x)�2(vk)vk(vk � v0)dx

⌘



CUBO
26, 1 (2024)

On a class of fractional �(.)-Kirchhoff-Schrödinger system type 67

�
1

↵1

Z

⌦
(Fuk(x, uk, vk)(uk � u0) + Fvk(x, uk, vk)(vk � v0)) dx

�
1

↵2
K1

�
F1(u0) +⌥1(u0)

�⇣ Z

⌦⇥⌦
�1(hu0)hu0huk�u0dµ+

Z

⌦
a1(x)�1(u0)u0(uk � u0)dx

⌘

�
1

↵2
K1

�
F1(u0) +⌥1(u0)

�⇣ Z

⌦⇥⌦
�1(hu0)hu0huk�u0dµ+

Z

⌦
a1(x)�1(u0)u0(uk � u0)dx

⌘

+
1

↵2

Z

⌦
(Fu0(x, u0, v0)(uk � u0) + Fv0(x, u0, v0)(vk � v0)) dx

Using (A3) we infer that

ok(1) �
⇣Z

⌦⇥⌦
�1(huk)hukhuk�u0dµ+

Z

⌦
a1(x)�1(uk)uk(uk � u0)dx

⌘

+
⇣Z

⌦⇥⌦
�2(hvk)hvkhvk�v0dµ+

Z

⌦
a2(x)�2(vk)vk(vk � v0)dx

⌘

�
1

↵1

Z

⌦
(Fuk(x, uk, vk)(uk � u0) + Fvk(x, uk, vk)(vk � v0)) dx

�

⇣Z

⌦⇥⌦
(�1(hu0)hu0huk�u0dµ+

Z

⌦
a1(x)�1(u0)u0(uk � u0)dx

⌘

�

⇣Z

⌦⇥⌦
�1(hu0)hu0huk�u0dµ+

Z

⌦
a1(x)�1(u0)u0(uk � u0)dx

⌘

+
1

↵2

Z

⌦
(Fu0(x, u0, v0)(uk � u0) + Fv0(x, u0, v0)(vk � v0)) dx

=
⇣Z

⌦⇥⌦
(�1(huk)huk � �1(hu0)hu0)huk�u0dµ+

Z

⌦
a1(x)(�1(uk)uk � �1(u0)u0)(uk � u0)dx

⌘

+
⇣Z

⌦⇥⌦
(�2(hvk)hvk � �2(hv0)hv0)hvk�v0dµ+

Z

⌦
a2(x)(�2(vk)vk � �2(v0)v0)(vk � v0)dx

⌘

�

Z

⌦

✓
1

↵1
Fu(x, uk, vk)�

1

↵2
Fu(x, u0, v0)

◆
(uk � u0)dx

�

Z

⌦

✓
1

↵1
Fv(x, uk, vk)�

1

↵2
Fv(x, u0, v0)

◆
(vk � v0)dx.

Furthermore, last inequality, Lemma 4.6 and strictly monotone of the operator I
0
1 implies that

Z

⌦⇥⌦
(�1(huk)huk � �1(hu0)hu0)huk�u0dµ = hF

0
1(uk)� F

0
1(u0), uk � u0i ! 0 (4.24)

Z

⌦⇥⌦
(�2(hvk)hvk � �2(hv0)hv0)hvk�v0dµ = hF

0
2(vk)� F

0
2(v0), vk � v0i ! 0 (4.25)

Z

⌦
a1(x)(�1(uk)uk � �1(u0)u0)(uk � u0)dx = h⌥0

1(uk)�⌥0
1(u0), uk � u0i ! 0 (4.26)

and

Z

⌦
a2(x)(�2(vk)vk � �2(v0)v0)(vk � v0)dx = h⌥0

2(vk)�⌥0
2(v0), vk � v0i ! 0. (4.27)
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By Remark 3.6, (4.24) and (4.25) we have

uk(x) ! u0(x) a.e. x 2 ⌦,

and

vk(x) ! v0(x) a.e. x 2 ⌦.

Using Fatou’s Lemma we have

Z

⌦⇥⌦
�1(hu0)dµ  lim

k!1
inf

Z

⌦⇥⌦
�1(huk)dµ, (4.28)

Z

⌦⇥⌦
�1(hu)dµ  lim

k!1
inf

Z

⌦⇥⌦
�2(hvk)dµ, (4.29)

Z

⌦
a1(x)�1(uk(x))dx  lim

k!1
inf

Z

⌦
a1(x)�1(u0(x))dx, (4.30)

and Z

⌦
a2(x)�2(vk(x))dx  lim

k!1
inf

Z

⌦
a2(x)�2(v0(x))dx. (4.31)

Moreover,

lim
k!1

hF
0
1(uk), uk � u0i = lim

k!1
hF

0
1(uk)� F

0
1(u0), uk � u0i = 0, (4.32)

lim
k!1

hF
0
2(vk), vk � v0i = lim

k!1
hF

0
2(vk)� F

0
2(v0), vk � v0i = 0. (4.33)

By using Hölder inequality and (2.6) we have

hF
0
1(uk), uk � u0i =

Z

⌦⇥⌦
�1(huk)hukhuk�u0dµ

� l1

Z

⌦⇥⌦
�1(huk)dµ�

Z

⌦⇥⌦
�1(�1(huk)huk)dµ�

Z

⌦⇥⌦
�1(hu0)dµ

� l1

Z

⌦⇥⌦
�1(huk)dµ� (n1 � 1)

Z

⌦⇥⌦
�1(huk)dµ�

Z

⌦⇥⌦
�1(hu0)dµ

=

Z

⌦⇥⌦
�1(huk)dµ�

Z

⌦⇥⌦
�1(hu0)dµ. (4.34)

Again using Hölder inequality and (2.6) we have

hF
0
2(vk), vk � v0i =

Z

⌦⇥⌦
�v(hvk)hvkhvk�v0dµ

� l2

Z

⌦⇥⌦
�2(hvk)dµ�

Z

⌦⇥⌦
�2(�2(hvk)hvk)dµ�

Z

⌦⇥⌦
�2(hv0)dµ

� l2

Z

⌦⇥⌦
�2(hvk)dµ� (n2 � 1)

Z

⌦⇥⌦
�2(hvk)dµ�

Z

⌦⇥⌦
�2(h20)dµ

=

Z

⌦⇥⌦
�2(hvk)dµ�

Z

⌦⇥⌦
�2(hv0)dµ. (4.35)
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According to (4.28), (4.32) and (4.34) we infer that

lim
k!1

Z

⌦⇥⌦
�1(huk)dµ =

Z

⌦⇥⌦
�1(hu0)dµ. (4.36)

And by (4.29), (4.33) and (4.35) we have that

lim
k!1

Z

⌦⇥⌦
�2(hvk)dµ =

Z

⌦⇥⌦
�2(hv0)dµ. (4.37)

Also, by (4.7) we have

lim
k!1

Z

⌦
a1(x)�1(uk)dx =

Z

⌦
a1(x)�1(u0)dx, (4.38)

lim
k!1

Z

⌦
a2(x)�2(vk)dx =

Z

⌦
a2(x)�2(v0)dx. (4.39)

In conclusion, estimates (4.36), (4.37), (4.38) and (4.39) get the result.

Lemma 4.9. There is a point (u, v) 2 W such that I(u, v) < 0.

Proof. Let u0 = ⇢w0 and v0 = �w0 where w0 2 C
1
0 (⌦)\{0} with w0(x) � 0, supp(w0) ⇢ ⌦ and

||w0||  1. Without loss of generality, we can assume that ⇢ 6= 0. It is clear that (u0, v0) 2 W (see

[3, Theorem 3.7]). When t is small enough by (A3), (F2) and Lemma 3.2 we have

I(tu0, tv0) = (K̃oH)1(tu0) + (K̃oH)2(tv0)�

Z

⌦
F (x, tu0, tv0)dx

 ↵2

⇣Z

⌦⇥⌦
�1(htu0)dµ+

Z

⌦
a1(x)�1(tu0)dx

⌘

+ ↵2

⇣Z

⌦⇥⌦
�2(htv0)dµ+

Z

⌦
a2(x)�2(tv0)dx

⌘
�

Z

⌦
F (x, t⇢w0, t�w0)dx

 ↵2

�
max{[tu0]

l1
s,�1

; [tu0]
n1
s,�1

}+max{ ||tu0||
l1
a1,�1

; ||tu0||
n1
a1,�1

}
�

+ ↵2

�
max{[tv0]

l2
s,�2

; [tu0]
n2
s,�2

}+max{ ||tv0||
l2
a2,�2

; ||tv0||
n2
a2,�2

}
�

�

Z

⌦
c(|t⇢w0|

↵0 + |t�w0|
�0)dx

 ↵2[tu0]
l1
s,�1

+ ↵2[tu0]
n1
s,�1

+ ↵2||tu0||
l1
a1,�1

+ ↵2||tu0||
n1
a1,�1

+ ↵2[tv0]
l2
s,�2

+ ↵2[tv0]
n2
s,�2

+ ↵2||tv0||
l2
a2,�2

+ ↵2||tv0||
n2
a2,�2

� ct
↵0

Z

⌦
|⇢w0|

↵0dx� ct
�0

Z

⌦
|�w0|

�0dx

 ↵2t
l1 ||u0||

l1
E1,�1

+ ↵2t
n1 ||u0||

n1
E1,�1

+ ↵2t
l2 ||v0||

l2
E2,�2

+ ↵2t
n2 ||v0||

n2
E2,�2

� ct
↵0

Z

⌦
|u0|

↵0dx� ct
�0

Z

⌦
|v0|

�0dx.

Hence ↵0 2 [1, l1) and �0 2 [1, l2), we can choose t0 > 0 small enough such that I(t0u0, t0v0) <

0.
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Proof of Theorem 4.1. Let X = W and J = I. By Lemma 4.4, Lemma 4.7, Lemma 4.8 all

conditions of Lemma 4.2 hold. Then system (1.1) possesses a critical point (u, v) 2 W which is a

weak solution of system (1.1) satisfying I(u, v) = infW I. Lemma 4.9 implies that (u, v) 6= 0. Thus

system (1.1) possesses at least one nontrivial weak solution.
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[20] M. A. Krasnosel’skǐı and Ya. B. Rutickǐı, Convex functions and Orlicz Spaces. Noordhoff,

Groningen, 1969.

[21] J. Lamperti, “On the isometries of certain function-spaces,” Pacific J. Math., vol. 8, pp. 459–

466, 1958.

[22] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, ser. Applied

Mathematical Sciences. Springer New York, NY, 1989, vol. 74, doi: 10.1007/978-1-4757-

2061-7.

https://doi.org/10.1142/S1793557123501140
https://www.pmf.ni.ac.rs/filomat-content/2024/38-8/38-8-18-20741.pdf
https://doi.org/10.1155/2022/3849217
https://doi.org/10.1155/2022/3849217
https://doi.org/10.1080/17476933.2022.2159955
https://doi.org/10.1007/s41808-023-00252-6
https://doi.org/10.1016/j.jfa.2019.04.003
https://doi.org/10.4418/2016.71.1.6
https://doi.org/%2010.1007/978-1-4757-2061-7
https://doi.org/%2010.1007/978-1-4757-2061-7


CUBO
26, 1 (2024)

On a class of fractional �(.)-Kirchhoff-Schrödinger system type 73

[23] L. Wang, X. Zhang, and H. Fang, “Existence and multiplicity of solutions for a class of (�1,�2)-

Laplacian elliptic system in RN via genus theory,” Comput. Math. Appl., vol. 72, no. 1, pp.

110–130, 2016, doi: 10.1016/j.camwa.2016.04.034.

[24] Y. Wu, Z. Qiao, M. K. Hamdani, B. Kou, and L. Yang, “A class of variable-order fractional p(·)-

Kirchhoff-type systems,” J. Funct. Spaces, 2021, Art. ID 5558074, doi: 10.1155/2021/5558074.

https://doi.org/10.1016/j.camwa.2016.04.034
https://doi.org/10.1155/2021/5558074




CUBO, A Mathematical Journal

Vol. 26, no. 01, pp. 75–89, April 2024

DOI: 10.56754/0719-0646.2601.075

Families of skew linear harmonic Euler sums
involving some parameters

Anthony Sofo1,B

1College of Engineering and Science,

Victoria University, Australia.

anthony.sofo@vu.edu.au

ABSTRACT

In this study we investigate a family of skew linear harmonic

Euler sums involving some free parameters. Our analysis

involves using the properties of the polylogarithm function,

commonly referred to as the Bose-Einstein integral. A reci-

procity property is utilized to highlight an explicit represen-

tation for a particular skew harmonic linear Euler sum. A

number of examples are also given which highlight the the-

orems. This work generalizes some results in the published

literature and introduces some new results.

RESUMEN

En este estudio, investigamos una familia de sumas de

Euler lineales alternantes armónicas involucrando algunos

parámetros libres. Nuestro análisis involucra el uso

de propiedades de la función polilogaritmo, comúnmente

referida como la integral de Bose-Einstein. Se utiliza una

propiedad de reciprocidad para destacar una representación

explícita para una suma de Euler lineal alternante armónica.

Se entregan ejemplos que dan luces de los teoremas. Este tra-

bajo generaliza algunos resultados publicados en la literatura

e introduce algunos nuevos resultados.
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1 Introduction and preliminaries

In this paper we will investigate the closed form representation of skew linear harmonic Euler sums

of the form:
X

n>1

(�1)n+1
A

(t)
n

(
(�1)p

(2n+ 1 + a)p+1 +
(�1)t+1

(2n+ 1� a)p+1

)
(1.1)

for the parameter �1  a < 1 and integers p and t, and by reciprocity, also give a closed form

expression for
1X

n=1

(�1)n+1A
(p+1)
n

�
1
2

�

nt
. (1.2)

The alternating, or skew, harmonic numbers A
(t)
n of order t, in (1.1), are defined by

A
(t)
n :=

nX

j=1

(�1)j+1

jt
(t 2 C, n 2 N) (1.3)

and An := A
(1)
n . The polylogarithm

Lis(z) =
1

� (s)

1Z

0

t
s�1

z�1 exp (t)� 1
dt (1.4)

in this context, is sometimes referred to as a Bose-Einstein integral [15]. The skew harmonic Euler

sum (1.1) under investigation in this paper can be thought of as belonging to an extended family

which has its origin in the early investigations of Goldbach and Euler in which they initiated the

study of sums of the type, see Flajolet and Salvy [6]

Sp,t =
X

n�1

H
(p)
n

nt

known as linear harmonic Euler sums of weight p+t. Nielsen [9] and many others, see [1,2,6,11,12],

expanded this work and it is now known that Sp,t can be explicitly evaluated, in terms of special

functions such as the Riemann zeta function, in the cases when p = t 2 N, p + t of odd weight,

p+ t of even weight in only the pair {(4, 2) , (2, 4)} with p 6= t. A reciprocity (or shuffle) relation

Sp,t + St,p = ⇣ (p) ⇣ (t) + ⇣ (p+ t)

exists to evaluate St,p in the case Sp,t is known (or vice-versa). The subsequent notion of four

distinct classes of linear harmonic Euler sums, of the kind
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S++
p,t (a, b; q) :=

1X

n=1

H
(p)
qn (a)

(n+ b)t
, S+�

p,t (a, b; q) :=
1X

n=1

(�1)n+1H
(p)
qn (a)

(n+ b)t
,

S�+
p,t (a, b; q) :=

1X

n=1

A
(p)
qn (a)

(n+ b)t
, S��

p,t (a, b; q) :=
1X

n=1

(�1)n+1A
(p)
qn (a)

(n+ b)t
,

(1.5)

here q 2 Z�1, a, b 2 C \ Z�1 and p, t 2 C \ Z� was identified by Flajolet and Salvy [6], in the

case a = 0, b = 0 and q = 1. The case a 2 Z�1, b 2 Z�1 and q = 1 was examined by Alzer and

Choi [1], and finally the case a 2 Z�1, b 2 Z�1 and q 2 Z�1 was examined by Sofo and Choi [13].

The skew linear harmonic Euler sums (1.1) for certain values of the parameters a, p and t belong

to the family

S��
t,p+1

✓
0,

1� a

2

◆
:= S��

t,p+1

✓
0,

1� a

2
; 1

◆
=

1X

n=1

(�1)n+1 A
(t)
n

(n+ 1�a
2 )p+1

(1.6)

and will be explicitly represented in terms of special functions as described in (1.1). Using a

reciprocity theorem due to Alzer and Choi [1], we also represent

S��
p+1,t

✓
1� a

2
, 0

◆
=

1X

n=1

(�1)n+1A
(p+1)
n

�
1�a
2

�

nt

explicitly in terms of special functions. Interest in Euler sums and multiple zeta values has recently

been intense (see, for example, [3–5,7,8,10,18]). Likewise various Euler sums with parameters have

been researched (see, for example, [14,16,17]).

2 A parameterized integral

In the next Theorem we evaluate a particular integral which forms the basis in evaluating a family

of skew linear harmonic Euler sums.

Theorem 2.1. Let t 2 N and let �1  a < 1. The following integral formulas hold true:

X (a, t,1) =

Z 1

0

x
a Lit(x2)

1 + x2
dx (2.1)

= �⇡
2
sec
⇣
a⇡

2

⌘ 
⌘ (t) +

i exp
�
� ia⇡

2

�

2t

✓
⇣

✓
t,
1� a

4

◆
� ⇣

✓
t,
3� a

4

◆◆!
, (2.2)

where Lit(x2) is the polylogarithm function, ⌘ (t) is the Dirichlet eta function and ⇣ (t, µ) is the

generalized zeta function described in [5].
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Proof. From (2.1), we apply the change of variable x
2 = y, (then rename y = x), so that

X (a, t,1) =
1

2

Z 1

0

x
a�1
2 Lit(x)

1 + x
dx.

we now utilize the Bose-Einstein integral (1.4), described in [15] so that

X (a, t,1) =
1

2

Z 1

0

x
a�1
2 Lit(x)

1 + x
dx =

1

2� (t)

Z 1

0
y
t�1

Z 1

0

x
a�1
2

(1 + x) (x�1 exp (y)� 1)
dx dy

which yields

=
⇡ sec

�
a⇡
2

�

2� (t)

Z 1

0

y
t�1

exp (y) + 1

⇣
�1 + (sinh (y)� cosh (y))�

a+1
2

⌘
dy

=
⇡ sec

�
a⇡
2

�

2� (t)

Z 1

0

y
t�1

exp (y) + 1

⇣
�1 + (� exp (�y))�

a+1
2

⌘
dy

=
⇡ sec

�
a⇡
2

�

2� (t)

Z 1

0

y
t�1

exp (y) + 1

✓
�1 + exp

✓
1

2
(y � i⇡) (a+ 1)

◆◆
dy

= ⇡ sec
⇣
a⇡

2

⌘✓
�
�
1� 21�t

�
⇣ (t)� i

2t
exp

✓
� ia⇡

2

◆✓
⇣

✓
t,
1� a

4

◆
� ⇣

✓
t,
3� a

4

◆◆◆

= �⇡
2
sec
⇣
a⇡

2

⌘ 
⌘ (t) +

i exp
�
� ia⇡

2

�

2t

✓
⇣

✓
t,
1� a

4

◆
� ⇣

✓
t,
3� a

4

◆◆!
,

this completes the proof and (2.2) is achieved.

In the next Lemma we will demonstrate a series representation for the integral (2.3) on the unit

interval x 2 (0, 1).

Lemma 2.2. Let t 2 N and let �1  a < 1. The following integral formula holds true:

X (a, t, 1) =

Z 1

0

x
a Lit(x2)

1 + x2
dx =

X

n�1

(�1)n+1
A

(t)
n

2n+ 1 + a
, (2.3)

where A
(t)
n are the skew harmonic numbers of order t.

Proof. A Taylor series expansion in the domain, x 2 (0, 1) gives,

Lit(x
2) =

X

n�1

x
2n

nt
,

1

1 + x2
=
X

n�0

(�1)n x2n
.

By the Cauchy product of two convergent series, then it follows that

x
aLit(x2)

1 + x2
=
X

n�1

(�1)n+1
A

(t)
n x

2n+a
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and therefore

Z 1

0

x
a Lit(x2)

1 + x2
dx =

X

n�1

(�1)n+1
A

(t)
n

Z 1

0
x
2n+a dx =

X

n�1

(�1)n+1
A

(t)
n

2n+ 1 + a
.

In a similar fashion, it follows that

X (�a, t, 1) =

Z 1

0

x
�aLit(x2)

1 + x2
dx =

X

n�1

(�1)n+1
A

(t)
n

2n+ 1� a
.

In subsequent evaluations we also require the following result, which may be evaluated as a standard

integral. Z 1

0

x
�a logj(x)

1 + x2
dx =

(�1)j j!

4j

✓
⇣

✓
j + 1,

1� a

4

◆
� ⇣

✓
j + 1,

3� a

4

◆◆
.

In the next Theorem we establish an identity for a linear skew harmonic Euler sum of weight

(t+ 1), t 2 N, for the parameter a 6= 0.

Theorem 2.3. Let t 2 N, �1  a < 1 with a 6= 0. The following formulas hold true:

S (a, t) =
X

n>1

(�1)n+1
A

(t)
n

(
1

2n+ 1 + a
+

(�1)t+1

2n+ 1� a

)
(2.4)

=
1

4

X

n>1

1

nt

n
Hn

2 � 1�a
4

�Hn
2 � 3�a

4
+ (�1)t+1

⇣
Hn

2 � 1+a
4

�Hn
2 � 3+a

4

⌘o
(2.5)
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2
sec
⇣
a⇡

2

⌘ 
⌘ (t) +

i exp
�
� ia⇡

2

�

2t

✓
⇣

✓
t,
1� a

4

◆
� ⇣

✓
t,
3� a

4

◆◆!

+
(�1)t+1 2t�2 (⇡i)t Bt

t!

✓
 

✓
1� a

4

◆
�  

✓
3� a

4

◆◆
(2.6)

+
(�1)t+1 2t�2

t!

tX

j=0

✓
t

j

◆
(�1)j j!Bt�j (⇡i)

t�j

4j

✓
⇣

✓
j + 1,

1� a

4

◆
� ⇣

✓
j + 1,

3� a

4

◆◆
.

Proof. Consider the following integral on the real half line x � 0

X (a, t,1) =

Z 1

0

x
a Lit(x2)

1 + x2
dx.

Putting

� (a, t;x) :=
x
a Lit(x2)

1 + x2

it may be seen that lim
x#0

� (a, t;x), lim
x"1

� (a, t;x) and lim
x!1

� (a, t;x) exist, in fact lim
x!1

� (a, t;x) =

1
2Lit(1) =

1
2⇣(t) and it may be expressed as

X (a, t,1) =

1Z

0

� (a, t;x) dx+

1Z

1

� (a, t;x) dx. (2.7)
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Using the transformation xy = 1 in the last integral in (2.7) and recovering the variable x instead

of y in the resultant integral, we obtain

X (a, t,1) =

1Z

0

� (a, t;x) dx+

1Z

0

x
�a Lit(

1
x2 )

1 + x2
dx.

From the properties of Lit( 1
x2 ), see [5], the last integral is expressed as

X (a, t,1) =

1Z

0

� (a, t;x) dx+ (�1)t+1

1Z

0

x
�a

1 + x2

 
Lit(x

2) +
(2⇡i)t

t!
Bt

✓
log x

⇡i

◆!
dx

=

1Z

0

� (a, t;x) dx+ (�1)t+1

1Z

0

� (�a, t;x) dx+ (�1)t+1 (2⇡i)t

t!

1Z

0

x
�a

1 + x2
Bt

✓
log x

⇡i

◆
dx

where Bt

� log x
⇡i

�
are the Bernoulli polynomials. From the recurrence relation of the Bernoulli

polynomials,

Bj (t) =
jX

k=0

✓
j

k

◆
Bk t

j�k =
jX

k=0

✓
j

k

◆
Bj�kt

k
,

we can express the last integral in the form

X (a, t,1) =

1Z

0

� (a, t;x) dx+ (�1)t+1

1Z

0

� (�a, t;x) dx+ (�1)t+1 (2⇡i)t

t!

tX

j=0

 
t
j

!
Bt�j

(⇡i)j

1Z

0

x�a logj (x)
1 + x2

dx.

We now rearrange the above relation and use the results of Theorem 2.1 and Lemma 2.2 to obtain

S (a, t) =
X

n>1

(�1)n+1
A

(t)
n

(
1

2n+ 1 + a
+

(�1)t+1

2n+ 1� a

)

= X (a, t,1) +
(�1)t+1 2t�2

t!

tX

j=0

✓
t

j

◆
(�1)j j!Bt�j (⇡i)

t�j

4j

✓
⇣

✓
j + 1,

1� a

4

◆
� ⇣

✓
j + 1,

3� a

4

◆◆
.

If we isolate the j = 0 term and put (2.2) for X (a, t,1), we obtain

S (a, t) =
X

n>1

(�1)n+1
A

(t)
n

(
1

2n+ 1 + a
+

(�1)t+1

2n+ 1� a

)

= X (a, t,1) +
(�1)t+1 2t�2 (⇡i)t Bt

t!

✓
 

✓
1� a

4

◆
�  

✓
3� a

4

◆◆

+
(�1)t+1 2t�2

t!

tX

j=0

✓
t

j

◆
(�1)j j!Bt�j (⇡i)

t�j

4j

✓
⇣

✓
j + 1,

1� a

4

◆
� ⇣

✓
j + 1,

3� a

4

◆◆
,
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and (2.6) follows. The representation (2.5) is achieved in the following way.

X (a, t, 1) =

Z 1

0

x
a Lit(x2)

1 + x2
dx =

X

n>1

1

nt

X

r>0

(�1)r
Z 1

0
x
2n+2r+a dx

=
X

n>1

1

nt

X

r>0

(�1)r

2n+ 2r + a+ 1
=
X

n>1

1

2nt
⇣

✓
�1, 1,

1

2
(2n+ a+ 1)

◆

=
X

n>1

1

4nt

✓
 

✓
2n+ a+ 1

4

◆
�  

✓
2n+ a+ 3

4

◆◆
(2.8)

=
1

4

X

n>1

1

nt

⇣
Hn

2 � 1�a
4

�Hn
2 � 3�a

4

⌘
.

Following the same pattern we have,

X (�a, t, 1) =

Z 1

0

x
�a Lit(x2)

1 + x2
dx =

1

4

X

n>1

1

nt

⇣
Hn

2 � 1+a
4

�Hn
2 � 3+a

4

⌘

and therefore X (a, t, 1) + (�1)t+1
X (�a, t, 1) implies the result (2.5).

In the next section we extend the results of the previous section by considering a more general

version of the integral (2.1) thereby allowing an extension of the result (2.4).

3 The logarithmic case

This section establishes a number of general skew linear harmonic Euler sum identities.

Theorem 3.1. Let p, t 2 N, �1  a < 1 with a 6= 0. The following formulas hold true:

S (a, t, p) : = p!
X

n>1

(�1)n+1
A

(t)
n

(
(�1)p

(2n+ 1 + a)p+1 +
(�1)t+1

(2n+ 1� a)p+1

)
(3.1)

=
X

n>1

(�1)p p!

4p+1nt

⇣
H

(p+1)
n
2 � 1�a

4

�H
(p+1)
n
2 � 3�a

4

+ (�1)t+1
⇣
H

(p+1)
n
2 � 1+a

4

�H
(p+1)
n
2 � 3+a

4

⌘⌘
(3.2)

=
@
p

@ap
(X (a, t,1)) +

(�1)t+1 2t�2p�2

t!

tX

j=0

1

4j

✓
t

j

◆✓
p+ j

j

◆
(�1)j j!Bt�j (⇡i)

t�j

⇥
✓
⇣

✓
p+ j + 1,

1� a

4

◆
� ⇣

✓
p+ j + 1,

3� a

4

◆◆
, (3.3)

where X (a, t,1) is given by (2.2), and H
(m)
↵ are harmonic numbers.

Proof. From Theorem 2.1, we note that

@
p

@ap
X (a, t,1) =

Z 1

0

x
a lnp (x) Lit(x2)

1 + x2
dx. (3.4)
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From Theorem 2.3 consider (2.4) and differentiate p times with respect to the parameter a so that

@
p

@ap
(S (a, t)) = S (a, p, t) = p!

X

n>1

(�1)n+1
A

(t)
n

(
(�1)p

(2n+ 1 + a)p+1 +
(�1)t+1

(2n+ 1� a)p+1

)

= �⇡
2

@
p

@ap

 
sec
⇣
a⇡

2

⌘ 
⌘ (t) +

i exp
�
� ia⇡

2

�

2t

✓
⇣

✓
t,
1� a

4

◆
� ⇣

✓
t,
3� a

4

◆◆!!

