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Département de Physique Théorique
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Laboratoire de Mathématiques Jean Leray
Université de Nantes
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ABSTRACT

The article explores a linear set-valued differential equation

featuring both conformable fractional and generalized con-

formable fractional derivatives. It presents conditions for the

existence of solutions and provides analytical expressions for

the shape of solution sections at different time points. Model

examples are employed to illustrate the results.

RESUMEN

Este artículo explora una ecuación diferencial lineal con val-

ores en conjuntos que exhibe a la vez derivadas fraccionales

conformables y conformables generalizadas. Se presentan

condiciones para la existencia de soluciones y se proveen ex-

presiones analíticas para la forma de secciones solución en

diferentes puntos de tiempo. Se emplean ejemplos modelo

para ilustrar los resultados.

Keywords and Phrases: Conformable fractional derivative, set-valued differential equation, Hukuhara derivative,
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1 Introduction

Set-valued differential equations have recently been studied within the framework of an independent

theory - set-valued equations, but they are widely used for ordinary differential inclusions and fuzzy

differential equations and inclusions [7, 26,29,30,36,37,46,48,53].

In 1967, M. Hukuhara introduced integral and derivative concepts for set-valued mappings and

explored their relationship [20]. The proposed derivative and integral extend the conventional

single-valued function derivative and integral to the set-valued context. However, the Hukuhara

derivative has a notable limitation: if a mapping is Hukuhara differentiable, its cross-section di-

ameter behaves as a non-decreasing function. To overcome this drawback, alternative derivative

concepts were proposed: T. F. Bridgland introduced the Huygens derivative [6], while Yu. N.

Tyurin [54] and H. T. Banks, M. Q. Jacobs [5] proposed the ⇡-derivative using Radstrom’s em-

bedding theorem [52], and A. V. Plotnikov introduced the T -derivative [39, 48]. Additionally, Ş.

E. Amrahov, A. Khastan, N. Gasilov, A. G. Fatullayev [3,28] and A. V. Plotnikov, N. V. Skripnik

[28,44,45] introduced generalized derivatives for set-valued mappings. Each of these derivatives has

its own set of advantages and disadvantages [8,12,32,33,46,48]. In 2003, A. N. Vityuk introduced

an analogue of the fractional Riemann-Liouville derivative [23, 31] for set-valued mappings and

established its properties [55,56]. Subsequently, in 2019, A. A. Martyniuk introduced an analogue

of the conformable fractional derivative [22] for set-valued mappings and proved its properties

[34,35]. The conformable fractional derivative for single-valued functions serves as a generalization

of the ordinary derivative and, unlike fractional derivatives, adheres to all classical properties of

the ordinary derivative [22]. Consequently, the Hukuhara conformable fractional derivative for

set-valued mappings, introduced by A. A. Martyniuk, serves as a generalization of the Hukuhara

derivative while preserving its properties [34,35].

In 1969, F. S. de Blasi and F. Iervolino explored differential equations involving the Hukuhara

derivative [12]. Subsequently, many authors investigated the properties of solutions to such equa-

tions [26,29,30,36,43,46,48], integral and integro-differential equations [41,42], higher-order equa-

tions [38], as well as differential inclusions [11, 24, 48]. Furthermore, differential equations with

the ⇡-derivative [8, 37,49], T -derivative [39,48], set-valued equations with a generalized derivative

[28,40,44,45,47], nonlinear equations with the fractional Riemann-Liouville derivative [55,56], and

conformable fractional derivative [34, 35, 57] have been explored. At first glance, such equations

resemble their corresponding ordinary analogues; however, when studying and solving them, it is

imperative to consider their set-valued nature. Consequently, traditional methods and approaches

employed in studying and solving of single-valued systems may not always be applicable to set-

valued systems, necessitating novel or alternative methods and approaches. It is also worth noting

that due to set-valued nature, new properties emerge that warrant investigation.
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This article delves into the Cauchy problem for a linear differential equation with the Hukuhara

conformable fractional derivative, yielding analytical solutions in certain cases. Subsequently, we

introduce a generalized conformable fractional derivative based on the generalized derivative for

set-valued mappings [28,44,45], that allows us to expand the class of differentiable mappings. We

then explore the Cauchy problem for a linear differential equation with the generalized conformable

fractional derivative. Such a Cauchy problem boasts infinitely many solutions - two of which are

termed basic [28, 44, 45], and we provide analytical forms for these solutions in selected cases.

In conclusion, we demonstrate the feasibility of introducing conformable fractional derivatives

akin to known conformable fractional derivatives for single-valued functions [1, 2, 4, 15, 17–19, 21,

22], alongside presenting analytical solutions for the corresponding Cauchy problems with these

derivatives. The theoretical results are exemplified through model examples.

2 Preliminaries

In this section we recall some results from the publications that are of interest for our paper.

Let R be the set of real numbers and Rn be the n-dimensional Euclidean space (n � 2). Denote

by conv(Rn) the set of nonempty compact and convex subsets of Rn with the Hausdorff metric

h(X,Y ) = min{r � 0 : X ⇢ Y +Br(0), Y ⇢ X +Br(0)},

where X,Y 2 conv(Rn), Br(c) = {x 2 Rn : kx � ck  r} is the closed ball with radius r > 0

centered at the point c 2 Rn (k · k denotes the Euclidean norm), 0 = (0, . . . , 0)T is the zero vector.

In addition to the usual set-theoretic operations, the following operations in the space conv(Rn)

are introduced: the sum of the sets, the product of the scalar on the set and the operation of the

product of the matrix on the set:

X + Y =
[

x2X, y2Y

{x+ y} �X =
[

x2X

{�x}, AX =
[

x2X

{Ax},

where X,Y 2 conv(Rn), � 2 R, A 2 Rn⇥n.

Lemma 2.1 ([51]). The following properties hold:

1) (conv(Rn), h) is a complete metric space,

2) h(X + Z, Y + Z) = h(X,Y ),

3) h(�X,�Y ) = |�|h(X,Y ) for all X,Y, Z 2 conv(Rn) and � 2 R.

However, conv(Rn) is not a linear space because it does not contain inverse elements for the

addition, and therefore the difference is not well defined, i.e. if X 2 conv(Rn) and X 6= {x}, then
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X + (�1)X 6= {0}. As a consequence, alternative formulations for difference have been suggested

[3, 5, 20,39,45,51]. One of these alternatives is the Hukuhara difference [20].

Definition 2.2 ([20]). Let X,Y 2 conv(Rn). A set Z 2 conv(Rn) such that X = Y + Z is called

a Hukuhara difference (H-difference) of the sets X and Y and is denoted by X H Y.

In this case X HX = {0} and (X + Y )HY = X for any X,Y 2 conv(Rn), but obviously, X HY 6=
X + (�1)Y. The properties of this difference are studied in detail in [37,46,48,51]:

Lemma 2.3 ([27]). If X + Y = B1(0), then X = Bµ(z1) and Y = B�(z2), where µ+ � = 1 and

z1 + z2 = 0.

Remark 2.4. If the set X is subtracted from the ball BR(a) in the sense of Hukuhara and the

difference BR(a)
HX exists, then the set X is the ball Br(b) and radius r does not exceed R.

Theorem 2.5 ([14,16]). For any real (n⇥n)-matrix A there exist two orthogonal (n⇥n)-matrices

U and V such that UTAV = ⌃, where ⌃ is the diagonal matrix. We can also choose matrices U

and V such that the diagonal elements of the matrix ⌃ satisfy the condition

�1 � �2 � · · · � �r > �r+1 = · · · = �n = 0,

where r is the rank of the matrix A. That is, if A is a nondegenerate matrix, then �1 � · · · � �n > 0.

Therefore, this matrix A can be represented as A = U⌃V T . This decomposition is called singular

decomposition. Columns u1, . . . ,un of matrix U are called the left singular vectors, columns

v1, . . . ,vn of matrix V are called the right singular vectors, and the numbers �1, . . . ,�n are

called the singular numbers of the matrix A.

By [14], the set Y = {Ax : x 2 B1(0), A 2 Rn⇥n } is r-dimensional ellipsoid, its axis lengths

are equal to the corresponding singular numbers of the matrix A, where r = rank(A). Also, if

rank(A) = n, then

B�n(0) ⇢ Y ⇢ B�1(0),

where B�n(0) is the inscribed ball in the set Y (i.e. the largest ball Br(0) that can fit inside

the set Y ), B�1(0) is the circumscribed ball of the set Y (i.e. the smallest ball Br(0), such that

Y ✓ Br(0)).

It is also easy to see that if A is an orthogonal matrix, then ABr(0) ⌘ Br(0) for all r > 0.

Let X : [0, T ] ! conv(Rn) be a set-valued mapping.
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Definition 2.6 ([34]). Let t 2 (0, T ) and ↵ 2 (0, 1]. If the Hukuhara differences X
�
t+ "t1�↵

�
H X

�
t
�

and X
�
t
�

H X
�
t� "t1�↵

�
exist for all sufficiently small " > 0 and there exists Z 2 conv(Rn) such

that the following equality holds:

lim
"!0

"�1
�
X
�
t+ "t1�↵

�
H X

�
t
��

= lim
"!0

"�1
�
X
�
t
�

H X
�
t� "t1�↵

��
= Z, (2.1)

then we say that the set-valued mapping X(·) has a Hukuhara conformable fractional deriva-

tive of order ↵ at the point t 2 (0, T ) and D↵X(t) = Z.

If D↵X(t) exists for all t 2 (0, T ) and lim
t!0

D↵X(t) exists, then we will assume that D↵X(0) =

lim
t!0

D↵X(t).

Definition 2.7. If the Hukuhara conformable fractional derivative D↵X(t) of order ↵ exists for

all t � 0, then we say that the set-valued mapping X(·) is ↵-differentiable on R+.

Next, we give some properties of the Hukuhara conformable fractional derivative of order ↵.

Lemma 2.8 ([34]). If the set-valued mapping X(·) is ↵-differentiable on R+, then the set-valued

mapping X(·) is continuous on R+.

Lemma 2.9 ([34]). If the set-valued mapping X(·) is ↵-differentiable on R+, then the function

diam(X(·)) is a nondecreasing function on R+, where diam(X) = max
 2S1(0)

|c(X, ) + c(X,� )| ,

S1(0) = { 2 Rn : k k = 1} , c(X, ) = max
x2X

{x1 1 + · · ·+ xn n} .

Lemma 2.10 ([34]). If the set-valued mapping X(t) ⌘ X for all t � 0, then

D↵X(t) ⌘ {0},

and vice versa, if D↵X(t) ⌘ {0} for all t � 0 and X(t0) = X, then X(t) ⌘ X for all t � 0, where

t0 � 0 is an arbitrary value.

Lemma 2.11 ([34]). If the set-valued mappings X(·) and Y (·) are ↵-differentiable at t > 0, then

D↵(aX(t) + bY (t)) = aD↵X(t) + bD↵Y (t),

where a, b 2 R+.

Lemma 2.12 ([34]). If the set-valued mapping X(·) is ↵-differentiable at t > 0, then

D↵X(t) = t1�↵DHX(t),

where DHX(t) is the Hukuhara derivative [20].
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Remark 2.13. From Lemma 2.12 we have that the necessary and sufficient condition for the

existence of a Hukuhara conformable fractional derivative D↵X(t) of order ↵ for the set-valued

mapping X(·) is the existence of the Hukuhara derivative DHX(t).

Remark 2.14. From Definition 2.6 and Lemma 2.12, we have that D1X(t) coincides with the

Hukuhara derivative DHX(t).

Definition 2.15 ([34]). The fractional integral associated with the Hukuhara conformable fractional

derivative of order ↵ is defined by

I↵X(t) =

tZ

0

t↵�1X(s)ds, t � 0,

where the integral on the right-hand side is understood in the sense of the Hukuhara integral [20].

Lemma 2.16 ([34]). If the set-valued mapping X(·) is continuous on R+, then

D↵I↵X(t) = X(t), t > 0.

Lemma 2.17 ([34]). If the set-valued mapping X(·) is ↵-differentiable on R+, then

I↵D↵X(t) = X(t)HX(0), t > 0.

3 A linear set-valued differential equation with a Hukuhara

conformable fractional derivative.

Consider the following Cauchy problem for linear set-valued differential equation with a Hukuhara

conformable fractional derivative of order ↵

D↵X(t) = AX(t), X(0) = B1(0), (3.1)

where X : R+ ! conv(R2) is a set-valued mapping, A 2 R2⇥2 is a nondegenerate matrix.

Definition 3.1. A set-valued mapping X : R+ ! conv(R2) is called a solution of Cauchy problem

(3.1) if it is continuous and satisfies differential equation (3.1) for all t � 0 and X(0) = B1(0).

Let

A =

0

@a b

c d

1

A ,

where a, b, c, d 2 R such that ad� bc 6= 0.
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It is easy to obtain that the singular numbers of the matrix A have the form

�1 =

s
a2 + b2 + c2 + d2 +

p
�

2
, �2 =

s
a2 + b2 + c2 + d2 �

p
�

2
,

where � = (a2 + b2 + c2 + d2)2 � 4(ad� bc)2.

It is obvious that

� = (a2 + b2 + c2 + d2)2 � 4(ad� bc)2 = (a2 � d2)2 + (b2 � c2)2 + 2(ab+ cd)2 + 2(ac+ bd)2,

i.e. � � 0.

Accordingly, if d = a and c = �b or d = �a and b = c, i.e. if

A =

0

@ a b

�b a

1

A or A =

0

@a b

b �a

1

A ,

then � = 0 and �1 = �2 = � =
p
a2 + b2. In other cases � 6= 0.

Theorem 3.2. If matrix A satisfies the condition � = 0, then Cauchy problem (3.1) has the

following solution

X(t) = e�t
↵

B1(0),

where t � 0, � =

p
a2 + b2

↵
.

Proof. Let us prove that X(·) is a solution of Cauchy problem (3.1) by the direct substitution of

the set-valued mapping X(t) = e�t
↵

B1(0) into differential equation (3.1) and by checking that the

identity is satisfied:

D↵

⇣
e�t

↵

B1(0)
⌘
⌘ Ae�t

↵

B1(0).

Since � > 0, then e�t
↵

is an increasing function and as

e�t
↵

B1(0) = Be�t↵ (0),

then accordingly diam(X(·)) is an increasing function. Then, according to Definition 2.6, it follows

that B1(0) is a centrally symmetric body and (�1)B1(0) = B1(0), we have

lim
"!0+

"�1
�
X
�
t+ "t1�↵

�
H X

�
t
��

= lim
"!0+

"�1
⇣
e�(t+"t

1�↵)↵B1(0)
H e�t

↵

B1(0)
⌘

= lim
"!0+

"�1
⇣
e�(t+"t

1�↵)↵ � e�t
↵
⌘
B1(0) = ↵�e�t

↵

B1(0)
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and

lim
"!0+

"�1
�
X
�
t
�

H X
�
t� "t1�↵

��
= lim
"!0+

"�1
⇣
e�t

↵

B1(0)
H e�(t�"t

1�↵)↵B1(0)
⌘

= lim
"!0+

"�1
⇣
e�t

↵

� e�(t�"t
1�↵)↵

⌘
B1(0) = �↵�e�t

↵

B1(0) = ↵�e�t
↵

B1(0).

That is,

D↵X(t) = D↵

⇣
e�t

↵

B1(0)
⌘
= ↵�e�t

↵

B1(0).

Since the singular numbers of the matrix A are equal (�1 = �2 = �), then the singular decompo-

sition of the matrix A has the form A = U⌃V T , where U, V are orthogonal matrices and ⌃ = �I,

I is the identity matrix. Since V TBr(0) = Br(0) and UBr(0) = Br(0) for all r > 0, then

Ae�t
↵

B1(0) = U⌃V T e�t
↵

B1(0) = U�IV T e�t
↵

B1(0)

= �UIV T e�t
↵

B1(0) = �e�t
↵

UIV TB1(0) = �e�t
↵

B1(0).

As ↵� = ↵
p
a2+b2

↵
=

p
a2 + b2 = �, then we have

D↵X(t) = D↵

⇣
e�t

↵

B1(0)
⌘
= ↵�e�t

↵

B1(0) = �e�t
↵

B1(0) ⌘ �e�t
↵

B1(0) = Ae�t
↵

B1(0) = AX(t),

i.e. X(·) is a solution of differential equation (3.1). The theorem is proved.

Example 3.3. Let A =

0

@
p
3 1

1 �
p
3

1

A . Then the singular numbers �1 and �2 of the matrix A are

�1 = �2 = 2. Accordingly, Cauchy problem (3.1) has a solution X(t) = e2↵
�1

t
↵

B1(0). That is,

1) if ↵ = 0.25, then at every moment of time t � 0 the cross section X(t) is a circle of radius

e8
4p
t (Figure 1);

2) if ↵ = 0.5, then at every moment of time t � 0 the cross section X(t) is a circle of radius

e4
p
t (Figure 2);

3) if ↵ = 0.75, then at every moment of time t � 0 the cross section X(t) is a circle of radius

e
8
3

4p
t3 (Figure 3);

4) if ↵ = 1, then at every moment of time t � 0 the cross section X(t) is a circle of radius e2t

(Figure 4).
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Figure 1: ↵ = 0.25, X(t) = e8
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tB1(0).
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Figure 2: ↵ = 0.5, X(t) = e4
p
tB1(0).
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Figure 3: ↵ = 0.75, X(t) = e
8
3

4p
t3B1(0).
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Figure 4: ↵ = 1, X(t) = e2tB1(0).

Next, we consider the case when the matrix A satisfies the condition � 6= 0.

Theorem 3.4. If matrix A is symmetric and d 6= �a, then Cauchy problem (3.1) has the following

solution

X(t) = Ue↵
�1

t
↵⌃B1(0), t � 0,

where ⌃ =

0

@�1 0

0 �2

1

A, �1,2 = |�1,2| =
����
a+d±

p
(a�d)2+4b2

2

����, U =

0

B@
bp

(�1�a)2+b2

�2�dp
(�2�d)2+b2

�1�ap
(�1�a)2+b2

bp
(�2�d)2+b2

1

CA .

Proof. Since the matrix A is symmetric and d 6= �a, it has the following form

A =

0

@a b

b d

1

A .

It is known that the eigenvalues �1,2 of the symmetric matrix A are real, so in our case (� 6= 0), they

will be different and not equal to zero. Let us consider all possible cases related to the eigenvalues

of the matrix A, that is, three different cases are possible:
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1) the eigenvalues �1,2 = a+d±
p
D

2 of matrix A are positive, where D = (a�d)2+4b2, i.e. matrix

A is a positive-definite matrix. In this case, the singular decomposition coincides with the

spectral decomposition, i.e. �1 = �1, �2 = �2 and U⇤UT = U⌃UT , where

⇤ = ⌃ =

0

@�1 0

0 �2

1

A , U =

0

B@
bp

(�1�a)2+b2

�2�dp
(�2�d)2+b2

�1�ap
(�1�a)2+b2

bp
(�2�d)2+b2

1

CA .

2) the eigenvalues �1,2 of matrix A are of different signs and |�1| > |�2|, i.e. matrix A is an

indeterminate matrix. In this case, the singular decomposition is the following: �1 = |�1|,
�2 = |�2| and

U⌃WT = U |⇤|DUT ,

where WT = DUT , D =

0

@
�1
|�1| 0

0 �2
|�2|

1

A .

3) the eigenvalues �1,2 of matrix A are negative and |�1| > |�2|, i.e. matrix A is a negative-

definite matrix. In this case, the singular decomposition is �1 = |�1|, �2 = |�2| and

U⌃WT = U |⇤|DUT ,

where WT = DUT , D =

0

@�1 0

0 �1

1

A .

That is, in general, the singular decomposition of the matrix A has the form A = U⌃WT , where

⌃ = |⇤|, W = UD.

We will prove that X(·) is a solution of Cauchy problem (3.1) by the direct substitution of the

set-valued mapping X(t) = Ue↵
�1

t
↵⌃B1(0) into differential equation (3.1) and by checking that

the identity is satisfied:

D↵

⇣
Ue↵

�1
t
↵⌃B1(0)

⌘
⌘ AUe↵

�1
t
↵⌃B1(0). (3.2)

Since �1,2 > 0, then e↵
�1
�1t

↵

and e↵
�1
�2t

↵

are the increasing functions and as

e↵
�1
�1t

↵

> e↵
�1
�2t

↵

,

then accordingly diam(X(t)) = 2e↵
�1
�1t

↵

is an increasing function. Then, according to Definition

2.6, it follows that B1(0) is a centrally symmetric body and, accordingly, (�1)B1(0) = B1(0), we

have
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lim
"!0+

"�1
�
X
�
t+ "t1�↵

�
H X

�
t
��

= lim
"!0+

"�1
⇣
Ue↵

�1(t+"t1�↵)↵⌃B1(0)
H Ue↵

�1
t
↵⌃B1(0)

⌘

= U lim
"!0+

"�1
⇣
e↵

�1(t+"t1�↵)↵⌃ � e↵
�1

t
↵⌃
⌘
B1(0)

= U lim
"!0+

"�1

0

@e↵
�1
�1(t+"t1�↵)↵ � e↵

�1
�1t

↵

0

0 e↵
�1
�2(t+"t1�↵)↵ � e↵

�1
�2t

↵

1

AB1(0)

= U

0

@�1e
↵

�1
�1t

↵

0

0 �2e↵
�1
�2t

↵

1

AB1(0) = U⌃e↵
�1

t
↵⌃B1(0)

and similarly

lim
"!0+

"�1
�
X
�
t
�

H X
�
t� "t1�↵

��
= U lim

"!0+
"�1

⇣
e↵

�1
t
↵⌃ � e↵

�1(t�"t1�↵)↵⌃
⌘
B1(0)

= U⌃e↵
�1

t
↵⌃B1(0).

That is,

D↵X(t) = D↵

⇣
e↵

�1
t
↵⌃B1(0)

⌘
= U⌃e ↵

�1
t
↵⌃B1(0).

Since the singular matrix decomposition of the symmetric matrix A has the form A = U⌃DUT ,

then

AUe ↵
�1

t
↵⌃B1(0) = U⌃DUTUe ↵

�1
t
↵⌃B1(0) = U⌃e ↵

�1
t
↵⌃B1(0).

It is obvious that identity (3.2) holds and, accordingly, X(·) is a solution of Cauchy problem (3.1).

The theorem is proved.

Example 3.5. Let A =

0

@0.8 0.5

0.5 0.3

1

A. Then the singular decomposition of the matrix A has the fol-

lowing form U⌃UT =

0

@0.8507 �0.5257

0.5257 0.8507

1

A

0

@1.1090 0

0 0.0090

1

A

0

@ 0.8507 0.5257

�0.5257 0.8507

1

A. Accordingly,

Cauchy problem (3.1) has a solution X(t) = Ue↵
�1

t
↵⌃B1(0). That is,

1) if ↵ = 0.25, then at every moment of time t � 0 the cross section X(t) is an ellipse with

semi-axes e4.4361
4p
t and e0.0361

4p
t, rotated at an angle ✓ ⇡ 33�, which is determined by the

matrix U (Figure 5);

2) if ↵ = 0.5, then at every moment of time t � 0 the cross section X(t) is an ellipse with

semi-axes e2.2368
p
t and e0.0298

p
t, rotated at an angle ✓ ⇡ 33� (Figure 6);

3) if ↵ = 0.75, then at every moment of time t � 0 the cross section X(t) is an ellipse with

semi-axes e1.4787
4p
t3 and e0.0120

4p
t3 , rotated at an angle ✓ ⇡ 33� (Figure 7);
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4) if ↵ = 1, then at every moment of time t � 0 the cross section X(t) is an ellipse with

semi-axes e1.1090t and e0.009t, rotated at an angle ✓ ⇡ 33� (Figure 8).
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Figure 5: ↵ = 0.25, X(t) = e4
4p
t⌃B1(0).
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Figure 6: ↵ = 0.5, X(t) = e2
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t⌃B1(0).
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Figure 7: ↵ = 0.75, X(t) = e
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Figure 8: ↵ = 1, X(t) = et⌃B1(0).

4 A linear set-valued differential equation with a generalized

conformable fractional derivative.

Let X : [0, T ] ! conv(Rn) be a set-valued mapping.

Definition 4.1. We say that a set-valued mapping X(·) has a generalized conformable frac-

tional derivative of order ↵ D↵

g
X(t) 2 conv(Rn) at t 2 (0, T ), if for all sufficiently small " > 0

the Hukuhara differences and the limits exist in at least one of the following cases:

i) lim
"!0

"�1
�
X
�
t+ "t1�↵

�
H X

�
t
��

= lim
"!0

"�1
�
X
�
t
�

H X
�
t� "t1�↵

��
= D↵

g
X(t),

ii) lim
"!0

"�1
�
X(t) H X

�
t+ "t1�↵

��
= lim
"!0

"�1
�
X
�
t� "t1�↵

�
H X(t)

�
= D↵

g
X(t),
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iii) lim
"!0

"�1
�
X
�
t+ "t1�↵

�
H X(t)

�
= lim
"!0

"�1
�
X
�
t� "t1�↵

�
H X(t)

�
= D↵

g
X(t),

iv) lim
"!0

"�1
�
X(t) H X

�
t+ "t1�↵

��
= lim
"!0

"�1
�
X(t) H X

�
t� "t1�↵

��
= D↵

g
X(t).

Definition 4.2. If a generalized conformable fractional derivative of order ↵ D↵

g
X(t) exists for

all t � 0, then we will say that the set-valued mapping X(·) is generalized ↵-differentiable on

R+.

Remark 4.3. Obviously, if the set-valued mapping X(·) is ↵-differentiable at a point t > 0, then

the set-valued mapping X(·) is generalized ↵-differentiable at a point t > 0.

Lemma 4.4. If the set-valued mapping X(·) is generalized ↵-differentiable at a point t > 0, then

D↵

g
X(t) = t1�↵DgX(t),

where DgX(t) is the generalized derivative [25,28,45].

Proof. If the set-valued mapping X(·) is generalized ↵-differentiable at a point t > 0, then at least

one of the conditions of Definition 4.1 must be fulfilled. We will assume that the first condition is

fulfilled, i.e.

lim
"!0

"�1
�
X
�
t+ "t1�↵

�
H X

�
t
��

= lim
"!0

"�1
�
X
�
t
�

H X
�
t� "t1�↵

��
= D↵

g
X(t).

Let ✓ = "t1�↵. Then

D↵

g
X(t) = lim

"!0
"�1

�
X
�
t+ "t1�↵

�
H X

�
t
��

= lim
✓!0

t1�↵✓�1
�
X (t+ ✓) H X

�
t
��

= t1�↵ lim
✓!0

✓�1
�
X (t+ ✓) H X

�
t
��

= t1�↵DgX(t).

Likewise,

D↵

g
X(t) = lim

"!0
"�1

�
X
�
t
�

H X
�
t� "t1�↵

��
= lim
✓!0

t1�↵✓�1
�
X
�
t
�

H X (t� ✓)
�

= t1�↵ lim
✓!0

✓�1
�
X
�
t
�

H X (t� ✓)
�
= t1�↵DgX(t).

It is similarly proved if the second, third or fourth conditions are fulfilled. The lemma is proved.

Remark 4.5. It follows from Lemma 4.4 that a necessary and sufficient condition for the existence

of a generalized conformable fractional derivative D↵

g
X(t) is the existence of a generalized derivative

DgX(t).

Also, it is easy to see that if ↵ = 1, then D1
g
X(t) = DgX(t).
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Consider the following Cauchy problem for linear set-valued differential equation with a generalized

conformable fractional derivative of order ↵

D↵

g
X(t) = AX(t), X(0) = B1(0), (4.1)

where X : R+ ! conv(R2) is a set-valued mapping, A 2 R2⇥2 is a nondegenerate matrix.

Definition 4.6. A set-valued mapping X : R+ ! conv(R2) is called a solution of Cauchy problem

(4.1) if it is continuous and satisfies differential equation (4.1) for all t � 0 and X(0) = B1(0).

Remark 4.7. It follows from Remark 4.3 that if the set-valued mapping X(t) is a solution of

equation (3.1), then it is a solution of equation (4.1).

Remark 4.8. In [25, 27, 28] a Cauchy problem for linear set-valued differential equation with a

generalized derivative

DgX(t) = AX(t), X(0) = B1(0) (4.2)

was considered and the following results were obtained:

1) Cauchy problem (4.2) has an infinite number of solutions, some (one or two) of which are

called basic (their diameter are monotone functions), and others are mixed (their diameter

are non-monotone functions). We also note that the first basic solution X1(·) is the solution

of Cauchy problem (4.2), that satisfies the condition that diam(X1(t)) is a nondecreasing

function and is also the solution of the corresponding differential equation with the Hukuhara

derivative. The second basic solution X2(·) is called the solution of Cauchy problem (4.2),

that satisfies the condition that diam(X2(t)) is a decreasing function;

2) if the singular numbers of the matrix A are such that �1 = �2 = �, then Cauchy problem

(4.2) has two basic solutions X1(t) and X2(t), whose cross-sections at each moment of time

t are circles Be�t(0) and Be��t(0), and if the singular numbers of the matrix A are such

that �1 6= �2, then Cauchy problem (4.2) has only the first basic solution X1(t), whose cross-

section at each moment of time t is an ellipse with semiaxes equal to e�1t and e�2t.

Next, we obtain the results similar to Theorems 3.2 and 3.4.

Theorem 4.9. If the matrix A satisfies the condition � = 0, then Cauchy problem (4.1) has two

basic solutions X1(·) and X2(·) such that

X1(t) = e �t
↵

B1(0) and X2(t) = e ��t↵B1(0),

where t � 0, � =

p
a2 + b 2

↵
.
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Proof. From Theorem 3.2, we have that the set-valued mapping X1(t) is a solution of Cauchy

problem (3.1) and the function diam(X(t)) is non-decreasing. Then, taking into account Remark

4.3, X1(t) is the first basic solution of equation (4.1).

We will prove that X2(·) is a solution of Cauchy problem (4.1) by the direct substitution of the

set-valued mapping X2(t) = e ��t↵B1(0) into differential equation (4.1) and by checking that the

identity is satisfied:

D↵

g

⇣
e ��t↵B1(0)

⌘
⌘ Ae ��t↵B1(0).

Since � > 0, then e��t↵ is a decreasing function, and as

e��t↵B1(0) = Be��t↵ (0),

then, accordingly, the function diam(X2(·)) is a decreasing function. Then according to Definition

4.1 ii) and that the ball B1(0) is a centrally symmetric body and (�1)B1(0) = B1(0), we have

lim
"!0+

"�1
�
X2

�
t
�

H X2

�
t+ "t1�↵

��
= lim
"!0+

"�1
⇣
e ��t↵B1(0)

H e ��(t+"t1�↵)↵B1(0)
⌘

= lim
"!0+

"�1
⇣
e ��t↵ � e ��(t+"t1�↵)↵

⌘
B1(0) = �↵�e ��t↵B1(0) = ↵�e ��t↵B1(0)

and

lim
"!0+

"�1
�
X2

�
t� "t1�↵

�
H X2

�
t
��

= lim
"!0+

"�1
⇣
e ��(t�"t1�↵)↵B1(0)

H e ��t↵B1(0)
⌘

= lim
"!0+

"�1
⇣
e ��(t�"t1�↵)↵ � e ��t↵

⌘
B1(0) = ↵�e ��t↵B1(0).

That is,

D↵

g
X2(t) = D↵

⇣
e ��t↵B1(0)

⌘
= ↵�e ��t↵B1(0).

Since the matrix A satisfies the condition � = 0, the singular decomposition of the matrix A

has the form A = U⌃V T , where U, V are orthogonal matrices, ⌃ = �I, � =
p
a2 + b 2. As

V TBr(0) = Br(0) and UBr(0) = Br(0) for all r > 0, then

Ae��t↵B1(0) = U⌃V T e��t↵B1(0) = U�EV T e��t↵B1(0) = �UEV T e��t↵B1(0)

= �e��t↵UEV TB1(0) = �e��t↵B1(0).

Since ↵� = �, we have

D↵

g
X2(t) = �e��t↵B1(0) ⌘ �e��t↵B1(0) = AX2(t),

i.e. X2(·) is the second basic solution of Cauchy problem (4.1). Thus the theorem is proved.
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Example 4.10. Let A =

0

@
p
3 1

1 �
p
3

1

A . Then the singular numbers �1 and �2 of the matrix A

are equal: �1 = �2 = � = 2.

Accordingly, Cauchy problem (4.1) has solutions X1(t) = e 2↵�1
t
↵

B1(0) and X2(t) = e �2↵�1
t
↵

B1(0).

Below are the solutions for cases ↵ = 1 (Fig. 9, 10) and ↵ = 0.5 (Fig. 11, 12).
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Figure 9: If ↵ = 1, then X1(t) = e2tB1(0).
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Figure 10: If ↵ = 1, then X2(t) =
e�2tB1(0).
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Figure 11: If ↵ = 0.5, then X1(t) =

e4
p
tB1(0).
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Figure 12: If ↵ = 0.5, then X2(t) =

e�4
p
tB1(0).

Theorem 4.11. If matrix A is symmetric and d 6= �a, then Cauchy problem (4.1) has only the

first basic solution X1(·) such that

X1(t) = Ue ↵
�1

t
↵⌃B1(0), t � 0,

where ⌃ =

0

@�1 0

0 �2

1

A , �1,2 = |�1,2| =
����
a+d±

p
(a�d)2+4b2

2

���� , U =

0

B@
bp

(�1�a)2+b2

�2�dp
(�2�d)2+b2

�1�ap
(�1�a)2+b2

bp
(�2�d)2+b2

1

CA .

Proof. According to Remark 4.7, the first basic solution of Cauchy problem (4.1) is also a solution of
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equation (3.1). Then, according to Theorem 3.4, the set-valued mapping X1(t) = Ue ↵
�1

t
↵⌃B1(0)

is the first basic solution of Cauchy problem (4.1).

Now we will prove that the second basic solution X2(·) of Cauchy problem (4.1) does not exist.

We will prove it by contradiction. Let Cauchy problem (4.1) have the second basic solution X2(·).
Then X2(·) satisfies the following integral equation

X2(t) +A

tZ

0

s↵�1X2(s)ds = B1(0).

Let us fix an arbitrary T > 0. Then X2(T ) +A

TZ

0

s↵�1X2(s)ds = B1(0). From here,

B1(0)
HX2(T ) = A

TZ

0

s↵�1X2(s)ds.

From Lemma 2.3, as B1(0) is a ball and Hukuhara difference B1(0)
HX2(T ) exists, then X2(T ) is

a ball, i.e. X2(T ) ⌘ Br(T )(0), where 0  r(T )  1. As T is arbitrary, then X2(t) ⌘ Br(t)(0) for all

t � 0. Hence,

TZ

0

s↵�1X2(s)ds =

TZ

0

s↵�1Br(s)(0)ds =

TZ

0

s↵�1r(s)dsB1(0) = R(T )B1(0) = BR(T )(0),

where R(T ) =

TZ

0

s↵�1r(s)ds.

That is, we have

Br(T )(0) +ABR(T )(0) = B1(0). (4.3)

Since the matrix A has two different singular numbers, then ABR(T )(0) is an ellipse. So, the set

Br(T )(0) +ABR(T )(0) is not a ball. That is, equality (4.3) is not fulfilled and we have obtained a

contradiction. The theorem is proved.
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Conclusion

In conclusion, we present some remarks.

Remark 4.12. If in Definition 2.6 we replace equality (2.1) by the equality

lim
"!0

"�1
⇣
X
⇣
t e"t

�↵
⌘

H X
�
t
�⌘

= lim
"!0

"�1
⇣
X
�
t
�

H X
⇣
t e�"t

�↵
⌘⌘

= Z, (4.4)

or

lim
"!0

e"
�1
⇣
X
⇣
t+ e�"

�1

t1�↵
⌘

H X
�
t
�⌘

= lim
"!0

e"
�1
⇣
X
�
t
�

H X
⇣
t� e�"

�1

t1�↵
⌘⌘

= Z, (4.5)

then we obtain a generalization of the conformable fractional derivative of order ↵ of a single-valued

function [19] or [21] for set-valued mappings. Similarly, as it was done in [34], it is possible to prove

the validity of Lemmas 2.8–2.17, which makes it possible to introduce the corresponding generalized

conformable fractional derivative of order ↵, consider the corresponding differential equations, and

prove theorems similar to Theorems 3.2–4.11, and since in this case D↵X(t) = t1�↵DHX(t), then

the analytical formulas of the solutions will also be the same.

Remark 4.13. If in Definition 2.6 we replace equality (2.1) by the equality

lim
"!0

"�1
⇣
X
⇣
t+ "e(↵�1)t

⌘
H X

�
t
�⌘

= lim
"!0

"�1
⇣
X
�
t
�

H X
⇣
t� "e(↵�1)t

⌘⌘
= Z, (4.6)

then we obtain a generalization of the conformable fractional derivative of order ↵ of a single-

valued function [18] for set-valued mappings. Similarly, as it was done in [34], it is possible to

prove the validity of Lemmas 2.8–2.17, which makes it possible to introduce the corresponding

generalized conformable fractional derivative of order ↵, consider the corresponding differential

equations, and prove theorems similar to Theorems 3.2–4.11. However, since in this case D↵X(t) =

e(↵�1)tDHX(t), then the analytical formulas of solutions will have the following form:

Theorem 3.2: X(t) = e
�

1�↵ e
(1�↵)t

B1(0);

Theorem 3.4: X(t) = Ue
1

1�↵ e
(1�↵)t⌃B1(0);

Theorem 4.9: X1(t) = e
�

1�↵ e
(1�↵)t

B1(0), X2(t) = e
�

↵�1 e
(1�↵)t

B1(0);

Theorem 4.11: X1(t) = Ue
1

1�↵ e
(1�↵)t⌃B1(0).
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Remark 4.14. If in Definition 2.6 we replace equality (2.1) by the equality

lim
"!0

"�1

 
X

 
t+ "

✓
t+

1

�(↵)

◆1�↵
!

H X
�
t
�
!
= lim
"!0

"�1

 
X
�
t
�
H X

 
t� "

✓
t+

1

�(↵)

◆1�↵
!!

=Z, (4.7)

where �(↵) is gamma function, then we obtain a generalization of the conformable fractional deriva-

tive of order ↵ of a single-valued function [4] for set-valued mappings. Similarly, as it was done in

[34], it is possible to prove the validity of Lemmas 2.8–2.17, which makes it possible to introduce

the corresponding generalized conformable fractional derivative of order ↵, consider the correspond-

ing differential equations, and prove theorems similar to Theorems 3.2–4.11. However, since in

this case D↵X(t) =
⇣
t+ 1

�(↵)

⌘1�↵
DHX(t), then the analytical formulas of solutions will have the

following form:

Theorem 3.2: X(t) = e
�
↵ (t+ 1

�(↵) )
↵

B1(0);

Theorem 3.4: X(t) = Ue
1
↵ (t+ 1

�(↵) )
↵
⌃B1(0);

Theorem 4.9: X1(t) = e
�
↵ (t+ 1

�(↵) )
↵

B1(0), X2(t) = e� �
↵ (t+ 1

�(↵) )
↵

B1(0);

Theorem 4.11: X1(t) = Ue
1
↵ (t+ 1

�(↵) )
↵
⌃B1(0).

