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ABSTRACT

We introduce and study an infinite family of graceful graphs,
which we call kites. The kites are graphs where a path is
joined with a graph “forming” a kite. We study and charac-
terize three classes of the kites: kites formed by cycles known
to be graceful, fan kites and lantern kites. Beside showing
in a transparent way that all these graphs are graceful, we
provide characterizations of these graphs among all simple
graphs via three tools: via Sheppard’s labelling sequences in-
troduced in the 1970s and via labelling relations and graph
chessboards. The latter are relatively new tools for the study
of graceful graphs introduced by Haviar and Ivaška in 2015.
The labelling relations are closely related to Sheppard’s la-
belling sequences while the graph chessboards provide a nice
visualization of the graceful labellings.

RESUMEN

Introducimos y estudiamos una familia infinita de grafos agra-
ciados que llamamos cometas. Las cometas son grafos en los
cuales un camino está unido con un grafo “formando” una
cometa. Estudiamos y caracterizamos tres clases de cometas:
cometas formadas por ciclos conocidas por ser agraciadas,
cometas abanicos y cometas linternas. Además de mostrar de
manera transparente que todos estos grafos son agraciados,
entregamos caracterizaciones de estos grafos entre todos los
grafos simples a través de tres herramientas: a través de suce-
siones de etiquetados de Sheppard introducidos en los 1970s y
vía relaciones de etiquetados y tableros de ajedrez de grafos.
Los últimos son herramientas relativamente nuevas en el es-
tudio de grafos agraciados introducidos por Haviar e Ivaška
en 2015. Las relaciones de etiquetados están estrechamente
relacionadas con las sucesiones de etiquetados de Sheppard
mientras que los tableros de ajedrez de grafos entregan una
visualización agradable para los etiquetados agraciados.
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1 Introduction

The Graceful Tree Conjecture stated by Rosa in the mid 1960s says that every tree can be gracefully

labelled. The conjecture is one of the most attractive open problems in Graph Theory. It has led

to a great interest in the study of gracefulness of simple graphs. Yet not much is known about the

structure of graceful graphs after almost sixty years.

A graceful labelling of a graph of size m is a vertex labelling by numbers from the set {0, 1, . . . ,m}
such that no two vertices share the same label, each edge is assigned the label, which is the

absolute value of the difference of the vertex labels, and the edge labels cover all values of the set

{1, 2, . . . ,m}. If a graph is gracefully labelled, we say it is a graceful graph.

The Graceful Tree Conjecture was stated by Rosa in [7] and [8]. The best source of information on

attacks of the conjecture and on the study of labellings of graphs is the electronic book A Dynamic

Survey of Graph Labeling by Gallian [1].

In this paper we introduce and study an infinite family of graceful graphs, which we call kites. The

kites Kn(G) are graphs where a path Pn is joined with a graph G “forming” a kite. In our work

the graph G can be a cycle Cm known to be graceful (i.e. m = 0 (mod 4) or m = 3 (mod 4)), a

fan graph Fm or a lantern Lm. These kites Kn(G) have been studied in the second author’s M.Sc.

thesis [5].

Characterizations of the kites are presented using the tools of labelling sequences, labelling relations

and graph chessboards. Labelling sequences were introduced in 1976 by Sheppard [9]. The labelling

relations and graph chessboards as new tools for the study of graceful graphs were introduced and

applied in 2015 by Haviar and Ivaška [3]. We also refer to recent papers [6] and [2], in which

another classes of graceful graphs were studied by these tools.

The basic terms and facts needed in this paper are presented in Section 2. This includes the

concepts of graph chessboards, labelling sequences and labelling relations. In Section 3 we describe

graceful labellings of the kites formed by graceful cycles and we present their characterizations by

the mentioned concepts. In Section 4 we introduce and similarly characterize other two classes of

the kites: fan kites and lantern kites.

2 Preliminaries

In this section we recall necessary basic terms concerning the graph labellings as well as the

concepts of labelling sequences, labelling relations and simple chessboards. These definitions are

taken primarily from [8] and [3].

Throughout this paper we consider only finite simple graphs, that is, finite unoriented graphs
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without loops and multiple edges. The following concept was called valuation by Rosa in his

seminal paper [8].

Definition 2.1 ([3,8]). A vertex labelling f of a simple graph G = (V,E) is a one-to-one mapping

of its vertex set V into the set of non-negative integers assigning so-called vertex labels to the

vertices of G.

In this paper by a labelling we mean a vertex labelling. The number |f(u)�f(v)|, where f(u), f(v)

are the labels of the vertices u, v respectively, will be called the induced label of the edge uv in the

labelling f .

Definition 2.2 ([3, Definition 1.2.3]). Let G = (V,E) be a graph of size m and let f : V ! N be

its labelling. Then f is called a graceful labelling if

(1) f(V ) ✓ {0, 1, . . . ,m}, and

(2) f(E) = {1, 2, . . . ,m}.

A simple chessboard is a square table with n rows and n columns, and dots which represent the

edges of a graph are placed in the cells of the table. Every edge uv corresponds to the dots with

coordinates [u, v] and [v, u] (the dot with coordinates [i, j] means the dot in the i-th row and the

j-th column of the table, where i, j 2 {1, . . . , n}). Let the r-th diagonal be the set of all cells with

the coordinates [i, j] where i� j = r and i � j. The 0-th diagonal (also called the main diagonal)

has no dots, because we consider simple graphs, the other diagonals are called associate. Simple

chessboard is called graceful if there is exactly one dot on each of its associate diagonals.

The simple chessboard is a useful visualization of a graph because via it one can easily see some

properties of the graph such as its size, degrees of vertices, gracefulness, etc. In Figure 1 we see

the simple chessboard of a graph of size 9 (the kite K6(C4) formed by the cycle C4).

To represent gracefully labelled graphs, we will use other two tools: labelling sequences and labelling

relations. A concept of the labelling sequence was introduced by Sheppard in [9]. He proved

that there is a unique correspondence between gracefully labelled graphs and labelling sequences.

Later in [3] Haviar and Ivaška proved a correspondence between labelling sequences and labelling

relations. Let us now define these concepts.

Definition 2.3 ([3,9]). For a positive integer m, the sequence (j1, j2, . . . , jm) of integers, denoted

(ji), is a labelling sequence if 0  ji  m� i for all i 2 {1, 2, . . . ,m}.

The correspondence between gracefully labelled graphs and labelling sequences is described in the

following theorem.
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Figure 1: Representations of the kite K6(C4)

Theorem 2.4 ([3, 9]). There exists a one-to-one correspondence between graphs of size m having

a graceful labelling f and between labelling sequences (ji) of m terms. The correspondence is given

by ji = min{f(u), f(v)}, i 2 {1, 2, . . . ,m}, where u, v are the end-vertices of the edge labelled i.

Definition 2.5 ([3, Definition 3.5.1]). Let L = (j1, j2, . . . , jm) be a labelling sequence. Then the

relation A(L) = {[ji, ji + i] | i 2 {1, 2, . . . ,m}} will be called the labelling relation assigned to the

labelling sequence L.

In [3] also a labelling table was assigned to a graceful graph of size m, which displays its labelling

sequence and the labelling relation together. The labelling table consists of a header and two rows.

The header just lists the numbers 1, 2, . . . ,m. The first row of the labelling table consists of the

labelling sequence ji as defined in Definition 2.3. The numbers in the second row are sums of the

numbers from the header and the numbers of the first row (the members of the labelling sequence).

The pairs from the first and second rows in each column are the elements of the labelling relation.

In Figure 1 we see the labelling table of the kite K6(C4). In the first row of the table we see the

labelling sequence (4, 3, 3, 2, 2, 1, 0, 1, 0) of this graceful graph. The pairs from the first and second

rows in each column of the labelling table form the labelling relation representing the edges of this

graph. For example the pair [4, 5] represents the last edge of the path.
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3 Characterizations of kites formed by graceful cycles

It is well-known (see [8], [3] or [1]) that a cycle Cm is graceful if and only if m = 0 (mod 4) or

m = 3 (mod 4). Therefore our first two studied classes of kites are those formed by graceful cycles

Cm.