+
@
p

@ap

 
(�1)t+1 2t�2 (⇡i)t Bt

t!

✓
 

✓
1� a

4

◆
�  

✓
3� a

4

◆◆!

+
@
p

@ap

0

@ (�1)t+1 2t�2

t!

tX

j=0

✓
t

j

◆
(�1)j j!Bt�j (⇡i)

t�j

4j

✓
⇣

✓
j + 1,

1� a

4

◆
� ⇣

✓
j + 1,

3� a

4

◆◆1

A .

After some simplification and rearrangement we obtain the identity (3.3). The representation (3.2)
can be attained from the representation (2.8),

@p

@ap

�
X (a, t, 1) + (�1)t+1 X (�a, t, 1)

�
=

@p

@ap

 
X

n>1

1
4nt

✓
 

✓
2n+ a+ 1

4

◆
�  

✓
2n+ a+ 3

4

◆◆!

+ (�1)t+1 @p

@ap

 
X

n>1

1
4nt

✓
 

✓
2n� a+ 1

4

◆
�  

✓
2n� a+ 3

4

◆◆!

+
X

n>1

1
4p+1nt

✓
 (p)

✓
2n+ a+ 1

4

◆
�  (p)

✓
2n+ a+ 3

4

◆◆

+ (�1)p+t+1
X

n>1

1
4p+1nt

✓
 (p)

✓
2n� a+ 1

4

◆
�  (p)

✓
2n� a+ 3

4

◆◆
,

where H(m)
↵ are harmonic numbers of order m 2 N with index ↵ 2 C\Z6�1, and upon simplification

of the above expression we obtain (3.2).

There are some cases of the value of the parameter a of Theorem 3.1 which are worthy of inves-

tigation and these are given in the next Corollaries. In particular we examine the three cases of

(1) . a = 0, (2). t = 1 and p is an even integer, and (3). p+ 1 = t, for t 2 N0.

Corollary 3.2. Let p, t 2 N, with p+ t of odd weight, and put a = 0. The following formula holds

true:

S (0, t, p) : = 2 (�1)p p!
X

n>1

(�1)n+1 A(t)
n

(2n+ 1)p+1 (3.5)

= �
⇣⇡
2

⌘p+1
|Ep| ⌘ (t) + 2tp!

 
p+ t
t

!
� (p+ t+ 1) (3.6)

� 2t
t�2X

j=0

(�1)p+j p!
(t� j)!

(i⇡)t�j

 
p+ j
j

!
Bt�j� (p+ j + 1)

� 2t
p�1X

r=0

⇡p+1�r r!
�
2p+1�r � 1

�

p+ 1� r

 
p
r

! 
t+ r � 1

r

!
|Bp+1�r|� (t+ r) .
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where Bz are the Bernoulli numbers, Ez are the Euler numbers and � (z) is the Dirichlet beta

function.

Proof. For a = 0 and for odd weight p+ t Theorem 3.1 provides

S (0, t, p) : = 2 (�1)p p!
X

n>1

(�1)n+1 A(t)
n

(2n+ 1)p+1

= �⇡
2
lim
a!0

@p

@ap

 
sec
⇣a⇡

2

⌘ 
⌘ (t) +

i exp
�
� ia⇡

2

�

2t

✓
⇣

✓
t,
1� a
4

◆
� ⇣

✓
t,
3� a
4

◆◆!!
(3.7)

+ lim
a!0

@p

@ap

 
(�1)t+1 2t�2

t!

tX

j=0

 
t
j

!
(�1)j j!Bt�j (⇡i)

t�j

4j

✓
⇣

✓
j + 1,

1� a
4

◆
� ⇣

✓
j + 1,

3� a
4

◆◆!
.

Consider

� ⇡
2
⌘ (t) lim

a!0

@p

@ap
sec
⇣a⇡

2

⌘
� ⇡

2
lim
a!0

@p

@ap

 
sec
⇣a⇡

2

⌘ i exp
�
� ia⇡

2

�

2t

✓
⇣

✓
t,
1� a
4

◆
� ⇣

✓
t,
3� a
4

◆◆!
,

(3.8)

now simplify the second term so that (3.8) can be written as

= �
⇣⇡
2

⌘p+1
|Ep| ⌘ (t)�

i⇡
2t+1

lim
a!0

@p

@ap

✓⇣
i+ tan

⇣a⇡
2

⌘⌘✓
⇣

✓
t,
1� a
4

◆
� ⇣

✓
t,
3� a
4

◆◆◆

= �
⇣⇡
2

⌘p+1
|Ep| ⌘ (t)�

i⇡
2t+1

lim
a!0

pX

r=0

 
p
r

!⇣
i+ tan

⇣a⇡
2

⌘⌘(r) ✓
⇣

✓
t,
1� a
4

◆
� ⇣

✓
t,
3� a
4

◆◆(p�r)

(3.9)

where F
(r) indicates the r

th derivative of F with respect to the parameter a. The term

lim
a!0

@
r

@ar

⇣
i+ tan

⇣
a⇡

2

⌘⌘
=

8
>><

>>:

0, for r even

i, for r = 0
2r+1(2r+1�1)

r+1

�
⇡
2

�r |Br+1| , for r odd

and

lim
a!0

@
m

@am

✓
⇣

✓
t,
1� a

4

◆
� ⇣

✓
t,
3� a

4

◆◆
= 4t (t)m � (m+ t) , for m 2 N,

where (t)m is Pochhammer’s symbol, see [5]. Now, substituting into (3.9) and simplifying we have

S (0, t, p) : = 2 (�1)p p!
X

n>1

(�1)n+1 A
(t)
n

(2n+ 1)p+1

= �
⇣
⇡

2

⌘p+1
|Ep| ⌘ (t)� i⇡p!2t�1

✓
p+ t� 1

p

◆
� (p+ t) (3.10)

� 2t
tX

j=0

(�1)p+j
p!

(t� j)!
(i⇡)t�j

✓
p+ j

j

◆
Bt�j� (p+ j + 1)

� 2t
p�1X

r=0

⇡
p+1�r

r!
�
2p+1�r � 1

�

p+ 1� r

✓
p

r

◆✓
t+ r � 1

r

◆
|Bp+1�r|� (t+ r) .



84 A. Sofo CUBO
26, 1 (2024)

In the second sum we isolate the j = t term, with the value B0 = 1 and the j = t� 1 term, with

the value B1 = � 1
2 , so that in simplifying we produce the result (3.6).

Corollary 3.3. For t = 1, and p an even integer, the following formula is valid:

S (0, 1, p) := 2p!
X

n>1

(�1)n+1 An

(2n+ 1)p+1 = 2 (p+ 1)!� (p+ 2)�
⇣
⇡

2

⌘p+1
|Ep| ln (2) (3.11)

� 2
p�1X

r=0

⇡
p+1�r

r!
�
2p+1�r � 1

�

p+ 1� r

✓
p

r

◆
|Bp+1�r|� (r + 1) .

where Bz are the Bernoulli numbers, Ez are the Euler numbers and �(·) is the Dirichlet beta

function.

Proof. The proof follows directly from Corollary 3.2. We remark that this case has been examined

in the paper [18], but in slightly different form than Corollary 3.3. An equivalent expression, in

less compact form, for (3.11) has been given by Stewart [18].

Another special case worthy of mention is for the situation when p+ 1 = t, this is detailed in the

next Corollary.

Corollary 3.4. Let p+ 1 = t 2 N. The following relation is valid:

S (0, t, t� 1) : = 2 (�1)t�1 (t� 1)!
X

n>1

(�1)n+1 A
(t)
n

(2n+ 1)t
(3.12)

= �
⇣
⇡

2

⌘t
|Et�1| ⌘ (t) + 2t (t� 1)!

✓
2t� 1

t

◆
� (2t) (3.13)

+ 2t
t�2X

j=0

(�1)t+j (t� 1)!

(t� j)!
(i⇡)t�j

✓
t+ j � 1

j

◆
Bt�j� (t+ j)

� 2t
t�2X

r=0

⇡
t�r

r! (2t�r � 1)

t� r

✓
t� 1

r

◆✓
t+ r � 1

r

◆
|Bt�r|� (t+ r) ,

where Bz are the Bernoulli numbers, Ez are the Euler numbers and � (z) is the Dirichlet beta

function.

Proof. Follows directly from (3.2).
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4 Reciprocity identity

The following Theorem is enunciated by Alzer and Choi [1] regarding a general shuffle relation,

and we shall utilize this result in the upcoming Corollary.

Theorem 4.1. The following formula is given by Alzer and Choi [1, p.14]. Let p, q 2 N , ↵, b 2
C\Z�

, with ↵ 6= b, then,

S��
p,q (↵, b) + S��

q,p (b,↵) = ⌘ (p,↵+ 1) ⌘ (q, b+ 1) +
X

k�1

1

(k + ↵)p (k + b)q
. (4.1)

The infinite sum can be expressed as finite linear combination of polygamma functions. Here

⌘ (p,↵+ 1) is the generalized eta function.

Let us recall, from (3.1) and using the notation of (1.6), that

S (a, t, p) =
(�1)p p!

2p+1
S��
t,p+1

✓
0,

1 + a

2

◆
+

(�1)t+1
p!

2p+1
S��
t,p+1

✓
0,

1� a

2

◆
.

The case a = 0 is described as

S (0, t, p) =
(�1)p p!

2p
S��
t,p+1

✓
0,

1

2

◆

and its closed form representation given by (3.3). We can now apply Theorem 4.1 to obtain

reciprocity relations for some identities of Section 3. Consider the following Corollary.

Corollary 4.2. Let p, t 2 N, with p+ t of odd weight. The following identity holds true:

S��
p+1,t

✓
1

2
, 0

◆
=
X

n>1

(�1)n+1
A

(p+1)
n

�
1
2

�

nt

= (�1)p+1 2p+t�1

✓
p+ t� 1

t� 1

◆
(ln 2� 1)� (�1)p 2p

p!
S (0, t, p+ 1)

+ 2p+1 (1� � (p+ 1)) ⌘ (t) + (�1)p+1
pX

j=1

(�1)j+1 2p+t�j

j

✓
p+ t� j � 1

t� 1

◆
⇣ (j + 1)

+ (�1)p+1
pX

j=1

j!2p+t+1

✓
p+ t� j � 1

p

◆
(1� � (j + 1)) , (4.2)

where S (0, t, p+ 1) is the expression (3.6), ⌘
�
p+ 1, 3

2

�
is the generalized eta function and � (j + 1)

is the Dirichlet lambda function, see [5].
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Proof. Applying Theorem 4.1, we are able to express

S��
p+1,t

✓
1
2
, 0

◆
=
X

n>1

(�1)n+1 A(p+1)
n

�
1
2

�

nt
= � (�1)p 2p

p!
S (0, t, p+ 1)+⌘ (t, 1) ⌘

✓
p+ 1,

3
2

◆
+
X

j�1

1

jp+1
�
j + 1

2

�t .

(4.3)

The sum

X

j�1

1

jp+1
�
j + 1

2

�t = (�1)p+1 2p+t

✓
p+ t� 1

t� 1

◆✓
 (1)�  

✓
3

2

◆◆

= +(�1)p+1
pX

j=1

2p+t�j

j!

✓
p+ t� j � 1

t� 1

◆
 
(j)(1) (4.4)

+ (�1)t
t�1X

j=1

(�1)p+t�j 2p+t�j

j!

✓
p+ t� j � 1

p

◆
 
(j)

✓
3

2

◆
.

The following relations apply, in simplifying the above expression,

 (1) = ��,  

✓
3

2

◆
= �2 ln 2� �,  

(j)(1) = (�1)j�1 (j � 1)!⇣ (j + 1) ,

 
(j)

✓
3

2

◆
=  

(j)

✓
1

2

◆
+ (�1)j j!2j+1 = (�1)j j!2j+1 (1� � (j + 1)) ,

⌘ (t, 1) = ⌘ (t) , ⌘

✓
p+ 1,

3

2

◆
= 2p+1 (1� � (p+ 1)) ,

where � is the familiar Euler-Mascheroni constant (see, e.g., [17, Section 1.2]), and therefore, using

(4.4)

X

j�1

1

jp+1
�
j + 1

2

�t = (�1)p+1 2p+t

✓
p+ t� 1

t� 1

◆
(2 ln 2� 2)

= + (�1)p+1
pX

j=1

(�1)j+1 2p+t�j

j

✓
p+ t� j � 1

t� 1

◆
⇣(j + 1)

+ (�1)p+1
t�1X

j=1

j!2p+t+1

✓
p+ t� j � 1

p

◆
(1� � (j + 1)) .

Substituting this expression in (4.3) we arrive at the the expression (4.2) and the proof is finalized.

5 Some examples

Example 5.1. Let (a, t, p) = (0, 2, 3), the following identity holds,

X

n>1

(�1)n+1
A

(2)
n

(2n+ 1)4
=

1

16
S��
2,4

✓
0,

1

2

◆
=
⇡
4
G

24
+

5⇡2
�(4)

3
� 20�(6).
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Example 5.2. Let (a, t, p) = (0, 4, 3), the following identity holds,

1

16
S��
4,4

✓
0,

1

2

◆
=
X

n>1

(�1)n+1
A

(4)
n

(2n+ 1)4
=

8⇡4
�(4)

45
+

80⇡2
�(6)

3
+ 280�(8).

Example 5.3. Let (a, t, p) = (0, 5, 0), the following identity holds,

X

n>1

(�1)n+1
A

(5)
n

2n+ 1
=

1

2
S��
5,1

✓
0,

1

2

◆
= �2G�(4)� 8⇣ (2)�(4) + 16�(6)� ⇡⌘ (5)

4
.

Example 5.4. Let (a, t, p) = (0, 2t, 1), the following identity holds,

X

n>1

(�1)n+1 A
(2t)
n

(2n+ 1)2
=

1

4
S��
2t,2

✓
0,

1

2

◆
= ⇡

222t�3
� (2t)� (2t+ 1) 22t�1

� (2t+ 2)

+ 22t�1
2t�2X

j=0

(�1)t+j (j + 1)

(2t� j)!
(i⇡)2t�j

B2t�j� (j + 2) .

Example 5.5. As a last example we utilize the results of Example 5.4, so that the following identity

holds,

S��
2,2t

✓
1

2
, 0

◆
=
X

n>1

(�1)n+1
A

(2)
n
�
1
2

�

n2t
=
X

n>1

(�1)n+1

n2t

nX

j=1

(�1)j+1

�
j + 1

2

�2

= ⌘

✓
2t,

3

2

◆
⌘ (2, 1) +

X

k�1

1

k2
�
k + 1

2

�2t � S��
2t,2

✓
0,

1

2

◆
.

Simplifying the algebra we arrive at:

S��
2,2t

✓
1

2
, 0

◆
= 22t+3

t ln (2) + 22t⇣ (2)� S��
2t,2

✓
0,

1

2

◆
�

2t�1X

j=1

(2t� j) j! 22t+3 (1� � (j + 1)) .

6 Concluding remarks

In this paper we have offered an explicit representation for integrals with log-polylog integrand

both in the unit domain and on the positive real half line x � 0, see (2.1) and (3.4). These

explicit evaluations enabled the representation, in closed form, of families of skew linear harmonic

Euler sums of the form (2.4) and (3.1) which are new in the literature. An application of a

reciprocity theorem allowed further explicit evaluations of families of skew linear harmonic Euler

sums. A number of pertinent examples were also given to highlight the theorems and corollaries.

It is expected that further work will follow examining variant linear Euler sums incorporating

parameters.
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ABSTRACT

In this research article, we study ⇤-⌘-Ricci-Yamabe soli-

tons on an ↵-cosymplectic manifold by giving an example

in the support and also prove that it is an ⌘-Einstein man-

ifold. In addition, we investigate an ↵-cosymplectic man-

ifold admitting ⇤-⌘-Ricci-Yamabe solitons under some

conditions. Lastly, we discuss the concircular, confor-

mal, conharmonic, and W2-curvatures on the said mani-

fold admitting ⇤-⌘-Ricci-Yamabe solitons.

RESUMEN

En el presente artículo, estudiamos solitones ⇤-⌘-Ricci-

Yamabe en una variedad ↵-cosimpléctica dando un ejem-

plo que lo soporta y también probamos que es una

variedad ⌘-Einstein. Adicionalmente, investigamos una

variedad ↵-cosimpléctica que admite solitones ⇤-⌘-Ricci-

Yamabe bajo ciertas condiciones. Finalmente, discuti-

mos las curvaturas concircular, conforme, con-armónica

y W2 en dicha variedad admitiendo solitones ⇤-⌘-Ricci-

Yamabe.
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1 Introduction

In the year 1982, R. S. Hamilton [9] investigated the concept of Ricci flow on a smooth Riemannian

manifold (shortly, RM). A self-similar solution to the Ricci flow is nothing but a Ricci soliton if it

moves only by a one parameter family of diffeomorphism and scaling. After introducing the idea of

Ricci flow, the theory of Yamabe flow was also initiated by Hamilton in [10] to construct Yamabe

metrics on a compact RM. A Yamabe soliton is again corresponded to a self-similar solution of the

Yamabe flow.

S. Guler and M. Crasmareanu gave a new class of geometric flow of type (⇢, q), known as Ricci-

Yamabe flow in [7]. They proposed the idea of Ricci-Yamabe soliton (shortly, RYS) if it moves

only by one parameter group of diffeomorphism and scaling. The metric of the RM (Mn
, h), n > 2,

is said to be RYS (h,V ,⇤, ⇢, q) if it satisfies the following [20]:

£V h+ 2⇢Ric = [2⇤� qr]h, (1.1)

where Lie derivative operator of the metric h along the vector field V represented by £V h, the

Ricci curvature tensor by Ric (the Ricci operator Q defined by Ric(A,B) = h(QA,B) for A,B

2 �(M), �(M) being the Lie algebra of vector fields of M), the scalar curvature by r and the real

scalars by ⇤, ⇢, q. According to ⇤, RYS will be expanding, steady or shrinking if ⇤ is negative,

zero or positive, respectively.

The concept of ⌘-Ricci-Yamabe solitons (⌘-RYS) was defined by M. D. Siddiqi, et al. [20] in 2020

as a new generalization of RYS and it is defined as

£V h+ 2Ric+ [2⇤� qr]h+ 2µ⌘ ⌦ ⌘ = 0, (1.2)

where µ is a constant and ⌘ is a 1-form on M .

On the other hand, S. Dey and S. Roy [5] inaugurated a new generalization of ⌘-Ricci soliton

(⌘-RS) [3], namely ⇤-⌘-Ricci soliton (⇤-⌘-RS), defined below:

£V h+ 2Ric
⇤ + 2⇤h+ 2µ⌘ ⌦ ⌘ = 0, (1.3)

where ⇤-Ricci tensor (shortly, ⇤-RT) is denoted by Ric
⇤.

Tachibana [22] brought up the concept of ⇤-RT on almost Hermitian manifolds and afterwards

Hamada [8] studied ⇤-RT on real hypersurfaces of non-flat complex space forms. Such geometrical

works inspired S. Roy, et al. to come up with new idea ⇤-⌘-Ricci-Yamabe soliton (shortly, ⇤-⌘-RYS)

of type (⇢, q), which is RM and fulfilling [18]
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£V h+ 2⇢Ric
⇤ + [2⇤� qr

⇤]h+ 2µ⌘ ⌦ ⌘ = 0, (1.4)

where r
⇤(= trace(Ric

⇤)) is the ⇤-scalar curvature and ⇤, ⇢, q, µ are real scalars. The ⇤-⌘-RYS is

shrinking, steady or expanding if ⇤ is negative, zero or positive respectively. And they discussed

⇤-⌘-RYS on ↵-cosymplectic manifolds with a quarter-symmetric metric (shortly, QSM) connection.

Further, A. Haseeb, R. Prasad and F. Mofarreh [12] obtained some interesting results on an

↵-Sasakian manifold admitting ⇤-⌘-RYS with the potential vector field ⇣ satisfying conditions

Rim(⇣,X ).Ric = 0, Q(h,Ric) = 0 and pseudo-Ricci symmetric and also showed that ↵-Sasakian

admitting ⇤-⌘-RYS is an ⌘-EM.

In last few years, numerous authors have worked on the characterizations of Ricci, Ricci-Yamabe,

⌘-Ricci-Yamabe and ⇤-⌘-Ricci-Yamabe solitons (respectively, RS, RYS, ⌘-RYS and ⇤-⌘-RYS) in

contact geometry. First, the study of RS in contact geometry was proposed by Sharma in [19].

After the initial work on Ricci solitons, some notable classes of contact geometry explored by H.

I. Yoldas in [25,26] where Ricci solitons have been investigated. Later on, D. Dey [2] provided the

idea of an almost Kenmotsu metric as RYS. Also, P. Zhang et al. [27] have studied conformal RYS

on perfect fluid space-time. New type of soliton namely ⇤-RYS on contact geometry introduced

by M. D. Siddiqi and Akyol in [20] and they have discussed the notion of ⌘-RYS for geometrical

structure on Riemannian submersions admitting ⌘-RYS with the potential field. In recent years, a

Kenmotsu metric in terms of ⌘-RYS was measured by Yoldas in [23]. Next, the notion of ⇤-⌘-RYS

was studied by many authors on different odd dimensional Riemannian manifolds. It should be

noted that the geometry of ⇤-k-RYS and gradient ⇤-k-RYS on Kenmotsu manifolds were given by

S. Dey and S. Roy in [4].

We organize this paper as follows: In section 2, we review some basic definitions and tools of an

↵-cosymplectic manifold M . The main results are stated in section 3. In fact, we prove that an

n-dimensional M admitting a ⇤-⌘-RYS is an ⌘-Einstein manifold. Then some curvature tensor

conditions are studied on M with ⇤-⌘-RYS. Finally, in section 4, we discuss some results on M

when it is ⇣-concircularly flat, ⇣-conharmonically flat, ⇣-W2 flat and ⇣-conformal.

2 Preliminaries

On an n(= 2m+ 1)-dimensional RM M , if an almost contact metric structure (�, ⇣, ⌘, h) satisfies

the following relations, then M is called an almost contact metric manifold:

�2A = A� ⌘(A)⇣ (2.1)

⌘(⇣) = 1, �(⇣) = 0, ⌘(�⇣) = 0 (2.2)
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h(A,�B) = �h(�A,B), (2.3)

h(A, ⇣) = ⌘(A), h(�A,�B) = h(A,B)� ⌘(A)⌘(B), (2.4)

for all A,B 2 �(M), where � denotes a (1, 1) tensor field, ⇣ is a vector field, ⌘ is a 1-form and h

is the compatible Riemannian metric.

The fundamental form � on M is defined as [1]

�(A,B) = h(�A,B), (2.5)

for all A,B 2 �(M).

If the Nijenhuis tensor field of � on M satisfies N�(A,B) + 2d⌘(A,B)⇣ = 0, then M is called a

normal almost contact metric manifold. Here

N�(A,B) = �2[A,B ] + [�A,�B ]� �[A,�B ]� �[�A,B ],

for any A,B 2 �(M).

Under the following conditions, a normal almost contact metric manifold M is known as an ↵-

cosymplectic manifold (shortly, ↵-CM):

(1) d⌘ = 0,

(2) d� = 2↵⌘ ^ �,

for ↵ 2 R.

We note that an ↵-CM can be

(1) a cosymplectic manifold provided that ↵ = 0,

(2) an ↵-Kenmotsu manifold provided that ↵ 6= 0.

For an ↵-CM M , we have

(rA�)B = ↵(h(�A,B)⇣ � ⌘(B)�A) (2.6)

and

rA⇣ = �↵�2A = ↵[A� ⌘(A)⇣], (2.7)

where r is the Levi-Civita connection associated with h.

The main examples and curvature characteristics of ↵-CM were firstly obtained in [11,14,15]. Also,

we have the following relations for the Riemannian curvature tensor Rim and the Ricci curvature
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tensor Ric of M :

Rim(A,B)⇣ = ↵
2 [⌘(A)B � ⌘(B)A] , (2.8)

Rim(⇣,A)B = ↵
2 [⌘(B)A� h(A,B)⇣] , (2.9)

Rim(⇣,A)⇣ = ↵
2 [A� ⌘(A)⇣] , (2.10)

⌘(Rim(A,B)C ) = ↵
2 [⌘(B)h(A,C )� ⌘(A)h(B ,C )] , (2.11)

Ric(A, ⇣) = �↵
2(n� 1)⌘(A), (2.12)

for all A,B ,C 2 �(M).

In [11], the ⇤-RT Ric
⇤ of type (0, 2) on an n-dimensional ↵-CM M is obtained as

Ric
⇤(B ,C ) = Ric(B ,C ) + ↵

2(n� 2)h(B ,C ) + ↵
2
⌘(B)⌘(C ), (2.13)

for any B ,C 2 �(M).

Let {Ei|i = 1, 2, . . . , n} be an orthonormal basis of Tp(M), p 2 M . We set B = C = Ei and it is

easy to derive the ⇤-scalar curvature r
⇤ = trace(Ric

⇤) as

r
⇤ = r + ↵

2(n� 1)2. (2.14)

On the other hand, ↵-CM M is said to be an ⌘-EM if the Ricci curvature tensor has the following

form [24]:

Ric(A,B) = uh(A,B) + v⌘(A)⌘(B), (2.15)

for A,B 2 �(M), where u and v being constants.

For this paper, we need some curvature tensors on a RM (Mn
, h), which are given below [17]:

C(A,B)C = Rim(A,B)C � r

n(n� 1)
[h(B ,C )A� h(A,C )B ], (2.16)

H(A,B)C = Rim(A,B)C � 1

n� 2
[h(B ,C )QA� h(A,C )QB +Ric(B ,C )A�Ric(A,C )B ],

(2.17)

W2(A,B)C = Rim(A,B)C +
1

n� 1
[h(A,C )QB � h(B ,C )QA], (2.18)

C⇤(A,B)C = Rim(A,B)C � 1

n� 2
[Ric(B ,C )A�Ric(A,C )B + h(B ,C )QA (2.19)

� h(A,C )QB ] +
r

(n� 1)(n� 2)
[h(B ,C )A� h(A,C )B ],

where C, H, W2 and C⇤ represent the concircular curvature tensor [16], the conharmonic curvature

tensor [13], the W2-curvature tensor [16] and the conformal curvature tensor [6].
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3 On ↵-CM admitting ⇤-⌘-RYS

Let us take a ⇤-⌘-RYS (h, ⇣,⇤, µ, ⇢, q) on an n-dimensional ↵-CM M , which is given by

(£⇣h)(A,B) + 2⇢Ric
⇤(A,B) + [2⇤� qr

⇤]h(A,B) + 2µ⌘(A)⌘(B) = 0, (3.1)

for any A,B 2 �(M).

Theorem 3.1. An n-dimensional ↵-CM M admitting ⇤-⌘-RYS (h, ⇣,⇤, µ, ⇢, q) is an ⌘-EM of the

constant scalar curvature r. Moreover, the scalars ⇤ and µ are related by

⇤+ µ =
qr

2
+

q↵
2(n� 1)2

2
. (3.2)

Proof. From (2.4) and (2.7), we arrive at

(£⇣h)(A,B) = h(rA⇣,B) + h(A,rB⇣) = 2↵

✓
h(A,B)� ⌘(A)⌘(B)

◆
. (3.3)

Substitute (3.3)) into (3.1) to get

Ric
⇤(A,B) = �1

⇢

✓
⇤� qr

⇤

2
+ ↵

◆
h(A,B)� (µ� ↵)

⇢
⌘(A)⌘(B). (3.4)

By using (2.13) and (2.14) in (3.4), we obtain

Ric(A,B) =


�1
⇢

✓
⇤� qr

2
� q↵2(n� 1)2

2
+ ↵

◆
� ↵2(n� 2)

�
h(A,B)�

✓
(µ� ↵)

⇢
+ ↵2

◆
⌘(A)⌘(B),

(3.5)

that is,

Ric(A,B) = �1h(A,B) + �2⌘(A)⌘(B), (3.6)

where

�1 = �1

⇢

✓
⇤� qr

2
� q↵

2(n� 1)2

2
+ ↵

◆
� ↵

2(n� 2), �2 = �
✓
(µ� ↵)

⇢
+ ↵

2

◆
.