Remark 4.15. If in Definition 2.6 we replace equality (2.1) by the equality

lim
"!0

"�1
�
X
�
t+ "k(t)1�↵

�
H X

�
t
��

= lim
"!0

"�1
�
X
�
t
�

H X
�
t� "k(t)1�↵

��
= Z, (4.8)

where k(t) is a continuous positive function for all t � 0, then we obtain a generalization of

the conformable fractional derivative of order ↵ of a single-valued function [2, 15] for set-valued

mappings. Similarly, as it was done in [34], it is possible to prove the validity of Lemmas 2.8–

2.17, which makes it possible to introduce the corresponding generalized conformable fractional

derivative of order ↵, consider the corresponding differential equations, and prove theorems similar

to Theorems 3.2–4.11. However, since in this case D↵X(t) = k(t)1�↵DHX(t), then the analytical

formulas of solutions will have the following form:

Theorem 3.2: X(t) = e
�

tR

0
(k(s))↵�1

ds

B1(0);

Theorem 3.4: X(t) = Ue

tR

0
(k(s))↵�1

ds⌃
B1(0)

Theorem 4.9: X1(t) = e
�

tR

0
(k(s))↵�1

ds

B1(0), X2(t) = e
��

tR

0
(k(s))↵�1

ds

B1(0);

Theorem 4.11: X1(t) = Ue

tR

0
(k(s))↵�1

ds⌃
B1(0).
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Remark 4.16. If in Definition 2.6 we replace equality (2.1) by the equality

lim
"!0

"�1

✓
X

✓
t+k(t)� k(t)e

"
k(t)�↵

|k0(t)|

◆
HX

⇣
t
⌘◆

= lim
"!0

"�1

✓
X
⇣
t
⌘

H X

✓
t+k(t)�k(t)e

�" k(t)�↵

|k0(t)|

◆◆
= Z,

(4.9)

where k(t) is a differentiable function for all t � 0 such that k(t) > 0 and k0(t) 6= 0 for all t � 0,

then we obtain a generalization of the conformable fractional derivative of order ↵ of a single-

valued function [1] for set-valued mappings. Similarly, as it was done in [34], it is possible to

prove the validity of Lemmas 2.8–2.17, which makes it possible to also introduce the corresponding

generalized conformable fractional derivative of order ↵, consider the corresponding differential

equations, and prove theorems similar to Theorems 3.2–4.11. However, since in this case D↵X(t) =
k(t)1�↵

k0(t) DHX(t), then the analytical formulas of solutions will have the following form:

Theorem 3.2: X(t) = e�↵
�1(k(t)↵�k(0)↵)B1(0);

Theorem 3.4: X(t) = Ue↵
�1(k(t)↵�k(0)↵)⌃B1(0);

Theorem 4.9: X1(t) = e�↵
�1(k(t)↵�k(0)↵)B1(0), X2(t) = e�↵

�1(k(0)↵�k(t)↵)B1(0);

Theorem 4.11: X1(t) = Ue�↵
�1(k(t)↵�k(0)↵)⌃B1(0).

Remark 4.17. We also note that if in Definition 2.6 we replace equality (2.1) by the equality

lim
"!0

((t+ ")↵ � t↵)�1
�
X (t+ ") H X

�
t
��

= lim
"!0

(t↵ � (t� ")↵)�1
�
X
�
t
�

H X (t� ")
�
= Z, (4.10)

then we obtain a generalization of the Chen-Hausdorff fractal derivative of order ↵ of

a single-valued function [9, 10] for set-valued mappings. Similarly, as it was done in [34], it

is possible to prove the validity of Lemmas 2.8–2.17, which makes it possible to introduce the

corresponding generalized Chen-Hausdorff fractal derivative of order ↵, consider the corresponding

differential equations, and prove theorems similar to Theorems 3.2–4.11. However, since in this

case D↵X(t) = ↵�1t1�↵DHX(t), then the analytical formulas of solutions will have the following

form:

Theorem 3.2: X(t) = e�t
↵

B1(0);

Theorem 3.4: X(t) = Ue t
↵⌃B1(0);

Theorem 4.9: X1(t) = e�t
↵

B1(0), X2(t) = e��t↵B1(0);

Theorem 4.11: X1(t) = Ue t
↵⌃B1(0).
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ABSTRACT

For a finite lattice L, let Gm(L) denote the least n such that L can

be generated by n elements. For integers r > 2 and k > 1, denote by

FD(r)k the k-th direct power of the free distributive lattice FD(r)

on r generators. We determine Gm(FD(r)k) for many pairs (r, k)

either exactly or with good accuracy by giving a lower estimate that

becomes an upper estimate if we increase it by 1. For example, for

(r, k) = (5, 25 000) and (r, k) = (20, 1.489 · 101789), Gm(FD(r)k)

is 22 and 6 000, respectively. To reach our goal, we give estimates

for the maximum number of pairwise unrelated copies of some spe-

cific posets (called full segment posets) in the subset lattice of an

n-element set. In addition to analogous earlier results in lattice

theory, a connection with cryptology is also mentioned among the

motivations.

RESUMEN

Para un reticulado finito L, se denota por Gm(L) el menor n tal

que L puede ser generado por n elementos. Para enteros r > 2

y k > 1, se denota por FD(r)k la k-ésima potencia directa del

reticulado distributivo libre FD(r) en r generadores. Determi-

namos Gm(FD(r)k) para muchos pares (r, k) ya sea exactamente

o con buena precisión, dando una estimación inferior que se con-

vierte en una estimación superior sumando 1. Por ejemplo, para

(r, k) = (5, 25 000) y (r, k) = (20, 1.489 · 101789), Gm(FD(r)k) es 22

y 6 000, respectivamente. Para alcanzar nuestro objetivo, damos es-

timaciones para el número máximo de copias no-relacionadas dos a

dos de algunos posets específicos (llamados posets de segmento com-

pleto) en el reticulado de subconjuntos de un conjunto de n elemen-

tos. Adicionalmente a resultados análogos anteriores en teoría de

reticulados, se menciona también entre las motivaciones una cone-

xión con criptología.
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1 Introduction

This work belongs mainly to lattice theory but it also belongs to extremal combinatorics. The paper

is more or less self-contained; those familiar with M.Sc. level mathematics and the concept of free

distributive lattices can read it easily. We are interested in the smallest positive integer n = n(k, r)

such that the k-th direct power of the r-generated free distributive lattice is n-generated. In many

cases, our estimates give a good approximation or even the exact value of n.

The search for small generating sets has belonged to lattice theory for long; for example, in chrono-

logical order, see Gelfand and Ponomarev [9], Strietz [17], Zádori [19, 20], Chajda and Czédli [2],

Takách [18], Kulin [13], Czédli and Oluoch [7], and Ahmed and Czédli [1]. See also the surveying

parts and the bibliographic sections in [1] and Czédli [5] for further references. If a large lattice

L can be generated by few elements, then this lattice has many small generating sets. Czédli [5]

and [3] have recently observed that these lattices can be used for cryptography; for a further note

on this topic, see Remark 5.3. This fact and the results on small generating sets of lattices in

the above-mentioned and some additional papers constitute the lattice theoretic motivation of the

paper.

There is a motivation coming from extremal combinatorics, too. The first result on the maximum

number Sp(U, n) of pairwise unrelated (in other words, incomparable) copies of a poset U in the

powerset lattice of an n-element finite set was published by Sperner [16] ninety-six years ago.

While U is the singleton poset in Sperner’s theorem, the Sperner theorem (that is, the Sperner

type theorem) in Griggs, Stahl, and Trotter [11] determines Sp(U, n) for any finite chain U . For

some other finite posets, similar results were obtained by Katona and Nagy [12] and Czédli [4]. In

general, the exact value of Sp(U, n) is rarely known. On the other hand, Katona and Nagy [12]

and, independently from them, Dove and Griggs [8] determined the asymptotic value of Sp(U, n).

Their celebrated result asserts that for any finite poset U ,

Sp(U, n) ⇠ 1

|U |

✓
n

bn/2c

◆
, that is, lim

n!1

1

|U |

✓
n

bn/2c

◆
· Sp(U, n)�1 = 1. (1.1)

By the main result of [4], the lattice theoretic motivation and the combinatorial one are strongly

connected; see (2.4) later, which we are going to quote from [4]. Here we only mention that in

order to get closer to what the title of the paper promises, we need to determine Sp(U, n) for some

rather special posets U .

The asymptotic result (1.1) may suggest that for our special posets U , we can obtain Sp(U, n) or

at least some of its estimates simply by copying what Dove and Griggs [8] or Katona and Nagy [12]

did. However, we have three reasons not to follow this plan. First, while several constructions and

considerations can lead to the asymptotically same result, we cannot expect a similar experience

when dealing with small values of n. Furthermore, concrete (non-asymptotic) calculations and
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considerations are often harder and their asymptotic counterparts do not offer too much help. For

example, while we know for any fixed a, b 2 Z (the set of integers) that, with our vertical-space-

saving permanent notation fSp(n) :=
� n
bn/2c

�
,

✓
n+ a

bn/2c+ b

◆
⇠ 2a ·

✓
n

bn/2c

◆
= 2afSp(n) as n ! 1 (1.2)

and so we can simply work with 2afSp(n) in asymptotic considerations, we have to work with
� n+a
bn/2c+b

�
in concrete calculations, which is more difficult. (Note at this point that both Dove and

Griggs [8] and Katona and Nagy [12] use (1.2).) Second, even though a general construction could

be specialized to our particular posets U , we cannot expect to exploit the peculiarities of our U ’s

in this way. Third, an easy-to-read construction with a short and easy argument will hopefully be

interesting for the reader, partially because these details are necessary to explain and perform the

computations.

Hence, the construction we are going to give for lower estimates is different from those in Dove

and Griggs [8] and Katona and Nagy [12]. At some places in the proofs, we are going to point out

the difference from [8]; the difference from [12] is clearer. Note that our construction gives better

lower estimates for our particular posets U than any of the Dove-Griggs and the Katona-Nagy

construction would give, at least for small values of n. (For n ! 1, that is, asymptotically, all

the three constructions yield the same lower estimate.) On the other hand, let us emphasize the

similarities. While many calculations in this paper are new, most of the ideas in our construction

occur in Dove and Griggs [8] and Katona and Nagy [12]; more details will be mentioned right after

the proof of Proposition 3.2.

Even though our result allows a big gap between the lower estimate and the upper estimate of

Sp(U, n), this result will suffice to determine the least number n of elements that generate the

direct powers FD(3)k of FD(3) with quite a good accuracy, and we can give reasonable estimates

on n in case of FD(r)k.

x y z

FD(3)

FSgP(3, 0, 3)

A B C

X Y Z

a b c

Figure 1: FD(3) and the 3-crown W3 = FSgP(3, 0, 3) ⇠= J(FD(3))
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2 Basic facts and notations

For s 2 N+ := {1, 2, 3, . . . }, let N�s stand for {s, s+1, s+2, . . . }. Except for N+, N0 := {0}[N+,

N�s, and their infinite subsets, all sets and structures in the paper will be assumed to be finite.

(Sometimes, we repeat this convention for those who read only a part of the paper.) For r 2 N�3,

the free distributive lattice on r generators is denoted by FD(r); for r = 3, it is drawn on the left

of Figure 1. A lattice element with exactly one lower cover is called join-irreducible. For a lattice

L, the poset (that is, the partially ordered set) of the join-irreducible elements of L is denoted by

J(L). For L = FD(3), J(L) consists of the black-filled elements and it is also drawn separately on

the right of the figure. For a set H, the powerset lattice of H is ({Y : Y ✓ H};[,\); it (or its

support set) is denoted by Pow(H). For n 2 N0, the set {1, 2, . . . , n} is denoted by [n]; note that

[0] = ;. For x, y in a poset, in particular, for x, y 2 Pow([n]), we write x k y to denote that neither

x  y nor y  x holds; in Pow([n]), “” is “✓”. For a poset U , a copy of U in Pow([n]) is a subset

of Pow([n]) that, equipped with “✓”, is order isomorphic to U . Two copies of U in Pow([n]) are

unrelated if for all X in the first copy and all Y in the second copy, X k Y . Let us repeat that for

n 2 N0 and a poset U , we let

Sp(U, n) := max{k : there exist k pairwise unrelated copies of U in Pow([n])}. (2.1)

We often write C(n, k) instead of
�n
k

�
; especially in text environment and if n or k is a complicated

or subscripted expression. The notation “Sp(�,�)” and “C(�,�)” come from Sperner and binomial

coefficient, respectively. As usual, b c and d e denote the lower and upper integer part functions;

for example, b5/3c = 1 and d5/3e = 2. With our notations, Sperner’s theorem [16] asserts that for

every n 2 N0,

if U is the 1-element poset, then Sp(U, n) =
✓

n

bn/2c

◆
=: fSp(n). (2.2)

Recall that a subset X of a lattice L = (L;_,^) is a generating set of L if for every Y such that

X ✓ Y ✓ L and Y is closed with respect to _ and ^, we have that Y = L. We denote the size of

a minimum-sized generating set of L by

Gm(L) := min{|X| : X is a generating set of L}. (2.3)

For k 2 N+, the k-th direct power L
k of L consists of the k-tuples of elements of L and the lattice

operations are performed componentwise. With our notations, the main result of Czédli [4] asserts

that
for 2  k 2 N+ and a finite distributive lattice L, Gm(Lk)

is the smallest n 2 N+ such that k  Sp(J(L), n).
(2.4)
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It is also clear from [4] that for each finite distributive lattice L, the functions k 7! Gm(Lk) and

n 7! Sp(J(L), n) mutually determine each other, but we do not need this fact in the present paper.

The following definition is crucial in the paper.

Definition 2.1. For 0  a < b  r 2 N0 such that a+ 2  b, the full segment poset FSgP(r, a, b)

is the poset U defined (up to isomorphism) by the conjunction of the following two rules.

(A) r is the smallest integer such that U is embeddable into Pow([r]);

(B) the subposet {X 2 Pow([r]) : a < |X| < b} of Pow([r]) is order isomorphic to U .

Even though 0  a in Definition 2.1 could be replaced by �1  a, we do not do so since the

case a = �1 would need a different (in fact, easier) treatment; see [4]. Let U be a finite poset,

and let s 2 N+. If f1, f2 : N�s ! N0 are functions such that f1(n)  Sp(U, n)  f2(n) for all

n 2 N�s, then (f1, f2) is a pair of estimates of the function Sp(U,�) on N�s; in particular, f1 is a

lower estimate while f2 is an upper estimate of Sp(U,�). A reasonably good property of pairs of

estimates of Sp(U,�) is defined as follows:

for s 2 N+, a pair (f1, f2) of estimates is separated

on N�s if f2(n)  f1(n+ 1) for all n 2 N�s.
(2.5)

The following fact is a trivial consequence of (2.4) and for k � 2, it is implicit in Czédli [4]; see

around (4.23) and (4.24) in [4].

Observation 2.2. Let D be a finite distributive lattice. Denote the poset J(D) by U , and let

s 2 N+. Let (f1, f2) be a separated pair of estimates of Sp(U,�) on N�s such that f1 (the lower

estimate) is strictly increasing on N�s. Then, for each k 2 N+ such that f1(s) < k, (f1, f2)

determines Gm(Dk) “with accuracy 1/2” as follows: Letting n be the unique n 2 N+ such that

f1(n) < k  f1(n+1), either k  f2(n) and Gm(Dk) 2 {n, n+1} or f2(n) < k and Gm(Dk) = n+1.

The term “accuracy 1/2” comes from the fact that the distance between the never exact estimate

n+ 1/2 and Gm(Dk) is always 1/2.

3 Lower estimates

The easy proof of the following lemma raises the possibility that the lemma might belong to the

folklore even though the author has never met it.
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Lemma 3.1. For 2  r 2 N+, J(FD(r)) is isomorphic to the poset FSgP(r, 0, r), which is defined

in Definition 2.1.

Proof. The smallest element and the largest element of FD(r) will be denoted by 0r and 1r,

respectively. Let S2 := {0r, 1r}; it is a two-element sublattice of FD(r). Denote by {x1, . . . , xr}
the set of free generators of FD(r). Let ~x := (x1, . . . , xr), and let ~⇠ = (⇠1, . . . , ⇠r) be a vector of

variables. Call a subset J of [r] nontrivial if ; 6= J 6= [r], and let Pownt([r]) =
�
Pownt([r]);✓

�

stand for the poset formed by the nontrivial subsets of [r]. For J 2 Pownt([r]), let mJ stand for

the r-ary lattice term defined by mJ(~⇠) :=
V

i2J ⇠i. Let X := {mJ(~x) : J 2 Pownt([r])}. As

X ✓ FD(r), X = (X;) is a subposet of FD(r).

First, we show that the map ' : Pownt([r]) ! X defined by J ! mJ(~x) is a dual order isomorphism.

The tool we need is simple: Since FD(r) is free, it follows that whenever J,K 2 Pownt([r]) and

mJ(~x) = mK(~x), then mJ(~y) = mK(~y) for all ~y = (y1, . . . , yr) 2 S
r
2 , and similarly for “�” instead

of “=”.

The implication J ✓ K ) mJ(~x) � mK(~x) is obvious. For the sake of contradiction, suppose that

mJ(~x) � mK(~x) for some J,K 2 Pownt([r]) but J * K. Pick a j 2 J \ K, and let ~y 2 S
r
2 be

the vector for which yj = 0r but yi = 1r for all i 2 [r] \ {j}. Then mK(~y) = 1r but mJ(~y) = 0r,

whereby mJ(~y) ⇤ mK(~y). By the tool mentioned above, this contradicts mJ(~x) � mK(~x) and

proves that “�” in X and “✓” in Pownt([r]) correspond to each other. In particular, ' is a bijective

map as the equality of two elements or subsets can be expressed by these relations. Thus, ' is a

dual order isomorphism. The composite of ' and the selfdual automorphism of Pownt([r]) defined

by J 7! [r] \ J is an order isomorphism. Hence, X ⇠= Pownt([r]). Since Pownt([r]) ⇠= FSgP(r, 0, r),

we have shown that X ⇠= FSgP(r, 0, r).

To complete the proof, it suffices to show that J(FD(r)) = X. Using the tool mentioned earlier

and S2, we obtain that 1r = x1_ · · ·_xr /2 J(FD(r)) and for every J 2 Pownt([r]), mJ(~x) /2 S2. By

distributivity, each element of FD(r)\S2 is the join of meets of some generators or, in other words,

a disjunctive normal form of the generators. Clearly, neither the empty meet, nor the empty join,

nor the meet of all generators is needed here, whereby there is at least one joinand and each of the

joinands is of the form mJ(~x) with J 2 Pownt([r]). As one joinand is sufficient for the elements of

J(FD(r)), we obtain that J(FD(r)) ✓ X.

To show the converse inclusion by way of contradiction, suppose that mJ(~x) 2 X \J(FD(r)). Then

mJ(~x) is the join of some elements of J(FD(r)) that are smaller than mJ(~x). These elements

are of the form mIj (~x) as J(FD(r)) ✓ X. This fact and the dual isomorphism proved in the

previous paragraph imply that there are I1, . . . , It 2 Pownt([r]) such that J ⇢ I1, . . . , J ⇢ It and

mJ(~x) = mI1(~x)_ · · ·_mIt(~x). As this equality holds for the free generators, it holds as an identity

in S2. However, if we define ~y 2 S
r
2 by ys := 1r if s 2 J and ys = 0r otherwise, then mJ(~y) = 1r



CUBO
26, 2 (2024)

Generating the direct powers of free distributive lattices 223

but each of the joinands and so the join are 0r. This contradiction completes the proof of Lemma

3.1.

For 1  a < b  r 2 N+ such that a+2  b and n 2 N�r, ~v will denote a vector (v0, . . . , va; vb, . . . , vr),

so there is gap in the index set of the components. Let p 2 {�r,�r + 1, . . . , r} be a parameter,

and note that a binomial coefficient C(x1, x2) is 0 unless x1, x2 2 N0 and 0  x2  x1. Define

f
(p)
r,a,b(n) :=

bn/rc�1X

i=0

X

~v2{0,...,i}r+a�b+2

v0+···+va+vb+···+vr=i

i!

v0! · · · va! · vb! · · · vr!
⇥

⇥
✓

n� (i+ 1)r

p+ b(n� r)/2c � 0v0 � 1v1 � · · ·� ava � bvb � · · ·� rvr

◆
⇥

⇥
✓
r

0

◆v0
. . .

✓
r

a

◆va
·
✓
r

b

◆vb

. . .

✓
r

r

◆vr
, and

(3.1)

f
(max)
r,a,b (n) := max

n
f
(p)
r,a,b(n) : p 2 {�r,�r + 1, . . . , r � 1, r}

o
. (3.2)

Proposition 3.2. For r 2 N�3 and 0  a < b  r 2 N+ such that a+ 2  b, f (max)
r,a,b (n) is a lower

estimate of Sp(FSgP(r, a, b), n) on N�r.

The proof below shows that Proposition 3.2 would still hold if we replaced {�r,�r+1, . . . , r�1, r}
in (3.2) with Z but we do not have any example where Z, which would make practical computations

longer, is better than {�r,�r + 1, . . . , r � 1, r}.

Proof. It suffices to show that for any p 2 Z, f (p)
r,a,b(n)  Sp(FSgP(r, a, b), n). Take an n-element

set M , and denote the quotient bn/rc by q. Fix q pairwise disjoint r-element subsets M0, . . . ,Mq�1

of M , we call them blocks, and define Mq := M \ (M0 [ · · · [ Mq�1). Let h := p + b(n � r)/2c.
For j 2 {0, . . . , q � 1}, a subset X of the block Mj is called small if |X|  a. Similarly, if

|X| � b, then X is large while in the remainder case when a < |X| < b, we say that X is medium-

sized. By an extremal subset of Mj we mean a subset that is large or small; so “extremal” is the

opposite of “medium-sized”. For a subset B of M , B \ Mi is often denoted by Bi. We say that

(i, B) 2 {0, . . . , q � 1}⇥ Pow(M) is a fundamental pair if

(F1) |B| = h, and

(F2) Bi = ; and for each j 2 {0, . . . , i� 1}, Bj is extremal (that is, small or large).

Four examples are given in Figure 2, where n = 54, r = 8, a = 3, b = 6, p = 3, q = 6, and h = 26.

In each of the four parts of this figure, the green-filled solid ovals1 represent extremal subsets of

the appropriate Mj ’s, j 2 {0, . . . , i� 1}, the red dotted oval is a medium-sized subset of Mi, and
1Note for a grayscale version: the green-filled ovals contain black numbers in their interiors while the ovals with

white numbers are magenta-filled.
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(F2) imposes no condition on the subsets represented by magenta-filled solid ovals. Hence, in each

of the four examples, the set component (that is, the second component, which was denoted by B)

of the fundamental pair is the union of the color-filled solid ovals. The index component (that is,

the first component) is indicated at the top of the figure. Each color-filled solid oval contains the

number of elements of the subset Bj that this oval represents. Note, however, that a red dotted

oval (regardless the number it contains) in the picture of (i, B) means that Bi = ;. (The red

dotted ovals will be explained right after (3.3).) Note also that, witnessed by i = 5 and i = 4 in

the figure, the set component does not determine the index component.

M0

M1

M2

M3

M4

M5

Mq

2

8

1

4

7

6

2

i = 3

7

5

0

4

8

4

3

i = 1

3

7

2

8

0

4

6

i = 5

3

7

2

8

5

0

6

i = 4

Figure 2: Illustrating the proof of Proposition 3.2 with FSgP(8, 3, 6); h = 26, n = 54; in each
fundamental pair, the set component is the union of the color-filled solid ovals.

For a fundamental pair (i, B), let

U(i, B) := {B [X : X ✓ Mi and a < |X| < b}. (3.3)

Clearly, U(i, B) is a copy of FSgP(r, a, b). The role of a red dotted oval in Figure 2 is to represent

one of the sets X in (3.3). Now that we have defined our construction, we have to prove that

the number of fundamental pairs is f (p)
r,a,b(n) and for different fundamental pairs (i, B) and (i0, B0),

U(i, B) and U(i0, B0) are unrelated.

To obtain a fundamental pair (i, B), first we choose i 2 {0, . . . , q � 1}; this explains the outer

summation sign in (3.1). Then for each j 2 {0, . . . , a, b, . . . , r} we choose the number vj of the j-

element green-filled solid ovals. As there are i green-filled solid ovals, the choice of the vector formed

from these vj ’s is not quite arbitrary; this explains the subscript of the inner summation sign in

(3.1). For example, on the right (that is, in the i = 4 part) of Figure 2, ~v = (v0, . . . , v3; v6, v7, v8) =

(0, 0, 1, 1; 0, 1, 1). The fraction in (3.1) is the multinomial coefficient showing how many ways v0

zeros, v1 1’s, . . . , va a’s, vb b’s, . . . , vr r’s can be ordered. On the right of the figure, this is

how many ways the numbers 3, 7, 2, 8 can be written below the red dotted oval (the figure shows

only one of these ways). As there is no stipulation on the magenta-filled solid ovals, the binomial
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coefficient in the middle of (3.1) gives the number of possible unions of the magenta-filled solid

ovals, that is, it shows how many ways the system of these ovals can be chosen.

For j 2 {0, . . . , a, b, . . . , r}, a j-element subset (green-filled solid oval) of an r-element block Mt

can be chosen in C(r, j) ways. As there are vj such subsets and there are several values of j, the

product in the last row of (3.1) is the number how many ways the systems of the green-filled solid

ovals can be chosen. Therefore, f (p)
r,a,b(n) is the number of fundamental pairs as required.

Next, let (i, B) 6= (i0, B0) be distinct fundamental pairs, Y = B[X 2 U(i, B), and Y
0 = B

0[X
0 2

U(i0, B0). For the sake of contradiction, suppose that Y ✓ Y
0. If we had that i = i

0, then

B = (M \Mi) \ Y ✓ (M \Mi) \ Y
0 = (M \Mi0) \ Y

0 = B
0, which together with |B| = h = |B0|

would give that B = B
0 and so (i, B) = (i0, B0), a contradiction. Hence, i 6= i

0. Observe that

Y ✓ Y
0 gives that Mj \ Y ✓ Mj \ Y

0 for all j 2 {0, . . . , q}. Furthermore, Mj \ Y = Bj for j 6= i

while Mi \ Y = X. Similarly, Mj \ Y
0 = B

0
j for j 6= i

0 while Mi0 \ Y
0 = X

0. Hence, Bj ✓ B
0
j and

so |Bj |  |B0
j | for j 2 {0, . . . , q} \ {i, i0}, implying that

z :=
X

j2{0,...,q}\{i,i0}

|Bj | 
X

j2{0,...,q}\{i,i0}

|B0
j | =: z0. (3.4)

As X is medium-sized, B0
i is extremal, and X = Mi \ Y ✓ Mi \ Y

0 = B
0
i, we have that B0

i is large,

that is, b  |B0
i|. Hence, (3.4) gives that z

0 + b  z
0 + |B0

i| = |B0|. Similarly, X 0 is medium-sized,

Bi0 is extremal, and Bi0 = Mi0 \ Y ✓ Mi0 \ Y
0 = X

0, whence Bi0 is small, that is, |Bi0 |  a. Thus,

|B| = z + |Bi0 |  z + a. Combining the inequalities a < b, |B|  z + a, z0 + b  |B0|, and (3.4), we

obtain that

|B|  z + a < z + b  z
0 + b  |B0|.

This strict inequality contradicts (F1), completing the proof of Proposition 3.2.

Several ideas and ingredients of the proof above, like the way of partitioning the base set into

blocks, are contained in Dove and Griggs [8] and Katona and Nagy [12]. However, even if the

construction given in [8] were tailored to our particular posets U , (F1) would fail. The following

assertion says that the lower estimate given in Proposition 3.2 is asymptotically as good as possible.

Proposition 3.3. For r 2 N�3 and 0  a < b  r 2 N+ such that a + 2  b, f (max)
r,a,b (n) and, for

any fixed p 2 Z, f (p)
r,a,b(n) are asymptotically Sp(FSgP(r, a, b), n) as n ! 1.

Proof. With s := |FSgP(r, a, b)|, s = 2r �
�r
0

�
� · · ·�

�r
a

�
�
�r
b

�
� · · ·�

�r
r

�
. Let  be a real number

such that  < 1 but 1�  is very little. As we have that
P1

i=0((2
r � s)/2r)i = 2r/s, we can pick

an n0 2 N+ such that

 · 2r/s 
bn/rc�1X

i=0

((2r � s)/2r)i  1


2r/s for all n such that n � n0. (3.5)
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It suffices to deal with f
(p)
r,a,b for a fixed p 2 Z. Using (1.2), we can pick an n1 � n0 such that

 · fSp(n) · 2�(i+1)r 
✓

n� (i+ 1)r

p+ b(n� r)/2c � 0v0 � 1v1 � · · ·� ava � bvb � · · ·� rvr

◆

 1


· fSp(n) · 2�(i+1)r

(3.6)

for all n � n1. Let us define an auxiliary function for n � n1 and apply the multinomial theorem

to it as follows.

faux(n) :=

bn/rc�1X

i=0

X

~v2{0,...,i}r+a�b+2

v0+···+va+vb+···+vr=i

i!

v0! · · · va! · vb! · · · vr!
⇥

⇥ fSp(n) · 2�(i+1)r

✓
r

0

◆v0

. . .

✓
r

a

◆va
·
✓
r

b

◆vb
. . .

✓
r

r

◆vr
(3.7)

=
fSp(n)

2r

bn/rc�1X

i=0

(2r)�i

✓✓
r

0

◆
+ · · ·+

✓
r

a

◆
+

✓
r

b

◆
+ · · ·+

✓
r

r

◆◆i

=
fSp(n)

2r

bn/rc�1X

i=0

✓
2r � s

2r

◆i

. (3.8)

Comparing (3.1), (3.6), and (3.7), we obtain that faux(n)  f
(p)
r,a,b(n)  

�1
faux(n) holds for all

n � n1. Applying (3.5) to the sum in (3.8), it follows that fSp(n)/s  faux(n)  1
fSp(n)/s.

Substituting this pair of inequalities into the previous one, we have that 
2
fSp(n)/s  f

(p)
r,a,b(n) 


�2

fSp(n)/s for all n � n0. Letting  ! 1, it follows that f
(p)
r,a,b(n) is asymptotically fSp(n)/s.

So is Sp(FSgP(r, a, b), n) by Dove and Griggs [8] and Katona and Nagy [12]. By transitivity, we

obtain the required asymptotic equality. The proof of Proposition 3.3 is complete.

4 Pairs of estimates

For n 2 N�3, take the following “discrete 4-dimensional simplex”

H4(n) := {(t, x1, x2, x3) 2 N4
0 : x1 > 0, x2 > 0, x3 > 0, t+ x1 + x2 + x3  n}. (4.1)

Remembering that [3] := {1, 2, 3}, define the function f3,4 : H4(n) ! N0 by

f3,4(t, x1, x2, x3) =
X

j2[3]

(t+ xj)! · (n� t� xj)! +
X

{j,u}✓[3], j 6=u

(t+ xj + xu)! · (n� t� xj � xu)!

�
X

(j,u)2[3]⇥[3], j 6=u

(t+ xj)! · xu! · (n� t� xj � xu)! , (4.2)
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and let

Mn := min{f3,4(t, x1, x2, x3) : (t, x1, x2, x3) 2 H4(n)}. (4.3)

We also define the following three functions:

gr(n) :=

�
1

2
fSp(n+ 2� r)

⌫
, (4.4)

g
⇤
3(n) := bn!/Mnc, where Mn is given in (4.3), and (4.5)

g
⇤⇤
3 (n) :=

j
n! ·

⇣
3 · bn/2c! · dn/2e! + 3 · b(n+ 2)/2c! · d(n� 2)/2e!

�6 · bn/2c! · d(n� 2)/2e!
⌘�1k

.

(4.6)

Next, based on the notations and concepts given in (2.1), (2.5), Definition 2.1, (4.4), (4.5), and

(4.6), we can formulate the main result of the paper.

Theorem 4.1. For 3  r  n 2 N+ and p 2 {�r,�r+1, . . . , r� 1, r}, gr(n) is an upper estimate

while

f
(p)
r,0,r(n) :=

bn/rc�1X

i=0

iX

j=0

✓
i

j

◆✓
n� (i+ 1)r

p+ b(n� r)/2c � jr

◆
and, in particular, (4.7)

f
N
r,0,r(n) := f

(0)
r,0,r(n) (4.8)

are lower estimates of Sp(FSgP(r, 0, r), n) = Sp(J(FD(r)), n) on N�r. In particular,

for all n 2 N�r
, f

N
r,0,r(n)  f

(max)
r,0,r (n)  Sp(J(FD(r)), n)  gr(n). (4.9)

For r = 3, in addition to the satisfaction of (4.9), g⇤3(n) is also an upper estimate of Sp(J(FD(3)), n)

on N�3. For n 2 {3, 4, . . . , 300}, g
⇤
3(n) = g

⇤⇤
3 (n)  g3(n); in fact, g

⇤⇤
3 (n) < g3(n) for n 2

{5, 6, . . . , 300}. The pair (fN
3,0,3, g3) is separated for n 2 N�3, and so are the pairs (fN

3,0,3, g
⇤⇤
3 ) and

(fN
3,0,3, g

⇤
3) for n 2 {3, 4, . . . , 300}. Finally, for r 2 {3, 4, . . . , 100}, the pair (fN

r,0,r, gr) is separated

on the set {r, r + 1, . . . , 300}.

It took 952 seconds ⇡ 16 minutes for a computer, see Footnote 2 later, to show that for r 2
{3, . . . , 200} and n 2 {r, . . . , 300}, fN

r,0,r(n) is the same as f
(max)
r,0,r (n); the latter is defined in (3.2).

Since f
N
r,0,r(n) is easier to define and much easier to compute than f

(max)
r,0,r (n), it is the former that

occurs in Theorem 4.1. However, it will be clear from the proof that the theorem holds with f
(max)
r,0,r

in place of fN
r,0,r.

Conjecture 4.2. We guess that g⇤3(n) = g
⇤⇤
3 (n) for all n 2 N�3 and g

⇤⇤
3 (n) < g3(n) for all N�5.

Example 5.4 in Section 5 will show that, combining Theorem 4.1 with Observation 2.2, we can de-

termine Gm(FD(3)k) exactly in many cases and we can give a good approximation for Gm(FD(r)k)
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quite often.

Proof of Theorem 4.1. Substituting (i� j, j) for (v0, vr) and observing that the multinomial coef-

ficient becomes a binomial one, it is clear that f
(p)
r,0,r in (4.7) is a particular case of (3.1). Hence,

Lemma 3.1, (3.2), Proposition 3.2, and (4.8) yield the first inequality in (4.9).

Clearly, FSgP(r, 0, r) ⇠= Pownt([r]). Combining this with Lemma 3.1, we obtain that J(FD(r)) ⇠=
Pownt([r]). Take a maximal chain in each of the intervals [{1}, {1, 3, 4, . . . , r}] and [{2},
{2, 3, 4, . . . , r}] of Pownt([r]). These two chains are unrelated and each of them consists of r � 1

elements. Let n 2 N�r. With k := Sp(Pownt([r]), n) = Sp(J(FD(r)), n), we can take k pairwise

unrelated copies of Pownt([r]) in Pow([n]). Therefore, there 2k pairwise unrelated (r � 1)-element

chains in Pow([n]). By Griggs, Stahl, and Trotter [11], the maximum number of chains with this

property is fSp(n+ 2� r). Hence, 2k  fSp(n+ 2� r), implying the second inequality in (4.9).

In the rest of the proof, r := 3. Let Sym(n) stand for the set of all permutations of [n]. For ~� =

(�1, . . . ,�n) 2 Sym(n) and i 2 {0, 1 . . . , n}, the i’s initial segment of ~� is Is(~�, i) := {�j : j  i}. For

X 2 Pow([n]), the permutation set associated with X is Ps(X) := {~� 2 Sym(n) : X = Is(~�, |X|)}.
The trivial fact that

if X,Y 2 Pow([n]) are incomparable (in notation, X k Y ), then Ps(X) \ Ps(Y ) = ; (4.10)

was used first by Lubell [14], and then by Griggs, Stahl, and Trotter [11] and some other pa-

pers listed in the bibliographic section. To ease the notation, let W3 := FSgP(3, 0, 3) and

denote its elements by A,B,C,X, Y, Z according to Figure 1. Let k := Sp(W3, n), and let

W
(1)
3 , . . . ,W

(k)
3 be pairwise unrelated copies of W3 in Pow([n]). For W

(i)
3 , we use the notation

W
(i)
3 = {Ai, Bi, Ci, Xi, Yi, Zi} in harmony with Figure 1; for example, Ai ⇢ Xi and Ai k Zi, etc.

We claim that W
(1)
3 , . . . ,W

(k)
3 can be chosen so that, for all i 2 [k],

Xi = Ai [Bi, Yi = Ai [ Ci, Zi = Bi [ Ci, (4.11)

Ai = Xi \ Yi, Bi = Xi \ Zi, Ci = Yi \ Zi. (4.12)

Assume that the first equality in (4.11) fails. Let X 0
i := Ai[Bi and define W

(i)
3

0 := (W (i)
3 \{Xi})[

{X 0
i}. If we had that X

0
i ✓ Yi, then Bi ✓ X

0
i ✓ Yi would be a contradiction. As Yi ✓ X

0
i would

lead to Yi ✓ Xi since X
0
i ✓ Xi, we conclude that X

0
i k Yi. We obtain similarly that X

0
i k Zi. So

{X 0
i, Yi, Zi} is an antichain, and now it follows easily that W

(i)
3

0 is a copy of W3. For j 2 [k] \ {i}
and E 2 W

(j)
3 , E ✓ X

0
i would lead to E ✓ Xi while X

0
i ✓ E to Ai ✓ E. So E , X

0
i would lead to

contradiction. Hence, W (i)
3

0 and W
(j)
3 are unrelated, showing that we can change W

(i)
3 to W

(i)
3

0.

As there is an analogous treatment for Yi and Zi, and we can take i = 1, i = 2, . . . , i = k one by

one, (4.11) can be assumed.
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Recall that Grätzer [10, Lemma 73], which is a well known easy statement, asserts that whenever

a, b, c are elements of a lattice such that {a _ b, a _ c, b _ c} is a 3-element antichain, then this

antichain generates an 8-element Boolean sublattice in which {a _ b, a _ c, b _ c} is the set of

coatoms. Therefore, if we apply the dual of the procedure above (that is, if we replace Ai by

Xi \ Yi, etc.), then we reach (4.12) without destroying the validity of (4.11). We have shown that

both (4.11) and (4.12) can be assumed; so we assume them in the rest of the proof.

Let Ti := Xi \ Yi \ Zi. By (4.12), Ti is also the intersection of any two of Ai, Bi, and Ci. Hence,

letting A
•
i := Ai\Ti, B•

i := Bi \Ti, and C
•
i := Ci \Ti, it follows from (4.11), (4.12), and W

(i)
3

⇠= W3

that A
•
i , B•

i , and C
•
i are pairwise disjoint subsets of [n], none of them is empty, they are disjoint

from Ti, and

Ai = Ti [A
•
i , Bi = Ti [B

•
i , Ci = Ti [ C

•
i ,

Xi = Ti [A
•
i [B

•
i , Yi = Ti [A

•
i [ C

•
i , Zi = Ti [B

•
i [ C

•
i .

(4.13)

For i 2 [k], we let

Gi := Ps(Ai) [ Ps(Bi) [ Ps(Ci) [ Ps(Xi) [ Ps(Yi) [ Ps(Zi). (4.14)

As each of Ai, . . . , Zi is incomparable with each of Aj , . . . , Zj provided that i 6= j, (4.10) together

with (4.14) imply that

for i, j 2 [k], if i 6= j then Gi \Gj = ;. (4.15)

It follows from (4.15), G1 [ · · · [Gk ✓ Sym(n), and |Sym(n)| = n! that

X

i2[k]

|Gi|  n! . (4.16)

Next, for i 2 [k], we focus on |Gi|. Denote |Ti|, |A•
i |, |B•

i |, and |C•
i | by ti, ai, bi, and ci, respectively.

By (4.13), |Ai| = ti+ai, |Bi| = ti+bi, |Ci| = ti+ci, |Xi| = ti+ai+bi, |Yi| = ti+ai+ci, and |Zi| =
ti+bi+ci. For any ~� = (�1, . . . ,�n) 2 Ps(Ai), Ai is the set of the first |Ai| = ti+ai components of

~�; we can choose these components in (ti+ai)! ways. To obtain the rest of the components, we can

arrange the elements of [n] \Ai in (n� (ti + ai))! ways. Hence, |Ps(Ai)| = (ti + ai)! · (n� ti � ai)!.