3.1 Kites formed by cycles Cm for m = 0 (mod 4)

In this subsection we present our characterization of the kites Kn(Cm) formed by cycles Cm for

m = 0 (mod 4), where m � 4 and n � 1. The special case are the quadrangular kites.

By a quadrangular kite we mean a graph obtained by joining the cycle C4 to the end-point of the

path Pn with n � 1. We denote it Kn(C4). The size of this graph is s = n+ 3, where n� 1 is the

length of the path Pn.

Example 3.1. We again consider the quadrangular kite K6(C4) presented in Figure 1. Its labelling

sequence (LS, for short) (4, 3, 3, 2, 2, 1, 0, 1, 0) consists of two groups: the first is (4, 3, 3, 2, 2), which

is the LS of the path P6 and the second is (1, 0, 1, 0), which is the LS of the cycle C4. These two

groups are clearly seen in the graph chessboard as the dots forming the “stairway” representing the

path pattern and the dots forming the “square block” representing the cycle C4.

Definition 3.2. Let s = n+3 for some n � 1. By a QK-graph chessboard (QK standing for “quad-

rangular kite”) of size s we mean a simple chessboard such as in Figure 1 described in the previous

example. Its dots start in the lower left corner with two dots in the column 0 and two dots in the

column 1, which together create the “square block”. The remaining dots form a “stairway” attached

to the square block (the “stairway” starts with the dot with coordinates [s� 2, 2]).

The characterization of the quadrangular kites via their chessboards, labelling sequences and la-

belling relations is a special case of Theorem 3.4, which will be presented with a full proof. It

follows from it that a graph G of size s = n+ 3 for some n � 1 is the quadrangular kite Kn(C4) if

and only if G has a graceful labelling and a QK-graph chessboard of size s.

Consider now the kite K7(C12) and its representations in Figure 2. In the first row of the labelling

table is the LS (8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 0, 3, 2, 2, 1, 1, 0).

Definition 3.3. Let s = m + n � 1 for m = 0 (mod 4) and m � 4, n � 1. By a C0K-graph

chessboard (C0K standing for “kite formed by cycle Cm for m = 0 (mod 4)”) of size s we mean a

simple chessboard such as in Figure 2 whose dots can be divided into three groups: the first group

of dots form a “stairway” starting in the lower left corner (with the dot with coordinates [s, 0]), the

second group consists of a single dot with coordinates [m2 + (n� 1), 0] and the third group is again

a “stairway”. (It starts with the dot with coordinates [
⌅
s�i
2

⇧
+ i,

⌅
s�i
2

⇧
] for i = m

2 + (n� 2).)
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Figure 2: Representations of the kite K7(C12)

The following theorem characterizes the kites Kn(Cm) for m = 0 (mod 4) via their graph chess-

boards, labelling sequences and labelling relations.

Theorem 3.4. Let G be a graph of size s = m + n � 1 for m = 0 (mod 4) and m � 4, n � 1.

Then the following are equivalent:

(1) G is the kite Kn(Cm).

(2) G has a graceful labelling and a C0K-graph chessboard of size s.

(3) There exists a labelling sequence L = (j1, j2, . . . , js) of G such that

ji =

8
>>>><

>>>>:

⌅
s�i
2

⇧
, if i < m

2 + (n� 1);

0, if i = m
2 + (n� 1);

⌅
s�i+1

2

⇧
, if i > m

2 + (n� 1).

(LSC0K)

(4) There exists a labelling sequence L of G with the labelling relation

A(L) =

⇢�
s� i

2

⌫
,

�
s� i

2

⌫
+ i

� ����i <
m

2
+ (n� 1)

�
[
⇢h

0,
m

2
+ (n� 1)

i�
[

⇢�
s� i+ 1

2

⌫
,

�
s� i+ 1

2

⌫
+ i

� ����i >
m

2
+ (n� 1)

�
.

Proof. (1) ) (2): Let G be the kite Kn(Cm) for m = 0 (mod 4). Let us label its vertices as

follows: we label the vertex joining the cycle Cm with the path Pn (let us call it the “joining

vertex”) by number s � m
2 , and we label every second vertex from the joining vertex in the
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clockwise direction by numbers s, s � 1, s � 2, . . . , but we skip the number 3
4m + n � 1.

The remaining vertices of the cycle Cm will be labelled in the clockwise direction from the

joining vertex by numbers 0, 1, 2, . . . , m
2 � 1. Next we label the path Pn. We start from

the joining vertex labelled by s � m
2 and we label every second vertex from it by numbers

s�(m2 +1), s�(m2 +2), . . . The remaining vertices of the path Pn will be labelled by numbers
m
2 ,

m
2 + 1, . . . ,

⌅
s
2

⇧
. The labelling is illustrated in Figure 3.

s� 2
2

s� 1

1

s

0
s� m

2

m
2 � 1

m
2

s� (m2 + 1)

m
2 + 1

s� (m2 + 2)

⌅
s
2

⇧

Figure 3: Vertex labelling of the kite Kn(Cm) for m = 0 (mod 4)

Gracefulness of the described vertex labelling of G will be shown by using visualization

via the corresponding chessboard of G. The dots in the (m2 )⇥ (m2 +1) left lower rectangle of

the chessboard represent the cycle Cm of the kite. (Specifically, the columns 0 to m
2 � 1 and

the rows s to s � m
2 .) The remaining dots represent the path Pn and form a “stairway”. So

we obtain a C0K graph chessboard. This yields that the labelling is graceful because each

diagonal of the chessboard has exactly one dot.

(2) ) (3): Let G be a gracefully labelled graph with a C0K graph chessboard. We show that

the corresponding labelling sequence (LS) satisfies (LSC0K). The “stairway” in the direction

from the main diagonal corresponds in the LS to numbers
⌅
s�i
2

⇧
for i < m

2 + (n � 1). The

“single” dot represents in the LS the number 0. The remaining “stairway” corresponds in the

LS to numbers
⌅
s�i+1

2

⇧
for i > m

2 + (n� 1). So the formula (LSC0K) holds.

(3) ) (4): Let (LSC0K) hold. We show that the LS L has the labelling relation A(L) as described

in (4). The numbers
⌅
s�i
2

⇧
in the LS correspond in A(L) to the pairs

⇥⌅
s�i
2

⇧
,
⌅
s�i
2

⇧
+ i

⇤
for

i < m
2 +(n�1). The number 0 clearly corresponds to the pair [0, m

2 +(n�1)]. The numbers
⌅
s�i+1

2

⇧
in the LS correspond in A(L) to the pairs

⇥⌅
s�i+1

2

⇧
,
⌅
s�i+1

2

⇧
+ i

⇤
for i > m

2 +(n�1).
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The first coordinates of these pairs are members of the LS and the second coordinates are

obtained by adding numbers i to the members of the LS. So the formula A(L) from (4) holds.

(4) ) (1): Let (4) hold, i.e. there exists a LS L of the graph G with the labelling relation A(L)

as in (4). We show that the pairs in A(L) represent the edges of the kite Kn(Cm). The pairs
⇥⌅

s�i
2

⇧
,
⌅
s�i
2

⇧
+ i

⇤
for i < n clearly represent the path Pn. The pairs

⇥⌅
s�i
2

⇧
,
⌅
s�i
2

⇧
+ i

⇤
for

i = n, n+1, . . . , m
2 +n�2 represent a part of the cycle Cm starting from the joining vertex and

going in the anticlockwise direction. The pair [0, m
2 +(n�1)] represents the edge of the cycle

Cm with the joining vertex m
2 + (n� 1) and the vertex 0. The pairs

⇥⌅
s�i+1

2

⇧
,
⌅
s�i+1

2

⇧
+ i

⇤

for i > m
2 + (n � 1) represent the remaining edges of the cycle Cm. Hence, G is the kite

Kn(Cm).

