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ABSTRACT

The article explores a linear set-valued differential equation
featuring both conformable fractional and generalized con-
formable fractional derivatives. It presents conditions for the
existence of solutions and provides analytical expressions for
the shape of solution sections at different time points. Model
examples are employed to illustrate the results.

RESUMEN

Este articulo explora una ecuacion diferencial lineal con val-
ores en conjuntos que exhibe a la vez derivadas fraccionales
conformables y conformables generalizadas. Se presentan
condiciones para la existencia de soluciones y se proveen ex-
presiones analiticas para la forma de secciones solucion en
diferentes puntos de tiempo. Se emplean ejemplos modelo

para ilustrar los resultados.

Keywords and Phrases: Conformable fractional derivative, set-valued differential equation, Hukuhara derivative,

generalized derivative.
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1 Introduction

Set-valued differential equations have recently been studied within the framework of an independent
theory - set-valued equations, but they are widely used for ordinary differential inclusions and fuzzy
differential equations and inclusions [7,26,29, 30,36,37,46,48,53].

In 1967, M. Hukuhara introduced integral and derivative concepts for set-valued mappings and
explored their relationship [20]. The proposed derivative and integral extend the conventional
single-valued function derivative and integral to the set-valued context. However, the Hukuhara
derivative has a notable limitation: if a mapping is Hukuhara differentiable, its cross-section di-
ameter behaves as a non-decreasing function. To overcome this drawback, alternative derivative
concepts were proposed: T. F. Bridgland introduced the Huygens derivative [6], while Yu. N.
Tyurin [54] and H. T. Banks, M. Q. Jacobs [5] proposed the m-derivative using Radstrom’s em-
bedding theorem [52], and A. V. Plotnikov introduced the T-derivative [39,48]|. Additionally, S.
E. Amrahov, A. Khastan, N. Gasilov, A. G. Fatullayev [3,28] and A. V. Plotnikov, N. V. Skripnik
[28,44,45] introduced generalized derivatives for set-valued mappings. Each of these derivatives has
its own set of advantages and disadvantages [8,12,32,33,46,48]. In 2003, A. N. Vityuk introduced
an analogue of the fractional Riemann-Liouville derivative [23,31] for set-valued mappings and
established its properties [55,56]. Subsequently, in 2019, A. A. Martyniuk introduced an analogue
of the conformable fractional derivative [22] for set-valued mappings and proved its properties
[34,35]. The conformable fractional derivative for single-valued functions serves as a generalization
of the ordinary derivative and, unlike fractional derivatives, adheres to all classical properties of
the ordinary derivative [22]. Consequently, the Hukuhara conformable fractional derivative for
set-valued mappings, introduced by A. A. Martyniuk, serves as a generalization of the Hukuhara

derivative while preserving its properties [34, 35].

In 1969, F. S. de Blasi and F. Iervolino explored differential equations involving the Hukuhara
derivative [12]. Subsequently, many authors investigated the properties of solutions to such equa-
tions [26,29,30,36,43,46,48|, integral and integro-differential equations [41,42], higher-order equa-
tions [38], as well as differential inclusions [11, 24, 48]. Furthermore, differential equations with
the m-derivative [8,37,49], T-derivative [39,48], set-valued equations with a generalized derivative
[28,40,44,45,47], nonlinear equations with the fractional Riemann-Liouville derivative [55,56], and
conformable fractional derivative [34,35,57] have been explored. At first glance, such equations
resemble their corresponding ordinary analogues; however, when studying and solving them, it is
imperative to consider their set-valued nature. Consequently, traditional methods and approaches
employed in studying and solving of single-valued systems may not always be applicable to set-
valued systems, necessitating novel or alternative methods and approaches. It is also worth noting

that due to set-valued nature, new properties emerge that warrant investigation.
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This article delves into the Cauchy problem for a linear differential equation with the Hukuhara
conformable fractional derivative, yielding analytical solutions in certain cases. Subsequently, we
introduce a generalized conformable fractional derivative based on the generalized derivative for
set-valued mappings [28,44,45], that allows us to expand the class of differentiable mappings. We
then explore the Cauchy problem for a linear differential equation with the generalized conformable
fractional derivative. Such a Cauchy problem boasts infinitely many solutions - two of which are
termed basic [28, 44, 45], and we provide analytical forms for these solutions in selected cases.
In conclusion, we demonstrate the feasibility of introducing conformable fractional derivatives
akin to known conformable fractional derivatives for single-valued functions [1,2,4,15,17-19, 21,
22|, alongside presenting analytical solutions for the corresponding Cauchy problems with these

derivatives. The theoretical results are exemplified through model examples.

2 Preliminaries

In this section we recall some results from the publications that are of interest for our paper.

Let R be the set of real numbers and R™ be the n-dimensional Euclidean space (n > 2). Denote

by conv(R™) the set of nonempty compact and convex subsets of R™ with the Hausdorff metric
MX,)Y)=min{r >0: X CY + B,(0),Y C X + B,(0)},
where X, Y € conv(R"™), B,(c) = {z € R" : ||z — ¢|| < r} is the closed ball with radius » > 0

centered at the point ¢ € R™ (|| || denotes the Euclidean norm), 0 = (0,...,0)7 is the zero vector.

In addition to the usual set-theoretic operations, the following operations in the space conv(R"™)
are introduced: the sum of the sets, the product of the scalar on the set and the operation of the

product of the matrix on the set:

X+v= |J {z+y} Ax={J{a},  AX =[] {4z},

zeX,yeyY zeX reX

where X,Y € conv(R™), A € R, A € R"*",

Lemma 2.1 ([51]). The following properties hold:
1) (conv(R™),h) is a complete metric space,
2) WX +2,Y + Z) = h(X,Y),

3) h(AX,\Y) = |[A\|h(X,Y) for all X,Y,Z € conv(R™) and X\ € R.

However, conv(R™) is not a linear space because it does not contain inverse elements for the

addition, and therefore the difference is not well defined, i.e. if X € conv(R") and X # {x}, then
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X + (—1)X # {0}. As a consequence, alternative formulations for difference have been suggested

[3,5,20,39,45,51]. One of these alternatives is the Hukuhara difference [20].

Definition 2.2 (|20]). Let X,Y € conv(R"™). A set Z € conv(R™) such that X =Y + Z is called
a Hukuhara difference (H-difference) of the sets X and Y and is denoted by X LY.

In this case X £ X = {0} and (X + Y)Y = X for any X,Y € conv(R™), but obviously, X £Y +#
X + (=1)Y. The properties of this difference are studied in detail in [37,46,48,51]:

Lemma 2.3 ([27]). If X +Y = B1(0), then X = B,,(z1) and Y = B\(z2), where p+ A =1 and

Z1+Z2:0.

Remark 2.4. If the set X is subtracted from the ball Br(a) in the sense of Hukuhara and the
difference Br(a)f X exists, then the set X is the ball B,.(b) and radius r does not exvceed R.

Theorem 2.5 ([14,16]). For any real (n X n)-matriz A there exist two orthogonal (n x n)-matrices
U and V such that UT AV = X, where ¥ is the diagonal matriz. We can also choose matrices U

and V' such that the diagonal elements of the matriz ¥ satisfy the condition
0-120-2Z“'ZU’I‘>UT+1:'.':U’H,:07
where 1 is the rank of the matrix A. That is, if A is a nondegenerate matriz, thenoy > --- > o, > 0.

Therefore, this matrix A can be represented as A = UXVT. This decomposition is called singular
decomposition. Columns uy,...,u, of matrix U are called the left singular vectors, columns
Vi,...,Vy, of matrix V' are called the right singular vectors, and the numbers o4, ...,0, are

called the singular numbers of the matrix A.

By [14], the set Y = {Az : = € B1(0),A € R™*™} is r-dimensional ellipsoid, its axis lengths
are equal to the corresponding singular numbers of the matrix A, where r = rank(A). Also, if
rank(A) = n, then

B, (0) CY C B,,(0),

where B,, (0) is the inscribed ball in the set Y (i.e. the largest ball B,.(0) that can fit inside
the set Y), B,,(0) is the circumscribed ball of the set Y (i.e. the smallest ball B, (0), such that
Y C B,(0)).

It is also easy to see that if A is an orthogonal matrix, then AB,.(0) = B,(0) for all r > 0.

Let X : [0,T] — conv(R™) be a set-valued mapping.
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Definition 2.6 ([34]). Lett € (0,T) and a € (0,1]. If the Hukuhara differences X (t + et'=*) L X (t)
and X(t) Hx (t — Etl_(’) exist for all sufficiently small € > 0 and there exists Z € conv(R™) such
that the following equality holds:

lime " (X (t4+et'™*) LX(t) =lme " (X)L X (t—et'™)) = Z, (2.1)

e—0 e—0

then we say that the set-valued mapping X (-) has a Hukuhara conformable fractional deriva-

tive of order o at the pointt € (0,T) and DX (t) = Z.

If DX (¢) exists for all t € (0,T) and %in}) DX (t) exists, then we will assume that D*X(0) =
—

lim DX (t).

50

Definition 2.7. If the Hukuhara conformable fractional derivative D*X (t) of order « exists for
all t > 0, then we say that the set-valued mapping X (-) is a-differentiable on R .

Next, we give some properties of the Hukuhara conformable fractional derivative of order «.

Lemma 2.8 ([34]). If the set-valued mapping X (-) is a-differentiable on Ry, then the set-valued

mapping X () is continuous on R.

Lemma 2.9 ([34]). If the set-valued mapping X (-) is a-differentiable on Ry, then the function
diam(X (+)) is a nondecreasing function on Ry, where diam(X) = max |c¢(X,9) + (X, —)|,

$€S1(0)
51(0) = {y €R" : 9] =1}, (X, ¥) = max {2191 + -+ 2nVn} .

Lemma 2.10 ([34]). If the set-valued mapping X (t) = X for allt > 0, then
D*X(t) = {0},

and vice versa, if D*X (t) = {0} for allt >0 and X (t') = X, then X(t) = X for all t > 0, where

t' > 0 is an arbitrary value.

Lemma 2.11 ([34]). If the set-valued mappings X (-) and Y (-) are a-differentiable at t > 0, then
D*(aX (t) +bY (t)) = aD*X (t) + bD*Y (t),

where a,b € R.

Lemma 2.12 ([34]). If the set-valued mapping X (-) is a-differentiable at t > 0, then
DX (t) =t Dy X (t),

where Dy X (t) is the Hukuhara derivative [20].
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Remark 2.13. From Lemma 2.12 we have that the necessary and sufficient condition for the
existence of a Hukuhara conformable fractional derivative D*X (t) of order o for the set-valued

mapping X () is the existence of the Hukuhara derivative Dy X ().

Remark 2.14. From Definition 2.6 and Lemma 2.12, we have that D'X(t) coincides with the
Hukuhara derivative DX (t).

Definition 2.15 ([34]). The fractional integral associated with the Hukuhara conformable fractional

derivative of order « is defined by

t
I°X(t) = /to"lX(s)ds, t>0,
0

where the integral on the right-hand side is understood in the sense of the Hukuhara integral [20].

Lemma 2.16 ([34]). If the set-valued mapping X (-) is continuous on Ry, then
DeI*X(t)=X(t), t>0.
Lemma 2.17 ([34]). If the set-valued mapping X (-) is a-differentiable on Ry, then

I°DX(t) = X ()X (0), t>0.

3 A linear set-valued differential equation with a Hukuhara

conformable fractional derivative.

Consider the following Cauchy problem for linear set-valued differential equation with a Hukuhara

conformable fractional derivative of order «
DOX(1) = AX(),  X(0) = Bi(0), (3.1)

where X : R, — conv(R?) is a set-valued mapping, A € R?*? is a nondegenerate matrix.

Definition 3.1. A set-valued mapping X : Ry — conv(R?) is called a solution of Cauchy problem
(3.1) if it is continuous and satisfies differential equation (3.1) for allt > 0 and X (0) = B;1(0).

Let

A:

where a, b, c,d € R such that ad — bc # 0.
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It is easy to obtain that the singular numbers of the matrix A have the form

2 ) 02 = 2 )

; \/a2+b2+c2+d2+\/5 \/a2+b2+c2+d2—x/5
1:
where § = (a® +b? + ¢® + d*)? — 4(ad — be)*.

It is obvious that
6= (a®> + 0> + 2 +d?)? — 4(ad — be)? = (a® — d*)* + (b* — ) + 2(ab + cd)® + 2(ac + bd)?,

i.e. 6 > 0.

Accordingly, if d = a and ¢ = —b or d = —a and b = ¢, i.e. if

then § = 0 and o7 = 02 = 0 = Va? + b2. In other cases § # 0.

Theorem 3.2. If matriz A satisfies the condition § = 0, then Cauchy problem (3.1) has the
following solution

X(t) = " By(0),

where t > 0, § =

AL

Proof. Let us prove that X (-) is a solution of Cauchy problem (3.1) by the direct substitution of
the set-valued mapping X (t) = %" B;(0) into differential equation (3.1) and by checking that the
identity is satisfied:

D~ (eﬁt"‘Bl(o)) = AP B, (0).

Since 8 > 0, then e’*” is an increasing function and as
’'" B1(0) = B,s:= (0),

then accordingly diam(X (-)) is an increasing function. Then, according to Definition 2.6, it follows

that B1(0) is a centrally symmetric body and (—1)B;1(0) = B;(0), we have

lim e (X (t+et' ) LX(¢)) = lim e (eﬁ(t+6t1’“)“31(0)£eﬁt“Bl(o))

E*}O+ 5%04,

= lim ¢! (eﬁ(t“tlw)a — eﬁta) B1(0) = aBe” B1(0)

e—04
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and

lim =1 (X () 2LX (¢ —et')) = lim =7 (" By(0) L (=) 3, 0) )

E*}O+ E*}O+

= lim ¢! (eﬁt0 — eﬁ(tfgtlia)a) B1(0) = —aBe”™ B (0) = aBe”™” By (0).

That is,
DX (t) = D™ (eﬂt“Bl(O)) = aBePt” B, (0).

Since the singular numbers of the matrix A are equal (07 = 09 = o), then the singular decompo-
sition of the matrix A has the form A = UXVT, where U,V are orthogonal matrices and ¥ = o1,

I is the identity matrix. Since VZ B,.(0) = B,.(0) and UB,.(0) = B,.(0) for all r > 0, then

AePY" B1(0) = USVTeP B1(0) = UsIVT e B (0)
= oUIVTeP" B1(0) = 0P UTVT B, (0) = 0¢”" B, (0).

As aff = Qe+t o o, then we have

«

DX (t) = D® (eﬁt“Bl(o)) = aBe’’" B1(0) = 0e®*" B1(0) = 0e”*" B1(0) = A" B, (0) = AX(t),

i.e. X(-) is a solution of differential equation (3.1). The theorem is proved. O

V3 o1

Example 3.3. Let A = 3 . Then the singular numbers o1 and oo of the matriz A are
1 -3

01 = 09 = 2. Accordingly, Cauchy problem (3.1) has a solution X (t) = €2 '*" By (0). That is,
1) if a = 0.25, then at every moment of time t > 0 the cross section X(t) is a circle of radius
8Vt (Figure 1);

2) if a = 0.5, then at every moment of time t > 0 the cross section X (t) is a circle of radius
eVt (Figure 2);
3) if a = 0.75, then at every moment of time t > 0 the cross section X(t) is a circle of radius

3V (Figure 3);

4) if a = 1, then at every moment of time t > 0 the cross section X (t) is a circle of radius e

(Figure 4).
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Figure 3: a = 0.75, X(t) = e3 ‘/ﬁBl( 0). Figure 4: o =1, X (t) = €**B;(0).

Next, we consider the case when the matrix A satisfies the condition § # 0.

Theorem 3.4. If matriz A is symmetric and d # —a, then Cauchy problem (3.1) has the following

solution
X(t) =Ue® "2B(0), t>0,
0 b Ao—d
g a v/ (a—d)? 2 —a —
where ¥ = 01 ;01,2 = ‘A172| = —+di (2 d)?+ab s U= \/()\;1_212+b2 \/(A2 bd)2+b2
P

VOi—a)24b2  \/(Aa—d)2+b?

Proof. Since the matrix A is symmetric and d # —a, it has the following form

It is known that the eigenvalues A; 2 of the symmetric matrix A are real, so in our case (¢ # 0), they
will be different and not equal to zero. Let us consider all possible cases related to the eigenvalues

of the matrix A, that is, three different cases are possible:
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a+d+VD
2

1) the eigenvalues A\ o = of matrix A are positive, where D = (a—d)?+4b?, i.e. matrix

A is a positive-definite matrix. In this case, the singular decomposition coincides with the

spectral decomposition, i.e. 01 = A1, 02 = Ay and UAUT = USU7T, where

b Ao—d
A=Y= M 0 U = \/()\1—@)2+b2 \/(/\2—d)2+b2

’ A1—a b
0 A VOi—a)24+b2  /(Aa—d)2+b2

2) the eigenvalues A1 2 of matrix A are of different signs and |A\1] > |A2|, i.e. matrix A is an
indeterminate matrix. In this case, the singular decomposition is the following: o1 = |A{],
09 = |>\2| and

Usw? = U|A|DUT,

)\1 O

where WP = DUT, D = | ™
2
el

3) the eigenvalues A\; 2 of matrix A are negative and |A;| > |Az|, i.e. matrix A is a negative-

definite matrix. In this case, the singular decomposition is o1 = |A1]|, o2 = |A2| and

Usw? =U|A|DU?T,
where WT = DUT, D =

That is, in general, the singular decomposition of the matrix A has the form A = USW7”, where

Y=|Al, W=UD.

We will prove that X (-) is a solution of Cauchy problem (3.1) by the direct substitution of the
set-valued mapping X (t) = Ue® '“2B;(0) into differential equation (3.1) and by checking that
the identity is satisfied:

71tu

D° (Uea”t“EBl(o)) = AU 2B (0). (3.2)

1[71t04 102to¢

Since o192 > 0, then e* and e are the increasing functions and as

eozflalta > eozflagta

)

then accordingly diam(X (t)) = 2e® °1'" is an increasing function. Then, according to Definition
2.6, it follows that B;(0) is a centrally symmetric body and, accordingly, (—1)B1(0) = B1(0), we

have
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lim e ' (X (t+et'™) £X(t)) = lim e (Uea‘l(t“tl‘”)‘”zBl(O)EUea’lf“ZBl(O))

e—04 e—04

=U lim ¢! (e”‘il(t"'etlia)az - eo‘iltuz) B (0)

e—04
—1 l—a\@ —1
e o1 <t+6t ) — e o1t® 0

=U lim ¢! B1(0)

-1 l—a)\@ —1
5_>0+ O 60& O’Q(t-‘rst ) _ 6a oot

a togt®
: 0 i
= B1(0) = USe™ "= B,(0)

—1 [e4
0 0.26a oot

and similarly

lim e (X () LX (t—et'=*)) =U lim & (ea’lt“Z - ea‘l(t*dl‘”)az) B,(0)

e—04 e—04

= Use® 3B (0).

That is,
DX (t) = D* (e“’lt“EBl(o)) = USe "SR (0).

Since the singular matrix decomposition of the symmetric matrix A has the form A = ULDUT,

then
AUe ™ "*"PB(0) = USDUTUe ® "B, (0) = USe * "¥B,(0).

It is obvious that identity (3.2) holds and, accordingly, X () is a solution of Cauchy problem (3.1).

The theorem is proved. [
0.8 0.5 ‘ » ‘
Example 3.5. Let A = . Then the singular decomposition of the matriz A has the fol-
0.5 0.3
) . 0.8507 —0.5257 1.1090 0 0.8507  0.5257 _
lowing form UXU* = . Accordingly,
0.5257  0.8507 0 0.0090 —0.5257 0.8507

Cauchy problem (3.1) has a solution X (t) = Ue® "Bi(0). That is,

1) if @ = 0.25, then at every moment of time t > 0 the cross section X(t) is an ellipse with

4.4361 V¢ 0.0361 ¥t

semi-axes e and €

matriz U (Figure 5);

, rotated at an angle 0 =~ 33°, which is determined by the

2) if a = 0.5, then at every moment of time t > 0 the cross section X (t) is an ellipse with

semi-azes 22308Vl gnd 60'0298‘/Z, rotated at an angle 6 ~ 33° (Figure 6);

3) if a = 0.75, then at every moment of time t > 0 the cross section X (t) is an ellipse with

semi-azes e 4T8TVE and 60'012()%, rotated at an angle 0 ~ 33° (Figure 7);
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4) if a = 1, then at every moment of time t > 0 the cross section X(t) is an ellipse with

semi-azes €109 and 9999 rotated at an angle 6 ~ 33° (Figure 8).

X2
o
I

Figure 5: a = 0.25, X (t) = ¢* V=B, (0).
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Figure 7: a =0.75, X(t) = e3 \ﬁEBl( 0).

4 A linear set-valued differential equation with a generalized

conformable fractional derivative.

Let X : [0,T] — conv(R™) be a set-valued mapping.

Definition 4.1. We say that a set-valued mapping X (-) has a generalized conformable frac-

tional derivative of order a DX (t) € conv(R") att € (0,T), if for all sufficiently small e > 0

x2

15 ......,,,.w'o'v'«"'«"!'

“”"W"W’ "'m
IUUJJum{{{&i{“...“.. |

'.'m

.......... p———— 9’0‘0’0’ il ' ;
........ — ...u,,.;,‘;.',m".'»'o‘mm HM
(i""*'f"""“""""""’"'"WW»'&"';""";;»’ff’;"‘”’f%%w‘oﬁ'o’f;;;;;mmomm "W
[
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//W

I
i)
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§
§\

\
§\

‘“ J :e‘\

i Wm i

i imm WMN L

. “,...,..«,«41::9amm,m{gtgg,g,;,ggW
i

Figure 8: o =1, X(t) = ¢! B;(0).

the Hukuhara differences and the limits exist in at least one of the following cases:

e—0

i) lim == (X (£ 4 et'=) 2X (1)) = lim e~ (X (1)

X (t—et'=*)) = DaX(t),

i) lime™! (X ()X (t+et'7*)) = lime ! (X (¢ —et' ™) L X (1)) = DIX(2),

e—0

e—0
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i) lim et (X (t+et'=) ££X (1)) = lim e~ (X (¢ —et! ™) X (1)) = DX (1),

e—0

) lime " (X(t)EX (t+et')) =lime ! (X(t) L X (t —et'=*)) = DS X (t).

e—0 e—0

Definition 4.2. If a generalized conformable fractional derivative of order a Dy X (t) exists for
all t > 0, then we will say that the set-valued mapping X (-) is generalized a-differentiable on
Ry.

Remark 4.3. Obviously, if the set-valued mapping X (-) is a-differentiable at a point t > 0, then
the set-valued mapping X (-) is generalized a-differentiable at a point t > 0.

Lemma 4.4. If the set-valued mapping X (-) is generalized a-differentiable at a point t > 0, then
DSX(t) =t'""DyX(t),
where Dy X (t) is the generalized derivative [25, 28, 45].

Proof. If the set-valued mapping X (-) is generalized a-differentiable at a point ¢ > 0, then at least
one of the conditions of Definition 4.1 must be fulfilled. We will assume that the first condition is
fulfilled, i.e.

lime " (X (t+et'™*) £LX (1) =lime " (X(¢) £ X (t —et' ™)) = Dy X(2).

e—0 e—0

Let 6 = et!=®. Then

DEX(t) = lime™" (X (t+et' ™) X () = lim 17907 (X (¢ +0) £ X(t))

6—0

_ 4l—a —1 H _ yl—«
=t lim 6 (X (t+0)ELX(t) =t'""DgX(t).

Likewise,

DeX(t)=lme " (X(t) X (t—et'™)) = limt' 07" (X (t) L X (t - 0))

e—0 6—0

_ yl—a —1 H _ _ 4l—«
=t lim 6 (X)X (t—0)) =t'"“DyX(t).

It is similarly proved if the second, third or fourth conditions are fulfilled. The lemma is proved. [

Remark 4.5. It follows from Lemma 4.4 that a necessary and sufficient condition for the existence
of a generalized conformable fractional derivative Dy X (t) is the existence of a generalized derivative
DyX(1).

Also, it is easy to see that if a =1, then D} X (t) = Dy X (t).
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Consider the following Cauchy problem for linear set-valued differential equation with a generalized

conformable fractional derivative of order «
DgX(t> :AX<t)7 X(O) = Bl(O), (4.1)

where X : Ry — conv(R?) is a set-valued mapping, A € R?*? is a nondegenerate matrix.

Definition 4.6. A set-valued mapping X : R, — conv(R?) is called a solution of Cauchy problem
(4.1) if it is continuous and satisfies differential equation (4.1) for all t > 0 and X (0) = B1(0).

Remark 4.7. It follows from Remark 4.3 that if the set-valued mapping X (t) is a solution of

equation (3.1), then it is a solution of equation (4.1).

Remark 4.8. In [25,27, 28] a Cauchy problem for linear set-valued differential equation with a

generalized derivative
D,X(t) = AX(t), X(0) = By(0) (1.2)

was considered and the following results were obtained:

1) Cauchy problem (4.2) has an infinite number of solutions, some (one or two) of which are
called basic (their diameter are monotone functions), and others are mized (their diameter
are non-monotone functions). We also note that the first basic solution X1(-) is the solution
of Cauchy problem (4.2), that satisfies the condition that diam(X1(t)) is a nondecreasing
function and is also the solution of the corresponding differential equation with the Hukuhara
derivative. The second basic solution X5(-) is called the solution of Cauchy problem (4.2),

that satisfies the condition that diam(Xs(t)) is a decreasing function;

2) if the singular numbers of the matriz A are such that o1 = o9 = o, then Cauchy problem
(4.2) has two basic solutions X1 (t) and Xo(t), whose cross-sections at each moment of time
t are circles Beot(0) and Be--:(0), and if the singular numbers of the matriz A are such
that o1 # o2, then Cauchy problem (4.2) has only the first basic solution X1(t), whose cross-

section at each moment of time t is an ellipse with semiazes equal to et and e“2t.

Next, we obtain the results similar to Theorems 3.2 and 3.4.

Theorem 4.9. If the matriz A satisfies the condition § = 0, then Cauchy problem (4.1) has two
basic solutions X1(-) and Xz(-) such that

X1(t) =eP"B1(0) and X,(t) =e A" Bi(0),

where t > 0, § =

va? +b?
—
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Proof. From Theorem 3.2, we have that the set-valued mapping X;(t) is a solution of Cauchy
problem (3.1) and the function diam(X (¢)) is non-decreasing. Then, taking into account Remark

4.3, X7 (t) is the first basic solution of equation (4.1).

We will prove that Xs(-) is a solution of Cauchy problem (4.1) by the direct substitution of the
set-valued mapping X, (t) = e ~7*" B;(0) into differential equation (4.1) and by checking that the
identity is satisfied:

D? (e *BtaBl(0)> = Ae ~P" B, (0).

Since B > 0, then e ~#*" is a decreasing function, and as
e """B1(0) = B, -5 (0),

then, accordingly, the function diam(Xs(-)) is a decreasing function. Then according to Definition

4.1 ii) and that the ball B;(0) is a centrally symmetric body and (—1)B;(0) = B1(0), we have

lim e ' (Xo(t) L Xo (t+et'™)) = lim e " (e A Bi0) L e —B(t+ff1"*)“31(o))

6*}04, 6*}04,

= lim ¢! (6 A _e 7*8(”“17&)&) B1(0) = —aBe %" B1(0) = afe 77" B;(0)

e—0y

and

lim e (Xo (t—et'™*) £ X5(t)) = lim e (e A=) B (0) L e *ﬁt"Bl(o))

6*}04, €*>O+

= lim ¢! (e —Bt—ett )T g 76”) B1(0) = aBe ~7*" B (0).

e—04

That is,
D2 Xs(t) = D (e —Bt“Bl(o)) = afe ~P" B, (0).

Since the matrix A satisfies the condition § = 0, the singular decomposition of the matrix A
has the foom A = UXVT, where U,V are orthogonal matrices, ¥ = oI, ¢ = Va2 +b2. As
VTB,.(0) = B,(0) and UB,.(0) = B,(0) for all » > 0, then

Ae P B1(0) = USVTe P B1(0) = Us EVTe =P B1(0) = cUEVTe =" B,(0)
= ge P"UEVT B, (0) = ge =" B1(0).

Since aff = o, we have
D?Xg(t) = coe 7BtQB1(0) =o€ 752&&31(0) = AXQ(t),

i.e. X5(-) is the second basic solution of Cauchy problem (4.1). Thus the theorem is proved. [
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Example 4.10. Let A = \ig i/g . Then the singular numbers o1 and oo of the matriz A
are equal: 01 = 09 =0 = 2.
Accordingly, Cauchy problem, (4.1) has solutions X1 (t) = ¢ 2 1" By (0) and X,(t) = e 2> '*" B;(0).
Below are the solutions for cases a« =1 (Fig. 9, 10) and o = 0.5 (Fig. 11, 12).

j: W'"N".M” ;";;‘;" EE Mn'm"‘;"m ..,u

— .'.a"m",m’ ’ " 0:2; h 1’1 “ m "[ lll""“n';'v'vi'l‘ﬁ"V'ii""""'vwn """"""
| nm'm'i'immﬂm. 'n'umih L " | . ” “ “ ‘H il i ',;’i',""'
o I muu'l‘wwmmJmumlull";umlwu“u H i "')ll”‘l“ A
‘
’ 77 T T T 1 70 0‘2 0‘.4 0‘6 ‘ "/VO/E

Figure 10: If o = 1, then X5(t) =
672tB1(0)'

= 'll'""u'ufnfm"";' ""'\\\
AAAAAAAAA i "'dlIUHH’!’('.IH,!IW(IIN wulmmi.lwwm

x2
o
I

0 0.217:1r 02??;7 100
Figure 11: If o = 0.5, then X;(t) = Figure 12: If o = 0.5, then X)(t) =
e*ViB,(0). e~ ViB,(0).

Theorem 4.11. If matriz A is symmetric and d # —a, then Cauchy problem (4.1) has only the
first basic solution X1(-) such that

Xi(t) = Ue® *"By(0), t>0,
b Ao—d
o atd+/(a— —a)21b: —
where ¥ = ! , 012 = [A12] = wr (2 P U= \/(/\; A bd)2+b2
g9 1-0a

VOi—a)2+62  /(A2—d)2+b2

Proof. According to Remark 4.7, the first basic solution of Cauchy problem (4.1) is also a solution of
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equation (3.1). Then, according to Theorem 3.4, the set-valued mapping X; (t) = Ue ot B g, (0)
is the first basic solution of Cauchy problem (4.1).

Now we will prove that the second basic solution X5(-) of Cauchy problem (4.1) does not exist.
We will prove it by contradiction. Let Cauchy problem (4.1) have the second basic solution X5(-).
Then X,(-) satisfies the following integral equation

Xg(t) + A/SailXQ(S)dS = Bl(O)
0

T
Let us fix an arbitrary T' > 0. Then Xo(T') + A/so‘_ng(s)ds = B4(0). From here,
0

Bl(o)ﬂXQ(T) = A/Sa_lXQ(S)dS.
0

From Lemma 2.3, as B;(0) is a ball and Hukuhara difference B;(0)£ X,(T) exists, then X5(T) is
a ball, i.e. Xo(T) = B,(1(0), where 0 < r(T') < 1. As T is arbitrary, then X5(t) = B, )(0) for all
t > 0. Hence,

T T T
/so‘_ng(s)ds = /sa_lBT(s)(O)ds = /sa_lr(s)dsBl(O) = R(T)B1(0) = Bg(1)(0),
0 0 0

T

where R(T) = /so‘_lr(s)ds.
0

That is, we have

B,(1y(0) + ABR(1(0) = B1(0). (4.3)

Since the matrix A has two different singular numbers, then ABg(r)(0) is an ellipse. So, the set
By (1)(0) + ABR(1)(0) is not a ball. That is, equality (4.3) is not fulfilled and we have obtained a

contradiction. The theorem is proved. O
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Conclusion

In conclusion, we present some remarks.

Remark 4.12. If in Definition 2.6 we replace equality (2.1) by the equality

lim e (X (e ") Lx (1)) = lim = (X (1) 2LX (te ")) = 2, (4.4)

e—0 e—0
or

lim e (X (b4 07 ) X (1) = Timet (X)X (t-e00)) =2, (45)
then we obtain a generalization of the conformable fractional derivative of order « of a single-valued
function [19] or [21] for set-valued mappings. Similarly, as it was done in [34], it is possible to prove
the validity of Lemmas 2.8-2.17, which makes it possible to introduce the corresponding generalized
conformable fractional derivative of order «, consider the corresponding differential equations, and

prove theorems similar to Theorems 3.2—4.11, and since in this case D*X (t) = t'=*Dy X (t), then

the analytical formulas of the solutions will also be the same.