We obtain similarly that |Ps(Bi)| = (ti + bi)! · (n � ti � bi)!, |Ps(Ci)| = (ti + ci)! · (n � ti � ci)!,

|Ps(Xi)| = (ti + ai + bi)! · (n � ti � ai � bi)!, |Ps(Yi)| = (ti + ai + ci)! · (n � ti � ai � ci)!, and

|Ps(Zi)| = (ti + bi + ci)! · (n� ti � bi � ci)!. It follows from (4.10) that the intersection of any three

of the six permutation sets considered above is empty since there is no 3-element chain in W
(i)
3 .

By (4.10) again, we need to take care of the intersections of two permutation sets associated with

comparable members of W (i)
3 ; there are six such intersections as the diagram of W3 has exactly

six edges; see Figure 1. One of the just-mentioned six intersections is Ps(Ai) \ Ps(Xi). For a
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permutation ~� 2 Ps(Ai) \ Ps(Xi), (4.13) yields that there are |Ai|! = (ti + ai)! possibilities to

arrange the elements of Ai in the first |Ai| places, bi! many possibilities to arrange the elements

of Xi \ Ai = B
•
i in the next bi places, and (n� ti � ai � bi)! possibilities for the rest of entries of

~�. Hence, |Ps(Ai) \ Ps(Xi)| = (ti + ai)! · bi! · (n� ti � ai � bi)!, and analogously for the other five

intersections of two permutation sets.

The considerations above imply that for i 2 [k], |Gi| = f3,4(ti, ai, bi, ci); the function f3,4 is defined

(4.2). As (ti, ai, bi, ci) is clearly in H4(n), (4.3) yields that Mn  |Gi|. This fact and (4.16) imply

that kMn 
P

i2[k] |Gi|  n!. Dividing by Mn and taking into account that k 2 N+, we obtain

that Sp(W3, n) = k  bn!/Mnc = g
⇤
3(n), as required.

We only guess but could not prove that for all n 2 N�3, f3,4 takes its minimum on H4(n) at

(b(n�2)/2c, 1, 1, 1); see also Conjecture 4.2. However, we can reduce the computational difficulties

by considering the auxiliary function

f3,3(t, x, y) = (t+ x)! · (n� t� x)! + (t+ y)! · (n� t� y)! + 2(t+ x+ y)! · (n� t� x� y)!

� 2(t+ x)! · y! · (n� t� x� y)!� 2(t+ y)! · x! · (n� t� y � x)! . (4.17)

The definition of H4(n), given in (4.1), and

2f3,4(t, x1, x2, x3) = f3,3(t, x1, x2) + f3,3(t, x2, x3) + f3,3(t, x1, x3) , (4.18)

explain that we are interested in f3,3 on the first one of the following two sets,

H3(n) := {(t, x, y) 2 N3
0 : x > 0, y > 0, t+ x+ y  n� 1} and (4.19)

H
0
3(n) := {(t, x, y) 2 N3

0 : x > 0, y � x, t+ x+ y  n� 1}. (4.20)

In (4.19), the sum is only at most n� 1 since the fourth variable of f3,4, which does not occur in

f3,3, is at least 1. The progress is that H3(n) has significantly fewer elements than H4(n), and

H
0
3(n) has even fewer; this is why we could reach 300 in Theorem 4.1. (Note that a priori, it was

not clear that when 2f3,4(t, x1, x2, x3) takes its minimum value, then so do all of its summands in

(4.18).) Observe that since f3,3 is symmetric in its last two variables,

min{f3,3(t, x, y) : (t, x, y) 2 H3(n)} = min{f3,3(t, x, y) : (t, x, y) 2 H
0
3(n)}. (4.21)
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A straightforward Maple program2, which benefits from (4.21), shows that

for 3  n  300, f3,3 takes its minimum on the discrete

tetrahedron H3(n) at (t, x, y) = (b(n� 2)/2c, 1, 1).
(4.22)

(Note that f3,3 takes its minimum at two triples if n is even but only at a unique triple if n is

odd.) If n 2 {3, 4, . . . , 300} and (b(n� 2)/2c, 1, 1, 1) is substituted for (t, x, y, z), then each of the

three summands in (4.18) takes its minimal value by (4.22). This allows us to conclude that at

(t, x, y, z) = (b(n � 2)/2c, 1, 1, 1), f3,4 takes its minimum on H4(n). Thus, for n 2 {3, 4, . . . , 300}
and for Mn from (4.3),

Mn = f3,4(b(n� 2)/2c, 1, 1, 1)

= 3 · bn/2c! · dn/2e! + 3 · b(n+ 2)/2c! · d(n� 2)/2e!� 6 · bn/2c! · d(n� 2)/2e! .
(4.23)

Combining (4.5), (4.23), and (4.6), we obtain that g
⇤
3(n) = g

⇤⇤
3 (n) for n belonging to the set

{3, 4, . . . , 300}, as required.

Next, to show that the pair (fN
3,0,3, g3) = (f (0)

3,0,3, g3) is separating, we need to show that f
(0)
3,0,3(n+

1) � g3(n) � 0 for all n 2 N�3. Depending on the parity of n, there are two cases. If n is of the

form n = 2m+ 2 then, reducing the sum in (4.7) to its summands corresponding to (i, j) = (0, 0)

and (i, j) = (1, 0),

2f (0)
3,0,3(n+ 1)� 2g3(n) � 2

✓
2m

m

◆
+ 2

✓
2m� 3

m

◆
�
✓
2m+ 1

m

◆
(4.24)

=
2 · (2m)!

m! ·m!
+

2 · (2m� 3)!

m!(m� 3)!
� (2m+ 1)!

m!(m+ 1)!

=
(2m� 3)!

m!(m+ 1)!
· ↵, where

↵ = 2(m+ 1)2m(2m� 1)(2m� 2) + 2(m+ 1)m(m� 1)(m� 2)

� (2m+ 1)2m(2m� 1)(2m� 2)

= 2m4 + 4m3 � 14m2 + 8m = 2m(m+ 4)(m� 1)2. (4.25)

Hence, both ↵ and the fraction multiplied by ↵ are non-negative for m 2 N+. Thus, f (0)
3,0,3(n +

1)� g3(n) � 0 for n � 4 even. Similarly, for n = 2m+ 1 odd,

2f (0)
3,0,3(n+ 1)� 2g3(n) � 2

✓
2m� 1

m� 1

◆
+ 2

✓
2m� 4

m� 1

◆
�
✓
2m

m

◆
=

(2m� 4)!

m!m!
· 2m2(m� 1)(m� 2).

2Maple V Release 5 (1997); this computer algebraic program ran on a desktop computer (AMD Ryzen 7 2700X
Eight-Core Processor 3.70 GHz) in Windows XP environment simulated by Oracle VM VirtualBox 6.0 (2019) under
Windows 10 Pro. The whole computation for (4.21) and the data in Section 5 took 7 hours and 16 minutes;
(4.21) in itself needed about 7 hours. The program is available from the (Appendix) Section 6 of the extended
arXiv:2309.13783 version of the paper and, at the time of writing, from the author’s website.

https://arxiv.org/abs/2309.13783
http://www.math.u-szeged.hu/~czedli
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Therefore, f
(0)
3,0,3(n + 1) � g3(n) � 0 for 2  m 2 N+, that is, for n � 5 odd. For n = 3,

f
(0)
3,0,3(n+ 1)� g3(n) � 0 is trivial; see also 5.2. We have shown that (fN

3,0,3, g3) is separated.

The already mentioned Maple program has computed g3(n), g⇤3(n), and g
⇤⇤
3 (n) for all n 2 {3, 4, . . . ,

300}. This computation proves that g
⇤⇤
3 (n) = g

⇤
3(n)  g3(n) for all these n and g

⇤⇤
3 (n) = g

⇤
3(n) <

g3(n) for n 2 {5, 6, . . . , 300}. These inequalities and that (fN
3,0,3, g3) is separated imply that

(fN
3,0,3, g

⇤
3) and (fN

3,0,3, g
⇤⇤
3 ) are separated on {3, 4, . . . , 300}. The same Maple program has com-

puted all the relevant f
N
r,0,r(n+ 1) and gr(n), from which we conclude that for r 2 {3, 4, . . . , 100},

the pair (fN
r,0,r, gr) is separated on the set {r, r + 1, . . . , 300}. The proof of Theorem 4.1 is com-

plete.

Some comments on this proof are appropriate here. While we could use quite a rough estimation

in (4.24) when proving that (fN
3,0,3, g3) is separating on the set N�3, there is no similar possibility

for (fN
r,0,r, gr). Indeed, since f

N
r,0,r(n+ 1) = gr(n) for, say, (r, n) = (20, 56) when f

N
20,0,20(56 + 1) =

17 672 631 900 = g20(56), no estimation would be possible. As gr(n) is far from being asymptotically

good, it is not worth putting more work into its investigation. While we could use Grätzer [10,

Lemma 73] to reach a pleasant situation for r = 3, see (4.11) and (4.12), we have no similar tool

for r > 3; this explains that Theorem 4.1 does not tell too much about upper estimates in case of

r > 3. Finally, note that even though f3,3 in (4.17) is simpler than f3,4 in (4.2), the three-variate

function f3,3 is still too complicated. In particular, we know from computer-assisted calculations

that f3,3 has several “local minima” on the discrete tetrahedron H3(n) defined in (4.19); this is our

excuse that we could verify Conjecture 4.2 only for n  300 and only with a computer.

5 Odds and ends, including some computational results

Theorem 4.1 pays no attention to the case r = 2, which is trivial by the following remark. As in

(4.4), g2(n) := bfSp(n)/2c = bC(n, bn/2c)/2c.

Remark 5.1. For n 2 N�2, Sp(J(FD(2)), n) = g2(n).

Proof. By Lemma 3.1 or trivially, J(FD(2)) is the two-element antichain. Hence, Remark 5.1

follows from Sperner’s theorem, which we quoted in (2.2).

Corollary 5.2. For r 2 N�3 and k 2 N�2, let n 2 N+ be the smallest integer such that k 
f

N
r,0,r(n); see (4.8). Then for every distributive lattice D generated by r elements, the direct power

D
k has an at most n-element generating set.

Proof. Let k, D, and n be as in the corollary. Since k  f
N
r,0,r(n) is included in the assumption and

f
N
r,0,r(n)  Sp(J(FD(r)), n) by Theorem 4.1, it follows from (2.4) that FD(r)k can be generated by
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an at most n element subset Y . Using that FD(r) is the free r-generated distributive lattice, we can

pick a surjective (in other words, onto) homomorphism ' : FD(r) ! D. Then '
k : FD(r)k ! D

k,

defined by (x1, . . . , xk) 7! ('(x1), . . . ,'(xk)), is also a surjective homomorphism. Thus, '
k(Y )

generates D
k and |'k(Y )|  |Y |  n proves Corollary 5.2.

The just-proved corollary and the abundance of large lattices that are easy to describe and easy

to work with motivate the following extension of the cryptographic “protocol” outlined in Czédli

[5] and, mainly, in [3]. The purpose of the quotation marks here is to warn the reader : none of our

protocols is fully elaborated and, thus, it does not meet the requirements of nowadays’ cryptology.

In particular, neither a concrete method of choosing the master key according to some probabilistic

distribution is given nor we have proved that the average case withstands attacks; we do not even

say that we are close to meeting these requirements. On the other hand, no rigorous average case

analysis supports some widely used and, according to experience, safe cryptographic protocols like

RSA and AES and, furthermore, many others rely ultimately on the conjecture that the complexity

class P is different from NP. This is our excuse to tell a bit more about one of our motivations in

Remark 5.3 below. For a lattice L and ~h = (h1, . . . , hk) 2 L
k, ~h is a (k-dimensional) generating

vector of L if {h1, . . . , hk} is a generating set of L.

Remark 5.3. In the session key exchange protocol given in Czédli [3]3, the secret master key

known only by the communicating parties was a k-dimensional generating vector ~h of the 2n-

element Boolean lattice Bn. The point was that Gm(Bn), defined in (2.3), is small, and so there

are very many k-dimensional generating vectors ~h if k is a few times, say, seven times larger than

Gm(Bn). Here we suggest to add (A) or (B) to the protocol outlined in [3] and to work in a lattice

different from Bn.

(A) Choose a medium-sized finite random poset U and an exponent n 2 N+; for example, a 20-

element random poset U and n = 500 are sufficient. (There are very many 20-element posets;

see A000112 in Sloan [15]; the direct link is https: // oeis. org/ A000112 .) By the well-known

structure theorem of finite distributive lattices, see Grätzer [10, Theorem 107], U determines a

finite distributive lattice D. Then replace Bn with D
n in the [3]-protocol so that, in addition to ~h,

U and n also belong to the secret master key.

(B) Choose a random poset U of size 100 or so. As in [6], this U determines the huge lattice

(Quo(U);✓) of quasiorders extending U ; this lattice can be generated by few elements. Use

this lattice instead of Bn. The poset U and a k-dimensional generating vector of (Quo(U);✓)

constitute the secret master key; otherwise the protocol is the same as in [3].

3At the time of writing, see (4.3) in https://arxiv.org/abs/2303.10790v3 .

https://oeis.org/A000112
https://arxiv.org/abs/2303.10790v3
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Next, we present some computational data, see Footnote 2; at the “⇡” rows, the last decimals are

correctly rounded.

n 298 299 300

f
N
3,0,3(n) ⇡ 3.919 720 · 1087 7.839 440 · 1087 1.562 662 · 1088

g
⇤⇤
3 (n) ⇡ 3.932 918 · 1087 7.865 747 · 1087 1.567 888 · 1088
g⇤⇤
3 (n)

fN
3,0,3(n)

⇡ 1.003 367 003 1.003 355 705 1.003 344 482

(5.1)

n = 3 4 5 6 7 8

f
N
3,0,3(n) 1 1 2 3 6 11

g
⇤
3(n) = g

⇤⇤
3 (n) 1 1 2 4 7 13

g3(n) 1 1 3 5 10 17

n = 9 10 11 12 13 14

f
N
3,0,3(n) 24 42 84 153 306 570

g
⇤
3(n) = g

⇤⇤
3 (n) 26 46 92 168 333 616

g3(n) 35 63 126 231 462 858

n = 15 16 17 18 19 20

f
N
3,0,3(n) 1146 2145 4290 8100 16200 30786

g
⇤
3(n) = g

⇤⇤
3 (n) 1225 2288 4558 8580 17107 32413

g3(n) 1716 3217 6435 12155 24310 46189

(5.2)

n = 4 5 6 7 8 9 10 11 12

f
N
4,0,4(n) 1 1 2 3 6 10 20 36 74

g4(n) 1 1 3 5 10 17 35 63 126

n = 13 14 15 16 17 18 19 20 21

f
N
4,0,4(n) 134 268 496 992 1856 3712 7004 14014 26598

g4(n) 231 462 858 1716 3217 6435 12155 24310 46189

(5.3)

n = 5 6 7 8 9 10 11 12 13

f
N
5,0,5(n) 1 1 2 3 6 10 20 35 70

g5(n) 1 1 3 5 10 17 35 63 126

n = 14 15 16 17 18 19 20 21 22

f
N
5,0,5(n) 127 256 471 942 1758 3516 6620 13240 25095

g5(n) 231 462 858 1716 3217 6435 12155 24310 46189

(5.4)
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The computation for the following table took 306 seconds.

n 5 999 6 000

f
N
20,0,20(n) ⇡ 7.445 882 708 069 · 101797 1.489 176 541 614 · 101798

g20(n) ⇡ 1.488 924 847 889 · 101798 2.977 849 695 779 · 101798
(5.5)

Next, we give some examples; each of them is based on (2.4), Observation 2.2, and one of the

computational tables that will be specified.

Example 5.4. (A) By (5.2), Gm(FD(3)30 000) = 20. That is, the direct power FD(3)30 000 can be

generated by 20 elements but not by 19.

(B) By (5.3), Gm(FD(4)20 000) is either 20 or 21 but we do not know which one.

(C) By (5.4), Gm(FD(5)25 000) = 22.

(D) By (5.1), Gm(FD(3)10
88

) = 300 (the exponent in the direct power is 1088).

(E) By (5.5), Gm(FD(20)1.489·10
1798

) = 6 000 (the exponent is 1.489 · 101 798).

At the time of writing, we know from Sloan [15] (https://oeis.org/A000372) that in spite of

lots of work by many contributors, the largest integer r for which |FD(r)| is known is r = 9. We

mention the following well-known folkloric lower estimate:

21024 = 22
10

 |FD(20)|. (5.6)

Indeed, the free Boolean lattice FB(10) on 10 generators consists of 22
10

elements and it is lattice-

generated by the free generators of FB(10) and their complements. So FB(10) as a distributive

lattice is generated by 20 elements, implying (5.6).

Based on (5.6) and the paragraph above, the direct power in part (E) of Example 5.4 consists of an

unknown but very large number of elements. However, only 306 seconds were needed to determine

the least possible size of its generating sets.

https://oeis.org/A000372
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ABSTRACT

We explicitly derive the Christoffel symbols in terms of

adapted frame fields for the Levi-Civita connection of a

Lorentzian n-manifold (M, g), equipped with a prescribed

optical geometry of Kähler-Sasaki type. The formulas found

in this paper have several important applications, such as de-

termining the geometric invariants of Lorentzian manifolds

with prescribed optical geometries or solving curvature con-

straints.

RESUMEN

Derivamos explícitamente los símbolos de Christoffel en tér-

minos de los campos de marcos adaptados para la cone-

xión de Levi-Civita de una n-variedad Lorentziana (M, g),

equipada con una geometría óptica prescrita de tipo Kähler-

Sasaki. Las fórmulas halladas en este artículo tienen diversas

aplicaciones importantes, tales como determinar los invarian-

tes geométricos de variedades Lorentzianas con geometrías

ópticas prescritas o resolver restricciones sobre la curvatura.

Keywords and Phrases: Levi-Civita connection, optical geometry, congruence of shearfree geodesics, Sasaki

manifolds.
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1 Introduction

An optical geometry, a notion introduced in the late eighties by Robinson and Trautman, is a

geometrical structure that encodes the existence of an electromagnetic plane wave – or an appro-

priate higher dimensional generalisation [2] – propagating along a prescribed foliation by curves of

a Lorentzian manifold. Let us recall the relevant definitions. A null congruence on a Lorentzian

n-manifold (M, g), n � 3, is a foliation by curves, which are tangent to some nowhere vanishing

null vector field. Given a Lorentzian n-manifold (M, g), n � 3, a null congruence is called geodesic

shearfree, or shearfree for short, if there is a choice for a nowhere vanishing tangent null vector field

p, whose local flow preserves both the codimension one distribution W := p?g and the conformal

class of the induced degenerate metric h := g|W⇥W on the spaces Wx = p?g |x, x 2 M . These

conditions are equivalent to requiring that the Lie derivative Lpg has the form

Lpg = fg + p[ _ ⌘ for some function f and some 1-form ⌘ . (1.1)

If this holds, the vector field p is also geodesic, i.e. rpp = �p, and the curves of the congruence

are geodesics (see e.g. [1, 2, 5, 14]). A quadruple Q := (p,W, [h], {g}), given by

(a) a nowhere vanishing vector field p, determined up to multiplication by a nowhere zero smooth

function f ,

(b) a codimension one distribution W,

(c) a conformal class [h] of semi-positive metrics on W,

(d) a non-empty set of Lorentzian metrics {g}, which are exactly all metrics g with respect to

which p is a null vector field with W = p?g and [h] = [g|W⇥W] and both W and [h] are

preserved by the local flow of p,

is an optical geometry in the sense of Robinson and Trautman [2, 5, 14] 1. The Lorentzian metrics

g in the set {g} are called compatible with the prescribed optical geometry Q.

By Robinson’s Theorem [8, 13], the shearfree null congruences of a real analytic four dimensional

Lorentzian manifold are exactly the foliations by the lines of propagation of electromagnetic plane

waves.

Many interesting examples of optical geometries Q = (p,W, [h], {g}) are provided by connections

on principal A-bundles ⇡ : M ! S = M/A with one-dimensional structure groups A = R or S1.

On each bundle of this kind, one may consider an optical geometry in which p is the generator of the
1
As a matter of fact, all four elements of Q can be recovered just by (i) the 1-dimensional distribution K, which

is generated by p and (ii) the set of metrics {g}, provided that they satisfy appropriate conditions. Thus, the optical

geometries can be also defined as such pairs (K, {g}) – see the original definition in [14].
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action of the group A along the fibers, and W and [h] are the appropriate A-invariant distribution

and conformal class. In this case, the quadruple M := (⇡ : M ! S, p,W, [h]) is called a regular

shearfree manifold and a metric g 2 {g} of the corresponding optical geometry Q = (p,W, [h], {g})
is said to be a compatible metric of M.

The regular shearfree manifolds are important geometric objects not only for their role in Lorentzian

geometry, but also for their relations with CR geometry. Indeed, for any regular shearfree manifold

M := (⇡ : M ! S, p,W, [h]), the base manifold S = M/A is naturally equipped with the codimen-

sion one distribution W
S ⇢ TS and the positive definite conformal metric [hS ] that are obtained

by projecting the A-invariant distribution W := p? and conformal class [h] onto S = M/A. If M

is even dimensional and the projected distribution W
S ⇢ TS is contact then the regular shearfree

manifold M is called (maximally) twisting. For any such M, the corresponding optical geometry

Q = (p,W, [h], {g}) determines a family JS of complex structures JS
x : WS

x ! W
S
x on the projected

distribution of S, that make S a strongly pseudoconvex almost CR manifold (see, e.g. [1, 2, 5, 7]

and references therein).

Celebrated examples of twisting regular shearfree manifolds are given by the 4-dimensional space-

times with Taub-NUT metrics and the 4-dimensional Kerr black holes. For such Lorentzian man-

ifolds, the base manifold of the A-bundle ⇡ : M ! S has an additional remarkable geometric

feature: it is a principal bundle ⇡S = S ! N with one dimensional structure group A0 = R or

A0 = S1, and the base manifold N = S/A0 = M/(A ·A0) has a natural structure of a Kähler man-

ifold. Moreover, the strongly pseudoconvex almost CR manifold (S,WS , JS) is a regular Sasaki

manifold and the structure group A0 of S preserves

(i) the CR structure (WS , JS),

(ii) a contact 1-form ✓o for W
S , i.e., WS = ker ✓o, such that d✓o = ⇡S⇤!o for some Kähler form

!o = go(J ·, ·) on (N, J);

(iii) the conformal class [h] on W contains the degenerate metric ho =
�
(⇡S � ⇡)⇤go

�
|W.

The fact that the Taub-NUT and Kerr metrics have these properties is one of the reasons of the

interest in twisting regular shearfree manifolds, in which the almost CR manifold (S,WS , JS) is

a Sasaki manifold projecting onto a Kähler manifold. Such manifolds are called of Kähler-Sasaki

type [2].

We recall that, according to classical results in the theory of G-structures, any local isometric

invariant of a pseudo-Riemannian manifold is fully determined by the components in orthonormal

bases of the Riemann tensor R and its covariant derivatives up to an appropriate order (see, for

instance, [9–12,16] and references therein). Such components are in turn given by the components

of g and the Christoffel symbols of rg in a frame field. This observation indicates that the explicit
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expressions of the Christoffel symbols in appropriate frame fields represent a fundamental tool for

studying the compatible metrics of a given regular shearfree manifold of Kähler-Sasaki type and

possibly finding solutions of the Einstein (or other physically relevant) equations in this class of

metrics.

In this paper, we discuss in great detail the Christoffel symbols of the Levi-Civita connection rg

of a compatible metric g of a regular shearfree manifold M := (⇡ : M ! S, p,W, [h]) of Kähler-

Sasaki type. More precisely, we fix a special (locally defined) frame field (e1, . . . , en), which is well

adapted to the optical geometry and is determined only up to a choice of a local frame field on

the underlying Kähler manifold N = M/(A · A0). Such a frame field has the following two useful

properties:

(1) the last two vector fields en�1, en are the generators of the actions of the groups A and A0,

respectively, and are therefore canonically associated with the considered manifold;

(2) the vector fields ei, 1  i  n � 2, are tangent to the distribution W at all points and are

A ·A0-invariant, thus projecting onto a frame field (ee1, . . . , een�2) on N .

Note that (1) and (2) allow to minimise the number of parameters that are necessary to determine

the components of a compatible metric g. Notice also that, due to the fact that M is twisting, a

frame field satisfying (1) and (2) cannot coincide with a coordinate frame field. This forces us to

avoid the use of coordinates in all subsequent computations.

After choosing an adapted frame field of this kind, we write down the general expression of a com-

patible metric g in terms of its dual frame field and we determine the Christoffel symbols of rg in

such frame and coframe fields, using just Koszul’s formula and classical results on transformations

of Levi-Civita connections under conformal transformations.

The expressions for the Christoffel symbols given in this paper have been originally determined

during the preparation of [2] and have been successfully used to derive a coordinate-free charac-

terisation of the generalised Taub-NUT metrics on even dimensional manifolds (see e.g. [3] and

references therein for other characterisations of the metrics of such a kind). However, the details

of the actual computations did not appear in [2] and some formulas of that paper had some minor

sign errors – very few indeed and with no effect on any statement and proof. The same explicit

(and amended) expressions have been later used in [6] for determining explicit expressions for the

components of the Ricci tensor of compatible metrics of a shearfree manifold M of Kähler-Sasaki

type satisfying conditions that generalise Kerr’s ansatz for the 4-dimensional rotating black holes.

These expressions for the Ricci tensor allowed us to translate the Einstein equations for a com-

patible metric into equations on its parameters in an adapted frame and to find a large class of

exact solutions that naturally includes the classical Kerr black holes. We anticipate a number of

further applications of the explicit expressions of these Christoffel symbols and believe that the



CUBO
26, 2 (2024)

Lorentzian manifolds with prescribed optical geometries 243

detailed computations we present in this paper will be a helpful tool for other researchers who are

interested in the developments of this field.

The paper is structured into two sections: In section 2, we define the adapted frame fields of a

compatible metric, that is the frame fields in which all computations of this paper are performed;

In section 3 we derive the explicit list of Christoffel symbols and provide the details of the compu-

tations.

2 The general form of a compatible metric on a shearfree

manifold of Kähler-Sasaki type

2.1 Notational issues

Consider a shearfree manifold M := (⇡ : M ! S, p,W, [h]) of Kähler-Sasaki type. We use the

following notation:

(1) (N, J, go) is the Kähler manifold onto which S projects and !o = go(J ·, ·) is the Kähler form

of N 2;

(2) A and A0 are the 1-dimensional structure groups of the principal bundles ⇡ : M ! S and

⇡S : S ! N , respectively;

(3) po and qSo are the fundamental vector fields of the principal bundles ⇡ : M ! S and ⇡S :

S ! N , corresponding to the element of the standard basis of Lie(A) = Lie(A0) = R. This

means that �po
s (x) = es(x), x 2 M , and �

qS
o

s (y) = es(y), y 2 S;

(4) ✓o is the contact A0-invariant 1-form on S satisfying the conditions

d✓o = ⇡S⇤!o , ✓o(qo) = 1 , ker ✓o|x = W
S
x , x 2 S ; (2.1)

and #o is the pull-back #o = ⇡⇤(✓o) of ✓o on M .

It is important to note that W
S is an A0-invariant horizontal distribution on the principal bundle

⇡S : S ! N , and it is therefore a connection for this bundle. The associated connection 1-form is

✓o and its curvature 2-form is d✓o = ⇡S⇤!o.

For what concerns the A-bundle ⇡ : M ! S, throughout the paper we assume that it is trivial

and equipped with the natural flat connection of a Cartesian product. This apparently restrictive

condition can be always locally satisfied replacing S by an open subset V ⇢ S, on which the bundle
2
Note that there is a sign difference in the definition of !o w.r.t. [2]. There it is defined as !o := go(·, J ·).
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is trivialisable, and identifying ⇡ : M ! S with the trivial bundle ⇡ : ⇡�1(V) ' V ⇥ A ! V

equipped with the standard flat connection.

We denote by Ho the horizontal distribution of the flat connection of ⇡ : M ! S.

For any given vector field X on the Kähler manifold N , we denote by

– X(S) the unique A0-invariant horizontal vector field in W
S ⇢ S projecting onto X;

– bX the unique A-invariant horizontal vector field in H projecting onto X(S) and thus also

onto X; note that, by definition of WS , the vector field bX takes values in Ho \W.

The unique A-invariant horizontal vector field in Ho projecting onto qSo is denoted by qo.

Owing to the A- and A0-invariance of the connections of ⇡ : M ! S and ⇡S : S ! N and the

properties of the connection 1-form ✓o, for any pair of vector fields X,Y on N the following Lie

bracket relations hold 3:

[ bX, bY ]� \[X,Y ] = �go(JX, Y )qo , [ bX, po] = [ bX, qo] = [po, qo] = 0 . (2.2)

2.2 The adapted frame fields

Consider a frame field (E1, . . . , En�2) on an open set V ⇢ N of the Kähler manifold and the

corresponding lifted vector fields ( bE1, . . . , bEn�2) on M , taking values in the distribution W
0 =

H\W. The vector fields of the (n�1)-tuple ( bE1, . . . , bEn�2, po) are pointwise linearly independent

and hence give linear frames for the spaces Wx ⇢ TxM , x 2 U = (⇡S � ⇡)�1(V). Since qo projects

onto qSo and qSo is transversal to W
S = ⇡⇤(W), the vector fields of the n-tuple

( bE1, . . . , bEn�2, po, qo) (2.3)

are pointwise linearly independent and determine a frame field on U. We call (2.3) the adapted

frame field of M determined by the frame field (Ei) on N .

Note that, due to (2.2), the Lie brackets between any two vector fields of an adapted frame have

the form

[ bEi, bEj ] = ckij bEk � go(JEi, Ej)qo , [ bEi, po] = [ bEi, qo] = [po, qo] = 0 , (2.4)

where the ckij are the functions such that [Ei, Ej ] = ckijEk.

The dual coframe field of ( bE1, . . . , bEn�2, po, qo) is denoted by ( bE1, . . . , bEn�2, p⇤o, q
⇤
o). Since the

dual 1-form q⇤o satisfies q⇤o(qo) = 1 and vanishes identically on W (because W is spanned by the

3
The Lie bracket [ bX, bY ] differs by a sign from the one used in [2]. Since in both papers, it is assumed d✓o = !o,

the sign difference is a consequence of the different definitions of the Kähler form !o.
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bEi and po), it has the same kernel and takes the same value on qo as the 1-form #o. Thus

q⇤o = #o (2.5)

for any choice of the adapted frame ( bEi, po, qo).

2.3 Parameterisation of the compatible metrics

Let (Ei) be a (local) frame field on N and denote by ( bE1, . . . , bEn�2, po, qo) the corresponding

adapted frame field for M. Since we are assuming that M is of Kähler-Sasaki type, the conformal

class [h] consists of the degenerate metrics on W having the form

h = �(⇡S � ⇡)⇤(go)|W, � = conformal scaling factor . (2.6)

By the results in [2, Section 2.5] (see also [6]), the compatible Lorentzian metrics on M are locally

in one-to-one correspondence with the pairs (h, q) given by

• a degenerated metric h on W as in (2.6):

• a vector field q, which is transversal to the distribution W = W
0 + Rpo, i.e., of the form

q := aqo + bpo + ci bEi , a 6= 0 . (2.7)

More precisely, given the conformal factor � and the vector field q, the corresponding compatible

metric g = g(�,q) is the unique Lorentzian metric satisfying conditions

g( bX, bY ) = �go(X,Y ) , g( bX, po) = g(po, po) = 0 ,

g( bX, q) = 0 , g(po, q) = 1 , g(q, q) = 0 .

(2.8)

From (2.7) and the first line of (2.8), the second line in (2.8) is equivalent to

g( bX, qo) = �ci�

a
go(X,Ei) , g(po, qo) =

1

a
,

g(qo, qo) = �2
b

a2
+

1

a2
cicj�go(Ej , Ei) .

(2.9)

Introducing the shorter notation

↵ :=
2

a�
, � :=

2

�

✓
�2

b

a2
+

1

a2
cicj�go(Ej , Ei)

◆
, �i := �2

ci

a
, (2.10)
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we get that g = g(�,q) is the unique Lorentzian metric satisfying the condition

g( bX, bY ) = �go(X,Y ) , g( bX, po) = g(po, po) = 0 , g(po, qo) =
�↵

2
,

g(qo, bX) =
��i

2
go(X,Ei) , g(qo, qo) =

�

2
� .

(2.11)

This means that g has the form

g = �go(Ei, Ej) bEi _ bEj + q⇤o _
✓
�↵p⇤o + ��igo(Ei, Ek) bEk +

��

2
q⇤o

◆

= �

⇢
(⇡S � ⇡)⇤(go)

��
W0 + #o _

✓
↵p⇤o + �igo(Ek, Ei) bEk +

�

2
#o

◆�
.

(2.12)

The expression (2.12) gives a convenient parameterisation in terms of the (n+ 1)-tuple of smooth

functions (�,↵,�, �i) for the compatible metrics of M = (⇡ : M ! S, p,W, [h]). We emphasise

that, conversely, any metric having the form (2.12), for some � > 0 and ↵ 6= 0, is a compatible

metric. Indeed, it is associated with the conformal factor � and with q = aqo + bpo + ci bEi where

a, b, cj are solutions to (2.10) for given ↵, �, �i. They are

a =
2

↵�
, b := � �

↵2�
+

1

2↵2�
�i�jgo(Ej , Ei) , ci = � �i

↵�
.

3 The Christoffel symbols in an adapted frame field of the

Levi-Civita connection of a compatible Lorentzian metric

3.1 The complete list of the Christoffel symbols

Let M = (⇡ : M ! S, p,W, [h]) be a twisting regular shearfree manifold of Kähler-Sasaki type,

with S projecting onto the Kähler manifold (N, J, go). Let also (Ei) be a frame field on an

open set V ⇢ N and (XA) = ( bE1, . . . , bEn�2, po, qo) the corresponding adapted frame field on

U = (⇡S � ⇡)�1(V) ⇢ M . We use the notation gij , !ij , Jj
i , ckij for the functions defined by

gij := go(Ei, Ej) , !ij := go(JEi, Ej) , JEi = Jj
i Ej , [Ei, Ej ] = ckijEk .

For what concerns the Christoffel symbols � C
AB (i.e., the functions defined by rXAXB = � C

ABXC),

we are going to use the convention that � m
ij denotes the function which gives the component of

r bEi

bEj in the direction of bEm, � po
ij is the function that gives the component of r bEi

bEj in the

direction of po, �
qo
ij is the function giving the component of r bEi

bEj in the direction of qo, and so

on.

Our main result is the following:
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Proposition 3.1. Let g be a compatible metric for M, hence of the form (2.12) for an (n+1)-tuple

of smooth functions (�,↵,�, �i) on U, with � > 0 and ↵ 6= 0 at all points. The Christoffel symbols

� C
AB of the Levi-Civita connection of g in the frame field (XA) = ( bEi, po, qo) are given by

� m
ij = gmkgo(ro

Ei
Ej , Ek) + gmkSij|k +

�m!ij

4
+

1

2�
bEi(�)�

m
j +

1

2�
bEj(�)�

m
i

� gij
2�

✓
gmk bEk(�)�

�m

↵
po(�)

◆
, (3.1)

where Sij|k is defined by

Sij|k :=
�`

4
go(JEi, Ek)go(E`, Ej) +

�`

4
go(JEj , Ek)go(E`, Ei)�

�`

4
go(JEi, Ej)go(E`, Ek) ,

� po
ij =

1

2↵
bEi(�

kgjk) +
1

2↵
bEj(�

kgik)�
1

4↵
�m�kgmk!ij �

�m

↵
go(ro

Ei
Ej , Em)� �m

↵
Sij|m

� gij
2�

✓
2

↵
qo(�) +

1

↵2

�
�m�kgmk � 2�

�
po(�)�

�m

↵
bEm(�)

◆
, (3.2)

� qo
ij = �!ij

2
� gij

↵�
po(�) , (3.3)

� m
ipo

= � m
poi

=
↵gmk!ik

4
+

1

2�
po(�)�

m
i , (3.4)

� po
ipo

= � po
poi

=
1

2↵
bEi(↵) +

1

2↵
po(�

k)gik � �m!im

4
+

1

2�
bEi(�) , (3.5)

� qo
ipo

= � qo
poi

= 0 , (3.6)

� m
iqo

= � m
qoi

=
gmk

4
bEi(�

tgtk)�
gmk

4
bEk(�

tgti)�
�`

4
ctirgt`g

mr +
gmk!ik

4
��

� �m

4↵
bEi(↵) +

�m

4↵
po(�

t)gti +
1

2�
qo(�)�

m
i � �t

4�
gti

✓
gmk bEk(�)�

�m

↵
po(�)

◆
, (3.7)

� po
iqo

= � po
qoi

=
1

2↵
bEi(�) +

1

4↵2
�m�kgmk

bEi(↵)�
1

4↵2
�m�kgmkpo(�

t)git �
1

2↵2
� bEi(↵)+

+
1

2↵2
�po(�

t)git �
�m

4↵
bEi(�

tgtm) +
�m

4↵
bEm(�tgit) +

�m�t

4↵
gt`c

`
im +

�m

4↵
!im��

� �t

4�
gti

✓
2

↵
qo(�) +

1

↵2

�
�m�kgmk � 2�

�
po(�)�

�m

↵
bEm(�)

◆
, (3.8)

� qo
iqo

= � qo
qoi

=
1

2↵
bEi(↵)�

1

2↵
po(�

t)git +
1

2�
bEi(�)�

�tgti
2↵�

po(�) , (3.9)

� m
popo

= 0 , (3.10)

� po
popo

= po(log(↵�)) , (3.11)

� qo
popo

= 0 , (3.12)

� m
poqo

= � m
qopo

=
1

4
po(�

m)� gmk

4
bEk(↵)�

↵

4�

✓
gmk bEk(�)�

�m

↵
po(�)

◆
, (3.13)

� po
poqo

= � po
qopo

=
1

2↵
po(�)�

�m

4↵
po(�

i)gim +
�m

4↵
bEm(↵) +

1

2�
qo(�)�

� 1

2�

✓
qo(�) +

1

2↵

�
�m�kgmk � 2�

�
po(�)�

�m

2
bEm(�)

◆
, (3.14)
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� qo
poqo

= � qo
qopo

= 0 , (3.15)

� m
qoqo

=
gmk

2
qo(�

i)gik � gmk

4
bEk(�)�

�m

2↵
qo(↵) +

�m

4↵
po(�)�

� �

4�

✓
gmk bEk(�)�

�m

↵
po(�)

◆
, (3.16)

� po
qoqo

=
1

2↵
qo(�) +

1

2↵2
�m�kgmkqo(↵)�

1

4↵2
�m�kgmkpo(�)�

1

↵2
�qo(↵)+

+
�

2↵2
po(�)�

�m

2↵
qo(�

i)gim +
�m

4↵
bEm(�)�

� �

2�

✓
1

↵
qo(�) +

1

2↵2

�
�m�kgmk � 2�

�
po(�)�

�m

2↵
bEm(�)

◆
, (3.17)

� qo
qoqo

=
1

↵
qo(↵)�

1

2↵
po(�) +

1

�
qo(�)�

�

2↵�
po(�) . (3.18)

The proof will be carried out in three steps, which we provide in the next subsections. In the

first step we compute all covariant derivatives rXAXB determined by two vector fields of the

adapted frame field (XA) = ( bEi, po, qo) under the assumption � ⌘ 1. In the second step, the

determined covariant derivatives are used to compute the Christoffel symbols � C
AB , still under the

condition � ⌘ 1. In the concluding third step, the Christoffel symbols � C
AB are determined with no

restriction on � by using classical transformation formulas for the Levi-Civita covariant derivatives

under conformal changes of the metric.