3.2 Kites formed by cycles Cm for m = 3 (mod 4)

By the triangular kite Kn(C3) we mean a graph obtained by joining the cycle C3 to end-point of

the path Pn with n � 1. The size of the triangular kite Kn(C3) is s = n+ 2.

In this subsection we present our characterization of the kites Kn(Cm) formed by cycle Cm for

m = 3 (mod 4) and n sufficiently big, more precisely n �
⌅
m
2

⇧
. This will cover all the triangular

kites Kn(C3). For general m � 3 with m = 3 (mod 4) and n �
⌅
m
2

⇧
we distinguish two subclasses

of the kites Kn(Cm) according to the order of their path Pn: n is even and n is odd. Both cases

are similar, but they differ in details.

1

9

0

8 2

7 3

6
4

1 2 3 4 5 6 7 8 9
0 4 3 3 2 2 1 1 0
1 6 6 7 7 8 8 9 9

Figure 4: Representations of the triangular kite K7(C3)

Example 3.5. In Figure 4 we see the triangular kite K7(C3) obtained by joining the cycle C3 to

the path P7. Its graceful labelling is depicted in the graph diagram. We also see the corresponding

graph chessboard and the labelling relation. The labelling sequence (LS) is (0, 4, 3, 3, 2, 2, 1, 1, 0).
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We can easily recognize the LS of the path P7, which is (4, 3, 3, 2, 2, 1), and the LS of the cycle C3,

which is (0, 1, 0).

Definition 3.6. Let s = n + 2 for some n � 1. By a TK-graph chessboard (TK standing for the

“triangular kite”) we mean a simple chessboard such as in Figure 4. It has the “single” dot with

coordinates [1, 0] and the remaining dots form a “stairway” in the chessboard starting in the lower

left corner (with the dot with coordinates [s, 0]).

The characterization of the triangular kites Kn(C3) by the simple chessboards, the labelling se-

quences and the labelling relations is a special case of the coming Theorem 3.9 (for even n) and

Theorem 3.12 (for odd n), where n �
⌅
m
2

⇧
. It follows from these theorems that a graph G of size

s = n + 2 for some n � 1 is the triangular kite Kn(C3) if and only if G has a graceful labelling

and a TK-graph chessboard of size s.

Now we are going to describe the kites Kn(Cm) formed by cycle Cm for m = 3 (mod 4) and general

parameter m � 3 where we assume that n is sufficiently big, more precisely n �
⌅
m
2

⇧
. We will

start with the subcase where n is even.

Example 3.7. In Figure 5 we see a gracefully labelled graph diagram of the kite K10(C11) and its

corresponding simple chessboard.

The chessboard can be divided into three parts: the first part is a “stairway” (from column 0

to column 7), the second part is the “single dot” with coordinates [5, 0] and the third part is a

“stairway” starting with two vertical dots.

The labelling sequence (LS) is (10, 10, 9, 9, 0, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0). We can divide it

into four parts. The first part (10, 10, 9, 9) is the LS of one part of the path, then (7, 7, 6, 6, 5)

represents the remaining part of the path. The third part is the number 0 in the place
⌅
m
2

⇧
= 5 and

the last part (5, 4, 4, 3, 3, 2, 2, 1, 1, 0) represents the cycle C11.

Definition 3.8. Let s = m + n � 1 for m = 3 (mod 4) and n �
⌅
m
2

⇧
, where m � 3, n � 1

and n is even. By an even C3K-graph chessboard of size s we mean the simple chessboard such

as in Figure 5, which has three parts: the first part is a “stairway” (from column 0 to column
⌃
1
2 (s�

⌅
m
2

⇧
)
⌥
� 1), the second part is the “single” dot with coordinates

⇥⌅
m
2

⇧
, 0
⇤

and the third part

is again a “stairway” starting with two vertical dots (starting in the column
⌃
1
2 (s�

⌅
m
2

⇧
)
⌥
+ 1).

Now we are ready for the characterization of the kites formed by cycle Cm for m = 3 (mod 4) and

m � 3 with n �
⌅
m
2

⇧
in the case of even n.
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Figure 5: Representations of the kite K10(C11) with path Pn for even n

Theorem 3.9. Let G be a graph of size s = m + n � 1 for m = 3 (mod 4) and n �
⌅
m
2

⇧
, where

m � 3, n � 1 and n is even. Then the following are equivalent:

(1) G is the kite Kn(Cm).

(2) G has a graceful labelling and an even C3K-graph chessboard of size s.

(3) There exists a labelling sequence L = (j1, j2, . . . , js) of G such that

ji =

8
>>>><

>>>>:

⌃
s�i+1

2

⌥
, if i <

⌅
m
2

⇧
;

0, if i =
⌅
m
2

⇧
;

⌃
s�i
2

⌥
, if i >

⌅
m
2

⇧
.

(LSC3K-even)

(4) There exists a labelling sequence L of G with the labelling relation

A(L) =

⇢⇠
s� i+ 1

2

⇡
,

⇠
s� i+ 1

2

⇡
+ i

� ���� i <
jm
2

k�
[
⇢h

0,
jm
2

ki�
[

⇢⇠
s� i

2

⇡
,

⇠
s� i

2

⇡
+ i

� ���� i >
jm
2

k�
.

Proof. (1) ) (2): Let G be the kite Kn(Cm). We label it such that we start labelling the cycle

Cm: we label the vertex joining the cycle with the path (the “joining vertex”) by number
⌅
m
2

⇧
and we follow in the clockwise direction by numbers 0, s, 1, s� 1, . . . , s�

⌅
m
2

⇧
+1. Next
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we label the path Pn. We start from number
⌅
m
2

⇧
and label every second vertex by numbers

⌅
m
2

⇧
+ 1,

⌅
m
2

⇧
+ 2, . . ., but we skip the number

⌃
1
2 (s�

⌅
m
2

⇧
)
⌥
. In the remaining part of the

path we start with the vertex next to the joining vertex and we label every second vertex

by numbers s �
⌅
m
2

⇧
, s � (

⌅
m
2

⇧
+ 1), . . . To show that this labelling is graceful, we use the

corresponding simple chessboard of G (see Figure 5). The cycle Cm of the kite is in the

corresponding chessboard represented by the “stairway” in columns 0 to
⌅
m
2

⇧
and by the

“single” dot with coordinates
⇥⌅

m
2

⇧
, 0
⇤
. The path Pn is in the chessboard represented by

part of the “stairway” starting with the upper dot in column
⌅
m
2

⇧
and by another “stairway”

starting with two vertical dots, but the column
⌃
1
2 (s�

⌅
m
2

⇧
)
⌥

is without any dots. So we

obtain an even C3K-graph chessboard, which means that our labelling is graceful, because

each diagonal of the simple chessboard has exactly one dot.

(2) ) (3): Assume we have a graceful labelling of the graph G with an even C3K-graph chessboard.

We show that the corresponding LS satisfies the formula (LSC3K-even). The “stairway” in

the direction from the main diagonal represents in the corresponding LS numbers
⌃
s�i+1

2

⌥

for i <
⌅
m
2

⇧
. The “single” dot represents the number 0. The remaining “stairway” represents

numbers
⌃
s�i
2

⌥
for i >

⌅
m
2

⇧
. So the formula (LSC3K-even) holds.

(3) ) (4): Assume now that (3) holds, i.e. there exists a LS L = (j1, j2, . . . , js) that satisfies the

formula (LSC3K-even). We show that this LS has the labelling relation A(L) as described in

(4). The numbers
⌃
s�i+1

2

⌥
obviously correspond in A(L) to the pairs

⇥⌃
s�i+1

2

⌥
,
⌃
s�i+1

2

⌥
+ i

⇤

for i <
⌅
m
2

⇧
. The number 0 clearly corresponds to the pair [0,

⌅
m
2

⇧
]. The numbers

⌃
s�i
2

⌥

correspond in A(L) to the pairs
⇥⌃

s�i
2

⌥
,
⌃
s�i
2

⌥
+ i

⇤
for i >

⌅
m
2

⇧
. The first coordinates of

these pairs are members of the LS and the second coordinates arise by adding the number i

to them.