Remark 4.13. If in Definition 2.6 we replace equality (2.1) by the equality

lim = (X (£ el D) ZLX (1)) = lim = (X () 2LX (¢ - e 1)) = 7, (4.6)
then we obtain a generalization of the conformable fractional derivative of order a of a single-
valued function [18] for set-valued mappings. Similarly, as it was done in [34], it is possible to
prove the wvalidity of Lemmas 2.8-2.17, which makes it possible to introduce the corresponding
generalized conformable fractional derivative of order «, consider the corresponding differential
equations, and prove theorems similar to Theorems 8.2—4.11. However, since in this case D*X (t) =

e~V Dy X (), then the analytical formulas of solutions will have the following form.:

o (1-a)t

Theorem 3.2: X(t) =eT-= B1(0);
Theorem 3.4: X (t) =Ue liae(lia)tzBl(O);
Theorem 4.9: X;(t)=¢ e gy (0), Xy(t) = eat e(lfa)tBl (0);

Theorem 4.11: X;(t) =UeT-—=
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Remark 4.14. If in Definition 2.6 we replace equality (2.1) by the equality

lim et <X<ﬁ + 6(t + I‘(1a)> 1_a> HX(t)): lim 51<X(t)HX<t —€ (t + F(1a)> 1_a>>:Z, (4.7)

where T'(a) is gamma function, then we obtain a generalization of the conformable fractional deriva-
tive of order « of a single-valued function [4] for set-valued mappings. Similarly, as it was done in
[84], it is possible to prove the validity of Lemmas 2.8-2.17, which makes it possible to introduce
the corresponding generalized conformable fractional derivative of order o, consider the correspond-
ing differential equations, and prove theorems similar to Theorems 3.2—4.11. However, since in
this case D*X (t) = (t + ﬁ)lia Dy X (t), then the analytical formulas of solutions will have the
following form:

Theorem 3.2: X(t) = eﬂHﬁ)GBl(O);

Theorem 3.4: X (t) = Ueé(Hﬁ)azBl(O);

o

Theorem 4.9: X;(¢) = e & (i) B1(0), X5(t) = e~ (i) B1(0);

[e"

Theorem 4.11: X;(t) = Ue (i)

Remark 4.15. If in Definition 2.6 we replace equality (2.1) by the equality

lim =™ (X (¢ +ek(t)'~%) £X (1)) = lim e™1 (X () ££X (t—ek(t)' 7)) =2, (48)
where k(t) is a continuous positive function for all t > 0, then we obtain a generalization of
the conformable fractional derivative of order a of a single-valued function [2, 15] for set-valued
mappings. Similarly, as it was done in [34], it is possible to prove the validity of Lemmas 2.8-
2.17, which makes it possible to introduce the corresponding generalized conformable fractional
derivative of order a, consider the corresponding differential equations, and prove theorems similar
to Theorems 3.2—4.11. However, since in this case D*X (t) = k(t)'~*Dy X (t), then the analytical

formulas of solutions will have the following form:

o [ (k(s))*"ds
0

Theorem 3.2: X(t) =e B1(0);

J k() s
Theorem 3.4: X (t) =Ue? B;(0)

af(k’(s))aflds —Uft(k(s))o‘*lds
0 0

Theorem 4.9: X;(t) =e¢ B1(0), X5(t) =e B;(0);

(CORE
Theorem 4.11: X;(t) = Ue?® B1(0).
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Remark 4.16. If in Definition 2.6 we replace equality (2.1) by the equality

ime! 05\ H C H _ekm=e
lim e~ ( X(t+k(t) — k()" 7o —X(t) = lime X(t)—X t+k(t) —k(t)e S TW@T )) = Z,
e—0 e—0

(4.9)
where k(t) is a differentiable function for all t > 0 such that k(t) > 0 and k'(t) # 0 for allt > 0,
then we obtain a generalization of the conformable fractional derivative of order o of a single-
valued function [1] for set-valued mappings. Similarly, as it was done in [34], it is possible to
prove the validity of Lemmas 2.8-2.17, which makes it possible to also introduce the corresponding
generalized conformable fractional derivative of order o, consider the corresponding differential
equations, and prove theorems similar to Theorems 8.2—4.11. Howewver, since in this case D*X (t) =
k()™

WDHX(t), then the analytical formulas of solutions will have the following form:

Theorem 3.2: X(t) =@ kO =k B, (0);

Theorem 3.4: X(t) = Ue® O k02, (0);

Theorem 4.9: X;(t) = e kO kO B, (0), X5(t) = e kO =k B, (0);
Theorem 4.11: X;(t) = Ue®® (O =k0)")Z g, ().

Remark 4.17. We also note that if in Definition 2.6 we replace equality (2.1) by the equality

lm((t+e)* —t*) " (X (t+e) £X () = im(t* — (t—e)*) ' (X () L X (t—¢)) = Z, (4.10)

e—0 e—0

then we obtain a generalization of the Chen-Hausdorff fractal derivative of order a of
a single-valued function [9, 10] for set-valued mappings. Similarly, as it was done in [34], it
is possible to prove the wvalidity of Lemmas 2.8-2.17, which makes it possible to introduce the
corresponding generalized Chen-Hausdorff fractal derivative of order «, consider the corresponding
differential equations, and prove theorems similar to Theorems 3.2—4.11. However, since in this
case DX (t) = a~1t'=*Dy X (t), then the analytical formulas of solutions will have the following

form:

Theorem 3.2: X(t) = e’ B1(0);
Theorem 3.4: X (t) = Uet > B;(0);
Theorem 4.9: X, (t) = ¢ B1(0), X3(t) = e 7" B1(0);

Theorem 4.11: X;(t) = Ue'" > B;(0).
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ABSTRACT

For a finite lattice L, let Gm(L) denote the least n such that L can
be generated by n elements. For integers r > 2 and k > 1, denote by
FD(r)* the k-th direct power of the free distributive lattice FD(r)
on r generators. We determine Gm(FD(r)*) for many pairs (r, k)
either exactly or with good accuracy by giving a lower estimate that
becomes an upper estimate if we increase it by 1. For example, for
(r,k) = (5,25000) and (r,k) = (20, 1.489 - 10'™%), Gm(FD(r)")
is 22 and 6 000, respectively. To reach our goal, we give estimates
for the maximum number of pairwise unrelated copies of some spe-
cific posets (called full segment posets) in the subset lattice of an
n-element set. In addition to analogous earlier results in lattice
theory, a connection with cryptology is also mentioned among the

motivations.
RESUMEN

Para un reticulado finito L, se denota por Gm(L) el menor n tal
que L puede ser generado por n elementos. Para enteros r > 2
y k > 1, se denota por FD(r)* la k-ésima potencia directa del
reticulado distributivo libre FD(r) en r generadores. Determi-
namos Gm(FD(r)") para muchos pares (7, k) ya sea exactamente
o con buena precisién, dando una estimacién inferior que se con-
vierte en una estimaciéon superior sumando 1. Por ejemplo, para
(r, k) = (5,25000) y (r, k) = (20, 1.489-10'"%), Gm(FD(r)") es 22
y 6 000, respectivamente. Para alcanzar nuestro objetivo, damos es-
timaciones para el nimero méximo de copias no-relacionadas dos a
dos de algunos posets especificos (llamados posets de segmento com-
pleto) en el reticulado de subconjuntos de un conjunto de n elemen-
tos. Adicionalmente a resultados andlogos anteriores en teoria de
reticulados, se menciona también entre las motivaciones una cone-

xion con criptologia.

Keywords and Phrases: Free distributive lattice, minimum-sized generating set, small generating set, direct

power, Sperner theorem, 3-crown poset, cryptography.
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1 Introduction

This work belongs mainly to lattice theory but it also belongs to extremal combinatorics. The paper
is more or less self-contained; those familiar with M.Sc. level mathematics and the concept of free
distributive lattices can read it easily. We are interested in the smallest positive integer n = n(k,r)
such that the k-th direct power of the r-generated free distributive lattice is n-generated. In many

cases, our estimates give a good approximation or even the exact value of n.

The search for small generating sets has belonged to lattice theory for long; for example, in chrono-
logical order, see Gelfand and Ponomarev [9], Strietz [17], Zadori [19,20], Chajda and Czédli [2],
Takach [18], Kulin [13], Czédli and Oluoch [7], and Ahmed and Czédli [1]. See also the surveying
parts and the bibliographic sections in [1] and Czédli [5] for further references. If a large lattice
L can be generated by few elements, then this lattice has many small generating sets. Czédli [5]
and [3] have recently observed that these lattices can be used for cryptography; for a further note
on this topic, see Remark 5.3. This fact and the results on small generating sets of lattices in
the above-mentioned and some additional papers constitute the lattice theoretic motivation of the
paper.

There is a motivation coming from extremal combinatorics, too. The first result on the maximum
number Sp(U,n) of pairwise unrelated (in other words, incomparable) copies of a poset U in the
powerset lattice of an n-element finite set was published by Sperner [16] ninety-six years ago.
While U is the singleton poset in Sperner’s theorem, the Sperner theorem (that is, the Sperner
type theorem) in Griggs, Stahl, and Trotter [11] determines Sp(U,n) for any finite chain U. For
some other finite posets, similar results were obtained by Katona and Nagy [12] and Czédli [4]. In
general, the exact value of Sp(U,n) is rarely known. On the other hand, Katona and Nagy [12]
and, independently from them, Dove and Griggs [8] determined the asymptotic value of Sp(U,n).

Their celebrated result asserts that for any finite poset U,

Sp(U, n) ~ |5<Ln7/lzj>’ that is, nlinéo|zlj|<LnT/lzj> -Sp(U,n) "t =1. (1.1)

By the main result of [4], the lattice theoretic motivation and the combinatorial one are strongly
connected; see (2.4) later, which we are going to quote from [4]. Here we only mention that in
order to get closer to what the title of the paper promises, we need to determine Sp(U, n) for some

rather special posets U.

The asymptotic result (1.1) may suggest that for our special posets U, we can obtain Sp(U,n) or
at least some of its estimates simply by copying what Dove and Griggs [8] or Katona and Nagy [12]
did. However, we have three reasons not to follow this plan. First, while several constructions and
considerations can lead to the asymptotically same result, we cannot expect a similar experience

when dealing with small values of n. Furthermore, concrete (non-asymptotic) calculations and
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considerations are often harder and their asymptotic counterparts do not offer too much help. For
example, while we know for any fixed a,b € Z (the set of integers) that, with our vertical-space-

saving permanent notation fs,(n) := (LnT/L2J)’

(LnT;;J_ j b) ~2 (Ln72J> =2%fsp(n) asn — oo (1.2)

and so we can simply work with 2% fg,(n) in asymptotic considerations, we have to work with
(U:;;JGM) in concrete calculations, which is more difficult. (Note at this point that both Dove and
Griggs [8] and Katona and Nagy [12] use (1.2).) Second, even though a general construction could
be specialized to our particular posets U, we cannot expect to exploit the peculiarities of our U’s
in this way. Third, an easy-to-read construction with a short and easy argument will hopefully be
interesting for the reader, partially because these details are necessary to explain and perform the

computations.

Hence, the construction we are going to give for lower estimates is different from those in Dove
and Griggs [8] and Katona and Nagy [12]. At some places in the proofs, we are going to point out
the difference from [§]; the difference from [12] is clearer. Note that our construction gives better
lower estimates for our particular posets U than any of the Dove-Griggs and the Katona-Nagy
construction would give, at least for small values of n. (For n — oo, that is, asymptotically, all
the three constructions yield the same lower estimate.) On the other hand, let us emphasize the
similarities. While many calculations in this paper are new, most of the ideas in our construction
occur in Dove and Griggs [8] and Katona and Nagy [12]; more details will be mentioned right after
the proof of Proposition 3.2.

Even though our result allows a big gap between the lower estimate and the upper estimate of
Sp(U, n), this result will suffice to determine the least number n of elements that generate the
direct powers FD(3)* of FD(3) with quite a good accuracy, and we can give reasonable estimates

on n in case of FD(r)*.

FSgP(3,0,3)
X Y Z
A B C

Figure 1: FD(3) and the 3-crown W5 = FSgP(3,0, 3) = J(FD(3))
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2 Basic facts and notations

For s € Nt :={1,2,3,...}, let NZ* stand for {s,s+1,5+2,...}. Except for N*, Ny := {0} UN¥,
N2, and their infinite subsets, all sets and structures in the paper will be assumed to be finite.
(Sometimes, we repeat this convention for those who read only a part of the paper.) For r € N23,
the free distributive lattice on r generators is denoted by FD(r); for r = 3, it is drawn on the left
of Figure 1. A lattice element with exactly one lower cover is called join-irreducible. For a lattice
L, the poset (that is, the partially ordered set) of the join-irreducible elements of L is denoted by
J(L). For L = FD(3), J(L) consists of the black-filled elements and it is also drawn separately on
the right of the figure. For a set H, the powerset lattice of H is ({Y : Y C H};U,N); it (or its
support set) is denoted by Pow(H). For n € Ny, the set {1,2,...,n} is denoted by [n]; note that
[0] = 0. For z,y in a poset, in particular, for z,y € Pow([n]), we write z || y to denote that neither
<y nor y < z holds; in Pow([n]), “<” is “C”". For a poset U, a copy of U in Pow([n]) is a subset
of Pow([n]) that, equipped with “C”, is order isomorphic to U. Two copies of U in Pow([n]) are
unrelated if for all X in the first copy and all Y in the second copy, X || Y. Let us repeat that for
n € Ny and a poset U, we let

Sp(U, n) := max{k : there exist k pairwise unrelated copies of U in Pow([n])}. (2.1)

We often write C(n, k) instead of (2)7 especially in text environment and if n or k is a complicated
or subscripted expression. The notation “Sp(—, —)” and “C(—, —)” come from Sperner and binomial
coefficient, respectively. As usual, | | and | ] denote the lower and upper integer part functions;
for example, |5/3| = 1 and [5/3] = 2. With our notations, Sperner’s theorem [16] asserts that for

every n € Ny,

if U is the 1-element poset, then Sp(U,n) = (Ln??J) =: fsp(n). (2.2)

Recall that a subset X of a lattice L = (L;V, A) is a generating set of L if for every Y such that
X CY CLandY is closed with respect to V and A, we have that Y = L. We denote the size of

a minimum-sized generating set of L by
Gm(L) := min{|X| : X is a generating set of L}. (2.3)

For k € N7, the k-th direct power L* of L consists of the k-tuples of elements of L and the lattice
operations are performed componentwise. With our notations, the main result of Czédli [4] asserts

that
for 2 < k € N* and a finite distributive lattice L, Gm(L*)

2.4
is the smallest n € N such that k < Sp(J(L),n). 24
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It is also clear from [4] that for each finite distributive lattice L, the functions k — Gm(LF) and
n — Sp(J(L),n) mutually determine each other, but we do not need this fact in the present paper.

The following definition is crucial in the paper.

Definition 2.1. For 0 <a <b <7 € Ny such that a +2 < b, the full segment poset FSgP(r,a,b)
is the poset U defined (up to isomorphism) by the conjunction of the following two rules.

(A) r is the smallest integer such that U is embeddable into Pow([r]);

(B) the subposet {X € Pow([r]) : a < |X| < b} of Pow([r]) is order isomorphic to U.

Even though 0 < a in Definition 2.1 could be replaced by —1 < a, we do not do so since the
case a = —1 would need a different (in fact, easier) treatment; see [4]. Let U be a finite poset,
and let s € NT. If fi, fo: N2° — N are functions such that f1(n) < Sp(U,n) < fa(n) for all
n € N2% then (fi, f2) is a pair of estimates of the function Sp(U, —) on N2%; in particular, f; is a
lower estimate while fo is an upper estimate of Sp(U, —). A reasonably good property of pairs of

estimates of Sp(U, —) is defined as follows:

for s € N* a pair (f, f2) of estimates is separated

2.5
on N2 if fo(n) < fi(n+1) for all n € N=5. (25)

The following fact is a trivial consequence of (2.4) and for k > 2, it is implicit in Czédli [4]; see

around (4.23) and (4.24) in [4].

Observation 2.2. Let D be a finite distributive lattice. Denote the poset J(D) by U, and let
s € Nt Let (f1, f2) be a separated pair of estimates of Sp(U, —) on N2 such that f1 (the lower
estimate) is strictly increasing on N=°. Then, for each k € Nt such that fi(s) < k, (f1,f2)
determines Gm(D*) “with accuracy 1/2” as follows: Letting n be the unique n € NT such that
filn) < k < fi(n+1), either k < fa(n) and Gm(D¥) € {n,n+1} or fa(n) < k and Gm(D*) = n+1.

The term “accuracy 1/2” comes from the fact that the distance between the never exact estimate

n + 1/2 and Gm(D¥) is always 1/2.

3 Lower estimates

The easy proof of the following lemma raises the possibility that the lemma might belong to the

folklore even though the author has never met it.
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Lemma 3.1. For 2 <r € NT, J(FD(r)) is isomorphic to the poset FSgP(r,0,r), which is defined
in Definition 2.1.

Proof. The smallest element and the largest element of FD(r) will be denoted by 0, and 1.,
respectively. Let Sy := {0,, 1,.}; it is a two-element sublattice of FD(r). Denote by {z1,...,2,}
the set of free generators of FD(r). Let & := (x1,...,2,), and let 5: (&1,...,&) be a vector of
variables. Call a subset J of [r] nontrivial if 0 # J # [r], and let Powy([r]) = (Powy([r]); )
stand for the poset formed by the nontrivial subsets of [r]. For J € Powy([r]), let m; stand for

the r-ary lattice term defined by m;(§) = A,c;&. Let X = {m;(Z) : J € Powy([r])}. As
X CFD(r), X = (X; <) is a subposet of FD(r).

First, we show that the map ¢: Powy([r]) — X defined by J — m (&) is a dual order isomorphism.
The tool we need is simple: Since FD(r) is free, it follows that whenever J, K € Powy([r]) and
mj(Z) = mg(Z), then my(y) = mg(y) for all ¥ = (y1,...,y,) € S5, and similarly for “>” instead

Of 13 :77

The implication J C K = mj(Z) > mg (&) is obvious. For the sake of contradiction, suppose that
my(Z) > mg (&) for some J, K € Powy([r]) but J € K. Pick a j € J\ K, and let § € S be
the vector for which y; = 0, but y; = 1, for all i € [r] \ {j}. Then mg(y) = 1, but m; (%) = 0,
whereby m;(§) ? mk(4). By the tool mentioned above, this contradicts m(Z) > mg(Z) and
proves that “>” in X and “C” in Pow,([r]) correspond to each other. In particular, ¢ is a bijective
map as the equality of two elements or subsets can be expressed by these relations. Thus, ¢ is a
dual order isomorphism. The composite of ¢ and the selfdual automorphism of Powy([r]) defined
by J — [r]\ J is an order isomorphism. Hence, X = Powy([r]). Since Powy([r]) = FSgP(r,0,r),
we have shown that X = FSgP(r,0,7).

To complete the proof, it suffices to show that J(FD(r)) = X. Using the tool mentioned earlier
and Sy, we obtain that 1, = x1V---Va, ¢ J(FD(r)) and for every J € Powy([r]), ms(Z) ¢ S2. By
distributivity, each element of FD(r)\ Ss is the join of meets of some generators or, in other words,
a disjunctive normal form of the generators. Clearly, neither the empty meet, nor the empty join,
nor the meet of all generators is needed here, whereby there is at least one joinand and each of the
joinands is of the form m ;(Z) with J € Powy([r]). As one joinand is sufficient for the elements of

J(FD(r)), we obtain that J(FD(r)) C X.

To show the converse inclusion by way of contradiction, suppose that m ;(Z) € X\ J(FD(r)). Then
my(Z) is the join of some elements of J(FD(r)) that are smaller than mj(#). These elements
are of the form my, (¥) as J(FD(r)) € X. This fact and the dual isomorphism proved in the
previous paragraph imply that there are I,...,I; € Powy([r]) such that J C Iy, ..., J C I; and
my(Z) = myp (Z)V---Vmy,(Z). As this equality holds for the free generators, it holds as an identity

in Sy. However, if we define 4 € S5 by ys :=1, if s € J and y, = 0, otherwise, then m;(7) = 1,
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but each of the joinands and so the join are 0,.. This contradiction completes the proof of Lemma

3.1. O
For1 <a < b<r & NTsuchthat a+2 < band n € N27, ¥ will denote a vector (vg, . .., Va; Vp, - - -, Uy ),
so there is gap in the index set of the components. Let p € {—r,—r + 1,...,r} be a parameter,

and note that a binomial coefficient C(x1, 22) is 0 unless z1,22 € Ny and 0 < 25 < 1. Define

n/r]—1

) (1) = it
fr,a,b(n) T Z Z ’UO!"'va!'vb!"'UT! X
1=0 7€{0,...,i}rta—o+2
Vot Vo +Vp+ U =i
n—(i+1)r (3.1)
X X
p+|(n—7r)/2] —0vg —1lvy — - —avg —bvp — -+ — ro,
r Vo r Va r Vp r Ur
) GG 0
fr(,fsi,x) (n) := max {fﬁﬁib(n) cpe{-r,—r+1,...,r— 1,r}} . (3.2)

Proposition 3.2. Forr € N23 and 0 < a < b <r & Nt such that a+2 < b, fr(jz’abx) (n) is a lower
estimate of Sp(FSgP(r,a,b),n) on N=".

The proof below shows that Proposition 3.2 would still hold if we replaced {—r, —r+1,...,r—1,r}
in (3.2) with Z but we do not have any example where Z, which would make practical computations
longer, is better than {—r,—r+1,...,7 — 1,r}.

Proof. It suffices to show that for any p € Z, fr(f;),b(n) < Sp(FSgP(r,a,b),n). Take an n-element
set M, and denote the quotient |n/r] by ¢. Fix ¢ pairwise disjoint r-element subsets My, ..., My_1
of M, we call them blocks, and define M, :== M \ (Mo U--- U M,_1). Let h:=p+ [(n—1r)/2].
For j € {0,...,¢ — 1}, a subset X of the block M; is called small if |X| < a. Similarly, if
|X| > b, then X is large while in the remainder case when a < |X| < b, we say that X is medium-
sized. By an extremal subset of M; we mean a subset that is large or small; so “extremal” is the
opposite of “medium-sized”. For a subset B of M, B N M; is often denoted by B;. We say that
(1,B) € {0,...,q — 1} x Pow(M) is a fundamental pair if

(F1) |B| = h, and
(F2) B; =0 and for each j € {0,...,i — 1}, B; is extremal (that is, small or large).

Four examples are given in Figure 2, where n =54, r =8, a=3,0=6, p=3, ¢ =6, and h = 26.
In each of the four parts of this figure, the green-filled solid ovals' represent extremal subsets of

the appropriate M;’s, j € {0,...,i — 1}, the red dotted oval is a medium-sized subset of M;, and

INote for a grayscale version: the green-filled ovals contain black numbers in their interiors while the ovals with
white numbers are magenta-filled.
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(F2) imposes no condition on the subsets represented by magenta-filled solid ovals. Hence, in each
of the four examples, the set component (that is, the second component, which was denoted by B)
of the fundamental pair is the union of the color-filled solid ovals. The index component (that is,
the first component) is indicated at the top of the figure. Each color-filled solid oval contains the
number of elements of the subset B; that this oval represents. Note, however, that a red dotted
oval (regardless the number it contains) in the picture of (i, B) means that B; = @. (The red
dotted ovals will be explained right after (3.3).) Note also that, witnessed by i = 5 and ¢ = 4 in

the figure, the set component does not determine the index component.

M,
M;s

My

M;3

M,

My

My

Figure 2: Illustrating the proof of Proposition 3.2 with FSgP(8,3,6); h = 26, n = 54; in each
fundamental pair, the set component is the union of the color-filled solid ovals.

For a fundamental pair (i, B), let
U(i,B):={BUX : X C M, and a < |X]| < b}. (3.3)

Clearly, U(i, B) is a copy of FSgP(r,a,b). The role of a red dotted oval in Figure 2 is to represent
one of the sets X in (3.3). Now that we have defined our construction, we have to prove that
the number of fundamental pairs is fr(”;)’b(n) and for different fundamental pairs (¢, B) and (¢, B),
U(i,B) and U(i', B') are unrelated.

To obtain a fundamental pair (i, B), first we choose i € {0,...,¢q — 1}; this explains the outer
summation sign in (3.1). Then for each j € {0,...,a,b,...,r} we choose the number v; of the j-
element green-filled solid ovals. As there are i green-filled solid ovals, the choice of the vector formed
from these v;’s is not quite arbitrary; this explains the subscript of the inner summation sign in
(3.1). For example, on the right (that is, in the ¢ = 4 part) of Figure 2, ¥ = (v, ..., v3; g, 7, Vg) =
(0,0,1,1;0,1,1). The fraction in (3.1) is the multinomial coefficient showing how many ways v
zeros, vy 1’s, ..., vg a’s, vp b’s, ..., v, r’s can be ordered. On the right of the figure, this is
how many ways the numbers 3, 7, 2, 8 can be written below the red dotted oval (the figure shows

only one of these ways). As there is no stipulation on the magenta-filled solid ovals, the binomial
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coefficient in the middle of (3.1) gives the number of possible unions of the magenta-filled solid

ovals, that is, it shows how many ways the system of these ovals can be chosen.

For j € {0,...,a,b,...,r}, a j-element subset (green-filled solid oval) of an r-element block M;
can be chosen in C(r,j) ways. As there are v; such subsets and there are several values of j, the
product in the last row of (3.1) is the number how many ways the systems of the green-filled solid

ovals can be chosen. Therefore, fﬁ”;)’b(n) is the number of fundamental pairs as required.

Next, let (i, B) # (i’, B') be distinct fundamental pairs, Y = BUX € U(i,B),and Y' = B'UX' €
U(i',B’). For the sake of contradiction, suppose that ¥ C Y’. If we had that ¢ = i/, then
B=(M\M)NY C(M\M,)NY' = (M\ M;)NY' = B’, which together with |B| = h = |B’|
would give that B = B’ and so (i, B) = (i, B’), a contradiction. Hence, ¢ # ¢’. Observe that
Y C Y’ gives that M; NY C M; NY’ for all j € {0,...,q}. Furthermore, M; NY = B, for j # i
while M; NY = X. Similarly, M; N Y’ = B} for j # ' while My NY" = X'. Hence, B; C B} and
so |B;| < |Bj| for j € {0,...,q} \ {i,7'}, implying that

zi= > |B;| < > |Bj| =: 2. (3.4)
7€{0,..,a\{4,i'} 7€{0,....a\{4,i"}
As X is medium-sized, B is extremal, and X = M; NY C M;NY’ = B}, we have that B} is large,
that is, b < |Bj|. Hence, (3.4) gives that 2’ + b < 2’ + |B}| = |B’|. Similarly, X’ is medium-sized,
By is extremal, and By = My NY C My NY’' = X', whence By is small, that is, |B;/| < a. Thus,
|B| = 2+ |Bi| < z+ a. Combining the inequalities a < b, |B| < z+a, 2/ + b < |B’|, and (3.4), we
obtain that
B|<z+a<z4+b<zZ+b<|B.

This strict inequality contradicts (F1), completing the proof of Proposition 3.2. O

Several ideas and ingredients of the proof above, like the way of partitioning the base set into
blocks, are contained in Dove and Griggs [8] and Katona and Nagy [12]. However, even if the
construction given in [8] were tailored to our particular posets U, (F1) would fail. The following

assertion says that the lower estimate given in Proposition 3.2 is asymptotically as good as possible.

Proposition 3.3. Forr € N23 and 0 < a < b <r € NT such that a +2 < b, fr(,fzzx) (n) and, for
any fixed p € Z, f(p) (n) are asymptotically Sp(FSgP(r,a,b),n) as n — oo.

r,a,b

Proof. With s := [FSgP(r,a,b)|, s=2"— () —---— (1) = (;) — -+ — (1). Let x be a real number

such that £ < 1 but 1 — & is very little. As we have that Y- ((2" — s)/2")" = 2" /s, we can pick
an ng € NT such that
[n/r] -1 o
k2" /s < Z (2" —s)/2")" < =2"/s for all n such that n > ny. (3.5)
K

1=0
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It suffices to deal with fy(,,p)yb for a fixed p € Z. Using (1.2), we can pick an ny > ng such that

,a

K - fSp(n) . 2_(i+1)7‘ S <

1 —(2 r
S;fsp(n)-Q (i+1)

n—(i+1)r )

p+[(n—7r)/2] = 0vg —1vy — -+ —avg — bvy — -+ — 1o, (3.6)

for all n > ny. Let us define an auxiliary function for n > n; and apply the multinomial theorem

to it as follows.

|n/r]—1 -
2!
faux(n) = Z Z 1 - ol e
- ; Vo:+ - VUqg: " Upt " Up:
1=0 176{0,...7i}r+“7b+2

Vo4 Vg Fvp 4 v =i

% fop(n) - 2" (0) o () . (b) L () (3.7)
A e () () () ()

_ fs;@ Wf:_l (2’“2: 8) (3.8)

=0

Comparing (3.1), (3.6), and (3.7), we obtain that kfaux(n) < fﬁ”;)’b(n) < k7! faux(n) holds for all
n > ny. Applying (3.5) to the sum in (3.8), it follows that kfsp(n)/s < faux(n) < L fsp(n)/s.
Substituting this pair of inequalities into the previous one, we have that k2 fs,(n)/s < fﬁ’gb(n) <
k2 fsp(n)/s for all n > ng. Letting x — 1, it follows that fT(,”;)’b(n) is asymptotically fsp(n)/s.
So is Sp(FSgP(r,a,b),n) by Dove and Griggs [8] and Katona and Nagy [12]. By transitivity, we
obtain the required asymptotic equality. The proof of Proposition 3.3 is complete. O

4 Pairs of estimates
For n € N23, take the following “discrete 4-dimensional simplex”
Hy(n) :={(t,x1,20,23) ENg: 21 >0, x5 >0, 23 >0, t + 1 + 29 + 23 < n}. (4.1)
Remembering that [3] := {1,2, 3}, define the function f54: Hy(n) — Ny by
faa(t,z1, 22, 23) = Z(t+o:j)!~(n—t—zj)!+ Z (t+zj+z,) - (n—t—z; —xy)!

Jjeld] {7,u}C3), j#u

- Z (t+x)-x,!-(n—t—a; —x,)!, (4.2)
(J,u) €3] %3], j#u
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and let
M,, == min{ f5 4(t, 21,22, 23) : (¢, 21,22, 23) € Hy(n)}. (4.3)

We also define the following three functions:

gr(n) = B fopln+2— r)J , (4.4)
gi(n) == |n!/M,], where M, is given in (4.3), and (4.5)
g5 (n) = |nt- (3 /200 /21143 [(n +2)/2)1 - [(n - 2)/2]!

6+ [n/2)!- [(n— 2)/211)_1J .

Next, based on the notations and concepts given in (2.1), (2.5), Definition 2.1, (4.4), (4.5), and

(4.6), we can formulate the main result of the paper.

Theorem 4.1. For3<r<neN" andpe€ {-r,—r+1,...,7r—1,r}, g-(n) is an upper estimate

while
[n/r]=1 4 . .
i n—(i+1)r ‘ .
fr(p)r(") = () ( ) ) and, in particular, (4.7)
° zz:% =0 M/ \P + (n=r)/2] —jr
fo.(n) = 10, (n) (4.8)

are lower estimates of Sp(FSgP(r,0,7),n) = Sp(J(FD(r)),n) on N2". In particular,

for alln € N=", fto,(n) < 57" (n) < Sp(I(FD(r),n) < gr(n). (4.9)
Forr = 3, in addition to the satisfaction of (4.9), g5(n) is also an upper estimate of Sp(J(FD(3)),n)
on N23. Forn € {3,4,...,300}, gi(n) = g5*(n) < g3(n); in fact, g5*(n) < gs(n) for n €
{5,6,...,300}. The pair (f3,.3,93) is separated for n € NZ3, and so are the pairs (f303,93") and
(f40.3,93) forn € {3,4,...,300}. Finally, forr € {3,4,...,100}, the pair (f}, ., gr) is separated
on the set {r,r+1,...,300}.

It took 952 seconds ~ 16 minutes for a computer, see Footnote 2 later, to show that for r €

{3,...,200} and n € {r,...,300}, f*,,(n) is the same as f(fgix) (n); the latter is defined in (3.2).

r

Since f( .(n) is easier to define and much easier to compute than fr(glix) (n), it is the former that

occurs in Theorem 4.1. However, it will be clear from the proof that the theorem holds with f,gfg,a,,x)

in place of f2q .

Conjecture 4.2. We guess that g5(n) = g3*(n) for all n € N=3 and g3*(n) < g3(n) for all N=5.

Example 5.4 in Section 5 will show that, combining Theorem 4.1 with Observation 2.2, we can de-

termine Gm(FD(3)*) exactly in many cases and we can give a good approximation for Gm(FD(r)*)
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quite often.

Proof of Theorem 4.1. Substituting (¢ — 4, j) for (vg,v,) and observing that the multinomial coef-
ficient becomes a binomial one, it is clear that fff)),r

Lemma 3.1, (3.2), Proposition 3.2, and (4.8) yield the first inequality in (4.9).

in (4.7) is a particular case of (3.1). Hence,

Clearly, FSgP(r,0,7) & Powy([r]). Combining this with Lemma 3.1, we obtain that J(FD(r)) =
Powpi([r]). Take a maximal chain in each of the intervals [{1}, {1,3,4,...,r}] and [{2},
{2,3,4,...,7}] of Powy([r]). These two chains are unrelated and each of them consists of r — 1
elements. Let n € N2". With k := Sp(Powy([r]),n) = Sp(J(FD(r)),n), we can take k pairwise
unrelated copies of Pow,([r]) in Pow([n]). Therefore, there 2k pairwise unrelated (r — 1)-element
chains in Pow([n]). By Griggs, Stahl, and Trotter [11], the maximum number of chains with this
property is fsp(n + 2 —r). Hence, 2k < fgp,(n + 2 — r), implying the second inequality in (4.9).