3.2 The first step

By Koszul’s formula, for any triple of vector fields X1, X2, X3,

g(rX1X2, X3) =
1

2

✓
X1(g(X2, X3)) +X2(g(X1, X3))�X3(g(X1, X2))�

� g([X1, X3], X2)� g([X2, X3], X1) + g([X1, X2], X3)

◆
. (3.19)

Using this formula, we may determine the functions g(rX1X2, X3), for a compatible metric g with

� ⌘ 1, for with any choice of X1, X2, X3 in a set of vector fields of the form

� bX, po, qo, where bX is the lift of a vector field X on N
 
.

We get the following expressions:

r bX
bY : g(r bX

bY , bZ) = go(ro
XY, Z) + g(SXY , Z) , (3.20)

g(r bX
bY , po) = �↵

4
go(JX, Y ) , (3.21)

g(r bX
bY , qo) =

1

4
bX(�kgo(Y,Ek)) +

1

4
bY (�kgo(X,Ek))�

1

4
�go(JX, Y ) , (3.22)
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where S is the tensor field of type (0, 3) on N , defined by

g(SXY , Z) :=
�j

4
go(JX,Z)go(Ej , Y ) +

�j

4
go(JY, Z)go(Ej , X)� �j

4
go(JX, Y )go(Ej , Z) ;

r bXpo : g(r bXpo, bZ) =
↵

4
go(JX,Z) , (3.23)

g(r bXpo, po) = 0 , (3.24)

g(r bXpo, qo) =
1

4
bX(↵) +

1

4
po(�

i)go(X,Ei) ; (3.25)

r bXqo : g(r bXqo, bZ) =
1

4
bX(�tgo(Et, Z))� 1

4
bZ(�igo(X,Ei))�

� 1

4
�tgo([X,Z], Et) +

1

4
�go(JX,Z) , (3.26)

g(r bXqo, po) =
1

4
bX(↵)� 1

4
po(�

i)go(X,Ei) , (3.27)

g(r bXqo, qo) =
1

4
bX(�) ; (3.28)

rpo
bY : g(rpo

bY , bZ) =
↵

4
go(JY, Z) , (3.29)

g(rpo
bY , po) = 0 , (3.30)

g(rpo
bY , qo) =

1

4
po(�

i)go(Y,Ei) +
1

4
bY (↵) ; (3.31)

rpo
po : g(rpo

po, bZ) = 0 , (3.32)

g(rpo
po, po) = 0 , (3.33)

g(rpo
po, qo) =

1

2
po(↵) ; (3.34)

rpo
qo : g(rpo

qo, bZ) =
1

4
po(�

i)go(Ei, Z)� 1

4
bZ(↵) , (3.35)

g(rpo
qo, po) = 0 , (3.36)

g(rpo
qo, qo) =

po(�)

4
; (3.37)
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rqo
bY : g(rqo

bY , bZ) =
1

4
bY (�igo(Ei, Z))� 1

4
bZ(�tgo(Y,Et))�

� 1

4
�tgo([Y, Z], Et) +

1

4
�go(JY, Z) , (3.38)

g(rqo
bY , po) =

1

4

�bY (↵)� po(�
i)go(Ei, Y )

�
, (3.39)

g(rqo
bY , qo) =

bY (�)

4
; (3.40)

rqo
po : g(rqo

po, bZ) =
1

4
po(�

i)go(Ei, bZ)� 1

4
bZ(↵) , (3.41)

g(rqo
po, po) = 0 , (3.42)

g(rqo
po, qo) =

po(�)

4
; (3.43)

rqo
qo : g(rqo

qo, bZ) =
1

2
qo(�

i)go(Ei, Z)� 1

4
bZ(�) , (3.44)

g(rqo
qo, po) =

1

2
qo(↵)�

po(�)

4
, (3.45)

g(rqo
qo, qo) =

qo(�)

4
. (3.46)

From this list, we may recover the explicit expressions of the covariant derivatives of vector fields

of the adapted frame field ( bEi, po, qo) as follows. We claim that the dual coframe field ( bEi, p⇤o, q
⇤
o)

is given by the following 1-forms (here, (g`m) := (gij)�1 =
�
go(Ei, Ej)

��1)

bEi = g

✓
gik bEk � �i

↵
po, ·

◆
, p⇤o = g

✓
2

↵
qo +

1

↵2

�
�m�kgmk � 2�

�
po �

�m

↵
bEm, ·

◆
,

q⇤o = g

✓
2

↵
po, ·

◆
. (3.47)

This claim can be checked using (2.11) and observing that the right hand sides in the above

equalities are 1-forms that satisfy the equalities

bEi( bEj) = gikgkj = �ij , bEi(po) = 0 , bEi(qo) = gik
�m

2
gmk � �i

↵

↵

2
= 0 ,

p⇤o( bEj) =
2

↵

�m

2
gjm � �m

↵
gmj = 0 , p⇤o(po) =

2

↵

↵

2
= 1 ,

p⇤o(qo) =
2

↵

�

2
+

1

↵2

�
�m�kgmk � 2�

� ↵
2
� �m

↵

�k

2
gmk = 0 ,

q⇤o( bEj) = 0 , q⇤o(po) = 0 , q⇤o(qo) =
2

↵

↵

2
= 1 .
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Since any local vector field Z on M can be written in terms of the frame field ( bEi, po, qo) as

Z = bEi(Z) bEi + p⇤o(Z)po + q⇤o(Z)qo ,

from the above expressions for the 1-forms bEi, p⇤o, and q⇤o, we get that for any pair of vector fields

X,Y on M , the Levi-Civita covariant derivative rXY is equal to

rXY =

✓
gmkg(rXY, bEk)�

�m

↵
g(rXY, po)

◆
bEm+

+

✓
2

↵
g(rXY, qo) +

1

↵2

�
�m�kgmk � 2�

�
g(rXY, po)�

�m

↵
g(rXY, bEm)

◆
po+

+

✓
2

↵
g(rXY, po)

◆
qo . (3.48)

Combining (3.20) – (3.46) with (3.48), we get the covariant derivatives we are looking for. We list

them in (3.49) – (3.57) (here, we denote by Sij|m the components of the tensor field S in terms of

the frame field (Ei) on N):

r bEi

bEj =

✓
gmkgo(ro

Ei
Ej , Ek) + gmkSij|k +

�m!ij

4

◆
bEm+

+

✓
1

2↵
bEi(�

kgjk) +
1

2↵
bEj(�

kgik)�

� 1

4↵
�m�kgmk!ij �

�m

↵
go(ro

Ei
Ej , Em)� �m

↵
Sij|m

◆
po �

!ij

2
qo , (3.49)

r bEi
po =

↵gmk!ik

4
bEm +

✓
1

2↵
bEi(↵) +

1

2↵
po(�

k)gik � �m!im

4

◆
po , (3.50)

r bEi
qo =

 
gmk

4
bEi(�

tgtk)�
gmk

4
bEk(�

tgti)�
�`

4
ctirgt`g

mr +
gmk

4
�!ik�

� �m

4↵
bEi(↵) +

�m

4↵
po(�

t)git

!
bEm+

+

✓
1

2↵
bEi(�) +

1

4↵2
�m�kgmk

bEi(↵)�
1

4↵2
�m�kgmkpo(�

t)git �
�

2↵2
bEi(↵) +

�

2↵2
po(�

t)git�

� �m

4↵
bEi(�

tgtm) +
�m

4↵
bEm(�tgit) +

�m�t

4↵
gt`c

`
im � �m

4↵
�!im

◆
po+

+

 
1

2↵
bEi(↵)�

1

2↵
po(�

t)git

!
qo , (3.51)

rpo
bEi =

↵gmk

4
!ik

bEm +

 
1

2↵
bEi(↵) +

1

2↵
po(�

t)git �
�m

4
!im

!
po , (3.52)
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rpo
po = po(log↵)po , (3.53)

rpo
qo =

✓
1

4
po(�

m) � gmk

4
bEk(↵)

!
bEm +

 
1

2↵
po(�) �

�m

4↵
po(�

i)gim +
�m

4↵
bEm(↵)

◆
po , (3.54)

rqo
bEi =

✓
gmk

4
bEi(�

tgtk)�
gmk

4
bEk(�

tgti)�
�`

4
ctirgt`g

mr +
gmk

4
�!ik�

� �m

4↵
bEi(↵) +

�m

4↵
po(�

t)gti

◆
bEm+

+

✓
1

2↵
bEi(�) +

1

4↵2
�m�kgmk

bEi(↵)�
1

4↵2
�m�kgmkpo(�

t)git �
1

2↵2
� bEi(↵)+

+
1

2↵2
�po(�

t)git �
�m

4↵
bEi(�

tgtm) +
�m

4↵
bEm(�tgit) +

�m�t

4↵
gt`c

`
im � �m

4↵
�!im

◆
po+

+

✓
1

2↵
bEi(↵)�

1

2↵
po(�

t)git

◆
qo , (3.55)

rqo
po =

 
gmk

4
po(�

i)gik � gmk

4
bEk(↵)

!
bEm+

+

 
1

2↵
po(�)�

�m

4↵
po(�

t)gtm +
�m

4↵
bEm(↵)

!
po , (3.56)

rqo
qo =

 
gmk

2
qo(�

i)gik � gmk

4
bEk(�)�

�m

2↵
qo(↵) +

�m

4↵
po(�)

!
bEm+

+

 
1

2↵
qo(�) +

1

2↵2
�m�kgmkqo(↵)�

1

4↵2
�m�kgmkpo(�)�

�

↵2
qo(↵) +

�

2↵2
po(�)�

� �m

2↵
qo(�

i)gim +
�m

4↵
bEm(�)

!
po +

✓
1

↵
qo(↵)�

po(�)

2↵

◆
qo . (3.57)

3.3 The second step

Let us now denote by � C
AB the Christoffel symbols of the Levi-Civita connection of a compatible

metric g as in (2.12) under the assumption that the function � is identically equal to 1. Since

the � C
AB are the functions that appear in the expansions rXAXB = � C

ABXC of the covariant

derivatives (3.49) – (3.57), all such Christoffel symbols can be determined by just looking at those

formulas. For convenience of the reader, we provide the complete list in the next lines

� m
ij = gmkgo(ro

Ei
Ej , Ek) + gmkSij|k +

�m!ij

4
, (3.58)
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� po
ij =

1

2↵
bEi(�

kgjk) +
1

2↵
bEj(�

kgik)+

� 1

4↵
�m�kgmk!ij �

�m

↵
go(ro

Ei
Ej , Em)� �m

↵
Sij|m , (3.59)

� qo
ij = �!ij

2
, (3.60)

� m
ipo

= � m
poi

=
↵gmk!ik

4
, (3.61)

� po
ipo

= � po
poi

=
1

2↵
bEi(↵) +

1

2↵
po(�

k)gik � �m!im

4
, (3.62)

� qo
ipo

= � qo
poi

= 0 , (3.63)

� m
iqo

= � m
qoi

=
gmk

4
bEi(�

tgtk)�
gmk

4
bEk(�

tgti)�
�`

4
ctirgt`g

mr +
gmk

4
�!ik�

� �m

4↵
bEi(↵) +

�m

4↵
po(�

t)git , (3.64)

� po
iqo

= � po
qoi

=
1

2↵
bEi(�) +

1

4↵2
�m�kgmk

bEi(↵)�
1

4↵2
�m�kgmkpo(�

t)git �
�

2↵2
bEi(↵)+

+
1

2↵2
�po(�

t)git �
�m

4↵
bEi(�

tgtm) +
�m

4↵
bEm(�tgit) +

�m�t

4↵
gt`c

`
im � �m

4↵
�!im , (3.65)

� qo
iqo

= � qo
qoi

=
1

2↵
bEi(↵)�

1

2↵
po(�

t)git , (3.66)

� m
popo

= 0 , (3.67)

� po
popo

= po(log↵) , (3.68)

� qo
popo

= 0 , (3.69)

� m
poqo

= � m
qopo

=
1

4
po(�

m)� gmk

4
bEk(↵) , (3.70)

� po
poqo

= � po
qopo

=
1

2↵
po(�)�

�m

4↵
po(�

i)gim +
�m

4↵
bEm(↵) , (3.71)

� qo
poqo

= � qo
qopo

= 0 , (3.72)

� m
qoqo

=
gmk

2
qo(�

i)gik � gmk

4
bEk(�)�

�m

2↵
qo(↵) +

�m

4↵
po(�) , (3.73)

� po
qoqo

=
1

2↵
qo(�) +

1

2↵2
�m�kgmkqo(↵)�

1

4↵2
�m�kgmkpo(�)�

�

↵2
qo(↵)+

+
�

2↵2
po(�)�

�m

2↵
qo(�

i)gim +
�m

4↵
bEm(�) m , (3.74)

� qo
qoqo

=
1

↵
qo(↵)�

1

2↵
po(�) . (3.75)

Note that the equalities � A
ipo

= � A
poi

, � A
iqo

= � A
qoi

, etc. are also consequences of the fact that the

torsion of the Levi-Civita connection is 0 and that the pairs of vector fields { bEi, po}, { bEi qo}, etc.,

commute.
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3.4 The third step

Assume that g is one of the metrics considered in the previous two subsections (i.e., compatible

with � ⌘ 1) and denote by D the Levi-Civita connection of a conformally scaled metric g' = e2'g

for some smooth '. It is well known that, for any pair of vector fields X,Y of M (see e.g. [4, Th.

1.159]),

DXY = rXY +X(')Y + Y (')X � g(X,Y )grad(') . (3.76)

If we expand grad' in terms of the frame field ( bEi, po, qo) as

grad' = (grad')
bEi bEi + (grad')popo + (grad')qoqo , (3.77)

we see that the Christoffel symbols � C
AB for a compatible metric g with � ⌘ 1, as considered in

the previous subsections, and the Christoffel symbols � C
AB for the conformally scaled metric g'

are related to each other by

� m
ij = � m

ij + bEi(')�
m
j + bEj(')�

m
i � gij(grad')

bEm , (3.78)

� po
ij = � po

ij � gij(grad')
po , (3.79)

� qo
ij = � qo

ij � gij(grad')
qo , (3.80)

� m
ipo

= � m
poi

= � m
ipo

+ po(')�
m
i , (3.81)

� po
ipo

= � po
poi

= � po
ipo

+ bEi(') , (3.82)

� qo
ipo

= � qo
poi

= � qo
ipo

, (3.83)

� m
iqo

= � m
qoi

= � m
iqo

+ qo(')�
m
i � �t

2
gti(grad')

bEm , (3.84)

� po
iqo

= � po
qoi

= � po
iqo

� �t

2
gti(grad')

po , (3.85)

� qo
iqo

= � qo
qoi

= � qo
iqo

+ bEi(')�
�t

2
gti(grad')

qo , (3.86)

� m
popo

= � m
popo

, (3.87)

� po
popo

= � po
popo

+ 2po(') , (3.88)

� qo
popo

= � qo
popo

, (3.89)

� m
poqo

= � m
qopo

= � m
poqo

� ↵

2
(grad')

bEm , (3.90)

� po
poqo

= � po
qopo

= � po
poqo

+ qo(')�
↵

2
(grad')po , (3.91)

� qo
poqo

= � qo
qopo

= � qo
poqo

+ po(')�
↵

2
(grad')qo , (3.92)

� m
qoqo

= � m
qoqo

� �

2
(grad')

bEm , (3.93)

� po
qoqo

= � po
qoqo

� �

2
(grad')po , (3.94)

� qo
qoqo

= � qo
qoqo

+ 2qo(')�
�

2
(grad')qo . (3.95)
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We now recall that any vector field X on M decomposes into the sum

X = bEi(X) bEi + p⇤o(X)po + q⇤o(X)qo = g

✓
X, gik bEk � �i

↵
po

◆
bEi+

+ g

✓
X,

2

↵
qo +

1

↵2

�
�m�kgmk � 2�

�
po �

�m

↵
bEm

◆
po + g

✓
X,

2

↵
po

◆
qo .

(3.96)

From this, we get that the components (grad')A of the gradient of ' are equal to

(grad')
bEi := gik bEk(')�

�i

↵
po(') ,

(grad')po :=
2

↵
qo(') +

1

↵2

�
�m�kgmk � 2�

�
po(f)�

�m

↵
bEm(f) ,

(grad')qo :=
2

↵
po(').

(3.97)

Inserting these expressions and (3.78) – (3.95) into (3.78) – (3.95), we get the explicit formulas for

the Christoffel symbols � C
AB of the scaled metric g' = e2'g. They are:

� m
ij = gmkgo(ro

Ei
Ej , Ek) + gmkSij|k +

�m!ij

4
+ bEi(')�

m
j + bEj(')�

m
i

� gij

✓
gmk bEk(')�

�m

↵
po(')

◆
, (3.98)

� po
ij =

1

2↵
bEi(�

kgjk) +
1

2↵
bEj(�

kgik)�
1

4↵
�m�kgmk!ij �

�m

↵
go(ro

Ei
Ej , Em)� �m

↵
Sij|m

� gij

✓
2

↵
qo(') +

1

↵2

�
�m�kgmk � 2�

�
po(')�

�m

↵
bEm(')

◆
, (3.99)

� qo
ij = �!ij

2
� 2gij

↵
po(') , (3.100)

� m
ipo

= � m
poi

=
↵gmk!ik

4
+ po(')�

m
i , (3.101)

� po
ipo

= � po
poi

=
1

2↵
bEi(↵) +

1

2↵
po(�

k)gik � �m!im

4
+ bEi(') , (3.102)

� qo
ipo

= � qo
ipo

= 0 , (3.103)

� m
iqo

= � m
qoi

=
gmk

4
bEi(�

tgtk)�
gmk

4
bEk(�

tgti)�
�`

4
ctirgt`g

mr +
gmk

4
�!ik�

� �m

4↵
bEi(↵) +

�m

4↵
po(�

t)gti + qo(')�
m
i � �t

2
gti

✓
gmk bEk(')�

�m

↵
po(')

◆
, (3.104)

� po
iqo

= � po
qoi

=
1

2↵
bEi(�) +

1

4↵2
�m�kgmk

bEi(↵)�
1

4↵2
�m�kgmkpo(�

t)git �
1

2↵2
� bEi(↵)+

+
1

2↵2
�po(�

t)git �
�m

4↵
bEi(�

tgtm) +
�m

4↵
bEm(�tgit) +

�m�t

4↵
gt`c

`
im � �m

4↵
�!im�

� �t

2
gti

✓
2

↵
qo(') +

1

↵2

�
�m�kgmk � 2�

�
po(')�

�m

↵
bEm(')

◆
, (3.105)

� qo
iqo

= � qo
qoi

=
1

2↵
bEi(↵)�

1

2↵
po(�

t)git + bEi(')�
�t

2
gti

✓
2

↵
po(')

◆
, (3.106)

� m
popo

= 0 , (3.107)
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� po
popo

= po(log↵) + 2po(') , (3.108)

� qo
popo

= 0 , (3.109)

� m
poqo

= � m
qopo

=
1

4
po(�

m)� gmk

4
bEk(↵)�

↵

2

✓
gmk bEk(')�

�m

↵
po(')

◆
, (3.110)

� po
poqo

= � po
qopo

=
1

2↵
po(�)�

�m

4↵
po(�

i)gim +
�m

4↵
bEm(↵) + qo(')�

� ↵

2

✓
2

↵
qo(') +

1

↵2

�
�m�kgmk � 2�

�
po(')�

�m

↵
bEm(')

◆
, (3.111)

� qo
poqo

= � qo
qopo

= 0 , (3.112)

� m
qoqo

=
gmk

2
qo(�

i)gik � gmk

4
bEk(�)�

�m

2↵
qo(↵) +

�m

4↵
po(�)�

� �

2

✓
gmk bEk(')�

�m

↵
po(')

◆
, (3.113)

� po
qoqo

=
1

2↵
qo(�) +

1

2↵2
�m�kgmkqo(↵)�

1

4↵2
�m�kgmkpo(�)�

1

↵2
�qo(↵)+

+
1

2↵2
�po(�)�

�m

2↵
qo(�

i)gim +
�m

4↵
bEm(�)�

� �

2

✓
2

↵
qo(') +

1

↵2

�
�m�kgmk � 2�

�
po(')�

�m

↵
bEm(')

◆
, (3.114)

� qo
qoqo

=
1

↵
qo(↵)�

po(�)

2↵
+ 2qo(')�

�

2

✓
2

↵
po(')

◆
. (3.115)

In order to conclude, it is now sufficient to observe that the metric (2.12) with an arbitrary � > 0

can be obtained from the metric considered in subsection 3.2 (i.e., with � ⌘ 1) by applying the

scaling factor e2' with ' := 1
2 log �. Hence, the desired expressions for the Christoffel symbols are

given by (3.98) – (3.115) with ' replaced by 1
2 log � at all places. These substitutions yield (3.1)

– (3.18).
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ABSTRACT

In this paper the authors present three different

Lyapunov-type inequalities for a higher-order Caputo

fractional differential equation with identical boundary

conditions marking the inaugural instance of such an ap-

proach in the existing literature. Their findings extend

and complement certain prior results in the literature.

RESUMEN

En este artículo, los autores presentan tres desigualdades

de tipo Lyapunov diferentes para una ecuación diferen-

cial fraccionaria de Caputo de alto orden con condiciones

de frontera idénticas, marcando la primera vez que este

enfoque aparece en la literatura existente. Sus hallazgos

extienden y complementan ciertos resultados anteriores

en la literatura.
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1 Introduction

In this paper we consider the fractional differential equation

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0, n� 1 < �  n, n � 3, (1.1)

where q : R ! R is continuous and q(t) 6= 0, together with the boundary conditions

x(i)(a) = 0, x(k)(b) = 0, 0  i  n� 1 and i 6= k, (1.2)

where k is a natural number between 1 and n� 1.

Over the course of more than a century, numerous Lyapunov-type inequalities have been derived,

taking into account their applications in various areas, such as eigenvalue problems, stability

theory, oscillation theory, and the estimation of intervals of disconjugacy. The paper by Lyapunov

[14] in 1907 is considered to be the first work in this direction. In recent decades, especially

with the development of fractional differential equations, significant advancements and further

generalizations of Lyapunov inequalities have been obtained. To explore some of the research that

has provided some of the motivation for studying the problem (1.1)–(1.2), first note that Cabrera

et al. [7] derived Lyapunov-like inequalities and established a lower bound for the eigenvalues of

the fractional problem

8
><

>:

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0, a < t < b, � 2 (n� 1, n], n � 4,

x(i)(a) = x00(b) = 0, 0  i  n� 1, i 6= 2.

It can be observed that the boundary value problem discussed in [7] is a particular case of the

problem considered here, that is, of (1.1)–(1.2) with the parameter k taken to be 2. Additional

notable work for k = 2 can found in [1, 7, 23, 24]. Compared to the problems investigated in

[1, 7, 23,24], our boundary condition (1.2) is more comprehensive and inclusive.

In [6], Bohner et al. applied a Vallée-Poussin theorem to obtain explicit inequality criteria for the

solvability of the problem consisting of the Caputo fractional functional differential equation

(CD�
a+x)(t) +

mX

i=0

(Tix
(i))(t) = f(t), t 2 [a, b],

and the boundary condition (1.2), where the operator Ti : C ! L1 with C = C([a, b],R) can

include a delay or advanced argument, an integral operator, or various linear combinations of such

things. In another work, Domonshnitsky et al. [10] obtained such criteria for fractional functional

differential equations with Riemann-Liouville derivatives again based on the Vallée-Poussin theo-
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rem. Rong and Bai [21] obtained a Lyapunov inequality for the problem

8
><

>:

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0, a < t < b, 1 < �  2,

x(a) = 0,
�
CD�

ax
�
(b) = 0, 0 < �  1,

where 1 < �  1+�. Extensive research has been conducted on Lyapunov inequalities using differ-

ent forms of fractional derivatives such as in [5,11,12,15,16,22]. For a comprehensive exploration of

Lyapunov inequalities, a detailed study can be found in the recent monograph by Agarwal, Bohner

and Özbekler [2].

Using estimates of the Green’s function has been a common technique employed in the study of

Lyapunov type inequalities. In cases where the Green’s function possesses a fixed sign, estimating

it becomes relatively straightforward compared to cases where the sign is unknown. Nevertheless,

several researchers have successfully managed to find estimates and derive Lyapunov-type inequal-

ities even if the sign constancy of the Green’s function is not known; for example, see the recent

papers [21,22] and the book [2].

The present work is divided into six sections. Section 1 provides an introduction and background

information pertaining to the problem. Preliminaries concepts are introduced in Section 2. In

Section 3, we obtain a Lyapunov inequality that improves the results in [7]. In the process, we

are able to obtain a new Lyapunov inequality for a third-order linear differential equation (see

Corollary 3.6 below). In Section 4, we obtain a Lyapunov inequality under a restrictive condition

(see (4.1)). A Lyapunov inequality for a general k with 1  k  n � 2 is discussed in Section 5.

We conclude this work in Section 6 with some applications and open problems.

2 Preliminaries

The monographs [13, 18] offer a thorough examination of the basics of fractional calculus. The

recent publication [22] contains the required fundamental definitions and lemmas utilized here in

this study. Next, we discuss the Green’s function and its sign in order to enhance our comprehension

of the primary outcomes.

Lemma 2.1. Assume that � 2 (n� 1, n], 1  k  n� 1, and f 2 L1. Then the unique solution

of the fractional boundary value problem

8
><

>:

(CD�
a+x)(t) + f(t) = 0, a < t < b,

x(i)(a) = x(k)(b) = 0, 0  i  n� 1 and i 6= k,
(2.1)
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is given by

x(t) =

Z b

a
Gk(t, s)f(s)ds, (2.2)

where Gk(t, s) is the Green’s function given by

Gk(t, s) =
1

�(�)

8
><

>:

1
k! (� � 1)(� � 2) · · · (� � k)(t� a)k(b� s)��k�1 � (t� s)��1, a  s  t  b,

1
k! (� � 1)(� � 2) · · · (� � k)(t� a)k(b� s)��k�1, a  t  s  b.

(2.3)

Proof. Consider the equation

(CD�
a+x)(t) = �f(t).

Then, using some fundamental concepts in the fractional calculus (see [13,18]), we see that

(I�a+(
CD�

a+x))(t) = �(I�a+f)(t),

which, in turn, implies that there are constants bi 2 R, i = 0, 1, . . . , n� 1, such that

x(t) = b0 + b1(t� a) + b2(t� a)2 + · · ·+ bn�1(t� a)n�1 � 1

�(�)

Z t

a
(t� s)��1f(s)ds,

for t 2 [a, b]. From the boundary condition x(i)(a) = 0 for 0  i  n � 1 and i 6= k, we obtain

bi = 0 for 0  i  n� 1, i 6= k. Since x(k)(a) 6= 0, we have bk 6= 0. Therefore,

x(t) = bk(t� a)k � 1

�(�)

Z t

a
(t� s)��1f(s)ds, (2.4)

and so

x0(t) = kbk(t� a)k�1 � � � 1

�(�)

Z t

a
(t� s)��2f(s)ds,

x00(t) = k(k � 1)bk(t� a)k�2 � (� � 1)(� � 2)

�(�)

Z t

a
(t� s)��3f(s)ds,

...
...

...

x(k)(b) = k! bk � (� � 1)(� � 2) · · · (� � k)

�(�)

Z b

a
(b� s)��k�1f(s)ds.

Applying the boundary condition x(k)(b) = 0 gives

bk =
(� � 1)(� � 2) · · · (� � k)

k!�(�)

Z b

a
(b� s)��k�1f(s)ds.

Using this value of bk in (2.4), we obtain

x(t) =
(� � 1)(� � 2) · · · (� � k)

k!�(�)
(t� a)k

Z b

a
(b� s)��k�1f(s)ds� 1

�(�)

Z t

a
(t� s)��1f(s)ds, (2.5)
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or

x(t) =
(� � 1)(� � 2) · · · (� � k)

k!�(�)

Z t

a
(t� a)k(b� s)��k�1f(s)ds

+

Z b

t
(t� a)k(b� s)��k�1f(s)ds

#
� 1

�(�)

Z t

a
(t� s)��1f(s)ds. (2.6)

This proves the lemma.

The following lemma provides some valuable information about the sign of the Green’s function.

Lemma 2.2. If � 2 (n� 1, n] and � > k + 1, then Gk(t, s) > 0 for all t, s 2 [a, b].

Proof. Clearly,

Gk(t, s) =
1

�(�)k!
(� � 1)(� � 2) · · · (� � k)(t� a)k(b� s)��k�1 > 0,

for a < t < s < b. If a < s  t < b, we obtain

Gk(t, s) =
1

�(�)k!
(� � 1)(� � 2) · · · (� � k)(t� a)k(b� s)��k�1 � 1

�(�)
(t� s)��1

� 1

k!�(�)
(� � 1)(� � 2) · · · (� � k)(t� s)k(t� s)��k�1 � 1

�(�)
(t� s)��1

=
1

k!�(�)
(� � 1)(� � 2) · · · (� � k)(t� s)��1 � 1

�(�)
(t� s)��1

=
1

�(�)
(t� s)��1


1

k!
(� � 1)(� � 2) · · · (� � k)� 1

�

>
1

�(�)
(t� s)��1


1

k!
k(k � 1) · · · (1)� 1

�
= 0,

where we have used the facts that � > k + 1, t� a � t� s, and b� s � t� s, so that (t� a)k(b�
s)��k�1 � (t� s)k(t� s)��k�1. This completes the proof.

3 Main results: Lyapunov type inequalities–I

We begin this section with another lemma on the properties of Gk(t, s).

Lemma 3.1. If � 2 (n� 1, n] and � > k+1, then Green’s function Gk(t, s) given in (2.3) has the

property that @Gk(t,s)
@t > 0 for all t, s 2 [a, b]. Furthermore,

Gk(t, s)  Gk(b, s) ⌘
1

�(�)


1

k!
(� � 1)(� � 2) · · · (� � k)(b� a)k(b� s)��k�1 � (b� s)��1

�
.

(3.1)
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Proof. For a < t < s < b, we have

@Gk(t, s)

@t
=

k

k!�(�)
(� � 1)(� � 2) · · · (� � k)(t� a)k�1(b� s)��k�1 � 0.

For a < s  t < b,

@Gk(t, s)

@t
=

k

k!�(�)
(� � 1)(� � 2) · · · (� � k)(t� a)k�1(b� s)��k�1 � 1

�(�)
(� � 1)(t� s)��2

� (� � 1)

�(�)


k

k!
(� � 2) · · · (� � k)(t� s)k�1(t� s)��k�1 � (t� s)��2

�

=
(� � 1)

�(�)


1

(k � 1)!
(� � 2) · · · (� � k)(t� s)��2 � (t� s)��2

�

>
(� � 1)

�(�)


(k � 1)!

(k � 1)!
� 1

�
(t� s)��2 = 0,

where we have used the fact that � > k+1. Therefore, the function Gk(t, s) is nondecreasing with

respect to t, and this implies Gk(t, s)  Gk(b, s) for all t, s 2 [0, 1]. This proves the lemma.

The following theorem is the major result in this section.

Theorem 3.2. Assume that � 2 (n � 1, n] and � > k + 1. If a nontrivial continuous solution of

(1.1)–(1.2) exists, then

Z b

a


1

k!
(� � 1)(� � 2) · · · (� � k)(b� a)k(b� s)��k�1 � (b� s)��1

�
|q(s)|ds � �(�). (3.2)

Proof. Let x(t) be a nonzero solution of (1.1)–(1.2) and let X = C([a, b]) be a Banach space

endowed with the norm

kxk = sup
atb

|x(t)|.

Then, for a solution x of (1.1)–(1.2), by Lemma 2.1,

x(t) =

Z b

a
Gk(t, s)q(s)x(s)ds.

Since q(t) cannot be zero,

|x(t)|  1

�(�)

Z b

a


1

k!
(� � 1)(� � 2) · · · (� � k)(b� a)k(b� s)��k�1 � (b� s)��1

�
|q(s)| |x(s)|ds,

which yields (3.2). This proves the theorem.
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We have the following consequences of this result.

Corollary 3.3. Under the conditions of Theorem 3.2, if (1.1)–(1.2) has a nontrivial continuous

solution, then Z b

a
(b� s)��k�1|q(s)|ds � k!�(� � k)

(b� a)k
. (3.3)

Corollary 3.4. Under the conditions of Theorem 3.2, if (1.1)–(1.2) has a nontrivial continuous

solution, then Z b

a
|q(s)|ds � k!�(� � k)

(b� a)��1
. (3.4)

If we set n ⌘ 3, then � 2 (2, 3], and since � > k + 1, this means we take k = 1. The problem

(1.1)–(1.2) then reduces to

8
><

>:

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0, 2 < �  3,

x(a) = x00(a) = x0(b) = 0.
(3.5)

Fractional BVPs of the form (3.5) were studied by Qin and Bai [19, 20]. Applying Theorem 3.2,

Corollary 3.3, and Corollary 3.4 to (3.5), we obtain the following corollary.

Corollary 3.5. If (3.5) has a continuous nontrivial solution, then

Z b

a


1

k!
(� � 1)(b� a)(b� s)��2 � (b� s)��1

�
|q(s)|ds � �(�), (3.6)

Z b

a
(b� s)��2|q(s)|ds � �(� � 1)

(b� a)
, (3.7)

and Z b

a
|q(s)|ds � �(� � 1)

(b� a)��1
. (3.8)

As discussed earlier, (3.6) implies (3.7), and (3.7) implies (3.8). In particular, applying inequality

(3.8) of Corollary 3.5 to the third-order boundary value problem

8
><

>:

x000(t) + q(t)x(t) = 0,

x(a) = x00(a) = x0(b) = 0,
(3.9)

we obtain the following result.

Corollary 3.6. If (3.9) has a continuous nontrivial solution, then

Z b

a
|q(s)|ds � 1

(b� a)2
. (3.10)



266 S. N. Srivastava, S. Pati, J. R. Graef, A. Domoshnitsky & S. Padhi CUBO
26, 2 (2024)

As far as our knowledge is concerned, Corollary 3.6 is new in the literature. The boundary

conditions used in (3.9) are different from those of Aktaş and Çakmak [3,4] and Parhi and Panigrahi

[17]. Our Corollary 3.6 can not be compared to the results in [5] because of the restrictive condition

x00(a) + x00(b) = 0 (see the third condition of (1.7) in [5]) required there. Similarly, Corollary 3.5

can not be compared to Dhar and Kong [8,9].

Next, suppose that n � 4. Our parameter k considered in (1.2) varies from 1 to n � 1. In

particular, if k = 2, we obtain the results of Cabrera, Lopez, and Sadarangani [7]. Our Green’s

function Gk(t, s) extends the Green’s functions obtained in [1, 23,24] for a = 0, b = 1, and k = 2.

4 Main results: Lyapunov type inequalities–II

In this section, we derive a new Lyapunov type inequality, different from the ones presented in the

previous section. We use the maximum of the Green’s function Gk(t, s) given in (2.3) to find a new

inequality for (1.1)–(1.2) for a general k, 1  k  n � 1, with the price being that the following

restrictive inequality is imposed:

k! > (� � 1) · · · (� � k)(� � k � 1). (4.1)

As prescribed by our boundary condition (1.2), we consider the following cases:

(A1) x(0) = x00(0) = · · · = x(n�1)(0) = 0, x0(1) = 0

(A2) x(0) = x0(0) = x000(0) = · · · = x(n�1)(0) = 0, x00(1) = 0

(A3) x(0) = x0(0) = x00(0) = x0000(0) = · · · = x(n�1)(0) = 0, x000(1) = 0

...
...

...
...

(An�1) x(0) = x0(0) = x00(0) = · · · = x(n�2)(0) = 0, x(n�1)(1) = 0

Remark 4.1. Observe that:

(B1) For k = 1, that is, in the case (A1), we can take � = 2.5 2 (2, 3]. Then, condition (4.1) is

satified, i.e.,

1 = k! > (� � 1) · · · (� � k)(� � k � 1) = (2.5� 1)(2.5� 2) = 0.75.

(B2) For k = 2, that is, in the case (A2), we can take � = 3.5 2 (3, 4], so that condition (4.1)

becomes

2 = k! > (� � 1) · · · (� � k)(� � k � 1) = (3.5� 1)(3.5� 2)(3.5� 3) = 1.875.



CUBO
26, 2 (2024)

Lyapunov-type inequalities for higher-order Caputo fractional ... 267

(B3) For k = 3, that is, in the case (A3), we can take � = 4.4 2 (4, 5], and (4.1) becomes

6 = k! > (� � 1) · · · (� � k)(� � k � 1) = (4.4� 1)(4.4� 2)(4.4� 3)(4.4� 4) = 4.5696.

The following lemma gives an upper bound on Gk(t, s).

Lemma 4.2. Let � > k + 1 and assume that (4.1) is satisfied. Then

Gk(t, s) 
1

�(�)

k(b� a)��1

� � k � 1

✓
(� � 2)(� � 3) · · · (� � k)(� � k � 1)

k!

◆ ��1
k

. (4.2)

Proof. By Lemma 3.1, we have Gk(t, s)  Gk(b, s). Set

F (s) =
1

k!
(� � 1)(� � 2) · · · (� � k)(b� a)k(b� s)��k�1 � (b� s)��1; (4.3)

then Gk(b, s) =
1

�(�)F (s). To obtain the maximum of F (s), set F 0(s) equal to zero to obtain

F 0(s) = � (� � 1)(� � 2) · · · (� � k)(� � k � 1)

k!
(b� a)k(b� s)��k�2 + (� � 1)(b� s)��2 = 0,

which is true if and only if

s(:= s⇤) = b�
✓
(� � 2) · · · (� � k)(� � k � 1)

k!

◆ 1
k

(b� a). (4.4)

Clearly, s⇤ < b. Also, if s⇤ < a, then

k! < (� � 2) · · · (� � k)(� � k � 1),

which contradicts (4.1). Hence, s⇤ � a.

Now,

F 00(s) =
(� � 1)(� � 2) · · · (� � k)(� � k � 1)(� � k � 2)

k!
(b� s)��k�3(b� a)k

� (� � 1)(� � 2)(b� s)��3

= (� � 1)(� � 2)(b� s)��k�3


(� � 3) · · · (� � k)(� � k � 1)(� � k � 2)

k!
(b� a)k � (b� s)k

�
.

If we set

g(s) =
(� � 3) · · · (� � k)(� � k � 1)(� � k � 2)

k!
(b� a)k � (b� s)k,
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then

g(s⇤) =
(� � 3) · · · (� � k)(� � k � 1)(� � k � 2)

k!
(b� a)k � (� � 2) · · · (� � k)(� � k � 1)

k!
(b� a)k

=
(� � 3) · · · (� � k)(� � k � 1)

k!
(b� a)k(� � k � 2� � + 2)

= �k
(� � 3) · · · (� � k)(� � k � 1)

k!
(b� a)k < 0.

Therefore, F (s) attains its maximum at s = s⇤, and the maximum of F (s) is given by

F (s)  maxF (s) = F (s⇤) =

=
1

k!
(� � 1)(� � 2) · · · (� � k)(b� a)k

✓
(� � 2) · · · (� � k)(� � k � 1)

k!

◆ ��k�1
k

(b� a)��k�1

�
✓
(� � 2) · · · (� � k)(� � k � 1)

k!

◆ ��1
k

(b� a)��1

= (b� a)��1

✓
(� � 2) · · · (� � k)(� � k � 1)

k!

◆ ��k�1
k


(� � 1)(� � 2) · · · (� � k)

k!

� (� � 2) · · · (� � k)(� � k � 1)

k!

�

= (b� a)��1

✓
(� � 2) · · · (� � k)(� � k � 1)

k!

◆ ��k�1
k (� � 2) · · · (� � k)

k!
(� � 1� � + k + 1)

= k(b� a)��1

✓
(� � 2) · · · (� � k)(� � k � 1)

k!