(4) ) (1): Let (4) hold, i.e. there exists a LS L with the labelling relation A(L) as described

in (4). We show that the pairs in A(L) represent the edges of the kite Kn(Cm). The

pairs
⇥⌃

s�i+1
2

⌥
,
⌃
s�i+1

2

⌥
+ i

⇤
for i <

⌅
m
2

⇧
represent the ending part of a path. The pairs

⇥⌃
s�i
2

⌥
,
⌃
s�i
2

⌥
+ i

⇤
for i =

⌅
m
2

⇧
+1, . . . , s�m+1 represent the remaining edges of the path

Pn. The pairs
⇥⌃

s�i
2

⌥
,
⌃
s�i
2

⌥
+ i

⇤
for i = s � m + 2, . . . , s represent the edges of the cycle

Cm starting from the joining vertex in the anticlockwise direction and skipping the last edge

of the cycle ending in the joining vertex. This last edge of the cycle is represented by the

pair [0,
⌅
m
2

⇧
] in A(L). Hence G is the kite Kn(Cm).

The description for the subcase with odd n is similar and it will follow now.

Example 3.10. In Figure 6 we see the kite K11(C11), so it differs from Example 3.7 only by the

length of the path, which is now an odd number. We see a gracefully labelled graph diagram of

this kite and its corresponding simple chessboard. Again, the simple chessboard can be divided into
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Figure 6: Representations of the kite K11(C11)

three parts: the first part is a “stairway”, the second part is the “single dot” with coordinates [5, 0]

and the third part is again a “stairway” starting now with two horizontal dots.

The labelling sequence (LS) is (10, 9, 9, 8, 0, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0). We can divide it

into four parts: the first part (10, 9, 9, 8) is the LS of a part of the path P11, then (8, 7, 7, 6, 6, 5) is

the LS of the remaining part of the path P11. The number 0 and the last part of the LS, which is

(5, 4, 4, 3, 3, 2, 2, 1, 1, 0), together represent the cycle C11.

We now define an odd C3K-graph chessboard.

Definition 3.11. Let s = m+n� 1 for m = 3 (mod 4) and n �
⌅
m
2

⇧
, where m � 3, n � 1 and n

is odd. By an odd C3K-graph chessboard of size s we mean the simple graph chessboard such as in

Figure 6, which has three parts: the first part is a “stairway” starting from the left lower corner, the

second part is the “single” dot with coordinates
⇥⌅

m
2

⇧
, 0
⇤

and the third part is a ‘stairway” starting

with two horizontal dots.

The proof of the following characterization of the kites Kn(Cm) formed by cycle Cm for m = 3

(mod 4) in this subcase with odd n, which is sufficiently big, is analogous to the proof of Theo-

rem 3.9 and we leave it for the reader.
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Theorem 3.12. Let G be a graph of size s = m+ n� 1 for m = 3 (mod 4) and n �
⌅
m
2

⇧
, where

m � 3, n � 1 and n is odd. Then the following are equivalent:

(1) G is the kite Kn(Cm).

(2) G has a graceful labelling and an odd C3K-graph chessboard of size s.

(3) There exists a labelling sequence L = (j1, j2, . . . , js) of G such that

ji =

8
>>>><

>>>>:

⌅
s�i
2

⇧
, if i < bm

2 c;

0, if i = bm
2 c;

⌅
s�i+1

2

⇧
, if i > bm

2 c.

(LSC3K-odd)

(4) There exists a labelling sequence L of G with the labelling relation

A(L) =

⇢�
s� i

2

⌫
,

�
s� i

2

⌫
+ i

� ���� i <
jm
2

k�
[
⇢h

0,
jm
2

ki�
[

⇢�
s� i+ 1

2

⌫
,

�
s� i+ 1

2

⌫
+ i

� ���� i >
jm
2

k�
.

4 Characterizations of fan kites and lantern kites

In this section we describe graceful labellings of other two classes of the kites: fan kites and lantern

kites. We present their characterizations again by the graph chessboards, labelling sequences and

labelling relations.

4.1 Fan kites

By a fan kite we mean a fan-graph kite, which is a graph obtained by joining the fan-graph Fm

(see Definition 4.1) with end-point of the path Pn (see Figure 7). We will denote it by Kn(Fm).

The fan kite Kn(Fm) is the graph of size s = 2m+n� 2, where 2m� 1 is the size of the fan graph

Fm and n� 1 is the length of the path Pn.

Definition 4.1 ([3, Section 4.4.7], [6, Section 4.1]). Let m � 2. The fan graph Fm is a join of the

path Pm and a single vertex K1.

Clearly, the fan graph Fm has order m+ 1 and size 2m� 1.

Example 4.2. The fan kite K7(F4) is obtained by joining the fan-graph F4 with the path P7. In

Figure 7 we see its gracefully labelled graph diagram and its corresponding graph chessboard. In the

chessboard we can recognize a “fan-graph pattern” in the columns from 0 to 3 and a “path pattern”.
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Figure 7: Representations of the fan kite K7(F4)

The labelling sequence (LS) is (1, 1, 0, 6, 6, 5, 5, 4, 4, 3, 2, 1, 0). It consists of the LS (1, 1, 0, 3, 2, 1, 0)

of the fan-graph F4 and the LS (6, 6, 5, 5, 4, 4) of the path P7. The pairs from the second and third

rows of the table form the labelling relation.

Definition 4.3. Let s = 2m + n � 2 for m � 2, n � 1. By an FK-graph chessboard of size s we

mean a simple chessboard such as in Figure 7. It starts with m dots in the last row and continues

with dots creating a “path pattern”. In the upper left corner of the simple chessboard there are m�1

dots forming a “stairway”.

Now we present the result where we show gracefulness of the fan kites. We present their charac-

terization by the graph chessboards, labelling sequences and labelling relations.

Theorem 4.4. Let G be a graph of size s = 2m+ n� 2 for m � 2, n � 1. Then the following are

equivalent:

(1) G is the fan kite Kn(Fm).

(2) G has a graceful labelling and an FK-graph chessboard of size s.

(3) There exists a labelling sequence L = (j1, j2, . . . , js) of G such that

ji =

8
>>>><

>>>>:

⌃
m�1�i

2

⌥
, if i  m� 1;

⌃
s�i+m�1

2

⌥
, if m  i < s�m+ 1;

s� i, if i � s�m+ 1.

(LSFK)
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(4) There exists a labelling sequence L of G with the labelling relation

A(L) =

⇢ ⇠
m� 1� i

2

⇡
,

⇠
m� 1� i

2

⇡
+ i

� ���� i  m� 1

�
[

⇢ ⇠
s� i+m� 1

2

⇡
,

⇠
s� i+m� 1

2

⇡
+ i

� ���� m  i < s�m+ 1

�
[

{[ s� i, s ] | i � s�m+ 1}.

Proof. (1) ) (2): Let G be the fan kite Kn(Fm) of size s. It contains two paths: the path Pm

as the path of the fan-graph Fm, and the main path Pn of the kite. We label the vertex

connecting the fan-graph Fm with the path Pn (the “joining vertex”) by number s. The

joining vertex is adjacent to every vertex of the path Pm of the fan-graph Fm. We label

Pm by numbers 0,m � 1, 1,m � 2, 2, . . . dm�1
2 e � 1, dm�1

2 e. Now we label the path Pn: we

start from the joining vertex and we continue gradually with numbers m, s� 1,m+1, . . . We

show that the labelling of Kn(Fm) is graceful by using its corresponding chessboard. The

dots in the left upper corner represent the path Pm of the fan graph Fm, the dots in the

last row represent edges connecting the joining vertex with the vertices of the path Pm. The

remaining dots represent the path Pn. There is exactly one dot on each diagonal, so the

labelling is graceful.