In the rest of the proof, r := 3. Let Sym(n) stand for the set of all permutations of [n]. For & =
(01,...,0n) € Sym(n)andi € {0,1...,n}, the’s initial segment of ¢ is Is(&,4) := {o; : j <1i}. For
X € Pow([n]), the permutation set associated with X is Ps(X) := {¢ € Sym(n) : X =1Is(d, |X|)}.
The trivial fact that

if X,Y € Pow([n]) are incomparable (in notation, X || V), then Ps(X)NPs(Y) =0  (4.10)

was used first by Lubell [14], and then by Griggs, Stahl, and Trotter [11] and some other pa-
pers listed in the bibliographic section. To ease the notation, let W5 := FSgP(3,0,3) and
denote its elements by A, B,C, XY, Z according to Figure 1. Let k := Sp(Ws,n), and let
W3(1)7 RN ?Ek) be pairwise unrelated copies of W5 in Pow(|n]). For Wéi), we use the notation
W?Ei) = {A;,B;,C;, X;,Y;, Z;} in harmony with Figure 1; for example, A; C X; and A; || Z;, etc.
We claim that W?El), ey Wg(k) can be chosen so that, for all ¢ € [k],

Ai=X,nY;, B,=X,NZi, Ci=Y,NZ. (4.12)

Assume that the first equality in (4.11) fails. Let X/ := A; UB; and define Wi"" := (Wi"\ {X,})uU
{X/}. If we had that X} C Y;, then B; C X! C Y; would be a contradiction. As Y; C X/ would
lead to Y; C X, since X! C X, we conclude that X || Y;. We obtain similarly that X! || Z,. So
{X!,Y;, Z;} is an antichain, and now it follows easily that W:,Ei)’ is a copy of W3. For j € [k]\ {i}
and E € W, E C X/ would lead to E C X; while X! C E to A; C E. So E }Jf X! would lead to
contradiction. Hence, WB(i)’ and Wéj ) are unrelated, showing that we can change W?Ei) to W;i)' .
As there is an analogous treatment for Y; and Z;, and we can take i = 1,7 =2, ..., i =k one by

one, (4.11) can be assumed.
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Recall that Grétzer [10, Lemma 73], which is a well known easy statement, asserts that whenever
a,b,c are elements of a lattice such that {a V b,a V ¢,bV ¢} is a 3-element antichain, then this
antichain generates an 8-element Boolean sublattice in which {a V b,a V ¢,b V ¢} is the set of
coatoms. Therefore, if we apply the dual of the procedure above (that is, if we replace A; by
X;NY;, etc.), then we reach (4.12) without destroying the validity of (4.11). We have shown that

both (4.11) and (4.12) can be assumed; so we assume them in the rest of the proof.

Let T; := X; NY; N Z;. By (4.12), T; is also the intersection of any two of A4;, B;, and C;. Hence,
letting A? := A;\T;, BY := B;\T;, and C? := C;\T;, it follows from (4.11), (4.12), and W3(i) =Wy
that A?, B?, and C? are pairwise disjoint subsets of [n], none of them is empty, they are disjoint
from T;, and

A, =T,UA;, B;,=T,UB!, C;=T,UC?,

(4.13)
X, =T;UAUB?, Y;=T,UA'UC?, Z;=T,UB'UC’.

For i € [k], we let

As each of A;, ..., Z; is incomparable with each of A;,...,Z; provided that ¢ # j, (4.10) together
with (4.14) imply that
for i,j € [k], if i#j then G;NG; = 0. (4.15)

It follows from (4.15), G1 U --- UGy € Sym(n), and |[Sym(n)| = n! that

> G <nl. (4.16)

i€ k]

Next, for i € [k], we focus on |G;|. Denote |T;|, |A2], |B?|, and |C?| by t;, a;, b;, and ¢;, respectively.
By (4.13), |Ai| = ti+as, |Bi| = ti+bi, |Ci| = ti+ci, | Xi| = ti+a;i+ by, |Yi| = ti+a;+¢, and | Z;] =
ti+b;+c;. Forany & = (01,...,0,) € Ps(A;), A; is the set of the first |A;| = t; + a; components of
d'; we can choose these components in (¢; +a;)! ways. To obtain the rest of the components, we can
arrange the elements of [n]\ 4; in (n — (¢; + a;))! ways. Hence, |Ps(A;)| = (t; +a;)!- (n—t; —a;).
We obtain similarly that [Ps(B;)| = (¢; + b;)! - (n — t; — b)!, [Ps(C)| = (& +¢i)l - (n—t; — i),
Ps(X;)| = (¢ +a; + b)) - (n—t; —a; — b)), |Ps(Y2)| = (¢i +a; +¢)! - (n—t; —a; — ¢;)!, and
|Ps(Z;)| = (t; +bi +¢i)! - (n—t; —b; — ¢;)!. Tt follows from (4.10) that the intersection of any three
of the six permutation sets considered above is empty since there is no 3-element chain in Wéi).
By (4.10) again, we need to take care of the intersections of two permutation sets associated with
comparable members of Wéi); there are six such intersections as the diagram of W3 has exactly

six edges; see Figure 1. One of the just-mentioned six intersections is Ps(4;) N Ps(X;). For a
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permutation & € Ps(4;) N Ps(X;), (4.13) yields that there are |A4;|! = (¢; + a;)! possibilities to
arrange the elements of A; in the first |A;| places, b;! many possibilities to arrange the elements
of X;\ A; = B? in the next b; places, and (n — ¢; — a; — b;)! possibilities for the rest of entries of
&. Hence, |Ps(A;) NPs(X;)| = (t; +a;)! - bi! - (n —t; — a; — b;)!, and analogously for the other five
intersections of two permutation sets.

The considerations above imply that for i € [k], |G;| = f3.4(t;, ai, b;, ¢;); the function fs 4 is defined
(4.2). As (t;,ai,bi,¢;) is clearly in Hy(n), (4.3) yields that M,, < |G;|. This fact and (4.16) imply
that kM, < Zie[k,] |G;] < n!. Dividing by M,, and taking into account that k¥ € NT, we obtain
that Sp(W3,n) =k < |n!/M,]| = g5(n), as required.

We only guess but could not prove that for all n € N23, f3 4 takes its minimum on Hy(n) at
([(n—2)/2],1,1,1); see also Conjecture 4.2. However, we can reduce the computational difficulties

by considering the auxiliary function

fast,z,y)=0C+x) - n—t—a)+{t+y)!-n—t—y)l+2t+z+y) - (n—t—z—y)!
—2t+ )yl (n—t—z—y!-2t+y)l-al-(n—t—y—2a). (4.17)

The definition of Hy(n), given in (4.1), and

2f34(t, 21,02, 23) = f33(t,21,72) + f33(t, 2, 23) + f33(t,21,23), (4.18)
explain that we are interested in f3 3 on the first one of the following two sets,

Hs(n) :={(t,z,y) eN3:2>0, y>0, t+x+y<n-—1} and (4.19)
Hi(n) = {(t,r,y) eENy:2>0, y>z, t+x+y<n-—1}. (4.20)

In (4.19), the sum is only at most n — 1 since the fourth variable of f3 4, which does not occur in
fa3, is at least 1. The progress is that Hs(n) has significantly fewer elements than Hy(n), and
H/(n) has even fewer; this is why we could reach 300 in Theorem 4.1. (Note that a priori, it was
not clear that when 23 4(¢, x1, z2, z3) takes its minimum value, then so do all of its summands in

(4.18).) Observe that since f3 3 is symmetric in its last two variables,

min{ f3 3(t,z,y) : (t,z,y) € H3(n)} = min{f33(t, z,y) : (t,z,y) € Hi(n)}. (4.21)
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A straightforward Maple program?, which benefits from (4.21), shows that

for 3 < n < 300, f33 takes its minimum on the discrete

(4.22)
tetrahedron Hz(n) at (t,z,y) = ([(n —2)/2],1,1).

(Note that fs 3 takes its minimum at two triples if n is even but only at a unique triple if n is
odd.) If n € {3,4,...,300} and (|(n —2)/2],1,1,1) is substituted for (¢, z,y, z), then each of the
three summands in (4.18) takes its minimal value by (4.22). This allows us to conclude that at
(t,z,y,z) = ([(n —2)/2],1,1,1), f3.4 takes its minimum on Hy(n). Thus, for n € {3,4,...,300}
and for M, from (4.3),

M, = fsa(l(n—2)/2],1,1,1)
=3 [n/2)1- [n/2]1+ 8- [(n+2)/2)1- [(n— 2)/2]! = 6- [n/2]1- [(n - 2)/2]1

(4.23)

Combining (4.5), (4.23), and (4.6), we obtain that ¢g5(n) = g3*(n) for n belonging to the set
{3,4,...,300}, as required.

Next, to show that the pair (f33,93) = (fé?o),;aa g3) is separating, we need to show that fé?&g (n+
1) — g3(n) > 0 for all n € N3, Depending on the parity of n, there are two cases. If n is of the
form n = 2m + 2 then, reducing the sum in (4.7) to its summands corresponding to (i,5) = (0,0)

and (Zv.]) = (170)7

2155 5(n + 1) — 2g5(n) > 2 <2n’?> +2 <2mm 3) - (anj 1) (4.24)
_2-(2m)!  2-(2m—=3)!  (2m+1)!
 m!-m! mi(m =3 m!(m+1)!
(2m — 3)!

= m - Qy where

a=2(m+1)2m2m —1)2m —2) + 2(m + 1)m(m — 1)(m — 2)
—(2m+1)2m((2m — 1)(2m — 2)

=2m* +4m> — 14m? 4 8m = 2m(m + 4)(m — 1)%. (4.25)

Hence, both o and the fraction multiplied by « are non-negative for m € N*. Thus, f:g?o),?,(n +

1) — g3(n) > 0 for n > 4 even. Similarly, for n = 2m + 1 odd,

2f50.5(n +1) — 2g5(n) > 2<2m B 1) + 2<2m B 4) - <2m> _ D i — 1) (m — 2).

m—1 m—1 m m!m/!

2Maple V Release 5 (1997); this computer algebraic program ran on a desktop computer (AMD Ryzen 7 2700X
Eight-Core Processor 3.70 GHz) in Windows XP environment simulated by Oracle VM VirtualBox 6.0 (2019) under
Windows 10 Pro. The whole computation for (4.21) and the data in Section 5 took 7 hours and 16 minutes;
(4.21) in itself needed about 7 hours. The program is available from the (Appendix) Section 6 of the extended
arXiv:2309.13783 version of the paper and, at the time of writing, from the author’s website.


https://arxiv.org/abs/2309.13783
http://www.math.u-szeged.hu/~czedli
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Therefore, fé?o)’S(n +1) —g3(n) > 0 for 2 < m € Nt that is, for n > 5 odd. For n = 3,

35?0)73(11 +1) — g3(n) > 0 is trivial; see also 5.2. We have shown that (f3, 3, 93) is separated.

The already mentioned Maple program has computed g3(n), g5(n), and g5*(n) for alln € {3,4, ...,
300}. This computation proves that g3*(n) = ¢g5(n) < gs(n) for all these n and g5*(n) = g5(n) <
gs(n) for n € {5,6,...,300}. These inequalities and that (f3,3,93) is separated imply that
(f40.3,93) and (f40.3,93") are separated on {3,4,...,300}. The same Maple program has com-
puted all the relevant f?, .(n + 1) and g.(n), from which we conclude that for r € {3,4,...,100},
the pair (f2,,,gr) is separated on the set {r,r 4+ 1,...,300}. The proof of Theorem 4.1 is com-
plete. O

Some comments on this proof are appropriate here. While we could use quite a rough estimation
in (4.24) when proving that (f3, 3, 93) is separating on the set N2Z3, there is no similar possibility
for (f*o.,9-). Indeed, since f2, .(n+1) = g.(n) for, say, (r,n) = (20,56) when f3; ;4,(56 + 1) =
17672631900 = g20(56), no estimation would be possible. As g,(n) is far from being asymptotically
good, it is not worth putting more work into its investigation. While we could use Gritzer [10,
Lemma 73] to reach a pleasant situation for r = 3, see (4.11) and (4.12), we have no similar tool
for r > 3; this explains that Theorem 4.1 does not tell too much about upper estimates in case of
r > 3. Finally, note that even though f3 3 in (4.17) is simpler than f54 in (4.2), the three-variate
function fs 3 is still too complicated. In particular, we know from computer-assisted calculations
that f3 3 has several “local minima” on the discrete tetrahedron Hs(n) defined in (4.19); this is our

excuse that we could verify Conjecture 4.2 only for n < 300 and only with a computer.

5 Odds and ends, including some computational results

Theorem 4.1 pays no attention to the case r = 2, which is trivial by the following remark. As in

(4.4), g2(n) := [fsp(n)/2] = [C(n, [n/2])/2].
Remark 5.1. For n € N22, Sp(J(FD(2)),n) = g2(n).

Proof. By Lemma 3.1 or trivially, J(FD(2)) is the two-element antichain. Hence, Remark 5.1

follows from Sperner’s theorem, which we quoted in (2.2). O

Corollary 5.2. For r € N3 and k € N22, [et n € NT be the smallest integer such that k <
fror(n); see (4.8). Then for every distributive lattice D generated by r elements, the direct power

DF has an at most n-element generating set.

Proof. Let k, D, and n be as in the corollary. Since k < f, ,.(n) is included in the assumption and

20.+(n) < Sp(J(FD(r)),n) by Theorem 4.1, it follows from (2.4) that FD(r)* can be generated by



CUBO

Generating the direct powers of free distributive lattices 233

26, 2 (2024)

an at most n element subset Y. Using that FD(r) is the free r-generated distributive lattice, we can
pick a surjective (in other words, onto) homomorphism ¢: FD(r) — D. Then ©*: FD(r)* — D¥,
defined by (z1,...,z%) = (¢(x1),...,¢(zx)), is also a surjective homomorphism. Thus, ©*(Y)
generates D* and |¢*(Y)| < |Y| < n proves Corollary 5.2. O

The just-proved corollary and the abundance of large lattices that are easy to describe and easy
to work with motivate the following extension of the cryptographic “protocol” outlined in Czédli
[5] and, mainly, in [3]. The purpose of the quotation marks here is to warn the reader: none of our
protocols is fully elaborated and, thus, it does not meet the requirements of nowadays’ cryptology.
In particular, neither a concrete method of choosing the master key according to some probabilistic
distribution is given nor we have proved that the average case withstands attacks; we do not even
say that we are close to meeting these requirements. On the other hand, no rigorous average case
analysis supports some widely used and, according to experience, safe cryptographic protocols like
RSA and AES and, furthermore, many others rely ultimately on the conjecture that the complexity
class P is different from NP. This is our excuse to tell a bit more about one of our motivations in
Remark 5.3 below. For a lattice L and h = (hy,...,hg) € L¥, ki is a (k-dimensional) generating
vector of L if {hy,...,hy} is a generating set of L.

Remark 5.3. In the session key exchange protocol given in Czédli [SP, the secret master key
known only by the communicating parties was a k-dimensional generating vector h of the 2"-
element Boolean lattice B,,. The point was that Gm(B,,), defined in (2.3), is small, and so there
are very many k-dimensional generating vectors h if k is a few times, say, seven times larger than
Gm(B,,). Here we suggest to add (A) or (B) to the protocol outlined in [3] and to work in a lattice
different from B,,.

(A) Choose a medium-sized finite random poset U and an exponent n € N¥; for example, a 20-
element random poset U and n = 500 are sufficient. (There are very many 20-element posets;
see A000112 in Sloan [15]; the direct link is https: //oeis. org/4000112.) By the well-known
structure theorem of finite distributive lattices, see Grdtzer [10, Theorem 107], U determines a
finite distributive lattice D. Then replace B,, with D™ in the [8]-protocol so that, in addition to fL,

U and n also belong to the secret master key.

(B) Choose a random poset U of size 100 or so. As in [6], this U determines the huge lattice
(Quo=(U); C) of quasiorders extending <y ; this lattice can be generated by few elements. Use
this lattice instead of B,,. The poset U and a k-dimensional generating vector of (QuoS(U); Q)

constitute the secret master key; otherwise the protocol is the same as in [3].

3At the time of writing, see (4.3) in https://arxiv.org/abs/2303.10790v3 .


https://oeis.org/A000112
https://arxiv.org/abs/2303.10790v3
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Next, we present some computational data, see Footnote 2; at the “~” rows, the last decimals are
correctly rounded.
n 298 299 300
fi03(n)~ | 3.919720 1087 | 7.839440 - 10%7 | 1.562662 - 1038 (5.1)
g5*(n) = 3.932918 - 1087 | 7.865747-10%7 | 1.567 888 - 1088
ety ~ | 1003367003 | 1.003355705 | 1.003344482
n= 3 4 5 6 7 8
f§’0’3(n) 1 1 2 3 6 11
g5(n) = gi*(n) 1 1 2 4 7 13
g3(n) 1 1 3 5 10 17
n = 9 10 11 12 13 14
40,3(n) 24 42 84 153 306 570 (5.2)
g5(n) = gi*(n) 26 46 92 168 333 616
g3(n) 35 63 | 126 231 462 858
n= 15 16 17 18 19 20
40.3(n) 1146 | 2145 | 4290 | 8100 | 16200 | 30786
g5(n) =gi*(n) | 1225 | 2288 | 4558 | 8580 | 17107 | 32413
g3(n) 1716 | 3217 | 6435 | 12155 | 24310 | 46189
n= 4 5 6 7 8 9 10 11 12
fio.4(n) 1 1 2 3 6 10 20 36 74
ga(n) 1 1 3 5 10 17 35 63 126
(5.3)
n= 13 14| 15 16 17 18 19 20 21
40.4(n) | 134 | 268 | 496 | 992 | 1856 | 3712 | 7004 | 14014 | 26598
ga(n 231 | 462 | 858 | 1716 | 3217 | 6435 | 12155 | 24310 | 46189
n= 5 6 7 8 9 10 11 12 13
f205(n) 1 1 2 3 6 10 20 35 70
g5(n) 1 1 3 5 10 17 35 63 126
(5.4)
n= 14 15 16 17 18 19 20 21 22
fAos(n) | 127 | 256 | 471 | 942 | 1758 | 3516 | 6620 | 13240 | 25095
g5(n) 231 | 462 | 858 | 1716 | 3217 | 6435 | 12155 | 24310 | 46189
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The computation for the following table took 306 seconds.

n 5999 6000
fAo020(n) ~ | 7.445882708069 - 10177 | 1.489176 541614 - 101798 (5.5)
ga0(n) & 1.488 924847889 - 101798 | 2.977849 695 779 - 101798

Next, we give some examples; each of them is based on (2.4), Observation 2.2, and one of the

computational tables that will be specified.

Example 5.4. (A) By (5.2), Gm(FD(3)30%00) = 20. That is, the direct power FD(3)3°%0 can be
generated by 20 elements but not by 19.

(B) By (5.3), Gm(FD(4)20099) 4s either 20 or 21 but we do not know which one.

(C) By (5.4), Gm(FD(5)2000) = 22.
. FD

) By (5.4)
(D) By (5.1), Gm(FD(3)1°™) = 300 (the exponent in the direct power is 10%8).

01798

(E) By (5.5), Gm(FD(20)1489-19°"") = 6 000 (the ezponent is 1.489 - 101798 ).

At the time of writing, we know from Sloan [15] (https://oeis.org/A000372) that in spite of
lots of work by many contributors, the largest integer r for which |[FD(r)| is known is r = 9. We

mention the following well-known folkloric lower estimate:
21024 _ 92 < |FD(20)|. (5.6)

Indeed, the free Boolean lattice FB(10) on 10 generators consists of 22" clements and it is lattice-
generated by the free generators of FB(10) and their complements. So FB(10) as a distributive
lattice is generated by 20 elements, implying (5.6).

Based on (5.6) and the paragraph above, the direct power in part (E) of Example 5.4 consists of an
unknown but very large number of elements. However, only 306 seconds were needed to determine

the least possible size of its generating sets.


https://oeis.org/A000372
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1 Introduction

An optical geometry, a notion introduced in the late eighties by Robinson and Trautman, is a
geometrical structure that encodes the existence of an electromagnetic plane wave — or an appro-
priate higher dimensional generalisation [2] — propagating along a prescribed foliation by curves of
a Lorentzian manifold. Let us recall the relevant definitions. A null congruence on a Lorentzian
n-manifold (M, g), n > 3, is a foliation by curves, which are tangent to some nowhere vanishing
null vector field. Given a Lorentzian n-manifold (M, g), n > 3, a null congruence is called geodesic
shearfree, or shearfree for short, if there is a choice for a nowhere vanishing tangent null vector field
p, whose local flow preserves both the codimension one distribution % := pts and the conformal
class of the induced degenerate metric h := glyx9 on the spaces #, = pts|,, * € M. These

conditions are equivalent to requiring that the Lie derivative Z,g has the form
g =fg+ N for some function f and some 1-form 7 . (L.1)

If this holds, the vector field p is also geodesic, i.e. V,p = Ap, and the curves of the congruence

are geodesics (see e.g. [1,2,5,14]). A quadruple @ := (p, %, [h],{g}), given by

(a) anowhere vanishing vector field p, determined up to multiplication by a nowhere zero smooth

function f,
(b) a codimension one distribution %7,
(c) a conformal class [h] of semi-positive metrics on 7,

(d) a non-empty set of Lorentzian metrics {g}, which are exactly all metrics g with respect to
which p is a null vector field with %" = p*s and [h] = [g|% x| and both % and [h] are
preserved by the local flow of p,

is an optical geometry in the sense of Robinson and Trautman [2,5,14] . The Lorentzian metrics

g in the set {g} are called compatible with the prescribed optical geometry @.

By Robinson’s Theorem [8,13], the shearfree null congruences of a real analytic four dimensional
Lorentzian manifold are exactly the foliations by the lines of propagation of electromagnetic plane

waves.

Many interesting examples of optical geometries @ = (p, 7, [h], {g}) are provided by connections
on principal A-bundles 7 : M — S = M/A with one-dimensional structure groups A = R or S*.

On each bundle of this kind, one may consider an optical geometry in which p is the generator of the

L As a matter of fact, all four elements of @ can be recovered just by (i) the 1-dimensional distribution %, which
is generated by p and (ii) the set of metrics {g}, provided that they satisfy appropriate conditions. Thus, the optical
geometries can be also defined as such pairs (#,{g}) — see the original definition in [14].
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action of the group A along the fibers, and 7" and [h] are the appropriate A-invariant distribution
and conformal class. In this case, the quadruple # := (7 : M — S,p, %', [h]) is called a regular
shearfree manifold and a metric g € {g} of the corresponding optical geometry @ = (p, %, [h],{g})

is said to be a compatible metric of A .

The regular shearfree manifolds are important geometric objects not only for their role in Lorentzian
geometry, but also for their relations with CR geometry. Indeed, for any regular shearfree manifold
M= (7 : M — S,p,W,[h]), the base manifold S = M/A is naturally equipped with the codimen-
sion one distribution %'° C T'S and the positive definite conformal metric [h”] that are obtained
by projecting the A-invariant distribution % := p* and conformal class [h] onto S = M/A. If M
is even dimensional and the projected distribution % C T'S is contact then the regular shearfree
manifold ./ is called (maximally) twisting. For any such 4, the corresponding optical geometry
Q= (p,7,h],{g}) determines a family J° of complex structures J> : #,° — %, on the projected
distribution of S, that make S a strongly pseudoconver almost CR manifold (see, e.g. [1,2,5,7]

and references therein).

Celebrated examples of twisting regular shearfree manifolds are given by the 4-dimensional space-
times with Taub-NUT metrics and the 4-dimensional Kerr black holes. For such Lorentzian man-
ifolds, the base manifold of the A-bundle # : M — S has an additional remarkable geometric
feature: it is a principal bundle 7% = § — N with one dimensional structure group A’ = R or
A’ = S and the base manifold N = S/A’ = M/(A- A’) has a natural structure of a Kéhler man-
ifold. Moreover, the strongly pseudoconvex almost CR manifold (S, %%, J%) is a regular Sasaki

manifold and the structure group A’ of S preserves

(i) the CR structure (%%, J%),

(ii) a contact 1-form 6, for W3, ie., W2 =ker,, such that df, = 75*w, for some Kihler form

Wo = go(J+,-) on (N, J);

(iii) the conformal class [h] on % contains the degenerate metric h, = ((7% 0 )*go) |5

The fact that the Taub-NUT and Kerr metrics have these properties is one of the reasons of the
interest in twisting regular shearfree manifolds, in which the almost CR manifold (S, %, J%) is

a Sasaki manifold projecting onto a Kéhler manifold. Such manifolds are called of Kdhler-Sasaki

type [2].

We recall that, according to classical results in the theory of G-structures, any local isometric
invariant of a pseudo-Riemannian manifold is fully determined by the components in orthonormal
bases of the Riemann tensor R and its covariant derivatives up to an appropriate order (see, for
instance, [9-12,16] and references therein). Such components are in turn given by the components

of g and the Christoffel symbols of V¥ in a frame field. This observation indicates that the explicit
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expressions of the Christoffel symbols in appropriate frame fields represent a fundamental tool for

studying the compatible metrics of a given regular shearfree manifold of Kéhler-Sasaki type and
possibly finding solutions of the Einstein (or other physically relevant) equations in this class of

metrics.

In this paper, we discuss in great detail the Christoffel symbols of the Levi-Civita connection V¢
of a compatible metric g of a regular shearfree manifold # := (7 : M — S,p, %, [h]) of Kéhler-
Sasaki type. More precisely, we fix a special (locally defined) frame field (eq, ..., e, ), which is well
adapted to the optical geometry and is determined only up to a choice of a local frame field on
the underlying Kéhler manifold N = M/(A - A’). Such a frame field has the following two useful

properties:

(1) the last two vector fields e,_1, e, are the generators of the actions of the groups A and A’,

respectively, and are therefore canonically associated with the considered manifold;

(2) the vector fields e;, 1 < i < n — 2, are tangent to the distribution 7" at all points and are

A - A'-invariant, thus projecting onto a frame field (ey,...,¢,—2) on N.

Note that (1) and (2) allow to minimise the number of parameters that are necessary to determine
the components of a compatible metric g. Notice also that, due to the fact that . is twisting, a
frame field satisfying (1) and (2) cannot coincide with a coordinate frame field. This forces us to

avoid the use of coordinates in all subsequent computations.

After choosing an adapted frame field of this kind, we write down the general expression of a com-
patible metric g in terms of its dual frame field and we determine the Christoffel symbols of V¢ in
such frame and coframe fields, using just Koszul’s formula and classical results on transformations

of Levi-Civita connections under conformal transformations.

The expressions for the Christoffel symbols given in this paper have been originally determined
during the preparation of [2] and have been successfully used to derive a coordinate-free charac-
terisation of the generalised Taub-NUT metrics on even dimensional manifolds (see e.g. [3] and
references therein for other characterisations of the metrics of such a kind). However, the details
of the actual computations did not appear in [2] and some formulas of that paper had some minor
sign errors — very few indeed and with no effect on any statement and proof. The same explicit
(and amended) expressions have been later used in [6] for determining explicit expressions for the
components of the Ricci tensor of compatible metrics of a shearfree manifold # of K&hler-Sasaki
type satisfying conditions that generalise Kerr’s ansatz for the 4-dimensional rotating black holes.
These expressions for the Ricci tensor allowed us to translate the Einstein equations for a com-
patible metric into equations on its parameters in an adapted frame and to find a large class of
exact solutions that naturally includes the classical Kerr black holes. We anticipate a number of

further applications of the explicit expressions of these Christoffel symbols and believe that the
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detailed computations we present in this paper will be a helpful tool for other researchers who are

interested in the developments of this field.

The paper is structured into two sections: In section 2, we define the adapted frame fields of a
compatible metric, that is the frame fields in which all computations of this paper are performed;
In section 3 we derive the explicit list of Christoffel symbols and provide the details of the compu-

tations.

2 The general form of a compatible metric on a shearfree

manifold of Kahler-Sasaki type

2.1 Notational issues

Consider a shearfree manifold & := (7 : M — S, p, %', [h]) of Kéhler-Sasaki type. We use the

following notation:

(1) (N, J,g,) is the K&hler manifold onto which S projects and w, = go(J-, ) is the Kéhler form
of N 2;

(2) A and A’ are the 1-dimensional structure groups of the principal bundles = : M — S and

7% : 8 — N, respectively;

(3) p, and q are the fundamental vector fields of the principal bundles 7 : M — S and 77 :
S — N, corresponding to the element of the standard basis of Lie(A) = Lie(A’) = R. This
means that ®%°(z) = e*(z), x € M, and @35 (y) =e*(y), y € S;

(4) 6, is the contact A’-invariant 1-form on S satisfying the conditions
db, = m*w, , 0o(q,) =1, kerO,|, =W , x €S ; (2.1)
and 9, is the pull-back ¢, = 7*(6,) of 6, on M.

It is important to note that %% is an A’-invariant horizontal distribution on the principal bundle
75 : 8 — N, and it is therefore a connection for this bundle. The associated connection 1-form is

S

0, and its curvature 2-form is df, = 7 *w,.

For what concerns the A-bundle w : M — S, throughout the paper we assume that it is trivial
and equipped with the natural flat connection of a Cartesian product. This apparently restrictive

condition can be always locally satisfied replacing S by an open subset 7" C .S, on which the bundle

2Note that there is a sign difference in the definition of w, w.r.t. [2]. There it is defined as wo = go(-, J-).
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is trivialisable, and identifying 7 : M — S with the trivial bundle 7 : 7= 4(?) ~ ¥ x A — ¥

equipped with the standard flat connection.
We denote by #, the horizontal distribution of the flat connection of 7 : M — S.

For any given vector field X on the Kéahler manifold N, we denote by

— X the unique A’-invariant horizontal vector field in #'° C S projecting onto X;

— X the unique A-invariant horizontal vector field in % projecting onto X (%) and thus also

onto X; note that, by definition of %", the vector field X takes values in H, "W .

The unique A-invariant horizontal vector field in %, projecting onto q° is denoted by q,.

Owing to the A- and A’-invariance of the connections of 7 : M — S and 7% : S — N and the
properties of the connection 1-form 6,, for any pair of vector fields X,Y on N the following Lie

bracket relations hold 3:

~

(X, V] = [X.Y] = 0 (JX.V)a, »  [X,po] = [X, ) = [Pordo] = 0 - (2.2)

2.2 The adapted frame fields

Consider a frame field (F1,...,E,—_2) on an open set 7 C N of the Kahler manifold and the
corresponding lifted vector fields (El, cey En,g) on M, taking values in the distribution %" =
Z NW . The vector fields of the (n—1)-tuple (E'l, A E”_Q, p,) are pointwise linearly independent
and hence give linear frames for the spaces %, C T,M, z € % = (7% om)~Y(¥’). Since q, projects

onto q5 and qf is transversal to #° = 7. (%), the vector fields of the n-tuple

~

(E1>"'7En727po7qo) (23)

are pointwise linearly independent and determine a frame field on %. We call (2.3) the adapted

frame field of M determined by the frame field (E;) on N.

Note that, due to (2.2), the Lie brackets between any two vector fields of an adapted frame have

the form

~ ~

[Eia E]] = ijEk - gO(JEMEJ)qo ) [EZapo] = [E27qo] = [po7qo] =0 ) (24>
where the ¢f; are the functions such that [E;, E;] = cf; Ej.

The dual coframe field of (Ey, ..., En_s,p,,q,) is denoted by (E,...,E"~2 p*. q3). Since the
dual 1-form ¢} satisfies q%(q,) = 1 and vanishes identically on %" (because % is spanned by the

3The Lie bracket [)/(\', 17] differs by a sign from the one used in [2]. Since in both papers, it is assumed df, = wo,
the sign difference is a consequence of the different definitions of the K&hler form w,.
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for any choice of the adapted frame (Ei,po, qy)-

2.3 Parameterisation of the compatible metrics

Let (E;) be a (local) frame field on N and denote by (Ey,...,En_2,p,,q,) the corresponding
adapted frame field for . Since we are assuming that .# is of Kéahler-Sasaki type, the conformal

class [h] consists of the degenerate metrics on %" having the form
h=o(m% o) (go)|o, o = conformal scaling factor . (2.6)

By the results in [2, Section 2.5] (see also [6]), the compatible Lorentzian metrics on . are locally

in one-to-one correspondence with the pairs (h, q) given by

o a degenerated metric h on 7 as in (2.6):

e a vector field ¢, which is transversal to the distribution #" = #” 4+ Rp,, i.e., of the form
q:=aq, + bp, + ¢E; a#0. (2.7)

More precisely, given the conformal factor o and the vector field q, the corresponding compatible

metric ¢ = ¢(> is the unique Lorentzian metric satisfying conditions

9(X.Y)=0g,(X.Y) . 9(X,p,) = 9(po:po) =0,
(2.8)
9(X,q) =0,  g(pp,a)=1,  g(a,q9)=0.
From (2.7) and the first line of (2.8), the second line in (2.8) is equivalent to
~ clo 1
g(quo) = - gO(Xa El) ) g(poaqo) =
a a (2.9)

b1,
g(Qovqo) = 72Cl72 + aﬁc CJUgO(EjaEi) .

Introducing the shorter notation

2 b1, :
o= —, B = p (2a2 + Pl cjogo(Ej,Ei)> , v i=—2—, (2.10)
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we get that ¢ = ¢(®% is the unique Lorentzian metric satisfying the condition

PP N oa
g(XaY):Ogo(X7Y) ) g(vao):g(pmpo):Oa g(povqo):7 ’
) (2.11)
s oy o
g(Qo’X) = 9 gO(Xv Ei) ) g(qmqo) = 56 :
This means that g has the form
i\, 1 * * i sk, 0B
(2.12)

—o{ % 07 )y + 00 v (et sl B EVE + 50 ) .