◆ ��k�1
k (� � 2) · · · (� � k)(� � k � 1)

k!(� � k � 1)

=
k(b� a)��1

(� � k � 1)

✓
(� � 2) · · · (� � k)(� � k � 1)

k!

◆ ��1
k

.

Consequently, (4.2) holds, and this completes the proof of the lemma.

Next, based on the above lemma, we present our main inequality in this section.

Theorem 4.3. If � > k+ 1, (4.1) is satisfied, and a nontrivial continuous solution of (1.1)–(1.2)

exists, then

Z b

a
|q(s)|ds � �(�)(� � k � 1)

k(b� a)��1

✓
k!

(� � 2) · · · (� � k)(� � k � 1)

◆ ��1
k

. (4.5)

As before, we obtain the following corollaries.

Corollary 4.4. Let � 2 (2, 3) and (� � 1)(� � 2) < 1. If a nontrivial continuous solution of the

fractional boundary value problem (3.5) exists, then

Z b

a
|q(t)|dt � �(�)

(b� a)��1

1

(� � 2)��2
.
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Proof. This can be proved by letting k = 1 in (4.1) and (4.5).

Corollary 4.5. Let � 2 (3, 4) and (� � 1)(� � 2)(� � 3) < 2!. If a nontrivial continuous solution

of the fractional boundary value problem

8
><

>:

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0, 3 < �  4,

x(a) = x0(a) = x000(a) = x00(b) = 0
(4.6)

exists, then
Z b

a
|q(t)|dt � �(�)(� � 3)

2(b� a)��1

✓
2!

(� � 2)(� � 3)

◆ ��1
2

.

Proof. This can be proved by letting k = 2 in (4.1) and (4.5).

Corollary 4.6. Let � 2 (4, 5) and (� � 1)(� � 2)(� � 3)(� � 4) < 3!. If a nontrivial continuous

solution of the fractional boundary value problem

8
><

>:

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0, 4 < �  5,

x(a) = x0(a) = x00(a) = x0000(a) = x000(b) = 0
(4.7)

exists, then
Z b

a
|q(t)|dt � �(�)(� � 4)

3(b� a)��1

✓
3!

(� � 2)(� � 3)(� � 4)

◆ ��1
3

.

Proof. This can be proved by letting k = 3 in (4.1) and (4.5).

5 Main results: Lyapunov type inequalities–III

In Sections 3 and 4, we obtained two different Lyapunov-type inequalities. In this section, we

obtain one more such inequality that is also different from the previous ones. Here we will have

the same integrand that appeared in (3.2) in Section 3, whereas we only had q as the integrand

in (4.5) in Section 4. Although the condition � > k + 1 is required in both of these sections, the

inequality (4.1) prevents us from considering many types of boundary conditions. For example,

from the observations (B2)–(B3) and condition (4.1), we see that we cannot ask that k < n� 2.

In this section, we avoid condition (4.1) and find a general Lyapunov-type inequality for (1.1)

together with the boundary condition (1.2), which is valid for the case 1  k  n� 2.
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Set

M = max

⇢
1

k!
(� � 1)(� � 2) · · · (� � k)

kk(b� a)��1(� � k � 1)��k�1

(� � 1)��1
,

k(b� a)��1

(� � k � 1)

✓
(� � 2)(� � 3) · · · (� � k � 1)

k!

◆ ��1
k

, (5.1)

(b� a)��1

k!
((� � 1)(� � 2) · · · (� � k)� k!)

�
.

Lemma 5.1. Let � > k + 1. The inequality

max
t,s2[a,b]

Gk(t, s) 
1

�(�)
M, (5.2)

holds, where M is defined in (5.1).

Proof. We have �(�)Gk(t, s) =
1
k! (� � 1)(� � 2) · · · (� � k)(t� a)k(b� s)��k�1 for a  t  s  b.

Now,

�(�)
@Gk

@t
=

k

k!
(� � 1)(� � 2) · · · (� � k)(t� a)k�1(b� s)��k�1 � 0

implies that Gk(t, s) is non decreasing with respect to t. Hence, �(�)Gk(t, s)  Gk(s, s)�(�). Set

�(�)Gk(s, s) = g1(s). Then,

g1(s) =
1

k!
(� � 1)(� � 2) · · · (� � k)(s� a)k(b� s)��k�1,

and
dg1
ds

= 0 if and only if

s =: s⇤ = a+
k(b� a)

� � 1
.

Clearly, a < s⇤ < b, and

d2g1
ds2

=
1

k!
(� � 1)(� � 2) · · · (� � k)[k(k � 1)(s� a)k�2(b� s)��k�1

� k(� � k � 1)(s� a)k�1(b� s)��k�2 � k(� � k � 1)(s� a)k�1(b� s)��k�2

+ (� � k � 1)(� � k � 2)(s� a)k(b� s)��k�3]

=
1

k!
(� � 1) · · · (� � k)(s� a)k�2(b� s)��k�3[k(k � 1)(b� s)2

� 2k(� � k � 1)(s� a)(b� s) + (� � k � 1)(� � k � 2)(s� a)2]. (5.3)

Now, s⇤ � a = k(b�a)
��1 and

(b� s⇤) = (b� a)� k(b� a)

(� � 1)
=

(b� a)(� � k � 1)

(� � 1)
.
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Thus, from (5.3), we have

d2g1
ds2

|s=s⇤ = � (� � 1)(� � 2) · · · (� � k)

k!

kk�2(b� a)��3(� � k � 1)��k�2

(� � 1)��4
< 0,

which shows that g1(s) attains its maximum at s = s⇤. Hence,

max
atsb

Gk(t, s) =
1

�(�)k!
(� � 1)(� � 2) · · · (� � k)

kk(b� a)��1(� � k � 1)��k�1

(� � 1)��1
. (5.4)

Next, suppose that a  s  t  b. Since � > k + 1, Gk(t, s) is nondecreasing with respect to t.

Thus, for a  s  t  b, we have

max
astb

Gk(t, s) = Gk(b, s) :=
1

�(�)
F (s), (5.5)

where F (s) is given in (4.3). Clearly F 0(s) = 0 if and only if s = s⇤, where s⇤ is given in (4.4).

Moreover, s⇤ < b, F (s) is nondecreasing for s  s⇤, nonincreasing for s � s⇤, and attains its

extreme (maximum) value at s = s⇤.

First, suppose that a  s⇤. Then F (s) attains its maximum at s = s⇤, and the maximum value of

Gk(t, s) is given by

max
astb

Gk(t, s) = Gk(b, s
⇤) =

1

�(�)

k(b� a)��1

(� � k � 1)

✓
(� � 2)(� � 3) · · · (� � k � 1)

k!

◆ ��1
k

. (5.6)

Finally, suppose that s⇤ < a. Then,

max
astb

Gk(t, s)  max
asb

Gk(b, s)  Gk(b, a)

=
(b� a)��1

k!�(�)
((� � 1)(� � 2) · · · (� � k)� k!). (5.7)

Therefore, in view of (5.4), (5.6), and (5.7), the lemma is proved.

Theorem 5.2. Let � > k + 1. If x(t) is a nonzero solution of (1.1)–(1.2), then

Z b

a
|q(t)| dt > �(�)

M
. (5.8)

6 Discussion and conclusions

In this section, we obtain Lyapunov-type inequalities for fractional differential equations of various

orders and with different boundary conditions. We also compare our results with some existing

ones in the literature.
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6.1 The case � 2 (2, 3]

Let � 2 (2, 3]. Since � > k + 1 and � > 2, we have k = 1. In this case,

M1 = max

(
(b� a)��1

✓
� � 2

� � 1

◆��2

, (b� a)��1(� � 2)��2, (b� a)��1(� � 2)

)
, (6.1)

where M1 = M |k=1 and M is given in (5.1). Now 2 < �  3 implies (� � 2)��2 � � � 2, so

M1 =

(
(b� a)��1

✓
� � 2

� � 1

◆��2

, (b� a)��1(� � 2)��2

)
. (6.2)

We then have the following corollary.

Corollary 6.1. Let � 2 (2, 3]. If x(t) is a nonzero solution of

8
><

>:

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0,

x(a) = x00(a) = x0(b) = 0,
(6.3)

then Z b

a
|q(t)| dt > �(�)

M1
. (6.4)

Since (b � a)��2 � 1
(��1)��2 holds if and only if b � a + 1

��1 , we obtain the following corollary

from Corollary 6.1.

Corollary 6.2. Let � 2 (2, 3] and b � a+ 1
��1 . If x(t) is a nonzero solution of (6.3), then

Z b

a
|q(t)| dt > �(�)

(b� a)��1(� � 2)��2
. (6.5)

Now we consider the problem (3.9). Here n = 3, � = 3, and k = 1. In this case, Corollary 3.6

shows that if (3.9) has a nontrivial solution, then (3.10) holds. Corollary 4.4 cannot be applied

because (� � 1)(� � 2) = 2 > 1 and so (4.1) fails. By Corollary 6.1, if x is a nonzero solution of

the problem (3.9), then Z b

a
|q(t)| dt > 2

max{ (b�a)
2 , (b� a)2}

(6.6)

holds. If b � 1
2 + a, then max{ (b�a)

2 , (b � a)2} = (b � a)2. Consequently, (6.6) yields (3.10). On,

the other hand, if b < 1
2 + a, then max{ (b�a)

2 , (b� a)2} = (b�a)
2 . In this case, (6.6) yields

Z b

a
|q(t)| dt > 4

(b� a)
. (6.7)
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6.2 The case � 2 (3, 4]

Let � 2 (3, 4]. Since � > k + 1 and k 6= 0, we consider the following two cases: k = 1 and k = 2.

First, suppose that k = 1; then Theorem 5.2 yields the following corollary.

Corollary 6.3. Let � 2 (3, 4]. If x(t) is a nonzero solution of

8
><

>:

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0,

x(a) = x00(a) = x000(a) = x0(b) = 0,
(6.8)

then Z b

a
|q(t)| dt > �(�)

M1
(6.9)

where M1 is given in (6.2).

Corollary 6.4. Let � 2 (3, 4] and b � a+ 1
��1 . If x(t) is a nonzero solution of (6.8), then (6.5)

holds.

Finally, suppose that k = 2. Then Theorem 5.2 reduces to the following corollary.

Corollary 6.5. Let � 2 (3, 4]. If x(t) is a nonzero solution of

8
><

>:

⇣
CD�

a+
x
⌘
(t) + q(t)x(t) = 0,

x(a) = x0(a) = x000(a) = x00(b) = 0,
(6.10)

then Z b

a
|q(t)| dt > �(�)

M2
, (6.11)

where

M2 =

(
2(b� a)��1(� � 2)(� � 3)��3

(� � 1)��2
,
2(b� a)��1

� � 3

✓
(� � 2)(� � 3)

2

◆ ��1
2

,
�(� � 3)(b� a)��1

2

)
.

(6.12)

In this paper, we obtained Lyapunov-type inequalities for higher-order fractional differential equa-

tions of Caputo-type with general two point boundary conditions. The assumption that � > k+1

helped us to analyze the signs of the Green’s function Gk(t, s) and its derivatives with the price

that k 6= n� 1. Similarly, by our assumption, we have k 6= 0. Therefore, it would be interesting to

discover a Lyapunov-type inequality for problem (1.1) for either of the boundary conditions

x(i)(a) = x(n�1)(b) = 0, 0  i  n� 2
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or

x(i)(a) = x(b) = 0, 0  i  n� 1.

This is left to the reader.
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ABSTRACT

We describe the digraphs that are dual representations

of finite lattices satisfying conditions related to meet-

distributivity and modularity. This is done using the dual di-

graph representation of finite lattices by Craig, Gouveia and

Haviar (2015). These digraphs, known as TiRS digraphs,

have their origins in the dual representations of lattices by

Urquhart (1978) and Ploščica (1995). We describe two prop-

erties of finite lattices which are weakenings of (upper) semi-

modularity and lower semimodularity respectively, and then

show how these properties have a simple description in the

dual digraphs. Combined with previous work in this journal

on dual digraphs of semidistributive lattices (2022), it leads

to a dual representation of finite meet-distributive lattices.

This provides a natural link to finite convex geometries. In

addition, we present two sufficient conditions on a finite TiRS

digraph for its dual lattice to be modular. We close by posing

three open problems.
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RESUMEN

Describimos los digrafos que son representaciones duales de
reticulados finitos satisfaciendo condiciones relacionadas con
encuentro-distributividad y modularidad. Esto se obtiene
usando la representación digrafo dual de reticulados fini-
tos de Craig, Gouveia y Haviar (2015). Estos digrafos,
conocidos como digrafos TiRS, tienen sus orígenes en las
representaciones duales de reticulados de Urquhart (1978) y
Ploščica (1995). Describimos dos propiedades de reticulados
finitos que son debilitamientos de la semimodularidad (su-
perior) y semimodularidad inferior respectivamente, y luego
mostramos cómo estas propiedades tienen una descripción
simple en los digrafos duales. Combinado con trabajo pre-
vio sobre digrafos duales de reticulados semidistributivos
(2022) en esta revista, se tiene una representación dual de
reticulados encuentro-distributivos. Esto entrega una cone-
xión natural a geometrías convexas finitas. Adicionalmente,
presentamos dos condiciones suficientes en un digrafo TiRS
finito para que su reticulado dual sea modular. Concluimos
presentando tres problemas abiertos.

Keywords and Phrases: Semimodular lattice, lower semimodular lattice, modular lattice, TiRS digraph, meet-

distributive lattice, finite convex geometry.

2020 AMS Mathematics Subject Classification: 06B15, 06C10, 06C05, 05C20, 06A75.
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1 Introduction

The first dual representation of arbitrary bounded lattices was given by Urquhart in 1978 [15].

Since then, many different authors have attempted to provide dualities and dual representations

of classes of lattices that are not necessarily distributive (see the recent survey by the first author

[4]).

In this paper we examine representations for finite lattices that satisfy conditions related to meet-

distributivity and modularity. The dual structures of these finite lattices will be TiRS digraphs

satisfying some additional conditions. It was shown by Craig, Gouveia and Haviar [6] that there is

a one-to-one correspondence between the class of finite lattices and finite digraphs known as TiRS

digraphs (see Definition 2.4 and Theorem 2.6). We remark that this correspondence generalises

Birkhoff’s one-to-one correspondence between finite distributive lattices and finite posets from the

1930s.

A goal of any representation is to use simple, familiar structures to represent the objects of interest.

Finite TiRS digraphs provide a straightforward generalisation of finite posets. Moreover, digraphs

are a well-studied class of mathematical structures and hence are well suited to be used as dual

objects. In addition, the first-order description of TiRS digraphs can be used to study the finite

ones with computational tools such as Prover9/Mace4 [11].

We introduce and study lattice-theoretic conditions which generalise both lower semimodularity

and (upper) semimodularity for finite lattices and seem to be more natural and simpler than

the conditions from [8]. We are also able to provide equivalent conditions to them on the dual

TiRS digraph of a finite lattice. We can combine our lattice-theoretic conditions with our previous

results in this journal [5] to characterise the dual digraphs of finite meet-distributive lattices, which

correspond to finite convex geometries.

Currently, the only known dual characterisation of finite modular lattices is given by the theory of

Formal Concept Analysis [8]. A rather complicated condition is available for the standard context

dual to a finite semimodular lattice [8, Theorem 42]. We are able to provide conditions on the dual

digraph of a finite lattice, which are sufficient though not necessary for modularity of the lattice.

The paper is laid out as follows. In Section 2 we provide some background definitions and results

that will be needed later on in the paper. Section 3 defines two conditions which generalise, respec-

tively, (upper) semimodularity and lower semimodularity. We focus on the generalisation of lower

semimodularity—a condition we call (JM-LSM) (see Definition 3.6). We characterise the dual of

(JM-LSM) on the dual digraphs of finite lattices. For completeness we state corresponding condi-

tions and results related to upper semimodularity. In Section 4 we combine the results of Section

3 with results from a recent paper by Craig, Haviar and São João [5]. There, characterisations

were given of the digraphs dual to finite join- and meet-semidistributive lattices (and hence also
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finite semidistributive lattices). The combination of these dual characterisations gives us a charac-

terisation of the dual digraphs of finite meet-distributive lattices (also know as locally distributive

lattices). Furthermore, this allows us to describe a new class of structures that is in a one-to-one

correspondence with finite convex geometries. In Section 5 we give two sufficient conditions on a

finite TiRS digraph for the dual lattice to be modular. In Section 6 we list three open problems

and indicate why the task of describing digraphs dual to finite modular lattices is challenging.

2 Preliminaries

Central to the representation of a finite lattice that we will use is the notion of a maximal-disjoint

filter-ideal pair. This can, equivalently, be viewed as a maximal partial homomorphism from a

lattice L into the two-element lattice.

Definition 2.1 ([15, Section 3]). Let L be a lattice. Then hF, Ii is a disjoint filter-ideal pair of L

if F is a filter of L and I is an ideal of L such that F \ I = ?. A disjoint filter-ideal pair hF, Ii
is said to be a maximal disjoint filter-ideal pair (MDFIP) if there is no disjoint filter-ideal pair

hG, Ji 6= hF, Ii such that F ✓ G and I ✓ J .

The following fact was noted by Urquhart. It is needed for our characterisation of MDFIPs in

Theorem 3.2.

Proposition 2.2 ([15, p. 52]). Let L be a finite lattice. If hF, Ii is an MDFIP of L then
V

F is

join-irreducible and
W
I is meet-irreducible.

The set of join-irreducible elements of L is denoted J(L) and the set of meet-irreducible elements

is denoted M(L).

Given a lattice L, we will add a set of arcs to the set of MDFIPs of L. The use of such digraphs for

lattice representation is due to Ploščica [12]. We point out that the original work using (topologised)

digraphs used so-called maximal partial homomorphisms (see [12, Section 1]). It is easy to show

that these are in a one-to-one correspondence with MDFIPs. For a lattice L, we now present its

dual digraph GL = (XL, E) where the vertices are the MDFIPs of L. Ploščica’s relation E, when

transferred to the set of MDFIPs, is defined below for two MDFIPs hF, Ii and hG, Ji:

(E) hF, IiEhG, Ji () F \ J = ;.

For finite lattices every filter is the up-set of a unique element and every ideal is the down-set

of a unique element, so we can represent every disjoint filter-ideal pair hF, Ii by an ordered pair

h"a, #bi where a =
V
F and b =

W
I. Hence for finite lattices we have h"a, #biEh"c, #di if and only

if a ⌦ d. For a digraph G = (V,E) we let xE = { y 2 V | xEy } and Ex = { y 2 V | yEx }. The

next lemma is easy to prove and it will be useful later on.
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Lemma 2.3. Let GL = (XL, E) be the dual digraph of a finite lattice L. If x = h"a, #bi and

y = h"c, #di, then

(i) xE ✓ yE if and only if a 6 c;

(ii) Ex ✓ Ey if and only if d 6 b.

Figure 1 shows three lattices and their dual digraphs. These three examples will be important

throughout this paper. To make the labelling more succinct, we have denoted by ab the MDFIP

h"a, #bi. We have also left out the loop on each vertex to keep the display less cluttered. Observe

that the directed edge set is not a transitive relation. The labels L4 and L@
4 (as well as L@

3 which

appears later) come from the paper by Davey et al. [7].

0

a
b

c

1

N5

a
b

c

d e

0

1

L4

0

a b

c d e

1

L@
4

ab

bc

ca

GN5

dc

ab

cb

ea

GL4

ea

dc

de

cb

GL@
4

Figure 1: Finite lattices N5, L4, L@
4 and their dual digraphs.

The digraphs coming from lattices were described by Craig, Gouveia and Haviar [6]. The name

“TiRS” comes from combining the conditions (T i), (R), (S) below, where they are abbreviations

for “transitive interval”, “reduced” and “separated” respectively.

Definition 2.4 ([6, Definition 2.2]). A TiRS digraph G = (V,E) is a set V and a reflexive relation

E ✓ V ⇥ V such that:

(S) If x, y 2 V and x 6= y then xE 6= yE or Ex 6= Ey.

(R) For all x, y 2 V , if xE ⇢ yE then (x, y) /2 E, and if Ey ⇢ Ex then (x, y) /2 E.

(T i) For all x, y 2 V , if xEy then there exists z 2 V such that zE ✓ xE and Ez ✓ Ey.

The result below gives a description of dual digraphs of lattices with least and greatest elements.
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Proposition 2.5 ([6, Proposition 2.3]). For any bounded lattice L, its dual digraph GL = (XL, E)

is a TiRS digraph.

We recall from [12] a fact concerning general graphs G = (X,E). Let 2⇠ = ({0, 1},6) denote the

two-element graph. A partial map ' : X ! 2⇠ preserves the relation E if x, y 2 dom' and xEy

imply '(x) 6 '(y). The set of maximal partial E-preserving maps (i.e. those that cannot be

properly extended) from G to 2⇠ is denoted by Gmp(G, 2⇠). We use the abbreviation MPEs for

such partial maps.

For a graph G = (X,E) and ', 2 Gmp(G, 2⇠), it was shown by Ploščica [12, Lemma 1.3] that

'�1(1) ✓  �1(1) ()  �1(0) ✓ '�1(0). This implies that the reflexive and transitive binary

relation 6 defined on Gmp(G, 2⇠) by ' 6  () '�1(1) ✓  �1(1) is a partial order. In fact, this

is a lattice order [3, Theorem 2.3]. For a graph G = (X,E), denote by C(G) the (complete) lattice

of MPEs (Gmp(G, 2⇠),6).

The theorem below gives a one-to-one correspondence between finite lattices and finite TiRS di-

graphs. This result is essential to the work done in the rest of the current paper.

Theorem 2.6 ([6, Theorem 1.7 and p. 87]). For any finite lattice L we have that L is isomorphic

to C(GL) and for any finite TiRS digraph G = (V,E) we have that G is isomorphic to GC(G).

3 Generalising lower and upper semimodularity

For lattice elements a and b we write a � b to denote that a is covered by b. A lattice is upper

semimodular if whenever a ^ b � a then b � a _ b. It is common to refer to such lattices as

semimodular. A lattice is lower semimodular if whenever a � a _ b then a ^ b � b. We use (USM)

and (LSM) as abbreviations for these two conditions.

The lattices in Figure 1 provide useful examples: N5 satisfies neither (USM) nor (LSM), L4 satisfies

(USM) but not (LSM), and L@
4 satisfies (LSM) but not (USM).

We will focus on lower semimodularity, rather than upper semimodularity, because of the connec-

tion between lower semimodularity and finite convex geometries (see Section 4). We note that

modularity implies both semimodularity and lower semimodularity. If a lattice L has finite length

and is semimodular and lower semimodular, then L is also modular (cf. [9, Corollary 376]). For

further reading we refer to the book by Stern [14].

Figure 2 presents a number of different generalisations of distributivity and modularity (including

those presented above) and the relationships between them. The ‘B’ denotes bounded in the sense

of bounded homomorphic image of a free lattice (cf. [9, p. 504]). Observe that the conditions in

the top left and top right, which are weakenings of (LSM) and (USM) respectively, are in fact
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conditions on the standard context dual to a finite lattice. For the necessary terms and notation,

we refer to the book from where Figure 2 is taken [8, p. 234].

distributive

modularB

SD

JSD MSD

g % m, g . n ) g %. m g . m,h % m ) g %. m
semi-convex

LSM USM

meet-
distributive

join-
distributive

Figure 2: Relationships between generalisations of distributivity.

We begin by proving some new results about MDFIPs. These will be needed in the proofs of later

results.

Lemma 3.1. Let L be a finite lattice.

(i) If b 2 M(L) and b � a _ b, then #b is maximal with respect to being disjoint from "a.

(ii) If a 2 J(L) and a ^ b � a, then "a is maximal with respect to being disjoint from #b.

Proof. Assume that b 2 M(L) and b � a _ b. This implies b < a _ b and hence a ⌦ b and so

"a \ #b = ;. Suppose the ideal #b were to be extended to #c with b < c and "a \ #c = ;. Since

b 2 M(L), the element a _ b is the unique upper cover of b and so a _ b 2 #c. This implies

a _ b 2 "a \ #c, a contradiction, showing the maximality of #b with respect to being disjoint from

"a.

The proof of (ii) follows by a dual argument.

The next theorem gives a characterisation of MDFIPs.
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Theorem 3.2. A disjoint filter-ideal pair h"a, #bi is an MDFIP if and only if it satisfies the

following conditions:

(i) a 2 J(L);

(ii) b 2 M(L);

(iii) b � a _ b;

(iv) a ^ b � a.

Proof. If h"a, #bi is an MDFIP, by Proposition 2.2, a 2 J(L) and b 2 M(L). We also have b < a_ b,

since b = a _ b would imply a 2 #b. Suppose there exists c 2 L such that b < c < a _ b. If a 6 c

then c would be an upper bound for {a, b} and then a _ b 6 c. Therefore a ⌦ c. This would make

h"a, #ci a disjoint filter-ideal pair with #b ( #c, contradicting the maximality of the pair h"a, #bi.
A dual argument can be applied to show that a ^ b � a.

Assume h"a, #bi satisfies (i) � (iv). Lemma 3.1 says #b is maximal with respect to being disjoint

from "a and vice versa. Hence h"a, #bi is an MDFIP.

The lemmas below will be used in our later investigations.

Lemma 3.3. Let L be a finite lattice, a, b 2 L. The following are equivalent:

(i) a ⌦ b;

(ii) there exists j 2 J(L) such that j 6 a and j ⌦ b;

(iii) there exists m 2 M(L) such that b 6 m and a ⌦ m.

Proof. It is well-known that in a finite lattice the set J(L) is join-dense. Hence a 6 b is equivalent

to the condition that for all j 2 J(L), j 6 a implies j 6 b. This settles the equivalence of (i) and

(ii). The equivalence of (i) and (iii) follows similarly from the meet-density of M(L) in L.

For a, b 2 L we define the set Tab := {m 2 M(L) | b 6 m, a ⌦ m }. An important consequence of

Lemma 3.3 is that Tab is non-empty whenever a ⌦ b. This is needed for our next result.

Lemma 3.4. Let L be a finite lattice and a, b 2 L, a ⌦ b. Let d be a maximal element of Tab.

Then d � d _ a.

Proof. Firstly, we point out that Tab is a non-empty finite poset and hence has a maximal element.

Since a ⌦ d, we have a_d 6= d, and so d < d_a. Suppose there exists c 2 L such that d < c < d_a.

As d _ a ⌦ c, by Lemma 3.3 there exists m 2 M(L) such that c 6 m but d _ a ⌦ m. So d < m. If

a 6 m then d _ a 6 m. It follows a ⌦ m and b 6 d < m, so m 2 Tab. Since d was maximal in Tab

and d < m, we get a contradiction. Hence d � d _ a.
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From the previous lemmas one can derive the following result.

Proposition 3.5. Let L be a finite lattice with a 2 J(L) and b 2 M(L). Then

(i) there exists m 2 M(L) such that h"a, #mi is an MDFIP;

(ii) there exists j 2 J(L) such that h"j, #bi is an MDFIP.

Proof. We prove only (i), as then (ii) will follow by a dual argument. Since a 2 J(L), it has a

unique lower cover c. Clearly a ⌦ c, so by Lemma 3.4, there exists a maximal element m 2 Tac

such that m � m _ a. From Lemma 3.1(i) we know that #m is maximal with respect to being

disjoint from "a. If it were possible to extend "a to "d with d < a, then since c is the unique lower

cover of a, we would get c 2 "d \ #m. Hence "a is maximal with respect to being disjoint from

#m. It follows that h"a, #mi is an MDFIP.

We now define a new condition, (JM-LSM), which will be central to the results that follow. We

believe it is a more natural weakening of (LSM) than the condition given in the top left of Figure 2.

The name of the condition comes from the fact that it is almost identical to the condition (LSM),

but the elements involved are quantified over J(L) and M(L).

Definition 3.6. A finite lattice L satisfies (JM-LSM) if for any a 2 J(L) and b 2 M(L), if b � a_b
then a ^ b � a.

Example 3.7. Condition (JM-LSM) is a proper weakening of the condition (LSM). Indeed, the

lattice in Figure 3 satisfies (JM-LSM) but not (LSM). To see this, observe that c � c _ d and

c ^ d ⌃ d, yet d /2 J(L).

We note that the lattice L4 in Figure 1 does not satisfy (LSM), and also does not satisfy (JM-LSM):

c 2 J(L), a 2 M(L) and a � c _ a, yet c ^ a ⌃ c.

0

a cb

d

1

ac bc

ab ba

cd

Figure 3: A finite lattice that satisfies (JM-LSM) but not (LSM). Its dual digraph (right) satisfies
(LTi).

Below is a condition that we will prove is equivalent to (JM-LSM). It will assist us in proving that

the digraph condition (LTi), given in Definition 3.11, can be used to characterise the dual digraphs

of finite (JM-LSM) lattices.
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Definition 3.8. Condition (L-abc): Let a 2 J(L) and b 2 M(L). If a ⌦ b then there exists c > b

such that h"a, #ci is an MDFIP.

Notice that if h"a, #ci is an MDFIP, then Proposition 2.2 (cf. also Theorem 3.2) implies that for

the element c in Definition 3.8 we have c 2 M(L). Notice also that the finite lattice L4 in Figure 1

does not satisfy (L-abc): we have a 2 J(L), c 2 M(L) and a ⌦ c and there is no m > c such that

h"a, #mi is an MDFIP.

The following theorem shows that for finite lattices the central property (JM-LSM) can be char-

acterised exactly via the condition (L-abc).

Theorem 3.9. A finite lattice satisfies (JM-LSM) iff it satisfies (L-abc).

Proof. Assume (JM-LSM) and let a 2 J(L), b 2 M(L) and a ⌦ b. Let Tab = {m 2 M(L) | b 6
m & a ⌦ m}. Then Tab is a non-empty finite poset. Hence it has a maximal element, say c. So

c 2 M(L), b 6 c and h"a, #ci is a disjoint filter-ideal pair. To show that h"a, #ci is an MDFIP, by

Theorem 3.2 we need to show that c ^ a � a and c � c _ a. By (JM-LSM) we only need to prove

c � c _ a, which follows from Lemma 3.4. We have shown that (L-abc) holds.

Now assume (L-abc). To show (JM-LSM), let a 2 J(L), b 2 M(L) and b � a_ b. We need to prove

a ^ b � a. From b � a _ b we have a ⌦ b. By (L-abc) there exists c > b such that h"a, #ci is an

MDFIP. Hence c 2 M(L) and by Theorem 3.2, c^a � a. We claim that c = b. Suppose that c > b.

Then, since b 2 M(L), it has a unique upper cover b?. As b � a _ b, we get b? = a _ b. From c > b

we have c > b? = a _ b > a. This contradicts the fact that h"a, #ci is an MDFIP. Hence c = b.

This proves a ^ b = c ^ a � a.

Remark 3.10. We notice that if a finite lattice L satisfies (L-abc), then in the situation a ⌦ b for

a 2 J(L), b 2 M(L), an arbitrary maximal element of Tab can be taken for the element c > b such

that h"a, #ci is an MDFIP. Indeed, if c is any maximal element of Tab, then c 2 M(L), a ⌦ c, b 6 c

and so by the assumed condition (L-abc) there is c0 > c such that h"a, #c0i is an MDFIP. Hence

c0 2 M(L), a ⌦ c0, b 6 c0, thus c0 2 Tab. From the maximality of c in Tab we get c = c0 as required.

Now we present a digraph condition dual to (JM-LSM). The condition is a strengthening of the (Ti)

condition, and because of its connection to lower semimodularity, we have chosen the name (LTi).

Later, in Definition 3.16, (UTi) is used for the dual condition related to upper semimodularity.

Definition 3.11. Consider the condition below on a TiRS digraph G = (V,E):

(LTi) uEv =) (9w 2 V )(wE = uE & Ew ✓ Ev).

Note that (LTi) is not dual to (LSM) as Figure 3 shows. For each pair of E related vertices, there is

some vertex making the consequent true. For example, if u = ba and v = ac, we have baEac, and we
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can let w = bc, since baE = {bc, ba, ac} = bcE, and Ebc = {ab, ac, ba, bc} ✓ {ab, ac, ba, bc} = Eac.

The next two results prove that it is (JM-LSM) that is dual to (LTi).

Proposition 3.12. A finite TiRS digraph satisfies (LTi) if and only if it is the dual digraph of a

lattice that satisfies (L-abc).

Proof. Assume a finite lattice L satisfies (L-abc). To show that the dual digraph GL satisfies (LTi),

let u = h"a, #mi, v = h"j, #bi be vertices of the digraph G and let uEv, whence a ⌦ b. Then by

(L-abc) there exists c 2 M(L) such that b 6 c and h"a, #ci is an MDFIP. If we denote w = h"a, #ci
as a vertex of G, then by Lemma 2.3 we have wE = uE and Ew ✓ Ev as required.

For the converse, assume that a finite TiRS digraph G satisfies (LTi). To show that its dual

lattice L satisfies (L-abc), let a 2 J(L), b 2 M(L) and a ⌦ b. Since a 2 J(L) and L is finite,

by Proposition 3.5(i), there exists an element m 2 M(L) such that u = h"a, #mi is an MDFIP.

Similarly, since b 2 M(L), by Proposition 3.5(ii) there exists j 2 J(L) such that v = h"j, #bi is

an MDFIP. Since a ⌦ b, we have uEv. Now, by (LTi), there is a vertex w = h"c, #di 2 V (G)

satisfying wE = uE and Ew ✓ Ev. Since wE = uE, we get "c = "a, so c = a. Since Ew ✓ Ev,

Lemma 2.3(ii) tells us that d > b. This proves that d is the desired element such that h"a, #di is

an MDFIP.

The main theorem of this section follows directly from Theorem 3.9 and Proposition 3.12.

Theorem 3.13. A finite TiRS digraph is the dual digraph of a finite lattice satisfying (JM-LSM)

if and only if it satisfies (LTi).

For completeness, we now state the conditions and results related to finite upper semimodular

lattices and their dual digraphs.

Definition 3.14. Let L be a finite lattice. We say that L satisfies the condition (JM-LSM) if

whenever a 2 J(L), b 2 M(L), and a ^ b � a, then b � a _ b. We say that L satisfies (U-abc) if

whenever a 2 J(L) and b 2 M(L) and a ⌦ b then there exists c 6 a such that h"c, #bi is an MDFIP.

The proposition below connects the two conditions defined above.

Proposition 3.15. A finite lattice satisfies (U-abc) iff it satisfies (JM-USM).

Our last definition is the condition (UTi) which is, like (LTi), a strengthening of the (Ti) condition

from Definition 2.4.

Definition 3.16. Consider the condition below on a TiRS digraph G = (V,E):

(UTi) uEv =) (9w 2 V )(wE ✓ uE & Ev = Ew).
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Theorem 3.17. A finite TiRS digraph satisfies (UTi) if and only if it is the dual digraph of a

finite lattice that satisfies (JM-USM).

4 Dual digraphs of meet-distributive lattices

In this section we will combine the results from Section 3 with results about dual digraphs of finite

join- and meet-semidistributive lattices from [5]. The goal is to give a description of the dual

digraphs of finite meet-distributive lattices. This will give a description of a new class of structures

that are in a one-to-one correspondence with the class of finite convex geometries. First, we recall

some basic definitions.

A lattice L is join-semidistributive if it satisfies the following quasi-equation for all a, b, c 2 L:

(JSD) a _ b ⇡ a _ c �! a _ b ⇡ a _ (b ^ c).

A lattice L is meet-semidistributive if it satisfies the following quasi-equation for all a, b, c 2 L:

(MSD) a ^ b ⇡ a ^ c �! a ^ b ⇡ a ^ (b _ c).

A lattice is semidistributive if it satisfies both (JSD) and (MSD).

Considering the lattices in Figure 1 one can see that N5 is semidistributive, L4 is meet-semidistributive

but not join-semidistributive, and L@
4 is join-semidistributive but not meet-semidistributive.

For a finite lattice L and a 2 L, consider µ(a) =
V
{ b 2 L | b � a }. A finite lattice is meet-

distributive (also called locally distributive) if for any a 2 L, the interval [µ(a), a] is a distributive

lattice (cf. [1, Section 5 - 2]). The class of finite meet distributive lattices is an important class of

lattices because of their link to finite convex geometries. The following results therefore lead us to

a new characterisation of finite convex geometries, which we present in Theorem 4.13 (iv) and (v).

The following equivalence is extracted from [1, Theorem 5-2.1].

Theorem 4.1. Let L be a finite lattice. Then the following are equivalent:

(i) L is meet-distributive;

(ii) L satisfies (JSD) and (LSM).

The results below use Theorem 4.1 to provide an additional characterisation of meet-distributive

lattices using (JM-LSM), the condition that was central to Section 3. Later, we will use this to

characterise their dual digraphs.
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Theorem 4.2. If a finite lattice L satisfies (JM-LSM) and (JSD), then it is lower semimodular.

Proof. Let L be a finite lattice satisfying (JM-LSM) and (JSD). Let a, b 2 L be arbitrary such

that a � a _ b. We are going to show that a ^ b � b. We will proceed by contradiction.

Suppose that a ^ b ⌃ b. Then there exists c 2 L such that a ^ b < c < b. Then b ⌦ c and by

Lemma 3.3 the set Scb = { j 2 J(L) | j 6 b, j ⌦ c } is non-empty. Let p be a minimal element of

Scb.

Suppose p 6 a, then since p 6 b, we get p 6 a^ b 6 c, which is a contradiction, so p ⌦ a. Then by

Lemma 3.3, the set Tpa = {m 2 M(L) | a 6 m and p ⌦ m} is non-empty. Let m be a maximal

element of Tpa. By Lemma 3.4, m � m_p. Since m 2 M(L), p 2 J(L), and L satisifies (JM-LSM),

we obtain m ^ p � p.

The join irreducible element p has a unique lower cover p⇤; likewise the meet irreducible element

m has a unique upper cover m⇤. Then p⇤ 6 m as p⇤ = m ^ p. Now p ⇥ c and p⇤ 6 c imply

c^ p = p⇤. Analogously, p ⇥ m and p 6 m⇤ imply m_ p = m⇤. It follows that c ⇥ m as otherwise

we get c 6 m ^ (a _ b) = a, whence c 6 a ^ b, which contradicts a ^ b < c. But c 6 m⇤ since

m⇤ > a _ p = a _ b > b. Here we used that since p 6 b, we have a 6 a _ p 6 a _ b, and since

a � a _ b, we have a = a _ p or a _ p = a _ b. But a 6= a _ p since p ⌦ a, so a _ p = a _ b.

Hence m _ c = m⇤. Combining the above,

m⇤ = m _ p = m _ c = m _ (p ^ c) = m _ p⇤ = m

by (JSD), a contradiction. Hence c cannot exist showing that a ^ b � b.

Remark 4.3. Notice in the proof we actually use a weaker form of (JSD). We will say that a

lattice L is weakly join-semidistributive if it satisfies the following quasi-equation for all a 2 M(L),

b 2 J(L), c 2 L:

(W-JSD) a _ b ⇡ a _ c �! a _ b ⇡ a _ (b ^ c).

Hence in Theorem 4.2 we actually showed that (JM-LSM) and (W-JSD) implies (LSM).

We notice the lattice in Figure 3 satisfies (JM-LSM) but not (W-JSD): indeed c 2 M(L), b 2 J(L)

and c _ b = c _ a but c _ (b ^ a) 6= c _ a.

The result below follows from Theorems 4.1 and 4.2.

Corollary 4.4. A finite lattice is meet-distributive if and only if it satisfies both (JM-LSM) and

(JSD).

The following theorem provides a characterisation of the dual digraphs of finite join- and meet-

semidistributive lattices. Its proof (see [5]) relies on the well-known  map used in the charac-
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terisation of semidistributivity. Notice that each of the conditions (i), (ii) and (iii) below is a

strengthening of the (S) condition from the definition of TiRS digraphs (Definition 2.4).