Now, if we fix B = ⇣ in (3.6), then we can easily get the following relation:

Ric(A, ⇣) =


� 1

⇢

✓
⇤� qr

2
� q↵

2(n� 1)2

2
+ µ

◆
� ↵

2(n� 1)

�
⌘(A). (3.7)

Using (2.12) and values of �1 and �2 in (3.7), we can have (3.2). Also, on contracting (3.6) and

using the values of �1 and �2, we find

r = (n� 1)

✓
µ

⇢
� ↵

⇢
� ↵

2(n� 1)

◆
, (3.8)
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where µ and ⇢( 6= 0) are constant.

Thus, (3.6) together with (3.2) and (3.8) give the relation of ⇤ and µ, which shows that ⇤-⌘-RYS

on ↵-CM is an ⌘-EM.

Remark 3.2. For the particular value of ⇢ = 0 in (3.1), an n-dimensional ↵-CM M endowed with

⇤-⌘-RYS (h, ⇣,⇤, µ, ⇢, q) furnishes the scalar quantities as ⇤ = �↵+
qr

⇤

2
and µ = ↵.

First we give the more general construction of ↵-cosymplectic manifold:

Example 3.3. Let (N, J, h̃) be a Kähler manifold. Denote by R⇥�N the manifold (R⇥N,�, ⇣, ⌘, h),

where � is the tensor field such that

�

✓
d

dt

◆
= 0, �(A) = J(A), A 2 TN,

⇣ =
d

dt
, ⌘ = dt, h = dt⌦ dt+ exp(2↵t)h̃, ↵ 2 R.

Putting � = exp(↵t), h is the warped product metric of the Euclidean metric and h̃ by means of

the function �. Then R⇥� N is ↵-cosymplectic and (N, h̃) is a totally umbilical submanifold with

mean curvature vector �↵⇣. Assume that ↵ 6= 0. Applying well-known curvature formulas, one

relates the Ricci tensors of N and R ⇥� N . But here we consider the flat Kähler manifold R4

endowed with the canonical complex structure and then the ↵-cosymplectic manifold R ⇥� R4
. If

↵ = 0, one has � = 1, R⇥� N = R⇥N is cosymplectic and N is totally geodetic. In this case the

Ricci tensors are related by:

Ric(A,B) = R̃ic(A� ⌘(A)⇣,B � ⌘(B)⇣). (3.9)

It follows that if N is an Einstein manifold, then R⇥N is ⌘-Einstein.

Next, by giving the following example we can show the existence of this soliton in ↵-cosymplectic

manifold:

Example 3.4. Recall an example of 5-dimensional ↵-CM in [11], that is,

M = {(x1, x2, y1, y2, z) 2 R5
,�, ⇣, ⌘, h},

where (x1, x2, y1, y2, z) are the standard coordinates in R5
.

The linearly independent vector fields on M are denoted by E1 = exp↵z @x1, E2 = exp↵z @x2,

E3 = exp↵z @y1, E4 = exp↵z @y2 and E5 = ⇣ = �@z for i = {1, 2}. Thus, h and � are respectively

defined as

h(Ei, Ei) = 1, h(Ei, Ej) = 0, i 6= j = {1, 2, 3, 4, 5}
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and

�E1 = �E2, �E2 = E1, �E3 = �E4, �E4 = E3, �E5 = �⇣ = 0.

By the linearity of these tensors, it is quite easy to compute (2.1)-(2.4). Also, (2.6) and (2.7) are

verified in [11].

By applying Koszul’s formula, Rim of M (see [11]) can be obtained easily and hence the com-

ponents Ric of Ricci tensor of M are: Ric(Ei, Ei) = �4↵2
for i = {1, 2, 3, 4, 5}. Since r =

P5
i=1 Ric(Ei, Ei), so we have r = �20↵2

.

Now, we use (3.7) and find

Ric(E5, E5) = Ric(⇣, ⇣) =


� 1

⇢

�
⇤+ 2q↵2 + µ

�
� 4↵2

�
.

By equating the values of Ric(⇣, ⇣), we arrive at a relation: ⇤ + µ = �2q↵2
. We also verify this

relation for n = 5 by using (3.2). Thus, h gives an ⇤-⌘-RYS (h, ⇣,⇤, µ, ⇢, q) on an ↵-cosymplectic

manifold M of dimension 5.

On the other hand, suppose that an n-dimensional ↵-CM M admitting ⇤-⌘-RYS (h, ⇣,⇤, µ, ⇢, q)

satisfies

Q(h,Ric)(A,B ,C ,D) = 0, (3.10)

where Q(h,Ric)(A,B ,C ,D) = (h(A,B).Ric)(C ,D), for all vector fields A,B ,C ,D on M . This

can be expressed as

Q(h,Ric)(A,B ,C ,D) =h(B ,C )Ric(A,D)� h(A,C )Ric(B ,D) (3.11)

+ h(B ,D)Ric(A,C )� h(A,D)Ric(B ,C ).

Theorem 3.5. If ⇤-⌘-RYS on an ↵-CM M satisfies Q(h,Ric) = 0, then

⇤ =
q

2

�
r + ↵

2(n� 1)2
�
� ↵ (1� ↵⇢) , (3.12)

µ = ↵(1� ↵⇢). (3.13)

Proof. From the expressions (3.6), (3.10) and (3.11), we have

�2[h(B ,C )⌘(A)⌘(D)� h(A,C )⌘(B)⌘(D) + h(B ,D)⌘(A)⌘(C )� h(A,D)⌘(B)⌘(C )] = 0. (3.14)

Above equation follows that �2 = 0, which implies that

µ = ↵(1� ↵⇢).
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We obtain the following from (3.2)

⇤ =
q

2

�
r + ↵

2(n� 1)2
�
� ↵ (1� ↵⇢) . (3.15)

Now, by using these values of �1, �2 and ⇤ as well as µ in (3.6), we calculate

Ric(A,B) = �(↵2(n� 1))h(A,B). (3.16)

Thus, from above we can state the following result:

Corollary 3.6. If ⇤-⌘-RYS on an ↵-CM M satisfies Q(h,Ric) = 0, then M is an EM.

Next, we have

Rim(⇣,A).Ric = 0, (3.17)

then we have

Ric(Rim(⇣,A)B ,C ) +Ric(B , Rim(⇣,A)C ) = 0, (3.18)

for all vector fields A,B ,C on M .

Theorem 3.7. If ⇤-⌘-RYS on an ↵-CM M satisfies Rim(⇣,A).Ric = 0, then either M becomes

CM or we have

⇤ =
q

2

�
r + ↵

2(n� 1)2
�
� ↵(1� ↵⇢) (3.19)

µ = ↵(1� ↵⇢). (3.20)

Proof. In view of (3.6) and (3.18), we compute

↵
2
�2

�
2⌘(A)⌘(B)⌘(C )� ⌘(C )h(A,B)� ⌘(B)h(A,C )

�
= 0. (3.21)

Putting C = ⇣ into (3.21) and using (2.4), it is quite easy to see

↵
2
�2h(�A,�B) = 0, (3.22)

which implies either ↵ = 0 or �2 = 0. Further, from later case we find µ = ↵(1 � ↵⇢) and hence

from (3.2), we calculate the value of ⇤. From the first case we can also say that M is CM. This is

the desired result.

Next, by using the values of ⇤ as well µ in (3.6), we have

Ric(A,B) = �(↵2(n� 1))h(A,B). (3.23)
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Thus, we can state the following:

Corollary 3.8. If ⇤ � ⌘-RYS on an ↵-CM M satisfies Rim(⇣,A).Ric = 0 then M is either an

EM or CM.

The non-flat manifold M of n-dimension is named pseudo Ricci symmetric, if Ric ( 6= 0) of M

satisfies the condition:

(rCRic) (A,B) = 2(C )Ric(A,B) + (A)Ric(C ,B) + (B)Ric(C ,A), (3.24)

where  is a non-zero 1-form. In particular, M is said to be Ricci symmetric if  = 0.

Theorem 3.9. If an ↵-CM M admitting ⇤-⌘-RYS is pseudo-Ricci-symmetric, then M is either

Ricci symmetric or CM.

Proof. The covariant derivative of (3.6) leads

(rCRic) (A,B) = rC [�1h(A,B) + �2⌘(A)⌘(B)] = ↵�2 [h(�A,�C )⌘(B) + ⌘(A)h(�B ,�C )] . (3.25)

Further, we use the relations (3.6), (3.24), (3.25) and obtain

2(C ) [�1h(A,B) + �2⌘(A)⌘(B)] + (A) [�1h(C ,B) + �2⌘(C )⌘(B)] (3.26)

+ (B) [�1h(C ,A) + �2⌘(C )⌘(A)] = ↵�2 [h(�A,�C )⌘(B) + ⌘(A)h(�B ,�C )] .

Taking C = B = ⇣ in (3.26), we get

(�1 + �2)
�
(A) + 3⌘(A)(⇣)

�
= 0,

which gives either

(A) = �3⌘(A)(⇣) (3.27)

or

�1 + �2 = 0. (3.28)

Putting A = ⇣ in (3.27), we have (⇣) = 0, which further implies that (A) = 0. Also, from (3.28)

and (3.2), we can have ↵
2(n� 1) = 0. This implies that ↵ = 0 because n 6= 1. Thus, we arrive at

our desired result.
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4 Some curvature properties on ↵-CM admitting ⇤-⌘-RYS

This section deals with the curvature properties on M admitting ⇤-⌘-RYS. We mainly discuss the

conditions that M is ⇣-concircularly flat, ⇣-conharmonically flat, ⇣-W2 flat and ⇣-conformal flat.

Theorem 4.1. Let M be an n-dimensional ↵-CM admitting ⇤-⌘-RYS (h, ⇣,⇤, µ, ⇢, q), where ⇣

being the Reeb vector field on M . Then M is

(1) ⇣-concircularly flat if and only if µ = ↵� ⇢↵
2
.

(2) ⇣-conformal curvature flat.

(3) ⇣-conharmonically flat if and only if µ = ↵+ (n� 1)↵2
⇢.

(4) ⇣ �W2�curvature flat if and only if µ = ↵� ⇢↵
2
.

Proof. By using the property h(QA,B) = Ric(A,B) in (3.6), we arrive at

QB = �1B + �2⌘(B)⇣, (4.1)

where �1 = � 1
⇢

⇣
⇤� qr

2 � q↵2(n�1)2

2 + ↵

⌘
� ↵

2(n� 2) and �2 = �
⇣

µ�↵
⇢ + ↵

2
⌘
.

Firstly, we put C = ⇣ into (2.16) and use the relations (2.4), (2.8) and (3.8), we have

C(A,B)⇣ =
1

n

✓
µ

⇢
� ↵

⇢
+ ↵

2

◆
(⌘(A)B � ⌘(B)A) , (4.2)

which gives C(A,B)⇣ = 0 if and only if µ = ↵� ⇢↵
2.

Secondly, if we put C = ⇣ and use (2.8), (2.12), (4.1) in (2.19), then we have

C⇤(A,B)⇣ =

✓
↵
2 � �1

n� 2
+

r

(n� 1)(n� 2)

◆
(⌘(B)A� ⌘(A)B) . (4.3)

Again, using the value of �1, (3.2) and (3.8), we have

C⇤(A,B)⇣ = 0. (4.4)

Thirdly, we take C = ⇣ in (2.17) and make use of (2.8), (4.1) and (2.12), we get

H(A,B)⇣ =

✓
�1 � ↵

2

n� 2

◆
(⌘(A)B � ⌘(B)A). (4.5)

This implies

H(A,B)⇣ = 0
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if and only if

�1 = ↵
2
.

Thus,

H(A,B)⇣ = 0

if and only if

µ = ↵+ (n� 1)↵2
⇢.

Lastly, by taking C = ⇣ and using (2.8) and (4.1) in (2.18), we conclude

W2(A,B)⇣ =

✓
↵
2 +

�1

n� 1

◆
(⌘(A)B � ⌘(B)A) . (4.6)

From (4.6),

W2(A,B)⇣ = 0

if and only if

↵
2 +

�1

n� 1
= 0.

This further implies that

W2(A,B)⇣ = 0

if and only if

µ = ↵� ⇢↵
2
.

Remark 4.2. We observe that above results are true only for ↵-Kenmotsu manifolds because ⇤

and µ are depending on ↵. But for ↵ = 0, one puts in (3.1) B = ⇠ obtains

⇤+ µ =
1

2
qr.

Then (3.1) implies

Ric =
µ

⇢
(h� ⌘ ⌦ ⌘).

So, according to the cases µ is zero or non-zero, M is Ricci-flat or ⌘-Einstein for ↵ = 0. This is

consistent with the formula (3.9), when N is Einstein.

Remark 4.3. If M is a cosymplectic manifold, then we have

C(A,B)⇣ = �
✓

µ

n� ⇢

◆
(⌘(B)A� ⌘(A)B) .

and similar relations can be obtained for H(A,B)⇣ and W2(A,B)⇣, while

C⇤(A,B)⇣ = 0.
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By the above formulas, one has µ = 0 if and only if C(A,B)⇣ = 0 if and only if H(A,B)⇣ = 0 if

and only if W2(A,B)⇣ = 0.
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ABSTRACT

This paper is concerned with a class of fractional

p(x, y)�Kirchhoff type problems with Dirichlet boundary

data along with indefinite weight of the following form

8
>>>><

>>>>:

M
⇣R

Q
1

p(x,y)
|u(x)�u(y)|p(x,y)

|x�y|N+sp(x,y) dx dy
⌘

�
��p(x)

�s
u(x) + |u(x)|q(x)�2u(x)

= �V (x)|u(x)|r(x)�2u(x) in ⌦,

u = 0, in RN\⌦.

By means of direct variational approach and Ekeland’s vari-

ational principle, we investigate the existence of nontrivial

weak solutions for the above problem in case of the competi-

tion between the growth rates of functions p and r involved

in above problem, this fact is essential in describing the set

of eigenvalues of this problem.

RESUMEN

Este artículo estudia una clase de problemas de tipo

p(x, y)�Kirchhoff fraccionarios con data Dirichlet en el

borde junto con un peso indefinido de la siguiente forma

8
>>>><

>>>>:

M
⇣R

Q
1

p(x,y)
|u(x)�u(y)|p(x,y)

|x�y|N+sp(x,y) dx dy
⌘

�
��p(x)

�s
u(x) + |u(x)|q(x)�2u(x)

= �V (x)|u(x)|r(x)�2u(x) in ⌦,

u = 0, in RN\⌦.

A través del enfoque variacional directo y el principio varia-

cional de Ekeland, investigamos la existencia de soluciones

débiles no triviales para el problema anterior en el caso de

competencia entre las tasas de crecimiento de las funciones p

y r involucradas en el problema. Este hecho es esencial para

describir el conjunto de valores propios de este problema.

Keywords and Phrases: Kirchhoff type problems, indefinite weight, Ekeland’s variational principle, variable

exponent, fractional p(x, y)�Laplacian problems.
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1 Introduction

Fractional differential equations have been an area of great interest recently. This is because of

both the intensive development of the theory of fractional calculus itself and the applications of

such constructions in various scientific fields such as physics, mechanics, chemistry, engineering,

etc. In [5], a non-Kirchhoff equation was investigated, which had an indefinite weight function.

In [3], a Kirchhoff-type equation was surveyed, which lacked an indefinite weight function. We
combine these equations and, using the methods applied in [3] and [5], open a corridor to an
equation that is both Kirchhoff-type and equipped with an indefinite weight function. In this
paper, we aim to discuss the existence of a nontrivial solution for a fractional p(x, y)�Kirchhoff
type eigenvalue problem
8
><

>:

M
⇣R

Q
1

p(x,y)
|u(x)�u(y)|p(x,y)

|x�y|N+sp(x,y) dx dy
⌘ �

��p(x)

�s
u(x) + |u(x)|q(x)�2u(x) = �V (x)|u(x)|r(x)�2u(x), in ⌦,

u = 0, in RN\⌦,
(1.1)

where ⌦ ⇢ RN is a Lipschitz bounded open domain and Q := R2N\ (C⌦⇥ C⌦) with C⌦ = RN\⌦,

N � 3, p : Q ! (1,+1) is continuous, q, r 2 C+

�
⌦
�
, V : ⌦! R is an indefinite weight function

in the sense that it is allowed to change sign in ⌦, � is a positive constant and s 2 (0, 1) and

M : R+ ! R is a continuous function which satisfies the (polynomial growth condition)

(M1): There exist m2 � m1 > 0 and ↵ > 1 such that

m1t
↵�1  M(t)  m2t

↵�1 for all t 2 R+
.

Here the operator
�
��p(x)

�s is the fractional p(x)�Laplacian operator defined as follows

�
��p(x)

�s
u(x) = p · v ·

Z

RN

|u(x)� u(y)|p(x,y)�2(u(x)� u(y))

|x� y|N+sp(x,y)
dy, for all x 2 RN

,

where p · v· is a commonly used abbreviation in the principal value sense.

Throughout this paper, we assume that

↵p(x, x) < q(x) < p
⇤
s(x) :=

Np(x, x)

N � sp(x, x)
, p(x, y) <

N

s
, 8x, y 2 ⌦, (1.2)

where p
⇤
s(x) is the so-called critical exponent in fractional Sobolev space with variable exponent.

If s = 1 problem (1.1) becomes the p(·)�Kirchhoff Laplacian problem.
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Problem (1.1) is related to the stationary version of the Kirchhoff equation

⇢
@
2
u

@t2
�
 
⇢0

h
+

E

2L

Z L

0

����
@u

@x

����
2

dx

!
@
2
u

@x2
= 0, (1.3)

which extends the classical D’Alembert’s wave equation, by considering the effect of the changing

in the length of the string during the vibration. A distinguishing feature of Eq. (1.3) is that

the equation contains a nonlocal coefficient
⇢0

h
+

E

2L

Z L

0

����
@u

@x

����
2

dx which depends on the average

1

2L

Z L

0

����
@u

@x

����
2

dx, and hence the equation is no longer a pointwise identity. The parameters in (1.3)

have the following meanings: L is the length of the string, h is the area of the crosssection, E is

the Young modulus of the material, ⇢ is the mass density and ⇢0 is the initial tension.

This paper is organised as follows. In Section 2, we give some definitions and fundamental proper-

ties of generalized Lebesgue spaces L
q(x)(⌦) and fractional Sobolev spaces with variable exponent

W
s,q(x),p(x,y)(⌦), moreover, we compare the space W

s,q(x),p(x,y)(⌦) with the fractional Sobolev

space X and we study the completeness, reflexivity and separability of these spaces. Furthermore,

we establish a continuous and compact embedding theorem of these spaces into variable exponent

Lebesgue spaces. In Section 3, we discuss the existence of nontrivial weak solutions of problem in

sublinear case, when 1 < r(x) < p
� for all x 2 ⌦. We apply Ekeland’s variational principle.

2 Preliminaries

Consider the set

C+

�
⌦
�
= {h 2 C

�
⌦
�
: h(x) > 1 for all x 2 ⌦}.

For all h 2 C+

�
⌦
�
, we define

h
+ = sup

x2⌦

h(x) and h
� = inf

x2⌦
h(x) such that, 1 < h

�  h(x)  h
+
< +1. (2.1)

For any h 2 C+

�
⌦
�
, we define the variable exponent Lebesgue space as

L
h(x)(⌦) =

⇢
u : u is a measurable real-valued function,

Z

⌦
|u(x)|h(x)dx < +1

�
.

This vector space endowed with the Luxemburg norm, which is defined by

kukLh(x)(⌦) = inf

(
� > 0 :

Z

⌦

����
u(x)

�

����
h(x)

dx  1

)

is a separable reflexive Banach space.
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Let ĥ 2 C+

�
⌦
�

be the conjugate exponent of h, that is, 1/h(x) + 1/ĥ(x) = 1.

Then we have the following Hölder type inequality

����
Z

⌦
uv dx

���� 
✓

1

h� +
1

ĥ�

◆
kukLh(x)(⌦)kvkLĥ(x)(⌦)  2kukLh(x)(⌦)kvkLĥ(x)(⌦)

Moreover, if h1, h2, h3 2 C+

�
⌦
�

and 1/h1 + 1/h2 + 1/h3 = 1, then for any u 2 L
h1(x)(⌦), v 2

L
h2(x)(⌦) and w 2 L

h3(x)(⌦) we have

����
Z

⌦
uvw dx

���� 
✓

1

h1
� +

1

h2
� +

1

h3
�

◆
kukLh1(x)(⌦)kvkLh2(x)(⌦)kwkLh3(x)(⌦). (2.2)

Note that L
h1(x)(⌦) ,! L

h2(x)(⌦) for all functions h1 and h2 in C+

�
⌦
�

satisfying h1(x)  h2(x)

for all x 2
�
⌦
�
. In addition this embedding is continuous.

The modular of the L
h(x)(⌦) space is the mapping ⇢h(·) : L

h(x)(⌦) ! R defined by

u 7! ⇢h(·)(u) =

Z

⌦
|u(x)|h(x)dx.

Proposition 2.1. Let u 2 L
h(x)(⌦), then we have

(i) kukLh(x)(⌦) < 1 (resp. = 1, > 1) () ⇢h(·)(u) < 1 (resp. = 1, > 1),

(ii) kukLh(x)(⌦) < 1 =) kukh
+

Lh(x)(⌦)  ⇢h(·)(u)  kukh
�

Lh(x)(⌦),

(iii) kukLh(x)(⌦) > 1 =) kukh
�

Lh(x)(⌦)  ⇢h(·)(u)  kukh
+

Lh(x)(⌦).

Proposition 2.2. If u, uk 2 L
h(x)(⌦) and k 2 N, then the following assertions are equivalent

(i) limk!+1 kuk � ukLh(x)(⌦) = 0,

(ii) limk!+1⇢h(·)(uk � u) = 0,

(iii) uk ! u in measure in ⌦ and limk!+1⇢h(·)(uk) = ⇢h(·)(u).

From [8, Theorems 1.6 and 1.10], we obtain the following proposition:

Proposition 2.3. Suppose that (2.1) is satisfied. If ⌦ is a bounded open domain, then (Lh(x)(⌦),

kukLh(x)(⌦)) is a reflexive uniformly convex and separable Banach space.

Proposition 2.4 (see [7]). Let h1 and h2 be measurable functions such that h1 2 L
1(RN ) and

1  h1(x)h2(x)  +1 for a.e. x 2 RN
. Let u 2 L

h2(x)(RN ), u 6= 0. Then we have the following

assertions

kukLh1(x)h2(x))(RN )  1 =) kukh
+
1

Lh1(x)h2(x))(RN )
 k|u|h1(x)kLh2(x))(RN )  kukh

�
1

Lh1(x)h2(x))(RN )
,
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kukLh1(x)h2(x))(RN ) � 1 =) kukh
�
1

Lh1(x)h2(x))(RN )
 k|u|h1(x)kLh2(x))(RN )  kukh

+
1

Lh1(x)h2(x))(RN )
.

In particular, if h1(x) = h1 is a constant, then it holds that

k|u|h1kLh2(x)(RN ) = kukh1

Lh1(x)h2(x)(RN ).

Let ⌦ be a Lipschitz bounded open set in RN and let p : ⌦⇥⌦! (1,+1) be a continuous bounded

function. We assume that

1 < p
� := min

(x,y)2⌦⇥⌦
p(x, y)  p(x, y)  p

+ := max
(x,y)2⌦⇥⌦

p(x, y) < +1, (2.3)

and

p is symmetric, that is, p(x, y) = p(y, x) for all (x, y) 2 ⌦⇥ ⌦. (2.4)

Set

p(x) = p(x, x) for any x 2 ⌦.

Throughout this paper s is a fixed real number such that 0 < s < 1.

We define the fractional Sobolev space with variable exponent via Gagliardo approach as follows

W = W
s,q(x),p(x,y)(⌦) =

(
u 2 L

q(x)(⌦),

Z

⌦⇥⌦

|u(x)� u(y)|p(x,y)

�p(x,y)|x� y|N+sp(x,y)
dx dy < +1 for some � > 0

)
.

The space W
s,q(x),p(x,y)(⌦) is a Banach space if it is equipped with the norm

kukW = kukLq(x)(⌦) + [u]s,p(x,y),

where [·]s,p(x,y) is a Gagliardo seminorm with variable exponent, which is defined by

[u]s,p(x,y) = [u]s,p(x,y)(⌦) := inf

(
� > 0 :

Z

⌦⇥⌦

|u(x)� u(y)|p(x,y)

�p(x,y)|x� y|N+sp(x,y)
dx dy  1

)
.

Due to [9, Lemma 3.1], (W, k.kW ) is a separable and reflexive Banach space.

Proposition 2.5 (see [9]). Let ⌦ ⇢ RN
be a Lipschitz bounded domain and s 2 (0, 1). Let

q(x), p(x, y) be continuous variable exponents with sp(x, y) < N for all (x, y) 2 ⌦⇥ ⌦ and q(x) >

p(x, x) for all x 2 ⌦. Assume that r : ⌦! (1,+1) is a continuous function such that

p
⇤
s(x) :=

Np(x, x)

N � sp(x, x)
> r(x) � r

�
> 1

for all x 2 ⌦. Then, there exists a constant c = c(N, s, p, q, r,⌦) such that for every u 2 W =
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W
s,q(x),p(x,y)(⌦), it holds that

kukLr(x)(⌦)  ckukW .

That is, if 1 < r(x) < p
⇤
s(x) for all x 2 ⌦ then the space W is continuously embedded in L

r(x)(⌦).

Moreover, this embedding is compact.

It is important to encode the boundary condition u = 0 in RN\⌦ in the weak formulation. For

this purpose, we introduce the new fractional Sobolev space as follows

8
<

:
u : RN ! R measurable, such that u|⌦ 2 L

q(x)(⌦) with
R
Q

|u(x)�u(y)|p(x,y)

�p(x,y)|x�y|N+sp(x,y) dx dy < +1 for some � > 0

9
=

; ,

where p : Q ! (1,+1) satisfies (2.3) and (2.4) on Q. The space X is endowed with the following

norm

kukX = kukLq(x)(⌦) + [u]X ,

where [u]X is a Gagliardo seminorm with variable exponent, defined by

[u]X = [u]s,p(x,y)(Q) := inf

(
� > 0 :

Z

Q

|u(x)� u(y)|p(x,y)

�p(x,y)|x� y|N+sp(x,y)
dx dy  1

)
.

Similar to the space (W, k.kW ) we have that (X, k.kX) is a separable reflexive Banach space.

Remark 2.6. Note that the norms k.kX and k.kW are not the same, because ⌦⇥⌦ is strictly con-

tained in Q. This makes the fractional Sobolev space with variable exponent W = W
s,q(x),p(x,y)(⌦)

not sufficient for studying the nonlocal problems.

Now let X0 denote the following linear subspace of X

X0 =
�
u 2 X : u = 0 a.e. in RN\⌦

 
,

with the norm

kukX0
= kukX = inf

(
� > 0 :

Z

Q

|u(x)� u(y)|p(x,y)

�p(x,y)|x� y|N+sp(x,y)
dx dy  1

)
.

It is easy to check that k.kX0
is a norm onX0.

Similar to [3, Theorem 2.2] we have

Theorem 2.7. Let ⌦ be a Lipschitz bounded domain in RN
and let s 2 (0, 1). Let p : Q !

(1,+1) be a continuous function satisfying (2.3) and (2.4) on Q with sp
+
< N. Then the following

assertions hold:
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(i) If u 2 X, then u 2 W. Moreover,

kukW  kukX ,

(ii) If u 2 X0, then u 2 W
s,q(x),p(x,y)(RN ). Moreover,

kukW  kukW s,q(x),p(x,y)(RN ) = kukX ,

(iii) If r : ⌦! (1,+1) be a continuous variable exponent such that

1 < r
�  r(x) < p

⇤
s(x) =

Np(x)

N � sp(x)
for all x 2 ⌦,

then, there exists a constant C = C(N, s, p, q, r,⌦) > 0 such that, for any u 2 W,

kukLr(x)(⌦)  CkukX .

That is, the space X is continuously embedded in L
r(x)(⌦). Moreover, this embedding is

compact.

Remark 2.8. (i) The assertion (iii) in Theorem 2.7 remains true if we replace X by X0.

(ii) Since by (1.2) we have 1 < q
�  q(x) < p

⇤
s(x) for all x 2 ⌦. then by Theorem 2.7 (iii) we

have that k · kX0 = [·]X and k · kX are equivalent on X0.

Definition 2.9. Let p : Q ! (1,+1) be a continuous variable exponent and let s 2 (0, 1), we

define the modular ⇢p(.,.) : X0 ! R, by

⇢p(.,.)(u) =

Z

Q

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy.

Then kuk⇢p(.,.)
= inf

�
� > 0 : ⇢p(.,.)

�
u
�

�
 1

 
= [u]X .