(2) ) (3): Let G have a graceful labelling with an FK-graph chessboard. The dots in the left

upper corner of the graph chessboard correspond in the labelling sequence (LS) to numbers
⌃
m�1�i

2

⌥
for i  m � 1. The “path pattern” in the bottom right of the graph chessboard

corresponds in the LS to numbers
⌃
s�i+m�1

2

⌥
for m  i < s�m+1. The m dots in the last

row correspond in the LS to numbers s� i for i � s�m+ 1.

(3) ) (4): Let (3) hold, we show that this LS L has the labelling relation A(L) as in (4). Every

member of the LS L creates in the labelling relation the first coordinate. The second coordi-

nate in each of the pairs in A(L) is obtained by adding the number i to the first coordinate.

So A(L) satisfies (4).

(4) ) (1): Let (4) hold. We show that the pairs in A(L) represent the edges of the graph Kn(Fm).

The pairs
⇥⌃

m�1�i
2

⌥
,
⌃
m�1�i

2

⌥
+ i

⇤
for i  m � 1 correspond to the path Pm. The pairs

⇥⌃
s�i+m�1

2

⌥
,
⌃
s�i+m�1

2

⌥
+ i

⇤
for m  i < s �m + 1 correspond to the path Pn. The pairs

[s� i, s] for i � s�m+ 1 correspond to the edges connecting the vertex labelled s with the

path Pm. So G is the fan kite Kn(Fm).
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4.2 Lantern kites

By a lantern kite we mean a graph obtained by joining a “lantern” to the end-point of a path. By a

lantern we mean a complete bipartite graph K2,m, but we will denote it simply by Lm. We denote

the lantern kite obtained by joining the lantern Lm to the end-point of the path Pn by Kn(Lm)

and we assume that m � 2, n � 1. The size of the graph is s = 2m+n� 1 where 2m is the size of

lantern Lm and n � 1 is the length of the path Pn. We note that the lantern kite Kn(L2) is just

the quadrangular kite Kn(C4).

6

0

121110 13 14 15

9
7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 7 6 6 6 6 6 6 6 0 0 0 0 0 0
8 9 9 10 11 12 13 14 15 10 11 12 13 14 15

Figure 8: Representations of the lantern kite K4(L6)

Example 4.5. The lantern kite K4(L6) is obtained by joining the vertex labelled by m = 6 of

the lantern L6 to the path P4. In Figure 8 we see a gracefully labelled graph diagram of the kite

K4(L6) and its corresponding graph chessboard. The second row of the labelling table is the labelling

sequence (LS) (7, 7, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0). It consists of two parts: one is the LS (7, 7, 6) of

the path P4, and the second is the LS (6, 6, 6, 6, 6, 6, 0, 0, 0, 0, 0, 0) of the lantern L6.

Definition 4.6. Let s = 2m + n � 1 for m � 2, n � 1. By an LK-graph chessboard of size s we

mean a simple chessboard as in Figure 8. It has m dots in the column 0 and m dots in the column

m, and the pattern continues from the mth column with dots forming a “path pattern”.

Now we characterize via our tools the lantern kites Kn(Lm):

Theorem 4.7. Let G be a graph of size s = 2m+ n� 1 for m � 2, n � 1. Then the following are

equivalent:

(1) G is the lantern kite Kn(Lm).

(2) G has a graceful labelling and an LK-graph chessboard of size s.
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(3) There exists a labelling sequence L = (j1, j2, . . . , js) of G such that

ji =

8
>>>><

>>>>:

⌃
s�i
2

⌥
, if i  s� 2m;

m, if s� 2m < i  s�m;

0, if s�m < i  s.

(LSLK)

(4) There exists a labelling sequence L of G with the labelling relation

A(L) =

⇢  ⇠
s� i

2

⇡
,

⇠
s� i

2

⇡
+ i

� ���� i  s� 2m

�
[

{ [m,m+ i] | s� 2m < i  s�m } [ { [0, i] | s�m < i  s}.

Proof. (1) ) (2): Let G be the lantern kite Kn(Lm). We label the vertex joining the path Pn

with the lantern Lm (the “joining vertex”) by m and the vertex on the top of the lantern by

0. We label the vertices in the middle of the lantern (adjacent to the vertices 0 and m) by

s � m + 1, s � m + 2, . . . , s. We finally label the vertices of the path Pn from the joining

vertex by numbers s�m,m+ 1, s� (m+ 1),m+ 2, . . . ,
⌃
s
2

⌥
. To show that this labelling is

graceful we use the corresponding graph chessboard. The edges connecting the vertex 0 with

the “middle” vertices of the lantern are represented in the column 0 of the graph chessboard.

The edges connecting the joining vertex labelled m with the “middle” vertices of the lantern

are represented in the column m of the graph chessboard. The path Pn is represented by

a “path pattern”. We obtain an LK-graph chessboard, where each diagonal has exactly one

dot, so the labelling is graceful.

(2) ) (3): Let G be a gracefully labelled graph with an LK-graph chessboard. The dots in the

column 0 of the graph chessboard correspond in the labelling sequence (LS) to the number

0. The dots in column m of the graph chessboard correspond in the LS to the number m.

The dots forming the “path pattern” correspond in the LS to numbers
⌃
s�i
2

⌥
. So the formula

(LSLK) holds.

(3) ) (4): Let (3) hold. We verify that the labelling relation A(L) of the LS L satisfying (LSLK)

consists of the pairs as described in (4). The numbers
⌃
s�i
2

⌥
from the LS L correspond in

A(L) to the pairs
⇥⌃

s�i
2

⌥
,
⌃
s�i
2

⌥
+ i

⇤
for i  s � 2m. The numbers m from L corresponds

in A(L) to the pairs [m,m + i] for s � 2m < i  s � m. Finally, the numbers 0 from L

corresponds in A(L) to the pairs [0, i] for s�m < i  s. So A(L) is exactly as in (4).

(4) ) (1): Let (4) hold. We show that the pairs in A(L) represent the edges of Kn(Lm). The pairs
⇥⌃

s�i
2

⌥
,
⌃
s�i
2

⌥
+ i

⇤
for i  s� 2m represent the edges of the path Pn. The pairs [m,m+ i]

for s�2m < i  s�m represent the edges from the lantern Lm connecting the joining vertex

with the “middle” vertices. Finally, the pairs [0, i] for s�m < i  s represent the edges from
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the lantern Lm connecting the top vertex with the “middle” vertices. So G is the lantern kite

Kn(Lm).

5 Conclusion and further research directions

We introduced and studied classes of graceful graphs, which we call kites. We described kites

formed by cycles known to be graceful, fan kites and lantern kites. We showed in a transparent

way that the studied graphs are graceful and we provided characterizations of these graphs among

all simple graphs via Sheppard’s labelling sequences, labelling relations and graph chessboards. The

labelling relations are closely related to Sheppard’s labelling sequences while the graph chessboards

provide a nice visualization of the graceful labellings.

In particular, in Section 3 we firstly presented the characterization of the kites Kn(Cm) formed

by cycles Cm for m = 0 (mod 4), where m � 4 and n � 1. It follows from it as a special case

that a graph G of size s = n+ 3 for some n � 1 is the quadrangular kite Kn(C4) if and only if G

has a graceful labelling and a QK-graph chessboard of size s. Then in Section 3 we presented the

characterization of the kites Kn(Cm) formed by cycle Cm for m = 3 (mod 4) and n �
⌅
m
2

⇧
. We

distinguished two subclasses of the kites Kn(Cm) with n even and n odd. Both cases are rather

similar, yet they differ in details. Our theorems also cover all triangular kites Kn(C3). It follows

from them as a special case that a graph G of size s = n+ 2 for some n � 1 is the triangular kite

Kn(C3) if and only if G has a graceful labelling and a TK-graph chessboard of size s.