Theorem 4.5 ([5, Theorem 3.6]). Let G = (V,E) be a finite TiRS digraph with u, v 2 V . Then

(i) G is the dual digraph of a finite lattice satisfying (JSD) if and only if it satisfies the following

condition:

(dJSD) if u 6= v then Eu 6= Ev.

(ii) G is the dual digraph of a finite lattice satisfying (MSD) if and only if it satisfies the following

condition:

(dMSD) if u 6= v then uE 6= vE.

(iii) G is the dual digraph of a finite semidistributive lattice if and only if it satisfies the following

condition:

(dSD) if u 6= v then Eu 6= Ev and uE 6= vE.

The next few results in this section link the properties discussed earlier to distributivity in lattices

and transitivity in dual digraphs.

Theorem 4.6. Let G = (V,E) be a finite TiRS digraph that satisfies both (dMSD) and (LTi).

Then E is transitive.

Proof. We first claim that if a finite TiRS digraph G = (V,E) satisfies both (dMSD) and (LTi),

then for any vertices u, v 2 V , uEv implies Eu ✓ Ev. Indeed, uEv by (LTi) implies the existence

of w 2 V such that wE = uE and Ew ✓ Ev. By the property (dMSD), wE = uE means w = u,

whence Eu ✓ Ev as required.

Now to show the transitivity of E, if uEv and vEw for some vertices u, v, w 2 V , then by the

above claim, Eu ✓ Ev and Ev ✓ Ew. Hence Eu ✓ Ew, which means u 2 Ew, whence uEw as

required.

Proposition 4.7. If G = (V,E) is TiRS digraph with transitive E, then G is a poset.

Proof. As in a TiRS digraph G = (V,E) the relation E is reflexive, it only remains to show the

antisymmetry of E.

Assume for x, y 2 V that xEy and yEx. We firstly show that xE ✓ yE: if z 2 V and z 2 xE,

then xEz and with yEx we get yEz by transitivity of E, hence z 2 yE as required. Now xE ⇢ yE

by the condition (R) from Definition 2.4 would give (x, y) /2 E, a contradiction. Hence xE = yE.

Analogously one can show that Ey ✓ Ex and since Ey ⇢ Ex would by (R) give (x, y) /2 E, we

have Ey = Ex. Using that G satisfies the separation property (S) from Definition 2.4, it follows

that x = y as required.
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The result below follows from Theorem 4.6, Proposition 4.7 and Birkhoff’s one-to-one correspon-

dence between finite distributive lattices and finite posets, which was in [6] generalised into a

one-to-one correspondence between the class of finite lattices and finite TiRS digraphs (cf. Theo-

rem 2.6 here).

Corollary 4.8. If a finite lattice L satisfies (MSD) and (JM-LSM), then L is distributive.

We now return to focus on finite meet-distributive lattices, with the goal of describing a class of

digraphs connected to finite convex geometries.

Using the TiRS conditions, our conditions for the dual digraphs of (JM-LSM) and (JSD), respec-

tively, and Corollary 4.4, we get the following dual condition for meet-distributivity. Notice how

(dJSD) is a strengthening of the (S) condition, and (LTi) is a strengthening of the (T i) condition.

Theorem 4.9. A finite digraph G = (V,E) with a reflexive relation E is the dual digraph of some

finite meet-distributive lattice if and only if G satisfies the following conditions:

(dJSD) If x, y 2 V and x 6= y then Ex 6= Ey.

(R) For all x, y 2 V , if xE ⇢ yE then (x, y) /2 E, and if Ey ⇢ Ex then (x, y) /2 E.

(LTi) For all x, y 2 V , if xEy then there exists z 2 V such that zE = xE and Ez ✓ Ey.

Proof. Let G be the dual digraph of some finite meet-distributive lattice L. Then by Theorem 2.6

the digraph G will satisfy (R). By Corollary 4.4, L satisfies (JSD) and (JM-LSM). Hence by

Theorem 4.5(i), G satisfies (dJSD). Lastly, by Theorem 3.13, G will satisfy (LTi).

Conversely, assume G satisfies (dJSD), (R) and (LTi). Clearly G is a TiRS digraph, hence the

dual of a finite lattice L. Theorem 4.5(i) shows that L satisfies (JSD) and Theorem 3.13 implies

that L satisfies (JM-LSM). Hence by Corollary 4.4, L is meet-distributive.

The theorem above establishes a one-to-one correspondence between finite meet-distributive lat-

tices and finite digraphs satisfying the conditions (dJSD), (R) and (LTi). It is a restriction of

Theorem 2.6, while still generalising Birkhoff’s one-to-one correspondence between finite distribu-

tive lattices and finite posets.

Definition 4.10 ([9, Definition 30]). Let X be a set and � : }(X) ! }(X). Then � is a closure

operator on X if for all Y, Z 2 }(X)

(i) Y ✓ �(Y );

(ii) Y ✓ Z implies �(Y ) ✓ �(Z);

(iii) �(�(Y )) = �(Y ).
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If X is a set and � a closure operator on X then the pair hX,�i is called a closure system. For

Y ✓ X we say that Y is closed if �(Y ) = Y . The closed sets of a closure operator � on X form a

complete lattice, denoted by Cld(X,�). A zero-closure system is a closure system hX,�i such that

�(;) = ;.

Now we turn our attention to convex geometries. The presentation here follows that of the book

chapter by Adaricheva and Nation [1].

Definition 4.11 ([1, Definition 5-1.1]). A closure system hX,�i satisfies the anti-exchange prop-

erty if for all x 6= y and all closed sets A ✓ X,

(AEP) x 2 �(A [ {y}) and x /2 A imply that y /2 �(A [ {x}).

Definition 4.12 ([2, Definition 1.6]). A zero-closure system that satisfies the anti-exchange prop-

erty is called a convex geometry.

We now combine Theorem 4.9 with known equivalences to obtain the following characterisation of

finite convex geometries. There are other equivalent conditions [1, Theorem 5-2.1] that we have

not included here.

Theorem 4.13. Let L be a finite lattice. Then the following are equivalent:

(i) L is the closure lattice Cld(X,�) of a closure space hX,�i with the (AEP).

(ii) L is a meet-distributive lattice.

(iii) L satisfies (JSD) and (LSM).

(iv) L satisfies (JSD) and (JM-LSM).

(v) L is the lattice C(G) of a reflexive digraph G satisfying (dJSD), (R) and (LTi).

Proof. The equivalences of (i), (ii) and (iii) are known [1, Theorem 5-2.1]. The equivalence of

(iii) and (iv) is the result of Corollary 4.4, and the equivalence of (iv) and (v) is Theorem 4.9.

5 Dual digraphs of finite modular lattices

In this section we provide two sufficient conditions for a finite TiRS digraph to be the dual digraph

of a finite modular lattice.

For i = 0, 1, 2, let us denote by Gi = (Vi, Ei) an induced subgraph of GN5 (see Figure 1) with

Vi = {x, y, z} and with i of the arcs xEy and yEz missing compared to GN5 . (For i = 1 we can,
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w.l.o.g., consider the arc yEz missing.) Hence G0 = GN5 , G1 has one arc and an isolated vertex,

and G2 has no arc and consists of two isolated vertices. All three digraphs are reflexive, hence

they have loops at each vertex.

We introduce the following condition for the dual digraph GL of a finite lattice L in terms of

“Forbidden Induced Subgraphs”:

(FIS) GL has neither G0 = GN5 nor G1 as an induced subgraph.

The next lemma and two propositions lead to showing that the condition (FIS) is sufficient for

modularity of a finite lattice L. Note that by Lemma 3.3, for a, b 2 L with a ⌦ b, there always

exist elements a 6 a and b > b such that h"a, #bi is an MDFIP. Below we write a||b to indicate

that a ⌦ b and b ⌦ a.

Lemma 5.1. Let a, b, c, 0, 1 be any elements of the lattice that form a sublattice isomorphic to

N5 (where 0 < a, b, c < 1, c < b and a||b, a||c). (See the left side of Figure 4.) Let x = h"a, #bi,
y = h"b, #ci and z = h"c, #ai be any maximal disjoint extensions of h"a, #bi, h"b, #ci and h"c, #ai,
respectively. Then the induced subgraph {x, y, z} of GL is isomorphic either to G0 = GN5 , G1, or

G2.

Proof. First we must confirm that x, y, z are distinct MDFIPs. If x = y then "a = "b which implies

"a\ #b 6= ;, i.e. x would not be an MDFIP. If x = z then "a = "c which means z would not be an

MDFIP. Lastly, if y = z then #c = #a and z would not be an MDFIP.

We claim that in the induced subgraph {x, y, z} of GL, the arcs xEy and yEz are possible, but

the induced subgraph {x, y, z} has none of the other four possible arcs between distinct vertices:

indeed, the arcs yEx, zEy, xEz and zEx are not present in GL because clearly b 2 "b \ #b,
c 2 "c \ #c, a 2 "a \ #a and c 2 "c \ #b, respectively.

Hence {x, y, z} is isomorphic to Gi in case i of the arcs xEy and yEz are missing in the induced

subgraph {x, y, z} for i = 0, 1, 2.

Proposition 5.2. Let L be a finite lattice and assume that its dual digraph GL = (V,E) satisfies

(FIS). Then L is lower semimodular.

Proof. Suppose to the contrary that L does not satisfy (LSM). Then there exist elements a, b 2 L

such that a � a _ b but a ^ b ⌃ b. Then there exists an element c 2 L such that a ^ b < c < b.

Hence a _ c 6 a _ b. Since a � a _ b, and a 6 a _ c 6 a _ b, we get a _ c = a or a _ c = a _ b.

If a _ c = a, then c 6 a, so c 6 a ^ b, which contradicts a ^ b < c. It follows that a _ c = a _ b.

From c < b we get a ^ c 6 a ^ b. Further, since a ^ b < c we get a ^ (a ^ b) = a ^ b 6 a ^ c. Thus

a ^ c = a ^ b.
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Hence a, c, b, a ^ b, a _ b forms a sublattice isomorphic to N5 (see Figure 4). Let x = h"a, #bi,
y = h"b, #ci and z = h"c, #ai, be arbitrary maximal disjoint extensions of h"a, #bi, h"b, #ci and

h"c, #ai, respectively. Then by Lemma 5.1, the induced subgraph {x, y, z} of GL is isomorphic to

G0 = GN5 , G1, or G2. Using the assumption (FIS), {x, y, z} must be isomorphic to G2.

In particular, it follows that GL does not have the arc yEz. Therefore b 6 a. Suppose a = a.

Then b 6 a, so b 6 a ^ b. This gives b 6 c 6 c, which contradicts the fact that y = h"b, #ci is a

disjoint filter-ideal pair. Hence a < a. Now either a < a _ b or a||a _ b, since if a > a _ b > c > c

then z = h"c, #ai could not be a disjoint filter-ideal pair.

If a < a < a _ b, this contradicts a � a _ b, so a||a _ b. If b > a then b > b > a, which contradicts

a||b. If b 6 a, then b 6 a ^ b 6 c 6 c, which contradicts that y = h"b, #ci is a disjoint filter-ideal

pair. This proves that b||a. Since b 6 b, a _ b 6 a _ b. If a _ b = a _ b, then since a < a and

b 6 a, we get a > a _ b = a _ b, which contradicts a||a _ b. This establishes that a _ b < a _ b and

a < a _ b (since b||a), which contradicts a � a _ b. Hence, our assumption that L does not satisfy

(LSM) leads to a contradiction.

a ^ c = a ^ b

a
b

c

a _ c = a _ b

b ^ a = b ^ d

b
d

a

b _ a = b _ d

Figure 4: The isomorphic copies of N5 constructed in Proposition 5.2 (left) and Proposition 5.3
(right).

Below we give the result dual to Proposition 5.2. The proof is similar to the above argument, so

we omit some of the details.

Proposition 5.3. Let L be a finite lattice and assume that its dual digraph GL = (V,E) satisfies

(FIS). Then L is upper semimodular.

Proof. Suppose L does not satisfy (USM). Then there are elements a, b 2 L such that a^ b � b but

a ⌃ a_ b, i.e. there is d 2 L such that a < d < a_ b. Analogous to the proof of Proposition 5.2, it

can be shown that the elements b, a, d, a^b, a_b form a sublattice isomorphic to N5 (see Figure 4).

Then by Lemma 5.1, arbitrary maximal disjoint extensions of h"b, #di, h"d, #ai and h"a, #bi, denoted

by x = h"b, #di, y = h"d, #ai and z = h"a, #bi, respectively, form an induced subgraph {x, y, z} of

GL that is isomorphic either to G0 = GN5 , G1, or G2. Using (FIS), {x, y, z} is isomorphic to G2.

In particular, it follows that GL does not have the arc xEy. Hence, b 6 a. We can then get b < b

(as we got a < a in Proposition 5.2—see the left lattice in Figure 4). Now either a ^ b < b or
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a ^ b||b.

If a ^ b < b < b, this contradicts a ^ b � b, so b||a ^ b. We can also show b||a (as we showed b||a in

Proposition 5.2).

Since a 6 a, we get a ^ b 6 a ^ b. We can again establish that a ^ b < a ^ b and a ^ b < b (since

b||a), which contradicts a ^ b � b. Hence, our assumption that L does not satisfy (USM) leads to

a contradiction.

Now we can deduce that the condition (FIS) is a sufficient condition for modularity of a finite

lattice.

Theorem 5.4. (Sufficient condition for modularity) Let L be a finite lattice with dual TiRS

digraph GL. If GL satisfies (FIS) then L is modular.

Proof. If follows by Propositions 5.2 and 5.3 that L satisfies both (LSM) and (USM). Since L is

finite, we have that L is modular [9, Corollary 376].

We notice that the dual digraph of the modular lattice M3 has neither G0 = GN5 nor G1 as an

induced subgraph (see Figure 5), hence it satisfies (FIS). The following example shows that the

digraphs G0 and G1 cannot be dropped as forbidden induced subgraphs in the condition (FIS) for

the dual digraph GL, which guarantees the modularity of a finite lattice L.

a b c

0

1
ab ac

ba

bc

ca

cb

Figure 5: M3 and its dual digraph.

Example 5.5. The dual digraph of L@
3 in Figure 3 contains G0 as an induced subgraph, but not

G1. Hence the lattice L@
3 (in addition to N5) witnesses that the digraph G0 cannot be dropped from

the condition (FIS).

The dual digraphs of the lattices L4 and L@
4 in Figure 1 do not contain G0 as an induced subgraph

but they both contain G1 as an induced subgraph. Hence these two examples witness that the digraph

G1 cannot be dropped from the condition (FIS).

Now we are going to show that the condition (FIS) is not necessary for modularity. Indeed, it is

not the case that every lattice whose dual digraph has G0 = GN5 as an induced subgraph is a
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non-modular lattice. The next example gives a modular lattice whose dual digraph has G0 as an

induced subgraph (but does not have G1 as an induced subgraph).

Example 5.6. (Condition (FIS) not necessary for modularity) Figure 6 shows a modular

lattice K on the left, and its dual digraph on the right. The induced subgraph isomorphic to G0 is

shown with the dotted arrows (dcEcb and cbEed).

0

a cb

d e

1

cacb

db

dc bc

ba ed

Figure 6: A finite modular lattice K whose dual digraph contains G0 = GN5 as an induced
subgraph.

The fact that the dual TiRS digraph GL = (V,E) of a finite modular lattice L does not contain

G0 = GN5 as an induced subgraph can be understood as some form of a “weak transitivity”

condition for GL. We cannot have the arcs xEy and yEz in GL without having also the arc xEz

or at least the arc zEx (provided there are no “opposite” arcs yEx and zEy in GL):

(wT0) for all vertices x, y, z 2 V , if xEy and yEz, but (y, x) /2 E and

(z, y) /2 E, then xEz or zEx.

Similarly, the fact that the dual TiRS digraph GL = (V,E) of a finite modular lattice L does

not contain the digraph G1 as an induced subgraph can be understood as some form of a “weak

transitivity” condition for GL:

(wT1) for all vertices x, y, z 2 V , if xEy but (y, x) /2 E and (y, z) /2 E

and (z, y) /2 E then xEz or zEx.

Example 5.7. It is easy to see that the dual digraph of the lattice M3 (Figure 5) satisfies the weak

transitivity conditions (wT0) and (wT1). The lattices L4 and L@
4 in Figure 1, and L@

3 in Figure 3

are non-modular lattices. The weak transitivity condition (wT0) is not satisfied in the dual digraph

of L@
3 . In the dual digraphs of the lattices L4 and L@

4 we see the failures of (wT1).

We notice that the weak transitivity conditions (wT0) and (wT1) are essentially expressing on the

digraph side that the digraph GL does not contain respectively the graphs G0 and G1 as induced

subgraphs.
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Hence the sufficiency of the quasi-equations (wT0) and (wT1) on the dual TiRS digraphs GL for

the modularity of L comes as no surprise:

Corollary 5.8 (Sufficient condition for modularity by “weak transitivity”). Let L be a finite lattice

with dual TiRS digraph GL = (V,E). If GL satisfies the weak transitivity conditions (wT0) and

(wT1), then L is modular.

Proof. Let the weak transitivity conditions (wT0) and (wT1) be satisfied in GL. Suppose for

contradiction that the lattice L is not modular. Then by Theorem 5.4, for some i 2 {0, 1} the

digraph GL contains the digraph Gi as an induced subgraph on certain vertices x, y, z 2 V . It

follows that the weak transitivity condition (wTi) is not satisfied.

6 Conclusions and future work

In Section 3 we defined two lattice conditions which generalise lower semimodularity and (upper)

semimodularity respectively. We were motivated by Figure 2, taken from Ganter and Wille’s

book [8] (see also the PhD thesis of Reppe [13, Chapter 3.7]). There, weakenings of (LSM)

and (USM) are given using complicated conditions on standard contexts. Our lattice-theoretic

conditions on finite lattices that are weakenings of (LSM) and (USM), which we call (JM-LSM)

and (JM-USM), seem to be simpler than the mentioned conditions in Figure 2 and they are easily

seen to be generalisations of (LSM) and (USM). The top left and top right conditions in Figure 2

were shown to be equivalent to (JM-LSM) and (JM-USM) by Kadima [10, Theorem 4.9].

In Section 4 we used the results of Section 3 to obtain a new characterisation of meet-distributive

lattices in Theorem 4.1. Combining this with previous results [5], we obtained a characterisation of

the dual digraphs of finite meet-distributive lattices. Theorem 4.13 shows that we have identified

a new class of structures that is in a one-to-one correspondence with finite convex geometries.

In Remark 4.3 we gave a condition, (W-JSD), which is a weakening of join-semidistributivity. The

lattice M3 satisfies (LSM) but not (W-JSD) and hence shows that (LSM) is not equivalent to

(JM-LSM) and (W-JSD). This leads us to ask the following question.

Problem 6.1. Is there another weakening of (JSD) such that when it is combined with (JM-LSM),

this will be equivalent to (LSM)?

Theorem 4.9 gave three conditions ((dJSD), (R) and (LTi)) on reflexive digraphs, which charac-

terise the dual digraphs of finite meet-distributive lattices. This leads to the posing of the following

open problem.

Problem 6.2. Can the conditions (dJSD), (R) and (LTi) be combined to give fewer, and possibly

simpler, conditions?



300 A. Craig, M. Haviar & K. Marais CUBO
26, 2 (2024)

In Section 5 we introduced the condition (FIS) on dual digraphs and showed that it implies both

lower and upper semimodularity of a finite lattice. Hence (FIS) was shown to be a sufficient

condition for modularity of a finite lattice (Theorem 5.4). We also formulated a sufficient condition

for modularity in different terms in Corollary 5.8. The condition (FIS) was shown not to be

necessary for modularity of a finite lattice and hence we raise the following open question.

Problem 6.3. Is it possible to find forbidden induced subgraphs that characterise the dual digraphs

of finite modular lattices in an analogous way to how N5 characterises modularity?

The task of representing structures (in our case digraphs) dual to finite modular lattices has proved

to be very challenging. We note that in the setting of formal contexts dual to finite lattices, a

condition dual to semimodularity has been obtained (cf. item (4) of [8, Theorem 42]). We have

attempted to translate this condition to TiRS digraphs and the result was a complicated and

opaque condition. We do not believe that the translation of this condition and its dual will yield

a useful characterisation of the TiRS digraphs dual to finite modular lattices.
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ABSTRACT

In this paper we recall some properties for the Hankel-
type Fock space F↵,⇤(Cd). This space was introduced by
Cholewinsky in 1984 and plays a background to our con-
tribution. Especially, we examine the extremal functions
for the difference operator D, and we deduce best ap-
proximate inversion formulas for the operator D on the
the Hankel-type Fock space F↵,⇤(Cd).

RESUMEN

En este artículo, resumimos algunas propiedades para el
espacio de Fock the tipo Hankel F↵,⇤(Cd). Este espa-
cio fue introducido por Cholewinsky en 1984 y es un
antecedente para nuestra contribución. Especialmente
examinamos las funciones extremales para el operador
de diferencia D y deducimos fórmulas de inversión del
mejor aproximante para el operador D en el espacio de
Fock de tipo Hankel F↵,⇤(Cd).
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1 Introduction

The classical Fock space F(Cd) is the Hilbert space of entire functions f on Cd such that

kfk2
F(Cd) :=

1

⇡d

Z

Cd

|f(z)|2e�|z|2dxdy < 1, z = x+ iy,

where |z|2 =
Pd

k=1(x
2
k + y

2
k) and dxdy =

Qd
k=1 dxkdyk.

This space was introduced by Bargmann [3], is called also Segal-Bargmann space [5] and it was the

aim of many works [4, 6, 22, 28]. Recently the author of the paper studied the extremal functions

for the difference and primitive operators on the Fock space F(Cd) (see [20,21]).

Cholewinsky [7] defined the Hankel-type Fock space F↵,⇤(Cd) associated with the poly-axially

operator. The space F↵,⇤(Cd) is the Hilbert space of entire functions f on Cd, even with respect

to the last variable, such that

kfkF↵,⇤(Cd) :=

Z

Cd

|f(z)|2dm↵(z)

�1/2
< 1,

where m↵ is the measure defined for z = (z1, . . . , zd) 2 Cd by

dm↵(z) :=
1

⇡d

dY

k=1

|zk|2↵k+2
K↵k(|zk|2)

2↵k�(↵k + 1)
dzk, (1.1)

and K↵k , ↵k > �1/2, is the Macdonald function [8].

The generalized Fock space F↵,⇤(Cd) is equipped with the inner product

hf, gi
F↵,⇤(Cd) :=

Z

Cd

f(w)g(w)dm↵(w).

The Hankel-type Fock space F↵,⇤(Cd) is also studied in [24], when the author proved an uncertainty

principle of Heisenberg type for this space.

Let D be the difference operator defined for f 2 F↵,⇤(Cd) with f(z) =
P

⌫2Nd a⌫z
2⌫ , by

Df(z) :=
X

⌫2Nd

a⌫+1z
2⌫
.

The main goal of the paper is to find the minimizer (denoted by F
⇤
�,D(h)) for the extremal problem:

inf
f2F↵,⇤(Cd)

n
�kfk2

F↵,⇤(Cd) + kDf � hk2
F↵,⇤(Cd)

o
,
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where h 2 F↵,⇤(Cd) and � > 0. We prove that the extremal function F
⇤
�,D(h) is given by

F
⇤
�,D(h)(z) = hh, ziF↵,⇤(Cd),

where  z(w) is the kernel given later in Section 3.

Moreover, we establish best approximate inversion formulas for the difference operator D on the

weighted Fock space F↵,⇤(Cd). A pointwise approximate inversion formula for the operator D are

also discussed.

Recently, the analog results are also proved, for the Fock space F(Cd) (see [20, 21]), and for the

Bessel-type Fock space F↵,⇤(C) (see [23,25]).

The paper is organized as follows. In Section 2 we recall some properties for the Hankel-type Fock

space F↵,⇤(Cd). In Section 3 we examine the extremal functions for the difference operator D.

Finally, in Section 4, we establish best approximate inversion formulas for the operator D on the

Hankel-type Fock space F↵,⇤(Cd).

Throughout this paper we shall use on Cd the multi-index notations.

• For all ⌫ = (⌫1, . . . , ⌫d) 2 Nd and z = (z1, . . . , zd) 2 Cd, z⌫ =
Qd

k=1 z
⌫k
k .

• For any ⌫ 2 Nd, the partial ordering � on Nd, which is defined by

⌫ � 1 () ⌫j � 1, 8j = 1, . . . , d, with 1 = (1, . . . , 1) 2 Nd
.

2 Hankel-type Fock space

In this section, we recall some properties for the Fock space F↵,⇤(Cd) associated with the poly-

axially operator.

Let ↵ = (↵1, . . . ,↵d), we denote by �↵, the poly-axially operator [1, 9, 27] defined for z =

(z1, . . . , zd) 2 Cd by

�↵ :=
dX

k=1

�↵k,zk , �↵k,zk :=
@
2

@z
2
k

+
2↵k + 1

zk

@

@zk
.

This operator has important applications in both pure and applied mathematics and give rise to

a generalization of multi-variable analytic structures like the Hankel transform, and the Hankel

convolution [2, 15–18]. For any w 2 Cd, the system

�↵u(z) = |w|2u(z), u(0) = 1,
@

@zk
u(z)

���
zk=0

= 0, k = 1, . . . , d,
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admits a unique solution I↵(w, z), given by

I↵(w, z) :=
dY

k=1

j↵k(iwkzk),

where j↵k is the spherical Bessel function [26] given by

j↵k(x) := �(↵k + 1)
1X

n=0

(�1)n

n!�(n+ ↵k + 1)

⇣
x

2

⌘2n
.

The Bessel kernel I↵ can be extended in a power series in the form

I↵(w, z) =
X

⌫2Nd

w
2⌫
z
2⌫

c⌫(↵)
,

where

c⌫(↵) = 22h⌫i⌫!
dY

k=1

�(⌫k + ↵k + 1)

�(↵k + 1)
=

dY

k=1

c⌫k(↵k). (2.1)

Here

c⌫k(↵k) = 22⌫k⌫k!
�(⌫k + ↵k + 1)

�(↵k + 1)

and

h⌫i =
dX

k=1

⌫k, ⌫! =
dY

k=1

⌫k!, ⌫ = (⌫1, . . . , ⌫d) 2 Nd
.

In the statement, and later in this work we use the following notations.

• H⇤(Cd), is the space of entire functions on Cd and even with respect to each variable.

• L
2
↵(Cd), is the Hilbert space of measurable functions f on Cd, such that

kfkL2
↵(Cd) :=

Z

Cd

|f(z)|2dm↵(z)

�1/2
< 1,

where m↵ being the measure on Cd given by (1.1).

Cholewinsky [7] defined the Hilbert space F↵,⇤(Cd) as

F↵,⇤(Cd) := H⇤(Cd) \ L
2
↵(Cd).

The space F↵,⇤(Cd) is equipped with the inner product

hf, gi
F↵,⇤(Cd) :=

Z

Cd

f(z)g(z)dm↵(z).
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The space F↵,⇤(Cd) has the reproducing kernel

K↵(w, z) = I↵(w, z), w, z 2 Cd
.

If f, g 2 F↵,⇤(Cd) with f(z) =
P

⌫2Nd a⌫z
2⌫ and g(z) =

P
⌫2Nd b⌫z

2⌫ , then

hf, giF↵,⇤(Cd) =
X

⌫2Nd

a⌫b⌫c⌫(↵), (2.2)

where c⌫(↵) are the constants given by (2.1).

Then, the set
⇢

z2⌫p
c⌫(↵)

�

⌫2Nd

forms a Hilbertian basis for the space F↵,⇤(Cd); and each f 2

F↵,⇤(Cd) can be written as

f(z) =
X

⌫2Nd

hf, z2⌫iF↵,⇤(Cd)

c⌫(↵)
z
2⌫
,

and

kfk2
F↵,⇤(Cd) =

X

⌫2Nd

��hf, z2⌫iF↵,⇤(Cd)

��2

c⌫(↵)
.

Bargmann [3] introduced the classical Fock space F(Cd). Let f 2 F↵,⇤(Cd) with f(z) =
P

⌫2Nd a⌫z
2⌫ .

From [3], we have

kfk2
F(Cd) =

X

⌫2Nd

|a⌫ |2⌫!.

Using the inequality ⌫!  c⌫(↵), we obtain

kfk2
F(Cd) 

X

⌫2Nd

|a⌫ |2c⌫(↵) = kfk2
F↵,⇤(Cd).

Therefore

F↵,⇤(Cd) ⇢ F(Cd).

3 Difference operator

In this section, building on the ideas of Saitoh [12–14] we examine the extremal function associated

with the difference operator D. The results that are written here are a special case of [14].

Let D be the difference operator defined for f 2 F↵,⇤(Cd) with f(z) =
P

⌫2Nd a⌫z
2⌫ , by

Df(z) :=
X

⌫2Nd

a⌫+1z
2⌫
. (3.1)
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In particular, for f 2 F↵,⇤(C), the difference operator [23,25] is given

Df(z) :=

8
><

>:

1

z2
(f(z)� f(0)), z 6= 0,

1

2
f
00(0), z = 0.

We also define, the operators E and H for f 2 F↵,⇤(Cd) with f(z) =
P

⌫2Nd a⌫z
2⌫ , by

Ef(z) :=
X

⌫2Nd, ⌫�1

c⌫�1(↵)

c⌫(↵)
a⌫�1z

2⌫
, (3.2)

and

Hf(z) :=
X

⌫2Nd, ⌫�1

c⌫�1(↵)

c⌫(↵)
a⌫z

2⌫
, (3.3)

where c⌫(↵) are the constants given by (2.1).

Lemma 3.1. (i) The operator D maps continuously from F↵,⇤(Cd) into F↵,⇤(Cd), and

kDfkF↵,⇤(Cd) 
1

2d
qQd

k=1(↵k + 1)
kfkF↵,⇤(Cd), f 2 F↵,⇤(Cd).

(ii) If D
⇤ : F↵,⇤(Cd) �! F↵,⇤(Cd) is the adjoint operator of D, then

E = D
⇤

and H = D
⇤
D.

Proof. (i) Let f 2 F↵,⇤(Cd) with f(z) =
P

⌫2Nd a⌫z
2⌫ . From (3.1), we have

kDfk2
F↵,⇤(Cd) =

X

⌫2Nd

|a⌫+1|2c⌫(↵) =
X

⌫2Nd, ⌫�1

|a⌫ |2c⌫�1(↵).

Using the fact that c⌫(↵) =
h
22d

Qd
k=1 ⌫k(⌫k + ↵k)

i
c⌫�1(↵), we deduce that

kDfk2
F↵,⇤(Cd) 

1

22d
Qd

k=1(↵k + 1)

X

⌫2Nd

|a⌫ |2c⌫(↵) =
1

22d
Qd

k=1(↵k + 1)
kfk2

F↵,⇤(Cd).

(ii) If f, g 2 F↵,⇤(Cd) with f(z) =
P

⌫2Nd a⌫z
2⌫ and g(z) =

P
⌫2Nd b⌫z

2⌫ , then by (2.2) and (3.1)

we obtain

hDf, giF↵,⇤(Cd) =
X

⌫2Nd

a⌫+1b⌫c⌫(↵) =
X

⌫2Nd, ⌫�1

a⌫b⌫�1c⌫�1(↵).

On the other hand, from (2.2) and (3.2) we have

hf,EgiF↵,⇤(Cd) =
X

⌫2Nd, ⌫�1

a⌫b⌫�1c⌫�1(↵).
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Then hDf, giF↵,⇤(Cd) = hf,EgiF↵,⇤(Cd) and consequently E = D
⇤.

Finally, by relations (3.1), (3.2) and (3.3) we deduce that

D
⇤
Df(z) = EDf(z) =

X

⌫2Nd, ⌫�1

c⌫�1(↵)

c⌫(↵)
a⌫z

2⌫ = Hf(z).

The lemma is proved.

Theorem 3.2. For any h 2 F↵,⇤(Cd) and for any � > 0, the Tikhonov regularization problem

inf
f2F↵,⇤(Cd)

n
�kfk2

F↵,⇤(Cd) + kDf � hk2
F↵,⇤(Cd)

o

has a unique extremal function denoted F
⇤
�,D(h) and is given by

F
⇤
�,D(h)(z) = hh, ziF↵,⇤(Cd),

where

 z(w) =
X

⌫2Nd

(z)2(⌫+1)
w

2⌫

�c⌫+1(↵) + c⌫(↵)
, w 2 Cd

.

Proof. First, from [12, Theorem 2.5, Section 2], the Tikhonov regularization problem

inf
f2F↵,⇤(Cd)

n
�kfk2

F↵,⇤(Cd) + kDf � hk2
F↵,⇤(Cd)

o

has a unique extremal function denoted F
⇤
�,D(h) and is given by

F
⇤
�,D(h)(z) = (�I +D

⇤
D)�1

D
⇤
h(z), z 2 Cd

, (3.4)

where I is the unit operator. We put h(z) =
P

⌫2Nd h⌫z
2⌫ and F

⇤
�,D(h)(z) =

P
⌫2Nd d⌫z

2⌫ . From

Lemma 3.1 (ii) and (3.4) we have

(�I +H)F ⇤
�,D(h)(z) = Eh(z).

By relations (3.2) and (3.3) we deduce that

d⌫ = 0, if 9 ⌫k = 0,

d⌫ =
c⌫�1(↵)h⌫�1

�c⌫(↵) + c⌫�1(↵)
, ⌫ � 1.

Thus,

F
⇤
�,D(h)(z) =

X

⌫2Nd, ⌫�1

c⌫�1(↵)h⌫�1
�c⌫(↵) + c⌫�1(↵)

z
2⌫
. (3.5)
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Then by (2.2) and (3.5) we obtain

F
⇤
�,D(h)(z) =

X

⌫2Nd

c⌫(↵)h⌫

�c⌫+1(↵) + c⌫(↵)
z
2(⌫+1) = hh, ziF↵,⇤(Cd), (3.6)

where

 z(w) =
X

⌫2Nd

(z)2(⌫+1)
w

2⌫

�c⌫+1(↵) + c⌫(↵)
, w 2 Cd

.

The theorem is proved.

4 Approximate inversion formulas

In this section we establish the estimate properties of the extremal function F
⇤
�,D(h)(z), and we

deduce approximate inversion formulas for the difference operator D. These formulas are the anal-

ogous of Calderón’s reproducing formulas for the Fourier type transforms [10,11,19]. A pointwise

approximate inversion formulas for the operator D are also discussed.

The extremal function F
⇤
�,D(h) given by (3.6) satisfies the following properties.

Lemma 4.1. If � > 0 and h 2 F↵,⇤(Cd), then

(i) |F ⇤
�,D(h)(z)|  1

2
p
�
(I↵(z, z))1/2khkF↵,⇤(Cd),

(ii) |DF
⇤
�,D(h)(z)|  1

2d+1

q
�
Qd

k=1(↵k + 1)
(I↵(z, z))1/2khkF↵,⇤(Cd),

(iii) kF ⇤
�,D(h)kF↵,⇤(Cd) 

1

2
p
�
khkF↵,⇤(Cd).

Proof. Let � > 0 and h 2 F↵,⇤(Cd) with h(z) =
P

⌫2Nd h⌫z
2⌫ . From (3.6) we have

|F ⇤
�,D(h)(z)|  k zkF↵,⇤(Cd)khkF↵,⇤(Cd).

Using the fact that (x+ y)2 � 4xy we obtain

k zk2F↵,⇤(Cd) =
X

⌫2Nd

����
(z)2(⌫+1)

�c⌫+1(↵) + c⌫(↵)

����
2

c⌫(↵) 
1

4�

X

⌫2Nd

|(z)2⌫ |2

c⌫(↵)
=

1

4�
I↵(z, z).

This gives (i).

On the other hand, from (3.1) and (3.5) we have

DF
⇤
�,D(h)(z) =

X

⌫2Nd

c⌫(↵)h⌫

�c⌫+1(↵) + c⌫(↵)
z
2⌫ = hh,�ziF↵,⇤(Cd), (4.1)
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where

�z(w) =
X

⌫2Nd

(z)2⌫w2⌫

�c⌫+1(↵) + c⌫(↵)
.

Then

|DF
⇤
�,D(h)(z)|  k�zkF↵,⇤(Cd)khkF↵,⇤(Cd),

and

k�zk2F↵,⇤(Cd) =
X

⌫2Nd

����
(z)2⌫

�c⌫+1(↵) + c⌫(↵)

����
2

c⌫(↵) 
1

4�

X

⌫2Nd

|(z)2⌫ |2

c⌫+1(↵)
.

By using the fact that c⌫+1(↵) =
h
22d

Qd
k=1(⌫k + 1)(⌫k + ↵k + 1)

i
c⌫(↵), we deduce that

k�zk2F↵,⇤(Cd) 
1

22(d+1)�
Qd

k=1(↵k + 1)

X

⌫2Nd

|(z)2⌫ |2

c⌫(↵)
=

I↵(z, z)

22(d+1)�
Qd

k=1(↵k + 1)
.

This gives (ii).

Finally, from (3.5) we have

kF ⇤
�,D(h)k2

F↵,⇤(Cd) =
X

⌫2Nd, ⌫�1

c⌫(↵)


c⌫�1(↵)|h⌫�1|

�c⌫(↵) + c⌫�1(↵)

�2
.

Then we obtain

kF ⇤
�,D(h)k2

F↵,⇤(Cd) 
1

4�

X

⌫2Nd, ⌫�1

c⌫�1(↵)|h⌫�1|2 =
1

4�
khk2

F↵,⇤(Cd),

which gives (iii) and completes the proof of the lemma.

We establish approximate inversion formulas for the difference operator D.

Theorem 4.2. If � > 0 and h 2 F↵,⇤(Cd), then

(i) lim
�!0+

kDF
⇤
�,D(h)� hkF↵,⇤(Cd) = 0,

(ii) lim
�!0+

kF ⇤
�,D(Dh)� h0kF↵,⇤(Cd) = 0, where h0(z) =

P
⌫2Nd, ⌫�1 h⌫z

2⌫
if h(z) =

P
⌫2Nd h⌫z

2⌫
.

Proof. Let � > 0 and h 2 F↵,⇤(Cd) with h(z) =
P

⌫2Nd h⌫z
2⌫ . From (4.1) we have

DF
⇤
�,D(h)(z)� h(z) =

X

⌫2Nd

��c⌫+1(↵)h⌫

�c⌫+1(↵) + c⌫(↵)
z
2⌫
. (4.2)

Therefore

kDF
⇤
�,D(h)� hk2

F↵,⇤(Cd) =
X

⌫2Nd

c⌫(↵)


�c⌫+1(↵)|h⌫ |

�c⌫+1(↵) + c⌫(↵)

�2
.
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Again, by dominated convergence theorem and the fact that

c⌫(↵)


�c⌫+1(↵)|h⌫ |

�c⌫+1(↵) + c⌫(↵)

�2
 c⌫(↵)|h⌫ |2,

we deduce (i).

Finally, from (3.1) and (3.5) we have

F
⇤
�,D(Dh)(z)� h0(z) =

X

⌫2Nd, ⌫�1

��c⌫(↵)h⌫

�c⌫(↵) + c⌫�1(↵)
z
2⌫
. (4.3)

So, one has

kF ⇤
�,D(Dh)� h0k2F↵,⇤(Cd) =

X

⌫2Nd, ⌫�1

c⌫(↵)


�c⌫(↵)|h⌫ |

�c⌫(↵) + c⌫�1(↵)

�2
.

Using the dominated convergence theorem and the fact that

c⌫(↵)


�c⌫(↵)|h⌫ |

�c⌫(↵) + c⌫�1(↵)

�2
 c⌫(↵)|h⌫ |2,

we deduce (ii).

We deduce also pointwise approximate inversion formulas for the operator D.