The expression (2.12) gives a convenient parameterisation in terms of the (n + 1)-tuple of smooth
functions (o, «, 8,7%) for the compatible metrics of # = (7 : M — S,p, % ,[h]). We emphasise
that, conversely, any metric having the form (2.12), for some ¢ > 0 and « # 0, is a compatible
metric. Indeed, it is associated with the conformal factor o and with q = aq, + bp, + ciE where
a, b, ¢/ are solutions to (2.10) for given a, 3, v*. They are

2 B

-2 = ind go(E;, E; i-
= a0 a20+2a207790( i Ei) s ¢ ac

3 The Christoffel symbols in an adapted frame field of the

Levi-Civita connection of a compatible Lorentzian metric

3.1 The complete list of the Christoffel symbols

Let £ = (w: M — S,p,%,[h]) be a twisting regular shearfree manifold of Kéhler-Sasaki type,
with S projecting onto the Kéhler manifold (N, J,g,). Let also (E;) be a frame field on an
open set 7 C N and (X,4) = (El, .. .,En,g,po,qo) the corresponding adapted frame field on
U = (75 o)~ (') € M. We use the notation g;;, wij, J7, c}; for the functions defined by

9ij = go(Ei, Ej) , wij = go(J By, Ej) , JE; = JIE; [Ei, Ej] = ¢}, By .

For what concerns the Christoffel symbols T' 44 (i.e., the functions defined by Vx, X5 = T, X¢),
we are going to use the convention that I';7* denotes the function which gives the component of
\Y ETEA?] in the direction of E,,, I‘Z-;)" is the function that gives the component of V EiEJ’ in the
direction of p,, I‘i‘}” is the function giving the component of V B, Ej in the direction of q,, and so

o1.

Our main result is the following:
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Proposition 3.1. Let g be a compatible metric for M, hence of the form (2.12) for an (n+1)-tuple
of smooth functions (o, a, 3,7%) on %, with ¢ > 0 and o # 0 at all points. The Christoffel symbols
T 4% of the Levi-Civita connection of g in the frame field (X ) = (Ei,po, q,) are given by

Ij"=yg kgo(VEiEjaEkH'g kSijUH'7 4” % z( )5 +%EJ(U)5i

-8 (4 Buto) - Lopilo)) (3.1

where Sij;, is defined by

¢ ¢ ¢
Sijk 1= ’YZQO(JEiyEk)go(Eéan) + %QO(JEj,Ek)Qo(Ee7Ei) - %QO(JEian)go(EéaEk) ;

T2 = LB/ gm) + o By (1 gi) — —— ™1 ki — ﬁgo(V%E',Em) —~ ﬁSmm
] 200 J 207 4o T« iJ a Y
9ij (2 Lo ook 7" A
LY - i — 2 - —F, , 3.2
95 (Zas(o)+ o (010 = 28) (o)~ LB (5:2)
Wij  Gij
rpe=-=-2_-= 3.3
do= =By (o), (33)
m _ m agmkwik 1 5m
I‘ipo - Fpoi - 4 + %po(g) i (34)
1 ~ 1 YMw; 1 -~
TPo=T Po= _F, — " gir — oy~ F, 5
1po po’L 2(1 (a) + QOépO(’y )g k 4 2 ( ) (3 )
Ao _ Qo _
Fipo - Fpui =0 ’ (36)
mk mk 4 mk
~ ~ r Wi
T =T, " = EBi(v'gu) - L Bu(r'gu) — L-cloguug™ + T2 g
o o 4 4 4 4
m m i m
g t 1 m v mk i
— —E — i+ — O — —gu E - — , 3.7
B+ L0+ 500 — L (57 Bule) - Do) L (3)
TP =T P = = Bi(8) + —7" 1 gk Bi(0) — —57™ 1 gouiDo(1)gi0 — =5 B Bs(0)+
o T Tt T 9 402 mk 402 mREA T II T 902
1 m ’Ym’)/t ,ym
_ — —E —E ta. £ L B—
+ 202 B, (v )glt Ao (’V gtm) + dov m(fy gzt) + Aoy 9teCim, + Aoy Wim B
i m
(2 L omog, g
i (Ban(o)+ o 00k = 29) (o)~ B ) (5.5)
1 & 1 L5 v g
rle=r,%=_—FEa)— —p,(V)git + —FEi(0) — - 3.9
iq, ot 20 (Oé) 20 po(’y )g t + 2% (U) 200 pO(O') ’ ( )
popy = 0 (3.10)
T, b = p,(log(ac)) , (3.11)
T, =0, (3.12)
m o __ m __ 1 m gmk o o mk 1 ,ym
0 =Ty = 320 — S Bule) = £ (57 Bulo) = Ton0)) | (313)
F b I‘ b 1 m Z m ~ 1
Poldo " doPo %po(ﬂ) - Epo(’y )glm + E m( ) + qo(a)

2
5o (0 + 5 00k = 28) (o)~ B B (319
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Iy =Tqp; =0, (3.15)
mk mk m m
m _ 9 iy, 9 4 _ b _
quqo - 9 QO(’-Y )gzk 4 Ek(ﬂ) 20 qo(a) + 4o po(ﬂ)
B kD 7"
2 (agmE - A
1o \9 k(o) - po(o) ) (3.16)
o1 1 1. 1
L0 = 559(8) + 557" gmkdo(@) = 2577 gmkPo(B) — —5a,()+
B ™ i YA
+ ﬁpo(/ﬁ) - %%W )gim + EEm(ﬂ)_
8 /1 1 "k DA
_ 2 (= — ok — 2 - B, , 3.17
5o | %) + 55 (V"7 gk = 28) o (0) = 5~ Em() (3.17)
1 1 1 I}
T % — — _ sl R . 3.18
aud; = 790(@) = 52Po(B) + ~do(0) = 5P, (0) (3.18)

The proof will be carried out in three steps, which we provide in the next subsections. In the
first step we compute all covariant derivatives Vx,Xp determined by two vector fields of the
adapted frame field (X4) = (Ei,po,qo) under the assumption 0 = 1. In the second step, the
determined covariant derivatives are used to compute the Christoffel symbols T 4G, still under the
condition 0 = 1. In the concluding third step, the Christoffel symbols T' Ag are determined with no
restriction on o by using classical transformation formulas for the Levi-Civita covariant derivatives

under conformal changes of the metric.

3.2 The first step

By Koszul’s formula, for any triple of vector fields X1, Xo, X3,

oV 51X, Xa) = 5 (10062, X))+ Xalg(361, )~ Xalg(3, X))~

~ g([X0, X, Xa) — 9([Xa, Xa], X1) +g<[X1,X2],X3>) C(319)

Using this formula, we may determine the functions g(V x, X2, X3), for a compatible metric g with

o =1, for with any choice of X7, X5, X3 in a set of vector fields of the form
{ )?, Po,d,, Where X is the lift of a vector field X on N } .
We get the following expressions:

VeV 9(VgY,2) = 6,(VXY, Z2) + 9(Sxv. Z) | (3.20)
= «
9(VY.py) = —100(JX,Y) | (3.21)

9V ¥ ,0,) = TR GFaY, B+ 1V (R 0o(X,B) — 100X, Y) . (3.22)

>
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where S is the tensor field of type (0,3) on N, defined by

J J J
9(Sxv, 2) i= D200 (X, 2)g0 (B3, Y) + T2 00(TY, 2)g0( By, X) = Togo(TX,V)g0(E;, 2)

= (0%
Vepo:  9(Vgpo, Z) = 1 90(JX. Z) (3.23)
9(VzPo,P,) =0, (3.24)
1o 1,
9(VgPo,do) = 7 X(@) + 7Po(7")90(X, Ei) (3.25)

Vit 9(V3a02) = ;X(0100(En 7)) - {201 '00(X, B) -
X, 2, B) + {80(IX.2),  (3.26)
9V 30,p,) = 1 X(0) ~ 10,(1)90(X. Fy) (3.27)
9(Vzdo qo) = i)?(ﬂ) ; (3.28)
Y,V 9(V.V,2) = %go(ﬂc 7), (3.29)
9(Vp,Y,p,) =0, (3.30)
9V, ¥,0,) = Pa(1)90 (Y, Br) + 17 (a) (331)
Vo.Po:  9(Vp,PpZ) =0, (3.32)
9(Vp,PosP,) =0, (3:33)
9(Vp, Do, d,) = %po(a) ; (3.34)
Vodot  9(Vo,00 2) = 1po(4)00(Ei 7) — 1Z(0) (3.35)
9(Vp,40,D,) =0, (3.36)
9(Vp, s o) = LAGH (3.37)
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VoV 9(Va,7.2) = (V0 0B 7))~ 12( (Y, B)-
- 9V 2L B + 1BV, Z) . (339)
9(Va,7,00) = 1 (V@) = D)0, Y)) | (339)
9(Va,Y,0,) = ?i) : (3.40)
Vapo:  9(VapnZ) = 12o(1)90(Ei Z) — 1 7(ar) (3.41)
9(Vq,po:P,) =0, (3.42)
9(Vq,Po: o) = poflﬁ) ; (3.43)
Vado: 9V, 2) = 50,0)00(E: 2) - 1 7(9) (349
0(Va,d0,) = 3a,(a) ~ P42 (3.45)
oV, 000, = 22 (3.46)

From this list, we may recover the explicit expressions of the covariant derivatives of vector fields
of the adapted frame field (Ei, Py, d,) as follows. We claim that the dual coframe field (E’, e
is given by the following 1-forms (here, (¢°™) := (g;;) "' = (g0(E:, Ej))_l)
i wn * 2 Lo om 7" 5
E' = g<g "Er — Do, ) s Py = g<qo + = (V" gme — 28) Do — —Enm, ) ;
e @ e @

2
*— gl Zp -] . (34
qa g<apo,) (3.47)

This claim can be checked using (2.11) and observing that the right hand sides in the above

equalities are 1-forms that satisfy the equalities

“E i i i i ’Yia
EYE)) = g% ge; =0} . E'(po) =0, E'(q)) = g" L-gmi = -5 =0,
Sy 2™ ™ 2«
* L) = — 'miimlzo’ * :77:17
pO( ]) a 2 9j a Imj po(po) a2
* 25 k (0% ’ym’yk
_2F = (M ok — 2 &Y =0,
Po(do) cv2+cv2(,yvglC 6)2 o 2 Imk
* /1 * * 20{
qo( ]):0’ qo(po)207 qo(qo)_**zl
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Since any local vector field Z on M can be written in terms of the frame field (E'Z, Posd,) s
7= E(2)E: +v(2)p, + a3(2)a,

from the above expressions for the 1-forms Ei, ps, and g}, we get that for any pair of vector fields

X,Y on M, the Levi-Civita covariant derivative VxY is equal to

~

VxY = (gmkg(VXY, Ek) — %Q(VXK Po)) En+
| 59(VxYia.) + (V""" gmr — 28) 9(VxY,p,) — T IVXY Ep) ) pot
9
+(2o9xvip) )0, 349

Combining (3.20) — (3.46) with (3.48), we get the covariant derivatives we are looking for. We list
them in (3.49) — (3.57) (here, we denote by S;;,, the components of the tensor field S in terms of
the frame field (F;) on N):

VEEJ' = (g kgo(VEiEj7Ek) +g kSij\k—k 1 j) E.+
+ i@.(k.)JriE.(k.),
o i\ 9ik % i\ Gik

1 m ’Ym o ’Ym Wij
17 VF Gmpwij — ?go(inEﬁEm) - aSijm> Po — %qo , (3.49)

1 Y™w;
fapo(vk)gm - 4“”) Do » (3.50)

gmk N gmk R ,yf gmk:
Vid,= | =—Ei(Vgu) — ——Er(v'gu) — Zcﬁrgtzgmr + Tﬁwik—

; 1 1
- %Ei(a) + ZZpo(vt)git> B+
+ (210[@1(5) + %QQWmvkgmkEi(a) - %.(Q’mey’fgmkpo(vt)gn - %Ei(a) + %po('Yt)git_
_ gﬁi(’ytgtm) + gﬁm(vtgit) + 740’7 guect, — ZZBwim> Dot

1 -~ 1
—E(a) — —p. (7)) 51
+ <2a i(a) 2O[po('v )gn>qo, (3.51)

~ « ~ 1 A 1 m
VPoEi = 4 wikEm + <E2(Oé) + Zpo(’yt)git - 7w1m> po ) (352)
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Vp, Do = Po(log a)p, , (3.53)
Voo = (100 = L Bie@) ) B+ [ oba(8) = Lopar)gim + L Bonl0) )by » (354

poqo - 4po Y 4 k& m 20[p0 4a Pol7 )Gim 404 m\& Po » .
N mk mk __ v mk
Vo Bi = (S—Ei(v'gu) = T—Er(v' ) — ¢t grog™ + L Buogs—
4 4 4 4
,ym. ,}/m ~

E; -— Yo | Em
T E@) + Jona (a0 ) Bt

~

1 1 N 1
+ (Ei(ﬁ) + "y g Bi () — @vm'ykgmkpo(vt)git —

1 -
—5 E;
o 1z BE;(a)+

2a2

1 t YA ™5 t Yt Y, ol
5 it — ——Ei m)+ -—Em i im — 7 PWim |Po
+ 502P6(1)9it = 5= Ei(V gum) + = Em(7 9i) + ———guee 1oy Bwim | ot

1 A 1 t
=+ <2aE1(CM) - %po(v )glt> 9o > (355)
mk . mk __ ~
Va,Po = | = Po(1)gin = =~ Ei(a) | Bt
+( pu(8) = opy (3 gum + L Br() by > (3.56)
QOépo 4 Pol7 " )Gtm 4 m (& Po » :

mk ) mk R m m R
Vq,q = (gqo(vl)gm -9 _EB) - Laqo(a) + 7(}1%(5)) Ent+

2 4 2 4
1 1 1
+<m%m+mﬂ%@mmwmﬂ%%mmmimm+£ﬁw>
LA NSRS 1 ~ Po(B)
- QQO(’Y )gzm + 4o Em(ﬁ))l)o + <aqo(a) 20 ) 9o - (357>

3.3 The second step

Let us now denote by I" Ag the Christoffel symbols of the Levi-Civita connection of a compatible
metric g as in (2.12) under the assumption that the function o is identically equal to 1. Since
the T',§ are the functions that appear in the expansions Vx,Xp = I' ;X of the covariant
derivatives (3.49) — (3.57), all such Christoffel symbols can be determined by just looking at those
formulas. For convenience of the reader, we provide the complete list in the next lines

Y Wi

L= 9" 9o(V%, Ej, Ex) + g™ Sy + 1

(3.58)
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~

1~
L= *aEi(ngjk) + o Ej (7  gir )+

t 2 2a
1 1" e gl
40(7 7 ImkWij — o go(inEjaEm) - ;Siﬂm ’ (359)
a4, _ Wi
L,j°o=- 5 (3.60)
mk
m _ m ag Wik
Fip(7 - Fpoi - 4 ) (361)
1 ~ 1 Y Mw;
Flpo — F Po — E - k B vm . 2
ip, Pot 20 ( ) + 2apo(’y )g k 4 ’ (3 6 )
dbo _p %o _
Lpe =T, " =0, (3.63)
mk £ mk
Lig, =Tq P = LEi(Vtgtk:) - LEk(Vtgti) - lcﬁrgtzgmr + Lﬁwik—
° o 4 4 4 4
ol ™
- F it 3.64
1 Bi(0) + Ty (1')gu (3.64)
1 ~ 1 1 . B ~
Lo =Tq,i" = 5 EiB) + 157" F gk i) - 1oz 7" mkpo(V)git — 55 Bi(a)+
1 : m - ,ym - ’Ym’}/t ,ym
Pl it = —Ei(v' gim) + —Em(3'gi o — im > (3.65
+ 523 0P6(1)9it = = Ei(v gum) + = Em(Y'git) + == guCim — 7—Bwim , (3.65)
1 ~
Pde=r do=_—_F, i 3.66
iag =Ta,i” = 55 Bi(@) = 5 po(1 )i (3.66)
pogf) =0, (3.67)
pogz = po(log OZ) ) (368)
Iy 5e=0, (3.69)
m m 1 m grnk =
P90 = qupo = ZpO(’y ) - 4 Ek;(Oé) ) (370)
I Po=T_ Po=_— - im 7E’m ’ 3.71
ob =T B = 5o0,(8) = b, (7)gim + 1 Bin(a) (371)
Tpyae =Tap; =0, (3.72)
gmk ) gmk - ,ym ,_ym
r,m =2 Ygir — —F - — — .
SR 2 q0(7 )g k 4 k‘(/B) 20 qo(a) + Aoy po(ﬁ) ) (3 73)
T b = 5 0l8) + 5577 0mkale) — 157" gmikpa(B) — Syan(a)+
dode 20 To 2(12,7/ YV ImkYo 40427 Y 9mkDPo a2 1o
p pil ; 7" A
a9 e ! m 7Em ) N 4
+ 08 = 20,0 ) gim + T En(8) m (374
1 1
Do, = ~ay(e) = 5-b,(3) - (375)
Note that the equalities I‘ig‘ = Fp i Lig 4= Fq ; , etc. are also consequences of the fact that the

torsion of the Levi-Civita connection is O and that the pairs of vector fields {E;, p, }, {E; q,}, ete.,

commute.
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3.4 The third step

Assume that ¢ is one of the metrics considered in the previous two subsections (i.e., compatible
with 0 = 1) and denote by D the Levi-Civita connection of a conformally scaled metric g¥ = €2%g
for some smooth . It is well known that, for any pair of vector fields X, Y of M (see e.g. [4, Th.
1.159]),

DxY =VxY 4+ X(p)Y +Y(p)X — g(X,Y)grad(yp) . (3.76)

If we expand grady in terms of the frame field (EZ, Posdy) S
grady = (gradp)™ E; + (gradg)Pp, + (gradp)®q, , (3.77)

we see that the Christoffel symbols I’ Ag for a compatible metric g with ¢ = 1, as considered in
the previous subsections, and the Christoffel symbols T, for the conformally scaled metric g%

are related to each other by

T =T, + Ei(9)d)" + ()67 — gij(grade) P | (3.78)
L0 =T[5 — gij(grade)P (3.79)
L =Ty — gij(grade) ™, (3.80)
Lo =T, " =T +p,(0)d]" (3.81)
Lo =T, Y =T+ Ei(p), (3.82)
Do =T, 0" =T, (3.83)
D =T, 7 =T + @) — L gu(aradg)™ (359
Liqr =Tq,i" =T = %tgti (gradg)™ (3.85)
Fig: = qu?o = Pigj + Ei(‘ﬂ) - %tgti(gl"ad@)q" ) (3.86)
popy = Lpyby » (3.87)
Ly p = Top0 +200(0) (3.88)
Lo =Top0 s (3.89)
m m m B
Lo =Tap, =lpa — §(grad<ﬂ) " (3.90)
Ty o = Tap0 =T a0 + () — %(gradso)po , (3.91)
Ty o = Dol =Ty 3+, () — 5 (gradp)® (3.92)
Lopa, = La,a, = g(gradso)ﬁ"" , (3.93)
Lo,a =Ta,a; — g(grad@"f’ : (3.94)

Ly o =Tqa +2a,(p) — g(gradga)qo . (3.95)
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We now recall that any vector field X on M decomposes into the sum

X = BB+ 5300, + a5 (X)a, =9 (X" B - Lo, ) Bt

) . N ) (3.96)
m T s
g <X, Zdo+ — (V" gk — 28) D, — Em) P, +9 <X, po> Qo -
@ e o e
From this, we get that the components (grade)? of the gradient of ¢ are equal to
E ik 1 7
(grade)™ := g™ Ex(p) = —po(®) ,
2 1 m ,_Ym -
(gradg)™ := ~a,() + —5 (v"7 gk = 28) D (f) = ~—Em(f) , (3.97)

2
(gradp)de := apo(w)-

Inserting these expressions and (3.78) — (3.95) into (3.78) — (3.95), we get the explicit formulas for
the Christoffel symbols T' ,§ of the scaled metric g¥ = €2?g. They are:

7

n
1 7 o mk Wij 1 A
T, = g 90(V%, By, Er) + g7 Sy + 2 o+ B + Ej(0))

mk ’Ym
~ 9ij (g "Ex(p) - apo(v?)) ; (3.98)
1 ~ 1 ~ i 1 ,ym ’Ym
Po _ (~F g (~F g, k . _ 1 g
Fij = %Ez('y gjk?) + %Ej(fy gzk) Aoy —"y ImkWi; — o go(VOEiEJ,Em) o SZJ|m
2 1 m ,ym ~
— 9ij (qo(@) + — (V"  gmr — 28) po() — Em(so)> , (3.99)
(0% « (6
wij 294
Lj=—oF == Po() (3.100)
mk
m m ag Wik m
Lip, =Tpi == tp(0)d", (3.101)
LA 1 ’ymwim o
Dy =Ty 7 = 5= Bi(a) + 5-p,(V)gin = — 7 + Eilp) (3.102)
Do =Ty =0, (3.103)
” m gmk N gmk R ,YZ " gmk
g =T, = TEi(’Ytgtk) -7 Eu(v' gi) — Zcﬁrgteg 4 1 Buwip—
m m t m
T n b t m v mk 1 Y
- ——k; — i 0" — Gt E - — , 3.104
B+ Do+ a0 — T (7Bl - Tope)) (310
Pe= T, P = L B(B) + 57" ki) — 57" gk DoV )it — 55 B (0) +
9, do? 200 g 40[ m 40[2 mkFo it 20[2 [
! 7" 5 7" 5 "t y™
+ ﬁﬂpo(’yt)git - @Ei('ytgtm) + @E (W git) + dor gtécfm - Eﬁwim—
t
Yy 2 1 m 'y ~
— 5 Yt (aqo(so) + o2 (V" g — 28) Py () — —En(y )) , (3.105)
P =1 % = L Bi(a) — Lp, (v + Bile) — Lg Zpo(e) (3.106)
19, do? 200 200 o 2 a o )
Ly, =0, (3.107)
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T, be =po(loga) +2p, () , (3.108)
Lpps =0, (3.109)
m m 1 m gmk - 83 mk 3 ,}/m
N =Tofh = ") = S B = § (B - o)) . G0
[ Po=T, Po= ip (B) - ﬂp (v")gim + ﬁﬁm(a) + qo(p)—
Podo QoPo 90 4o ° 4o o
o (2 1, ok DUEPS
-3 (aq()(w) + o2 (7 Y 9mk — 2/8) po(‘ﬁ) - aE7n(<p)> ) (3.111)
Fpa =T, =0, (3.112)
gmk ) mk __ ,ym ,ym
Lya = T%(’Y )gir — TEk(ﬂ) - %qo(a) + Bpo(ﬂ)*
B ks "
-5 (9 "Er(p) — —Dpo(9) | (3.113)
(6%
Ty 5 = 5-0u(8) + 557" Imkto(0) = 137" giba(B) — -5 Ba,(0)+
do90 - 2O[q0 20{27 ,-Y ngqo «@ 40[27 ,-Y gmkpo Oé2 qo «
P - a5 ¢ m 7Em -
+ 5520P0(B) = 546 (v)gim + -~ Em(B)
8 (2 1 & DU
- A - G m mk — 2 - 7Em ) 3114
5 (5% + (V" gk — 28) P, () o () (3.114)
1 Po(B) B (2
| A T—— S CAEO ) - . 3.115
apd; = 5 lo(@) = 75 +20,(0) = 5 { —o() (3.115)

In order to conclude, it is now sufficient to observe that the metric (2.12) with an arbitrary o > 0
can be obtained from the metric considered in subsection 3.2 (i.e., with ¢ = 1) by applying the
scaling factor e with ¢ := %1og o. Hence, the desired expressions for the Christoffel symbols are
given by (3.98) — (3.115) with ¢ replaced by 3 logo at all places. These substitutions yield (3.1)
- (3.18).
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1 Introduction
In this paper we consider the fractional differential equation

(CD3+$> t)+qt)z(t) =0, n—1<~vy<n, n>3, (1.1)
where ¢ : R — R is continuous and ¢(t) # 0, together with the boundary conditions

tD(@)=0, z®B)=0, 0<i<n—1 and i+#k, (1.2)

where k is a natural number between 1 and n — 1.

Over the course of more than a century, numerous Lyapunov-type inequalities have been derived,
taking into account their applications in various areas, such as eigenvalue problems, stability
theory, oscillation theory, and the estimation of intervals of disconjugacy. The paper by Lyapunov
[14] in 1907 is considered to be the first work in this direction. In recent decades, especially
with the development of fractional differential equations, significant advancements and further
generalizations of Lyapunov inequalities have been obtained. To explore some of the research that
has provided some of the motivation for studying the problem (1.1)—(1.2), first note that Cabrera
et al. [7] derived Lyapunov-like inequalities and established a lower bound for the eigenvalues of

the fractional problem

(CDngx) t)+q@®)x(t)=0, a<t<db, ~ve€m—1,n], n>4,

It can be observed that the boundary value problem discussed in [7] is a particular case of the
problem considered here, that is, of (1.1)—(1.2) with the parameter k taken to be 2. Additional
notable work for k¥ = 2 can found in [1,7,23,24]. Compared to the problems investigated in

[1,7,23,24], our boundary condition (1.2) is more comprehensive and inclusive.

In [6], Bohner et al. applied a Vallée-Poussin theorem to obtain explicit inequality criteria for the

solvability of the problem consisting of the Caputo fractional functional differential equation

(“DY ) (1) + Y _(Ti)(t) = f(t), t€ [a,b],
i=0
and the boundary condition (1.2), where the operator T; : C' — Lo, with C' = C([a,b],R) can
include a delay or advanced argument, an integral operator, or various linear combinations of such
things. In another work, Domonshnitsky et al. [10] obtained such criteria for fractional functional

differential equations with Riemann-Liouville derivatives again based on the Vallée-Poussin theo-
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rem. Rong and Bai [21] obtained a Lyapunov inequality for the problem

(CDg+.’L') ) +qt)x(t) =0, a<t<d 1<vy<2

z(a) =0, (“Dfz) (b)=0, 0<pB<I,

where 1 < v < 14 3. Extensive research has been conducted on Lyapunov inequalities using differ-
ent forms of fractional derivatives such as in [5,11,12,15,16,22|. For a comprehensive exploration of
Lyapunov inequalities, a detailed study can be found in the recent monograph by Agarwal, Bohner
and Ozbekler [2].

Using estimates of the Green’s function has been a common technique employed in the study of
Lyapunov type inequalities. In cases where the Green’s function possesses a fixed sign, estimating
it becomes relatively straightforward compared to cases where the sign is unknown. Nevertheless,
several researchers have successfully managed to find estimates and derive Lyapunov-type inequal-
ities even if the sign constancy of the Green’s function is not known; for example, see the recent

papers [21,22] and the book [2].

The present work is divided into six sections. Section 1 provides an introduction and background
information pertaining to the problem. Preliminaries concepts are introduced in Section 2. In
Section 3, we obtain a Lyapunov inequality that improves the results in [7]. In the process, we
are able to obtain a new Lyapunov inequality for a third-order linear differential equation (see
Corollary 3.6 below). In Section 4, we obtain a Lyapunov inequality under a restrictive condition
(see (4.1)). A Lyapunov inequality for a general k with 1 < k < n — 2 is discussed in Section 5.

We conclude this work in Section 6 with some applications and open problems.

2 Preliminaries

The monographs [13, 18] offer a thorough examination of the basics of fractional calculus. The
recent publication [22] contains the required fundamental definitions and lemmas utilized here in
this study. Next, we discuss the Green’s function and its sign in order to enhance our comprehension

of the primary outcomes.

Lemma 2.1. Assume that vy € (n—1,n], 1 <k <n-—1, and f € L. Then the unique solution

of the fractional boundary value problem

(“DY a)(t)+ f(t) =0, a<t<b, 1)

2 (a) = 2®(b) = 0, 0<i<n-—1 and i#k,
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is given by ,
() = / Gr(t, 5)f(s)ds, (2.2)

where Gi(t, s) is the Green’s function given by

(V=D =2) (=Kt —a)"(b—s)T" T = (t-5)T", a<s<t<b,

?s“»—

1

Gk(t, 8) = W

(=D =2)- (v =kt —a)(b—s)""", a<t<s<b

fall

Proof. Consider the equation
(“Dya)(t) = —f (D).

Then, using some fundamental concepts in the fractional calculus (see [13,18]), we see that

(134 (C DY 2))(t) = =L (1),

which, in turn, implies that there are constants b; € R, ¢ =0,1,...,n — 1, such that
1 t
z(t) =bo+bi(t—a)+ byt —a)?+ -+ by_1(t —a)" "t — o) / (t —s)7"Lf(s)ds,

for t € [a,b]. From the boundary condition z(9)(a) = 0 for 0 < i < n — 1 and i # k, we obtain
bj=0for 0 <i<n-—1,i%#k. Since x(k)(a) # 0, we have b # 0. Therefore,

I -
z(t) = bp(t — a)* — W~/a (t— )7 f(s)ds, (2.4)

and so

") (b) = klby — (v =Dy ;(27))' ~(y=k) /b(b —5)7 kL (s)ds.

Applying the boundary condition z*) (b) = 0 gives

_ _ — b
b~ O 1)(vk!r2()7) (v ’f)/ (b— 577" f(s)ds.

Using this value of by in (2.4), we obtain

J— — Y — b t
a(ty = & ””k!ﬁ(l) O =8 (4 gy / (b— s)r—k-1 f(s)ds—ﬁ / (t— )1 f(s)ds, (2.5)
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or

oft) = DO OB [ ko 4 o

b
+/t (ta)k(bs)v’“f(s)ds] Fl/at(ts)vlf(s)ds. (2.6)
This proves the lemma. O

The following lemma provides some valuable information about the sign of the Green’s function.

Lemma 2.2. Ify€ (n—1,n] and v >k + 1, then Gi(t,s) > 0 for all t,s € [a, D).

Proof. Clearly,

Gi(t,s) = (Y=D(y=2) - (v=k)(t—a)f (-5 >0,

1
L(vy)k!

fora<t<s<b Ifa<s<t<b, weobtain

Gult:5) = T (1= Dy =2) (1= Bt = ) o= )™ = (e =97
> 0= DO =2 (= Bl =) (= (=
= 0~ DD (=B = = e
— -0 [ D6 -2 - -]
> ﬁ(p 5771 [;k(k — 1) (1) — 1} =0,

where we have used the facts that vy > k+1,t—a>t—s,and b— s >t — s, so that (¢t —a)*(b —
s)Y7F=1 > (t — s)k(t — 5)Y~F~1. This completes the proof. O

3 Main results: Lyapunov type inequalities—I

We begin this section with another lemma on the properties of Gy (t, ).

Lemma 3.1. Ify € (n—1,n] and v > k+1, then Green’s function Gi(t, s) given in (2.3) has the

property that 86’57(:’5) >0 for allt,s € [a,b]. Furthermore,

Gt 5) < Gilb,s) = ﬁ L= =2) (= R~ @) — s (b 5!
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Proof. For a <t < s < b, we have

aGk(t78) o k
ot KID(y)

(=1 =2 (y = k)t — ) b —s) 7+ 20,

Fora<s<t<b,

e = kzrkm (=D =2) (= R = @) o= )T e ()
e R I ]
- (Z“(_v)l) _(k _1 (=2 (= k- )=t - S)W_Q]
(v—1) [(k=1D)! - _
) _(kfl)!_l (t—s) =0,

where we have used the fact that v > k4 1. Therefore, the function Gg(t, s) is nondecreasing with

respect to t, and this implies G (t, s) < Gg(b, s) for all ¢, s € [0,1]. This proves the lemma. O

The following theorem is the major result in this section.

Theorem 3.2. Assume that v € (n— 1,n] and v > k+ 1. If a nontrivial continuous solution of

(1.1)~(1.2) exists, then

b
/ [kl!(W D0 =2) (=R =) (b= = (b= fg(s)lds > T(7).  (3.2)

Proof. Let x(t) be a nonzero solution of (1.1)—(1.2) and let X = C([a,b]) be a Banach space

endowed with the norm

]l = sup [(t)].
<b

aif

Then, for a solution x of (1.1)—(1.2), by Lemma 2.1,

b
x(t) = / Gr(t, s)q(s)x(s)ds.
Since ¢(t) cannot be zero,

1 /71 e _
lz(t)] SW/Q [k!(v—1)(7—2)-“(v—k)(b—a)’“(b—S)7 P (b= )77 fa(s)] | (s)lds,

which yields (3.2). This proves the theorem. O
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We have the following consequences of this result.

Corollary 3.3. Under the conditions of Theorem 3.2, if (1.1)—(1.2) has a nontrivial continuous

solution, then
b
ke kI (y — k)
_ g\ —k-1 > A Y )
= atsas = T (33)

Corollary 3.4. Under the conditions of Theorem 3.2, if (1.1)—(1.2) has a nontrivial continuous

/|q |ds>k'r( o ) (3.4)

If we set n = 3, then v € (2,3], and since v > k + 1, this means we take k = 1. The problem
(1.1)—(1.2) then reduces to

solution, then

(3.5)

Fractional BVPs of the form (3.5) were studied by Qin and Bai [19,20]. Applying Theorem 3.2,
Corollary 3.3, and Corollary 3.4 to (3.5), we obtain the following corollary.

Corollary 3.5. If (3.5) has a continuous nontrivial solution, then

b
[ |56 00005772 6- 97 lalids = T 5.
’ y—2 F(;—Y B 1)
| o= atotas = =, (37)
and , - ,
/ lq(s)|ds > W (3.8)

As discussed earlier, (3.6) implies (3.7), and (3.7) implies (3.8). In particular, applying inequality
(3.8) of Corollary 3.5 to the third-order boundary value problem

" (t) + q(t)z(t) = 0,
z(a) = 2" (a) = 2'(b) =0,

(3.9)

we obtain the following result.