The modular ⇢p(.,.) checks the following result, which is similar to [2, Proposition 2.1 and Lemma

2.2].

Lemma 2.10. Let p : Q ! (1,+1) be a continuous variable exponent and let s 2 (0, 1), for any

u 2 X0, we have

(i) 1  kukX0 =) kukp
�

X0
 ⇢p(.,.)(u)  kukp

+

X0
,

(ii) kukX0  1 =) kukp
+

X0
 ⇢p(.,.)(u)  kukp

�

X0
.

Remark 2.11. Note that ⇢p(.,.) satisfies the results of Proposition 2.2.

Similar to [3, Lemma 2.3] we have
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Lemma 2.12. (X0, k.kX0) is a separable, reflexive, and uniformly convex Banach space.

Let denote by L the operator associated to the
�
��p(x)

�s defined as

L : X0 ! X
⇤
0 , u 7! L(u) : X0 ! R, ' 7! hL(u),'i

such that

hL(u),'i =
Z

Q

|u(x)� u(y)|p(x,y)�2(u(x)� u(y))('(x)� '(y))

|x� y|N+sp(x,y)
dx dy,

where X
⇤
0 is the dual space of X0.

Lemma 2.13 (see [4]). Under the conditions of Proposition 2.5, the following assertions hold true:

(i) L is a bounded and strictly monotone operator.

(ii) L is a mapping of type (s+), that is, if uk * u in X0 and lim supk!+1hL(uk)�L(u), uk�ui 
0, then uk ! u in X0.

(iii) L is a homeomorphism.

Throughout this paper, for simplicity, we use ci to denote the general nonnegative or positive

constant (the exact value may change from line to line).

3 The main result and proof of the theorem

Definition 3.1. We say that u 2 X0 is a weak solution of problem (1.1) if

M(�p(x,y)(u))

Z

Q

|u(x)� u(y)|p(x,y)�2((u(x)� u(y))('(x)� '(y))

|x� y|N+sp(x,y)
dx dy (3.1)

+

Z

⌦
|u(x)|q(x)�2

u(x)'(x)dx� �

Z

⌦
V (x)|u(x)|r(x)�2

u(x)'(x)dx = 0

for all ' 2 X0, where

�p(x,y)(u) =

Z

Q

1

p(x, y)

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy.
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Let us consider the Euler-Lagrange functional associated to (1.1), defined by

J� : X0 ! R, J�(u) = cM
✓Z

Q

1

p(x, y)

|u(x)� u(y)|p(x,y)

|x� y|N+sp(x,y)
dx dy

◆

+

Z

⌦

1

q(x)
|u(x)|q(x)dx� �

Z

⌦

V (x)

r(x)
|u(x)|r(x)dx

= cM
�
�p(x,y)(u)

�
+

Z

⌦

1

q(x)
|u(x)|q(x)dx� �

Z

⌦

V (x)

r(x)
|u(x)|r(x)dx,

where cM(t) =
R t
0 M(⌧)d⌧.

Theorem 3.2. Under the same assumptions of Theorem 2.7, if we assume that (M1) holds and

�, r 2 C+(⌦) satisfy the following conditions:

(H1) 1 < r
�  r(x)  r

+
< p

�  p
+
<

N
s < �(x) for all x 2 ⌦,

(H2) V 2 L
�(x)(⌦) and there exists a measurable set ⌦0 ⇢⇢ ⌦ of positive measure such that

V (x) > 0 for all x 2 ⌦0.

Then there exists �̄ > 0 such that any � 2 (0, �̄) is an eigenvalue of problem (1.1).

Proof. For each � > 0, let us consider the functional J� : X0 ! R associated with problem (1.1)

by the formula

J�(u) = �(u)� � (u),

where

�(u) = cM(�p(x,y)(u)) +

Z

⌦

1

q(x)
|u(x)|q(x)dx,  (u) =

V (x)

r(x)
|u(x)|r(x)dx.

From conditions (H1)� (H2) and Proposition 2.4, for all u 2 X0, we get

|�(u)|  2

r�
kV kL�(x)(⌦)k|u|r(x)kL�(x)/(�(x)�1)(⌦)



8
><

>:

2
r� kV kL�(x)(⌦)kukr

�

L�(x)r(x)/(�(x)�1)(⌦)
if kukL�(x)r(x)/(�(x)�1)(⌦)  1,

2
r� kV kL�(x)(⌦)kukr

+

L�(x)r(x)/(�(x)�1)(⌦)
if kukL�(x)r(x)/(�(x)�1)(⌦) � 1.

(3.2)

We also deduce from (H1) that �(x) = �(x)r(x)/(�(x)�r(x)) < p
⇤
s(x) and �(x) = �(x)r(x)/(�(x)�

1) < p
⇤
s(x) for all x 2 ⌦. In view of (Theorem 2.7 (iii) and Remark 2.8 (i)) the embeddings

X0 ,! L
�(x)(⌦) and X0 ,! L

�(x)(⌦) are continuous and compact. Thus, the functional J� is

well-defined on X0. The proof of Theorem 3.2 is divided into following four steps.
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Step 1. We show that J� 2 C
1(X0,R) and its derivative is

hJ 0
�(u),'i = M(�p(x,y)(u))

Z

Q

|u(x)� u(y)|p(x,y)�2((u(x)� u(y))('(x)� '(y))

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
|u(x)|q(x)�2

u(x)'(x)dx� �

Z

⌦
V (x)|u(x)|r(x)�2

u(x)'(x)dx

for all u,' 2 X0. This means that weak solutions for problem (1.1) can be found as the

critical points of the functional J� in the space X0.

Using the same method as in the proof of [1, Lemma 4.1] and [6, Lemma 3.1] and the

continuity of M, we can show that � 2 C
1(X0,R) and

h�0(u),'i = M(�p(x,y)(u))

Z

Q

|u(x)� u(y)|p(x,y)�2((u(x)� u(y))('(x)� '(y))

|x� y|N+sp(x,y)
dx dy

+

Z

⌦
|u(x)|q(x)�2

u(x)'(x)dx

for all u,' 2 X0.

Also it has been proved by Chung in [5] that  2 C
1(X0,R) and

h 0(u),'i =
Z

⌦
V (x)|u(x)|r(x)�2

u(x)'(x)dx, 8u,' 2 X0

and thus Step 1 is completed.

Step 2. We prove that there exists �̄ > 0 such that for any � 2 (0, �̄), there exist constants

R, ⇢ > 0 such that J�(u) � R for all u 2 X0 with kukX0 = ⇢.

Indeed, since �(x) = �(x)r(x)/(�(x) � 1) < p
⇤
s(x) for all x 2 ⌦, the embedding X0 ,!

L
�(x)(⌦) is continuous and there exists c2 > 0 such that

kukL�(x)(⌦)  c2kukx0 , 8u 2 X0.

Hence, by relation (3.2), for any u 2 X0 with kuk = ⇢ small enough,

J�(u) = cM(�p(x,y)(u)) +

Z

⌦

1

q(x)
|u(x)|q(x)dx� �

Z

⌦

V (x)

r(x)
|u(x)|r(x)dx

� m1

↵(p+)↵
kuk↵p

+

X0
� �

2cr
�

2

r�
kV kL�(x)(⌦)kukr

�

X0
=

m1

↵(p+)↵
⇢
↵p+

� �
2cr

�

2

r�
kV kL�(x)(⌦)⇢

r�

= ⇢
r�

 
m1

↵(p+)↵
⇢
↵p+�r� � �

2cr
�

2

r�
kV kL�(x)(⌦)

!
.

Putting

�̄ =
m1

2↵(p+)↵
⇢
↵p+�r� · r

�

2cr
�

2 kV kL�(x)(⌦)

> 0,
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for any � 2 (0, �̄) and u 2 X0 with kuk = ⇢, there exists R = m1⇢
↵p+

2↵(p+)↵ such that J�(u) �
R > 0.

Step 3. We prove that there exists '0 2 X0 such that '0 � 0, '0 6= 0 and J�(t'0) < 0 for all

t > 0 small enough.

Indeed, condition (H1) implies that r(x) < min{p�, q�} = p
� for all x 2 ⌦0. In the sequel,

we use the notation r
�
0 = infx2⌦0 r(x). Let "0 > 0 be such that r

�
0 + "0 < p

�
. We also have

since r 2 C(⌦0) that there exists an open subset ⌦1 ⇢ ⌦0 such that

|r(x)� r
�
0 | < "0, 8x 2 ⌦1

and thus

r(x)  r
�
0 + "0 < p

�
< ↵p

�
, 8x 2 ⌦1.

Let '0 2 C
1
0 (⌦0) such that ⌦1 ⇢ supp('0), '0(x) = 1 for all x 2 ⌦1 and 0  '0  1 in ⌦0.

Then, using the above information and assumption(M1), for any t 2 (0, 1) we have

J�(t'0) = cM
�
�p(x,y)(t'0)

�
+

Z

⌦

1

q(x)
|t'0|q(x)dx� �

Z

⌦

V (x)

r(x)
|t'0|r(x)dx

 m2

↵

�
�p(x,y)(t'0)

�↵
+

t
q�

q�

Z

⌦0

|'0|q(x)dx� �

Z

⌦0

V (x)

r(x)
t
r(x)|'0|r(x)dx

 m2

↵(p�)↵
t
↵p� �

⇢p(.,.)('0)
�↵

+
t
q�

q�

Z

⌦0

|'0|q(x)dx� �t
r�0 +"0

r
+
0

Z

⌦1

V (x)|'0|r(x)dx

 kt
↵p�

✓�
⇢p(.,.)('0)

�↵
+

Z

⌦0

|'0|q(x)dx
◆
� �t

r�0 +"0

r
+
0

Z

⌦1

V (x)|'0|r(x)dx

where

k = max

⇢
m2

↵(p�)↵
,
1

q�

�
.

Therefore

J�(t'0) < 0 for 0 < t < �
1/(↵p��r�0 �"0)

with

0 < � < min

(
1,

�

kr
+
0

·
R
⌦1

V (x)|'0|r(x)dx�
⇢p(.,.)('0)

�↵
+
R
⌦ |'0|q(x)dx

)
.

The above fraction is meaningful if we can show that

�
⇢p(.,.)('0)

�↵
+

Z

⌦
|'0|q(x)dx > 0.

Since '0(x) = 1 for all x 2 ⌦1, we have

Z

⌦
|'0|q(x)dx > 0.
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Thus, the above fraction is meaningful.

Indeed, it is clear that

Z

⌦1

|'0|r(x)dx 
Z

⌦
|'0|r(x)dx 

Z

⌦
|'0|r

�
dx.

On the other hand, the space X0 is continuously embedded in L
r�(⌦) and thus, there exists

c3 > 0 such that k'0kLr� (⌦)  c3k'0kX0 , which implies that k'0kX0 > 0. Thus, Step 3 is

completed.

By Step 2 we have

inf
u2@B⇢(0)

J�(u) > 0.

We also deduce from Step 2 that, the functional J� is bounded from below on B⇢(0). Moreover,

by Step 3, there exists ' 2 X such that J�(t') < 0 for all t > 0 small enough.

It follows from Step 2 that

J�(u) �
m1

↵(p+)↵
kuk↵p

+

X0
� �

2cr
�

2

r�
kV kL�(x)(⌦)kukr

�

X0
,

which yields

�1 < c� = inf
u2B⇢(0)

J�(u) < 0.

Let us choose " > 0 such that

0 < " < inf
u2@B⇢(0)

J�(u)� inf
u2B⇢(0)

J�(u).

Applying the Ekeland variational principle [7] to the functional J� : B⇢(0) ! R, it follows that

there exists u" 2 B⇢(0)

J�(u") < inf
u2B⇢(0)

J�(u) + ", J�(u") < J�(u) + "ku� u"kX0 , u 6= u",

then we infer that

J�(u") < inf
u2@B⇢(0)

J�(u)

and thus

u" 2 B⇢(0).

Let us consider the functional

I� : B⇢(0) ! R by I�(u) = J�(u) + "ku� u"kX0 .
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Then u" is a minimum point of I� and thus

I�(u" + ⌧')� I�(u")

⌧
� 0

for all ⌧ > 0 small enough and ' 2 B⇢(0). The above information shows that

J�(u" + ⌧')� J�(u")

⌧
+ "k'kX0 � 0.

Letting ⌧ ! 0+, we deduce that

hJ 0
�(u"),'i+ "k'kX0 � 0

and we infer that

kJ 0
�(u")kX⇤

0
 ".

Therefore, there exists a sequence {un} ⇢ B⇢(0) such that

J�(un) ! c� = inf
u2B⇢(0)

J�(u) < 0 and J 0
�(un) ! 0 in X

⇤
0 as n ! 1. (3.3)

It is clear that the sequence {un} is bounded in X0. Now, since X0 is a reflexive Banach space,

there exists u 2 X0 such that passing to a subsequence, still denoted by {un}, it converges weakly

to u in X0.

Step 4. We prove that {un} which is given by (3.3) converges strongly to u in X0, i.e., lim
n!+1

kun�
ukX0 = 0.

By conditions (H1) � (H2), using Hölder’s inequality (2.2) and Propositions 2.4 and 2.5 we

deduce that
����
Z

⌦
|un|q(x)�2

un(un � u)dx

����  2k|un|q(x)�2
unkLq(x)/(q(x)�1)(⌦)kun � ukLq(x)(⌦)

 2kunkq
+�1

Lq(x)(⌦)
kun � ukLq(x)(⌦) ! 0 as n ! 1,

and
�����

Z

⌦
V (x)|un|r(x)�2

un(un � u)dx

�����  3kV kL�(x)(⌦)k|un|r(x)�2
unkLr(x)/(r(x)�1)(⌦)kun � ukL�(x)(⌦)

 3kV kL�(x)(⌦)

⇣
1 + kunkr

+�1
Lr(x)(⌦)

⌘
kun � ukL�(x)(⌦) ! 0 as n ! 1,

where �(x) = �(x)r(x)/(�(x)�r(x)). Moreover, by (3.3) we have limn!1hJ 0
�(un), un�ui =

0, i.e.,
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M(�p(x,y)(un))IQ(un) +

Z

⌦
|un|q(x)�2

un(un � u)dx

� �

Z

⌦
V (x)|un|r(x)�2

un(un � u)dx ! 0 as n ! 1,

which yields

M(�p(x,y)(un))IQ(un) ! 0 (3.4)

where

IQ(un) =

Z

Q

|un(x)� un(y)|p(x,y)�2((un(x)� un(y))((un(x)� u(x))� (un(y)� u(y)))

|x� y|N+sp(x,y)
dx dy

Since {un} is bounded in X0, passing to subsequence, if necessary, we may assume that

�p(x,y)(un)
n!+1�! t1 � 0.

If t1 = 0, then {un} converge strongly to u = 0 in X0, then by (3.3), we obtain

lim
n!+1

J�(un) = J�(u) = J�(0) = 0 = c� < 0.

That is a contradiction, thus t1 > 0.

Since the function M is continuous, we have

M
�
�p(x,y)(un)

� n!+1�! M (t1) > 0.

Hence, by (M1), for n large enough, we get

0 < c4 < M
�
�p(x,y)(un)

�
< c5. (3.5)

Combining (3.4) and (3.5), we deduce

lim
n!+1

IQ(un) = 0.

Using the above information, Lemma 2.13 (ii) and the fact that un * u in X0, we get

8
>>>><

>>>>:

lim supn!+1hL(un), un � ui  0,

un * u in X0, =) un ! u in X0.

L is a mapping of type (S+).
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Thus, in view of (3.3), we obtain

J�(u) = c� < 0 and J 0
�(u) = 0.

This means that u is a non-trivial weak solution of (1.1), i.e., any � 2 (0,+1) is an eigenvalue

of problem (1.1). Theorem 3.2 is completely proved.
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ABSTRACT

The present paper is dedicated to the study of a first-order
differential inclusion driven by time and state-dependent
maximal monotone operators with integral perturbation, in
the context of Hilbert spaces. Based on a fixed point method,
we derive a new existence theorem for this class of differential
inclusions. Then, we investigate an optimal control problem
subject to such a class, by considering control maps acting
in the state of the operators and the integral perturbation.

RESUMEN

El presente artículo está dedicado al estudio de una in-
clusión diferencial de primer orden impulsada por operadores
monótonos maximales dependiendo del tiempo y del estado
con una perturbación integral, en el contexto de espacios de
Hilbert. En base a un método de punto fijo, derivamos un
nuevo teorema de existencia para esta clase de inclusiones
diferenciales. A continuación investigamos un problema de
control óptimo sujeto a dicha clase, considerando funciones
de control actuando en el estado de los operadores y de la
perturbación integral.
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1 Introduction

Sweeping processes with integral forcing term or integro-differential sweeping processes have been

introduced in [8]. Later, the well-posedness result to the non-convex integro-differential sweeping

process has been shown in [20]. Recent investigations on this topic have been developed in [5–7].

More recently, differential inclusions with integral perturbation involving m-accretive operators

or subdifferentials or time-dependent maximal monotone operators have been studied in [4, 13,

14]. The aforementioned contributions find many areas of applications such as electrical circuits,

nonlinear integro-differential complementarity systems, optimal control, fractional systems, etc.

We are concerned, in this paper, with the following Integro-Differential Problem with time and

state-dependent maximal monotone operators A(t, u)

(IDPA(t,u))

8
><

>:

�u̇(t) 2 A(t, u(t))u(t) +

Z
t

T0

f(t, s, u(s))ds a.e. t 2 I := [T0, T ],

u(T0) = u0 2 D(A(T0, u0)),

where H stands for a real Hilbert space, A(t, x) : D(A(t, x)) ⇢ H ◆ H is a maximal monotone

operator whose domain is denoted D(A(t, x)), for each (t, x) 2 I ⇥H, and f : I ⇥ I ⇥H ! H is a

single-valued map.

Our problem generalizes the Integro-Differential Problem with time-dependent maximal monotone

operators A(t)

(IDPA(t))

8
><

>:

�u̇(t) 2 A(t)u(t) +

Z
t

T0

f(t, s, u(s))ds a.e. t 2 I,

u(T0) = u0 2 D(A(T0)),

stated in [14]. So, we aim to study a more general case, that is, when the operator depends on

both time and state variables.

Note that the evolution problem when a single-valued map f(·, ·) instead of the integral perturba-

tion in (IDPA(t,u)) has been discussed in [1, 28, 34]. Here, we use Schauder’s fixed point theorem

(see also [1]) to establish our main existence result. For this purpose, we make use of the uniqueness

of the solution to (IDPA(t)) and an estimate of the velocity. However, the papers [28, 34] have

followed a discretization method.

In the next part of the paper, we deal with the Optimal Control Problem

(OCP) min�[u, a, b] = �1(u(T )) +

Z
T

0
�2(t, u(t), a(t), b(t), u̇(t), ȧ(t), ḃ(t))dt,

on the set of control maps (a(·), b(·)) and the associated solutions u(·) of the Controlled Problem
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(CPa,b)

8
>>>>>><

>>>>>>:

�u̇(t) 2 A(t, a(t))u(t) +

Z
t

0
f(t, s, b(s), u(s))ds a.e. t 2 [0, T ],

u(t) 2 D(A(t, a(t))), t 2 [0, T ],

(a(·), b(·)) 2 W
1,2([0, T ],Rn+m),

a(0) = a0, u(0) = u0 2 D(A(0, a0)),

where the cost functional �1 : Rn
! R and the running cost �2 : [0, T ] ⇥ R4n+2m

! R satisfy

convenient conditions.

This investigation is inspired by the related one on the controlled integro-sweeping process in

[5], see also [10–12, 17–19, 21–23, 29–32, 37], among others, for further contributions on optimiza-

tion problems subject to controlled sweeping processes or control problems governed by maximal

monotone operators.

Let us give the two following motivating examples: the first-one consists of minimizing a Bolza-type

functional subject to the controlled differential inclusion of the form

(CPx,a,b) � u̇(t) 2 NC(x(t))(u(t)) + f1(a(t), u(t)) +

Z
t

0
f2(b(s), u(s))ds a.e. t 2 [0, T ],

where A(t, x(t)) = NC(x(t)) is the normal cone of a moving set C(x(t)), (x(·), a(·), b(·)) are controls

acting in the moving sets, additive perturbations, and the integral part of the sweeping dynam-

ics (see [5]). The second example concerns an optimization problem subject to the controlled

differential inclusion described by

(CPx,a) � u̇(t) 2 NC(t)(u(t)) + f(a(t), u(t)) a.e. t 2 [0, T ],

where C(t) = C + x(t) and (x(·), a(·)) are control maps (see [12]).

The considered problem (OCP) is new, since we minimize over the solution set to the controlled

integro-differential inclusion (CPa,b), where the controls act in both the state of the (time and

state-dependent) operator and the integral perturbation. To the best of our knowledge, this topic

is new in the scientific literature.

The rest of the paper is organized as follows. After recalling some preliminaries in Section 2, we

handle (IDPA(t)). Then, we develop the case (IDPA(t,u)). Section 4 applies the obtained results

to show the well-posedness of (CPa,b) and establishes the existence of optimal solutions to (OCP).
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2 Notation and preliminaries

Let I := [T0, T ] be an interval of R and let H be a real separable Hilbert space whose inner product

is denoted h·, ·i and the associated norm by k · k. Denote by BH the closed unit ball of H and

BH [x, r] its closed ball of center x 2 H and radius r > 0.

On the space CH(I) of continuous maps x : I ! H, we consider the norm of uniform convergence

on I, kxk1 = sup
t2I

kx(t)k.

By L
p

H
(I), for p 2 [1,+1[ (resp. p = +1), we denote the space of measurable maps x : I ! H

such that
R
I
kx(t)kpdt < +1 (resp. which are essentially bounded) endowed with the usual norm

kxkLp

H
(I) = (

R
I
kx(t)kpdt)

1
p , 1  p < +1 (resp. endowed with the usual essential supremum norm

k · kL1
H

(I)). Denote by W
1,2(I,H), the space of absolutely continuous functions from I to H with

derivatives in L
2
H
(I).

Recall the definition and some properties of maximal monotone operators, see [3, 9, 36].

Let A : D(A) ⇢ H ◆ H be a set-valued operator whose domain, range and graph are defined by

D(A) = {x 2 H : Ax 6= ;},

R(A) = {y 2 H : 9x 2 D(A), y 2 Ax} = [{Ax : x 2 D(A)},

Gr(A) = {(x, y) 2 H ⇥H : x 2 D(A), y 2 Ax}.

The operator A : D(A) ⇢ H ◆ H is monotone, if hy1�y2, x1�x2i � 0 whenever (xi, yi) 2 Gr(A),

i = 1, 2. It is maximal monotone, if its graph could not be contained strictly in the graph of

any other monotone operator, in this case, for all µ > 0, R(IH + µA) = H, where IH stands for

the identity map of H. If A is a maximal monotone operator then, for every x 2 D(A), Ax is

non-empty, closed and convex. Then, the projection of the origin onto Ax, A0(x), exists and is

unique.

Associated with any maximal monotone operator A is the so-called resolvent J
A

µ
= (IH + µA)�1,

µ > 0, which turns out to be a nice firmly non-expansive operator with full domain. Resolvents not

only provide an alternative view on monotone operators because one can recover the underlying

maximal monotone operator via (JA

µ
)
�1

� IH but they also are crucial for the formulation of

algorithms for finding zeros of A (e.g., the celebrated proximal point algorithm).

Recall that the Yosida approximation of A of index µ > 0 is defined by Aµ = 1
µ

�
IH � J

A

µ

�
.

Yosida approximations are powerful tools to study monotone operators. They can be viewed

as regularizations and approximations of A because Aµ is a single-valued Lipschitz-continuous

operator on H and Aµ approximates A in the sense that Aµx ! A
0(x) 2 Ax as µ ! 0+.
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Let us summarize the following properties of these operators:

J
A

µ
x 2 D(A) and Aµ(x) 2 A(JA

µ
x) for every x 2 H, (2.1)

kAµ(x)k  kA
0(x)k for every x 2 D(A).

The normal cone to a non-empty closed convex set S at x 2 H denoted NS(x) defined by

NS(x) = {y 2 H : hy, z � xi  0 8z 2 S}, (2.2)

is a maximal monotone operator.

Let A : D(A) ⇢ H ◆ H and B : D(B) ⇢ H ◆ H be two maximal monotone operators, then, we

denote by dis (A,B) (see [35]) the pseudo-distance between A and B defined by

dis (A,B) = sup

⇢
hy � y

0
, x

0
� xi

1 + kyk+ ky0k
: (x, y) 2 Gr(A), (x0

, y
0) 2 Gr(B)

�
.

Clearly, dis (A,B) 2 [0,+1], dis (A,B) = dis (B,A) and dis (A,B) = 0 iff A = B.

Let us first recall some useful lemmas that will be used in what follows (see [27]).

The first one permits to prove some inclusions using a convergence in the sense of the pseudo-

distance.

Lemma 2.1. Let An (n 2 N), A be maximal monotone operators of H such that dis (An, A) ! 0.

Suppose also that xn 2 D(An) with xn ! x and yn 2 A(xn) with yn ! y weakly for some x, y 2 H.

Then, x 2 D(A) and y 2 A(x).

The next lemma deals with some modes of convergence in the sense of the pseudo-distance and

the element of minimal norm.

Lemma 2.2. Let An (n 2 N), A be maximal monotone operators of H such that dis (An, A) ! 0

and kA
0
n
(x)k  c(1 + kxk) for some c > 0, all n 2 N and x 2 D(An). Then, for every ⇣ 2 D(A),

there exists a sequence (⇣n) such that

⇣n 2 D(An), ⇣n ! ⇣ and A
0
n
(⇣n) ! A

0(⇣).

Another approach on how to prove some inclusions using an estimate involving the element of

minimal norm is provided by the following lemma.

Lemma 2.3. Let A be a maximal monotone operator. If x, y 2 H are such that

hA
0(z)� y, z � xi � 0 8z 2 D(A),
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then, x 2 D(A) and y 2 A(x).

In the last lemma, we provide an estimate by means of the pseudo-distance, the element of minimal

norm, and the resolvent.

Lemma 2.4. Let A, B be maximal monotone operators of H. Then, for µ > 0 and x 2 D(A) one

has

kx� J
B

µ
(x)k  µkA

0(x)k+ dis (A,B) +
q
µ
�
1 + kA0(x)k

�
dis (A,B).

Recall the classical definition of Komlós convergence (see [16, p. 128]).

Definition 2.5. A sequence (un) in L
1
H
(I) Komlós converges to a function u 2 L

1
H
(I) if for any

subsequence (vn) of (un), one has

lim
n!1

1

n

nX

j=1

vj(t) = u(t) a.e.

We also need the following theorem about the relationship between Komlós convergence and

bounded sequences in L
1
H
(I) (see [25, Theorem 3.1]).

Proposition 2.6. Let (un) be a bounded sequence in L
1
H
(I). Then, there exists a subsequence

(vn) of (un) and u 2 L
1
H
(I) such that

lim
n!1

1

n

nX

j=1

wj(t) = u(t) a.e.

for any subsequence (wn) of (vn).

Let us recall the Schauder’s fixed point theorem (see [24]).

Theorem 2.7. Let C be a non-empty closed bounded convex subset of a Banach space E and let

f : C ! C be a continuous map. If f(C) is relatively compact, then, f has a fixed point.

The discrete version of Gronwall’s lemma (see [27]) is given as follows:

Lemma 2.8. Let (↵i), (�i), (�i) and (⌘i) be sequences of non-negative real numbers such that

⌘i+1  ↵i + �i(⌘0 + ⌘1 + · · ·+ ⌘i�1) + (1 + �i)⌘i for i 2 N.

Then,

⌘k 

0

@⌘0 +
k�1X

j=0

↵j

1

A exp

0

@
k�1X

j=0

(j�j + �j)

1

A for k 2 N⇤
.

We end this section by recalling the Gronwall-like differential inequality proved in [6].
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Lemma 2.9. Let y : I ! R be a non-negative absolutely continuous function and let h1, h2, g :

I ! R+ be non-negative integrable functions. Suppose for some " > 0

ẏ(t)  g(t) + "+ h1(t)y(t) + h2(t)(y(t))
1
2

Z
t

0
(y(s))

1
2 ds a.e. t 2 I.