In Section 4 we described graceful labellings of other two classes of the kites: fan kites and lantern

kites. We showed that a graph G of size s = 2m+ n� 2 for m � 2, n � 1 is the fan kite Kn(Fm)

if and only if G has a graceful labelling and an FK-graph chessboard of size s. We finally proved

that a graph G of size s = 2m+n� 1 for m � 2, n � 1 is the lantern kite Kn(Lm) if and only if G

has a graceful labelling and an LK-graph chessboard of size s. For both fan kites and lantern kites

we also gave characterizations of these graphs among all simple graphs via Sheppard’s labelling

sequences and the labelling relations.

Before we present possible further research directions, we notice that the gracefulness of certain sim-

ilar graphs was studied in 1980 by Koh, Rogers, Teo, and Yap [4] and in 1984 by Truszczyński [10].

In [4] the authors call them tadpoles, but the journal with the paper has not been accessible to us,

and so we do not know which tadpoles exactly were studied there. Yet we are sure they could not

be described by the graph chessboards and labelling relations as the concepts invented much later.

M. Truszczyński in [10] refers to his graphs as dragons and denotes by Dk(m) a dragon with

the cycle Ck and the path Pm+1. He gives a proof that all dragons are graceful for k � 3 and

m � 1. His proof uses a method that is laborious, technical, has lots of sub-cases and is hardly

visualizable. We proved here in Section 3 two cases, k = 0 (mod 4) and k = 3 (mod 4), the latter
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with sufficiently big path, but we use visualization, from which gracefulness of the graph is clearly

seen. In addition, we characterized these kites formed by graceful cycles by the simple chessboards

and we gave formulas for Sheppard’s labelling sequences and the labelling relations. The aim of

our approach has been to study interesting kites, find their graceful labellings and characterize

them by the simple chessboards, labelling sequences and labelling relations. Finally, the author of

the paper [10] studied gracefulness of the so-called unicyclic graphs, i.e. those with one cycle and

connected to anything possible (the path Pm was only one of the possibilities, he also connects

them e.g. to stars). He has expressed his belief that all unicyclic graphs are graceful. So our and

his approach overlap a bit, but both approaches have different intentions.

Figure 9: Further interesting kites

The first possible further research direction that we propose here is to characterize some tadpoles

from the paper [4] and the remaining kites formed by the cycles Cm for m = 1, 2 (mod 4) from

the paper [10] via the simple chessboards, labelling sequences and labelling relations similarly as

here. The second possible research direction is to take some further classes of gracefully labelled

graphs (like fan graphs here) from Chapter 4 of [3] and describe them in the analogous manner

like here. Another possible research direction is to consider “chain kites” in the way that the chain

is a collection of C3 graphs (“triangular chain kites”, see the left graph in Figure 9) or a collection

of any Cm graphs for a fixed m � 4. (We notice that the case m = 4, so-called “quadrangular

chain kites”, were studied and described in [5].) Or one could consider the chain kites in the way

that the chain is a collection of Cm graphs of different sizes. Also interesting could be the chains

as collections of the lanterns Lm of different sizes (see the right graph in Figure 9).
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1 Introduction

Given a ring R of totally real algebraic integers and t 2 R [ {1}, consider the set

Rt = {x 2 R : 0 ⌧ x ⌧ t},

where x ⌧ y means that all the conjugates of y � x are positive, the interval (or singleton {1})

{t 2 R [ {1} : #Rt = 1}

and the so-called Julia Robinson number

JR(R) = inf{t 2 R [ {1} : #Rt = 1}.

When the interval is closed or {1}, we say that R has the JR property. Notice that JR(R) � 4

by a result of Kronecker (see [3]). Using the above definition, J. Robinson proved in [6] a result

that can be formulated as

Theorem 1.1. Let R be a ring of totally real algebraic integers. If R has the JR property, then it

is possible to define N in R, and hence, R has undecidable first-order theory.

Originally Robinson only considered R when it was the ring of integers of a totally real field, but it

is not difficult to see that the proof of this theorem can be adapted to apply to any subring of the

ring of integers of a totally real field (see [1, Theorem 1.2.2 and Lemma 1.2.3] for more details).

In the same work, J. Robinson proved that the ring of integers of the field Qtr of all totally real

algebraic numbers (whose conjugates are all real numbers) has the JR property with JR number

equal to 4, and the ring of integers of K = Q(
p
p : p prime) also has the JR property with JR

number equal to 1. In the case of the ring of integers of a totally real number field K has JR

number equal to 1 and hence, has undecidable theory. In [5] J. Robinson proved that every ring

of integers of a number field (not necessarily totally real) has undecidable theory.

So, all known examples at that time had JR numbers equal to 4 or 1 and the natural question,

asked by J. Robinson in [6], was

Does the JR property hold for every ring of integers of any totally real algebraic field?

Motivated by the attempt to find rings that do not satisfy one or the other of these two properties

of the JR number, Vidaux and Videla constructed in [7] infinitely many rings O depending on

two parameters (⌫, x0) for which the JR number of O is a minimum but is not 4 or 1, and also

also show that for infinitely many values of (⌫, x0) the JR number is not a minimum, but satisfies

another topological property called isolation property defined as:
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R has the isolation property if and only if R does not have the JR property and there exists

M > 0 such that for every " > 0, if " < M then the set RJR(R)+M rRJR(R)+" is finite.

In case that R has the isolation property then the natural numbers are definable in R, so in

particular the theory of the ring R is undecidable (see [7] for details).

In [2] P. Gillibert and G. Ranieri built infinite rings with JR number strictly between 4 and infinity,

which are the ring of integers of their field of fractions, however, the JR number of each of these

rings is a minimum, also leaving J. Robinson’s question open.

The objective of this article is to obtain new Julia Robinson numbers, having either the JR property

or the isolation property, and hence produce new examples of totally real undecidable rings — see

[4] for recent results on this spectrum problem.

Given (non-zero) natural numbers ⌫, � and x0, put xn =
p

⌫ + �xn�1 for every n � 1, and consider

the ring O equal to the union of all the Z[xn]. Vidaux and Videla [7], and Castillo [1], study the

definability of N in O when � = 1. Generalizing their results, we have the following:

In section 2 we will start studying properties of the sequence (xn) and we will give necessary and

sufficient conditions for the ring O to be totally real (which is necessary to be able to apply Julia

Robinson’s techniques).

Theorem 2.7. O is totally real if and only if either ⌫ > x2
0 � �x0 and ⌫ � 2�2 or ⌫ < x2

0 � �x0

and �3x0 < ⌫2 � �2⌫.

Later, we will give sufficient conditions for the tower (Kn)n�0, of the fraction fields of On = Z[xn]

is a 2-tower, that is, such that [Kn+1 : Kn] = 2 for all n � 0 (the latter is necessary to apply the

argument given by Vidaux and Videla in [7]). More precisely, we will show that the tower grows

when ⌫ +�x0 is congruent to 2 or 3 modulo 4, and � is congruent to 1 or 3 modulo 4 (Proposition

2.13).

In section 3 we will study the increasing case, giving rise to our main result (in the following

theorem, the case � = 1 is done in [7] and [1]):

Theorem 1.2. Assume ⌫ > x2
0 � �x0 and ⌫ � 2�2. Assume that for every n � 0 we have

[Kn+1 : Kn] = 2. If � = 1 and ⌫ 6= 3, then O has JR number equal to d↵e+↵ and satisfies the JR

property. If � � 2, ⌫ � 2�2 +2, and x0 �
�
4 , then O has JR number equal to d↵e+↵ and satisfies

the JR property.

This theorem gives us new values of JR numbers, e.g. for the parameters � = 3, ⌫ = 20 and x0 = 2,

the JR number is equal to 13.217 approximately, but with � = 1 this number is not obtained.

In section 4 we present two new theorems: the first of them is a direct adaptation of [7, Proposition

3.4, Proposition 3.5 and Proposition 3.6]:
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Theorem 1.3. Assume ⌫ < x2
0 ��x0 and �3x0 < ⌫2 ��2⌫. Assume that for every n � 0 we have

[Kn+1 : Kn] = 2. Assume that ⌫ � �x1 � 1 and x1 < b↵c+1. The JR number of O is b↵c+↵+1

and satisfies the isolation property. Moreover, there are infinitely many rings O that satisfy these

hypotheses.