Corollary 3.6. If (3.9) has a continuous nontrivial solution, then

b 1
[ laolds > = (3.10)



266 S. N. Srivastava, S. Pati, J. R. Graef, A. Domoshnitsky & S. Padhi CUBO

26, 2 (2024)

As far as our knowledge is concerned, Corollary 3.6 is new in the literature. The boundary
conditions used in (3.9) are different from those of Aktag and Cakmak [3,4] and Parhi and Panigrahi
[17]. Our Corollary 3.6 can not be compared to the results in [5] because of the restrictive condition
x”(a) + 2”(b) = 0 (see the third condition of (1.7) in [5]) required there. Similarly, Corollary 3.5
can not be compared to Dhar and Kong [8,9].

Next, suppose that n > 4. Our parameter k considered in (1.2) varies from 1 to n — 1. In
particular, if & = 2, we obtain the results of Cabrera, Lopez, and Sadarangani [7]. Our Green’s

function Gi(t, s) extends the Green’s functions obtained in [1,23,24] for a =0, b =1, and k = 2.

4 Main results: Lyapunov type inequalities—II

In this section, we derive a new Lyapunov type inequality, different from the ones presented in the
previous section. We use the maximum of the Green’s function G(¢, s) given in (2.3) to find a new
inequality for (1.1)—(1.2) for a general k, 1 < k < n — 1, with the price being that the following

restrictive inequality is imposed:
El>(FH=-1)-(y=k)(H-k-1). (4.1)

As prescribed by our boundary condition (1.2), we consider the following cases:

(A1) z(0) =2"(0)=---=z"D(0) =0, 2/(1) =0

(Ag) z(0) = 2/(0) = 2™ (0) = --- = 2»=D(0) = 0, 2”"(1) =0

(A3) 2(0) = 2'(0) = 2”(0) = 2""(0) = --- = 2D (0) = 0, (1) = 0
(A1) 2(0)=2'(0) =2"(0) =--- =2"2(0) =0, 2" V(1) =0

Remark 4.1. Observe that:

(B1) For k =1, that is, in the case (A1), we can take v = 2.5 € (2,3]. Then, condition (4.1) is
satified, i.e.,

1=k'>(n—=1)--(y—k)(y—k—1)= (25— 1)(2.5—2) = 0.75.

(B2) For k = 2, that is, in the case (Az), we can take v = 3.5 € (3,4], so that condition (4.1)

becomes

2=kl>(y—1)-(y—k)(y—k—1) = (3.5 —1)(3.5 — 2)(3.5 — 3) = 1.875.
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(Bs) For k =3, that is, in the case (As), we can take v = 4.4 € (4,5], and (4.1) becomes

6=k'>(y—1)(y—k)(y—k—1) = (4.4 —1)(4.4 — 2)(4.4 — 3)(4.4 — 4) = 4.5696.

The following lemma gives an upper bound on Gy/(t, s).

Lemma 4.2. Let vy > k+ 1 and assume that (4.1) is satisfied. Then

1 k(b—a) ! ((v=2)(y=3) (v —k)(y —k—1)\ *
Gty A (02209 0Bk 0y E
Proof. By Lemma 3.1, we have Gi(t,s) < G(b, s). Set
Fs) = (v = Dy = 2)- (= K)(b— ) (b — )™ — (b— s~ (43)

R

then G4, (b, s) = = F(s). To obtain the maximum of F(s), set F’(s) equal to zero to obtain

F/(S) — _('7_ 1)(7_2).-.15!7—15)('7_]@_ 1) (b_a)k(b_s)'y—k—Q_'_(,y_ 1)(b_s)fy—2 =0,

which is true if and only if

Clearly, s* < b. Also, if s* < a, then

El<(y=2)(v=k)(y—k-1),

which contradicts (4.1). Hence, s* > a.

Now,

F'(s) = (b -DOr=2)---(y-kO k-1 -k-2) (b— S)'y—kfi’)(b_ a)k

k!
— (v =Dy =2)(b—s)""
_ (7—1)(7—2)(17—8)7_16_3 (’7_3)(V_k)(,}];'_k_1)(’7_k_2)(b_a)k_(b_s)k: )

If we set

os) = (7—3)~--(7—k)(7k!—k—1)(v—k—2)(b_a)k_(b_s)k’
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then
g@ﬂ:(7—$-~h—kﬂzrk—1X7—k—2Nb_®k_(7—®-~h—kﬂv—k—1%b_®k

_ (773)”.(7;!]{:)(7711:71)(bfa)k(’}/*k*2*’7+2)

kw—@~«v—mw—k—n
k!

= (b—a)* <0.

Therefore, F(s) attains its maximum at s = s*, and the maximum of F(s) is given by

F(s) <max F(s) = F(s*) =

= 0= D=2 et (OISR g

— )i (v —KN v —k—1 o .
_(W ) Wklﬂv )> (b— a)

:@_®%4<W—®~KWLHW—R—D>kVW—UM—;%~W—@

_m—m~wv—mw—k—n]

k!

:w_wwlcv—m~«v;mw—k—m> " W—@;ﬁv—mw_l_w+k+”
_ i (=2 (=R =k =D\ T (7=2)- (k) k1)
=kb-a) ( k! ) Ky —k—1)
:kw—@%ﬂ(W—m~«v—mw—k—n)%1

(y—k-1) k!

Consequently, (4.2) holds, and this completes the proof of the lemma. O

Next, based on the above lemma, we present our main inequality in this section.

Theorem 4.3. Ifv > k+1, (4.1) is satisfied, and a nontrivial continuous solution of (1.1)—(1.2)

exists, then

y—1

) k=) i e
/'q'“> R —a) <w—m~«v—mm—k—w) ' (4.5)

As before, we obtain the following corollaries.

Corollary 4.4. Let v € (2,3) and (v — 1)(y — 2) < 1. If a nontrivial continuous solution of the

fractional boundary value problem (3.5) exists, then

’ L(%) 1
e G T
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Proof. This can be proved by letting k =1 in (4.1) and (4.5). O

Corollary 4.5. Let v € (3,4) and (v —1)(y — 2)(y — 3) < 2!. If a nontrivial continuous solution

of the fractional boundary value problem

(c D(Lx) (t) + q(t)z(t) =0, 3< <4, W)
w(a) = 2'(a) = 2" (a) = 2" (b) = 0
exists, then o
[z 52058 (=)
Proof. This can be proved by letting k = 2 in (4.1) and (4.5). O

Corollary 4.6. Let v € (4,5) and (v — 1)(y — 2)(y — 3)(y — 4) < 3!. If a nontrivial continuous

solution of the fractional boundary value problem

(D7) () +ahye() =0, 1<y <5, W)
2(a) = o'(a) = 2" (a) = 2" (a) = 2" (b) = 0

exists, then -
I (e e

Proof. This can be proved by letting k = 3 in (4.1) and (4.5). O

5 Main results: Lyapunov type inequalities—III

In Sections 3 and 4, we obtained two different Lyapunov-type inequalities. In this section, we
obtain one more such inequality that is also different from the previous ones. Here we will have
the same integrand that appeared in (3.2) in Section 3, whereas we only had ¢ as the integrand
in (4.5) in Section 4. Although the condition v > k + 1 is required in both of these sections, the
inequality (4.1) prevents us from considering many types of boundary conditions. For example,

from the observations (B2)—(B3) and condition (4.1), we see that we cannot ask that k < n — 2.

In this section, we avoid condition (4.1) and find a general Lyapunov-type inequality for (1.1)

together with the boundary condition (1.2), which is valid for the case 1 <k <n — 2.
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1 Ef(b—a)y " (y -k —1)77F1
M= wax{ L= D=2 - ) b 7
Kb—ay™ (=23 (kD) -
(v—k-1) k! ’ ’
(b—a)y-!

Lemma 5.1. Let v > k+ 1. The inequality

1
Gp(t < —M 5.2
t,?é?(fb] k( 78) = F(’Y) ) ( )

holds, where M is defined in (5.1).

Proof. We have I'(7)Gy(t,s) = H(y—1)(y—=2) - (v — k)t —a)*(b—s)VF 1 fora <t < s <b.
Now,
oG, k

NZr =7~ D=2 (r=k)(t—a)"(b—s)F 7 >0

implies that G (t, s) is non decreasing with respect to t. Hence, I'(7)Gg(t, s) < Gi(s, s)I'(7). Set
T'(v)Gg(s,s) = g1(s). Then,

g1(s) = %(’Y —D(y=2)---(y—k)(s—a)¥(b—s)"F1,

d
and 2L = 0 if and only if
S

Clearly, a < s* < b, and

2
TI =1 =2 (3= Rk~ (s — )20 — 57"
—k(y—k—=1)(s— a)k_l(b - 5)7_’“_2 —k(y—k—=1)(s— a)k—l(b _ S)“r—k—2
+(y—k=1)(y—k—=2)(s—a)"(b—s)77"7

i(v =1 (y = k) (s = a)* 2 (b= )T P k(K — 1)(b— 5)*

T K
— 2=k =D =)= s)+ (7= k=l =k =2)(s ~a)’] (53)
Now, 5™ —a = k(bi:la) and
<b—8*)=(b—a)—k(b_a) _(=al-k-1)

(v—1) (v—1)
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Thus, from (5.3), we have

g _ (=D =2)---(v—k) KE=2(b — a)V3(y — k — 1)7—k~2 -

Pl k! (y— 1)+

which shows that g;(s) attains its maximum at s = s*. Hence,

k(b —a)Y " (y -k —1)7F1
(y—1)pt '

max  G(t,s) =

e TR (y-D(y=2)--(v—k) (5.4)

Next, suppose that a« < s <t < b. Since v > k + 1, Gg(¢, s) is nondecreasing with respect to ¢.
Thus, for a < s <t < b, we have

1

max ka(t7s) = Gi(b,s) = e

a<s<t<

F(s), (5.5)

where F(s) is given in (4.3). Clearly F'(s) = 0 if and only if s = s*, where s* is given in (4.4).
Moreover, s* < b, F(s) is nondecreasing for s < s*, nonincreasing for s > s*, and attains its
extreme (maximum) value at s = s*.

First, suppose that a < s*. Then F(s) attains its maximum at s = s*, and the maximum value of

G (t, s) is given by

~y—1

_ o L kb—a)t ((y=2)(y=3) (v =k -1\
i Gult,s) = Ga(o,5%) = O ( - (59)
Finally, suppose that s* < a. Then,
max  G(t,s) < max Gg(b,s) < Gg(b,a)
a<s<t<b a<s<b
(b—a)!
Y (D) (=2 (v — k) — k). .
(= D=2 (= F) = kY (5.7
Therefore, in view of (5.4), (5.6), and (5.7), the lemma is proved. O
Theorem 5.2. Let v > k+ 1. If z(t) is a nonzero solution of (1.1)-(1.2), then
b
I'(v)
L|¢mﬁ> ), (5.8)

6 Discussion and conclusions

In this section, we obtain Lyapunov-type inequalities for fractional differential equations of various
orders and with different boundary conditions. We also compare our results with some existing

ones in the literature.
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6.1 The case v € (2, 3]

Let v € (2,3]. Since v > k+ 1 and v > 2, we have k = 1. In this case,

y—2
M, — max {(b oy (”‘2> b—a)y -2 (b —a) 2)} .6

v—1

where My = M|,—; and M is given in (5.1). Now 2 < v < 3 implies (y —2)""2 > v — 2, so
_ y-1 (V=2 T -1 -2
M, =4 (b—a) P s (b=a) (v =2) : (6.2)
We then have the following corollary.

Corollary 6.1. Let v € (2,3]. If z(t) is a nonzero solution of

(6.3)
z(a) = 2" (a) = 2'(b) =0,
then . .
/ lq(t)] dt > % (6.4)

Since (b —a)’72 > (7711)7,2 holds if and only if b > a + ﬁ, we obtain the following corollary

from Corollary 6.1.

Corollary 6.2. Let v € (2,3] and b > a + ——. If 2(t) is a nonzero solution of (6.3), then
v 71

b
/a al0) i > 7 a)v_Fl((Vv) I (6.5)

Now we consider the problem (3.9). Here n = 3, v = 3, and k = 1. In this case, Corollary 3.6
shows that if (3.9) has a nontrivial solution, then (3.10) holds. Corollary 4.4 cannot be applied
because (v — 1)(y —2) = 2 > 1 and so (4.1) fails. By Corollary 6.1, if = is a nonzero solution of
the problem (3.9), then

’ 2
/a e > (6.6)

holds. If b > I + a, then max{(bga) ,(b—a)?} = (b—a)?. Consequently, (6.6) yields (3.10). On,

the other hand, if b < § + a, then max{@, (b—a)?} = (b;—a) In this case, (6.6) yields

b 4
/ (ol dt > 2 (6.7)
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6.2 The case v € (3,4]

Let v € (3,4]. Since v > k+ 1 and k # 0, we consider the following two cases: k =1 and k = 2.
First, suppose that k = 1; then Theorem 5.2 yields the following corollary.

Corollary 6.3. Let vy € (3,4]. If z(t) is a nonzero solution of

(“Dz.) () + g =0,

(6.8)
z(a) = 2"(a) = 2" (a) = 2/ (b) =0,
then .
[ awlan> 22 (6.9)

where My is given in (6.2).

Corollary 6.4. Lety € (3,4] and b > a + ﬁ If x(t) is a nonzero solution of (6.8), then (6.5)
holds.

Finally, suppose that k = 2. Then Theorem 5.2 reduces to the following corollary.

Corollary 6.5. Let vy € (3,4]. If z(t) is a nonzero solution of

(°Dz.) () + a0 =0,

(6.10)
z(a) = 2'(a) = 2’ (a) = 2”(b) = 0,

then .

/ lq(t)] dt > % (6.11)
where

{200 =2 =37 2-a) ! ((1=2)( =3)\ T Ay —3)b—a)!
MQ_{ (v =12 Cov-3 ( 2 ) ’ 2
(6.12)

In this paper, we obtained Lyapunov-type inequalities for higher-order fractional differential equa-
tions of Caputo-type with general two point boundary conditions. The assumption that v > k+1
helped us to analyze the signs of the Green’s function G(t,s) and its derivatives with the price
that k # n — 1. Similarly, by our assumption, we have k # 0. Therefore, it would be interesting to

discover a Lyapunov-type inequality for problem (1.1) for either of the boundary conditions

tD(a) =2 D)=0, 0<i<n—2
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or

tD(a)=z() =0, 0<i<n-—1.

This is left to the reader.
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ABSTRACT

We describe the digraphs that are dual representations
of finite lattices satisfying conditions related to meet-
distributivity and modularity. This is done using the dual di-
graph representation of finite lattices by Craig, Gouveia and
Haviar (2015). These digraphs, known as TiRS digraphs,
have their origins in the dual representations of lattices by
Urquhart (1978) and Plos¢ica (1995). We describe two prop-
erties of finite lattices which are weakenings of (upper) semi-
modularity and lower semimodularity respectively, and then
show how these properties have a simple description in the
dual digraphs. Combined with previous work in this journal
on dual digraphs of semidistributive lattices (2022), it leads
to a dual representation of finite meet-distributive lattices.
This provides a natural link to finite convex geometries. In
addition, we present two sufficient conditions on a finite TiRS
digraph for its dual lattice to be modular. We close by posing

three open problems.
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RESUMEN

Describimos los digrafos que son representaciones duales de
reticulados finitos satisfaciendo condiciones relacionadas con
encuentro-distributividad y modularidad. Esto se obtiene
usando la representacion digrafo dual de reticulados fini-
tos de Craig, Gouveia y Haviar (2015). Estos digrafos,
conocidos como digrafos TiRS, tienen sus origenes en las
representaciones duales de reticulados de Urquhart (1978) y
Plos¢ica (1995). Describimos dos propiedades de reticulados
finitos que son debilitamientos de la semimodularidad (su-
perior) y semimodularidad inferior respectivamente, y luego
mostramos cémo estas propiedades tienen una descripcién
simple en los digrafos duales. Combinado con trabajo pre-
vio sobre digrafos duales de reticulados semidistributivos
(2022) en esta revista, se tiene una representacion dual de
reticulados encuentro-distributivos. Esto entrega una cone-
xion natural a geometrias convexas finitas. Adicionalmente,
presentamos dos condiciones suficientes en un digrafo TiRS
finito para que su reticulado dual sea modular. Concluimos

presentando tres problemas abiertos.

Keywords and Phrases: Semimodular lattice, lower semimodular lattice, modular lattice, TiRS digraph, meet-

distributive lattice, finite convex geometry.
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1 Introduction

The first dual representation of arbitrary bounded lattices was given by Urquhart in 1978 [15].
Since then, many different authors have attempted to provide dualities and dual representations
of classes of lattices that are not necessarily distributive (see the recent survey by the first author
[4])-

In this paper we examine representations for finite lattices that satisfy conditions related to meet-
distributivity and modularity. The dual structures of these finite lattices will be TiRS digraphs
satisfying some additional conditions. It was shown by Craig, Gouveia and Haviar [6] that there is
a one-to-one correspondence between the class of finite lattices and finite digraphs known as TiRS
digraphs (see Definition 2.4 and Theorem 2.6). We remark that this correspondence generalises

Birkhoff’s one-to-one correspondence between finite distributive lattices and finite posets from the

1930s.

A goal of any representation is to use simple, familiar structures to represent the objects of interest.
Finite TiRS digraphs provide a straightforward generalisation of finite posets. Moreover, digraphs
are a well-studied class of mathematical structures and hence are well suited to be used as dual
objects. In addition, the first-order description of TiRS digraphs can be used to study the finite

ones with computational tools such as Prover9/Mace4 [11].

We introduce and study lattice-theoretic conditions which generalise both lower semimodularity
and (upper) semimodularity for finite lattices and seem to be more natural and simpler than
the conditions from [8]. We are also able to provide equivalent conditions to them on the dual
TiRS digraph of a finite lattice. We can combine our lattice-theoretic conditions with our previous
results in this journal [5] to characterise the dual digraphs of finite meet-distributive lattices, which

correspond to finite convex geometries.

Currently, the only known dual characterisation of finite modular lattices is given by the theory of
Formal Concept Analysis [8]. A rather complicated condition is available for the standard context
dual to a finite semimodular lattice [8, Theorem 42]. We are able to provide conditions on the dual

digraph of a finite lattice, which are sufficient though not necessary for modularity of the lattice.

The paper is laid out as follows. In Section 2 we provide some background definitions and results
that will be needed later on in the paper. Section 3 defines two conditions which generalise, respec-
tively, (upper) semimodularity and lower semimodularity. We focus on the generalisation of lower
semimodularity—a condition we call (JM-LSM) (see Definition 3.6). We characterise the dual of
(JM-LSM) on the dual digraphs of finite lattices. For completeness we state corresponding condi-
tions and results related to upper semimodularity. In Section 4 we combine the results of Section
3 with results from a recent paper by Craig, Haviar and Sao Jodo [5]. There, characterisations

were given of the digraphs dual to finite join- and meet-semidistributive lattices (and hence also
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finite semidistributive lattices). The combination of these dual characterisations gives us a charac-
terisation of the dual digraphs of finite meet-distributive lattices (also know as locally distributive
lattices). Furthermore, this allows us to describe a new class of structures that is in a one-to-one
correspondence with finite convex geometries. In Section 5 we give two sufficient conditions on a
finite TiRS digraph for the dual lattice to be modular. In Section 6 we list three open problems

and indicate why the task of describing digraphs dual to finite modular lattices is challenging.

2 Preliminaries

Central to the representation of a finite lattice that we will use is the notion of a maximal-disjoint
filter-ideal pair. This can, equivalently, be viewed as a maximal partial homomorphism from a

lattice L into the two-element lattice.

Definition 2.1 ([15, Section 3|). Let L be a lattice. Then (F,I) is a disjoint filter-ideal pair of L
if Fis a filter of L and I is an ideal of L such that FNI = &. A disjoint filter-ideal pair (F,T)
is said to be a maximal disjoint filter-ideal pair (MDFIP) if there is no disjoint filter-ideal pair
(G, J) # (F,I) such that F C G and I C J.

The following fact was noted by Urquhart. It is needed for our characterisation of MDFIPs in
Theorem 3.2.

Proposition 2.2 ([15, p. 52|). Let L be a finite lattice. If (F,I) is an MDFIP of L then \ F is

join-irreducible and \/ I is meet-irreducible.

The set of join-irreducible elements of L is denoted J(L) and the set of meet-irreducible elements

is denoted M(L).

Given a lattice L, we will add a set of arcs to the set of MDFIPs of L. The use of such digraphs for
lattice representation is due to Plos¢ica [12]. We point out that the original work using (topologised)
digraphs used so-called mazimal partial homomorphisms (see [12, Section 1]). It is easy to show
that these are in a one-to-one correspondence with MDFIPs. For a lattice L, we now present its
dual digraph G = (X, E) where the vertices are the MDFIPs of L. Plos¢ica’s relation E, when
transferred to the set of MDFIPs, is defined below for two MDFIPs (F, I) and (G, J):

(B) (F,)E(G,J) <= FnJ=0.

For finite lattices every filter is the up-set of a unique element and every ideal is the down-set
of a unique element, so we can represent every disjoint filter-ideal pair (F,I) by an ordered pair
(ta,}b) where a = A\ F and b = \/ I. Hence for finite lattices we have (fa, |b) E(fc, |d) if and only
if a £ d. For a digraph G = (V,E) welet tE ={y €V |zEy} and Ex = {y €V |yEx }. The

next lemma is easy to prove and it will be useful later on.
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Lemma 2.3. Let G, = (X1, E) be the dual digraph of a finite lattice L. If x = (fa,lb) and
y = (Te,ld), then

(1) oE CyE if and only if a < ¢;

(ii) Ex C Ey if and only if d < b.

Figure 1 shows three lattices and their dual digraphs. These three examples will be important
throughout this paper. To make the labelling more succinct, we have denoted by ab the MDFIP
(Ta, lb). We have also left out the loop on each vertex to keep the display less cluttered. Observe
that the directed edge set is not a transitive relation. The labels Ly and L] (as well as L which

appears later) come from the paper by Davey et al. [7].

1
b
a
C
0
N5 Ly
ca ea T
cb
GN5 be GL4 1

ab l dc l
ab de ea I
Figure 1: Finite lattices N5, Ly, Lff and their dual digraphs.

The digraphs coming from lattices were described by Craig, Gouveia and Haviar [6]. The name
“TiRS” comes from combining the conditions (T%), (R), (S) below, where they are abbreviations

for “transitive interval”, “reduced” and “separated” respectively.

Definition 2.4 ([6, Definition 2.2]). A TiRS digraph G = (V, E) is a set V and a reflexive relation
E CV xV such that:

(S) If x,y € V and x # y then oE # yE or Ex # Ey.
(R) For allz,y €V, if tE C yE then (z,y) ¢ E, and if Ey C Ex then (x,y) ¢ E.

(Ti) For all z,y € V, if xEy then there exists z € V such that zE C 2FE and Ez C Ey.

The result below gives a description of dual digraphs of lattices with least and greatest elements.
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Proposition 2.5 ([6, Proposition 2.3|). For any bounded lattice L, its dual digraph G, = (X, E)
is a TiRS digraph.

We recall from [12] a fact concerning general graphs G = (X, E). Let 2 = ({0,1}, <) denote the
two-element graph. A partial map ¢: X — 2 preserves the relation I if 2,y € dom ¢ and zEy
imply ¢(x) < ¢(y). The set of maximal partial E-preserving maps (i.e. those that cannot be
properly extended) from G to 2 is denoted by &"P(G, 2). We use the abbreviation MPEs for

such partial maps.

For a graph G = (X, E) and ¢,¢ € €"P(G, 2), it was shown by Plos¢ica [12, Lemma 1.3] that
e 1(1) Cy71(1) «= ¢¥710) C ¢ 1(0). This implies that the reflexive and transitive binary
relation < defined on €"P(G, 2) by ¢ < ¢ <= ¢ (1) C ¢ (1) is a partial order. In fact, this
is a lattice order [3, Theorem 2.3]. For a graph G = (X, E), denote by C(G) the (complete) lattice
of MPEs (¥"(G, 2), <).

The theorem below gives a one-to-one correspondence between finite lattices and finite TiRS di-

graphs. This result is essential to the work done in the rest of the current paper.

Theorem 2.6 (|6, Theorem 1.7 and p. 87]). For any finite lattice L we have that L is isomorphic
to C(Gr) and for any finite TiRS digraph G = (V, E) we have that G is isomorphic to Ge(q)-

3 Generalising lower and upper semimodularity

For lattice elements a and b we write a < b to denote that a is covered by b. A lattice is upper
semimodular if whenever a A b < a then b < a V b. It is common to refer to such lattices as
semimodular. A lattice is lower semimodular if whenever a < a Vb then a Ab < b. We use (USM)

and (LSM) as abbreviations for these two conditions.

The lattices in Figure 1 provide useful examples: Ny satisfies neither (USM) nor (LSM), L, satisfies
(USM) but not (LSM), and L% satisfies (LSM) but not (USM).

We will focus on lower semimodularity, rather than upper semimodularity, because of the connec-
tion between lower semimodularity and finite convex geometries (see Section 4). We note that
modularity implies both semimodularity and lower semimodularity. If a lattice L has finite length
and is semimodular and lower semimodular, then L is also modular (cf. [9, Corollary 376]). For

further reading we refer to the book by Stern [14].

Figure 2 presents a number of different generalisations of distributivity and modularity (including
those presented above) and the relationships between them. The ‘B’ denotes bounded in the sense
of bounded homomorphic image of a free lattice (¢f. [9, p. 504]). Observe that the conditions in
the top left and top right, which are weakenings of (LSM) and (USM) respectively, are in fact
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conditions on the standard context dual to a finite lattice. For the necessary terms and notation,

we refer to the book from where Figure 2 is taken [8, p. 234].

join-

distributive distributive

distributive

Figure 2: Relationships between generalisations of distributivity.

We begin by proving some new results about MDFIPs. These will be needed in the proofs of later

results.

Lemma 3.1. Let L be a finite lattice.

(1) If b e M(L) and b < a V' b, then b is mazimal with respect to being disjoint from Ta.

(i) If a € J(L) and a ANb < a, then Ta is mazimal with respect to being disjoint from [b.

Proof. Assume that b € M(L) and b < a VvV b. This implies b < a V b and hence a £ b and so
ta N b = 0. Suppose the ideal |b were to be extended to |c with b < ¢ and ta N Lc = (). Since
b € M(L), the element a V b is the unique upper cover of b and so a Vb € [c. This implies
a Vb€ Tanlec, a contradiction, showing the maximality of |b with respect to being disjoint from

Ta.

The proof of (i7) follows by a dual argument. O

The next theorem gives a characterisation of MDFIPs.



286 A. Craig, M. Haviar & K. Marais

Theorem 3.2. A disjoint filter-ideal pair (Ta,lb) is an MDFIP if and only if it satisfies the

following conditions:
(i) a € J(L);
(ii) b e M(L);
(i) b < aV b;
(iv) aANb=<a.
Proof. If (Ta,|b) is an MDFIP, by Proposition 2.2, a € J(L) and b € M(L). We also have b < a Vb,
since b = a V b would imply a € |b. Suppose there exists ¢ € L such that b < c<aVb. Ifa<c
then ¢ would be an upper bound for {a,b} and then a V b < ¢. Therefore a £ ¢. This would make

(Ta,)c) a disjoint filter-ideal pair with |b C Je¢, contradicting the maximality of the pair (Ta,]b).
A dual argument can be applied to show that a A b < a.

Assume (ta, |b) satisfies (i) — (iv). Lemma 3.1 says Jb is maximal with respect to being disjoint

from ta and vice versa. Hence (fa, |b) is an MDFIP. O

The lemmas below will be used in our later investigations.

Lemma 3.3. Let L be a finite lattice, a,b € L. The following are equivalent:

(i) a £ b;
(ii) there exists j € J(L) such that j < a and j £ b;

(iii) there exists m € M(L) such that b < m and a £ m.

Proof. Tt is well-known that in a finite lattice the set J(L) is join-dense. Hence a < b is equivalent
to the condition that for all j € J(L), 7 < a implies j < b. This settles the equivalence of (i) and
(7i). The equivalence of (7) and (¢i7) follows similarly from the meet-density of M(L) in L. O

For a,b € L we define the set T, :== {m € M(L) | b < m,a & m}. An important consequence of

Lemma 3.3 is that T, is non-empty whenever a £ b. This is needed for our next result.

Lemma 3.4. Let L be a finite lattice and a,b € L, a 7( b. Let d be a mazximal element of Tyyp.
Then d < dV a.

Proof. Firstly, we point out that Ty; is a non-empty finite poset and hence has a maximal element.
Since a & d, we have aVd # d, and so d < dVa. Suppose there exists ¢ € L such that d < ¢ < dVa.
As dVa % ¢, by Lemma 3.3 there exists m € M(L) such that ¢ < m but dVa £ m. Sod < m. If
a <m then dVa < m. It follows a ;{ mand b < d < m, som € Ty, Since d was maximal in T

and d < m, we get a contradiction. Hence d < d V a. O
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From the previous lemmas one can derive the following result.

Proposition 3.5. Let L be a finite lattice with a € J(L) and b € M(L). Then

(i) there exists m € M(L) such that (ta,{m) is an MDFIP;

(79) there exists j € J(L) such that (1j,1b) is an MDFIP.

Proof. We prove only (7), as then (i7) will follow by a dual argument. Since a € J(L), it has a
unique lower cover ¢. Clearly a £ ¢, so by Lemma 3.4, there exists a maximal element m € T,
such that m < m V a. From Lemma 3.1(¢) we know that |m is maximal with respect to being
disjoint from ta. If it were possible to extend Ta to 1d with d < a, then since ¢ is the unique lower
cover of a, we would get ¢ € Td N |m. Hence Ta is maximal with respect to being disjoint from

Jm. Tt follows that (fa,{m) is an MDFIP. O

We now define a new condition, (JM-LSM), which will be central to the results that follow. We
believe it is a more natural weakening of (LSM) than the condition given in the top left of Figure 2.
The name of the condition comes from the fact that it is almost identical to the condition (LSM),

but the elements involved are quantified over J(L) and M(L).

Definition 3.6. A finite lattice L satisfies (JM-LSM) if for any a € J(L) and b € M(L), ifb < aVd
then a Ab < a.

Example 3.7. Condition (JM-LSM) is a proper weakening of the condition (LSM). Indeed, the
lattice in Figure 3 satisfies (JM-LSM) but not (LSM). To see this, observe that ¢ < ¢V d and
cNdAd, yetd ¢ J(L).

We note that the lattice Ly in Figure 1 does not satisfy (LSM), and also does not satisfy (JM-LSM):
ceJ(L),ae M(L) anda < cVa, yet cNa £ c.

Figure 3: A finite lattice that satisfies (JM-LSM) but not (LSM). Its dual digraph (right) satisfies
(LTi).

Below is a condition that we will prove is equivalent to (JM-LSM). It will assist us in proving that
the digraph condition (LT1i), given in Definition 3.11, can be used to characterise the dual digraphs
of finite (JM-LSM) lattices.
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Definition 3.8. Condition (L-abc): Let a € J(L) and b € M(L). If a £ b then there exists ¢ > b
such that (Ta,lc) is an MDFIP.

Notice that if (fa,{c) is an MDFIP, then Proposition 2.2 (¢f. also Theorem 3.2) implies that for
the element ¢ in Definition 3.8 we have ¢ € M(L). Notice also that the finite lattice L4 in Figure 1
does not satisfy (L-abc): we have a € J(L), ¢ € M(L) and a £ ¢ and there is no m > ¢ such that
(ta,lm) is an MDFIP.

The following theorem shows that for finite lattices the central property (JM-LSM) can be char-

acterised exactly via the condition (L-abc).

Theorem 3.9. A finite lattice satisfies (JM-LSM) iff it satisfies (L-abc).

Proof. Assume (JM-LSM) and let a € J(L), b € M(L) and a £ b. Let T,, = {m € M(L) | b <
m & a £ m}. Then T, is a non-empty finite poset. Hence it has a maximal element, say ¢. So
c € M(L), b < cand (fa,lc) is a disjoint filter-ideal pair. To show that (ta,lc) is an MDFIP, by
Theorem 3.2 we need to show that cAa < a and ¢ < ¢V a. By (JM-LSM) we only need to prove
¢ < ¢V a, which follows from Lemma 3.4. We have shown that (L-abc) holds.

Now assume (L-abc). To show (JM-LSM), let a € J(L), b € M(L) and b < aVVb. We need to prove
aNb=<a. Fromb < aVbwehave a £ b. By (L-abc) there exists ¢ > b such that (fa, lc) is an
MDFTP. Hence ¢ € M(L) and by Theorem 3.2, cAa < a. We claim that ¢ = b. Suppose that ¢ > b.
Then, since b € M(L), it has a unique upper cover b*. As b < a Vb, we get b* = a VvV b. From ¢ > b
we have ¢ > b* = a Vb > a. This contradicts the fact that (fa,lc) is an MDFIP. Hence ¢ = b.
This proves a Ab=cAa < a. O

Remark 3.10. We notice that if a finite lattice L satisfies (L-abc), then in the situation a £ b for
a € J(L), b € M(L), an arbitrary mazimal element of T, can be taken for the element ¢ = b such
that (ta,lc) is an MDFIP. Indeed, if ¢ is any mazimal element of Ty, then c € M(L), a £ ¢, b< ¢
and so by the assumed condition (L-abc) there is ¢ > ¢ such that (Ta,lc’) is an MDFIP. Hence

deM(L),add,b< [, thus d € Ty,. From the mazimality of ¢ in Ty, we get ¢ = ¢’ as required.