Then, for all t 2 I, one has

(y(t))
1
2  (y(0) + ")

1
2 exp

✓Z
t

0
(h(s) + 1)ds

◆
+

"
1
2

2

Z
t

0
exp

✓Z
t

s

(h(r) + 1)dr

◆
ds

+ 2

✓Z
t

0
g(s)ds+ "

◆ 1
2

� "
1
2 exp

✓Z
t

0
(h(r) + 1)dr

◆�

+ 2

Z
t

0

✓
h(s) + 1

◆
exp

✓Z
t

s

(h(r) + 1)dr

◆✓Z
s

0
g(r)dr + "

◆ 1
2

ds,

where h(t) = max
⇣

h1(t)
2 ,

h2(t)
2

⌘
a.e. t 2 I.

3 Main result

We start this section by giving some important details to [14, Proposition 4.4] which asserts the

existence result to (IDPA(t)). We succeed further to obtain the uniqueness of the solution and an

estimate of its derivative.

Theorem 3.1. Let A(t) : D(A(t)) ⇢ H ◆ H be a maximal monotone operator for each t 2 I,

satisfying

(h1) there exists a function �(·) 2 W
1,2(I,R) which is non-negative on [T0, T [ and non-decreasing

with �(T0) = 0 and �(T ) < +1 such that

dis (A(t), A(s))  |�(t)� �(s)| for all t, s 2 I;

(h2) there exists a non-negative real constant c such that

kA
0(t)xk  c(1 + kxk) for all t 2 I, x 2 D(A(t));

(h3) the set D(A(t)) is relatively ball-compact for any t 2 I.

Let f : I ⇥ I ⇥H �! H be a map such that

(i) the map f(·, ·, x) is measurable on I ⇥ I for each x 2 H;
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(ii) the map f(t, s, ·) is continuous on H for each (t, s) 2 I ⇥ I, and for every ⌘ > 0, there exists

a non-negative function ⇠⌘(·) 2 L
1
R(I) such that for all t, s 2 I and for any x, y 2 BH [0, ⌘]

kf(t, s, x)� f(t, s, y)k  ⇠⌘(t)kx� yk;

(iii) there exists a non-negative real constant m such that for all (t, s, x) 2 I ⇥ I ⇥H, one has

kf(t, s, x)k  m(1 + kxk).

Then, for all u0 2 D(A(T0)), the Integro-Differential Problem (IDPA(t)) has a unique absolutely

continuous solution u(·) that satisfies

ku̇(t)k  K(1 + �̇(t)) a.e. t 2 I, (3.1)

for the non-negative real constant K = (2(T � T0)m+ 3
2c)(K1 + 1) + 2 where

K1 =

✓
ku0k+

✓
2(T � T0)m+

3
2
c+ 2

◆
(T+�(T ))

◆
exp

✓✓
(T � T0)m+

3
2
c

◆
(T � T0) +m(T + �(T ))2

◆
.

Proof. [14, Proposition 4.4] ensures the existence of a solution u(·). Our main concern is to find a

suitable estimate of u̇(·), then, to prove that u(·) is unique.

For any n � 1, define a subdivision of I by T0 = t
n

0 < t
n

1 < · · · < t
n

n
= T.

Set for any n � 1 and i = 0, 1, . . . , n� 1,

h
n

i+1 = t
n

i+1 � t
n

i
, �

n

i+1 = �(tn
i+1)� �(tn

i
).

Suppose that

h
n

i
 h

n

i+1, �
n

i
 �

n

i+1.

Define the function �(t) = t+ �(t), t 2 I. Choose the subdivision such that for all i = 0, . . . , n� 1

and n � 1,

�
n

i+1 = �
n

i+1 + h
n

i+1 
�(T )

n
=: ⌘n. (3.2)

Fix any integer n � 1. Let us start by setting u
n

0 := u0, for i = 0, . . . , n� 1 and ⌧ 2]tn
i
, t

n

i+1],

u
n

i+1 = J
n

i+1

✓
u
n

i
�

Z
t
n

i+1

t
n

i

⇢ i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

�
d⌧

◆
, (3.3)

where

J
n

i+1 := J
A(tn

i+1)

h
n

i+1
= (IH + h

n

i+1A(tn
i+1))

�1
.
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In view of (2.1) and (3.3), observe that

u
n

i+1 2 D(A(tn
i+1)), (3.4)

and

u
n

i
�

Z
t
n

i+1

t
n

i

⇢ i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

�
d⌧ 2 u

n

i+1 + h
n

i+1A(tn
i+1)u

n

i+1.

Then, one writes

�
u
n

i+1 � u
n

i

h
n

i+1

2 A(tn
i+1)u

n

i+1 +
1

h
n

i+1

Z
t
n

i+1

t
n

i

⇢ i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

�
d⌧. (3.5)

Thanks to Lemma 2.4 and (3.3), one has

ku
n

i+1 � u
n

i
k

=

����J
n

i+1

✓
u
n

i
�

Z
t
n

i+1

t
n

i

⇢ i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

�
d⌧

◆
� u

n

i

����



����J
n

i+1

✓
u
n

i
�

Z
t
n

i+1

t
n

i

⇢ i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

�
d⌧

◆
� J

n

i+1(u
n

i
)

����

+ kJ
n

i+1(u
n

i
)� u

n

i
k



Z
t
n

i+1

t
n

i

����
i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

����d⌧ + h
n

i+1kA
0(tn

i
)un

i
k

+ dis (A(tn
i
), A(tn

i+1)) +
q
h
n

i+1(1 + kA0(tn
i
)un

i
k)dis (A(tn

i
), A(tn

i+1)).

Using the fact that
p
ab 

1
2 (a+ b) for all a, b 2 R+, one has

ku
n

i+1 � u
n

i
k 

Z
t
n

i+1

t
n

i

i�1X

j=0

Z
t
n

j+1

t
n

j

kf(⌧, s, un

j
)kds d⌧ +

Z
t
n

i+1

t
n

i

Z
⌧

t
n

i

kf(⌧, s, un

i
)kds d⌧

+
3

2
h
n

i+1kA
0(tn

i
)un

i
k+

3

2
dis (A(tn

i+1), A(t
n

i
)) +

1

2
h
n

i+1.

Next, combining (h1), (h2) and (iii), one obtains

ku
n

i+1 � u
n

i
k 

3

2
h
n

i+1c(1 + ku
n

i
k) +

3

2
�
n

i+1 +
1

2
h
n

i+1 + h
n

i+1m

i�1X

j=0

h
n

j+1(1 + ku
n

j
k)

+

Z
t
n

i+1

t
n

i

(⌧ � t
n

i
)m(1 + ku

n

i
k)d⌧,
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along with (3.2) and the fact that ⌧ � t
n

i
 T � T0, one simplifies

ku
n

i+1 � u
n

i
k  h

n

i+1

✓
(T � T0)m+

3

2
c

◆
ku

n

i
k+ �

n

i+1

✓
(T � T0)m+

3

2
c+ 2

◆

+ h
n

i+1m

i�1X

j=0

h
n

j+1(1 + ku
n

j
k). (3.6)

Remember that hn

i+1  ⌘n for i = 0, . . . , n�1, and
P

i�1
j=0 h

n

j+1  T �T0, along with (3.2), one gets

ku
n

i+1 � u
n

i
k  h

n

i+1

✓
(T � T0)m+

3

2
c

◆
ku

n

i
k+ �

n

i+1

✓
2(T � T0)m+

3

2
c+ 2

◆

+ ⌘nm

i�1X

j=0

h
n

j+1ku
n

j
k.

This yields

ku
n

i+1k 

✓
1 + h

n

i+1

✓
(T � T0)m+

3

2
c

◆◆
ku

n

i
k+ �

n

i+1

✓
2(T � T0)m+

3

2
c+ 2

◆
+ ⌘

2
n
m

i�1X

j=0

ku
n

j
k.

An application of Lemma 2.8, it follows that for all n � 1 and i = 1, . . . , n

ku
n

i
k  K1, (3.7)

with

K1 :=

✓
ku0k+

✓
2(T � T0)m+

3

2
c+ 2

◆
�(T )

◆
exp

✓✓
(T � T0)m+

3

2
c

◆
(T � T0) +m�

2(T )

◆
.

Coming back to (3.6) with the help of (3.2), one gets

ku
n

i+1 � u
n

i
k  �

n

i+1K, (3.8)

with

K :=

✓
2(T � T0)m+

3

2
c

◆
(K1 + 1) + 2.

For each n � 1, we define the map un(·) : I ! H by: for t 2 [tn
i
, t

n

i+1[, 0  i  n� 1

un(t) = u
n

i
+

t� t
n

i

h
n

i+1

✓
u
n

i+1 � u
n

i
+

Z
t
n

i+1

t
n

i

⇢ i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

�
d⌧

◆

�

Z
t

t
n

i

⇢ i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

�
d⌧, (3.9)

un(T ) = u
n

n
, un(T0) = u

n

0 .



CUBO
26, 1 (2024)

On a class of evolution problems driven by maximal monotone... 133

It is clear that the function un(·) : I ! H is absolutely continuous for each n � 1, with un(tni ) = u
n

i

and un(tni+1) = u
n

i+1. Moreover, for all t 2]tn
i
, t

n

i+1[

u̇n(t) =
1

h
n

i+1

✓
u
n

i+1 � u
n

i
+

Z
t
n

i+1

t
n

i

⇢ i�1X

j=0

Z
t
n

j+1

t
n

j

f(⌧, s, un

j
)ds+

Z
⌧

t
n

i

f(⌧, s, un

i
)ds

�
d⌧

◆

�

i�1X

j=0

Z
t
n

j+1

t
n

j

f(t, s, un

j
)ds�

Z
t

t
n

i

f(t, s, un

i
)ds. (3.10)

Combining (iii), (3.7), (3.8) and (3.9), it results

kun(t)� u
n

i
k  ku

n

i+1 � u
n

i
k+ 2(T � T0)m(1 +K1)h

n

i+1  �
n

i+1(K + 2(T � T0)m(1 +K1)),

along with (3.2) yields

kun(t)� u
n

i
k  L⌘n (3.11)

where

L := K + 2(T � T0)m(1 +K1).

Fix s 2 [tn
i
, t

n

i+1[ and t 2 [tn
j
, t

n

j+1[ with j > i. Then, by (3.2), (3.8) and (3.11), one has

kun(t)� un(s)k  kun(t)� u
n

j
k+ ku

n

j
� u

n

i
k+ ku

n

i
� un(s)k

 ku
n

j
� u

n

i
k+ 2L⌘n 

j�i�1X

p=0

ku
n

i+p+1 � u
n

i+p
k+ 2L⌘n

 K

j�i�1X

p=0

�
n

i+p+1 + 2L⌘n = K
�
�(tn

j
)� �(tn

i
)
�
+ 2L⌘n

 K (�(t)� �(tn
i
)) + 2L⌘n = K (�(t)� �(s) + �(s)� �(tn

i
)) + 2L⌘n

 K
�
�(t)� �(s) + �(tn

i+1)� �(tn
i
)
�
+ 2L⌘n

= K (�(t)� �(s)) +K�
n

i+1 + 2L⌘n

 K (�(t)� �(s)) + (K + 2L)⌘n.

Then, for any n � 1 and T0  s  t  T , one gets

kun(t)� un(s)k  K
�
�(t)� �(s)

�
+ (K + 2L)⌘n = K

�
t� s+ �(t)� �(s)

�
+ (K + 2L)⌘n. (3.12)

Combining (3.4)-(3.5) and (3.9)-(3.10), it results that

�u̇n(t) 2 A(�n(t))un(�n(t)) + gn(t) a.e. t 2 I, un(�n(t)) 2 D(A(�n(t))),

where gn(t) =
R
t

T0
f(t, s, un(✓n(s)))ds and the maps ✓n, �n : I ! I are defined by ✓n(T0) = T0,
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✓n(t) = t
n

i
if t 2]tn

i
, t

n

i+1] and �n(T0) = T0, �n(t) = t
n

i+1 if t 2]tn
i
, t

n

i+1] for some i 2 {0, . . . , n� 1}.

By Arzelà-Ascoli theorem (with the help of (h3)), it is easy to show that the constructed sequence

(un(·)) uniformly converges to some u(·) 2 W
1,2(I,H). To verify that u(·) is a solution of the

required integro-differential inclusion, we proceed as in Step 3 in the proof of [2, Theorem 3.2] with

appropriate changes.

Finally, passing to the limit in (3.12) as n ! 1 (noting that ⌘n ! 0) yields

ku̇(t)k  K(1 + �̇(t)) a.e. t 2 I.

Uniqueness. Let u1(·) and u2(·) be two solutions to (IDPA(t)). Since A(t) is monotone then,

one has

1

2

d

dt
ku2(t)� u1(t)k

2


⌧Z
t

T0

f(t, s, u1(s))ds�

Z
t

T0

f(t, s, u2(s))ds, u2(t)� u1(t)

�
. (3.13)

By the estimate of the velocity above, there exists a non-negative real constant ⌘ such that

ku1(t)k  ⌘ and ku2(t)k  ⌘, for each t 2 I, along with (ii), there is ⇠⌘(·) 2 L
1
R(I) such that

kf(t, s, u1(s))� f(t, s, u2(s))k  ⇠⌘(t)ku1(s)� u2(s)k for all (t, s) 2 I ⇥ I,

so that coming back to (3.13), it follows that

1

2

d

dt
ku2(t)� u1(t)k

2
 ⇠⌘(t)ku2(t)� u1(t)k

Z
t

T0

ku2(s)� u1(s)kds.

Hence, Lemma 2.9 with " > 0 arbitrary yields u1 = u2 and guarantees the uniqueness of the

solution to (IDPA(t)).

Now, we are able to prove our main result concerning (IDPA(t,u)).

Theorem 3.2. Let A(t, x) : D(A(t, x)) ⇢ H ◆ H be a maximal monotone operator for each

(t, x) 2 I ⇥H satisfying

(H1) there exist a non-negative and non-decreasing real function ↵(·) 2 W
1,2(I,R) and a non-

negative real constant � < 1 such that

dis (A(t, x), A(s, y))  |↵(t)� ↵(s)|+ �kx� yk 8t, s 2 I and 8x, y 2 H;

(H2) there exists a non-negative real constant c such that

kA
0(t, x)yk  c(1 + kxk+ kyk) for all (t, x) 2 I ⇥H and y 2 D(A(t, x));
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(H3) for any bounded subset X of H, the set D(A(I ⇥X)) is relatively ball-compact.

Let f : I ⇥ I ⇥H �! H be a map satisfying assumptions (i)-(ii)-(iii) of Theorem 3.1.

Put d = c(2 + ku0k), S =
�
2(T � T0)m+ 3

2d
�
(S1 + 1) + 2, where

S1 =

✓
ku0k+

✓
2(T � T0)m+

3

2
d+ 2

◆
(T + ↵(T ) + 1)

◆

exp

✓✓
(T � T0)m+

3

2
d

◆
(T � T0) +m(T + ↵(T ) + 1)2

◆
.

If �S < 1, then, the Integro-Differential Problem (IDPA(t,u)) admits an absolutely continuous

solution u(·) that satisfies

ku̇(t)k  '̇(t) a.e. t 2 I, (3.14)

where ' : I ! R+ is the absolutely continuous solution to

'̇(t) =
L

1� �L
(1 + ↵̇(t)), '(T0) = 0,

for the non-negative real constant L =
�
2(T � T0)m+ 3

2d
�
(L1 + 1) + 2, where

L1 =

✓
ku0k+

✓
2(T � T0)m+

3

2
d+ 2

◆
(T + ↵(T ) + �)

◆

exp

✓✓
(T � T0)m+

3

2
d

◆
(T � T0) +m(T + ↵(T ) + �)2

◆
.

Proof. Observe that 1 � �L > 0 (in the differential equation) noting that �S < 1 by assumption

and since L < S then, � <
1
L

.

Since '(·) is absolutely continuous, then, there exists some non-negative real constant � > 0 such

that Z
T

T0

'̇(s)ds < � for all t 2 I.

Let us just take � = 1 (for simplicity) and suppose that

Z
T

T0

'̇(s)ds < 1 for all t 2 I. (3.15)

Let us consider the convex bounded closed subset Y of the Banach space CH(I) defined by

Y :=

⇢
u 2 CH(I) : u(t) = u0 +

Z
t

T0

u̇(s)ds, ku̇(t)k  '̇(t), t 2 I

�
.

Let h 2 Y , and define the time-dependent maximal monotone operator Bh(t) = A(t, h(t)), t 2 I
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(as in [15, Lemma 5]). For all T0  ⌧  t  T , one has using (H1)

dis (Bh(t), Bh(⌧)) = dis (A(t, h(t)), A(⌧, h(⌧)))  ↵(t)� ↵(⌧) + �kh(t)� h(⌧)k



Z
t

⌧

↵̇(s)ds+ �

Z
t

⌧

kḣ(s)kds 

Z
t

⌧

[↵̇(s) + �'̇(s)] ds = �(t)� �(⌧),

where �(·) 2 W
1,2(I,R) is given by

�(t) =

Z
t

T0

[↵̇(s) + �'̇(s)] ds, 8t 2 I.

Furthermore, one writes using (H2) and (3.15)

kB
0
h
(t)xk = kA

0(t, h(t))xk  c(1 + kh(t)k+ kxk)

 c

✓
1 + ku0k+

Z
t

T0

'̇(s)ds+ kxk

◆

 c(2 + ku0k+ kxk)  d(1 + kxk),

for all t 2 I and x 2 D(A(t, h(t))), where d = c(2 + ku0k).

In view of Theorem 3.1, there exists a unique absolutely continuous solution uh : I ! H to the

integro-differential inclusion

(Ih)

8
>>>><

>>>>:

�u̇h(t) 2 Bh(t)uh(t) +

Z
t

T0

f(t, s, uh(s))ds a.e. t 2 I, h 2 Y,

uh(t) 2 D(Bh(t)) = D(A(t, h(t))), 8t 2 I

uh(T0) = u0 2 D(Bh(T0)) = D(A(T0, u0)),

with

ku̇h(t)k  ⇢(1 + ↵̇(t) + �'̇(t)) a.e. t 2 I, (3.16)

for the non-negative real constant ⇢ = (2(T � T0)m+ 3
2d)(⇢1 + 1) + 2, where

⇢1 =

✓
ku0k+

✓
2(T � T0)m+

3

2
d+ 2

◆
(T + �(T ))

◆

exp

✓✓
(T � T0)m+

3

2
d

◆
(T � T0) +m(T + �(T ))2

◆
.

Now, for each h 2 Y , let us consider the map � defined on Y by

�(h)(t) := uh(t), t 2 I,

where uh(·) is the unique absolutely continuous solution to the latter integro-differential inclusion,

namely (Ih).
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Observe that ⇢ < L. Indeed, note by (H1) that ↵(·) is a non-decreasing and non-negative function,

along with the definition of �(·), one writes

�(T ) =

Z
T

T0

[↵̇(s) + �'̇(s)] ds  ↵(T ) + �

Z
T

T0

'̇(s)ds  ↵(T ) + �,

using the fact that
R
T

T0
'̇(s)ds < 1 by (3.15). Then, from the definition of ⇢1 and L1, this just

shows that ⇢1 < L1. We return therefore to the expression of ⇢ and L to compare.

Thus, coming back to (3.16), one writes

ku̇h(t)k  L(1 + ↵̇(t) + �'̇(t)) = '̇(t). (3.17)

As a result, �(h) 2 Y .

Also, note that using (3.15) for any h 2 Y , one gets

kuh(t)k  ku0k+ '(T ) for all t 2 I. (3.18)

Let us prove that �(Y ) is relatively compact in CH(I).

On the one hand, note by (3.18) that for any h 2 Y

h(t) 2 (ku0k+ '(T ))BH .

On the other hand, since uh(t) 2 D(A(t, h(t))) for each t 2 I then,

uh(t) 2 D(A(I ⇥ (ku0k+ '(T ))BH)) \ (ku0k+ '(T ))BH .

Using the ball-compactness assumption in (H3), one deduces that for each t 2 I, {�(h)(t), h 2 Y }

is relatively compact in H, for any t 2 I. Moreover, (�(h)) is equi-continuous. By Arzelà-Ascoli

theorem, �(Y ) is relatively compact in CH(I).

Now, we check that � is continuous. It is sufficient to show that: if (hn) uniformly converges

to h in Y , then, the sequence of absolutely continuous solutions uhn
associated with hn to the

integro-differential inclusion

8
><

>:

�u̇hn
(t) 2 A(t, hn(t))uhn

(t) +

Z
t

T0

f(t, s, uhn
(s))ds a.e. t 2 I, hn 2 Y,

uhn
(T0) = u0 2 D(A(T0, u0)),

uniformly converges to the absolutely continuous solution uh associated with h to the integro-

differential inclusion (Ih).
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As (uhn
(t)) is relatively compact in H, for any t 2 I (from above) and (uhn

) is equi-absolutely con-

tinuous, along with the estimate (3.16), we may assume that there exists some map z 2 W
1,2(I,H)

such that

(uhn
) uniformly converges to z(·), (3.19)

and

(u̇hn
) �(L1

H
(I), L1

H
(I))-converges to w 2 L

1
H
(I) with w = ż a.e. (3.20)

Put ⌘ := ku0k+ '(T ). Then, by (ii), there exists a non-negative function ⇠⌘(·) 2 L
1
R(I) such that

for all t, s 2 I

kf(t, s, uhn
(s))� f(t, s, z(s))k  ⇠⌘(t)kuhn

(s)� z(s)k.

This along with the pointwise convergence of (uhn
) to z gives

lim
n!1

kf(t, s, uhn
(s))� f(t, s, z(s))k = 0. (3.21)

Note by (3.18) and (iii) that for any n and any t, s 2 I

kf(t, s, uhn
(s))k  m(1 + ⌘), (3.22)

along with (3.21), it follows from the Lebesgue dominated convergence theorem that

����
Z

t

T0

f(t, s, uhn
(s))ds�

Z
t

T0

f(t, s, z(s))ds

���� 

Z
t

T0

kf(t, s, uhn
(s))� f(t, s, z(s))kds ! 0,

as n ! 1.

Moreover, thanks to (3.22), we note that for any t, s 2 I

����
Z

t

T0

f(t, s, uhn
(s))ds

����  m(T � T0)(1 + ⌘). (3.23)

This along with the convergence above, the Lebesgue dominated convergence theorem yields

lim
n!1

Z
T

T0

����
Z

t

T0

f(t, s, uhn
(s))ds�

Z
t

T0

f(t, s, z(s))ds

���� dt = 0. (3.24)

Define for any n � 1, the functions gn, g on I by

gn(t) =

Z
t

T0

f(t, s, uhn
(s))ds, g(t) =

Z
t

T0

f(t, s, z(s))ds for any t 2 I.

As uhn
(t) 2 D(A(t, hn(t))) for all t 2 I and uhn

(t) ! z(t), (A0(t, hn(t))uhn
(t)) is bounded by (H2)
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and the boundedness of the sequences (uhn
) and (hn) in CH(I), for every t 2 I

dis (A(t, hn(t)), A(t, h(t)))  �khn(t)� h(t)k ! 0, as n ! 1, (3.25)

by (H1) and the uniform convergence of (hn) to h in CH(I). Thus, from Lemma 2.1, one deduces

that z(t) 2 D(A(t, h(t))), for each t 2 I.

Now, let us verify that z satisfies the integro-differential inclusion

�ż(t) 2 A(t, h(t))z(t) +

Z
t

T0

f(t, s, z(s))ds a.e. t 2 I.

From (3.20) and (3.24), one deduces that (u̇hn
(·)+gn(·)) �(L1

H
(I), L1

H
(I))-converges to ż(·)+g(·).

Hence, (u̇hn
(·) + gn(·)) Komlós-converges to ż(·) + g(·), and there is a negligible set V such that

for t 2 I \ V

lim
n!1

1

n

nX

j=1

(u̇hj
(t) + gj(t)) = ż(t) + g(t), (3.26)

and

�u̇hn
(t) 2 A(t, hn(t))uhn

(t) + gn(t). (3.27)

Let x 2 D(A(t, h(t))). From (H2) and (3.25) along with Lemma 2.2, there is a sequence (xn) such

that xn 2 D(A(t, hn(t))),

xn ! x and A
0(t, hn(t))xn ! A

0(t, h(t))x. (3.28)

In view of (3.27), by the monotonicity of the operators A(t, hn(t)) for each n and t 2 I, one has

hu̇hn
(t) + gn(t), uhn

(t)� xni 
⌦
A

0(t, hn(t))xn, xn � uhn
(t)

↵
. (3.29)

Note that

hu̇hn
(t) + gn(t), z(t)� xi = hu̇hn

(t) + gn(t), uhn
(t)� xni

+ hu̇hn
(t) + gn(t), z(t)� uhn

(t)i+ hu̇hn
(t) + gn(t), xn � xi,

then,

1

n

nX

j=1

hu̇hj
(t) + gj(t), z(t)� xi =

1

n

nX

j=1

hu̇hj
(t) + gj(t), uhj

(t)� xji

+
1

n

nX

j=1

hu̇hj
(t) + gj(t), z(t)� uhj

(t)i+
1

n

nX

j=1

hu̇hj
(t) + gj(t), xj � xi.
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Hence, combining (3.17), (3.23) and (3.29), one deduces that

1

n

nX

j=1

hu̇hj
(t) + gj(t), z(t)� xi 

1

n

nX

j=1

⌦
A

0(t, hj(t))xj , xj � uhj
(t)

↵

+ ('̇(t) + (T � T0)m(1 + ⌘))

0

@ 1

n

nX

j=1

kz(t)� uhj
(t)k+

1

n

nX

j=1

kxj � xk

1

A .

Passing to the limit when n ! 1, using (3.19), (3.26), (3.28), this last inequality yields

hż(t) + g(t), z(t)� xi  hA
0(t, h(t))x, x� z(t)i a.e. 8x 2 D(A(t, h(t))).

It results from Lemma 2.3 that

�ż(t) 2 A(t, h(t))z(t) + g(t) a.e. t 2 I,

with z(T0) = u0 2 D(A(T0, u0)) and by uniqueness z = uh.

Therefore, one just checks that �(hn)� �(h) ! 0 in CH(I) as n ! 1. Consequently, � : Y ! Y

is continuous from the bounded convex closed subset Y of the Banach space CH(I) with �(Y ) is

relatively compact. Applying Schauder’s fixed point theorem (see Theorem 2.7) there exists h 2 Y

such that h = �(h), that is, h(t) = uh(t). Furthermore, the estimation (3.14) holds true on I. The

proof of the theorem is then complete.

We derive from Theorem 3.2, the particular case of the sweeping process, that is, A(t, x) = NC(t,x),

for (t, x) 2 I ⇥H.

Corollary 3.3. Let C : I ⇥H ◆ H be a set-valued mapping satisfying:

(H 0
1) For each (t, y) 2 I ⇥H, C(t, y) is a non-empty closed convex subset of H.

(H 0
2) There exist a non-negative real constant � < 1, and a function ↵ 2 W

1,2(I,R) which is

non-negative on [T0, T [ and non-decreasing such that

|d(x,C(t, u))� d(x,C(s, v))|  |↵(t)� ↵(s)|+ �||v � u|| 8t, s 2 I, 8x, v, u 2 H.

(H 0
3) For any bounded subset X of H, the set C(I ⇥X) is relatively ball-compact.

Let f : I ⇥ I ⇥H �! H be a map satisfying assumptions of Theorem 3.2.
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Choose any d > 0 and put S =
�
2(T � T0)m+ 3

2d
�
(S1 + 1) + 2, where

S1 =

✓
ku0k+

✓
2(T � T0)m+

3

2
d+ 2

◆
(T + ↵(T ) + 1)

◆

exp

✓✓
(T � T0)m+

3

2
d

◆
(T � T0) +m(T + ↵(T ) + 1)2

◆
.

If �S < 1, then, the integro-differential sweeping process

8
><

>:

�u̇(t) 2 NC(t,u(t))u(t) +

Z
t

T0

f(t, s, u(s))ds a.e. t 2 I,

u(T0) = u0 2 C(T0, u0),

has an absolutely continuous solution u(·). Moreover, an appropriate estimate of u̇(·) holds true.

Proof. We follow the arguments used in the proof of [33, Corollary 8].

Let A(t, x) = NC(t,x), for each (t, x) 2 I ⇥H. Then, for any (t, x) 2 I ⇥H, A(t, x) : D(A(t, x)) ⇢

H ◆ H is a maximal monotone operator with D(A(t, x)) = C(t, x) and since the projection of

the origin onto NC(t,x)y equals 0 then kA
0(t, x)yk = 0 for any (t, x) 2 I ⇥H and any y 2 C(t, x)

(keeping in mind (2.2) and (H 0
1)). So, (H2) holds true for any non-negative real constant c.

Moreover, it is easily seen that (H3) is satisfied. Let us verify (H1).