The following theorem solves the problem for infinitely many values of the parameters ⌫ and x0

when � = 3, removing the hypothesis ⌫��x1 � 1. The proof of this theorem can be easily adapted

to � = 2, 4, 5, . . . , as long as � is not too large, nevertheless, despite the fact that the number of

cases to be considered seems to decrease as � grows, we were not able to find a pattern that would

allow as to write a proof for arbitrary �.

Theorem 1.4. Assume ⌫ < x2
0 � 3x0 and 27x0 < ⌫2 � 9⌫. Assume that for every n � 0 we

have [Kn+1 : Kn] = 2. If x1 < b↵c + 1 and ⌫ 6= 19, then O has JR number equal to b↵c + ↵ + 1

and satisfies the isolation property. Moreover, there are infinitely many rings O that satisfy these

hypotheses.

This article is a contribution to two long term projects:

1) Does the ring of integers of any 2-tower over a number field have undecidable theory?

2) Study the topology of the set of JR numbers on the interval [4,+1) — e.g. is it a dense set?

2 Basic properties of the tower

We define the sequence (xn) whose general term is xn =
p
⌫ + �xn�1 and

• ⌫ and x0 are non-negative integers and not zero simultaneously,

• � > 0 is a rational integer, and

• ⌫ 6= x2
0 � �x0 (in order to avoid x1 = x0).

We define the following rings and their field of fractions:

O0 = Z

On = On�1[xn]

O =
[

n�0

On

K0 = Q

Kn = Kn�1[xn]

K =
[

n�0

Kn

Let us begin by stating the following lemma, whose proof is essentially the same as those given in

[7, Lemma 2.2, 2.3 and 2.14].
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Lemma 2.1. (1) The sequence (xn) is strictly increasing if and only if ⌫ > x2
0��x0 or is strictly

decreasing if and only if ⌫ < x2
0 � �x0.

(2) The sequence (xn) converges to the limit ↵ = �+
p
�2+4⌫
2 .

(3) If O is totally real, then the JR number of O is finite, in particular the extension of K over

Q is infinite.

Lemma 2.2. There exists an integer n0 � 0 such that for every n � 0, we have n  n0 if and

only if xn is a rational integer.

Proof. If xn /2 Z for some n � 0, then xn /2 Q since xn is an algebraic integer. Hence, �xn /2 Q for

every � � 1. So, xn+1 =
p
⌫ + �xn /2 Z. Since (xn) is bounded, the sequence takes finitely many

integer values. We choose n0 to be the largest index n such that xn is a rational integer.

2.1 The totally real condition

As was indicated in [7], Julia Robinson’s criterion is only applicable for rings of totally real algebraic

integers. In this section we will give a sufficient and necessary condition for the ring O to be totally

real.

Lemma 2.3. We have ⌫ � 2�2 if and only if ⌫ � �↵.

Proof. Observe that ⌫ � �↵ if and only if

⌫ � �

 
�+

p
�2 + 4⌫

2

!
�

�2

2
,

which implies 2⌫ � �2. Therefore, we have

⌫ � 2�2
() 4⌫2 � 8�2⌫ () 4⌫2 � 4�2⌫ + �4

� �4 + 4�2⌫

() (2⌫ � �2)2 � �2(�2 + 4⌫) () 2⌫ � �2
� �

p
�2 + 4⌫

() ⌫ � �↵.

Lemma 2.4. If O is totally real and ⌫ > x2
0 � �x0, then ⌫ � 2�2.

Proof. Since Kn+1 has degree 2 over Kn for infinitely many n by Lemma 2.1, we have a subsequence

of (xn), namely (xnk), such that
p
⌫ � �xnk is a conjugate of xnk+1. In particular, ⌫ � �xnk for

every k � 1 since the ring O is totally real. From this, and the fact that xn converges to ↵, we

can deduce ⌫ � �↵. We can conclude using Lemma 2.3.
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Lemma 2.5. If O is totally real, then we have �3xn0 < ⌫2 � �2⌫, where n0 comes from Lemma

2.2.

Proof. We write n1 = n0 + 1. By the definition of n0, we have xn1 /2 Kn0 and therefore Kn1 is a

quadratic extension over Kn0 . Thus
p

⌫ � �xn1 is a conjugate of xn1+1. Since O is totally real,
p
⌫ � �xn1 will be a real number, which is not zero because �xn1 is an irrational number and ⌫ is

a rational integer. So we have ⌫ > �xn1 = �
p

⌫ + �xn0 if and only if �3xn0 < ⌫2 � �2⌫.

Remark 2.6. Let x 2 O. We use the notation |x| for the largest absolute value of conjugates of x

over Q.

The following theorem gives us a characterization of when our ring O is totally real and therefore,

will allow us to use Julia Robinson’s methods.

Theorem 2.7. The ring O is totally real if and only if

(1) either ⌫ > x2
0 � �x0 and ⌫ � 2�2, or

(2) ⌫ < x2
0 � �x0 and �3xn0 < ⌫2 � �2⌫.

If O is totally real, then |xn| = xn for each n � 0.

Proof. Let us start proving that |xn| = xn for each n � 0 if O is totally real. We will show this by

induction over n. The case n = 0 is trivial. Assume |xn| = xn for some n. We have

xn+1 =
p
⌫ + �xn � ±

p
⌫ + �x�

n

for every embedding � and since the only possible conjugates of xn+1 are of the form ±
p
⌫ + �x�

n

for some embedding �, we are done. For the rest of the proof, the implication from left to right is an

immediate consequence of Lemma 2.4 and Lemma 2.5. We show the other implication by induction

on n. Let n1 = n0 + 1. If n  n0, then On = Z which is totally real and hence |xn| = xn. For n1

we have xn1 /2 Z and hence its conjugates are of the form ±
p

⌫ + �xn0 . Therefore, On1 = Z[xn1 ] is

totally real and |xn1 | = xn1 . Suppose that for some n � n1, On is totally real and |xn| = xn. Note

that the conjugates of xn+1 are of the form ±
p

⌫ + �x�
n for some embedding �. Since |xn| = xn,

we have |xn+1| = xn+1 and it will be enough to prove that ⌫ � �xn for each n � n1. We can

separate the proof into cases where the sequence (xn) is increasing or decreasing:

• If ⌫ > x2
0 � �x0 and ⌫ � 2�2, then (xn) is strictly increasing by Lemma 2.1 and hence

�xn < �↵  ⌫ by Lemma 2.3.

• If ⌫ < x2
0 � �x0 and �3xn0 < ⌫2 � �2⌫, then (xn) is strictly decreasing by Lemma 2.1 and

�xn1 < ⌫. Hence, �xn  �xn1 < ⌫ for each n � n1.
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We can assume, without loss of generality, that n0 = 0, since if n0 > 0, then we can define a new

sequence yn = xn+n0 , and the rings O corresponding to (xn) and (yn) are the same.

Assumption 2.8. The number x1 is a non-rational integer

Lemma 2.9. In the decreasing case, we have ⌫ � 3 and x0 � 3.

Proof. This is an immediate consequence of the inequalities ⌫ < x2
0 � �x0 and �3x0 < ⌫2 � �2⌫,

and the fact that � is at least 1.

Lemma 2.10. Assume that (xn) is increasing. If ⌫ � 2�2 + 2, then xn � 2 for each n � 1.

Proof. Since the sequence (xn) is increasing, we have

xn � x1 =
p
⌫ + �x0 �

p
2�2 + 2 � 2.

for each n � 1.

Lemma 2.11. We have ↵ � 2.

Proof. If (xn) is decreasing, then by Lemma 2.9 we have ⌫ � 3, and if (xn) is increasing, then

⌫ � 2�2
� 2. In all cases, we have ⌫ � 2. Hence, we have

2↵ = �+
p
�2 + 4⌫ � 4

because � � 1 and ⌫ � 2.