Now we present a digraph condition dual to (JM-LSM). The condition is a strengthening of the (T1)
condition, and because of its connection to lower semimodularity, we have chosen the name (LTi).

Later, in Definition 3.16, (UTi) is used for the dual condition related to upper semimodularity.

Definition 3.11. Consider the condition below on a TiRS digraph G = (V, E):

(LTi) uFv = (Jw € V)(wE =uFE & Ew C Ev).

Note that (LTi) is not dual to (LSM) as Figure 3 shows. For each pair of E related vertices, there is

some vertex making the consequent true. For example, if u = ba and v = ac, we have baFac, and we
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can let w = be, since baE = {bc,ba,ac} = bcE, and Ebc = {ab, ac,ba,bc} C {ab, ac, ba,bc} = Eac.
The next two results prove that it is (JM-LSM) that is dual to (LTi).

Proposition 3.12. A finite TiRS digraph satisfies (LTi) if and only if it is the dual digraph of a
lattice that satisfies (L-abc).

Proof. Assume a finite lattice L satisfies (L-abc). To show that the dual digraph G, satisfies (LT1),
let u = (ta,lm), v = (1J,1b) be vertices of the digraph G and let uEv, whence a £ b. Then by
(L-abc) there exists ¢ € M(L) such that b < ¢ and (ta, lc) is an MDFIP. If we denote w = (Ta, lc)

as a vertex of G, then by Lemma 2.3 we have wE = uFE and Fw C Fv as required.

For the converse, assume that a finite TiRS digraph G satisfies (LTi). To show that its dual
lattice L satisfies (L-abc), let a € J(L), b € M(L) and a £ b. Since a € J(L) and L is finite,
by Proposition 3.5(7), there exists an element m € M (L) such that v = (ta,}m) is an MDFIP.
Similarly, since b € M(L), by Proposition 3.5(i¢) there exists j € J(L) such that v = (14,1b) is
an MDFIP. Since a £ b, we have uEv. Now, by (LTi), there is a vertex w = (f¢,ld) € V(G)
satisfying wE = uFE and Fw C Ev. Since wE = uFE, we get ¢ = Ta, so ¢ = a. Since Fw C Ew,
Lemma 2.3(i) tells us that d > b. This proves that d is the desired element such that (ta,]d) is
an MDFIP. O

The main theorem of this section follows directly from Theorem 3.9 and Proposition 3.12.

Theorem 3.13. A finite TiRS digraph is the dual digraph of a finite lattice satisfying (JM-LSM)
if and only if it satisfies (LT1).

For completeness, we now state the conditions and results related to finite upper semimodular

lattices and their dual digraphs.

Definition 3.14. Let L be a finite lattice. We say that L satisfies the condition (JM-LSM) if
whenever a € J(L), b € M(L), and a Ab < a, then b < aVb. We say that L satisfies (U-abc) if
whenever a € J(L) and b € M(L) and a & b then there exists ¢ < a such that (Tc, by is an MDFIP.

The proposition below connects the two conditions defined above.

Proposition 3.15. A finite lattice satisfies (U-abc) iff it satisfies (JM-USM).

Our last definition is the condition (UTi) which is, like (LTi), a strengthening of the (Ti) condition
from Definition 2.4.

Definition 3.16. Consider the condition below on a TiRS digraph G = (V, E):

(UTi) uEv = (Jw € V)(wE CuE & Ev = Ew).
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Theorem 3.17. A finite TiRS digraph satisfies (UT1) if and only if it is the dual digraph of a
finite lattice that satisfies (JM-USM).

4 Dual digraphs of meet-distributive lattices

In this section we will combine the results from Section 3 with results about dual digraphs of finite
join- and meet-semidistributive lattices from [5]. The goal is to give a description of the dual
digraphs of finite meet-distributive lattices. This will give a description of a new class of structures
that are in a one-to-one correspondence with the class of finite convex geometries. First, we recall

some basic definitions.

A lattice L is join-semidistributive if it satisfies the following quasi-equation for all a,b,c € L:
(JSD) aVbr=aVe — aVbmaV(bAc).

A lattice L is meet-semidistributive if it satisfies the following quasi-equation for all a,b,c € L:
(MSD) ahNb~aNhc — aAbz=aA(bVe).

A lattice is semidistributive if it satisfies both (JSD) and (MSD).

Considering the lattices in Figure 1 one can see that Nj is semidistributive, Ly is meet-semidistributive

but not join-semidistributive, and L{ is join-semidistributive but not meet-semidistributive.

For a finite lattice L and a € L, consider u(a) = A{b € L | b < a}. A finite lattice is meet-
distributive (also called locally distributive) if for any a € L, the interval [u(a), a] is a distributive
lattice (c¢f. [1, Section 5 - 2]). The class of finite meet distributive lattices is an important class of
lattices because of their link to finite convex geometries. The following results therefore lead us to

a new characterisation of finite convex geometries, which we present in Theorem 4.13 (iv) and (v).

The following equivalence is extracted from [1, Theorem 5-2.1].

Theorem 4.1. Let L be a finite lattice. Then the following are equivalent:
(i) L is meet-distributive;
(#9) L satisfies (JSD) and (LSM).

The results below use Theorem 4.1 to provide an additional characterisation of meet-distributive
lattices using (JM-LSM), the condition that was central to Section 3. Later, we will use this to

characterise their dual digraphs.
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Theorem 4.2. If a finite lattice L satisfies (JM-LSM) and (JSD), then it is lower semimodular.

Proof. Let L be a finite lattice satisfying (JM-LSM) and (JSD). Let a,b € L be arbitrary such
that a < a vV b. We are going to show that a A b < b. We will proceed by contradiction.

Suppose that a A b £ b. Then there exists ¢ € L such that a Ab < ¢ < b. Then b & ¢ and by
Lemma 3.3 the set Sy = {j € J(L) | 7 < b,j £ ¢} is non-empty. Let p be a minimal element of
Seb-

Suppose p < a, then since p < b, we get p < a Ab < ¢, which is a contradiction, so p £ a. Then by
Lemma 3.3, the set T, = {m € M(L) | a < m and p & m} is non-empty. Let m be a maximal
element of T),,. By Lemma 3.4, m < mVp. Since m € M(L), p € J(L), and L satisifies (JM-LSM),

we obtain m A p < p.

The join irreducible element p has a unique lower cover p,; likewise the meet irreducible element
m has a unique upper cover m*. Then p, < m as p, = m Ap. Now p £ ¢ and p, < ¢ imply
¢ Ap = p.. Analogously, p £ m and p < m* imply m V p = m*. It follows that ¢ £ m as otherwise
we get ¢ < m A (aVb) = a, whence ¢ < a A b, which contradicts a A b < ¢. But ¢ < m* since

m*>aVp=aVb>b Here we used that since p < b, we have a < aVp < a V b, and since
a<aVb wehavea=aVporaVp=aVb Buta#aVpsincep<La,soaVp=aVb.

Hence m V ¢ = m*. Combining the above,
m*=mVp=mVec=mV(pAc)=mVp.=m

by (JSD), a contradiction. Hence ¢ cannot exist showing that a A b < b. O

Remark 4.3. Notice in the proof we actually use a weaker form of (JSD). We will say that a
lattice L is weakly join-semidistributive if it satisfies the following quasi-equation for all a € M(L),
beJ(L), ce L:

(W-JSD) aVb~aVe — aVb=aV(bAc).

Hence in Theorem 4.2 we actually showed that (JM-LSM) and (W-JSD) implies (LSM).

We notice the lattice in Figure 3 satisfies (JM-LSM) but not (W-JSD): indeed ¢ € M(L), b € J(L)
and cVb=cVabutecV(bAa)#cVa.

The result below follows from Theorems 4.1 and 4.2.

Corollary 4.4. A finite lattice is meet-distributive if and only if it satisfies both (JM-LSM) and

(JSD).

The following theorem provides a characterisation of the dual digraphs of finite join- and meet-

semidistributive lattices. Its proof (see [5]) relies on the well-known s map used in the charac-



292 A. Craig, M. Haviar & K. Marais CUBO

26, 2 (2024)

terisation of semidistributivity. Notice that each of the conditions (i), (i) and (ii¢) below is a

strengthening of the (S) condition from the definition of TiRS digraphs (Definition 2.4).

Theorem 4.5 ([5, Theorem 3.6]). Let G = (V, E) be a finite TiRS digraph with u,v € V.. Then

(i) G is the dual digraph of a finite lattice satisfying (JSD) if and only if it satisfies the following
condition:

(dJSD) if u# v then Eu # Ev.

(13) G is the dual digraph of a finite lattice satisfying (MSD) if and only if it satisfies the following
condition.:

(dMSD) if u# v then uE # vE.

(7i1) G is the dual digraph of a finite semidistributive lattice if and only if it satisfies the following
condition:

(dSD) if u# v then Eu # Ev and uE # vE.

The next few results in this section link the properties discussed earlier to distributivity in lattices

and transitivity in dual digraphs.

Theorem 4.6. Let G = (V,E) be a finite TiRS digraph that satisfies both (AMSD) and (LTi).

Then E is transitive.

Proof. We first claim that if a finite TiRS digraph G = (V, E) satisfies both (dMSD) and (LT1),
then for any vertices u,v € V, uEv implies Eu C Ev. Indeed, uEv by (LTi) implies the existence
of w € V such that wE = wFE and Ew C Ev. By the property (dMSD), wFE = uF means w = wu,

whence Fu C Ev as required.

Now to show the transitivity of E, if uFEv and vEw for some vertices u,v,w € V, then by the
above claim, Fu C Ev and Fv C Fw. Hence Eu C Fw, which means u € Fw, whence uFw as

required. O

Proposition 4.7. If G = (V, E) is TiRS digraph with transitive E, then G is a poset.

Proof. As in a TiRS digraph G = (V, E) the relation FE is reflexive, it only remains to show the

antisymmetry of E.

Assume for z,y € V that zFEy and yEx. We firstly show that «F C yE: if z € V and z € oF,
then x £z and with yEx we get yFEz by transitivity of E, hence z € yF as required. Now zF C yFE
by the condition (R) from Definition 2.4 would give (z,y) ¢ E, a contradiction. Hence zE = yE.

Analogously one can show that Ey C Fx and since Ey C Ex would by (R) give (z,y) ¢ E, we
have Fy = Fx. Using that G satisfies the separation property (5) from Definition 2.4, it follows
that * = y as required. O
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The result below follows from Theorem 4.6, Proposition 4.7 and Birkhoff’s one-to-one correspon-
dence between finite distributive lattices and finite posets, which was in [6] generalised into a
one-to-one correspondence between the class of finite lattices and finite TiRS digraphs (¢f. Theo-

rem 2.6 here).

Corollary 4.8. If a finite lattice L satisfies (MSD) and (JM-LSM), then L is distributive.

We now return to focus on finite meet-distributive lattices, with the goal of describing a class of

digraphs connected to finite convex geometries.

Using the TiRS conditions, our conditions for the dual digraphs of (JM-LSM) and (JSD), respec-
tively, and Corollary 4.4, we get the following dual condition for meet-distributivity. Notice how

(dJSD) is a strengthening of the (S) condition, and (LT4i) is a strengthening of the (7%) condition.

Theorem 4.9. A finite digraph G = (V, E) with a reflexive relation E is the dual digraph of some

finite meet-distributive lattice if and only if G satisfies the following conditions:

(dISD) Ifz,y €V and x #y then Ex # Ey.
(R) Forallz,y €V, if aE C yE then (x,y) ¢ E, and if By C Ex then (z,y) ¢ E.

(LTi) For all z,y € V, if tEy then there exists z € V such that zE = ¢E and Ez C Ey.

Proof. Let G be the dual digraph of some finite meet-distributive lattice L. Then by Theorem 2.6
the digraph G will satisfy (R). By Corollary 4.4, L satisfies (JSD) and (JM-LSM). Hence by
Theorem 4.5(i), G satisfies (dJSD). Lastly, by Theorem 3.13, G will satisfy (LT1i).

Conversely, assume G satisfies (dJSD), (R) and (LTi). Clearly G is a TiRS digraph, hence the
dual of a finite lattice L. Theorem 4.5(i) shows that L satisfies (JSD) and Theorem 3.13 implies
that L satisfies (JM-LSM). Hence by Corollary 4.4, L is meet-distributive. O

The theorem above establishes a one-to-one correspondence between finite meet-distributive lat-
tices and finite digraphs satisfying the conditions (dJSD), (R) and (LTi). It is a restriction of
Theorem 2.6, while still generalising Birkhoff’s one-to-one correspondence between finite distribu-

tive lattices and finite posets.

Definition 4.10 (|9, Definition 30]). Let X be a set and ¢ : #(X) — 8(X). Then ¢ is a closure
operator on X if for all Y, Z € #(X)

(i) Y S o(Y);

(i1) Y C Z implies (Y) C ¢(Z);
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If X is a set and ¢ a closure operator on X then the pair (X, ) is called a closure system. For
Y C X we say that Y is closed if ¢(Y) =Y. The closed sets of a closure operator ¢ on X form a
complete lattice, denoted by Cld(X, ¢). A zero-closure system is a closure system (X, ®) such that

o(0) = 0.

Now we turn our attention to convex geometries. The presentation here follows that of the book

chapter by Adaricheva and Nation [1].

Definition 4.11 ([1, Definition 5-1.1]). A closure system (X, ¢) satisfies the anti-exchange prop-
erty if for all x # vy and all closed sets A C X,

(AEP) x € p(AU{y}) and x ¢ A imply that y ¢ (AU {z}).

Definition 4.12 (|2, Definition 1.6]). A zero-closure system that satisfies the anti-exchange prop-

erty is called a convex geometry.

We now combine Theorem 4.9 with known equivalences to obtain the following characterisation of
finite convex geometries. There are other equivalent conditions [1, Theorem 5-2.1] that we have

not included here.

Theorem 4.13. Let L be a finite lattice. Then the following are equivalent:

(i) L is the closure lattice Cld(X, ¢) of a closure space (X, ¢) with the (AEP).
(i) L is a meet-distributive lattice.
(i4i) L satisfies (JSD) and (LSM).

(iv) L satisfies (JSD) and (JM-LSM).

(v) L is the lattice C(GQ) of a reflexive digraph G satisfying (dJSD), (R) and (LTi).

Proof. The equivalences of (i), (i7) and (i74) are known [1, Theorem 5-2.1]. The equivalence of

(741) and (iv) is the result of Corollary 4.4, and the equivalence of (iv) and (v) is Theorem 4.9. O

5 Dual digraphs of finite modular lattices

In this section we provide two sufficient conditions for a finite TiRS digraph to be the dual digraph
of a finite modular lattice.
For i = 0,1,2, let us denote by G; = (V;, F;) an induced subgraph of Gy, (see Figure 1) with

Vi = {=,y, 2z} and with i of the arcs Ey and yFz missing compared to Gy,. (For i = 1 we can,
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w.l.o.g., consider the arc yEz missing.) Hence Gy = Gy, G1 has one arc and an isolated vertex,
and G2 has no arc and consists of two isolated vertices. All three digraphs are reflexive, hence

they have loops at each vertex.

We introduce the following condition for the dual digraph G of a finite lattice L in terms of
“Forbidden Induced Subgraphs”:

(FIS) G, has neither Go = G, nor GG as an induced subgraph.

The next lemma and two propositions lead to showing that the condition (FIS) is sufficient for
modularity of a finite lattice L. Note that by Lemma 3.3, for a,b € L with a £ b, there always
exist elements ¢ < a and b > b such that (1@, |[b) is an MDFIP. Below we write al|b to indicate
that a £ b and b £ a.

Lemma 5.1. Let a,b,c,0,1 be any elements of the lattice that form a sublattice isomorphic to
Ns (where 0 < a,b,c < 1, ¢ < b and a||b,al|c). (See the left side of Figure 4.) Let x = {(ta,|b),
y = (1b,1¢) and z = (T¢,la) be any mazimal disjoint extensions of (Ta,lb), (1b,lc) and (fc,la),
respectively. Then the induced subgraph {x,y,z} of G, is isomorphic either to Go = Gn,, Gy, or
Gs.

Proof. First we must confirm that z,y, z are distinct MDFIPs. If z = y then Ta = 16 which implies
tanlb# 0, i.e. x would not be an MDFIP. If z = z then 1@ = 1¢ which means z would not be an
MDFIP. Lastly, if y = z then ¢ = |a and z would not be an MDFIP.

We claim that in the induced subgraph {z,y, 2} of G, the arcs xEy and yEz are possible, but
the induced subgraph {z,y, z} has none of the other four possible arcs between distinct vertices:
indeed, the arcs yEx, zEy, xEz and zEx are not present in G, because clearly b € 1b N |b,
cE€1eN e, a € tanlaand ¢ € TcN b, respectively.

Hence {z,y, z} is isomorphic to G; in case ¢ of the arcs zFy and yEz are missing in the induced

subgraph {z,y,z} for i = 0,1, 2. O

Proposition 5.2. Let L be a finite lattice and assume that its dual digraph G = (V, E) satisfies

(FIS). Then L is lower semimodular.

Proof. Suppose to the contrary that L does not satisfy (LSM). Then there exist elements a,b € L
such that a < a Vb but a Ab £ b. Then there exists an element ¢ € L such that a Ab < ¢ < b.
Hence aVe<aVhb Sincea<aVb anda<aVe<LaVb wegetaVec=aoraVe=aVb.
If aVe=a, then ¢ < a, so ¢ < a A b, which contradicts a A b < ¢. It follows that a V¢ =a V0.
From ¢ < b we get a A ¢ < a A b. Further, since a A\b < ¢ we get a A (aAb) =aAb< aAc Thus
aANc=aNlb.
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Hence a,c,b,a A b,a V b forms a sublattice isomorphic to N5 (see Figure 4). Let x = (fa,lb),
y = (1b,J¢) and z = (f¢,la), be arbitrary maximal disjoint extensions of (ta,}b), (1b,]c) and
(Tc,la), respectively. Then by Lemma 5.1, the induced subgraph {z,y, z} of G is isomorphic to
Go = Gn,, Gy, or G2. Using the assumption (FIS), {z,y, 2z} must be isomorphic to Gs.

In particular, it follows that G does not have the arc yFz. Therefore b < @. Suppose a = a.
Then b < a, so b < aAb. This gives b < ¢ < ¢, which contradicts the fact that y = (1b,]¢) is a
disjoint filter-ideal pair. Hence a < @. Now either a < aVbor allaVb, sinceifa>aVb>c>c¢

then z = (¢, @) could not be a disjoint filter-ideal pair.

If a <@ < aVb, this contradicts a < a Vb, so @|laVb. If b > a then b > b > a, which contradicts
allb. It b < a, then b < a Ab < ¢ <, which contradicts that y = (1, ]¢) is a disjoint filter-ideal
pair. This proves that b||a. Since b < b, aVb < aVb. If aVb=aVb, then since a < @ and
b<a, wegeta>aVb=aVb, which contradicts @||a VV b. This establishes that a Vb < a V b and

a < aV b (since b||a), which contradicts a < a V b. Hence, our assumption that L does not satisfy

(LSM) leads to a contradiction. O
avVec=aVb bva=0bvd
b d
a b
c a
aNc=aAbd bAa=bAd

Figure 4: The isomorphic copies of N5 constructed in Proposition 5.2 (left) and Proposition 5.3
(right).

Below we give the result dual to Proposition 5.2. The proof is similar to the above argument, so

we omit some of the details.

Proposition 5.3. Let L be a finite lattice and assume that its dual digraph G = (V, E) satisfies
(FIS). Then L is upper semimodular.

Proof. Suppose L does not satisfy (USM). Then there are elements a,b € L such that a Ab < b but
a4 aVb,ie thereisd € L such that a < d < aVb. Analogous to the proof of Proposition 5.2, it

can be shown that the elements b, a, d, a Ab,a Vb form a sublattice isomorphic to N5 (see Figure 4).
Then by Lemma 5.1, arbitrary maximal disjoint extensions of (10, 1d), (1d, la) and (Ta, ]b), denoted
by x = (1b,1d), y = (1d, la) and z = (fa, |b), respectively, form an induced subgraph {xz,y, z} of
G, that is isomorphic either to Gy = G, G1, or G. Using (FIS), {z,y, 2z} is isomorphic to Ga.

In particular, it follows that GG;, does not have the arc xEy. Hence, b < @. We can then get b < b
(as we got a < @ in Proposition 5.2—see the left lattice in Figure 4). Now either a Ab < b or
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a A b|[b.

If a Ab < b < b, this contradicts a Ab < b, so b|la A b. We can also show b|[a (as we showed b||a in
Proposition 5.2).

Since a < @, we get a Ab < aAb. We can again establish that a Ab <@ Aband @A b < b (since
b||@), which contradicts a A b < b. Hence, our assumption that L does not satisfy (USM) leads to

a contradiction. O

Now we can deduce that the condition (FIS) is a sufficient condition for modularity of a finite

lattice.

Theorem 5.4. (Sufficient condition for modularity) Let L be a finite lattice with dual TiRS
digraph Gr. If G, satisfies (FIS) then L is modular.

Proof. If follows by Propositions 5.2 and 5.3 that L satisfies both (LSM) and (USM). Since L is
finite, we have that L is modular [9, Corollary 376]. O

We notice that the dual digraph of the modular lattice M3 has neither Gy = G, nor G; as an
induced subgraph (see Figure 5), hence it satisfies (FIS). The following example shows that the
digraphs G and G; cannot be dropped as forbidden induced subgraphs in the condition (FIS) for
the dual digraph G, which guarantees the modularity of a finite lattice L.

ab ac

Figure 5: M3 and its dual digraph.

Example 5.5. The dual digraph of Lg in Figure 8 contains Go as an induced subgraph, but not
G1. Hence the lattice Lg (in addition to Ny ) witnesses that the digraph Go cannot be dropped from
the condition (FIS).

The dual digraphs of the lattices Ly and L3 in Figure 1 do not contain G as an induced subgraph
but they both contain G1 as an induced subgraph. Hence these two examples witness that the digraph

G1 cannot be dropped from the condition (FIS).

Now we are going to show that the condition (FIS) is not necessary for modularity. Indeed, it is

not the case that every lattice whose dual digraph has Gy = Gy, as an induced subgraph is a
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non-modular lattice. The next example gives a modular lattice whose dual digraph has G as an

induced subgraph (but does not have G; as an induced subgraph).

Example 5.6. (Condition (FIS) not necessary for modularity) Figure 6 shows a modular
lattice K on the left, and its dual digraph on the right. The induced subgraph isomorphic to Gy is
shown with the dotted arrows (dcEcb and cbEed).

Figure 6: A finite modular lattice K whose dual digraph contains Gy = Gy, as an induced
subgraph.

The fact that the dual TiRS digraph G, = (V, E) of a finite modular lattice L does not contain
Go = Gn, as an induced subgraph can be understood as some form of a “weak transitivity”
condition for G. We cannot have the arcs vEy and yEz in G, without having also the arc zEz

or at least the arc zFz (provided there are no “opposite” arcs yEx and zEy in Gp):

(wT0) for all vertices z,y,z € V, if xEy and yEz, but (y,x) ¢ E and
(z,y) ¢ E, then 2Ez or zEx.

Similarly, the fact that the dual TiRS digraph G = (V, E) of a finite modular lattice L does
not contain the digraph G; as an induced subgraph can be understood as some form of a “weak

transitivity” condition for Gp:

(wT1) for all vertices x,y,z € V, if tEy but (y,z) ¢ E and (y,2) ¢ E
and (z,y) ¢ E then zEz or zEx.

Example 5.7. It is easy to see that the dual digraph of the lattice M3 (Figure 5) satisfies the weak
transitivity conditions (wWT0) and (wT1). The lattices Ly and LY in Figure 1, and LY in Figure 3
are non-modular lattices. The weak transitivity condition (wT0) is not satisfied in the dual digraph

of Lg. In the dual digraphs of the lattices Ly and LY we see the failures of (wT1).

We notice that the weak transitivity conditions (wT0) and (wT1) are essentially expressing on the
digraph side that the digraph GG;, does not contain respectively the graphs Gy and G as induced
subgraphs.
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Hence the sufficiency of the quasi-equations (wT0) and (wT1) on the dual TiRS digraphs Gy, for

the modularity of L comes as no surprise:

Corollary 5.8 (Sufficient condition for modularity by “weak transitivity”). Let L be a finite lattice
with dual TiRS digraph G, = (V, E). If G, satisfies the weak transitivity conditions (wT0) and
(wT1), then L is modular.

Proof. Let the weak transitivity conditions (wT0) and (wT1) be satisfied in Gr. Suppose for
contradiction that the lattice L is not modular. Then by Theorem 5.4, for some ¢ € {0,1} the
digraph G, contains the digraph G; as an induced subgraph on certain vertices x,y,z € V. It

follows that the weak transitivity condition (wTi) is not satisfied. O

6 Conclusions and future work

In Section 3 we defined two lattice conditions which generalise lower semimodularity and (upper)
semimodularity respectively. We were motivated by Figure 2, taken from Ganter and Wille’s
book [8] (see also the PhD thesis of Reppe [13, Chapter 3.7]). There, weakenings of (LSM)
and (USM) are given using complicated conditions on standard contexts. Our lattice-theoretic
conditions on finite lattices that are weakenings of (LSM) and (USM), which we call (JM-LSM)
and (JM-USM), seem to be simpler than the mentioned conditions in Figure 2 and they are easily
seen to be generalisations of (LSM) and (USM). The top left and top right conditions in Figure 2
were shown to be equivalent to (JM-LSM) and (JM-USM) by Kadima [10, Theorem 4.9].

In Section 4 we used the results of Section 3 to obtain a new characterisation of meet-distributive
lattices in Theorem 4.1. Combining this with previous results [5], we obtained a characterisation of
the dual digraphs of finite meet-distributive lattices. Theorem 4.13 shows that we have identified

a new class of structures that is in a one-to-one correspondence with finite convex geometries.

In Remark 4.3 we gave a condition, (W-JSD), which is a weakening of join-semidistributivity. The
lattice M3 satisfies (LSM) but not (W-JSD) and hence shows that (LSM) is not equivalent to
(JM-LSM) and (W-JSD). This leads us to ask the following question.

Problem 6.1. Is there another weakening of (JSD) such that when it is combined with (JM-LSM),
this will be equivalent to (LSM)?

Theorem 4.9 gave three conditions ((dJSD), (R) and (LTi)) on reflexive digraphs, which charac-
terise the dual digraphs of finite meet-distributive lattices. This leads to the posing of the following

open problem.

Problem 6.2. Can the conditions (dJSD), (R) and (LTi) be combined to give fewer, and possibly

simpler, conditions?
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In Section 5 we introduced the condition (FIS) on dual digraphs and showed that it implies both
lower and upper semimodularity of a finite lattice. Hence (FIS) was shown to be a sufficient
condition for modularity of a finite lattice (Theorem 5.4). We also formulated a sufficient condition
for modularity in different terms in Corollary 5.8. The condition (FIS) was shown not to be

necessary for modularity of a finite lattice and hence we raise the following open question.

Problem 6.3. Is it possible to find forbidden induced subgraphs that characterise the dual digraphs

of finite modular lattices in an analogous way to how Ny characterises modularity?

The task of representing structures (in our case digraphs) dual to finite modular lattices has proved
to be very challenging. We note that in the setting of formal contexts dual to finite lattices, a
condition dual to semimodularity has been obtained (cf. item (4) of [8, Theorem 42]). We have
attempted to translate this condition to TiRS digraphs and the result was a complicated and
opaque condition. We do not believe that the translation of this condition and its dual will yield

a useful characterisation of the TiRS digraphs dual to finite modular lattices.
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1 Introduction

The classical Fock space % (C?) is the Hilbert space of entire functions f on C? such that
2 1 2 —|z|? ;
||fH£¢(Cd) = ﬁ i |f(2)‘ e dxdy <00, z=x+1y,

where |2]? = Zzzl(m‘i +y?) and dzdy = HZ:I dardyy.

This space was introduced by Bargmann [3], is called also Segal-Bargmann space [5] and it was the
aim of many works [4,6,22,28]. Recently the author of the paper studied the extremal functions
for the difference and primitive operators on the Fock space & (C?) (see [20,21]).

Cholewinsky [7] defined the Hankel-type Fock space %, .(C?) associated with the poly-axially
operator. The space %, .(C?) is the Hilbert space of entire functions f on C%, even with respect

to the last variable, such that

1/2
Il ey o= | [ 1FPamatz)] <o

where m,, is the measure defined for z = (21, ...,24) € C? by
d
1 2P P Ko, (J2k]?)
dme(z) == — H 2o T (o ) dz, (1.1)

and K,,, o > —1/2, is the Macdonald function [8].

The generalized Fock space &, ((Cd) is equipped with the inner product
o ot = [ FwlgGwdma )

The Hankel-type Fock space F, .(C?) is also studied in [24], when the author proved an uncertainty
principle of Heisenberg type for this space.

Let D be the difference operator defined for f € %, .(C?) with f(2) =, oy avz?, by

)= 3

veENd

The main goal of the paper is to find the minimizer (denoted by FY 5 (h)) for the extremal problem:

e o DI, ooy + 1D =, e }
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where h € %,.(C?) and A > 0. We prove that the extremal function F3 p(h) is given by

FS p(h)(2) = (h, ¥2) g, . (coys

where U, (w) is the kernel given later in Section 3.

Moreover, we establish best approximate inversion formulas for the difference operator D on the
weighted Fock space %, .(C?%). A pointwise approximate inversion formula for the operator D are

also discussed.

Recently, the analog results are also proved, for the Fock space % (C?) (see [20,21]), and for the
Bessel-type Fock space %, .(C) (see [23,25]).

The paper is organized as follows. In Section 2 we recall some properties for the Hankel-type Fock
space F,..(C?). In Section 3 we examine the extremal functions for the difference operator D.
Finally, in Section 4, we establish best approximate inversion formulas for the operator D on the

Hankel-type Fock space F, .(C%).

Throughout this paper we shall use on C? the multi-index notations.

e Forall v = (v1,...,vq) € NY and 2z = (21,...,24) € C?, 2V = szlz?‘.
e For any v € N?, the partial ordering > on N%, which is defined by

v>1 <<= v;>1, Vj=1,...,d withl=(1,...,1) €N

2 Hankel-type Fock space

In this section, we recall some properties for the Fock space %,*(Cd) associated with the poly-

axially operator.

Let « = (aq,...,a4), we denote by A,, the poly-axially operator [1,9,27] defined for z =
(21,...,2q4) € C? by

0 1o
022 2 Oz

AO{ = § Aak,zka Aak,zk :

d
k=1
This operator has important applications in both pure and applied mathematics and give rise to
a generalization of multi-variable analytic structures like the Hankel transform, and the Hankel

convolution [2,15-18]. For any w € C?, the system

0

— 2 — =
Aou() = Jufu(). u(@) =1, u)|
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admits a unique solution I, (w, z), given by

d
H Jau (1w 2k),

where j,, is the spherical Bessel function [26] given by

. B 00 (_1)n T\ 2n
Jon () :==T(ayg + 1) nz::o nD(n+ay, + 1) (5) '

The Bessel kernel I, can be extended in a power series in the form

2v . 2v
Ioz(waz) = i P
veNd C,,(Ck)
where J
. 2<y Vk + o + 1
cp(a) =2 1:[ Tlor + 1) H ey, (). (2.1)
Here
F(l/k —+ ap + 1)
y =2yl —— ——
eu () T T(ak+ 1)
and

d d
vy = Zuk, vl = Hl/k!, v=(v1,...,1q) € N¢,
k=1 k=1
In the statement, and later in this work we use the following notations.
9,.(C%), is the space of entire functions on C? and even with respect to each variable.
e [2(CY), is the Hilbert space of measurable functions f on C%, such that
1/2
flzzcen = | [ 1F@Fma)]  <oe
c

where m,, being the measure on C? given by (1.1).

Cholewinsky [7] defined the Hilbert space %, .(C?%) as
Frorx(Ch) := H,(CHY N LA (CY.
The space %, ((Cd) is equipped with the inner product

<fa For,w (CD) = / f dma( )
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The space F, «(C?) has the reproducing kernel

FHo(w, 2) = Io(w,Z), w,zeCe

If f,9 € Fou(C) with f(z) =3, cye av2® and g(z) = 3, cya buz?, then

(1,97 .cty = > avbyey(a), (2.2)

vENd

where ¢, (a) are the constants given by (2.1).

2

Then, the set { - } forms a Hilbertian basis for the space %, .(C%); and each f €
veNd

Ve (o)

Fa.»(C?) can be written as

2v
fo)= 3 et

veNd Cv (a)

and

(f 250 o)
||fH3<7/7a*((Cd) — Z | y Fa, ((Cd)| )

veNd (a)

Bargmann [3] introduced the classical Fock space & (C?). Let f € Fq,.(C%) with f(2) = >, cpe a2

From [3], we have

||fH?¢(<cd) = Z |ay|21/!.

veNd

Using the inequality v! < ¢, (a), we obtain

1£1Z oy < D lawlPen(@) = 1 £l1Z, o
veNd

Therefore
Fox(CH C F(Ch).

3 Difference operator

In this section, building on the ideas of Saitoh [12-14] we examine the extremal function associated

with the difference operator D. The results that are written here are a special case of [14].