Theorem 4.3. If � > 0 and h 2 F↵,⇤(Cd), then

(i) lim
�!0+

DF
⇤
�,D(h)(z) = h(z),

(ii) lim
�!0+

F
⇤
�,D(Dh)(z) = h0(z).

Proof. Let h 2 F↵,⇤(Cd) with h(z) =
P

⌫2Nd h⌫z
2⌫ . From (4.2) and (4.3), by using the dominated

convergence theorem and the fact that

�c⌫+1(↵)|h⌫ |
�c⌫+1(↵) + c⌫(↵)

|z2⌫ |, �c⌫(↵)|h⌫ |
�c⌫(↵) + c⌫�1(↵)

|z2⌫ |  |h⌫ ||z2⌫ |,

we obtain (i) and (ii).
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ABSTRACT

In this paper, we present a continued fraction approxima-

tion and some inequalities of the factorial function based

on the Burnside’s formula. This approximation is fast in

comparison with the recently discovered asymptotic se-

ries. Finally, some numerical computations are provided

for demonstrating the superiority of our approximation

over the Burnside’s formula and the classical Stirling’s

series.

RESUMEN

En este artículo, presentamos una aproximación con una

fracción continua y algunas desigualdades para la fun-

ción factorial basada en la fórmula de Burnside. Esta

aproximación es rápida en comparación con las series

asintóticas descubiertas recientemente. Finalmente, se

entregan algunos cálculos numéricos para demostrar la

superioridad de nuestra aproximación por sobre la fór-

mula de Burnside y la serie de Stirling clásica.
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1 Introduction and main results

It is well known that we often need to deal with the big factorials in many situations in pure

mathematics and other branches of science. To the best of our knowledge, the Stirling’s formula

n! ⇠
p
2⇡n

⇣
n

e

⌘n
, n ! 1 (1.1)

is one of the most known formulas for approximation of the factorial function. Up to now, many

researchers made great efforts in the area of establishing more precise inequalities and more accurate

approximation for the factorial function and its extension, called gamma function, and had a lot

of inspiring results. For example, the Stirling series [1]

n! ⇠
p
2⇡n

⇣
n

e

⌘n✓
1 +

1

12n
+

1

288n2
� 139

51840n3
� 571

2488320n4
+ . . .

◆
, n ! 1 (1.2)

is an extension of (1.1). Furthermore, there is a variety of approaches to Stirling’s formula, ranging

from elementary to advanced methods. We mention the estimations given by Schuster in [14], or

the formula

n! ⇠
p
2⇡

✓
n+ 1

2

e

◆n+ 1
2

= �n, n ! 1, (1.3)

with n! < �n, due to Burnside, whose superiority over Stirling’s formula was proved in [3]. There

are also some approximations which are better than (1.3), Gosper’s formula [7]

n! ⇠

s

2⇡

✓
n+

1

6

◆⇣
n

e

⌘n
, n ! 1, (1.4)

and Ramanujan’s formula [13]

n! ⇠
p
2⇡
⇣
n

e

⌘n✓
n
3 +

1

2
n
2 +

1

8
n+

1

240

◆1/6

, n ! 1, (1.5)

and Nemes’s formula [12]

n! ⇠
p
2⇡n

⇣
n

e

⌘n✓
1 +

1

12n2 � 1/10

◆n

, n ! 1. (1.6)

In [2], Batir obtained an asymptotic formula as follows:

n! ⇠
p
2⇡

n
n+1

e
�n

p
n� 1/6

, n ! 1. (1.7)
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The following more accurate approximation for n!

n! ⇠
p
2⇡

✓
n
2 + n+ 1/6

e2

◆n/2+1/4

, n ! 1. (1.8)

can be found in the literature [9].

Recently, Mortici [8] proved that for every x � 0,

p
2⇡e · e�!

✓
x+ !

e

◆x+ 1
2

< �(x+ 1)  ↵
p
2⇡e · e�!

✓
x+ !

e

◆x+ 1
2

, (1.9)

where ! =
3�

p
3

6
, ↵ = 1.072042464 . . . , and

�
p
2⇡e · e�⇣

✓
x+ ⇣

e

◆x+ 1
2

 �(x+ 1) <
p
2⇡e · e�⇣

✓
x+ ⇣

e

◆x+ 1
2

, (1.10)

where ⇣ =
3 +

p
3

6
, � = 0.988503589 . . .

Estimates and approximations for the factorial function (and the gamma function) are a popular

subject, with many papers appearing on this topic over the years. More results involving the

asymptotic formulas or bounds for n! or gamma function can be found in the references cited

therein.

A natural question arises. It is true that the behavior of the Burnside’s formula for n approaches

infinity is of the form

n! ⇠
p
2⇡e · e�p

✓
n+ p

e

◆n+q

, (1.11)

where p, q are some constants? We propose the following sharp approximation formula as n ! 1:

n! ⇠
p
2⇡e · e�

3±
p

3
6

 
n+ 3±

p
3

6

e

!n+ 1
2

. (1.12)

These constants p, q in (1.11) given by (1.12), namely

p =
3±

p
3

6
, q =

1

2

are justified by the result in Theorem 1.1. Then we prove the following stronger approximation

formula using continued fraction for the factorial function by the multiple-correction method [4–6].
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Theorem 1.1. For the factorial function, we have

n! ⇠
p
2⇡e · e�p

✓
n+ p

e

◆n+q

exp

0

BBB@
u1

n2 + v1n+ v0 +
s1

n+t1+
s2

n+t2+

...

1

CCCA
, n ! 1, (1.13)

where

p =
3±

p
3

6
, q =

1

2
; u1 = ⌥ 1

72
p
3
, v1 =

10± 3
p
3

10
, v0 =

47± 15
p
3

10
;

s1 = ± 163

21000
p
3
, t1 =

815± 11596
p
3

1630
;

s2 =
15531525

106276
, t2 =

19139187627⌥ 259913623163
p
3

38278375254
; . . . .

Using Theorem 1.1, we provide some inequalities for the factorial function.

Theorem 1.2. For every n 2 N, it holds:

p
2⇡e · e�

3�
p

3
6

 
n+ 3�

p
3

6

e

!n+ 1
2

< n! <
p
2⇡e · e�

3+
p

3
6

 
n+ 3+

p
3

6

e

!n+ 1
2

. (1.14)

To obtain Theorem 1.1, we need the following lemma which was used in [8,10,11] and is very useful

for constructing asymptotic expansions.

Lemma 1.3. If the sequence (xn)n2N is convergent to zero and there exists the limit

lim
n!+1

n
s(xn � xn+1) = l 2 [�1,+1] (1.15)

with s > 1, then

lim
n!+1

n
s�1

xn =
l

s� 1
. (1.16)

Lemma 1.3 was proved by Mortici in [8]. From Lemma 1.3, we can see that the speed of convergence

of the sequences (xn)n2N increases together with the values s satisfying (1.15).
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2 Proof of Theorem 1.1

Step 0: The initial-correction.

Based on the Burnside’s formula n! ⇠
p
2⇡

✓
n+ 1

2

e

◆n+ 1
2

, n ! 1, we need to find the values p, q

which produces the most accurate approximation of the form

n! ⇠
p
2⇡e · e�p

✓
n+ p

e

◆n+q

, n ! 1.

To measure the accuracy of this approximation, a method is to define a sequence (u0(n))n�1 by

the relations

n! =
p
2⇡e · e�p

✓
n+ p

e

◆n+q

expu0(n), (2.1)

and to say that the approximation n! ⇠
p
2⇡e·e�p

✓
n+ p

e

◆n+q

, n ! 1 is better if u0(n) converges

to zero faster.

From (2.1), we have

u0(n) = lnn!� 1

2
ln(2⇡e) + p� (n+ q) ln(n+ p) + (n+ q). (2.2)

Thus,

u0(n)� u0(n+ 1) = �1� ln(n+ 1)� (n+ q) ln(n+ p) + (n+ 1 + q) ln(n+ 1 + p). (2.3)

Developing (2.3) into power series expansion in 1/n, we have

u0(n)� u0(n+ 1) =
�1 + 2q

2

1

n
+

2 + 3p2 � 3q � 6pq

6

1

n2
(2.4)

+
�3� 6p2 � 8p3 + 4q + 12pq + 12p2q

12

1

n3
+O

✓
1

n4

◆
.

The fastest possible sequence (u0(n))n�1 is obtained as the first two items on the right of (2.4)

vanishes, we get p =
3±

p
3

6
, q =

1

2
. Thus, using Lemma 1.3, from (2.4) we have

u0(n)� u0(n+ 1) = ⌥ 1

36
p
3

1

n3
+O

✓
1

n4

◆
,

and the rate of convergence of the sequence (u0(n))n�1 is at least n
�2.
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Step 1: The first-correction.

Next, we define the sequence (u1(n))n�1 by the relation

n! =
p
2⇡e · e�

3±
p

3
6

 
n+ 3±

p
3

6

e

!n+ 1
2

exp

✓
u1

n2 + v1n+ v0

◆
expu1(n). (2.5)

From (2.5), we have

u1(n)� u1(n+ 1) = �1� ln(n+ 1)�
✓
n+

1

2

◆
ln

 
n+

3±
p
3

6

!

+

✓
n+

3

2

◆
ln

 
n+ 1 +

3±
p
3

6

!
� u1

n2 + v1n+ v0
+

u1

(n+ 1)2 + v1(n+ 1) + v0
. (2.6)

Developing (2.6) into power series expansion in 1/n, we have

u1(n)� u1(n+ 1) =

✓
⌥ 1

36
p
3
� 2u1

◆
1

n3
+

✓
1

80
± 1

12
p
3
+ 3u1 + 3u1v1

◆
1

n4
(2.7)

+

✓
� 1

20
⌥ 11

60
p
3
� 4u1 + 4u1v0 � 6u1v1 � 4u1v

2
1

◆
1

n5

+

✓
599

4536
± 13

36
p
3
+ 5u1 � 10u1v0 + 10u1v1 � 10u1v0v1 + 10u1v

2
1 + 5u1v

3
1

◆
1

n6
+O

✓
1

n7

◆
.

By Lemma 1.3, the fastest possible sequence (u1(n))n�1 is obtained as the first three items on the

right of (2.7) vanishes. So we can obtain

u1 = ⌥ 1

72
p
3
, v1 =

10± 3
p
3

10
, v0 =

47± 15
p
3

100
,

and from (2.7) we have

u1(n)� u1(n+ 1) =
163

907200

1

n6
+O

✓
1

n7

◆
,

and the rate of convergence of the sequence (u1(n))n�1 is at least n
�5.

Step 2: The second-correction.

Furthermore, we define the sequence (u2(n))n�1 by the relation

n! =
p
2⇡e · e�

3±
p

3
6

 
n+ 3±

p
3

6

e

!n+ 1
2

exp

 
⌥ 1

72
p
3

n2 + 10±3
p
3

10 n+ 47±15
p
3

100 + s1
n+t1

!
expu2(n) (2.8)
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Using the same method as above, we obtain that the sequence (u2(n))n�1 converges fastest only

if s1 = ± 163

21000
p
3
, t1 =

815± 11596
p
3

1630
, and the rate of convergence of the sequence (u2(n))n�1

is at least n
�7. We can get

u2(n)� u2(n+ 1) = � 69029

1877760

1

n8
+O

✓
1

n9

◆
.

Step 3: The third-correction.

Similarly, define the sequence (u3(n))n�1 by the relation

n! =
p
2⇡e · e�

3±
p

3
6

 
n+ 3±

p
3

6

e

!n+ 1
2

(2.9)

exp

0

BB@
⌥ 1

72
p
3

n2 + 10±3
p
3

10 n+ 47±15
p
3

100 +
± 163

21000
p

3

n+ 815±11596
p

3
1630 +

s2
n+t2

1

CCA expu3(n).

Using the same method as above, we obtain that the sequence (u3(n))n�1 converges fastest only

if s2 =
15531525

106276
, t2 =

19139187627⌥ 259913623163
p
3

38278375254
.

The new asymptotic (1.13) is obtained.

3 Proof of Theorem 1.2

The double-side inequality (1.14) may be written as follows:

f(n) = ln�(n+ 1)� 1

2
ln(2⇡e) +

3 +
p
3

6
�
✓
n+

1

2

◆ 
ln

 
n+

3 +
p
3

6

!
� 1

!
< 0

and

g(n) = ln�(n+ 1)� 1

2
ln(2⇡e) +

3�
p
3

6
�
✓
n+

1

2

◆ 
ln

 
n+

3�
p
3

6

!
� 1

!
> 0.

Suppose F (n) = f(n+ 1)� f(n) and G(n) = g(n+ 1)� g(n). For every x > 1, we can get

F
00(x) =

36(�1 + 4
p
3 + 4

p
3n)

(1 + n)2(3 +
p
3 + 6n)2(9 +

p
3 + 6n)2

> 0 (3.1)
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and

G
00(x) = � 36(1 + 4

p
3 + 4

p
3n)

(1 + n)2(3�
p
3 + 6n)2(9�

p
3 + 6n)2

< 0. (3.2)

It shows that F (x) is strictly convex and G(x) is strictly concave on (0,1). According to The-

orem 1.1, when n ! 1, it holds that limn!1 f(n) = limn!1 g(n) = 0; thus limn!1 F (n) =

limn!1 G(n) = 0. As a result, we can make sure that F (x) > 0 and G(x) < 0 on (0,1). Con-

sequently, the sequence f(n) is strictly increasing and g(n) is strictly decreasing while they both

converge to 0. As a result, we conclude that f(n) < 0, and g(n) > 0 for every integer n > 1.

The proof of Theorem 1.2 is completed.

4 Numerical computations

In this section, we give Table 1 to demonstrate the superiority of our new series respectively. From

what has been discussed above, we found out some new approximations as follows:

n! ⇡
p
2⇡e · e�

3+
p

3
6

 
n+ 3+

p
3

6

e

!n+ 1
2

= �1(n), (4.1)

or

n! ⇡
p
2⇡e · e�

3�
p

3
6

 
n+ 3�

p
3

6

e

!n+ 1
2

= �2(n) (4.2)

or

n! ⇡
p
2⇡e · e�

3+
p

3
6

 
n+ 3+

p
3

6

e

!n+ 1
2

exp

 
� 1

72
p
3

n2 + 10+3
p
3

10 n+ 47+15
p
3

100

!
= �3(n) (4.3)

For simplicity, we only give three approximations �1(n), �2(n), �3(n), more formulas can be directly

obtained from Theorem 1.1.

Burnside [3] gave the formula:

n! ⇡
p
2⇡

✓
n+ 1

2

e

◆n+ 1
2

= �(n). (4.4)

The great advantage of our continued fraction approximation �3(n) consists in its simple form and

its accuracy. From Table 1, we can see that the relative error of �3(n) is �1.1137 ⇥ 10�18 when

calculating 500! and the relative error of �(n) is 8.2540⇥ 10�4 when calculating 50!. Our formula



CUBO
26, 2 (2024)

Approximation and inequalities for the factorial function... 325

Table 1: Simulations for �(n) and �i(n), i = 1, 2, 3.

n �(n)�n!
n!

�1(n)�n!
n!

�2(n)�n!
n!

�3(n)�n!
n!

50 8.2540⇥ 10�4 �3.1767⇥ 10�6 3.1120⇥ 10�6 �8.1273⇥ 10�14

500 8.3254⇥ 10�5 �3.2044⇥ 10�8 3.1978⇥ 10�8 �1.1137⇥ 10�18

1000 4.1647⇥ 10�5 �8.0149⇥ 10�9 8.0066⇥ 10�9 �3.5367⇥ 10�20

2000 2.0828⇥ 10�5 �2.0042⇥ 10�9 2.0032⇥ 10�9 �1.1141⇥ 10�21

�3(n) converges faster than the approximation of the Burnside’s formula �(n).
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ABSTRACT

New norm inequalities for accretive operators on Hilbert
space are given. Among other inequalities, we prove that
if A,B 2 B(H) and B is self-adjoint and also Cm,M (iAB) is
accretive, then

4
p
Mm

M +m
kABk  !(AB �BA⇤),

where M and m are positive real numbers with M > m and
Cm,M (A) = (A⇤ � mI)(MI � A). Also, we show that if
Cm,M (A) is accretive and (M �m)  kkAk, then

!(AB)  (2 + k)!(A)!(B).

RESUMEN

Entregamos nuevas desigualdades para normas de opera-
dores acretivos en espacios de Hilbert. Entre otras desigual-
dades, probamos que si A,B 2 B(H) y B es auto-adjunto y
también Cm,M (iAB) es acretivo, entonces

4
p
Mm

M +m
kABk  !(AB �BA⇤),

donde M y m son números reales positivos con M > m y
Cm,M (A) = (A⇤ � mI)(MI � A). También mostramos que
si Cm,M (A) es acretivo y (M �m)  kkAk, entonces

!(AB)  (2 + k)!(A)!(B).
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1 Introduction and preliminaries

Let B(H) denote the C⇤-algebra of all bounded linear operators on a complex Hilbert space H with

inner product h·, ·i. The numerical radius of A 2 B(H) is defined by

!(A) = sup{ |hAx, xi| : kxk = 1 }.

In [14], Yamazaki proved that for any A 2 B(H)

!(A) = sup
✓2R

kRe(ei✓A)k. (1.1)

It is well known that !(·) is a norm on B(H) which is equivalent to the usual operator norm k.k.
In fact, for all A 2 B(H),

kAk
2

 !(A)  kAk. (1.2)

The first inequality becomes an equality if A2 = 0. The second inequality becomes an equality if

A is normal. Several numerical radius inequalities improving the inequalities in (1.2) have been

recently given in [1–3,7,9,11,12,15,16] and [17]. Holbrook in [6] showed that, for any A,B 2 B(H),

!(AB)  4!(A)!(B). (1.3)

In the case AB = BA, then

!(AB)  2!(A)!(B).

The question about the best constant k such that the inequality

w (AB)  kkAk!(B) (1.4)

holds for all operators A,B 2 B(H) is still open. It is shown in [4] that, for any A,B 2 B(H),

!(AB ±BA⇤)  2kAk!(B). (1.5)

Let DA = inf
�2C

kA� �Ik and let RA denote the radius of the smallest disk in the complex plane

containing �(A) (the spectrum of A). Stampfli in [13] proved that if A 2 B(H) and A is normal,

then

DA = RA. (1.6)
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The following result from [10] may be stated as well: if A,B 2 B(H),then

w (AB)  !(A)!(B) +DADB . (1.7)

Also, the authors in [8] proved that if A,B 2 B(H) and A is self-adjointable, then

!(BA)  DBkAk. (1.8)

We consider the nonlinear functional Vs : B(H) �! R, given by

Vs(A) = sup
kxk=1

RehAx, xi.

Recall that, for all A 2 B(H),

Vs(A)  !(A)  kAk. (1.9)

We say that an operator A : H �! H is accretive, if RehAx, xi � 0 for any x 2 H. In [3],

Dragomir has shown that if M and m are positive real numbers with M > m and the operator

Cm,M (A) = (A⇤ �mI)(MI �A) is accretive, then

kAk  M +m

2
p
Mm

Vs(A) (1.10)

and

kAk  M +m

2
p
Mm

!(A). (1.11)

A sufficient simple condition for Cm,M (A) to be accretive is that A is a self-adjoint operator on

H such that mI  A  MI in the usual operator order of B(H). Moreover, if 0 < m < M , a

sufficient condition for Cm,M (A) to be accretive is that

����A� M +m

2
I

���� <
(M �m)

2
.

The following result from [5] may be stated as well: if M and m are positive real numbers with

M > m and A,B 2 B(H) and also Cm,M (A) is accretive, then

!(AB �BA⇤)  (M �m)!(B). (1.12)

And also

kAk  M +m

2
p
Mm

kRe(A)k, (1.13)
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which is a refinement of inequality (1.11).

In Section 2, we introduce some inequalities between the operator norm and the numerical radius

of accretive operators on Hilbert spaces. More precisely, we establish the generalization of the

inequalities (1.11) and (1.13). Also, we find a lower bound for !(AB �BA⇤).

2 Main results

We need the following lemma, to achieve our goal.

Lemma 2.1. If A 2 B(H), then

Vs(A)  kRe(A)k.

Proof. Suppose that x 2 H with kxk = 1. We have

RehAx, xi = h(A+A⇤)x, xi
2

 kA+A⇤k
2

 kRe(A)k.

Hence

RehAx, xi  kRe(A)k.

Taking the supremum over x 2 H with kxk = 1 gives

Vs(A)  kRe(A)k,

which is exactly the desired result.

Remark 2.2. Let M and m be positive real numbers with M > m and A 2 B(H) and also Cm,M (A)

is accretive. By (1.10) and Lemma 2.1 we deduce that

M +m

2
p
Mm

Vs(A)  M +m

2
p
Mm

kRe(A)k.

Therefore, the inequality (1.10) strengthens (1.11) and (1.13). Then, we continue this section and

introduce some norm inequalities for products of two Hilbert space operators with inequality (1.10).
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The following result may be as well.

Theorem 2.3. If A,B 2 B(H), then

Vs(AB)  kB +B⇤k!(A)

2
+

DADB+B⇤

2
+

1

2
!(AB �BA⇤).

Proof. Clearly, kRe(AB)k = !(Re(AB)). Then

kRe(AB)k = !

✓
AB +B⇤A⇤

2

◆

= !

✓
AB +AB⇤ �AB⇤ +B⇤A⇤

2

◆

 !

✓
AB +AB⇤

2

◆
+ !

✓
�AB⇤ +B⇤A⇤

2

◆

=
1

2
!(A(B +B⇤)) +

1

2
!(AB �BA⇤)

 kB +B⇤k!(A)

2
+

1

2
DADB+B⇤ +

1

2
!(AB �BA⇤). (by (1.7))

Hence

kRe(AB)k  kB +B⇤k!(A)

2
+

1

2
DADB+B⇤ +

1

2
!(AB �BA⇤) (2.1)

and the result follows from Lemma 2.1.

Corollary 2.4. If A,B 2 B(H), then

Vs(AB)  !(B) (!(A) +DA) +
1

2
!(AB �BA⇤).

Proof. By Theorem 2.3,

Vs(AB)  kB +B⇤k!(A)

2
+

DADB+B⇤

2
+

1

2
!(AB �BA⇤).

Since DB+B⇤  kB +B⇤k, then

Vs(AB)  kRe(B)k(!(A) +DA) +
1

2
!(AB �BA⇤)

 sup
✓2R

kRe(ei✓B)k(!(A) +DA) +
1

2
!(AB �BA⇤)

 !(B) (!(A) +DA) +
1

2
!(AB �BA⇤). (by (1.1))

Therefore,

Vs(AB)  !(B) (!(A) +DA) +
1

2
!(AB �BA⇤).

This completes the proof.



332 Baharak Moosavi & M. Shah Hosseini CUBO
26, 2 (2024)

Corollary 2.5. Let M and m (with M > m) are positive real numbers and A,B 2 B(H). If there

exist ✓0 2 R such that Cm,M (ei✓0AB) is accretive , then

kABk  M +m

2
p
Mm

✓
!(B)(!(A) +DA) +

1

2
!(AB �BA⇤)

◆
. (2.2)

Proof. By (2.1),

kRe(AB)k  kB +B⇤k!(A)

2
+

1

2
DADB+B⇤ +

1

2
!(AB �BA⇤).

Since DB+B⇤  kB +B⇤k, gives

kRe(AB)k  kRe(B)k(!(A) +DA) +
1

2
!(AB �BA⇤). (2.3)

Suppose that ✓0 2 R. Replacing B by ei✓0B in the inequality (2.3) gives

kRe(ei✓0AB)k  kRe(ei✓0B)k(!(A) +DA) +
1

2
!(ei✓0(AB �BA⇤))

= kRe(ei✓0B)k(!(A) +DA) +
1

2
!(AB �BA⇤)

 sup
✓02R

kRe(ei✓0B)k(!(A) +DA) +
1

2
!(AB �BA⇤)

= !(B)(!(A) +DA) +
1

2
!(AB �BA⇤). (by (1.1))

Hence,

kRe(ei✓0AB)k  !(B)(!(A) +DA) +
1

2
!(AB �BA⇤). (2.4)

Since Cm,M (ei✓0AB) is accretive, from the inequality (1.13) we have

2
p
Mm

M +m
kABk  kRe(ei✓0AB)k

and the result follows from (2.4).

Remark 2.6. The result stated in Corollary 2.5 is stronger than inequality (1.11). To explain

that, suppose that Cm,M (B) is accretive. Replacing A by I in inequality (2.2). Since DI = 0 and

!(I) = kIk = 1, then we have kBk  M +m

2
p
Mm

!(B).
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The following result may be as well.

Theorem 2.7. Let M and m (with M > m) are positive real numbers and A,B 2 B(H). If

Cm,M

0

@

2

4 0 AB

0 0

3

5

1

A is accretive, then

2
p
Mm

M +m
kABk  kBk

2
(!(A) +DA) +

kAB �BA⇤k
4

.

Proof. Let A1 =

2

4 A 0

0 A

3

5 and B1 =

2

4 0 B

0 0

3

5. Since Cm,M (A1B1) = Cm,M

0

@

2

4 0 AB

0 0

3

5

1

A

is accretive, from the inequality (1.10) and Theorem 2.3 we have

2
p
Mm

M +m
kABk =

2
p
Mm

M +m
kA1B1k

 kB1 +B1
⇤k!(A1)

2
+

DA1DB1+B1
⇤

2
+

1

2
!(A1B1 �B1A1

⇤)

=
kBk!(A)

2
+

DADB1+B1
⇤

2
+

1

2
!

0

@

2

4 0 AB �BA⇤

0 0

3

5

1

A

 kBk!(A)

2
+

DAkB1k
2

+
1

2
!

0

@

2

4 0 AB �BA⇤

0 0

3

5

1

A

=
kBk!(A)

2
+

DAkBk
2

+
kAB �BA⇤k

4
.

Consequently,
2
p
Mm

M +m
kABk  kBk

2
(!(A) +DA) +

kAB �BA⇤k
4

,

which is exactly the desired result.

As a direct consequence of Theorem 2.7, we have:

Corollary 2.8. Let M and m (with M > m) are positive real numbers and A,B 2 B(H). If

Cm,M

0

@

2

4 0 AB

0 0

3

5

1

A is accretive and AB = BA⇤, then

kABk  M +m

4
p
Mm

kBk(!(A) +DA).

We need the following lemma to give some applications of Theorem 2.3.

Lemma 2.9. Let M and m (with M > m) are positive real numbers and A,B 2 B(H). If Cm,M (A)

and Cm,M (B) are accretive, then Cm,M

0

@

2

4 A 0

0 B

3

5

1

A is accretive.
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Proof. Put X =

2

4 x

y

3

5, where x, y 2 H. First we show that if A and B are accretive, then

T =

2

4 A 0

0 B

3

5 is accretive. We have

Re(hTX,Xi) = Re

0

@
*2

4 A 0

0 B

3

5

2

4 x

y

3

5 ,

2

4 x

y

3

5
+1

A = Re

0

@
*2

4 Ax

By

3

5 ,

2

4 x

y

3

5
+1

A

= Re(hAx, xi) +Re(hBy, yi).

Since Re(hAx, xi) � 0 and Re(hBy, yi) � 0, then

Re(hTX,Xi) � 0 (2.5)

and so T is accretive. On the other hand,

Cm,M

0

@

2

4 A 0

0 B

3

5

1

A =

0

@

2

4 A⇤ 0

0 B⇤

3

5�

2

4 mI 0

0 mI

3

5

1

A

0

@

2

4 MI 0

0 MI

3

5�

2

4 A 0

0 B

3

5

1

A

=

0

@

2

4 A⇤ �mI 0

0 B⇤ �mI

3

5

1

A

0

@

2

4 MI �A 0

0 MI �B

3

5

1

A

=

2

4 (A⇤ �mI)(MI �A) 0

0 (B⇤ �mI)(MI �A)

3

5

=

2

4 Cm,M (A) 0

0 Cm,M (B)

3

5 .

Consequently,

Cm,M

0

@

2

4 A 0

0 B

3

5

1

A =

2

4 Cm,M (A) 0

0 Cm,M (B)

3

5 . (2.6)

Since Cm,M (A) and Cm,M (B) are accretive, the result follows from (2.5) and (2.6).

In the following, we provide a lower bound of the !(AB �BA⇤) in terms of kABk for some case.

Theorem 2.10. Let M and m (with M > m) are positive real numbers and A,B 2 B(H). If B is

self-adjoint and Cm,M (iAB) is accretive, then

4
p
Mm

M +m
kABk  !(AB �BA⇤). (2.7)
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Proof. By Theorem 2.3,

Vs(AB)  kB +B⇤k!(A)

2
+

DADB+B⇤

2
+

1

2
!(AB �BA⇤).

Replacing B by iB in the last inequality gives

Vs(iAB)  1

2
!(AB �BA⇤). (2.8)

Since Cm,M (iAB) is accretive, from the inequality (1.10) and (2.8) we have

2
p
Mm

M +m
kABk  Vs(iAB)  1

2
!(AB �BA⇤).

Therefore,
2
p
Mm

M +m
kABk  1

2
!(AB �BA⇤).

This completes the proof.

Recently, some inequalities have been presented by mathematicians to find the upper bound of

!(AB � BA⇤), for example inequalities (1.5) and (1.12). On the other hand, we have to use the

first inequality (1.2) to find a lower bound of !(AB � BA⇤). Now, in the following we give an

example to show how Theorem 2.10 improves the first inequality (1.2).

Example 2.11. Let B =

2

4 1 0

0 0.5

3

5, A =

2

4 �1.5i 0.2i

0 �3.2i

3

5, M = 3, and m = 1. Clearly B is

self-adjoint and with a simple calculation, we have

����iAB � M +m

2
I

���� =

������

2

4 0.5 0.1

0 0.4

3

5

������
' 0.52  1 =

M �m

2
.

Therefore, Cm,M (iAB) is accretive. On the other hand,

kABk =

������

2

4 �1.5i 0.1i

0 �1.6i

3

5

������
' 1.62

and

kAB �BA⇤k =

������

2

4 �3i 0.1i

0.1i �3.2i

3

5

������
' 3.24.

In this case
kAB �BA⇤k

2
' 1.62
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while
4
p
Mm

M +m
kABk ' 2.80.

Remark 2.12. Let M and m are positive real numbers with M > m and A 2 B(H) and also

Cm,M (A) is accretive. Replacing B by I and A by �iA in Theorem 2.10 gives

2
p
Mm

M +m
kAk  1

2
!(A+A⇤) = kRe(A)k.

Therefore, the inequality (2.7) strengthens (1.13).

Corollary 2.13. Let M and m (with M > m) are positive real numbers and A,B 2 B(H). If B

is self-adjoint and Cm,M (A) and also Cm,M (iAB) is accretive, then

kABk  (M2 �m2)

4
p
Mm

kBk.

Proof. By Theorem 2.10,
4
p
Mm

M +m
kABk  !(AB �BA⇤).

From the hypothesis Cm,M (A) is accretive and (1.12),

4
p
Mm

M +m
kABk  (M �m)!(B),

which is exactly the desired result.

At the end of this section, we introduce some numerical radius inequalities for products of two

operators.

Theorem 2.14. Let M and m (with M > m) are positive real numbers and A,B 2 B(H). If

Cm,M (A) is accretive, then

!(AB) 
✓
DA +

M �m

2

◆
!(B).

Proof. Clearly, kRe(AB)k = !(Re(AB)). Then

kRe(AB)k = !

✓
AB +B⇤A⇤

2

◆

= !

✓
AB +AB⇤ �AB⇤ +B⇤A⇤

2

◆

 !

✓
AB +AB⇤

2

◆
+ !

✓
�AB⇤ +B⇤A⇤

2

◆

=
1

2
!(A(B +B⇤)) +

1

2
!(AB �BA⇤)

 1

2
DAkB +B⇤k+ 1

2
!(AB �BA⇤) (by (1.8))
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= DAkRe(B)k+ 1

2
!(AB �BA⇤)

 DA sup
✓2R

kRe(ei✓B)k+ 1

2
!(AB �BA⇤)

= DA!(B) +
1

2
!(AB �BA⇤)

 DA!(B) +
M �m

2
!(B). (by (1.12))

=

✓
DA +

M �m

2

◆
!(B).

Hence,

kRe(AB)k 
✓
DA +

M �m

2

◆
!(B). (2.9)

Suppose that ✓0 2 R. Replacing B by ei✓0B in the inequality (2.9) gives

kRe(ei✓0AB)k 
✓
DA +

M �m

2

◆
!(B).

Taking the supremum over ✓0 2 R gives

!(AB) 
✓
DA +

M �m

2

◆
!(B),

which is exactly the desired result.

Corollary 2.15. Let M and m (with M > m) are positive real numbers and A,B 2 B(H). If

Cm,M (A) is accretive, then

!(AB) 
✓
kAk+ M �m

2

◆
!(B).

Proof. Since DA  kAk, the result follows from Theorem 2.14.

Concerning the inequality (1.4), the following result is interesting.

Theorem 2.16. Let k, M and m (with M > m) are positive real numbers and A,B 2 B(H). If

Cm,M (A) is accretive and (M �m)  kkAk, then

!(AB) 
✓
1 +

k

2

◆
kAk!(B).

Proof. By Corollary 2.15,

!(AB) 
✓
kAk+ M �m

2

◆
!(B). (2.10)

From the hypothesis (M �m)  kkAk and inequality (2.10),

!(AB) 
✓
kAk+ kkAk

2

◆
!(B),
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which is exactly the desired result.

Corollary 2.17. Let k, M and m (with M > m) are positive real numbers and A,B 2 B(H). If

Cm,M (A) is accretive and (M �m)  kkAk, then

!(AB)  (2 + k)!(A)!(B).

Proof. Since kAk  2!(A), the result follows from Theorem 2.16.

Remark 2.18. If k < 2, Corollary 2.16 refines the inequality (1.3).
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ABSTRACT

In this article, we study the extended Weinstein equation

Lu = �u+
k
xn

@u
@xn

+
`
x2
n
u,

where u is a sufficiently smooth function defined in Rn
with

xn > 0 and n � 3. We find a detailed construction for a

fundamental solution for the operator L. The fundamental

solution is represented by the associated Legendre functions

Qµ
⌫ .

RESUMEN

En este artículo estudiamos la ecuación de Weinstein exten-

dida

Lu = �u+
k
xn

@u
@xn

+
`
x2
n
u,

donde u es una función suficientemente suave definida en

Rn
con xn > 0 y n � 3. Encontramos una construcción

detallada para una solución fundamental del operador L. La

solución fundamental está representada por las funciones de

Legendre asociadas Qµ
⌫ .
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1 Introduction

In this paper, we will study the extended Weinstein or the Leutwiler-Weinstein equation

Lu := �u+
k

xn

@u

@xn
+

`

x2
n

u = 0, (1.1)

where k, ` 2 R. The Weinstein operator L plays an interesting special role in the theory of partial

differential equations, hyperbolic geometry and in other areas of mathematics (cf. Section 5).

With the trivial choice of parameters k = ` = 0, the Weinstein operator is the usual Euclidean

Laplacian

� =
@2

@x2
1

+ · · ·+ @2

@x2
n

acting on functions defined on Rn. The solutions are called harmonic functions and the theory is

well elaborated, see e.g. [3, 13, 14]. The next natural step is to just require the condition ` = 0 to

be fulfilled, in which case we are in the case presented by Alexander Weinstein, see [21] and also

[4, 11]. In this case, equation (1.1) is a classic Weinstein equation and the operator L is singular

on the surface xn = 0. In this case, we usually look at functions that are defined in the upper

half-space

Rn
+ := Rn�1 ⇥ (0,1).

For more recent research on the Weinstein equation, see e.g. [5, 8]. The extended Weinstein

equation (1.1) with arbitrary parameters k, ` 2 R was initially studied by Heinz Leutwiler in [12].

The equation has continued to be studied quite actively until these days, see e.g. [2].

The purpose of this article is to present the simplest possible construction (from the point of view

of the authors) for the fundamental solution for the Weinstein operator L represented in (1.1). We

try to present the theory in such a way that basic knowledge of partial differential equations and

vector analysis are sufficient to follow the presentation, i.e. the so-called graduate student level.

The structure of the article is as follows:

• In Section 2, we outline the required preliminaries, i.e. the Weinstein operator with its

reduced version, and some useful notions from the theory of distributions.

• In Section 3, find the special type of “radial” solutions for (1.1).

• In Section 4, we use the “radial” solutions to define the fundamental solution and compute

its proper coefficient.
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2 Preliminaries

2.1 Weinstein operator

Let us look at some basic properties of the Weinstein operator L. Note that the variable xn plays

a special role in the operator. We denote elements x = (x0, xn) 2 Rn
+, where xn > 0. We observe

that keeping xn fixed, the operator L admits with respect to the variable x0 the same invariance

properties as the Laplacian in Rn�1, i.e. invariance under the Euclidean rigid motions (cf. [3]).

Particularly important in what follows is the invariance with respect to translations

x0 7! x0 + a0 (2.1)

for any a0 2 Rn�1. In the previous section, we did not discuss the fourth possible canonical special

case for the Weinstein equation, namely the situation k = 0. In fact, this situation is significantly

related to solving the extended Weinstein equation as follows. As a direct computation gives

L(x
� k

2
n u) = x

� k
2

n eLu, (2.2)

where
eLu = �u+

k(2� k) + 4`

4

u

x2
n

,

we call the operator eL the reduced operator. Subsequently, we will base our calculations largely on

the reduced operator, as it is relatively close to the Laplace operator in its properties.

The reduced operator is especially useful from the point of view of the integration theory. Let

U be a bounded subset of Rn
+ with a sufficiently smooth boundary @U and let u and v twice

differentiable real valued functions defined in an open set containing U . Hence, the usual Green

formula for the Laplace operator is

Z

U
(u�v � v�u) dx =

Z

@U

✓
u
@v

@n
� v

@u

@n

◆
dS,

where the derivative with respect to the outer unit normal n is defined by

@u

@n
= n ·ru.

The Green formula for the reduced operator is obtained by adding and subtracting the term
k(2� k) + 4`

4

uv

x2
n

in the volume integral, i.e.

Z

U

⇣
ueLv � veLu

⌘
dx =

Z

@U

✓
u
@v

@n
� v

@u

@n

◆
dS. (2.3)
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2.2 Generalized functions

Generalized functions or distributions are a standard tool in modern partial differential equation

theory. Their history begins in 1936, when Sergei Sobolev introduced his "l’espace fonctionnel"

and applied them to solve a Cauchy problem of second-order partial differential equations in [17].

After this, the theory was further developed, see e.g., the first larger representation of Laurent

Schwartz [16]. A key work in the theory of partial differential equations is the classic book [9] by

Gelfand and Shilov. In this book, distributions are examined from the point of view of solving

partial differential equations, and the key tool is the connection between distributions and complex

analytical functions. All the following information can be found in more detail in the literature

mentioned above.