On the one hand, from [26], one has

dH(C(t, u), C(s, v)) = sup
x2H

|d(x,C(t, u))� d(x,C(s, v))|, (3.30)

where dH(·, ·) denotes the Hausdorff distance between two closed subsets of H.

On the other hand, it is known from [35] that since C(t, u), C(s, v) are convex closed sets, then

dis (NC(t,u), NC(s,v)) = dH(C(t, u), C(s, v)). (3.31)

Combining (3.30) and (3.31) with (H 0
2), then, (H1) holds true.

Hence, all assumptions of Theorem 3.2 are satisfied. The latter ensures the existence of a solution

to the integro-differential sweeping process under consideration.

Furthermore, in view of (3.14), an appropriate estimate of u̇ is obtained.
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4 An optimal control problem

In this section, we focus on the Optimal Control Problem (OCP).

First, let us prove the existence and uniqueness of the solution to problem (CPa,b).

Proposition 4.1. Let H = Rn and I := [0, T ]. Fix a couple (a(·), b(·)) 2 W
1,2(I,Rn+m). Assume

that for any (t, y) 2 I ⇥ Rn, A(t, y) : D(A(t, y)) ⇢ Rn ◆ Rn is a maximal monotone operator

satisfying assumptions (H1)-(H2). Let f : I ⇥ I ⇥ Rm+n
! Rn be a map such that f(·, ·, x, y) is

measurable on I⇥I for each (x, y) 2 Rm+n, f(t, s, ·, ·) is continuous on Rm+n for each (t, s) 2 I⇥I

and satisfying the following assumptions

(i) there exists a non-negative real constant M , for any b(·) 2 W
1,2(I,Rm) such that

kf(t, s, b(s), x)k  kb(s)k+Mkxk, 8t, s 2 I, 8x 2 Rn;

(ii) for a non-negative real constant ⌘ and any b(·) 2 W
1,2(I,Rm), there exists a non-negative

real constant l such that

kf(t, s, b(s), x1)� f(t, s, b(s), x2)k  lkx1 � x2k, 8t, s 2 I, 8x1, x2 2 BRn [0, ⌘].

Then, this couple control generates a unique solution u(·) 2 W
1,2(I,Rn) to the Controlled Problem

(CPa,b). Moreover, one has for a.e. t 2 I

����u̇(t) +
Z

t

0
f(t, s, b(s), u(s))ds

����  K(1 + �̇(t)) + (1 + L)⇣, (4.1)

ku̇(t)k  K(1 + �̇(t)), (4.2)

where ⇣ = max
⇣
kbkL1

Rm (I), TM

⌘
, L = ku0k+K

R
T

0 (1 + �̇(s))ds, and the function � is defined by

�(t) =

Z
t

0
[↵̇(s) + �kȧ(s)k]ds, t 2 I,

and K is a non-negative real constant which depends on ku0k, ka0k, c, ⇣, T , and �.

Proof. For any t 2 I and any fixed a(·) 2 W
1,2(I,Rn), define the time-dependent maximal mono-

tone operators Ba(t) := A(t, a(t)) and proceed as in the first part of the proof of Theorem 3.2.

Let ⌧, t 2 I such that 0  ⌧  t  T . Then, one has by (H1)

dis (Ba(t), Ba(⌧)) = dis (A(t, a(t)), A(⌧, a(⌧)))  �(t)� �(⌧),
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and clearly �(·) 2 W
1,2(I,R) is defined by

�(t) =

Z
t

0
[↵̇(s) + �kȧ(s)k]ds, t 2 I.

Now, in view of (H2), there exists a non-negative real number c such that for t 2 I, z 2 D(A(t, a(t)))

kB
0
a
(t)zk = kA

0(t, a(t))zk  c(1 + ka(t)k+ kzk)  c

✓
1 +

����a0 +
Z

t

0
ȧ(s)ds

����+ kzk

◆
 c1(1 + kzk),

where c1 = c(1 + ka0k+
R
T

0 kȧ(s)kds).

Hence, the operator Ba(t) satisfies (h1)-(h2) of Theorem 3.1.

Next, for b(·) 2 W
1,2(I,Rm) fixed, define the function fb on I ⇥ I ⇥ Rn by

fb(t, s, u) = f(t, s, b(s), u) for all (t, s, u) 2 I ⇥ I ⇥ Rn
.

It is clear that the function fb(·, ·, u) is measurable on I ⇥ I for any fixed u 2 Rn, by assumption

and by continuity of b(·). Moreover, from (i) one gets

kfb(t, s, u)k  kb(s)k+Mkuk  ⇣(1 + kuk), (4.3)

for all (t, s, u) 2 I ⇥ I ⇥ Rn, where ⇣ = max(kbk1,M).

Now, by (ii) for a non-negative real constant ⌘, there exists a non-negative real constant l such

that

kfb(t, s, u1)� fb(t, s, u2)k  lku1 � u2k, 8t 2 I, 8u1, u2 2 BRn [0, ⌘].

Thus, the map fb satisfies assumptions of Theorem 3.1. Consequently, it follows the existence and

uniqueness of the solution to the considered integro-differential inclusion.

Furthermore, in view of (3.1) and (4.3) along with the absolute continuity of u(·), estimates (4.1)-

(4.2) hold true. The velocity u̇(·) is clearly in L
2
Rn(I), and u(·) 2 W

1,2(I,Rn). The proof of the

proposition is therefore finished.

We are going to impose convenient assumptions that guarantee the existence of (global) optimal

solutions to the Optimal Control Problem (OCP) subject to the solution set of the Controlled

Problem (CPa,b).

Theorem 4.2 (Existence of optimal solutions). Assume that for any (t, y) 2 I ⇥ Rn, A(t, y) :

D(A(t, y)) ⇢ Rn ◆ Rn is a maximal monotone operator satisfying assumptions (H1)-(H2). Let

f : I ⇥ I ⇥ Rm+n
! Rn be a continuous map satisfying assumptions of Proposition 4.1. Suppose

that the terminal cost functional �1 : Rn
! R is lower semi-continuous, while the running cost

�2 : I ⇥ R4n+2m
! R is lower semi-continuous with respect to t and is majorized by a summable
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function on I along reference curves. Moreover, assume that �2(t, ·) is bounded from below on

bounded sets for a.e. t 2 I. Let the running cost �2 be convex with respect to velocity variables u̇,

ȧ, ḃ, and that there is a minimizing sequence (uk(·), ak(·), bk(·)) of (OCP), which (ak(·), bk(·)) is

bounded in W
1,2(I,Rn+m). Then, the Optimal Control Problem (OCP) admits an optimal solution

in the space W
1,2(I,R2n+m).

Proof. From Proposition 4.1, one deduces that the set of feasible solutions to the Optimal Control

Problem (OCP) is non-empty. Let us fix the minimizing sequence of feasible solutions (uk(·), ak(·),

b
k(·)) for (OCP) (from the statement of the theorem), which is bounded in W

1,2(I,R2n+m). This

implies in particular that there exists a couple (a0, b0) 2 Rn+m such that (ak(0), bk(0)) ! (a0, b0)

in this space as k ! 1, while the triple (u0, a0, b0) = (u(0), a(0), b(0)) clearly satisfies the initial

conditions. It is readily seen that the sequence (ȧk(·), ḃk(·)) is bounded in L
2
Rn+m(I). Then, up to

a subsequence that we do not relabel, there exists a couple (va(·), vb(·)) 2 L
2
Rn+m(I) such that

(ȧk(·), ḃk(·)) weakly converges in L
2
Rn+m(I) to (va(·), vb(·)).

Define now the functions

(â(t), b̂(t)) = (a0, b0) +

Z
t

0
(va(s), vb(s))ds, for all t 2 I,

and observe that ( ˙̂a(t), ˙̂b(t)) = (va(t), vb(t)) for a.e. t 2 I, and that the couple (â(·), b̂(·)) belongs

to the space W
1,2(I,Rn+m). It follows from above and the estimates of Proposition 4.1 that the

sequence of the corresponding solutions (uk(·)) is uniformly bounded and equi-continuous on I.

By Arzelà-Ascoli theorem, up to a subsequence that we do not relabel, (uk(·)) uniformly converges

on I to some û(·) 2 CRn(I) which is absolutely continuous on this interval. It follows from (4.2)

that (u̇k(·)) is bounded in L
2
Rn(I) and hence it weakly converges in L

2
Rn(I) up to a subsequence,

to some function w(·) with ˙̂u(t) = w(t) for a.e. t 2 I, that is,

(u̇k(·)) weakly converges in L
2
Rn(I) to ˙̂u(·). (4.4)

The next step is to check that the limiting triple ẑ(·) = (û(·), â(·), b̂(·)) satisfies the differential

inclusion (CPa,b).

Since f is continuous by assumption along with the preceding modes of convergence above, then,

one has

f(t, s, bk(s), uk(s)) ! f(t, s, b̂(s), û(s)) as k ! 1, t, s 2 I.

By (i), one has

kf(t, s, bk(s), uk(s))k  kb
k(s)k+Mku

k(s)k, t, s 2 I.
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which is uniformly bounded since (bk(·)) and (uk(·)) are bounded in CH(I).

From the Lebesgue dominated convergence theorem, it results

lim
k!1

����
Z

t

0
f(t, s, bk(s), uk(s))ds�

Z
t

0
f(t, s, b̂(s), û(s))ds

���� = 0.

Moreover, note that

����
Z

t

0
f(t, s, bk(s), uk(s))ds

���� < kb
k
kL1

Rm (I) +Mku
k
kL1

Rn (I),

is uniformly bounded, then, the Lebesgue dominated convergence theorem yields

lim
k!1

Z
T

0

����
Z

t

0
f(t, s, bk(s), uk(s))ds�

Z
t

0
f(t, s, b̂(s), û(s))ds

����
2

dt = 0. (4.5)

Observe that u
k(t) 2 D(A(t, ak(t))), a

k(t) ! â(t), u
k(t) ! û(t), for all t 2 I, the sequence

(A0(t, ak(t))uk(t)) is bounded by (H2) for all t 2 I, and

dis (A(t, ak(t)), A(t, â(t)))  �ka
k(t)� â(t)k ! 0, when k ! 1, (4.6)

using (H1). Then, from Lemma 2.1 one deduces that û(t) 2 D(A(t, â(t))), 8t 2 I.

Now, we are going to verify that û(·) satisfies the integro-differential inclusion

� ˙̂u(t) 2 A(t, â(t))û(t) +

Z
t

0
f(t, s, b̂(s), û(s))ds a.e. t 2 I.

Define the maps g
k and g on I by

g
k(t) =

Z
t

0
f(t, s, bk(s), uk(s))ds, g(t) =

Z
t

0
f(t, s, b̂(s), û(s))ds, for any t 2 I.

In view of (4.4) and (4.5),

(u̇k(·) + g
k(·)) weakly converges in L

2
Rn(I) to ˙̂u(·) + g(·).

Hence, (u̇k(·)+g
k(·)) Komlós-converges to ˙̂u(·)+g(·) (see Proposition 2.6). So, there is a negligible

set Y such that for t 2 I \ Y : u̇
k(·) + g

k(·) ! ˙̂u(·) + g(·) Komlós, that is,

lim
k!1

1

k

kX

p=1

✓
u̇
p(t) +

Z
t

0
f(t, s, bp(s), up(s))ds

◆
= ˙̂u(t) +

Z
t

0
f(t, s, b̂(s), û(s))ds, (4.7)

and

�u̇
k(t) 2 A(t, ak(t))uk(t) +

Z
t

0
f(t, s, bk(s), uk(s))ds.
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Let y 2 D(A(t, â(t))). Applying Lemma 2.2 to the maximal monotone operators A(t, ak(t)) and

A(t, â(t)) that satisfy (4.6), ensures the existence of a sequence (yk) such that y
k
2 D(A(t, ak(t)))

y
k
! y and A

0(t, ak(t))yk ! A
0(t, â(t))y. (4.8)

Since

�u̇
k(t) 2 A(t, ak(t))uk(t) +

Z
t

0
f(t, s, bk(s), uk(s))ds a.e.,

and A(t, ak(t)) is monotone, one has

hu̇
k(t) + g

k(t), uk(t)� y
k
i  hA

0(t, ak(t))yk, yk � u
k(t)i. (4.9)

Note that

hu̇
k(t) + g

k(t), û(t)� yi = hu̇
k(t) + g

k(t), uk(t)� y
k
i+ hu̇

k(t) + g
k(t), û(t)� u

k(t)� (y � y
k)i,

then,

1

k

kX

p=1

hu̇
p(t) + g

p(t), û(t)� yi =
1

k

kX

p=1

⌦
u̇
p(t) + g

p(t), yp � y
↵
+

1

k

kX

p=1

⌦
u̇
p(t) + g

p(t), up(t)� y
p
↵

+
1

k

kX

p=1

hu̇
p(t) + g

p(t), û(t)� u
p(t)i.

Thus, one gets using (4.9)

1

k

kX

p=1

⌦
u̇
p(t) + g

p(t), û(t)� y
↵


1

k

kX

p=1

⌦
u̇
p(t) + g

p(t), yp � y
↵
+

1

k

kX

p=1

⌦
A

0(t, ap(t))yp, yp � u
p(t)

↵

+
1

k

kX

p=1

⌦
u̇
p(t) + g

p(t), û(t)� u
p(t)i.

A passage to the limit as k ! 1 with the use of (4.7)-(4.8), the boundedness of (u̇p(·) + g
p(·)) in

Rn, and the preceding modes of convergence above, yields

⌦
˙̂u(t) +

Z
t

0
f(t, s, b̂(s), û(s))ds, û(t)� y

↵


⌦
A

0(t, â(t))y, y � û(t)
↵

a.e.

Hence, Lemma 2.3 guarantees that

� ˙̂u(t) 2 A(t, â(t))û(t) +

Z
t

0
f(t, s, b̂(s), û(s))ds a.e. t 2 I,

with û(t) 2 D(A(t, â(t))) for all t 2 I. By uniqueness, it follows that û is the unique solution
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to (CP
â,b̂

) associated to the couple control maps (â(·), b̂(·)). To justify further the optimality of

(û(·), â(·), b̂(·)) in (OCP), it is sufficient to show that

�[û, â, b̂]  lim inf
k!1

�[uk
, a

k
, b

k] (4.10)

for the Bolza-type functional in (OCP). The latter (4.10) readily follows from the assumptions on

the cost functions �1 and �2 due to the Mazur weak closure theorem and the Lebesgue dom-

inated convergence theorem. Indeed, Mazur’s theorem ensures that the weak convergence of

{u̇
k
, ȧ

k
, ḃ

k
} to { ˙̂u, ˙̂a, ˙̂b} in L

2
R2n+m(I) yields the L

2
R2n+m(I) strong convergence of convex combi-

nations of (u̇k
, ȧ

k
, ḃ

k) to ( ˙̂u, ˙̂a, ˙̂b), and thus the a.e. convergence of a subsequence of these convex

combinations on I to the limiting triple.

Employing finally the assumed convexity of the running cost �2 with respect to the velocity vari-

ables verifies (4.10) and hence completes the proof of the theorem.

We derive from Theorem 4.2, the particular case of the controlled sweeping process.

Corollary 4.3. Let C : I ⇥ Rn ◆ Rn be a set-valued map with non-empty closed convex values.

Suppose that there exist a non-negative real constant � < 1, and a function � 2 W
1,2(I,R) which

is non-negative on [0, T [ and non-decreasing with �(T ) < 1 and �(0) = 0 such that

|d(u,C(t, y))� d(u,C(s, z))|  |�(t)� �(s)|+ �ky � zk 8t, s 2 I, 8u, y, z 2 Rn
.

Let f : I ⇥ I ⇥Rm+n
! Rn, �1 : Rn

! R and �2 : I ⇥R4n+2m
! R be defined as in Theorem 4.2.

The optimal control problem is

min�[u, a, b] = �1(u(T )) +

Z
T

0
�2(t, u(t), a(t), b(t), u̇(t), ȧ(t), ḃ(t))dt,

on the set of controls (a(·), b(·)) and the associated solutions u(·) of the controlled integro-sweeping

process 8
>>>>>><

>>>>>>:

�u̇(t) 2 NC(t,a(t))u(t) +

Z
t

0
f(t, s, b(s), u(s))ds a.e. t 2 I,

u(t) 2 C(t, a(t)), t 2 I,

(a(·), b(·)) 2 W
1,2(I,Rn+m),

a(0) = a0, u(0) = u0 2 C(0, a0).

Then, the minimizing problem above admits an optimal solution in the space W
1,2(I,R2n+m).
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1 Introduction

Kenmotsu in 1971, introduced a class of almost contact Riemannian manifolds satisfying some

special conditions, called Kenmotsu manifold [10]. Many researchers including U.C. De and R.

N. Singh studied some properties of Kenmotsu manifolds endowed with various conditions [2,3,9,

15]. Sato [13] in 1976, introduced the notion of an almost para-contact structure on Riemannian

manifolds which is similar to the almost contact structure on Riemannian manifolds. In 1995,

B. B. Sinha and K. L. Sai Prasad [16] defined a class of almost para contact metric manifolds

analogous to the class of Kenmotsu manifolds, known as para-Kenmotsu (p-Kenmotsu) manifolds.

T. Satyanarayana et al. [14] studied curvature properties in a p-Kenmotsu manifold.

Friedmann and Schouten in 1924 [6], presented the idea of semi-symmetric connection on a differ-

entiable manifold. Yano introduced semi-symmetric metric connection in 1970 using the idea of

metric connection given by Hayden in 1932. M. M. Tripathi [19] and Tang et al. [18] studied semi-

symmetric metric connection in a Kenmotsu manifold. A linear connection r̄ on a Riemannian

manifold M is said to be a semi- symmetric connection if the torsion tensor T given by

T (X,Y ) = r̄XY � r̄Y X � [X,Y ]

satisfies

T (X,Y ) = ⌘(Y )X � ⌘(X)Y,

where ⌘ is a 1-form and g(X, ⇠) = ⌘(X), ⇠ is a vector field and for all vector fields X,Y 2 �(M),

�(M) is the set of all differentiable vector fields on M .

Gołąb [7] in 1975 studied quarter-symmetric metric connection in differentiable manifolds with

affine connections. Further S. C. Biswas, U. C. De and many others [1, 4, 5, 17] studied quarter-

symmetric metric connection in Riemannian manifolds equipped with various structures. A quarter-

symmetric connection is considered as a generalisation of semi-symmetric connection since its

torsion tensor T satisfies

T (X,Y ) = ⌘(Y )�X � ⌘(X)�Y,

where � is a (1, 1) tensor field. If quarter-symmetric connection r̄ satisfies the condition

(r̄Xg)(Y, Z) = 0,

where X,Y, Z 2 �(M), then r̄ is said to be a quarter-symmetric metric connection. Let M be

an n-dimensional Riemannian manifold and r be its Levi-Civita connection. The Riemannian

curvature tensor R, the concircular curvature tensor W , Weyl projective curvature tensor P of M
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are defined by [11,12]

R(X,Y )Z = rXrY Z �rY rXZ �r[X,Y ]Z, (1.1)

W (X,Y )Z = R(X,Y )Z � r

n(n� 1)
[g(Y, Z)X � g(X,Z)Y ], (1.2)

P (X,Y )Z = R(X,Y )Z � 1

n� 1
[S(Y, Z)X � S(X,Z)Y ], (1.3)

where X,Y, Z 2 �(M) and r is the scalar curvature.

The paper is organised as follows: In section 2, a brief introduction of p-Kenmotsu manifolds is

given. In section 3, the relation between the curvature tensors of Riemannian connection and

the quarter-symmetric metric connection in a p-Kenmotsu manifold is obtained. The study of

a p-Kenmotsu manifold with respect to the quarter-symmetric metric connection satisfying the

curvature condition R̄ · S̄ is contained in section 4. In section 5, we study �-concircularly flat p-

Kenmotsu manifold with respect to quarter-symmetric metric connection. The curvature condition

P̄ · S̄ = 0 and �-Weyl projective flat p-Kenmotsu manifold with respect to quarter-symmetric

metric connection are respectively studied in the sections 6 and 7. Finally we give an example of

a 5-dimensional p-Kenmotsu manifold.

2 Preliminaries

Let M be a (2n + 1)-dimensional differentiabe manifold endowed with an almost para-contact

structure (�, ⇠, ⌘), where � is a (1, 1)-tensor field, ⇠ is a vector field, and ⌘ is a 1-form on M , then

�2X = X � ⌘(X)⇠, ⌘(⇠) = 1. (2.1)

�(⇠) = 0, ⌘(�X) = 0, rank (�) = 2n. (2.2)

where X is a vector field on M . The manifold M endowed with (�, ⇠, ⌘) is called an almost

para-contact manifold [13].

Let g be a Riemannian metric on M compatible to the structure (�, ⇠, ⌘), i.e., the following

equations are satisfied

g(�X,�Y ) = g(X,Y )� ⌘(X)⌘(Y ), g(X, ⇠) = ⌘(X), (2.3)

for all vector fields X and Y on M . Then the manifold M is said to admit an almost para-contact

Riemannian structure (�, ⇠, ⌘, g).
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If moreover, (�, ⇠, ⌘, g) satisfy the following conditions

(rX⌘)Y = g(X,Y )� ⌘(X)⌘(Y ), (2.4)

rX⇠ = X � ⌘(X)⇠ = �2(X), (2.5)

(rX�)Y = �g(�X,Y )⇠ � ⌘(Y )�X, (2.6)

then M is called a para-Kenmotsu (p-Kenmotsu) manifold [16].

In a p-Kenmotsu manifold the following relations hold [16]:

S(�X,�Y ) = S(X,Y ) + (n� 1)⌘(X)⌘(Y ), (2.7)

S(X, ⇠) = �(n� 1)⌘(X), where g(QX,Y ) = S(X,Y ), (2.8)

⌘(R(X,Y )Z) = g(X,Z)⌘(Y )� g(Y, Z)⌘(X), (2.9)

R(⇠, X)Y = ⌘(Y )X � g(X,Y )⇠, (2.10)

R(X,Y )⇠ = ⌘(X)Y � ⌘(Y )X, (2.11)

where S is the Ricci tensor and Q is the symmetric endomorphism of the tangent space at each

point corresponding to the Ricci tensor and R is the Riemannian curvature.

If the Ricci curvature tensor S is of the form

S(X,Y ) = ag(X,Y ) + b⌘(X)⌘(Y ), (2.12)

then M is called ⌘-Einstein manifold and if b = 0 then it is said to be Einstein manifold. M is

called generalized ⌘-Einstein manifold, if S is of the form

S(X,Y ) = ag(X,Y ) + b⌘(X)⌘(Y ) + cg(�X,Y ), (2.13)

where a, b, c are scalar functions on M .

In a p-Kenmotsu manifold M , the connection r̄ given by

r̄XY = rXY + ⌘(Y )�X � g(�X,Y )⇠ (2.14)

is a quarter-symmetric metric connection [8].
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3 Curvature tensor of para-Kenmotsu manifold with respect

to the quarter-symmetric metric connection

Let M be a p-Kenmotsu manifold. The curvature tensor R̄ of a p-Kenmotsu manifold with respect

to the quarter-symmetric metric connection r̄ is defined by

R̄(X,Y )Z = r̄Xr̄Y Z � r̄Y r̄XZ � r̄[X,Y ]Z.

Using equations (2.1)-(2.6) and (2.13) we get

R̄(X,Y )Z = R(X,Y )Z + g(X,Z)�Y � g(Y, Z)�X + g(�X,Z)Y � g(�Y, Z)X

+ g(�X,Z)�Y � g(�Y, Z)�X, (3.1)

where R is the Riemannian curvature tensor of the connection r given in (1.1).

Now from (3.1), we have

R̄(X,Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0, (3.2)

or equivalently

R̄(X,Y, Z,W ) + R̄(Y, Z,X,W ) + R̄(Z,X, Y,W ) = 0, (3.3)

where R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ). Thus the curvature tensor with respect to the quarter-

symmetric metric connection satisfies the Bianchi first identity. Taking inner product of (3.1) with

respect to W , we get

R̄(X,Y, Z,W ) = R(X,Y, Z,W ) + g(X,Z)g(�Y,W )� g(Y, Z)g(�X,W )

+ g(�X,Z)g(Y,W )� g(�Y, Z)g(X,W ) (3.4)

+ g(�X,Z)g(�Y,W )� g(�Y, Z)g(�X,W ).

Contracting (3.4) over X and W , we get

S̄(Y, Z) = S(Y, Z) + (1� 2n�  )g(�Y, Z) + (1�  )g(Y, Z)� ⌘(Y )⌘(Z), (3.5)

where  = trace �, S and S̄ are the Ricci tensors with respect to the connections r and r̄
respectively on M . Now contracting (3.5), we have

r̄ = r + 2n(1� 2 )�  2, (3.6)

where r and r̄ denote the scalar curvatures with respect to the connections r and r̄ respectively
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on M . Now we state the following theorem.

Theorem 3.1. For a p-Kenmotsu manifold M with respect to the quarter-symmetric metric con-

nection r̄

(1) The curvature tensor R̄ satisfies the Bianchi first identity and is given by

R̄(X,Y )Z = R(X,Y )Z + g(X,Z)�Y � g(Y, Z)�X

+ g(�X,Z)Y � g(�Y, Z)X + g(�X,Z)�Y � g(�Y, Z)�X.

(2) The Ricci tensor S̄ is given by

S̄(Y, Z) = S(Y, Z) + (1� 2n�  )g(�Y, Z) + (1�  )g(Y, Z)� ⌘(Y )⌘(Z).

(3) The relation between r and r̄, respectively the scalar curvatures with respect to r and r̄, is

given by

r̄ = r + 2n(1� 2 )�  2.

Proof. The proof follows from the equations (3.1), (3.2), (3.3), (3.5) and (3.6).

Some properties of the curvature tensor with respect to the quarter- symmetric metric connection

are given in the following lemma.

Lemma 3.2. In a (2n + 1)-dimensional p-Kenmotsu manifold with the structure (�, ⇠, ⌘, g) with

respect to the quarter-symmetric metric connection, the following hold

R̄(X,Y )⇠ = ⌘(X)Y � ⌘(Y )X + ⌘(X)�Y � ⌘(Y )�X, (3.7)

R̄(⇠, Y )Z = ⌘(Z)Y + ⌘(Z)�Y � g(Y, Z)⇠ � g(�Y, Z)⇠, (3.8)

R̄(⇠, Y )⇠ = Y + �Y � ⌘(Y )⇠, (3.9)

S̄(Y, ⇠) = (1� n�  )⌘(Y ), (3.10)

S̄(⇠, ⇠) = (1� n�  ). (3.11)
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4 p-Kenmotsu manifold satisfying R̄ · S̄ = 0.

In this section we consider a p-Kenmotsu manifold with respect to the quarter-symmetric metric

connection r̄ satisfying

R̄(X,Y ) · S̄ = 0.

This equation implies

S̄(R̄(X,Y )U, V ) + S̄(U, R̄(X,Y )V ) = 0 (4.1)

where X,Y, U, V 2 �(M). Putting X = ⇠ in (4.1), we have

S̄(R̄(⇠, Y )U, V ) + S̄(U, R̄(⇠, Y )V ) = 0 (4.2)

By the equations (3.5), (3.8) and (3.10), equation (4.2) yields

⌘(U)S̄(Y, V ) + ⌘(U)S̄(�Y, V )� (1� n�  )g(Y, U)⌘(V )� (1� n�  )g(�Y, U)⌘(V )

+⌘(V )S̄(U, Y ) + ⌘(V )S̄(�Y, U)� (1� n�  )g(Y, V )⌘(U)� (1� n�  )g(�Y, V )⌘(U) = 0.

Putting U = ⇠ and using (2.1) and (2.2), it follows that

S̄(Y, V ) + S̄(�Y, V ) = (1� n�  )g(Y, V ) + (1� n�  )g(�Y, V ). (4.3)

Making use of (3.5), (4.3) takes form

S(Y, V ) + S(�Y, V ) = ( + n� 1)g(Y, V ) + (2� 2n�  )⌘(Y )⌘(V ) + ( + n� 1)g(�Y, V ). (4.4)

Therefore we have the following theorem:

Theorem 4.1. If a p-Kenmotsu manifold with respect to the quarter-symmetric metric connection

satisfying the condition R̄ · S̄ = 0, then the Ricci tensor S of the manifold satisfies

S(X,Y ) + S(�X,Y ) = ( + n� 1)g(X,Y ) + (2� 2n�  )⌘(X)⌘(Y ) + ( + n� 1)g(�X,Y ).
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5 �-concircularly flat p-Kenmotsu manifolds with respect to

the quarter-symmetric metric connection

Analogous to the definition of the concircular curvature given in (1.2), W̄ , the concircular curvature

with respect to quarter-symmetric metric connection is given by

W̄ (X,Y )Z = R̄(X,Y )Z � r̄

n(n� 1)
[g(Y, Z)X � g(X,Z)Y ]. (5.1)

A p-Kenmotsu manifold is said to be �-concircularly flat with respect to the quarter-symmetric

metric connection if

W̄ (�X,�Y,�Z,�W ) = 0, (5.2)

where X,Y, Z,W 2 �(M).