Let D be the difference operator defined for f € Fo .(C?) with f(2) =, cna avz?, by

Df(z) =Y ayi12*. (3.1)

veNd
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In particular, for f € %, .(C), the difference operator [23,25] is given

SUE) = 10), =0,
Df(z):=

1 " _

We also define, the operators F and H for f € %, .(C%) with f(z) = Yo end a,z*, by

Ef(z)= Y. C”C*I(O‘) ay_12%, (3.2)

and

veNd p>1

where ¢, (a) are the constants given by (2.1).
Lemma 3.1. (i) The operator D maps continuously from F .(C%) into Fp (C?), and

1

S —FT T
2d Hk:l(ak + 1)

(ii) If D* : Fo (CY) — F, . (CY) is the adjoint operator of D, then

I1Dfll#,..ca < f € Fo(CY.

E=D" and H=D"D.
Proof. (i) Let f € Fq,.(CY) with f(z) = Y, cye av2®”. From (3.1), we have

HDfH?}a,*((Cd) = Z |avta*e, (@) = Z layPe -1 ().

veNd veNd v>1

Using the fact that ¢, (a) = [22d HZ:l v (v + ak)] ¢y—1(a), we deduce that

1 1
IDSIZ. e < —— la|?e, (@) = —— IFIZ, co-
SO g2 [T (g +1) % 20 [[1_ (ap +1) )

(ii) If f, 9 € Fa,»(C?) with f(2) =, cna awz? and g(2) = 3, cya by2?”, then by (2.2) and (3.1)

we obtain

<Df7 9>%,*(Cd) = Z aVJrlECV(a) = Z aubuflcufl(a)-

veNd veNd v>1

On the other hand, from (2.2) and (3.2) we have

(£EQ)g. cy= Y. aby_1c,1(a).

veNd p>1
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Then (Df,g)%

o
a,*

) = (f, £9) %, .(c) and consequently £/ = D*.

Finally, by relations (3.1), (3.2) and (3.3) we deduce that

D*Df(z) = EDf(z) = Y C”*lé“)ayzzv = Hf(2).

veNd p>1
The lemma is proved. O

Theorem 3.2. For any h € %X’*((Cd) and for any A > 0, the Tikhonov regularization problem

. 2 2
e o VIS, oy +1DF = Bl o }

has a unique extremal function denoted F/’\“)D(h) and is given by
F p(h)(2) = (h, ¥2) g, . (cays

where
(E)Q(V—‘—I) w2V

U, (w) =

, weCh
< N a() T ()

Proof. First, from [12, Theorem 2.5, Section 2|, the Tikhonov regularization problem

. 2 2
™ e LIS ey 1DF = M3, o}
has a unique extremal function denoted F' X, p(h) and is given by

F5 p(h)(2) = (A\I + D*D)'D*h(z), z€C% (3.4)

where T is the unit operator. We put h(z) = 3, cya h2®” and Fy ;(h)(2) = 3, cna dv2””. From
Lemma 3.1 (ii) and (3.4) we have

(A + H)FY p(h)(2) = Eh(z).
By relations (3.2) and (3.3) we deduce that

d, =0, if3v,=0,

cv—1(a)hy,—1 y>1

dl/ = 5 =
Aey (@) + cp_1(a)

Thus

)

Fo(E) = Y oo (35)
veNd p>1 v v—1
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Then by (2.2) and (3.5) we obtain

cy(a)hy 2(v+1
Fip(h)(z) = T = (h, V) 3.6
A,D( )(Z) V; /\Cy+1(0() —|—C,/(Oé)z < ’ >JQ,*((C‘1)7 ( )
where (V+1>w2u
Z , weCY
vENd )\CVJFI ) +evla)
The theorem is proved. O

4 Approximate inversion formulas

In this section we establish the estimate properties of the extremal function Fy p(h)(2), and we
deduce approximate inversion formulas for the difference operator D. These formulas are the anal-
ogous of Calderon’s reproducing formulas for the Fourier type transforms [10,11,19]. A pointwise

approximate inversion formulas for the operator D are also discussed.

The extremal function FY (k) given by (3.6) satisfies the following properties.

Lemma 4.1. If A\ >0 and h € F, .(C?), then

‘ -

@) |F5 p(h) ()| < ——=a(2,2)2[|h]l5, . (co),

S

2

(i) |DF} p(h)(2)] < L

201\ ATz (0 + 1)

U 1
(iii) IF5 p(M)llz, .(ca) < ﬁ“hna,*(cdy

(Ia(2,2) bl . ca),

Proof. Let A > 0 and h € %, .(C%) with h(z) =3, cya hu2®”. From (3.6) we have

X, p(M)(2)] < [Vl .o lhlz .-

Using the fact that (z + y)? > 4zy we obtain

\2(v+1) 1 |(2)2U‘2 1
0|12 _ (%) , < = —TI.(2,%).
1917, . ca) ng @) o] “Y = o) a(2%)
This gives (i).
On the other hand, from (3.1) and (3.5) we have
cy(a)hy,
DF P 4.1
A D(h)(z) Z )\Cu+l(a) ¥ CV(CY) <h‘ > o *(Cd)D ( )
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where
21/ 21/
%d >‘Cu+1 )+ cu(a )
Then
|IDF3 p(R)(2)] < |25, . co)llhll#, . (ca),
and )
=\ 2v 1 2V|2
®.% cn = ) =
” HJQ,*(Cd) Z )\Cl,+1(0z) ¥+ c,,(a) AN Z ot

veNd €Nd

By using the fact that ¢, 11(a) = [22d HZ:1(V7€ + 1)(vg + ap + 1)} ¢y (), we deduce that

2 1 ()>]? Ia(2,%)
12:15...c) < @y = — - .
' 2 M=o (e +1) cv(@) 22Dy (g + 1)

This gives (ii).

Finally, from (3.5) we have

* Cy— Oé) hV*
IF o o= 3 cy<a)[ 1(a)|hy 1|

veNd p>1 )\C”(a) + Cy_l(a)

Then we obtain

. 1 1
IEXp (M5, . (cay < 75\ > (@)l = ﬁ”h\@a,*(cd)’

veNd v>1

which gives (iii) and completes the proof of the lemma. O

We establish approximate inversion formulas for the difference operator D.

Theorem 4.2. If A\ >0 and h € F, .(C9), then
D) lim |[DF? (k) — hl» —0,
§) tim IDF,p(h) ~ hlls, oo
(ii) A1i>1%1+\|F;f,D(Dh) hollg, . (cay = 0, where ho(2) =3 cna, > o 22 if h(z) =3, ena hwz®

Proof. Let A > 0 and h € F, ,(C?) with h(z) =3, oy huz?”. From (4.1) we have

—Acpt1(a)h, y
DF;. p(h)(= =2 5 “+ o (4.2)
vena "0t v

Therefore

||DF;,D(h) - hH?%,*(cd) = Z Cy(Oé)

veENd

[ )‘Cv+1(0¢)|hu| 2
Acyyi(a) +ep(a)]|
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Again, by dominated convergence theorem and the fact that

ot [ a (el

i Cyl&x 2
T Fem) S e

we deduce (i).

Finally, from (3.1) and (3.5) we have

Fp(Dh)(z) —ho(2) = >+ (_Cfff?h”(a)z?”- (4.3)
veNd p>1 v v—1

So, one has
Acy (@) |hy | ?

* _ 2 —
1o (Dh) = hollz....co 2. ela) {)\cy(a) +cr-1(a)

veNd p>1

Using the dominated convergence theorem and the fact that

Aey(@)lhy| 1 ,
) L\cy(a) +cy_1(a)] < c(@)|h [,

we deduce (ii). O

We deduce also pointwise approximate inversion formulas for the operator D.

Theorem 4.3. If A\ > 0 and h € F, .(C9), then

() Jim DF; p(h)() = h(),

(i) lim F5 p(DR)() = ho2).

Proof. Let h € Fq . (C?) with h(z) = Y, cya he2z?”. From (4.2) and (4.3), by using the dominated

convergence theorem and the fact that

Acyi1 ()| |
Acyt1(a) + e (@)

Acy(@)[hy |

2v
; Ay (@) + cp—1(@)

|22 < [hy|27],

|z

we obtain (i) and (ii). O
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ABSTRACT

In this paper, we present a continued fraction approxima-
tion and some inequalities of the factorial function based
on the Burnside’s formula. This approximation is fast in
comparison with the recently discovered asymptotic se-
ries. Finally, some numerical computations are provided
for demonstrating the superiority of our approximation
over the Burnside’s formula and the classical Stirling’s

series.
RESUMEN

En este articulo, presentamos una aproximacién con una
fracciéon continua y algunas desigualdades para la fun-
cién factorial basada en la formula de Burnside. Esta
aproximacion es rapida en comparaciéon con las series
asintoticas descubiertas recientemente. Finalmente, se
entregan algunos célculos numéricos para demostrar la
superioridad de nuestra aproximaciéon por sobre la for-

mula de Burnside y la serie de Stirling clasica.
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1 Introduction and main results

It is well known that we often need to deal with the big factorials in many situations in pure

mathematics and other branches of science. To the best of our knowledge, the Stirling’s formula

n! ~V2mn (E> , n— 00 (L.1)
e

is one of the most known formulas for approximation of the factorial function. Up to now, many
researchers made great efforts in the area of establishing more precise inequalities and more accurate
approximation for the factorial function and its extension, called gamma function, and had a lot

of inspiring results. For example, the Stirling series [1]

n! zm(ﬁ)n RTINS . L n — 00 (1.2)
' e 12n ' 288n%  51840n°  2488320mF 7 ) '

is an extension of (1.1). Furthermore, there is a variety of approaches to Stirling’s formula, ranging
from elementary to advanced methods. We mention the estimations given by Schuster in [14], or

the formula

n+ 1 nth
n!N\/27r( 2) =0n, N — 00, (1.3)

e

with n! < o, due to Burnside, whose superiority over Stirling’s formula was proved in [3]. There

are also some approximations which are better than (1.3), Gosper’s formula [7]

nl~ 27 (n+é) (%)n n - o, (1.4)

and Ramanujan’s formula [13]

ny" 1 1 1\'/6
I~V — 34 n?4 2 — — 1.
n 277(6) <n +2n +8n+240) , N — 00, (1.5)

and Nemes’s formula [12]

n! ~ 27771(2)” 1+; ' n — oo. (1.6)
e 12n2—-1/10)

In [2], Batir obtained an asymptotic formula as follows:

nn+le—n

nl ~ V27
n—1/6

, N — 00. (1.7)
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The following more accurate approximation for n!

3 , N — oo. (1.8)
e

2 1 6 n/2+1/4
ol o /3 <n+n+/>

can be found in the literature [9].

Recently, Mortici [8] proved that for every z > 0,

(& e

z—&-% r—&-%
va.ew<x+”> <<F@+1)SQV%szw<x+w) : (1.9)

3-V3

where w = , a=1.072042464 ..., and

6
-T+C a:+% 33""( er%
BV2rme-e™¢ () <T(z+1) < V2me-e¢ ( > , (1.10)
e e
where ¢ = 21 Y3 5 008850358, .

6

Estimates and approximations for the factorial function (and the gamma function) are a popular
subject, with many papers appearing on this topic over the years. More results involving the
asymptotic formulas or bounds for n! or gamma function can be found in the references cited

therein.

A natural question arises. It is true that the behavior of the Burnside’s formula for n approaches

infinity is of the form

n+q
nl ~2rme - e P <”+p) : (1.11)

e

where p, ¢ are some constants? We propose the following sharp approximation formula as n — oo:

(1.12)

3v3\ "3

_3+V3 R+T
nl~+v2me-e” 6 _— .
e

These constants p, ¢ in (1.11) given by (1.12), namely

3+3 1
6 173

are justified by the result in Theorem 1.1. Then we prove the following stronger approximation

formula using continued fraction for the factorial function by the multiple-correction method [4-6].
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Theorem 1.1. For the factorial function, we have

n+q
nl ~V2me-e™? (n +p) exp | — = s , N — 00, (1.13)
e n< +vin + vy + W
n+t2+"-
where
_34+43 1ot ; _10+3V3 ; AT +15V3
pP= 6 ) q_27 1_:!:72\/57 1 — 10 ) 0 — 10 3
163 815 + 11596v/3
s1=F———F7, = ——p0——
21000+/3 1630
o 15531525 19139187627 F 259913623163/3
27 106276 © 7T 38278375254

Using Theorem 1.1, we provide some inequalities for the factorial function.

Theorem 1.2. For every n € N, it holds:

- TL+% V3 TI/+%
_ n 4 3=V3 n 4 3+V3
ome - e~ <6> < n! < V2me- e 2 (6 . (1.14)

€

To obtain Theorem 1.1, we need the following lemma which was used in [8,10,11] and is very useful

for constructing asymptotic expansions.

Lemma 1.3. If the sequence (z,)nen is convergent to zero and there exists the limit

nll)l}_loon (Xn, — Tpy1) =1 € [—00, +00] (1.15)
with s > 1, then
lim n* 'z, = ! (1.16)
n—-+4oo n S — ]_ ’

Lemma 1.3 was proved by Mortici in [8]. From Lemma 1.3, we can see that the speed of convergence

of the sequences (z,,)nen increases together with the values s satisfying (1.15).
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2 Proof of Theorem 1.1

Step 0: The initial-correction.

+}

n+i\"
2 , n — 00, we need to find the values p, q

e
which produces the most accurate approximation of the form

Based on the Burnside’s formula n! ~ /27

n+q
n
nIN\/27re~e_p( —i—p) , N — oo.

e

To measure the accuracy of this approximation, a method is to define a sequence (ug(n))p>1 by

the relations

n+q
n!l =+v2me-e? (n—;—p) exp ug(n), (2.1)

. . n+p\"t . .
and to say that the approximation n! ~ v/2me-e™P (p) , M — 00 is better if ug(n) converges
e

to zero faster.

From (2.1), we have
up(n) = Inn! — % In(2me) +p — (n+ q) In(n + p) + (n + q). (2.2)

Thus,
uo(n) —up(n+1)=-1-Inn+1) — (n+ ¢ In(n+p)+ (n+1+q)In(n+1+p). (2.3)

Developing (2.3) into power series expansion in 1/n, we have

—14+2¢1 +2—|—3p2—3q—6pq 1
2 n 6 n2
—3—6p> —8p3 +4q+ 12pq + 12p%¢q 1 1
—+0(— ).
12 n3 nt

(2.4)

ug(n) —ug(n+1) =

+

The fastest possible sequence (ug(n)),>1 is obtained as the first two items on the right of (2.4)
3+v3 1
6 172

vanishes, we get p = . Thus, using Lemma 1.3, from (2.4) we have

1 1 1
ug(n) —uo(n+1) = :Fmﬁ +0 (714) .

and the rate of convergence of the sequence (ug(n)),>1 is at least n=2.
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Step 1: The first-correction.

Next, we define the sequence (u1(n))n>1 by the relation

n+3
s (n+ 3+v3 2
n! =+v2me-e” e (6 exp (ul) exp uq(n). (2.5)

e n? 4+ vin + vg

From (2.5), we have

ui(n) —ui(n+1)=-1—-In(n+1) — (n+ ;) In <n+

+
+<n+‘;>ln<n+1+3 \/?;)— i + o . (2.6)

3++3
6

6 n2+uvint+uvg  (n+1)24+uvi(n+1)+v

Developing (2.6) into power series expansion in 1/n, we have

1 1 1 1
ur(n) —ui(n+1) = xm —2u | 5+ W + 3uy + 3urv; v (2.7)
1 11 o\ 1
+ <—20 T m — 4uq + duqvg — buv — 4u1v1) 5

1
<599:t 3

1 1
1536 m + 5u; — 10uqvg + 10u1v1 — 10uv9v1 + 10ulv1 5u1v1> o + O (n7> .

By Lemma 1.3, the fastest possible sequence (u1(n))n>1 is obtained as the first three items on the

right of (2.7) vanishes. So we can obtain

1 _10+3Vv3 474153

R 2 A T R R T R

and from (2.7) we have

163 1 1
ui(n) —ui(n+1) = oo e O <n7> ’

and the rate of convergence of the sequence (uj(n)),>1 is at least n=°

Step 2: The second-correction.

Furthermore, we define the sequence (uz2(n)),>1 by the relation

e 10:|:3f 474153 s1
n+ =50 T atn

n+1 1
3£v3 nJr—?’j“/g : 72v3
n! = \V2me . e~ o0 <6 exp | — MZE expus(n) (2.8)
ns +
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Using the same method as above, we obtain that the sequence (u2(n))n>1 converges fastest only
163 815+ 115963

21000v3" ' 1630
is at least n~7. We can get

69029 1 1
ua(n) —uz(n +1) = —qgmma s +0 <n9) '

if sy =+ , and the rate of convergence of the sequence (uz(n))n>1

Step 3: The third-correction.

Similarly, define the sequence (u3(n)),>1 by the relation

V3 n+3i\/§ s
3+v3 —
n! =V2me-e” o <6> (2.9)
e
1
:':7
exp 72v/3 AT exp uz(n).
n2 + 1013\/571_1_ 47£15V3 + 2100073
10 100 8154115963 so
n+ 1630 R

Using the same method as above, we obtain that the sequence (u3(n)),>1 converges fastest only
¢ 15531525 ; 19139187627 T 2599136231633
ifsg=——— ty= .

2 ? 38278375254

106276
The new asymptotic (1.13) is obtained.

3 Proof of Theorem 1.2

The double-side inequality (1.14) may be written as follows:

R e () (m <n+3+6“§> 1> <0

6

and

g(n) =InT(n+1) - %ln(%e) +3 _6\/5 - (n + ;) <ln (n 43 _6‘/§> - 1) > 0.

Suppose F'(n) = f(n+1) — f(n) and G(n) = g(n+ 1) — g(n). For every x > 1, we can get

36(—1 4 4v3 + 4v/3n)
(14+n)2(3 + V3 + 6n)2(9 + /3 + 6n)2

F'(z) = >0 (3.1)
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and

36(1 + 4v/3 +4v/3n)
(14 n)2(3 — /3 +61)2(9 — /3 + 6n)2

G'(z) = —

It shows that F(x) is strictly convex and G(z) is strictly concave on (0,00). According to The-
orem 1.1, when n — oo, it holds that lim, . f(n) = lim,— g(n) = 0; thus lim, ., F(n) =
lim,, oo G(n) = 0. As a result, we can make sure that F'(z) > 0 and G(z) < 0 on (0,00). Con-
sequently, the sequence f(n) is strictly increasing and g(n) is strictly decreasing while they both

converge to 0. As a result, we conclude that f(n) < 0, and g(n) > 0 for every integer n > 1.

The proof of Theorem 1.2 is completed.

4 Numerical computations

In this section, we give Table 1 to demonstrate the superiority of our new series respectively. From

what has been discussed above, we found out some new approximations as follows:

34v3\ "3
_3+V3 ﬂ+T
n!l~+v2me-e~ ¢ _

e

or

or

34v3\ "2 1
n! ~ v2me - e 52 <n+6> exp < " 72v/3 ) = B3(n) (4.3)
n

e 10+3v3 47+15/3
0 "t T

For simplicity, we only give three approximations 31 (n), S2(n), f3(n), more formulas can be directly

obtained from Theorem 1.1.

Burnside [3] gave the formula:

nl ~ /2r (” il §>n+% — B(n). (4.4)

e

The great advantage of our continued fraction approximation 83(n) consists in its simple form and
its accuracy. From Table 1, we can see that the relative error of B3(n) is —1.1137 x 10~® when

calculating 500! and the relative error of 3(n) is 8.2540 x 10~% when calculating 50!. Our formula
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Table 1: Simulations for 8(n) and S;(n), i = 1,2, 3.

n Bn)—n! Bi(n)—n! B2(n)—n! Bs(n)—n!

n! n! n! n!
50 82540 x 10~% —3.1767 x 107% 3.1120 x 1076 —8.1273 x 10~
500  8.3254 x 1075 —3.2044 x 1078 3.1978 x 10~8 —1.1137 x 1018
1000 4.1647 x 107> —8.0149 x 10~ 8.0066 x 1072 —3.5367 x 10~20
2000 2.0828 x 1075  —2.0042 x 1079  2.0032 x 10~2 —1.1141 x 10~21

B3(n) converges faster than the approximation of the Burnside’s formula 5(n).
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ABSTRACT

New norm inequalities for accretive operators on Hilbert
space are given. Among other inequalities, we prove that
if A, B € B(H) and B is self-adjoint and also Cr,,a(¢AB) is

accretive, then

4/ Mm

Yy < _ *
W+ m ABll = w(AB — BAY),

where M and m are positive real numbers with M > m and
Cm,m(A) = (A" — mI)(MI — A). Also, we show that if
Cm,m(A) is accretive and (M — m) < k||A]|, then

w(AB) < (2 + k)w(A)w(B).
RESUMEN

Entregamos nuevas desigualdades para normas de opera-
dores acretivos en espacios de Hilbert. Entre otras desigual-
dades, probamos que si A, B € B(H) y B es auto-adjunto y
también Cp, v (1AB) es acretivo, entonces

4/ Mm

< _ *
[ AB| < w(AB - BAY),

donde M y m son ntmeros reales positivos con M > m y
Cm,m(A) = (A" —mI)(MI — A). También mostramos que
si Cm,m(A) es acretivo y (M —m) < k|| A]|, entonces

w(AB) < (24 k)w(A)w(B).
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1 Introduction and preliminaries

Let B(H) denote the C*-algebra of all bounded linear operators on a complex Hilbert space H with
inner product (-, -). The numerical radius of A € B(H) is defined by

w(A) = sup{ [(Az,z)| : [|=[| =1 }.
In [14], Yamazaki proved that for any A € B(H)
w(A) = sup ||Re(e”? A)||. (1.1)
0cR

It is well known that w(-) is a norm on B(H) which is equivalent to the usual operator norm ||.||.

In fact, for all A € B(H),

1Al

<) < 4], (12)

The first inequality becomes an equality if A2 = 0. The second inequality becomes an equality if
A is normal. Several numerical radius inequalities improving the inequalities in (1.2) have been

recently given in [1-3,7,9,11,12,15,16] and [17]. Holbrook in [6] showed that, for any A, B € B(H),
w(AB) < 4w(A)w(B). (1.3)
In the case AB = BA, then
w(AB) < 2w(A)w(B).
The question about the best constant k such that the inequality
w(AB) < k| Allw(B) (1.4)
holds for all operators A, B € B(H) is still open. It is shown in [4] that, for any A, B € B(H),
w(AB + BA*) < 2||A||w(B). (1.5)

Let Dy = /{Ielofc |A — M| and let R4 denote the radius of the smallest disk in the complex plane
containing o(A) (the spectrum of A). Stampfli in [13] proved that if A € B(H) and A is normal,
then

Dj = Rgy. (1.6)
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The following result from [10] may be stated as well: if A, B € B(H),then
w(AB) < w(A)w(B) + DaDpg. (1.7)
Also, the authors in [8] proved that if A, B € B(H) and A is self-adjointable, then
w(BA) < Dyl Al (1.8)
We consider the nonlinear functional V5 : B(H) — R, given by
Vi(A) = Hs1”1£)1 Re(Ax, x).
Recall that, for all A € B(H),
Vi(4) <w(4) < [[A]l (1.9)

We say that an operator A : H — H is accretive, if Re(Az,x) > 0 for any x € H. In [3],
Dragomir has shown that if M and m are positive real numbers with M > m and the operator
Cm(A) = (A" —mI)(MI — A) is accretive, then

M+m

Al < V(A 1.10
4 < S AV (4) (110
and

M4+m
Al <
NI

w(A). (1.11)

A sufficient simple condition for C), a(A) to be accretive is that A is a self-adjoint operator on
H such that mI < A < MT in the usual operator order of B(H). Moreover, if 0 < m < M, a

sufficient condition for Cy, ar(A) to be accretive is that

A_MerI <(Mfm).
2 2
The following result from [5] may be stated as well: if M and m are positive real numbers with

M >m and A, B € B(H) and also Cy, ap(A) is accretive, then
w(AB — BA*) < (M — m)w(B). (1.12)

And also
M+ m

2V Mm

Al < [Re(A)]l, (1.13)
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which is a refinement of inequality (1.11).

In Section 2, we introduce some inequalities between the operator norm and the numerical radius
of accretive operators on Hilbert spaces. More precisely, we establish the generalization of the

inequalities (1.11) and (1.13). Also, we find a lower bound for w(AB — BA*).

2 Main results

We need the following lemma, to achieve our goal.

Lemma 2.1. If A € B(H), then
Vs(A) < [|Re(A)]]-

Proof. Suppose that € H with ||| = 1. We have

(At ATz, ) _ A+ A"

Re(Az,z) = > < 9 < |[Re(A)]]-
Hence
Re(Az,z) < ||[Re(A4)].
Taking the supremum over z € H with ||z|| = 1 gives
Vi(A) < [|Re(A)],
which is exactly the desired result. O

Remark 2.2. Let M and m be positive real numbers with M > m and A € B(H) and also Cy, pr(A)
is accretive. By (1.10) and Lemma 2.1 we deduce that

M+ m M+m

—Vi(A) < ———||Re
2V Mm (4) 2\/MmH

Therefore, the inequality (1.10) strengthens (1.11) and (1.13). Then, we continue this section and

(-

introduce some norm inequalities for products of two Hilbert space operators with inequality (1.10).
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The following result may be as well.
Theorem 2.3. If A, B € B(H), then
B+ B*||w(A DyD « 1
Proof. Clearly, |Re(AB)|| = w(Re(AB)). Then
AB + B*A*
L
(AB + AB* AB* + B* A*)
=w
(AB+AB*) (—AB*+B*A*>
<w w|—m——
2
1
= 5w (A(B + B*)) + 2w(AB BAY)
B+ B* 1 1
Hence
B+ B*||w(A 1 1 .
and the result follows from Lemma 2.1. O
Corollary 2.4. If A,B € B(H), then
1
Vs(AB) < w(B) (w(A) + Da) + iw(AB — BAY).
Proof. By Theorem 2.3,
B+ B*||w(A DD .
Since Dpyp~ < ||B + B*||, then
1
Vs(AB) < ||Re(B)|[(w(A) + Da) + iw(AB — BAY)
. 1
< sup || Re(e? B)||(w(A) + Da) + §w(AB — BA¥)
0cR
1
<w(B) (w(A)+ Da) + iw(AB — BAY). (by (1.1))
Therefore,
1
Vs(AB) < w(B) (w(A) + Da) + §w(AB — BA").
This completes the proof. O
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Corollary 2.5. Let M and m (with M > m) are positive real numbers and A, B € B(H). If there
exist 8y € R such that Cy, (eieOAB) 18 accretive , then

M+m 1
< — - * . .
|AB|| < i (w(B)(w(A) +D4)+ 2(.L)(AB BA )> (2.2)
Proof. By (2.1),
B + B*||w(A 1 1

Since Dpyp- < ||B + B*||, gives
1
|Re(AB)|| < ||Re(B)||(w(A) + Da) + §w(AB — BA*). (2.3)
Suppose that §y € R. Replacing B by ¢ B in the inequality (2.3) gives

| Be(e® AB)| < | Re(c™ B)||(w(4) + Da) + p(e™(AB — BA"))

= ||Re(e" B)||(w(A) + Da) + 1w(AB — BA")

2
< sup ||[Re(e" B)||(w(A) + Da) + %w(AB — BAY)
fo€R
=w(B)(w(A) + Da) + %w(AB — BA*). (by (1.1))
Hence,
|Re(e!® AB)| < w(B)(w(A) + D) + %w(AB — BA"). (2.4)

Since Cy, 11 (€ AB) is accretive, from the inequality (1.13) we have

2vV Mm
M+m

IAB < [|Re(e"™ AB)|

and the result follows from (2.4). O

Remark 2.6. The result stated in Corollary 2.5 is stronger than inequality (1.11). To explain
that, suppose that Cp, av(B) is accretive. Replacing A by I in inequality (2.2). Since Dy =0 and

M+m
w(I) = ||I|| =1, then we have ||B]| < w(B).
(0=l I1BI < 5 Aw(B)
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The following result may be as well.

Theorem 2.7. Let M and m (with M > m) are positive real numbers and A, B € B(H). If

0 AB , _
Co.m is accretive, then
0
2v/Mm El |AB - BAY|
< .

S aB) < 1) + Da) + 125

A 0 0 B , 0 AB
Proof. Let A} = and By = . Since Cpy,pm(A1B1) = Crmt

0 A 0 0 0 O

is accretive, from the inequality (1.10) and Theorem 2.3 we have

2V 4y 2V
M+m S M T
< | B1 + B1"[|w(A1) 4 HZA T Bt B + —w(41B1 — B141%)
2 2 2
Blo(Ad) DiDeom. 1 0 AB - BA*
_ | Bljw(A) 4 PaPsivpis 1

Bljw(A D4||B 1 0 AB-— BA*
L IBlo(4) | DalBi] | 1

- 2 2 2 0 0
_IBlw(4) _ DallB| | |AB - BA*|
=+ + i :
Consequently,
2v'Mm 1B |AB — BA*||
AB| < —(w(A)+ D == =0
I a) < o w(d) + D) + 222
which is exactly the desired result. O

As a direct consequence of Theorem 2.7, we have:

Corollary 2.8. Let M and m (with M > m) are positive real numbers and A, B € B(H). If

0 AB ] ]
Co,m is accretive and AB = BA*, then
0 O
M +m
AB| < B||[(w(A)+ Da).

We need the following lemma to give some applications of Theorem 2.3.

Lemma 2.9. Let M and m (with M > m) are positive real numbers and A, B € B(H). If Cy, ar(A)

A 0
and C m(B) are accretive, then Ch, pr is accretive.
0 B
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Proof. Put X = v , where z,y € H. First we show that if A and B are accretive, then
Yy
A 0
T= is accretive. We have
0
A 0 T T Az T
Re({TX,X)) = Re , = Re ,
0 B Y Y By Y

= Re((Az, z)) + Re((By,y)).
Since Re({Ax,z)) > 0 and Re((By,y)) > 0, then
Re({TX, X)) >0 (2.5)

and so T is accretive. On the other hand,

o A 0 _ A* 0 mI 0 MI 0 A 0
"M\l o B 0 B 0 ml 0 MI 0 B
B A* —ml 0 MI—A 0
0 B* —mlI 0 MI—-B
| (A" =mI)(MI — A) 0
0 (B* —mI)(MI - A)
_ Cm,]\/I(A) 0
0 Con.m(B)
Consequently,
A 0 Crm.m (A 0
Cm,m = 2(4) (2.6)
0 B 0 Cm,m(B)
Since Cpy v (A) and Cpy ar(B) are accretive, the result follows from (2.5) and (2.6). O

In the following, we provide a lower bound of the w(AB — BA*) in terms of ||AB|| for some case.

Theorem 2.10. Let M and m (with M > m) are positive real numbers and A, B € B(H). If B is
self-adjoint and Cy, pr(iAB) s accretive, then

4V Mm
M+m

|AB| < w(AB — BA). (2.7)
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Proof. By Theorem 2.3,

Vi(AB) <
Replacing B by iB in the last inequality gives

V,(iAB) < ~w(AB — BA*). (2.8)

DN | =

Since Cy,,m(1AB) is accretive, from the inequality (1.10) and (2.8) we have

2vVMm

1
< = — BA*).
T ||ABH Vs(iAB) < 5 w(AB — BA")
Therefore,
2V M
< *
M m ||AB|| w(AB BA™).
This completes the proof. O

Recently, some inequalities have been presented by mathematicians to find the upper bound of
w(AB — BA*), for example inequalities (1.5) and (1.12). On the other hand, we have to use the
first inequality (1.2) to find a lower bound of w(AB — BA*). Now, in the following we give an

example to show how Theorem 2.10 improves the first inequality (1.2).

1 0 —1.5¢  0.2¢ ,
Example 2.11. Let B = , A= , M =3, and m = 1. Clearly B is

0 0.5 0 —3.24

self-adjoint and with a simple calculation, we have

M 0.5 0.1 M —
iAB — +m H H H_052<1_ 2m.
Therefore, Cy, pm(1AB) is accretive. On the other hand,
—1.5. 0.1z
|AB|| = ~ 1.62
—1.6¢
and
-3¢ 0.1¢
|IAB — BA*|| = ~ 3.24.
0.1: —3.2¢
In this case
||AB — BA*||
—— ~1.62

2
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while
4/ Mm
M+m

|AB|| ~ 2.80.

Remark 2.12. Let M and m are positive real numbers with M > m and A € B(H) and also
Cm(A) is accretive. Replacing B by I and A by —iA in Theorem 2.10 gives

2V Mm
M+m

1 .
14l < w(A+ A7) = [[Re(A)].

Therefore, the inequality (2.7) strengthens (1.13).

Corollary 2.13. Let M and m (with M > m) are positive real numbers and A, B € B(H). If B
is self-adjoint and Cy, p(A) and also Cy, a(3AB) is accretive, then

M2 _ 2
ap| < B ).
Proof. By Theorem 2.10,
4V Mm

< — *).
T 4Bl < w(AB — BAY)

From the hypothesis C,,, ap(A) is accretive and (1.12),

4/ Mm
M+m

[AB|| < (M —m)w(B),
which is exactly the desired result. O
At the end of this section, we introduce some numerical radius inequalities for products of two

operators.

Theorem 2.14. Let M and m (with M > m) are positive real numbers and A, B € B(H). If

Cm.m(A) is accretive, then
M—-—m

MM%g@M+ )mm.