Let ⌦ be an open subset of Rn (or Rn
+). We denote D(⌦) as the space of compactly supported

functions

C1
0 (⌦) := {' 2 C1(⌦) : supp(') is compact and supp(') ⇢ ⌦}

equipped with the topology of uniform convergence in compact subsets K ⇢ ⌦. Indeed, 'j ! ' in

D(⌦), if there exists a compact subset K ⇢ ⌦ such that supp('j) ⇢ K for any j and all derivatives

@↵'j ! @↵' uniformly, i.e. the convergence in the Fréchet space C1(K). Above, multi-index

notation ↵ = (↵1, . . . ,↵n) 2 Nn
0 with

@↵ =
@↵1

@x↵1
1

· · · @↵n

@x↵n
n

is used. The preceding D(⌦) is called the test function space. We denote by D0(⌦) the space

of continuous linear functionals over D(⌦), and we call its elements distributions or generalized

functions. If T 2 D0(⌦), we denote

T (') =: hT,'i

for all ' 2 D(⌦). The continuity of a functional T means, that T (') ! 0 for all ' ! 0 in

D(⌦). The convergence in D0(⌦) is defined in the weak form, i.e. a sequence {Tj} of distributions

converges to a distribution T if and only if

hTj ,'i ! hT,'i, for j ! 1, (2.4)

for any ' 2 D(⌦). Important basic properties of distributions are that they have all derivatives

defined by setting

h@↵T,'i = (�1)|↵|hT, @↵'i,

where |↵| = ↵1+· · ·+↵n, and multiplying by a smooth function f 2 C1(⌦) produces a distribution,

i.e.,

hfT,'i = hT, f'i.
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The above properties allow differential operators to be defined in distributional sense, e.g.,

heLT,'i = hT, eL'i, (2.5)

for any T 2 D0(⌦) and ' 2 D(⌦) when ⌦ ⇢ Rn
+. We also denote

hT,'i = hT (x),'(x)i,

where the x is a dummy variable (cf. the use of variables in integrals). Any locally integrable

function g 2 L1
loc(⌦) defines a distibution via the L2-inner product by

hg,'i := hg,'iL2(⌦) =

Z

⌦
g(x)'(x) dx. (2.6)

Remark 2.1. The starting point for the theory of distributions can be also in measure theory. Let

us elaborate on the equivalence of perspectives. If ⌦ ⇢ Rn is an open set and µ a complex Borel

measure on it with µ(K) < 1 for any compact K ⇢ ⌦, then

T (') =

Z

⌦
' dµ,

defines a distribution, where ' 2 D(⌦). If f 2 L1
loc(⌦), then the measure

µ(E) =

Z

E
f(x) dx

for any Borel set E ⇢ ⌦ is a complex Borel measure with µ(K) < 1. Then the Radon-Nikodym

derivative dµ
dx = f . Hence, we can intuitively identify distributions with functions f or equivalently

with measures µ.

The most important example of distributions is the Dirac delta distribution, which is defined by

setting

h�(x� y),'(x)i := '(y),

for y 2 Rn. The Dirac delta is not a distribution generated by a locally integrable function. In the

distributional sense, one can see that �(x � y) = 0 for any x 6= y. Moreover, the Dirac delta has

the obvious property

f(x)�(x� y) = f(y)�(x� y), (2.7)

for f 2 C1(⌦), which plays a central role in this paper. If

Pu(x) =
mX

k=0

X

|↵|=k

a↵(x)@
↵u(x)
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is a linear differential operator P acting on a suitable function u, where a↵ 2 C1(⌦), we call a

distribution G(·, y) 2 D0(⌦) a fundamental solution at y 2 ⌦, if it satisfies the equation

PG(x, y) = �(x� y).

The main motivation to find a fundamental solution is to study solutions of the equation Pu = f .

One can see, that the solution of the problem is given by u = G ⇤ f , where ⇤ is the convolution of

a distribution and a function. See details, e.g. in [9].

3 Classical “radial” solutions

In this paper, our aim is to find a fundamental solution G for the Weinstein operator (1.1), i.e.

LG(x, y) = �(x� y)

where y 2 Rn
+. Our first observation is that due to the formulas (2.2) and (2.7), we obtain the

following formula.

Proposition 3.1. If eLv = �(x� y), then L

 ✓
yn
xn

◆ k
2

v

!
= �(x� y).

Hence, it is enough to find a fundamental solution for the reduced operator eL. A usual problem

with any non-constant coefficient differential operator is that the symmetry of the operator does

not match with the symmetry of the Dirac delta. We know that the Dirac delta is rotationally

invariant (see [9]), i.e.

�(Ax) = �(x)

for any A 2 SO(n), but as we mentioned above, eL is rotation invariant only around the xn-axis,

or more precisely, it is invariant under the subgroup SO(n� 1) in SO(n) defined as the stabiliser

of the xn-axis. Hence, the xn-direction will play a special role. Since the operator is translation

invariant with respect to x0, we can try to find first a fundamental solution only at the point

y = (00, yn). Thus,

�(x� y) = �(x0)�(xn � yn).

Consequently, the fundamental solution must be a “radial function”, i.e., it depends on |x � y|,
with the special role of xn. Hyperbolic geometry gives us an idea how to proceed. In [15], one can

find the expression

|x� y|2 = 2xnyn(�(x, y)� 1), (3.1)
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where � : Rn
+ ⇥ Rn

+ ! [1,1) is defined by

�(x, y) = 1 +
|x� y|2

2xnyn
.

The reader should note that

� � 1. (3.2)

The function � is an invariant with respect to the invariance group of the hyperbolic upper-half

space, cf. [15]. Based on this, one can try to find a solution for the extended Weinstein equation

in the form

u(x) = x↵
nv(�), (3.3)

for a fixed y 2 Rn
+. We want to substitute this into equation (1.1). First, we compute the following

technical lemma.

Lemma 3.2. If u is of the form (3.3) and y0 = 0, we have

x2�↵
n

eLu =
�
�2 � 1

�
v00(�) +

✓
(n� 2 + 2↵)

xn

yn
+ 2(1� ↵)�

◆
v0(�) +

✓
↵(↵� 1) +

k(2� k) + 4`
4

◆
v(�).

Proof. Since v = v(�(x, y)), we compute

@v

@xj
=

xj

xnyn
v0(�),

@v

@xn
=

xn � yn�

xnyn
v0(�),

@2v

@x2
j

=
x2
jv

00(�) + xnynv0(�)

x2
ny

2
n

,

@2v

@x2
n

=
(xn � yn�)2v00(�) + (2y2n�� xnyn)v0(�)

x2
ny

2
n

,

for j = 1, . . . , n� 1. Then we compute

@u

@xj
= x↵�1

n
xj

yn
v0(�),

@u

@xn
= x↵�1

n

✓
↵v(�) +

✓
xn

yn
� �

◆
v0(�)

◆
,

@2u

@x2
j

=
x↵�2
n

y2n

⇣
x2
jv

00(�) + ynxnv
0(�)

⌘
,

@2u

@x2
n

=
x↵�2
n

y2n

⇣
(xn � yn�)

2v00(�) +
�
(2↵� 1)xnyn + (y2n � ↵y2n)2�

�
v0(�) + ↵(↵� 1)y2nv(�)

⌘
,

for j = 1, . . . , n� 1. Then we observe

n�1X

j=1

@2u

@xj
=

x↵�2
n

y2n

⇣
|x0|2v00(�) + (n� 1)ynxnv

0(�)
⌘
.
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Since y0 = 0, we have |x0|2 = 2xnyn�� x2
n � y2n and we obtain

�u = x↵�2
n

✓
(�2 � 1)v00(�) +

✓
(n� 2 + 2↵)

xn

yn
+ 2(1� ↵)�

◆
v0(�) + ↵(↵� 1)v(�)

◆
,

completing the proof.

We observe that we obtain the ordinary differential equation with respect to � if we choose ↵ = 2�n
2 .

Since ↵(↵� 1) = 1
4 (n� 2)n, we obtain the following result.

Proposition 3.3. The function u(x) = x
2�n
2

n v(�) is a solution of eLu = 0 if and only if

(�2 � 1)v00(�) + n�v0(�) +
1

4
(k(2� k) + (n� 2)n+ 4`)v(�) = 0.

We denote � := 1
4 (k(2� k) + (n� 2)n+ 4`). To solve the equation

(�2 � 1)v00(�) + n�v0(�) + �v(�) = 0, (3.4)

we first observe that it is not far from the associated Legendre equation

(z2 � 1)w00(z) + 2zw0(z)�
⇣
⌫(⌫ + 1) +

µ2

z2 � 1

⌘
w(z) = 0, (3.5)

with parameters µ, ⌫ 2 C. The associated Legendre equation has two solutions Pµ
⌫ (z) and Qµ

⌫ (z)

defined outside of singularities z = ±1, see e.g. [1,10]. The solutions are called associated Legendre

functions. The solutions Pµ
⌫ (z) and Qµ

⌫ (z) are linearly independent if and only if µ± ⌫ /2 �N. We

need to exclude this case in the future.

Assume x 6= y, that is, from (3.2) we obtain � = �(x, y) > 1. We look for a solution for (3.4) in

the form

v(�) = (�2 � 1)�w(�).

Substituting this into the equation (3.4), the equation becomes

(�2 � 1)w00 + (4� + n)�w0 +

✓
2� + � +

(4�(� � 1) + 2n�)�2

�2 � 1

◆
w = 0. (3.6)

To obtain the associated Legendre equation, it is required that

4� + n = 2 () � =
2� n

4
.

We obtain the following result.
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Proposition 3.4. The function v(�) = (�2 � 1)
2�n
4 w(�) satisfies equation (3.4) if and only if w

is a solution of the associated Legendre equation

(�2 � 1)w00 + 2�w0 �
✓
�n(2� n) + 4�

4
+

1
4 (n� 2)2

�2 � 1

◆
w = 0.

Proof. Using (3.6), we have

(�2 � 1)w00 + 2�w0 +

✓
2� n

2
+ � � 1

4
(n� 2)2

�2

�2 � 1

◆
w = 0.

On the other hand,
�2

�2 � 1
= 1 +

1

�2 � 1
,

and we obtain the result.

Hence we obtain the solutions as follows.

Theorem 3.5. Equation (3.4) has two linearly independent solutions

(�2 � 1)
2�n
4 P

±n�2
2

� 1
2±

p
n(n�2)+1�4�

2

(�) and (�2 � 1)
2�n
4 Q

±n�2
2

� 1
2±

p
n(n�2)+1�4�

2

(�)

where we can choose any ± combination for any indices (4 possible combinations).

Proof. To solve the reduced equation, we need to find the right parameters in the Legendre equation

(3.5), that is

⌫(⌫ + 1) = �n(2� n) + 4�

4
, ⌫ = �1

2
±
p

n(n� 2) + 1� 4�

2

and

µ2 =
1

4
(n� 2)2 , µ = ±n� 2

2
.

Equation (3.4) admits two linearly independent solutions

(�2 � 1)
2�n
4 P

±n�2
2

� 1
2±

p
n(n�2)+1�4�

2

(�) and (�2 � 1)
2�n
4 Q

±n�2
2

� 1
2±

p
n(n�2)+1�4�

2

(�).

Then, using the formulas 8.2.1 and 8.2.2 from [1], both functions Pµ
�� 1

2
and Qµ

�� 1
2

can be

represented by the functions Pµ
� 1

2
and Qµ

� 1
2
. Similarly, using the formulas 8.2.5 and 8.2.6, we

can represent P�µ
⌫ and Q�µ

⌫ by the functions Pµ
⌫ and Qµ

⌫ . Hence, the any ± combination gives us

two linear independent solutions.
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Corollary 3.6. Using (2.2), we obtain the solutions

x
� k

2
n (�2 � 1)

2�n
4 P

±n�2
2

� 1
2±

p
n(n�2)+1�4�

2

(�) and x
� k

2
n (�2 � 1)

2�n
4 Q

±n�2
2

� 1
2±

p
n(n�2)+1�4�

2

(�)

for the Weinstein equation (1.1).

Remark 3.7. We observe that if n(n� 2) + 1� 4� < 0, we obtain solutions with the functions

Pµ
� 1

2+i✓
(�) and Qµ

� 1
2+i✓

(�),

with some ✓ 2 R. These functions are called the Mehler functions or conical functions, see e.g.

Section 8.12. in [1] or Section 8.84 in [10]. The first of the functions is real-valued, while the

second is complex-valued in general. To find completely real-valued solutions, see e.g. [6].

Remark 3.8. The special case n(n � 2) + 1� 4� = 0, i.e. k(2� k) + 4` = 1, corresponds to the

equation
eLu = �u+

1

4

u

x2
n

= 0 or Lu = �u+
k

xn

@u

@xn
+

1
4 (k � 1)2

x2
n

u = 0,

and the solutions are given by

Pµ
� 1

2
(�) and Qµ

� 1
2
(�).

4 Finding fundamental solutions

The solutions given in Theorem 3.5 can be used as candidates for a fundamental solution. From

(3.1), we infer that x ! y if and only if � ! 1+. Next, let us examine the asymptotic behavior of

functions in general. In the following, we assume that the argument z of the functions is real.

Proposition 4.1. If Re(µ) > 0, then

lim
z!1

⇣
(z2 � 1)

µ
2 P�µ

⌫ (z)
⌘
= 0.

Proof. For |1� z| < 2 the associated Legendre function Pµ
⌫ admits the representation (see 8.1.2 in

[1])

P�µ
⌫ (z) =

1

�(1 + µ)

✓
z � 1

z + 1

◆µ
2

2F1

✓
�⌫, ⌫ + 1; 1 + µ;

1� z

2

◆
,

where 2F1 represents the usual hypergometric functions (see [1, 10]). Hence

(z2 � 1)
µ
2 P�µ

⌫ (z) =
1

�(1 + µ)
(z � 1)µ2F1

✓
�⌫, ⌫ + 1; 1 + µ;

1� z

2

◆
,

completing the proof.
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Proposition 4.2. If Re(µ) > 0 and ⌫ + 1
2 /2 �N, then

lim
z!1+

⇣
(z2 � 1)

µ
2 Qµ

⌫ (z)
⌘
= ei⇡µ2µ�1�(µ).

Proof. Using the representation 8.703 in [10], we obtain the representation

(z2 � 1)�
µ
2 Qµ

⌫ (z) = ei⇡µ
�(⌫ + µ+ 1)

p
⇡

2⌫+1�(⌫ + 3
2 )z

⌫+µ+1 2F1

✓
⌫ + µ+ 2

2
,
⌫ + µ+ 1

2
; ⌫ +

3

2
;
1

z2

◆
.

Using the transformation formula 9.131.1 in [10], we have

2F1

✓
⌫ + µ+ 2

2
,
⌫ + µ+ 1

2
; ⌫ +

3

2
;
1

z2

◆
=

(z2 � 1)�µ

z�2µ 2F1

✓
⌫ � µ+ 1

2
,
⌫ � µ+ 2

2
; ⌫ +

3

2
,
1

z2

◆
.

Hence

(z2 � 1)
µ
2 Qµ

⌫ (z) = ei⇡µ
�(⌫ + µ+ 1)

p
⇡

2⌫+1�(⌫ + 3
2 )z

⌫�µ+1 2F1

✓
⌫ � µ+ 2

2
,
⌫ � µ+ 1

2
; ⌫ +

3

2
;
1

z2

◆
.

If Re(c� a� b) > 0 and c /2 �N0, the identity 15.1.20 in [1] says

2F1(a, b; c; 1) =
�(c)�(c� a� b)

�(c� a)�(c� b)
.

If a = ⌫�µ+1
2 , b = ⌫�µ+2

2 and c = ⌫+ 3
2 , we have Re(c�a�b) = Re(µ) > 0 and ⌫+ 3

2 6= 0,�1,�2, . . . ,

i.e.

2F1

✓
⌫ � µ+ 1

2
,
⌫ � µ+ 2

2
; ⌫ +

3

2
; 1

◆
=

�(⌫ + 3
2 )�(µ)

�( ⌫+µ+2
2 )�( ⌫+µ+1

2 )
.

Using the doubling formula for the gamma function 8.335.1 in [10], we obtain

2F1

✓
⌫ � µ+ 1

2
,
⌫ � µ+ 2

2
; ⌫ +

3

2
; 1

◆
=

2⌫+µ�(⌫ + 3
2 )�(µ)p

⇡�(⌫ + µ+ 1)
.

Thus

lim
z!1+

⇣
(z2 � 1)

µ
2 Qµ

⌫ (z)
⌘
= ei⇡µ

�(⌫ + µ+ 1)
p
⇡

2⌫+1�(⌫ + 3
2 )

2⌫+µ�(⌫ + 3
2 )�(µ)p

⇡�(⌫ + µ+ 1)
= ei⇡µ2µ�1�(µ).

We know that the homogenity of the Dirac delta distribution is �n and the reduced operator is a

homogeneous differential operator of degree 2. Hence, the fundamental solutions should have the

homogenity �n + 2. From (3.1), we obtain, that (� � 1)
n�2
2 has the needed homogenity. Hence

the solution (�2 � 1)�
µ
2 Qµ

⌫ (�) has the suitable homogenity. We see it by writing it in the form

(�2 � 1)�
µ
2 Qµ

⌫ (�) =
(�2 � 1)

µ
2 Qµ

⌫ (�)

(�+ 1)µ(�� 1)µ
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for µ = n�2
2 . Let us define the following function with the canonical asymptotic behavior, which

we can use as a candidate for a fundamental solution. This means that we fixing the constant, and

proving directly that it indeed satisfies the correct equation.

Proposition 4.3. Let µ = n�2
2 and µ = � 1

2 ±
p

n(n�2)+1�4�

2 . The function

F (x, y) =
f(�)

(�� 1)µ
,

where

f(�) =
2e�⇡µi

�(⌫)

(�2 � 1)
µ
2 Qµ

⌫ (�)

(�+ 1)µ

is a null solution of the reduced operator for x 6= y and

lim
�!1

f(�) = 1.

Proof. Using the preceding proposition, we obtain

lim
�!1

✓
(�2 � 1)

µ
2 Qµ

⌫ (�)

(�+ 1)µ

◆
=

e⇡µi

2
�(µ).

Next we need to evaluate eLF (·, y) in the distribution sense. We proceed as follows. We take a test

function ' 2 D(Rn
+) and choose a bounded open set U ⇢ Rn

+ with a sufficiently smooth boundary

satisfying supp(') ⇢ U , and we define Ur(y) := U\Br(y) for 0 < r < R, where R = inf{|x � y| :
x 2 @U}. If �Ur(y) is the characteristic function of Ur(y), then we define the sequence of locally

integrable functions {Fr} by Fr := �Ur(y)F (·, y). Obviously, the sequence converges to the F (·, y)
in the distributional sense (2.4). Then, using this convergence and (2.5), we obtain

heLF (·, y),'i = hF (·, y), eL'i = lim
r!0

hFr, eL'i. (4.1)

Since Fr is locally integrable, we have using (2.6) and the Green formula (2.3),

hFr, eL'i =
Z

Ur(y)
F (x, y)eL'(x) dx =

Z

Ur(y)

eLF (x, y)'(x) dx+

Z

@Ur(y)

✓
F
@'

@n
� '

@F

@n

◆
dS.

We observe that eLF (x, y) = 0 for x 6= y and split @Ur(y) = @U [ (�@Br(y)), where the minus

sign denotes the opposite (i.e. inward) orientation. Since supp(@'@n ) ⇢ supp('), we observe that

the surface integral over @U vanishes. Hence

hFr, eL'i =
Z

@Br(y)

✓
'
@F

@n
� F

@'

@n

◆
dS. (4.2)

To compute the surface integral in (4.2), we need the following technical lemma.
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Lemma 4.4. If x 2 @Br(y) with y = (00, yn), then the normal derivative of �(x, y) satisfies

@�

@n
= r

xn + yn
2x2

nyn
.

Proof. We compute

@�

@xj
=

xj

xnyn
, for j = 1, . . . , n� 1,

@�

@xn
=

�|x0|2 + x2
n � y2n

2x2
nyn

,

i.e.

r� =

⇣
x0, �|x0|2+x2

n�y2
n

2xn

⌘

xnyn
.

At x 2 @Br(y), the outward pointing unit normal is

n(x) =
(x0, xn � yn)

r
.

Since |x0|2 = r2 � (xn � yn)2, we compute

@�

@n
= n ·r� = r

xn + yn
2x2

nyn
.

We also need the following asymptotics.

Remark 4.5 (Integrals over spheres). If f : U ! R is a continuous function, y 2 U and R > 0

a radius such that Br(y) ⇢ U for all 0 < r < R. Then there is the classical asymptotic formula

of the surface integrals, depending on the singularity of the integrand. A direct consequence of the

continuity of the function f is

lim
r!0

Z

@Br(y)

f(x)

r↵
dS(x) =

8
>>>><

>>>>:

0, for 0 < ↵ < n� 1,

!n�1f(y), for ↵ = n� 1,

±1, for ↵ > n� 1,

(4.3)

where !n�1 is the surface area of the unit sphere Sn�1 ⇢ Rn. These are a special case of the

so-called potential type integrals, see e.g. [19].

Then we are ready to prove:
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Theorem 4.6. If y = (00, yn), then

eLF (·, y) = �n� 2

2
yn�2
n !n�1�(x

0)�(xn � yn),

where !n�1 is the surface area of the unit sphere Sn�1 ⇢ Rn and n � 3.

Proof. Since �� 1 = r2

2xnyn
, we have

F (x, y) =
(2xnyn)µf(�)

rn�2
,

where µ = n�2
2 . Hence using (4.3), we obtain

lim
r!0

Z

@Br(y)
F
@'

@n
dS = lim

r!0

Z

@Br(y)

(2xnyn)µf(�)

rn�2

@'

@n
dS = 0.

Then we compute using Lemma 4.4

@F

@n
=

d

d�

✓
f(�)

(�� 1)µ

◆
@�

@n

=

✓
f 0(�)

(�� 1)µ
� µf(�)

(�� 1)µ+1

◆
@�

@n

=
1

2

✓
(2xnyn)µf 0(�)

rn�3
� µ(2xnyn)

n
2 f(�)

rn�1

◆
xn + yn
x2
nyn

.

Hence, we can compute

lim
r!0

Z

@Br(y)
'
@F

@n
dS =

1

2
lim
r!0

Z

@Br(y)

(2xnyn)µf 0(�)

rn�3

xn + yn
x2
nyn

'dS

| {z }
=0, using (4.3)

� 1

2
lim
r!0

Z

@Br(y)

µ(2xnyn)
n
2 f(�)

rn�1

xn + yn
x2
nyn

'dS

=� µyn�2
n !n�1'(y)

again using (4.3). Hence, using (4.1) and (4.2), we conclude

heLF (·, y),'i = �µyn�2
n !n�1'(y).

Using the definition of the Dirac delta distribution, we obtain the result.

Since eL is invariant under (2.1), we obtain a fundamental solution by the simple substitution.
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Theorem 4.7. Let n � 3. The distribution

H(x, y) =
h(�(x, y))

(�(x, y)� 1)
n�2
2

where

h(�) = � 4e�⇡µi

(n� 2)yn�2
n !n�1�(⌫)

(�2 � 1)
µ
2 Qµ

⌫ (�)

(�+ 1)µ

is a fundamental solution for eL, i.e.

eLH(·, y) = �(x� y),

for any y 2 Rn
+.

Proposition 3.1 gives the following theorem.

Theorem 4.8. Let n � 3. The distribution

G(x, y) =
g(�(x, y))

(�(x, y)� 1)
n�2
2

where

g(�) = � 1

x
k
2
n y

n�2� k
2

n

4e�⇡µi

(n� 2)!n�1�(⌫)

(�2 � 1)
µ
2 Qµ

⌫ (�)

(�+ 1)µ

is a fundamental solution for L, i.e.

LG(·, y) = �(x� y),

for any y 2 Rn
+.

Above, the special case n = 2 is not considered and is left as a future research topic. The question

is a natural deformation for the hyperbolic Laplace operator on the complex upper half-plane.

5 Conclusions

In this paper, we derive the fundamental solution for the operator L in detail. The reader can see

that to find the fundamental solution for an operator with a non-constant coefficient is much more

challenging than in the case of constant coefficients. The reader should also bear in mind how

the only constant multiplication special case k = ` = 0 makes calculations significantly easier. By

doing the calculations presented in the paper in this case, we recover a classical derivation, based

on differential equations, for the fundamental solution of the Laplace operator.

Finally, the authors would like to point out that the results of the paper may be interesting in
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addition to analysis in other areas of mathematics, such as analytical number theory, because

the extended Weinstein equation also encompasses the famous Maaß wave equation, including the

famous Maaß forms as special solutions, see e.g. [7, 18].

Acknowledgements

The second author wishes to thank the members of his family for their patience during the writing

process of this paper. Moreover, we want to thank Dr. Alí Guzmán Adán for his help with finishing

the Spanish part of the article.



CUBO
26, 2 (2024)

A simple construction of a fundamental solution... 357

References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs,

and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. U.

S. Government Printing Office, Washington, DC, 1964, vol. 55.

[2] Ö. Akın and H. Leutwiler, “On the invariance of the solutions of the Weinstein equation under

Möbius transformations,” in Classical and modern potential theory and applications (Chateau

de Bonas, 1993), ser. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. Kluwer Acad. Publ.,

Dordrecht, 1994, vol. 430, pp. 19–29.

[3] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, 2nd ed., ser. Graduate Texts

in Mathematics. Springer-Verlag, New York, 2001, vol. 137, doi: 10.1007/978-1-4757-8137-3.

[4] B. Brelot-Collin and M. Brelot, “Représentation intégrale des solutions positives de l’équation

Lk(u) =
Pn

1 @
2u/@x2

1 + k/xn@u/@xn = 0 (k constante réelle) dans le demi-espace E(xn > 0),

de Rn,” Acad. Roy. Belg. Bull. Cl. Sci. (5), vol. 58, pp. 317–326, 1972.

[5] S. Chaabi, “Analyse complexe et problèmes de Dirichlet dans le plan : équation de Wein-

stein et autres conductivités non-bornées,” Ph.D. dissertation, Aix-Marseille Université, 2013,

Available: https://theses.hal.science/tel-00916049.

[6] T. M. Dunster, “Conical functions with one or both parameters large,” Proc. Roy. Soc. Edin-

burgh Sect. A, vol. 119, no. 3-4, pp. 311–327, 1991, doi: 10.1017/S0308210500014864.

[7] J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, ser. Springer

Monographs in Mathematics. Springer-Verlag, Berlin, 1998, doi: 10.1007/978-3-662-03626-6.

[8] S.-L. Eriksson and H. Orelma, “Fundamental solutions for the Laplace-Beltrami operator

defined by the conformal hyperbolic metric and Jacobi polynomials,” Complex Anal. Oper.

Theory, vol. 18, no. 1, 2024, Art. ID 10, doi: 10.1007/s11785-023-01459-0.

[9] I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. 1. Academic Press [Harcourt

Brace Jovanovich, Publishers], New York-London, 1964.

[10] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, A. Jeffrey, Y. V.

Geronimus, and M. Y. Tseytlin, Eds. Academic Press [Harcourt Brace Jovanovich, Publish-

ers], New York-London-Toronto, 1980.

[11] A. Huber, “Some results on generalized axially symmetric potentials,” in Proceedings of the

conference on differential equations (dedicated to A. Weinstein). University of Maryland

Book Store, College Park, MD, 1956, pp. 147–155.

https://doi.org/10.1007/978-1-4757-8137-3
https://theses.hal.science/tel-00916049
https://doi.org/10.1017/S0308210500014864
https://doi.org/10.1007/978-3-662-03626-6
https://doi.org/10.1007/s11785-023-01459-0


358 S.-L. Eriksson & H. Orelma CUBO
26, 2 (2024)

[12] H. Leutwiler, “Best constants in the Harnack inequality for the Weinstein equation,” Aequa-

tiones Math., vol. 34, no. 2-3, pp. 304–315, 1987, doi: 10.1007/BF01830680.

[13] M. Morimoto, Analytic functionals on the sphere, ser. Translations of Mathematical

Monographs. American Mathematical Society, Providence, RI, 1998, vol. 178, doi:

10.1090/mmono/178.

[14] C. Müller, Spherical harmonics, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin-

New York, 1966, vol. 17.

[15] J. G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., ser. Graduate Texts in Mathe-

matics. Springer, New York, 2006, vol. 149.

[16] L. Schwartz, Théorie des distributions. Tome I, ser. Publications de l’Institut de Mathé-

matiques de l’Université de Strasbourg [Publications of the Mathematical Institute of the

University of Strasbourg]. Hermann & Cie, Paris, 1950, vol. 9.

[17] S. Soboleff, “Méthode nouvelle à resoudre le problème de Cauchy pour les équations linéaires

hyperboliques normales,” Rec. Math. Moscou, vol. 1, pp. 39–71, 1936.

[18] A. Terras, Harmonic analysis on symmetric spaces and applications. I. Springer-Verlag, New

York, 1985, doi: 10.1007/978-1-4612-5128-6.

[19] V. S. Vladimirov and V. V. Zharinov, Uravneniya matematicheskoj fiziki. Moskva: Fiziko-

Matematicheskaya Literatura, 2000.

[20] V. Vuojamo and S.-L. Eriksson, “Integral kernels for k-hypermonogenic functions,” Complex

Var. Elliptic Equ., vol. 62, no. 9, pp. 1254–1265, 2017, doi: 10.1080/17476933.2016.1250402.

[21] A. Weinstein, “Generalized axially symmetric potential theory,” Bull. Amer. Math. Soc.,

vol. 59, pp. 20–38, 1953, doi: 10.1090/S0002-9904-1953-09651-3.

https://doi.org/10.1007/BF01830680
https://doi.org/10.1090/mmono/178
https://doi.org/10.1007/978-1-4612-5128-6
https://doi.org/10.1080/17476933.2016.1250402
https://doi.org/10.1090/S0002-9904-1953-09651-3


CUBO, A Mathematical Journal

Vol. 26, no. 2, pp. 359–366, August 2024

DOI: 10.56754/0719-0646.2602.359

Lp-boundedness of the Laplace transform

René Erlín Castillo
1

Héctor Camilo Chaparro
2,B

Julio César Ramos-Fernández
3

1Departamento de Matemáticas, Universidad

Nacional de Colombia, Bogotá, Colombia.

recastillo@unal.edu.co

2Programa de Matemáticas, Universidad de

Cartagena, Cartagena de Indias, Colombia.

hchaparrog@unicartagena.edu.coB

3Facultad de Ciencias Matemáticas y Naturales,

Universidad Distrital Francisco José de Caldas,

Bogotá, Colombia.

jcramosf@udistrital.edu.co

ABSTRACT

In this paper, we discuss about the boundedness of

the Laplace transform L : Lp([0,1)) ! Lp(A) (p �
1) for the cases A = [0,1), A = [1,1) and A = [0, 1].

We also provide examples for the cases where L is

unbounded.

RESUMEN

En este artículo, discutimos sobre la acotación de la

transformada de Laplace L : Lp([0,1)) ! Lp(A)

(p � 1) para los casos A = [0,1), A = [1,1) y

A = [0, 1]. También entregamos ejemplos para los

casos donde L es no acotada.
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1 Introduction

The Laplace transform L is a well-known classical linear integral operator defined for every appro-

priate function f on [0,1) by

Lf(t) =
Z 1

0
e
�st

f(s) ds, t 2 (0,1).

Laplace transform is widely used for solving ordinary and partial differential equations. Hence it

is a useful tool not only for mathematicians but also for physicists and engineers. It is also useful

in Probability Theory (see [1], [8] and [10]).

Searching among the literature, we found that the study of the boundedness of the Laplace trans-

form for some unknown reason has been neglected. In this regard, we could only find the references

[3] and [6,7], in which the authors stated some results about the boundedness of the Laplace trans-

form. In [3], the optimal rearrangement-invariant space on either side of L : X ! Y is characterized

when the other space is given. In [6], the authors studied both the Laplace transform and a more

general class of operators (also in weighted Lp spaces), and in [7], they provided for them a spectral

representation in L2. For more on the Laplace transform and its optimal domain of definition, the

interested reader is invited to check [2, 9, 11] and the references therein.

In such a sense, in a self contained presentation, we study the boundedness of the Laplace transform

on Lebesgue Lp-spaces. Our main goal is to show that:

(1) L : Lp([0,1)) ! Lp([0,1)) is bounded only if p = 2.

(2) L : Lp([0,1)) ! Lp([1,1)) is bounded only if p > 2.

(3) L : Lp([0,1)) ! Lp([0, 1]) is bounded only if 1 < p < 2.

2 Main results

We would like to discuss now about the boundedness of the Laplace transform L. For example,

for f 2 L1([0,1)), it holds that

|Lf(t)| 
Z 1

0
|f(s)||e�st| ds 

Z 1

0
|f(s)| ds = kfkL1([0,1)) < 1.

This means that L(f) exists and it is bounded for all t � 0. By taking the supremum over

t 2 [0,1), we obtain

kL(f)kL1([0,1))  kfkL1([0,1)),
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which means that

L : L1([0,1)) �! L1([0,1)),

is a bounded operator.

For our next result we will use the so called Minkowski integral inequality, stated below. Details

and proof of this inequality may be found in [4].

Theorem 2.1 (Minkowski integral inequality). Let (X,A, µ) and (Y,B, ⌫) be �-finite measure

spaces. Suppose that f is A ⇥B-measurable function and f(·, y) 2 Lp(µ) for all y 2 Y . Then for

1  p  1 we have

0

@
Z

X

������

Z

Y

f(x, y) d⌫

������

p

dµ

1

A

1
p


Z

Y

0

@
Z

X

|f(x, y)|p dµ

1

A

1
p

d⌫. (2.1)

The next result is an exercise in the 1958 book of Dunford and Schwartz [5]. It states that

L : L2([0,1)) ! L2([0,1)),

is a bounded operator. For the sake of completeness, we provide its proof.

Theorem 2.2. Let f 2 L2([0,1)). Then

kLfkL2([0,1)) 
p
⇡kfkL2([0,1)).

Proof. Let f 2 L2([0,1)) and

Lf(t) =
Z 1

0
f(s)e�st

ds. (2.2)

Now, making the change of variables u = st, (2.2) becomes

Lf(t) =
Z 1

0
e
�u

f

⇣
u

t

⌘
dt

t
.

By means of the Minkowski integral inequality (Theorem 2.1), one has

kLkL2([0,1)) =

✓Z 1

0
|Lf(t)|2 dt

◆ 1
2

=

 Z 1

0

����
Z 1

0
e
�u

f

⇣
u

t

⌘
du

t

����
2

dt

! 1
2


Z 1

0

✓Z 1

0

���e�u
f

⇣
u

t

⌘
t
�1
���
2
dt

◆ 1
2

du =

Z 1

0
e
�u

✓Z 1

0

���f
⇣
u

t

⌘���
2 dt

t2

◆ 1
2

du

=

Z 1

0
u
� 1

2 e
�u

✓Z 1

0
|f(!)|2 d!

◆ 1
2

du =

✓Z 1

0
u

1
2�1

e
�u

du

◆
kfkL2([0,1))

= �

✓
1

2

◆
kfkL2([0,1)).
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Figure 1: The graph of F (a) =
kL(fa)kLp([0,1))

kfakLp([0,1))
for p = 1.5 (solid) and p = 5 (dashed).

It is a well known fact that �
�
1
2

�
=

p
⇡, so we finally arrive to

kLfkL2([0,1)) 
p
⇡kfkL2([0,1)).

Remark 2.3. A routine calculation shows that, for p > 1, if fa(t) = e
�at where a > 0, we have

kfakLp([0,1)) =

✓
1

ap

◆1/p

, kL(fa)kLp([0,1)) =

✓
a
1�p

p� 1

◆1/p

.

Hence
kL(fa)kLp([0,1))

kfakLp([0,1))
=

✓
p

p� 1

◆1/p

a
2
p�1 ! 1,

as a ! 1 for 1 < p < 2, and as a ! 0+ for p > 2 (see e.g. Figure 1 below). This shows that

L : Lp([0,1)) ! Lp([0,1))

is not a bounded operator for p 6= 2.1

Our next result states that

L : Lp([0,1)) ! Lp([1,1)),

is a bounded operator for p > 2.

1
All plots in the present article were made using the software DESMOS.
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Theorem 2.4. Let f 2 Lp([0,1)) with 2 < p < 1, then

kL(f)kLp([1,1))  CpkfkLp([0,1)).

Proof. Let f 2 Lp with
1

p
+

1

q
= 1. By Hölder’s inequality one has

kL(f)kpLp([1,1)) =

1Z

1

|Lf(x)|p dx =

1Z

1

0

@
1Z

0

e
�xy

f(y) dy

1

A
p

dx


1Z

1

0

@
1Z

0

|f(y)|p dy

1

A

0

@
1Z

0

e
�qxy

dy

1

A
p/q

dy =

1Z

1

✓
�e

�qxy

qx

����
1

0

◆p/q

kfkpLp([0,1)) dx

=

✓
1

q

◆p/q
0

@
1Z

1

x
�p/q

dx

1

A kfkpLp([0,1)) =

✓
1

q

◆p/q 1

(2� p)xp�2

����
1

1

kfkpLp([0,1))

=

✓
1

q

◆p/q 1

p� 2
kfkpLp([0,1)).

Finally,

kL(f)kLp(1,1) 
✓
1

q

◆1/q ✓ 1

p� 2

◆1/p

kfkLp(0,1),

hence

kL(f)kLp(1,1) 
✓
p� 1

p

◆ p�1
p
✓

1

p� 2

◆1/p

kfkLp(0,1).

Remark 2.5. Theorem 2.4 does not hold for 1 < p < 2. Let us check this. As in the previous

remark, for fa(t) = e
�at with a > 0, we have kfakLp([0,1)) =

✓
1

ap

◆1/p

, and also

kL(fa)kLp(1,1) =

✓
1

p� 1

◆1/p �
(1 + a)1�p

�1/p
=

✓
1

p� 1

◆1/p

(1 + a)1/p�1
.

Hence

kL(fa)kLp(1,1)

kfakLp(0,1)
=

⇣
1

p�1

⌘1/p
(1 + a)1/p�1

✓
1

ap

◆1/p
=

✓
p

p� 1

◆1/p

· (a+ a
2)1/p

1 + a
! 1

as a ! 1 and 1 < p < 2 (see, for example, Figure 2 below). So,

L : Lp([0,1)) ! Lp([1,1)),

is not a bounded operator for 1 < p < 2.
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Figure 2: The graph of G(a) =
kL(fa)kLp(1,1)

kfakLp(0,1)
for p = 1.4.

In our last result, we will show that

L : Lp([0,1)) ! Lp([0, 1]),

is a bounded operator for 1 < p < 2.

Theorem 2.6. Let f 2 Lp([0,1)) with 1 < p < 2. Then

kL(f)kLp([0,1])  CpkfkLp([0,1)).

Proof. Let q denote the conjugate exponent of p, i.e. 1/p + 1/q = 1. Assuming 1 < p < 2, then

q > 2 and also 1� p/q > 0. Now,

kLfkpLp([0,1])
=

1Z

0

|Lf(t)|p dt =

1Z

0

0

@
1Z

0

e
�st

f(s) ds

1

A
p

dt


1Z

0

0

@
1Z

0

|f(s)|p ds

1

A

0

@
1Z

0

e
�sqt

ds

1

A
p/q

dt =

1Z

0

✓
� e

�sqt

qt

����
1

0

◆p/q

dt · kfkpLp([0,1))

=

1Z

0

✓
1

qt

◆p/q

dt · kfkpLp([0,1)) =

✓
1

q

◆p/q 1Z

0

t
�p/q

dt · kfkpLp([0,1))

=

✓
1

q

◆p/q 1

1� p/q
· kfkpLp([0,1)) =

✓
p� 1

p

◆p�1 1

2� p
· kfkpLp([0,1)),

where we used Hölder’s inequality in the third line. Finally, we conclude that

kLfkLp([0,1])  CpkfkLp([0,1)),

where Cp =
⇣

p�1
p

⌘ p�1
p
⇣

1
2�p

⌘ 1
p
.
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Figure 3: The graph of H(a) =
kL(fa)kLp[0,1]

kfakLp(0,1)
for p = 3.9.

Remark 2.7. Theorem 2.6 does not hold for p > 2. Again, for fa(t) = e
�at with a > 0, we have

kfakLp([0,1)) =
⇣

1
ap

⌘1/p
, and also

kL(fa)kLp([0,1]) =

✓
a
1�p � (1 + a)1�p

p� 1

◆1/p

.

Hence
kL(fa)kLp([0,1])

kfakLp([0,1))
=

✓
p

p� 1

◆1/p �
a
2�p � a(1 + a)1�p

�1/p ! 1,

as a ! 0+ and p > 2 (see e.g. Figure 3). So,

L : Lp([0,1)) ! Lp([0, 1]),

is not a bounded operator for p > 2.
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