Taking inner-product of (5.1) with respect to U and replacing X by �X, Y by �Y , Z by �Z and

U by �U , we get

R̄(�X,�Y,�Z,�W ) =
r̄

n(n� 1)
[g(�Y,�Z)g(�X,�W )� g(�X,�Z)g(�Y,�W )].

In view of (3.1) and (3.6), (5.3) takes the form

R(�X,�Y,�Z,�W ) = g(�Y,�Z)g(X,�W )� g(�X,�Z)g(Y,�W ) + g(Y,�Z)g(�X,�W )

� g(X,�Z)g(�Y,�W )� g(X,�Z)g(Y,�W ) + g(Y,�Z)g(X,�W ) (5.3)

+
r + 2n(1� 2 )�  2

n(n� 1)

h
g(�Y,�Z)g(�X,�W )� g(�X,�Z)g(�Y,�W )

i
.

Let {e1, e2, . . . , e2n, e2n+1 = ⇠} be a local orthonormal �-basis of vector fields in M , so that

{�e1,�e2, . . . ,�e2n, ⇠} is also a local orthonormal basis in M . Putting X = W = ei in the last

equation and summing over i, we get

S(Y, Z) =
(r + 2n(1� 2 )�  2)(2n� 1) + n(n� 1) 

n(n� 1)
g(Y, Z)

� (r + 2n(1� 2 )�  2)(2n� 1) + n(n� 1)(n� 1 +  )

n(n� 1)
⌘(Y )⌘(Z) (5.4)

� (2� 2n�  )g(�Y, Z).

Thus we state the following theorem:

Theorem 5.1. A �-concircularly flat p-Kenmotsu manifold with respect to the quarter-symmetric

metric connection is a generalized ⌘-Einstein manifold with the scalar curvature r given by (5.4).
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6 p-Kenmotsu manifold satisfying P̄ · S̄ = 0 with respect to

quarter-symmetric metric connection.

Analogous to (1.3), the Weyl projective curvature P̄ with respect to quarter-symmetric metric

connection is given by

P̄ (X,Y )Z = R̄(X,Y )Z � 1

n� 1
[S̄(Y, Z)X � S̄(X,Z)Y ].

Using (3.1) and (3.5), this equation implies

P̄ (X,Y )Z = R(X,Y )Z + g(X,Z)�Y � g(Y, Z)�X + g(�X,Z)Y

� g(�Y, Z)X + g(�X,Z)�Y � g(�Y, Z)�X � 1

n� 1

h
S(Y, Z)X

+ (1� 2n�  )g(�Y, Z)X + (1�  )g(Y, Z)X � ⌘(Y )⌘(Z)X (6.1)

� S(X,Z)Y � (1� 2n�  )g(�X,Z)Y � (1�  )g(X,Z)Y + ⌘(X)⌘(Z)Y
i
.

From the equation (6.1), we have the following properties of the Weyl projective curvature P̄ .

P̄ (⇠, Y )Z = ⌘(Y )Z � g(Y, Z)⇠ + ⌘(Z)�Y � g(�Y, Z)⇠ � 1

n� 1

h
S(Y, Z)⇠

+ (1� 2n�  )g(�Y, Z)⇠ + (1�  )g(Y, Z)⇠ � ⌘(Y )⌘(Z)⇠ � S(⇠, Z)Y (6.2)

� (1�  )⌘(Z)Y + ⌘(Z)Y
i
.

and

P̄ (⇠, Y )⇠ = Y � ⌘(Y )⇠ + �Y � 1

n� 1

h
(1�  � n)⌘(Y )⇠ + ( + n� 1)Y

i
. (6.3)

Now, we consider a p-Kenmotsu manifold satisfying the curvature condition

P̄ (X,Y ) · S̄ = 0,

which is equivalent to

S̄(P̄ (X,Y )U, V ) + S̄(U, P̄ (X,Y )V ) = 0.

The last equation implies

S̄(P̄ (⇠, Y )⇠, V ) + S̄(⇠, P̄ (⇠, Y )V ) = 0. (6.4)

Using equation (6.2) and (6.3) in (6.4), we once again get the equation (4.4). Therefore we have

the following theorem:
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Theorem 6.1. For a (2n + 1)-dimensional p-Kenmotsu manifold with respect to the quarter-

symmetric metric connection satisfying the condition P̄ · S̄ = 0, the Ricci tensor S satisfies

S(X,Y ) + S(�X,Y ) = ( + n� 1)g(�X,Y ) + ( + n� 1)g(X,Y ) + (2� 2n�  )⌘(X)⌘(Y ).

7 �-Weyl projective flat p-Kenmotsu manifolds with respect

to the quarter-symmetric metric connection.

A p-Kenmotsu manifold is said to be �-Weyl projective flat with respect to the quarter-symmetric

metric connection if

P̄ (�X,�Y,�Z,�U) = 0, (7.1)

where X,Y, Z, U 2 �(M). Taking inner-product of (6.1) with respect to U and replacing X by

�X, Y by �Y , Z by �Z and U by �U , we get

P̄ (�X,�Y,�Z,�U) = R̄(�X,�Y,�Z,�U)� 1

n� 1

h
S(�Y,�Z)g(�X,�U)

+ (1� 2n�  )g(Y,�Z)g(�X,�U) + (1�  )g(�X,�Z)

� S(�X,�Z)g(�Y,�U)� (1� 2n�  )g(X,�Z)g(�Y,�U) (7.2)

+ g(�X,�U)� (1�  )g(�X,�Z)g(�Y,�U)
i
.

Using (3.1), (7.1) in (7.2), we obtain

R(�X,�Y,�Z,�W ) = �g(�X,�Z)g(Y,�W ) + g(�Y,�Z)g(X,�W )� g(X,�Z)g(�Y,�W )

+ g(Y,�Z)g(�X,�W )� g(X,�Z)g(Y,�W ) + g(Y,�Z)g(X,�W )

+
1

n� 1

h
S(�Y,�Z)g(�X,�U) + (1� 2n�  )g(Y,�Z)g(�X,�U)

+ (1�  )g(�X,�Z)g(�X,�U)� S(�X,�Z)g(�Y,�U)

� (1� 2n�  )g(X,�Z)g(�Y,�U)� (1�  )g(�X,�Z)g(�Y,�U)
i
.

Let {e1, e2, . . . , e2n, ⇠} be a local orthonormal �-basis of vector fields in M , putting X = W = ei

in the last equation and summing over i, we get

S(Y, Z) =
(2n�  n� 1)

2(1� n)
g(Y, Z)� (n2 � 3n+ n + 1)

2(n� 1)
⌘(Y )⌘(Z) +

(2n2 + 3n+ 2 � 3)

2(n� 1)
g(�Y, Z).

Thus we state the following theorem:

Theorem 7.1. If a p-Kenmotsu manifold is �-Weyl projective flat with respect to the quarter-

symmetric metric connection, it is a generalized ⌘-Einstein manifold.
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8 Example

Example 8.1. Consider the 5-dimensional manifold M = {(u, v, x, y, z) 2 R5} with standard

coordinates (u, v, x, y, z) in R5
. Then the following vector fields

e1 = z
@

@u
, e2 = z

@

@v
, e3 = z

@

@x
, e4 = z

@

@y
, e5 = � @

@z

are linearly independent at each point of M . Suppose g be the Riemannian metric defined by,

g(ei, ej) = �ij =

8
><

>:

1 if i = j

0 if i 6= j; i, j = 1, 2, 3, 4, 5.

Let � be the tensor field of type (1, 1) defined by

�(e1) = e2, �(e2) = e1, �(e3) = e4, �(e4) = e3, �(e5) = 0,

and ⌘ be the 1-form defined by ⌘(X) = g(X, e5). Using the linearity of � and g, we have

⌘(e5) = 1, �2X = X � ⌘(X)e5, g(�X,�Y ) = g(X,Y )� ⌘(X)⌘(Y ),

for any vector fields X,Y 2 �(M). If we take e5 = ⇠, the structure (�, ⇠, ⌘, g) is an almost

para-contact Riemannian structure on M . Then we have,

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = 0, [e1, e5] = e1, [e2, e3] = 0,

[e2, e4] = 0, [e2, e5] = e2, [e3, e4] = 0, [e3, e5] = e3, [e4, e5] = e4.

Using Koszul’s formula, we obtain the Levi-Civita connection r of the metric tensor g as follows:

re1e1 = �e5, re1e2 = 0, re1e3 = 0, re1e4 = 0, re1e5 = e1,

re2e1 = 0, re2e2 = �e5, re2e3 = 0, re2e4 = 0, re2e5 = e2,

re3e1 = 0, re3e2 = 0, re3e3 = �e5, re3e4 = 0, re3e5 = e3,

re4e1 = 0, re4e2 = 0, re4e3 = 0, re4e4 = �e5, re4e5 = e4,

re5e1 = 0, re5e2 = 0, re5e3 = 0, re5e4 = 0, re5e5 = 0.

Above relations show that equations (2.4)-(2.6) are satisfied. Therefore the manifold is a p-

Kenmotsu manifold with the structure (�, ⇠, ⌘, g).
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Using (2.14), we get the quarter symmetric metric connection

r̄e1e1 = �e5, r̄e1e2 = �e5, r̄e1e3 = 0, r̄e1e4 = 0, r̄e1e5 = e1 + e2,

r̄e2e1 = �e5, r̄e2e2 = �e5, r̄e2e3 = 0, r̄e2e4 = 0, r̄e2e5 = e1 + e2,

r̄e3e1 = 0, r̄e3e2 = 0, r̄e3e3 = �e5, r̄e3e4 = �e5, r̄e3e5 = e3 + e4,

r̄e4e1 = 0, r̄e4e2 = 0, r̄e4e3 = �e5, r̄e4e4 = �e5, r̄e4e5 = e3 + e4,

r̄e5e1 = 0, r̄e5e2 = 0, r̄e5e3 = 0, r̄e5e4 = 0, r̄e5e5 = 0.

Now we obtain non-zero components of their curvature tensors:

R(e1, e2)e1 = e2, R(e1, e3)e1 = e3, R(e1, e4)e1 = e4, R(e1, e5)e1 = e5,

R(e2, e1)e2 = e1, R(e2, e3)e2 = e3, R(e2, e4)e2 = e4, R(e2, e5)e2 = e5,

R(e3, e1)e3 = e1, R(e3, e2)e3 = e2, R(e3, e4)e3 = e4, R(e3, e5)e3 = e5,

R(e4, e1)e4 = e2, R(e4, e2)e4 = e2, R(e4, e3)e4 = e3, R(e4, e5)e4 = e5.

and

R̄(e1, e3)e1 = e3 + e4, R̄(e1, e4)e1 = e3 + e4, R̄(e1, e5)e1 = e5,

R̄(e2, e3)e2 = e3 + e4, R̄(e2, e4)e2 = e3 + e4, R̄(e2, e5)e2 = e5,

R̄(e3, e1)e3 = e1 + e2, R̄(e3, e2)e3 = e1 + e2, R̄(e3, e5)e3 = e5,

R̄(e4, e1)e2 = e1 + e2, R̄(e4, e2)e4 = e1 + e2, R̄(e4, e5)e4 = e5,

R̄(e5, e1)e5 = e1 + e2, R̄(e5, e2)e5 = e1 + e2, R̄(e5, e3)e5 = e3 + e4,

R̄(e5, e4)e5 = e3 + e4.

From the above results, it is easy to find the following non-zero components of Ricci tensors:

S(e1, e1) = S(e2, e2) = S(e3, e3) = S(e4, e4) = S(e5, e5) = �4,

and

S̄(e1, e1) = S̄(e1, e2) = S̄(e2, e2) = S̄(e3, e3) = S̄(e3, e4) = �3, S̄(e4, e4) = �3, S̄(e5, e5) = �4.

Therefore, we get r = �20 and r̄ = �16. Hence the statement of Theorem 3.1 is verified. Also by

the relations mentioned above, the results in sections 5 and 6 are easily verified.
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ABSTRACT

The present article deals with the effect of convexity in the

study of the well-known Whittaker iterative method, because

an iterative method converges to a unique solution t⇤ of the

nonlinear equation  (t) = 0 faster when the function’s con-

vexity is smaller. Indeed, fractional iterative methods are

a simple way to learn more about the dynamic properties

of iterative methods, i.e., for an initial guess, the sequence

generated by the iterative method converges to a fixed point

or diverges. Often, for a complex root search of nonlinear

equations, the selective real initial guess fails to converge,

which can be overcome by the fractional iterative methods.

So, we have studied a Caputo fractional double convex accel-

eration Whittaker’s method (CFDCAWM) of order at least

(1 + 2⇣) and its global convergence in broad ways. Also,

the faster convergent CFDCAWM method provides better

results than the existing Caputo fractional Newton method

(CFNM), which has (1+ ⇣) order of convergence. Moreover,

we have applied both fractional methods to solve the non-

linear equations that arise from different real-life problems.
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RESUMEN

El presente artículo trata con el efecto de la convexidad en

el estudio del bien conocido método iterativo de Whittaker,

puesto que un método iterativo converge a una única solu-

ción t⇤ de una ecuación no-lineal  (t) = 0 más rápidamente

cuando la convexidad de la función es más pequeña. De

hecho, métodos iterativos fraccionarios son una manera sim-

ple de aprender más sobre las propiedades dinámicas de los

métodos iterativos, i.e., para una suposición inicial, la suce-

sión generada por el método iterativo converge a un punto

fijo o diverge. A menudo, para búsquedas de raíces complejas

de ecuaciones no-lineales, la suposición inicial real elegida no

converge, lo que se puede superar usando métodos iterativos

fraccionarios. Así, hemos estudiado un método de Whittaker

con aceleración convexa doble Caputo fraccionario (CFD-

CAWM) de orden al menos (1+2⇣) y su convergencia global

de manera amplia. También el método convergente CFD-

CAWM más rápido entrega mejores resultados que el método

de Newton Caputo fraccionario (CFNM) existente, que tiene

orden de convergencia (1 + ⇣). Más aún, hemos aplicado

ambos métodos fraccionarios para resolver ecuaciones no-

lineales que aparecen en diferentes problemas de la vida real.

Keywords and Phrases: Fractional derivative, efficiency index, nonlinear equations, Newton’s method, Whit-

taker’s method, convergence plane, basin of attraction.

2020 AMS Mathematics Subject Classification: 65H105, 26A33.
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1 Introduction

In 1695, two famous mathematicians changed the concept of calculus when they came up with the

fractional derivative. Fortunately, L’Hospital had raised a question in a letter to Leibniz, and in

the letter, both of them discussed their ideas about the possibilities of semi-derivative function.

Since then, there have been vast changes in the theory of fractional calculus and its real-world

applications. Thus, fractional calculus builds useful tools in many real-world applications such as

science, engineering, economics, medicine, and other fields (see, [1, 3, 10,18,19,22,29]).

Generally, we know that the classical work in mathematics is to solve the nonlinear equation

 (t) = 0, (1.1)

where  is a real-valued function of a real variable. This task becomes more difficult when the

degree of polynomials is greater than or equal to five, or it is a transcendental equation. In general,

as there are no analytical methods to handle the above equation, the demand for iterative methods

has increased day by day in the last few decades. The most suitable method to solve nonlinear

equations, as we know, is quadratic convergent Newton’s method (NM):

8
<

:
t0 given,

tn+1 = tn �
 (tn)
 0(tn)

, n � 0.
(1.2)

Indeed, using iterative methods to solve (1.1) is more suitable and reliable, and it is also true that

by using these methods, we can obtain many significant numerical results and related information

about nonlinear equations. The effect of fractional derivative on NM was first deduced by Brambila

et al. [30], who observed that the fractional Newton method (FNM) keeps the ability to search

the complex roots of a polynomial even if we choose a real suitable initial guess. By deepening the

fractional order, the complex roots of the polynomial are hidden. The nature of fractional iterative

methods is that they can locate the positions of different polynomial roots in a different order of

derivative. In the year 2019, Akgül et al. [2] , studied the FNM

tn+1 = tn �

✓
�(⇣ + 1)

 (tn)

CD⇣a (tn)

◆
,

and proved its order of convergence as 2⇣. Later, Candelario et al. [7] modified the FNM to a

better form

tn+1 = tn �

✓
�(⇣ + 1)

 (tn)

CD⇣a (tn)

◆ 1
⇣

with order of convergence (1+⇣). They tested the FNM on some numerical examples and provided

good results with its dynamics, too.
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If we see some research papers (for example, [11,14,32]), we can see how the influence of convexity

on a real function enhanced the order of convergence. Moreover, the smaller convexity of a nonlinear

equation causes the faster convergence of (1.2) to a unique solution t⇤ of a nonlinear equation. The

classical double convex acceleration of the Whittaker method [32] employing convexity is given

below:

tn+1 = tn �
1

4

✓
2� L (tn) +

4 + 2L (tn)

2� L (tn)(2� L (tn))

◆
 (tn)

 0(tn)
(1.3)

where L (tn) =  (t) 00(t)
( 0(t))2 . The cubic order convergence method developed by Whittaker is a

simplified version of the method developed by Newton. It is also known as the parallel-chord

method, which comes from its geometric interpretation of functions. It is known [12], that if we

have an iterative process tn+1 = F (tn) with tn+1 = tn�
 (tn)
 0(tn)

H(L (tn)) and H(0) = 1, H 0(0) = 1
2

and |H 00(0)| < +1, it has a third order convergence.

In this paper, we have introduced a new convex acceleration of the Whittaker method using

the concept of the Caputo fractional derivative, that is, the Caputo fractional double convex

acceleration of the Whittaker method (CFDCAWM). Hence, our main aim in the present article is

to investigate further the global convergence analysis, stability, and reliability of CFDCAWM. A

detailed comparison of the Caputo fractional Newton method (CFNM) and the CFDCAWM with

some good numerical examples is provided, with the order of convergence of CFDCAWM being at

least (1 + 2⇣).

The remaining part of the article is assembled in the following manner: Section 2 includes some

primary results and information regarding our method. In Section 3, we provide the order of

convergence of the proposed method, and its subsection contains details of the efficiency of our

method. Section 4 is devoted to the numerical results of the proposed method with real-life

applications and their corresponding convergence planes. Finally, the conclusion of the paper ends

with Section 5.

2 Basic definitions and results

For centuries, the concept of a non-integer order type derivative has been crucial in many research

areas. Also, there are so many definitions and formulas in fractional calculus. For our present

work, we have just discussed some of them.

Definition 2.1 (Gamma function [20]). The gamma function is a generalized idea of the factorial

function, and is defined as follows:

�(t) =

8
><

>:

(t� 1)!, t 2 N
Z +1

0
st�1e�sds, whenever t > 0.
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Definition 2.2 (Riemann-Liouville fractional derivative [16]). Suppose the function  : R ! R
and  2 L

1([a, t]) (�1 < a < t < +1) be integrable with ⇣ � 0 and k = [⇣] + 1. Then the

Riemann-Liouville fractional derivative (RLFD) of  (t) at ⇣th order is defined as below:

(D⇣

a+) (t) =

8
>><

>>:

1

�(k � ⇣)

dk

dtk

Z
t

a

 (x)

(t� x)⇣�k+1
dx, ⇣ /2 N

dk�1 (t)

dtk�1
, ⇣ = k � 1 2 N [ {0}.

And the reverse process of RLFD is Caputo fractional derivative, which is shown below.

Definition 2.3 (Caputo fractional derivative [8]). Consider the function  : R ! R,  2

C+1([a, t]) (�1 < a < t < +1) with ⇣ � 0 and k = [⇣] + 1, where [⇣] is the integer part of

⇣, then the Caputo fractional derivative (CFD) of  (t) at ⇣th order can be given as:

(CD⇣a) (t) =

8
>><

>>:

1

�(k � ⇣)

Z
t

a

dk (x)

dxk

dx

(t� x)⇣�k+1
, ⇣ /2 N

dk�1 (t)

dtk�1
, ⇣ = k � 1 2 N [ {0}.

The main difference between RLFD and CFD is, the fractional derivative of a constant function is

non-zero in RLFD. On the other hand, Caputo fractional derivative of a constant function is zero.

Hence, the nature of the Caputo derivative is, it coincides with the classical derivative. So, our

experiments use the CFD with the value ⇣ 2 (0, 1].

Theorem 2.4 ([24, Proposition 26]). Let  (t) = (t � a)�, ⇣ � 0, k = [⇣] + 1, and � 2 R. Then

the RLFD of  (t) of ⇣th order is:

D
⇣

a+(t� a)� =
�(�+ 1)

�(�+ 1� ⇣)
(t� a)��⇣ .

The next theorem discusses the relation between RLFD and CFD of a function.

Theorem 2.5 ([24, Proposition 31]). Suppose  (t) be a function whose CFD and RLFD exist of

order ⇣ /2 N such that ⇣ � 0, k = 1 + [⇣]. Then the following equality hold

C
D⇣a (t) = D

⇣

a+ (t)�
k+1X

j=0

 (j)(a)

�(j + 1� ⇣)
(t� a)j�⇣ , t > a.

With preceding results, we can say C
D⇣a(t� a)k = D

⇣

a
(t� a)k, k = 1, 2, . . .

Proof. A function  (t) with a residual term near point ‘a’ has the following Taylor series:

 (t) =
↵�1X

j=0

tj

�(j + 1)
 (j)(a) +R↵�1,
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where

R↵�1 =
1

�(↵)

Z
t

0
 (↵)(✓)(t� ✓)↵�1d✓ = I↵ (↵)(t).

Then, applying the linearity property of RLFD, we have

D
⇣

a+ (t) = D
⇣

a+

✓ ↵�1X

j=0

 j

�(j + 1)
 (j)(a) +R↵�1

◆
=
↵�1X

j=0

D
⇣

a+t
j

�(j + 1)
 (j)(a) +D

⇣

a+R↵�1

=
↵�1X

j=0

�(j + 1)tj�⇣

�(j � ⇣ + 1)�(j + 1)
 (j)(a) +D

⇣

a+I
↵ (↵)(t)

=
↵�1X

j=0

tj�⇣

�(j � ⇣ + 1)
 (j)(a) + Ij�⇣ (↵)(t) =

↵�1X

j=0

tj�⇣

�(j � ⇣ + 1)
 (j)(a) + C

D⇣a (t).

The following theorem represents the fractional-order Taylor series, the extended version of the

classical Taylor’s theorem.

Theorem 2.6 ([23]). Let us assume that mth order Caputo derivative C
Dm⇣

a p(t)
2 C([a, b]), for

m = 1, 2, . . . , k + 1, where 0 < ⇣  1. Then, the generalized Taylor’s formula is given as below:

p(t) =
kX

j=0

C
Dj⇣

a p(a) (t� a))j⇣

�(j⇣ + 1)
+ C

D(k+1)⇣
p(⌘) (t� a)(k+1)⇣

�((k + 1)⇣ + 1)
,

for a  ⌘  t, 8 t 2 (a, b], where C
Dk⇣

a = C
D⇣a · · · CD⇣a (k-times). Thus, we can conclude that the

Taylor series of  (t) around t⇤, by using Caputo fractional derivative is given as follows:

 (t) =
C
D⇣

t⇤ (t
⇤)

� (⇣ + 1)

⇥
(t� t⇤)⇣ +B2(t� t⇤)2⇣ +B3(t� t⇤)3⇣

⇤
+O((t� t⇤)3⇣),

where

Bj =
� (⇣ + 1)

� (j⇣ + 1)

C
Dj⇣

t⇤ (t
⇤)

C
D⇣

t⇤ (t
⇤)
, for j � 2.

3 Convergence analysis of CFDCAWM

In this paper section, we have generalized the double convex acceleration of Whittaker’s method

(DCAWM) to CFDCAWM using the Caputo fractional derivative. The following theorem shows

the convergence of the proposed method CFDCAWM with its order of convergence. Based on the

definition of the Caputo derivative, CFDCAWM can be derived as in the following theorem:

Theorem 3.1. Suppose  : D ✓ R ! R be a continuous function, and for any ⇣ 2 (0, 1] in the

domain D, it has m-order fractional derivatives, m 2 N. If t⇤ is a solution of the equation  (t) = 0
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and C
D⇣

t⇤ (t) is non-zero continuous function at t⇤, then the method

tn+1 = tn �

✓
�(⇣ + 1)

 
2� 2T C

L
⇣
 tn +

4 + 4T C
L
⇣
 tn

2� C
L
⇣
 tn(4T � 2T C

L
⇣
 tn)

!
 (tn)

4CD⇣a (tn)

◆ 1
⇣

having at least (1 + 2⇣) order of convergence only if T = �(2⇣+1)��2(⇣+1)
�(2⇣+1) . The desired error

equation is mentioned as below:

en+1 =
1
⇣


� �(2⇣ + 1)

✓
1�

�(2⇣ + 1)
�4(⇣ + 1)

◆
B2

2

+
T �(2⇣ + 1)
�3(⇣ + 1)

✓
2�

3�(2⇣ + 1)
�2(⇣ + 1)

�
(3T �

1
2 )�(2⇣ + 1)

�2(⇣ + 1)

◆
B2

2

+
1

�(⇣ + 1)

✓
1 +

T �(3⇣ + 1)
�3(⇣ + 1)

�
�(3⇣ + 1)

�(⇣ + 1)�(2⇣ + 1)

◆
B3

�
e1+2⇣
n +O(e1+3⇣

n ).

Proof. With the help of Theorems 2.4 and 2.6, the fractional Taylor’s series expansion of the

nonlinear function  (tn) using CFD around t⇤ is

 (tn) =
C
D⇣

t⇤ (t
⇤)

� (⇣ + 1)

⇥
e⇣
n
+B2e

2⇣
n

+B3e
3⇣
n

⇤
+O(e4⇣

n
). (3.1)

Also, the first and second Caputo derivatives can be given as:

C
D⇣

t⇤ (tn) =
C
D⇣

t⇤ (t
⇤))

� (⇣ + 1)


� (⇣ + 1) +

� (2⇣ + 1)

� (⇣ + 1)
B2e

⇣

n
+
� (3⇣ + 1)

� (2⇣ + 1)
B3e

2⇣
n

�
+O(e3⇣

n
), (3.2)

and

C
D2⇣

t⇤ (tn) =
C
D⇣

t⇤ (t
⇤)

�(⇣ + 1)


�(2⇣ + 1)B2 +

�(3⇣ + 1)

�(⇣ + 1)
B3e

⇣

n

�
+O(e2⇣

n
). (3.3)

Squaring the equation (3.2), we have

(CD⇣
t⇤ (tn))2 =

 
C
D⇣

t⇤ (t⇤)

�(⇣ + 1)

!2 
�2(⇣ + 1) + 2�(2⇣ + 1)B2e

⇣
n (3.4)

+

✓
�2(2⇣ + 1)
�2(⇣ + 1)

B2
2 +

2�(⇣ + 1)�(3⇣ + 1)
�(2⇣ + 1)

B3

◆
e2⇣n +

2�(2⇣ + 1)�(3⇣ + 1)
�(⇣ + 1)�(2⇣ + 1)

B2B3e
3⇣
n

�
+O(e4⇣n ).

Also from the equations (3.1) and (3.2), we get

 (tn)

C
D⇣

t⇤ (tn)
=

1
�(⇣ + 1)


e⇣n +

�2(⇣ + 1)� �(2⇣ + 1)
�2(⇣ + 1)

B2e
2⇣
n

+

✓
�2(2⇣ + 1)
�4(⇣ + 1)

�
�(2⇣ + 1)
�2(⇣ + 1)

◆
B2

2 +

✓
�(⇣ + 1)�(2⇣ + 1)� �(3⇣ + 1)

�(⇣ + 1)�(2⇣ + 1)

◆
B3

�
e3⇣n

�
+O(e4⇣n ).