Proof. Clearly, ||Re(AB)|| = w(Re(AB)). Then

AB + B*A*
IReaB)| = (225
(AB + AB* — AB* + B*A*)
w
2

<AB + AB*) (—AB* + B*A*>

IA

w
2 2

_ %w(A(B +BY) + %W(AB — BAY)

IN

1 1
5Dl B+ B[+ Sw(AB — BAY) (by (1.8))
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1
= DAHRB(B)” + iw(AB — BA*)
; 1
< Dysup ||Re(e”B)|| + sw(AB — BA*)
0cR 2

— Daw(B)+ %w(AB _ BAY
M—m

< Daw(B) + = w(B). (by (1.12))
- <DA LM m> w(B).
Hence,
rean) < (Da+ 2 )i, (2.9

Suppose that §y € R. Replacing B by e B in the inequality (2.9) gives

M—m

|Re(e® AB)| < (DA + > w(B).

Taking the supremum over 6y € R gives

w(AB) < (DA + 5 )w(B),
which is exactly the desired result. O

Corollary 2.15. Let M and m (with M > m) are positive real numbers and A, B € B(H). If

Chn. v (A) is accretive, then

w(am) < (i + 5 ) (o),

Proof. Since D4 < ||A]|, the result follows from Theorem 2.14. O

Concerning the inequality (1.4), the following result is interesting.

Theorem 2.16. Let k, M and m (with M > m) are positive real numbers and A, B € B(H). If
Chn. M (A) is accretive and (M —m) < k| A||, then

o(a8) < (14§ ) JAl().

Proof. By Corollary 2.15,

w(AB) < <||A| LM 5 m) w(B). (2.10)

From the hypothesis (M —m) < k|| A|| and inequality (2.10),

kI All

w(as) < (g + L) im,
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which is exactly the desired result. O

Corollary 2.17. Let k, M and m (with M > m) are positive real numbers and A, B € B(H). If
Crn.m(4) is accretive and (M —m) < k| A||, then

wW(AB) < (2 + k)w(A)w(B).

Proof. Since ||A]| < 2w(A), the result follows from Theorem 2.16. O

Remark 2.18. If k < 2, Corollary 2.16 refines the inequality (1.3).
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1 Introduction

In this paper, we will study the extended Weinstein or the Leutwiler- Weinstein equation

Lu = Au+£a—u+£u20, (1.1)

Ty 0T, X2

where k, ¢ € R. The Weinstein operator L plays an interesting special role in the theory of partial
differential equations, hyperbolic geometry and in other areas of mathematics (¢f. Section 5).
With the trivial choice of parameters k = ¢ = 0, the Weinstein operator is the usual Euclidean
Laplacian 52 52

:Tx%+...+87x121

A
acting on functions defined on R™. The solutions are called harmonic functions and the theory is
well elaborated, see e.g. [3,13,14]. The next natural step is to just require the condition £ = 0 to
be fulfilled, in which case we are in the case presented by Alexander Weinstein, see [21] and also
[4,11]. In this case, equation (1.1) is a classic Weinstein equation and the operator L is singular
on the surface x,, = 0. In this case, we usually look at functions that are defined in the upper

half-space
R%} :=R""! x (0,00).

For more recent research on the Weinstein equation, see e.g. [5,8]. The extended Weinstein
equation (1.1) with arbitrary parameters k, ¢ € R was initially studied by Heinz Leutwiler in [12].

The equation has continued to be studied quite actively until these days, see e.g. [2].

The purpose of this article is to present the simplest possible construction (from the point of view
of the authors) for the fundamental solution for the Weinstein operator L represented in (1.1). We
try to present the theory in such a way that basic knowledge of partial differential equations and
vector analysis are sufficient to follow the presentation, i.e. the so-called graduate student level.

The structure of the article is as follows:

e In Section 2, we outline the required preliminaries, i.e. the Weinstein operator with its

reduced version, and some useful notions from the theory of distributions.
e In Section 3, find the special type of “radial” solutions for (1.1).

e In Section 4, we use the “radial” solutions to define the fundamental solution and compute

its proper coefficient.
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2 Preliminaries

2.1 Weinstein operator

Let us look at some basic properties of the Weinstein operator L. Note that the variable z,, plays
a special role in the operator. We denote elements x = (2, x,) € R}, where x,, > 0. We observe
that keeping x,, fixed, the operator L admits with respect to the variable z’ the same invariance
properties as the Laplacian in R"~!, i.e. invariance under the Euclidean rigid motions (cf. [3]).

Particularly important in what follows is the invariance with respect to translations
a4 d (2.1)

for any a’ € R™~!. In the previous section, we did not discuss the fourth possible canonical special
case for the Weinstein equation, namely the situation & = 0. In fact, this situation is significantly

related to solving the extended Weinstein equation as follows. As a direct computation gives

_k ke~
L(zn ?u) = zp ? Lu, (2.2)
where
T Aus FQ=R) 440w
4 x2

we call the operator L the reduced operator. Subsequently, we will base our calculations largely on

the reduced operator, as it is relatively close to the Laplace operator in its properties.

The reduced operator is especially useful from the point of view of the integration theory. Let
U be a bounded subset of R’ with a sufficiently smooth boundary OU and let u and v twice
differentiable real valued functions defined in an open set containing U. Hence, the usual Green

formula for the Laplace operator is

ov ou
/U(uAv —vAu)dx = /BU <u8n - v&'n) ds,

where the derivative with respect to the outer unit normal n is defined by

— =n-Vu.

on

The Green formula for the reduced operator is obtained by adding and subtracting the term
k(2—k)+4luv
4 a2

n

in the volume integral, i.e.

~ ~ ov ou
/U (uLv - vLu) dzx = /aU <u6n - U@n) ds. (2.3)
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2.2 Generalized functions

Generalized functions or distributions are a standard tool in modern partial differential equation
theory. Their history begins in 1936, when Sergei Sobolev introduced his "l’espace fonctionnel"
and applied them to solve a Cauchy problem of second-order partial differential equations in [17].
After this, the theory was further developed, see e.g., the first larger representation of Laurent
Schwartz [16]. A key work in the theory of partial differential equations is the classic book [9] by
Gelfand and Shilov. In this book, distributions are examined from the point of view of solving
partial differential equations, and the key tool is the connection between distributions and complex
analytical functions. All the following information can be found in more detail in the literature

mentioned above.

Let Q be an open subset of R™ (or R}). We denote D(£2) as the space of compactly supported
functions

C5o(9) == {p € C°(9) : supp(y) is compact and supp(p) C 2}

equipped with the topology of uniform convergence in compact subsets K C 2. Indeed, ¢; — ¢ in
D(Q), if there exists a compact subset K C € such that supp(y;) C K for any j and all derivatives
0%p; — 0% uniformly, i.e. the convergence in the Fréchet space C*°(K). Above, multi-index

notation a = (o, ..., a,) € NI with

aal aan

ozt Oxpm

aOt

is used. The preceding D(Q) is called the test function space. We denote by D’(Q) the space
of continuous linear functionals over D(f2), and we call its elements distributions or generalized

functions. If T € D' (), we denote

for all ¢ € D(Q2). The continuity of a functional T' means, that T'(¢) — 0 for all  — 0 in
D(£2). The convergence in D’'() is defined in the weak form, i.e. a sequence {T;} of distributions

converges to a distribution 7" if and only if
<Tj SD> - <Ta 50>a for J — 0o, (24)

for any ¢ € D(2). Important basic properties of distributions are that they have all derivatives
defined by setting
<8aT7 §O> = (_1)|04| <T7 aa@>a

where |a| = a1+ - -+ay,, and multiplying by a smooth function f € C'*°(Q) produces a distribution,
i.e.,

(JT,0) = (T, f¢)-
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The above properties allow differential operators to be defined in distributional sense, e.g.,
(LT, ¢) = (T, Ly), (2.5)

for any 7' € D'(Q2) and ¢ € D(2) when Q C R’}. We also denote

where the x is a dummy variable (¢f. the use of variables in integrals). Any locally integrable

function g € L{ () defines a distibution via the L?-inner product by

(9,0) = (9, @) 2 = /Q 9(2)p(z) dr. (2.6)

Remark 2.1. The starting point for the theory of distributions can be also in measure theory. Let
us elaborate on the equivalence of perspectives. If Q C R™ is an open set and p a complexr Borel

measure on it with u(K) < oo for any compact K C Q, then
ﬂ@:/ww,
Q

defines a distribution, where ¢ € D(Q). If f € L}, (), then the measure

loc

u(B) = [ fa) do

for any Borel set E C Q is a complex Borel measure with u(K) < co. Then the Radon-Nikodym
derivative 3—5 = f. Hence, we can intuitively identify distributions with functions f or equivalently

with measures L.

The most important example of distributions is the Dirac delta distribution, which is defined by

setting
(0(z = y), (@) = »(y),

for y € R™. The Dirac delta is not a distribution generated by a locally integrable function. In the
distributional sense, one can see that d6(z —y) = 0 for any = # y. Moreover, the Dirac delta has

the obvious property
f@)d(z —y) = f(y)d(z —y), (2.7)

for f € C*°(£2), which plays a central role in this paper. If

Pu(z) =Y aa(z)0u(z)

k=0 |o|=k
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is a linear differential operator P acting on a suitable function u, where a, € C*°(£2), we call a

distribution G(-,y) € D'(Q) a fundamental solution at y € §, if it satisfies the equation
PG(z,y) =0(z —y).

The main motivation to find a fundamental solution is to study solutions of the equation Pu = f.
One can see, that the solution of the problem is given by u = G * f, where * is the convolution of

a distribution and a function. See details, e.g. in [9].

3 Classical “radial” solutions
In this paper, our aim is to find a fundamental solution G for the Weinstein operator (1.1), i.e.
LG(z,y) =é(z —y)

where y € R?. Our first observation is that due to the formulas (2.2) and (2.7), we obtain the
following formula.

k
Proposition 3.1. If Lv = 6(x — y), then L ((ij) ’ v) =d(z —y).
Hence, it is enough to find a fundamental solution for the reduced operator L. A usual problem
with any non-constant coefficient differential operator is that the symmetry of the operator does
not match with the symmetry of the Dirac delta. We know that the Dirac delta is rotationally

invariant (see [9]), i.e.

0(Ax) = 0(x)

for any A € SO(n), but as we mentioned above, L is rotation invariant only around the z,-axis,
or more precisely, it is invariant under the subgroup SO(n — 1) in SO(n) defined as the stabiliser
of the z,-axis. Hence, the z,-direction will play a special role. Since the operator is translation
invariant with respect to z’, we can try to find first a fundamental solution only at the point
y = (0',y,). Thus,

0z —y) = 0(x")0(xn — yn).

Consequently, the fundamental solution must be a “radial function”, i.e., it depends on |z — y|,
with the special role of z,,. Hyperbolic geometry gives us an idea how to proceed. In [15], one can

find the expression

|z — 3/|2 = 2zpyn(Az,y) — 1), (3.1)
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where A : R X R} — [1,00) is defined by

2
|z -yl

May) =1+ — o

The reader should note that
A > 1. (3.2)

The function A is an invariant with respect to the invariance group of the hyperbolic upper-half
space, c¢f. [15]. Based on this, one can try to find a solution for the extended Weinstein equation

in the form

u(z) = zpo(X), (3-3)

for a fixed y € R’}. We want to substitute this into equation (1.1). First, we compute the following

technical lemma.

Lemma 3.2. If u is of the form (3.3) and y' =0, we have

22 Lu = (N = 1)v"(\) + ((n -2+ 204)36—: +2(1 - a))\) v'(A) + <a(a — 1)+ w> v(A).

Proof. Since v = v(A(z,y)), we compute

ﬁ = 7:1;]‘ ’Ul()\)v
0x;  TpYn
0 n— YnA
v Ta—y JON),
Oy, TnYn
v 230" () + zpyav'(N)
922 w2y? ’
v (@n =y () + YA — Tayn)V'(N)
o3 wly? ’
for j=1,...,n— 1. Then we compute
Ou 1T,
T g1
5 = VO,

a% = zo-1 (ow(/\) + (2: - A) v’()\)) ,

8211, Ioz72

Z - _n 2,1

ax? 3/721 (‘IJU (/\) + YnTpv (/\)>7

Pu x0?

a? = y2 ((xn - yn/\)2v//()‘) + ((20& - 1)xnyn + (y721 - ayi)Q)‘)v/(/\) + a(a - 1)y721’0(/\))a
for j=1,...,n — 1. Then we observe

ey 9
= ZT (\m’\ v (\) + (n — 1)yna:nv’()\)>.
j=1 J n
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1?2 = 22,,yn A — 22 — 32 and we obtain

Since y' = 0, we have |z 2

Ay =z072 <()\2 — D" (\) + ((n —2+2a)2" 4201 - a)/\> V' () + ala — 1)0()\)) ;

yn
completing the proof. O
‘We observe that we obtain the ordinary differential equation with respect to \ if we choose v = 2*7”
Since a(a — 1) = (n — 2)n, we obtain the following result.
2 ~
Proposition 3.3. The function u(x) = xp? v(A) is a solution of Lu = 0 if and only if
1
(A2 — D" () + n\'(N) + Z(k(2 —k)+ (n—2)n+40)v()) = 0.
We denote 3 := 1(k(2 — k) + (n — 2)n + 4¢). To solve the equation
(A2 = D" (A) + X' (N) + Bu(\) =0, (3.4)
we first observe that it is not far from the associated Legendre equation
12
(22 = D" (2) + 220/ (2) = (vl +1) + i 1)w(z) —0, (3.5)

with parameters p, v € C. The associated Legendre equation has two solutions P#(z) and Q*(z)
defined outside of singularities z = £1, see e.g. [1,10]. The solutions are called associated Legendre
functions. The solutions P¥(z) and Q¥(z) are linearly independent if and only if u+v ¢ —N. We

need to exclude this case in the future.

Assume z # y, that is, from (3.2) we obtain A = A(z,y) > 1. We look for a solution for (3.4) in
the form

v(\) = (A2 = 1)%w(N).

Substituting this into the equation (3.4), the equation becomes

(3.6)

_ 2
(A2 — D)w” + (46 +n) ' + (26 + 6+ (400 /\i)jfné)’\ ) w=0.

To obtain the associated Legendre equation, it is required that

2—n

4

464+n=2 < 6=

We obtain the following result.
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Proposition 3.4. The function v(\) = (A2 — 1)2_an()\) satisfies equation (3.4) if and only if w

s a solution of the associated Legendre equation

=0.

@Q—waﬂMu_<_M2—m+45+im-2f>w

4 A2 -1

Proof. Using (3.6), we have

2—n 1 A2
2 " / (-9 =
(A = Dw"” + 2w’ + ( 5 +8 4(n 2) e 1> w = 0.

On the other hand,
A 1+ 1
A2—1 7 az-1

and we obtain the result. O
Hence we obtain the solutions as follows.
Theorem 3.5. Equation (3.4) has two linearly independent solutions

2-n inT% 2-n :E"T*Q

(N = )= P s (V) and (A - D=0 " oW
2 2 2 2

where we can choose any £ combination for any indices (4 possible combinations).

Proof. To solve the reduced equation, we need to find the right parameters in the Legendre equation

(3.5), that is

2— 4 1 -2)+1-4
y(y+1):_w PN V:—*i \/n(n )+ 5
4 2 2
and
1 n—2
= "(n-2)? =+ :
pr=n=2)" & p 5
Equation (3.4) admits two linearly independent solutions
2 2-n 4 n=2 2 2-n 4n=2
(\—1)"= P,;i\/m(/\) and (\°—1)77 Q,;i\/m()\)'
2 2 2 2

Then, using the formulas 8.2.1 and 8.2.2 from [1], both functions P , and Q" , can be
2 "2
represented by the functions P , and Q" ,. Similarly, using the formulas 8.2.5 and 8.2.6, we
2 2

can represent P, # and @, * by the functions P and Q%. Hence, the any + combination gives us

two linear independent solutions. O
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Corollary 3.6. Using (2.2), we obtain the solutions

_k 2—n :thz
2(\2 _ I Pl
In (>\ 1) Pil:l:‘/n(n72)+1—4ﬂ
2 Pl

2—n i”;2

_k
(\) and x,* (N = 1)77 Q,Liwo\)
2 2

for the Weinstein equation (1.1).

Remark 3.7. We observe that if n(n —2) +1 — 48 < 0, we obtain solutions with the functions

Pf%+lg(A) and Qi%+19(A)’

with some § € R. These functions are called the Mehler functions or conical functions, see e.g.
Section 8.12. in [1] or Section 8.84 in [10]. The first of the functions is real-valued, while the

second is complez-valued in general. To find completely real-valued solutions, see e.g. [6].

Remark 3.8. The special case n(n —2)+1—48 =0, i.e. k(2 —k)+ 4¢ =1, corresponds to the
equation
E ou  g(k—1)?

~ 1
Tu=Au+--L=0 or Lu=Au+—24 4

u=0
2 2 )
422 Tpn Oy, 2

and the solutions are given by

PI_L;()‘) and Qli;(/\)

4 Finding fundamental solutions

The solutions given in Theorem 3.5 can be used as candidates for a fundamental solution. From
(3.1), we infer that  — y if and only if A — 1+. Next, let us examine the asymptotic behavior of

functions in general. In the following, we assume that the argument z of the functions is real.

Proposition 4.1. If Re(u) > 0, then

lim ((22 - 1)%P;“(z)) —0.

z—1

Proof. For |1 — z| < 2 the associated Legendre function P# admits the representation (see 8.1.2 in

1) “
1 z—1\2 1—2
PH(y) = (- 1:1 .

L () T(1+p) <z+1> 2 1< vyt il )

where o F7 represents the usual hypergometric functions (see [1,10]). Hence

) 1 1—2

2 o
2 —=1)2PH(z2)= — (-1 | —v,v+ 1,1+ pu;—— |,
(= DERG) = (- 0% i)

completing the proof. O
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Proposition 4.2. If Re(p) >0 and v+ & ¢ —N, then

lim ((22 - 1)%@;(2«)) = i1 (p).

z—1+4+

Proof. Using the representation 8.703 in [10], we obtain the representation

(22 = 1)EQU(z) = ™

T(v+p+1)ym 7 v+ pu+2 V—&—M—l—l'y 31
2U+1F(V+%)Zy+#+12 D) ) 5 ) 9,2 )"

Using the transformation formula 9.131.1 in [10], we have

2 _ 1) H _ _
)z(ZI) gFl(V Lt ”+2‘V+2a12>'

+3 1
v4 - —
27 22 Z—2m 2 ’ 2 ’ z

v+pu+2 v+p+1
oI 5 ) 5 ;

Hence

" . Fv+p+1)y/m v—pu+2 v—p+1 31
2 N\Ew _ i . .
(Z 1)2Qu(z) € 2V+1F(V+%)ZV_H+12F1 D) ) ) 71/+ 2722 .
If Re(c —a —b) > 0 and ¢ ¢ —N, the identity 15.1.20 in [1] says

(e)T'(c—a—10)

2Fi(a, bie 1) = I'(c—a)l(c—b)

Ifa = ”7’5“, b= ”7‘2”2 and c = V—i—%, we have Re(c—a—b) = Re(u) > 0 and 1/—|—% #0,—-1,-2,...,

i.e.

v—p+l v—p+2 3 v+ 23w
21 L ; L vt gil) = u+(+2 2)ugr)+1 :
2 2 2 P(=5=)0 (=)

Using the doubling formula for the gamma function 8.335.1 in [10], we obtain

v—pu+1l v—p+2 3 2PET (v + )T ()
2 ) v+ 5l ) = .
2 2 2 VAT (vt p+ 1)

Thus

imu DV + p 4 1)y/m 27T (v + 5)T(u)

= ™I (). O
2w+ 2) il tp+l) ()

. 2 1\EAu ) _
dim (2= D5QUE)) = ¢
We know that the homogenity of the Dirac delta distribution is —n and the reduced operator is a
homogeneous differential operator of degree 2. Hence, the fundamental solutions should have the
homogenity —n + 2. From (3.1), we obtain, that (A — 1)% has the needed homogenity. Hence
the solution (A% — 1)~2Q*(\) has the suitable homogenity. We see it by writing it in the form

(\ —1)=2Q6(N)

()‘2 - 1)_%Q5()‘) = (A—F 1)“(}\ — 1)#
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for p = "T_z Let us define the following function with the canonical asymptotic behavior, which
we can use as a candidate for a fundamental solution. This means that we fixing the constant, and

proving directly that it indeed satisfies the correct equation.

Proposition 4.3. Let u= "7_2 and p = —% + 7W. The function

F(.’)Ly) =

where
C 2™ (A - DEQE(N)
F) = I'(v) A+ 1)m

18 a null solution of the reduced operator for x # y and

lim () = 1.

Proof. Using the preceding proposition, we obtain

- DEQEN)) _ e
py (L) m

Next we need to evaluate EF(~, y) in the distribution sense. We proceed as follows. We take a test
function ¢ € D(R?}) and choose a bounded open set U C R’} with a sufficiently smooth boundary
satisfying supp(¢) C U, and we define U, (y) := U\B,(y) for 0 < r < R, where R = inf{|z — y| :
r € OU}. If xy, () is the characteristic function of U, (y), then we define the sequence of locally
integrable functions {F,.} by F. := xy, ) F(-,y). Obviously, the sequence converges to the F'(-,y)

in the distributional sense (2.4). Then, using this convergence and (2.5), we obtain

(LF(y),¢) = (F(-y), Lp) = lim (F;, L) (4.1)

Since F. is locally integrable, we have using (2.6) and the Green formula (2.3),

~ ~ ~ 0 OF

(Fr, L) = / F(z,y)Lo(z) dov = / LF(z,y)p(z) dx +/ (F(,;O - “Da> ds.
Ur(y) Ur(y) oU,(y) " "

We observe that LF(z,y) = 0 for  # y and split dU,(y) = U U (—B,(y)), where the minus

sign denotes the opposite (i.e. inward) orientation. Since supp(g—i) C supp(p), we observe that

the surface integral over QU vanishes. Hence

FLo)= [

( a—F - F&p> ds. (4.2)
8B (y)

14 on on

To compute the surface integral in (4.2), we need the following technical lemma.



CUBO

A simple construction of a fundamental solution... 353

26, 2 (2024)

Lemma 4.4. If x € B, (y) with y = (0, y,), then the normal derivative of A(z,y) satisfies

87>\ _rxn"_yn
on 222y,

Proof. We compute

oA ;
IA _ , for 7=1,....n—1,
axj TnYn
oA _ P +ad— 4l
oz, 222y, ’
i.€. s e
e e et
VA= (w252

InYn

At x € 0B, (y), the outward pointing unit normal is

($/7 Tp — yn)

Since |2/]? = r? — (2, — yn)?, we compute
—=n-VA O
on " 222y,

We also need the following asymptotics.

Remark 4.5 (Integrals over spheres). If f: U — R is a continuous function, y € U and R > 0
a radius such that B,.(y) C U for all 0 < r < R. Then there is the classical asymptotic formula
of the surface integrals, depending on the singularity of the integrand. A direct consequence of the

continuity of the function f is

0, for 0<a<n-—1,

. f(z) _

}13% 0B.(y) T° dS(z) = S w,_1f(y), for a=n-—1, (4.3)
+o00, for a>n-1,

where wy,_1 is the surface area of the unit sphere S"~1 C R™. These are a special case of the

so-called potential type integrals, see e.g. [19].

Then we are ready to prove:
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Theorem 4.6. Ify = (0',y,), then

~ n—2
LF(,y) = _7?4:11_2“}71715(1'/)5(%71 - yn)7

where w,_1 is the surface area of the unit sphere S"~' C R™ and n > 3.

Proof. Since A —1 = we have

_r
2TnYn’

F(ay) = ) 1)

rn—2 ’

where p = "T_Q Hence using (4.3), we obtain

lim

o
=0 JoB, () Fon®™ = ), W)

rn=2 8n
Then we compute using Lemma 4.4

oF i
on A )\

d

ff uf ( )\ oA

(A= ) (A= 1)“*1 on
1 (2zpyn)" /(A :“(2xnyn)%f()‘) Tn + Yn
2 yn—3 rn—1 x%yn .

Hence, we can compute

OF 2 nYn B n n
lim —dS—fh / (J;y)ﬁf()x;&-y(p
=0 JaB, (y) 7 on 27-0 /B, (y) " T2 Yn

=0, using (4.3)

1 2 2
Ll ( xnyn)12f(/\) TntYn oo
2 r—0 9B, (y) rne nYn
=~ pyp Cwn-19(y)
again using (4.3). Hence, using (4.1) and (4.2), we conclude
(LE(y) ) = —pyp wn—16(y).
Using the definition of the Dirac delta distribution, we obtain the result. O

Since L is invariant under (2.1), we obtain a fundamental solution by the simple substitution.
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Theorem 4.7. Let n > 3. The distribution

h(M(z,y))
H(z,y) = ———5=
OV N - )
where ) .
s (2o DEQE

hA) == (n —2)yn 2w, _1T'(v) A+ 1)~

is a fundamental solution for E, i.€e.

for any y € RY.

Proposition 3.1 gives the following theorem.

Theorem 4.8. Let n > 3. The distribution

Gy - SO

9= ey - 17

where 1 4 — i ()\2 1)&Q#()\)
= i D Tw) O D

is a fundamental solution for L, i.e.
LG(,y) = 6(x —y),

for any y € R%.

Above, the special case n = 2 is not considered and is left as a future research topic. The question

is a natural deformation for the hyperbolic Laplace operator on the complex upper half-plane.

5 Conclusions

In this paper, we derive the fundamental solution for the operator L in detail. The reader can see
that to find the fundamental solution for an operator with a non-constant coefficient is much more
challenging than in the case of constant coefficients. The reader should also bear in mind how
the only constant multiplication special case k = ¢ = 0 makes calculations significantly easier. By
doing the calculations presented in the paper in this case, we recover a classical derivation, based

on differential equations, for the fundamental solution of the Laplace operator.

Finally, the authors would like to point out that the results of the paper may be interesting in
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addition to analysis in other areas of mathematics, such as analytical number theory, because

the extended Weinstein equation also encompasses the famous Maak wave equation, including the

famous Maaf forms as special solutions, see e.g. [7,18].
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1 Introduction

The Laplace transform L is a well-known classical linear integral operator defined for every appro-

priate function f on [0,00) by

Lf(t) = /000 e "' f(s)ds, te(0,00).

Laplace transform is widely used for solving ordinary and partial differential equations. Hence it
is a useful tool not only for mathematicians but also for physicists and engineers. It is also useful

in Probability Theory (see [1], [8] and [10]).

Searching among the literature, we found that the study of the boundedness of the Laplace trans-
form for some unknown reason has been neglected. In this regard, we could only find the references
[3] and [6,7], in which the authors stated some results about the boundedness of the Laplace trans-
form. In [3], the optimal rearrangement-invariant space on either side of £ : X — Y is characterized
when the other space is given. In [6], the authors studied both the Laplace transform and a more
general class of operators (also in weighted L,, spaces), and in [7], they provided for them a spectral
representation in L. For more on the Laplace transform and its optimal domain of definition, the

interested reader is invited to check [2,9,11] and the references therein.

In such a sense, in a self contained presentation, we study the boundedness of the Laplace transform

on Lebesgue L,-spaces. Our main goal is to show that:
(1) L£:Ly(]0,00)) = Ly([0,00)) is bounded only if p = 2.
(2) L:Ly(]0,00)) = Ly([1,00)) is bounded only if p > 2.

(3) L:Ly([0,00)) = Ly([0,1]) is bounded only if 1 < p < 2.

2 Main results

We would like to discuss now about the boundedness of the Laplace transform £. For example,

for f € L1(]0,00)), it holds that

oo

1L ()] S/O [f(s)lle™*"| ds S/O [f(8)[ds = [1£]| . 0,009y < 00

This means that £(f) exists and it is bounded for all ¢ > 0. By taking the supremum over
t € [0,00), we obtain

1L 2w 0,00 < NFllzy(10,00))5
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which means that

L:L1(]0,00)) — Loo([0,00)),

is a bounded operator.

For our next result we will use the so called Minkowski integral inequality, stated below. Details

and proof of this inequality may be found in [4].

Theorem 2.1 (Minkowski integral inequality). Let (X, ,u) and (Y, RB,v) be o-finite measure
spaces. Suppose that f is o x B-measurable function and f(-,y) € Ly(u) for ally € Y. Then for
1 <p < oo we have

Q / f<x,y>dupdu " / (X @yl du " (2.1)
Y Y

The next result is an exercise in the 1958 book of Dunford and Schwartz [5]. It states that
L : Ly(]0,00)) = L2([0, 00)),

is a bounded operator. For the sake of completeness, we provide its proof.

Theorem 2.2. Let f € Ly([0,00)). Then

ILF | La(0,00)) < VTNl L2([0,00))-

Proof. Let f € Ly([0,00)) and .
:/ f(s)e *ds. (2.2)
0

Now, making the change of variables u = st, (2.2) becomes

o= [ e (5)

By means of the Minkowski integral inequality (Theorem 2.1), one has

||£||L2<[o,oo>>=(/ooo lﬁf@'”’f)%: (/ EGh )
<[l e ) [ (B -
= [Turter ([Tirra ) ([
=1 () Iflza(0.00,

uz e dU> I £l 22(10.00))
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Figure 1: The graph of F(a) = ooy for p = 1.5 (solid) and p = 5 (dashed).

It is a well known fact that I" (%) = /7, so we finally arrive to

H‘CfHLz([O,OO)) < ﬁ“f”Lz([Q,oo)) 0

Remark 2.3. A routine calculation shows that, for p > 1, if f,(t) = e~ where a > 0, we have

1\ al-p\ /P
allstosen = () o 1EElnygomn = (2=7)

Hence

IL(fa)llz,(0,00)) _ ( D )1/p o

-1
P — o0,
| fallZ, (0,00)) p—1

asa— oo for 1 <p<2, and as a — 0T for p > 2 (see e.g. Figure 1 below). This shows that
L2 Lyp([0, 00)) = Lyp([0,00))
is not a bounded operator for p # 2.

Our next result states that

L : Ly([0,00)) = Ly([1,0)),

is a bounded operator for p > 2.

LAll plots in the present article were made using the software DESMOS.
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Theorem 2.4. Let f € L,([0,00)) with 2 < p < oo, then

1L L, (1.00) < Cpllfllz, (10,000
o101 . . .
Proof. Let f € L, with — 4+ — = 1. By Hoélder’s inequality one has
p q

o [/ oo p

1L 1y = [ V8@ do= [ [ i@y | do
1

1 0
00 p/q

< / / )P dy / cdy | dy
1 0 0

T/ e—azy |2\ P/4 )
/<_ qr o ) HfHL”([O’OO))dx
1

e [ F ) 1\ P/ 1
— | = —r/aq p . -
(Q> 1/$ ? ) W1z, 0.0 <Q) (2-plar—2], ”f””"°°
1\?/7 1
~(3) 5 oy
Finally,
1 1/q 1 1/p
cDlnam = (3) (515) Wl
hence )
B 1/p
p—1\ » 1
L < | — —_— . O
elzom < (50) 7 (525) Mliee

Remark 2.5. Theorem 2.4 does not hold for 1 < p < 2. Let us check this. As in the previous
1 1/p

remark, for fo(t) = e~ with a > 0, we have | fal L, (j0,50)) = <> , and also
ap

1 1/p . 1/p 1 1/p pet
||c<fa>||Lp<1,oo>=(p_1) ((1+a)') :(p_l> (14

Hence

— 0

1/p
1 1/p—1
IL(fa)llL,(1,00) _ (pﬂ) (I+a) B p 1/17. (a+a2)L/P
a -1 1+a

Ifallz,0,00) 1\
ap

as a — 0o and 1 < p <2 (see, for example, Figure 2 below). So,
L:Ly([0,00)) = Ly([1,0)),

is not a bounded operator for 1 < p < 2.
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I1£(fa)llz, 1 00)
I fallz, (0,00

Figure 2: The graph of G(a) = for p =1.4.

In our last result, we will show that
L: Ly([0,00)) = Lp([0,1]),

is a bounded operator for 1 < p < 2.

Theorem 2.6. Let f € L,([0,00)) with 1 < p < 2. Then

IL(H) 2, q0.1) < Collfllz, (j0,00))-

Proof. Let g denote the conjugate exponent of p, i.e. 1/p+ 1/¢ = 1. Assuming 1 < p < 2, then
¢ > 2 and also 1 —p/q > 0. Now,

1 1 oo p
1201, o = [1E5OF dt= [ | [etstsras | ar
0 0 0

1 oo 00 p/q

1
S/ /|f(s)|pds /e‘sqtds /( e
0 0 0 0
! 1 p/a 1 p/q
- [(5) w0 - (3) / VA 1T o
0 0

—(1)m L (p‘l)p_ll T
. “pjg Mlioeen = (7 5—p Lm0

p/q
) At 11 oo

where we used Holder’s inequality in the third line. Finally, we conclude that

ILfNz,q0,1) < Collfllz,(0,00))5

where €, = (21) 7 ()", =
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-2 10 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20
-1

Figure 3: The graph of H(a) = W for p = 3.9.

Remark 2.7. Theorem 2.6 does not hold for p > 2. Again, for f.(t) = e~ with a > 0, we have
1/p
1falliaqooon = () and also

al7? — (1+ a)l_p>1/p

Il o = (0

Hence

L(f, 1/p

||||;f”)||LP([O’1D = <p p 1> (a*? —a(l+ a)lfp)l/p — 00,
allLp([0,00)) -

as a— 0" and p > 2 (see e.g. Figure 3). So,

L : Ly([0,00)) = Ly([0,1]),

is not a bounded operator for p > 2.
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