Combining (3.1) and (3.3), we obtain

 (tn)C
D2⇣

t⇤ (tn) =

 
C
D⇣

t⇤ (t⇤)

�(⇣ + 1)

!2 
�(2⇣ + 1)B2en

⇣ +

✓
B2

2�(2⇣ + 1) +
�(3⇣ + 1)
�(⇣ + 1)

B3

◆
e2⇣n

�
+O(e3⇣n ).
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Using (3.4) in the above equation, the Taylor expansion of CL
⇣
  (tn) around t⇤ can be given as:

C
L⇣ tn =

�(2⇣ + 1)
�2(⇣ + 1)

B2e
⇣
n +

1
�2(⇣ + 1)


B2

2�(2⇣ + 1) +
�(3⇣ + 1)
�(⇣ + 1)

B3 � 2
1

�2(⇣ + 1)
�2(2⇣ + 1)B2

2

�
e2⇣n +O(e3⇣n ).

Squaring the above term, we get

⇣
C
L
⇣
 tn

⌘2
=
�2(2⇣ + 1)

�4(⇣ + 1)
B2

2e
2⇣
n

+O(e3⇣
n
).

Thus

C
L
⇣
 tn

 (tn)

C
D⇣

t⇤ (tn)
=

1

�3(⇣ + 1)


�(2⇣ + 1)B2e

2⇣
n

+

⇢
2

✓
�(2⇣ + 1)� �2(2⇣ + 1)�

�2(2⇣ + 1)

2�2(⇣ + 1)

◆
B2

2

+
�(3⇣ + 1)

�(⇣ + 1)
B3

�
e3⇣
n

�
+O(e4⇣

n
).

Now ⇣
C
L
⇣
 tn

⌘2  (tn)

C
D⇣

t⇤ (tn)
=
�2(2⇣ + 1)

�5(⇣ + 1)
B2

2e
3⇣
n

+O(e4⇣
n
).

By using geometric series expansion, we obtain

4 + 4T C
L
⇣
 tn

2� C
L
⇣
 tn(4T � 2T C

L
⇣
 tn)

= (2 + 2T C
L
⇣
 tn)


1�

✓
2� T C

L
⇣
 tn � T

⇣
C
L
⇣
 tn

⌘2◆��1

= (2 + 2T C
L
⇣
 tn)

⇥
1 + E + E2 + · · ·

⇤
,

where, E =


2� T C

L
⇣
 tn � T

⇣
C
L
⇣
 tn

⌘2�
.

Finally, we reach to the destination as the error equation is:

en+1 =
1

⇣


� �(2⇣ + 1)

✓
1�

�(2⇣ + 1)

�4(⇣ + 1)

◆
B2

2

+
T �(2⇣ + 1)

�3(⇣ + 1)

✓
2�

3�(2⇣ + 1)

�2(⇣ + 1)
�

(3T �
1
2 )�(2⇣ + 1)

�2(⇣ + 1)

◆
B2

2

+
1

�(⇣ + 1)

✓
1 +

T �(3⇣ + 1)

�3(⇣ + 1)
�

�(3⇣ + 1)

�(⇣ + 1)�(2⇣ + 1)

◆
B3

�
e1+2⇣
n

+O(e1+3⇣
n

).

This ends the proof.

3.1 Efficiency index

When studying iterative processes, it is important to consider both the speed of convergence

(order of convergence) and the computational cost (number of functions and derivative evaluations)

required to compute tn+1 from tn. The efficiency index of the iterative method explained by Traub

[15] is E⇤ = z1/k, where z plays the role of order of convergence of the method and k denotes total
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functional cost evaluations per each iteration. It can be seen from Figure 1 that both the fractional

iterative method’s efficiency index increases with increasing the order of derivative ⇣. Moreover,

the maximum value E
⇤ found in CFNM and CFDCAWM are 1.414 and 1.442, respectively. So, as

illustrated in the figure, the efficiency index curve of CFDCAWM always lies above the CFNM.

Hence, the (1+2⇣)th order method CFDCAWM provides better performance and is more efficient

than the (1 + ⇣)th order method CFNM.

In the next section, we have taken some nonlinear equations for the convergence test of the proposed

method and provided more information about the stability and faster convergence of CFDCAWM

with some good numerical results and convergence plane.

CFNM
CFDCAWM

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.1
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1.3

1.4

ζ

E
ff
ic
ie
nc
y
in
de
x

Figure 1: Efficiency indices of CFNM and CFDCAWM.

4 CFDCAWM with their numerical results and convergence

plane.

To obtain the numerical results of iterative methods, we use Matlab R2018a with the arithmetic of

the double-precision procedure to solve different kinds of nonlinear equations. The stopping criteria

of the fractional iterative methods are frequently terminated when either |tn+1 � tn| < 10�6 or

| (tn)| < 10�6, with a maximum of 300 iterations. Using the program made by Paul Godfrey based

on [20], we calculate the Gamma function, whose accuracy along the real axis is 15 significant digits

and in the complex plane is 13 significant digits. Moreover, the graphical part of this paper, that

is, a convergence plane of iterative methods, has been made by using modified algorithms based on

[21] in Mathematica 11.1 and a laptop Lenovo Ideapad flex 5, 1.19 GHz Intel(R) Core™ i5-1035G1

CPU. Each convergence plane consists of a mesh of 400⇥400 real and complex points. Different

colors (red, blue, green, yellow. . . ) on convergence planes mean different roots, whereas black

indicates the divergence of the method.
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Example 4.1 ([13]). A state equation links the gas constant to a gas’s pressure, volume, and

temperature. In the Beattie-Bridgman equation, experimental constants are employed to allow for

the decrease in the effective number of molecules caused by various types of molecular aggregation.

In the first test function, we used the Beattie-Bridgman equation, which is as follows:

c =
RT

V
+

�

V 2
+

�

V 3
+

�

V 4
� P = 0 (4.1)

P is atmospheric pressure, R is gas constant, T is absolute temperature in K, and volume V in

L/mol. For T = 273.15K, � = �1.16584, � = 0.0542254, and � = �0.0001251. After inserting

above values in (4.1), the equation convert to following quartic degree polynomial equation for a

pressure of 100 atm:

 1(t) = t4 � 0.22411958 t3 + 0.011658361 t2 � 5.422539⇥ 10�4 t� 1.251⇥ 10�6

with the roots t1 = �0.0022, t2 = 0.1755, t3 = 0.0254 + 0.0510i, and t4 = 0.0254� 0.0510i.

Table 1: Results of CFNM for  1(t) with initial guess t0 = 1.5

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.1 0.178610412640083 2.451188583441066e-06 1.450813559042032e-05 300
0.2 0.177091772811241 1.824477708772809e-06 7.157942621320157e-06 300
0.3 0.176208764373106 1.144633855865163e-06 3.056113886250757e-06 300
0.4 0.175822192040086 9.973031851462366e-07 1.299498966609209e-06 218
0.5 0.175754695139549 3.307545208941498e-06 9.952113269586370e-07 82
0.6 0.175744973843258 1.206591802094259e-05 9.514452435446740e-07 38
0.7 0.175750319786336 3.910969726900193e-05 9.755112797258072e-07 23
0.8 0.175722751968572 9.416356483973876e-05 8.514564575890538e-07 17
0.9 0.175637670869286 1.558852358621021e-04 4.693474071063554e-07 14
1 0.175715573286650 0.003163967768901 8.191721350991289e-07 11

Table 2: Results of CFDCAWM for  1(t) with initial guess t0 = 1.5

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.1 0.178561953323709 2.368122878099177e-06 1.426773613993988e-05 300
0.2 0.177049664573626 1.719411282186112e-06 6.959494002208448e-06 300
0.3 0.176189681978262 1.074871852274617e-06 2.968845997087551e-06 300
0.4 0.175820273163475 9.926277080019030e-07 1.290838413491345e-06 210
0.5 0.175752994062801 3.283711977664083e-06 9.875518627812638e-07 76
0.6 0.175749495618264 1.261041176645050e-05 9.718007971009330e-07 32
0.7 0.175740309046350 3.669505604023127e-05 9.304492295014291e-07 18
0.8 0.175714407451239 8.935095908427226e-05 8.139298489053516e-07 12
0.9 0.175645204608465 1.737789640035292e-04 5.031363206827803e-07 09
1 0.175532814939696 2.402266629901728e-04 6.317771224496375e-12 07
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As we can see from Tables 1 and 2, for a real initial guess, the CFDCAWM performs faster with

a lower error rate than the CFNM. The minimum number of iterations that reach the root is

when ⇣ is close to 1. Furthermore, we have presented the convergence plane with its percentage of

convergence for global convergence analysis. The convergence plane is painted with different colors,

like t1 (red), t2 (green), t3 (blue), and t4 (yellow), where the black color represents the divergence.

Using the CFNM and CFDCAWM methods, we obtain the percentages of convergence as 86.62%

and 86.89%, respectively.
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(b) CFDCAWM, 86.89% convergence

Figure 2: Convergence planes of  1(t) for real initial guess t0 = a, a 2 R.

Example 4.2 ([9]). Thermodynamics is an important tool for mechanical engineers and other types

of engineers. The zero-pressure specific heat of dry air, Cp kJ/(kg K), is related to temperature

(K) by the following polynomial:

 2(t) = 1.9520⇥ 10�14t4 � 9.5838⇥ 10�11t3 + 9.7215⇥ 10�8t2 + 1.671⇥ 10�4t+ 0.99403

having the roots

t1 = �1001.9347479801513� 1506.1391327465992i,

t2 = �1001.9347479801513 + 1506.1391327465992i,

t3 = 3456.80155125884� 1900.6392904677366i,

t4 = 3456.80155125884 + 1900.6392904677366i.
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Table 3: Results of CFNMM for  2(t) with initial guess t0 = 1200

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.90 -1.0019351270e+03- 1.506139649e+03i 1.68009e-04 9.46029e-07 127
0.91 -1.001934949337910e+03+1.506139772e+03i 2.22485e-04 9.89906e-07 105
0.92 -1.001934982e+03+1.506139634e+03i 2.27315e-04 8.17029e-07 101
0.93 -1.001934996e+03+1.506139613e+03i 2.85064e-04 7.98920e-07 95
0.94 -1.001935115e+03+1.506139440e+03i 3.25671e-04 7.07102e-07 52
0.95 -1.001934691e+03-1.5061397413e+03i 5.72666e-04 9.02668e-07 83
0.96 -1.00193460826e+03+1.506139435e+03i 4.09812e-04 4.92409e-07 48
0.97 -1.001934870e+03+1.506139378e+03i 4.965333e-04 4.05183e-07 46
0.98 -1.001934981e+03+1.506139396e+03i 0.0011022 5.20419e-07 85
0.99 -1.001935145e+03+1.506139393e+03i 0.0035052 7.023826e-07 86
1 -2.278375918070995e+03 1.15764e+03 2.7774308 300

Table 4: Results of CFDCAWM for  2(t) with initial guess t0 = 1200

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.90 3.456801942e+03+1.90063953e+03i 1.165819e-04 8.63779e-07 57
0.91 -1.001934857e+03-1.506139637e+03i 1.65497e-04 7.629208e-07 58
0.92 -1.001934909e+03-1.506139589e+03i 1.95917e-04 7.161345e-07 37
0.93 -1.001934830e+03+1.506139574e+03i 2.31665e-04 6.64036e-07 32
0.94 3.456801839e+03+1.900639491e+03i 2.320012e-04 6.55686e-07 28
0.95 3.456801872e+03-1.900639586e+03i 3.96711e-04 8.14106e-07 36
0.96 3.456801709e+03+1.900639507e+03i 3.25045e-04 5.00443e-07 26
0.97 -1.001934720e+03-1.506139406e+03i 4.95736e-04 4.05118e-07 30
0.98 3.456801786e+03+1.9006393777e+03i 7.626349e-04 4.6759e-07 43
0.99 -1.00193501e+03-1.506139695e+03i 0.00469 9.17793e-07 54
1 1.601282223e+05 1.57591e+05 1.24427e+07 300

The CFDCAWM converges quicker than the CFNM, as seen in the Tables 3 and 4. In Figure 3,

the convergence plane of the CFDCAWM (78.08%) provide better stability than CFNM (77.61%).
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(b) CFDCAWM, 78.08% convergence

Figure 3: Convergence planes of  2(t) for real initial guess t0 = a, a 2 R.
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Example 4.3 ([27]). Blood is represented as a “Casson fluid”, a non-Newtonian fluid. A basic

fluid, such as water or blood, will flow through a tube so that the fluid’s central core travels as a

plug with little distortion and a velocity gradient towards the tube’s wall, according to the Casson

fluid model. The following non-linear polynomial equation has been used to explain the plug flow

of Casson fluids, where the change in flow rate is measured by

R = 1�
16

7

p
t+

4

3
t�

1

21
t4

where reduction in flow rate is measure by R. Take R = 0.40 in the above equation we have the

third test function

 3(t) =
1

441
t8 �

8

63
t5 � 0.05714285714t4 +

16

9
t2 � 3.624489796t+ 0.36

which contains the following roots t1 = 3.82239, t2 = 0.104699, t3 = �2.27869 � 1.98748i, t4 =

�2.27869+1.98748i, t5 = �1.23877�3.40852i, t6 = �1.23877+3.40852i, t7 = 1.55392�0.940415i,

and t8 = 1.55392 + 0.94041i.

Table 5: Results of CFNM for  3(t) with initial guess t0 = �0.5� 0.5i

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.1 0.138106293-0.000115792i 1.18425e-04 0.37383 300
0.2 0.138216126-0.000225384i 4.12661e-05 0.10668 300
0.3 0.115361954-0.000027866i 1.80432e-05 0.034481 300
0.4 0.107711638-0.000006849i 7.15017e-06 0.00978 300
0.5 0.105318676-0.000001208i 2.10397e-06 0.00201 300
0.6 0.104830090-0.000000277i 9.962501e-07 4.27483e-04 197
0.7 0.104737418-0.000001542i 9.83237e-07 1.26519e-04 89
0.8 0.104708969-0.000001038i 9.24479e-07 3.37291e-05 41
0.9 0.104700546-0.000000350i 7.36274e-07 6.26827e-06 18
1 0.104698651+0.0i 5.92960e-06 6.23236e-11 05

Table 6: Results of CFDCAWM for  3(t) with initial guess t0 = �0.5� 0.5i

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.1 0.225782730-0.0009883555i 1.14521e-04 0.36795 300
0.2 0.137305522-0.0000924585i 3.93043e-05 0.10417 300
0.3 0.115118894-0.0000195106i 1.722201e-05 1.72220e-05 300
0.4 0.1076588596-0.0000038959i 6.90493e-06 0.00961 300
0.5 0.1053110124-0.0000004292i 2.05602e-06 0.00199 300
0.6 0.1048302280+0.0000000401i 9.98358e-07 4.279307e-04 195
0.7 0.1047374670+0.0000003244i 9.80324e-07 1.26251e-04 88
0.8 0.1047092613+0.0000011816i 9.59435e-07 3.47222e-05 40
0.9 0.1047006008-0.0000001524i 7.48819e-07 6.35958e-06 18
1 0.104698651+0.00000i 0.00103 4.40814e-11 04

The CFDCAWM converges better than the CFNM with complex starting estimate t0 = �0.5� 0.5i
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and provides less error, as illustrated in Tables 6 and 5.
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Figure 4: Convergence planes of  3(t) for complex initial guess t0 = a+ ai, a 2 R.

In the Figure 4 convergence planes of  3(t) are illustrated where the horizontal axis of the graph

contains all the complex initial guesses of the form t0 = a+ ai. The CFDCAWM contains 57.71%

and CFNM contains 57.45% region of convergence. To find all most all root in CFNM, the best

initial guess t0 2 (�2,� 1
2 ) but in case of CFDCAWM the best initial guesses lies in t0 2 (�2,� 1

2 )

and t0 2 (0, 2).

Example 4.4 ([4]). The increasing pH reduction of Earth’s seas due to their absorption of an-

thropogenic carbon dioxide from the atmosphere is known as “ocean acidification”. If alkalinity

and temperature remain constant, a 0.1-unit decrease in ocean pH results in a 30% increase in

hydrogen ion concentration. The concentration of hydrogen ions increases as a result of a series

of chemical reactions that take place when CO2 is absorbed by saltwater. So, the acidity increases

in the seawater and causes carbonate ions to be relatively less abundant. Carbonate ions are vital

components of many different kinds of organisms, including the skeletons of coral and seashells.

Lack of carbonate ions can make developing and maintaining shells and other calcium carbonate

structures of organisms difficult for calcifying species such as oysters, clams, sea urchins, shallow

water corals, deep sea corals, and calcareous plankton.

As CO2 dissolves in saltwater, the concentration of hydrogen ions [H+] rises, which lowers the pH

of the ocean as follows:

CO2(aq) +H2O ⌦ H2CO3 ⌦ HCO�
3 +H+. (4.2)
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(a) Healthy shell (normal pH) (b) Damaged shell (lower pH)

Figure 5: Healthy and damaged pteropod image taken from NOAA website [17].

Bicarbonate ions in turn dissociate into carbonate ions CO2�
3 ,

HCO�
3 ⌦ H+ + CO2�

3 . (4.3)

The chemical processes results in hydrogen ions, which add to the acidification. Also, H2O separates

to form hydrogen ions is given as below

H2O ⌦ H+ +OH�. (4.4)

Furthermore, the seawater’s boron hydroxide dissociates to release hydrogen ions as

B(OH)3 +H2O ⌦ H+ +B(OH)�4 . (4.5)

The partial pressure Pt of the gas phase CO2 is measured in ppm by the National Oceanic and

Atmospheric Administration (NOAA) at the Mauna Loa Observatory in Hawaii [28], and according

to Bacastow and Keeling [5], the equilibrium constants are measured in mol/ltr and the relationship

between liquid and gaseous CO2 is

S0 =
[CO2]

Pt

= 3.347e� 05, (4.6)

being the [CO2] represent as the sum of the dissolved CO2. From the reaction (4.2),

S1 =
[H+][HCO�

3 ]

[CO2]
= 9.747e� 07. (4.7)

From the reaction (4.3)

S2 =
[H+][CO2�

3 ]

[HCO�
3 ]

= 8.501e� 10. (4.8)
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From the reaction (4.4)

Sw =
[H+]

[OH�]
= 6.46e� 15. (4.9)

From the reaction (4.5)

SB =
[H+][B(OH)�4 ]

[B(OH)3]
= 1.881e� 09. (4.10)

Now the alkanity is

A =
X

(conservative cations)�
X

(conservative anions)

= [HCO�
3 ] + 2[CO2�

3 ] + [B(OH)�4 ] + [OH�]� [H+]. (4.11)

We can suppose that the values of A are independent with time as given in the article [4]. The

concentrated CO2 is evaluated from (4.6) as

[CO2] = S0Pt. (4.12)

With the help of equations (4.7) and (4.12), we get

[HCO�
3 ] =

S1[CO2]

H+
=

S0S1Pt

[H+]
. (4.13)

In the same way, we can find

[CO�
3 ] =

S2[HCO�
3 ]

[H+]
=

S0S1S2Pt

[H+]2
. (4.14)

Now to find [B(OH)�4 ] with the help of equations (4.8) and (4.13),

and B = [B(OH)3] + [B(OH)�4 ] in (4.10)

[B(OH)�4 ] =
BSB

SB + [H+]
. (4.15)

Next, substitute the equations (4.9) and (4.12)-(4.15), we get the alkanity A as below:

A =
S0S1Pt

[H+]
+

2S0S1S2Pt

[H+]2
+

BSB

SB + [H+]
+

Sw

[H+]
� [H+].

It reduces to the result of the following fourth-degree polynomial equation.

p([H+]) =
4X

k=0

�k[H
+]k, (4.16)
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where

�0 = 2S0S1S2PtSB , �1 = S0S1SBPt + 2S0S1S2Pt + SWSB ,

�2 = S0S1Pt +BSB + Sw �ASB , �3 = �A� SB , �4 = �1.

The value of A = 2.050 [5, p. 334], B = 0.409 [26, p. 131] and Pt = 420.19 measured by NOAA

on February 2023.

The dynamic study of (4.16) needs the variable change as t = 1
[H+] , t 2 Z, and pH = log10 t.

Hence, we need to find the solutions of new quartic order polynomial

 4(t) =
4X

k=0

�k�4t
k = 4.3839⇥ 10�26t4 + 4.9091⇥ 10�17t3 + 1.0621⇥ 10�8t2 � 2.05t� 1,

which contain the roots

t1 = 1.1970408047866759⇥ 108,

t2 = �0.4878048768159488,

t3 = �6.197530413868866⇥ 108 + 8.095038662704764i⇥ 107,

t4 = �6.197530413868866⇥ 108 � 8.095038662704764i⇥ 107.

Table 7: Results of CFNM for  4(t) with initial guess t0 = �5⇥ 108

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.90 -6.1975304138e+08+8.0950386627e+07i 9.53674e-07 7.87102e-05 208
0.91 -6.1975304138e+08+8.0950386627e+07i 9.68575e-07 5.94664e-05 163
0.92 -6.1975304138e+08+8.095038662706130e+07i 9.83476e-07 4.13854e-05 128
0.93 -6.197530413e+08+8.095038662e+07i 8.79168e-07 2.93874e-05 101
0.94 -6.197530413e+08+8.0950386627e+07i 8.67856e-07 1.72211e-05 80
0.95 -6.1975304138e+08+8.0950386627e+07i 8.39241e-07 1.13882e-05 64
0.96 -6.1975304138e+08+8.0950386627e+07i 4.80548e-07 6.864633e-06 51
0.97 -6.1975304138e+08+8.0950386627e+07i 6.85453e-07 5.50698e-06 41
0.98 -6.197530413868866e+08-8.0950386627e+07i 6.44722e-07 2.32458e-06 31
0.99 -6.1975304138e+08-8.0950386627e+07i 3.653064e-07 1.45543e-06 23
1 -0.487804876815949 4.16475e-05 0.00 37

In Tables 7 and 8, the solutions of  4(t) are shown in different order of derivative and faster

convergence can be observed in CFDCAWM with minimum error.
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Table 8: Results of CFDCAWM for  4(t) with initial guess t0 = �5⇥ 108

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.90 -6.1975304138e+08+8.0950386627e+07i 9.90675e-07 8.01199e-05 207
0.91 -6.1975304138e+08+8.0950386627e+07i 9.61096e-07 5.84519e-05 163
0.92 -6.1975304138e+08+8.0950386627e+07i 9.83476e-07 4.02239e-05 128
0.93 -6.19753e+08+8.0950386627e+07i 9.68575e-07 2.53841e-05 101
0.94 -6.1975304138e+08+8.0950386627e+07i 9.90675e-07 2.10638e-05 80
0.95 -6.1975304138e+08-8.0950386627e+07i 7.83976e-07 1.18761e-05 64
0.96 -6.1975304138e+08-8.0950386627e+07i 8.34465e-07 6.69969e-06 48
0.97 -6.1975304138e+08-8.0950386627e+07i 1.435547e-06 1.249140e-05 36
0.98 -6.197530413868e+08-8.0950386627e+07i 4.29815e-07 2.53319e-06 28
0.99 -6.1975304138e+08+8.0950386627e+07i 2.53319e-07 2.96409e-06 24
1 -0.487804876815949 0.00231 0.00 07

Table 9: The data Pt available from NOAA to calculate the pH of the ocean from 2012-2023 using
Whittaker method.

Year Pt pH Year Pt pH
2012 394.06 8.1013 2018 408.72 8.0881
2013 396.74 8.0988 2019 411.66 8.0855
2014 398.81 8.0969 2020 414.24 8.0833
2015 401.01 8.0950 2021 416.45 8.0813
2016 404.41 8.0919 2022 418.56 8.0560
2017 406.76 8.0898 2023 420.19 8.0781

Figure 6: Relation between Pt and pH

The pH is calculated in the Table 9 for different values of Pt given by NOAA from the year 2012-

2023 (February). The graph 6 says about the relation between pH and Pt, and it can also be noticed

that the pH is inversely proportional to Pt.
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Figure 7: Convergence planes of  4(t) for real initial guess t0 = a, a 2 R.

In Figure 7, the convergence planes of CFNM and CFDCAWM are illustrated. Also, the real root

t1=1.1970408047866759⇥108 corresponds to the solution [H+]⇤ = 8.3539 ⇥ 107 is painted in red

color. Moreover, we have found that the H+ ion concentration in CFDCAWM (40.24%) is more

compared to CFNM (38.25%).

Example 4.5 (Schrödinger wave equation for a hydrogen atom [25]). The location of the electron

relative to the core has a probability distribution in quantum mechanics, which is connected to the

solution of the Schrödinger wave equation for a charged particle travelling in a Coulomb potential.

The classic Schrödinger equation for a single particle of mass m moving in a central potential is

as follows:

�
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e2

r
 = E ,

where r is the distance of the electron from the core and E is the energy. And the equation has the

following representation in spherical coordinates:
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The final equation can be divided into an angular equation and a radial equation by applying certain

conventional techniques. The angular equation can alternatively be divided into two equations, one

of which leads to the corresponding Legendre equation [6]
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And for m = 0, i.e. the case of azimuthally symmetric, the equation reduced to Legendre polyno-

mials. So, for our purpose we have taken the obtained form of Legendre equation in the following:

 5(t) = 46189t10 � 109395t8 + 90090t6 � 30030t4 + 3465t2 � 63

with the roots t1 = �0.9739, t2 = 0.9739, t3 = �0.8651, t4 = 0.8651, t5 = �0.6794, t6 = 0.6794,

t7 = �0.4334, t8 = 0.4334, t9 = �0.1489, and t10 = 0.1489.

Table 10: Results of CFNM for  5(t) with initial guess t0 = �1.6

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.50 -0.974022883623179 9.934223703655931e-07 0.720438 131
0.55 -0.973979706177354+0.00i 9.767897406476322e-07 0.45272 103
0.60 -0.973952883699453+0.00i 9.894410853972246e-07 0.286638 80
0.65 -0.973934954067361+0.00i 9.675145213883240e-07 0.1757107 63
0.70 -0.973924328185314-0.00i 9.993784602091438e-07 0.1100054 49
0.75 -0.973916963198489-0.00i 9.656237642818866e-07 0.064479 39
0.80 -0.973912597976135+0.00i 9.649762192642797e-07 0.037502 31
0.85 -0.973909751305419-0.00i 9.191366918681609e-07 0.019911 25
0.90 -0.973908232217628+0.00i 9.887810010766884e-07 0.0105259 20
0.95 -0.973906845098482-0.00i 4.377130401467255e-07 0.001955 17
1 -0.973906528517171 8.214154911811988e-10 1.045918e-11 13

Table 11: Results of CFDCAWM for  5(t) with initial guess t0 = �1.6

⇣ t⇤ |tn+1 � tn| | (tn+1)| Iterations
0.50 -0.974022525194601 9.919475889574870e-07 0.71821 125
0.55 -0.973979997925276+0.00i 9.867753415493397e-07 0.45453 97
0.60 -0.973952593340544-0.00i 9.807070255885009e-07 0.284841 75
0.65 -0.973934897599979+0.00i 9.655019376220153e-07 0.175361 58
0.70 -0.973923495437265-0.00i 9.323057104104748e-07 0.104857 45
0.75 -0.973917138639778+0.00i 9.883953832057202e-07 0.065563 34
0.80 -0.973912010298633+0.00i 8.454325272078123e-07 0.033870 27
0.85 -0.973909290555717+0.00i 7.594809537936342e-07 0.017065 21
0.90 -0.973907816277493+0.00i 7.096176641852026e-07 0.007956 16
0.95 -0.973906956012490-0.00i 6.159379745129812e-07 0.002641 12
1 -0.973906528517169 3.798566096668843e-06 2.346630e-02 07

In Tables 10 and 11, the CFDCAWM provides faster convergence when ⇣ is close to 1. Both the

CFNM and CFDCAWM converge to the root t1 for the initial guess t0 = �1.6, but it can be noticed

that the CFDCAWM beats the CFNM in the speed of convergence.
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Figure 8: Convergence planes of  5(t) for real initial guess t0 = a, a 2 R.

The convergence plane in Figure 8 gives the CFNM (73.6%) and CFDCAWM (74.26%) percentage

of convergence. Moreover, one can find all the roots of  5(t) by choosing an initial guess in the

neighbourhood of zero and changing the order of the derivative in both CFDCAWM and CFNM.

5 Conclusion

This research aimed to introduce a new convex acceleration of the fractional Whittaker technique,

namely CFDCAWM, in the sense of the Caputo fractional derivative. We have developed the speed

of convergence of CFDCAWM to at least (1+2⇣), and we have studied the efficiency and stability of

the proposed method. Then, for both CFNM and CFDCAWM, many real-world applications with

numerical results are discussed. The convergence planes are illustrated with their convergence

percentage for a more straightforward analysis. The results confirmed that CFDCAWM leads

CFNM in terms of efficiency and performance.
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