2.2 Conditions for the tower to increase at each step

For the induction arguments to work in the next sections, we will need the tower (Kn) to increase

at each step. In this subsection, we will provide sufficient conditions for that.

Let f(t) =
t2 � ⌫

�
be a function of the real variable t. We define for each n � 1

Pn = �2n�1f�n(t)� �2n�1x0,

where f�n stands for the composition of f with itself n times.
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Lemma 2.12. The polynomial Pn is monic for each n � 1.

Proof. We prove it by induction on n. If n = 1, then P1 = �f(t) � �x0 = t2 � ⌫ � �x0 is monic.

Suppose that for some n � 2 the polynomial Pn is monic. We have

Pn+1(t) = �2n+1�1f�(n+1)(t)� �2n+1�1x0 = �2n+1�1

✓
(f�n(t))2 � ⌫

�

◆
� �2n+1�1x0

= �2n+1�2(f�n(t))2 � �2n+1�2⌫ � �2n+1�1x0 =
⇣
�2n�1f�n(t)

⌘2
� �2n+1�2⌫ � �2n+1�1x0

=
⇣
Pn(t) + �2n�1x0

⌘2
� �2n+1�2⌫ � �2n+1�1x0,

and since Pn is monic by hypothesis, Pn+1 is monic too.

Proposition 2.13. If ⌫+�x0 is congruent to 2 or 3 modulo 4 and � is congruent to 1 or 3 modulo

4, then for each n � 1, we have [Kn+1 : Kn] = 2.

Proof. From the definition of f we have f�n(xn) = x0 for each n � 1. Therefore, xn is a root of

Pn. Also note that, by Lemma 2.12, Pn is monic for each n � 1. Given a, b 2 Z, we have

P1(t+ a) = (t+ a)2 � ⌫ � �x0 = t2 + 2at+ a2 � (⌫ + �x0), (2.1)

and

P2(t+ b) = �3f�2(t+ b)� �3x0 (2.2)

= t4 + 4bt3 + 2(3b2 � ⌫)t2 + 4(b3 � b⌫)t+ (b4 � 2b2⌫ + ⌫2 � �2(⌫ + �x0)).

Also, for each n � 1, we have

Pn+2(t) = �2n+2�1(f�(n+2)(t)� x0) = �2n+2�1(f�2(f�n(t))� x0)

= �2n+2�1

✓
f�2

✓
Pn(t)

�2n�1
+ x0

◆
� x0

◆

= �2n+2�1

0

@

0

@
P2

⇣
Pn(t)
�2n�1 + x0

⌘

�3
+ x0

1

A� x0

1

A = �4(2n�1)P2

✓
Pn(t)

�2n�1
+ x0

◆

= P 4
n(t) + 4�2n�1x0P

3
n(t) + 2�2(2n�1)(3x2

0 � ⌫)P 2
n(t) + 4�3(2n�1)(x3

0 � x0⌫)Pn(t)

+ �4(2n�1)
�
x4
0 � 2x2

0⌫ + ⌫2 � �2(⌫ + �x0)
�
.

(2.3)

We prove by induction on n that the polynomial Pn is irreducible. If n = 1, then using Equation

(2.1) we choose a = 0 if ⌫+�x0 is congruent to 2 modulo 4, and a = 1 if ⌫+�x0 is congruent to 3

modulo 4. In both cases P1(t+ a) is an Eisenstein polynomial for 2. If n = 2, then using Equation

(2.2), we have that P2(t+x0) is an Eisenstein polynomial for 2, because x4
0�2x2

0⌫+⌫2��2(⌫+�x0)
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is congruent to 2 modulo 4 when ⌫ + �x0 is congruent to 2 or 3 modulo 4 and � is congruent to 1

or 3 modulo 4 (we leave the verification to the reader). Note that �2 is congruent to 1 modulo 4 by

hypothesis. Therefore, the constant term of Pn+2(t), seen as a polynomial in Pn(t), is congruent

to 2 modulo 4. So, using Equation (2.3), if Pn(t + c) is an Eisenstein polynomial for 2 for some

c 2 Z, then Pn+2(t+c) is an Eisenstein polynomial for 2 too. Thus, we can prove the irreducibility

of Pn by induction on n, separating into two cases:

• If n is odd, then Pn(t+a) is an Eisenstein polynomial for 2 (with the respective choice of a).

• If n is even, then Pn(t+ x0) is an Eisenstein polynomial for 2.

From now on, we assume

Assumption 2.14. Kn is a quadratic extension of Kn�1 and the ring O is a totally real.

Lemma 2.15 ([7, Lemma 2.19]). Let r be any real number and a, b 2 On�1 with n � 1. For n = 1,

if 0 ⌧ a + bx1 ⌧ 2r, then |b| < r
x1

. For n � 2, if 0 ⌧ a + bxn ⌧ 2r, then |b�| < rp
⌫��xn�1

for

every embedding � of On.

3 Increasing case

Assumption 3.1. For this section, let us assume ⌫ � 2�2 + 2, x0 �
�
4 and the sequence (xn) is

strictly increasing.

Definition 3.2. For each n � 1, let kn be the only rational integer such that

d↵e � (kn + 1) < xn < d↵e � kn.

Remember that x1 is not a rational integer by Assumption 2.14 and note that the sequence (kn) is

(non strictly) decreasing, hence the kn take only finitely many values, and since the sequence (xn)

tends to ↵, eventually kn is 0.

The main result we use to compute the JR number in the increasing case is the following lemma:

Lemma 3.3. Assume x 2 O. We have 0 ⌧ x ⌧ 2d↵e if and only if x 2 X.

The set X is defined as follows:

X0 = {1, 2, . . . , 2d↵e � 1},

Xn = X0 [ {d↵e± j ± xs : 0  j  ks and 1  s  n},

X =
[

n�0

Xn.
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Lemma 3.4. If � � 2, then x1 + x2 + dx1e > 2d↵e.

Proof. It is enough to prove that we have x2 + 2x1 > 2(↵+ 1). We have

2
p
⌫ + �x0 +

q
⌫ + �

p
⌫ + �x0 �

p
4⌫ + �2 +

s

2�2 + 2 + �

r
2�2 + 2 +

�2

4

�

p
4⌫ + �2 +

p
�2 + 4�+ 4 = 2(↵+ 1),

where the first inequality is by Assumption 3.1.

Lemma 3.5. Let n � 1. If 0 ⌧ a± bxn ⌧ 2d↵e, with a, b 2 On�1, then |b| < 2 (in the inequality,

the plus-minus means that both inequalities hold).

Proof. Since ⌫ � 2�2+2 and ⌫ 2 N, we can write ⌫ = 2�2+k, for some k � 2. Since 0 < a±bxn <

2d↵e, combining both inequalities we obtain |b| < d↵e
xn

. So, we have

|b| <
d↵e

xn


↵+ 1p
2�2 + k + �xn�1

=
�+

p
�2 + 4(2�2 + k) + 2

2
p

2�2 + k + �xn�1


�+ 2 +

p
�2 +

p
8�2 + 4k

p
8�2 + 4k

 1 +
2�+ 2

p
8�2 + 4k

 1 +
2�+ 2

p
8�2 + 8

 2,

where the last inequality is true because 2�+ 2 
p
8�2 + 8 for every � � 1.

Lemma 3.6. We have ⌫ � �↵ > 1.

Proof. Since ⌫ � 2�2 + 2 and ⌫ 2 N, we can write ⌫ = 2�2 + k, for some k � 2. Hence, we have

(2�2 + k)� �

 
�+

p
�2 + 4(2�2 + k)

2

!
> 1 () 3�2 + 2k � 2 > �

p
9�2 + 4k

() 4k2 + 12k�2
� 8k + 9�4

� 12�2 + 4 > 9�4 + 4k�2
() 4k2 + (8�2

� 8)k + 4� 12�2 > 0,

and since k � 0, the latter is true for

k >
8� 8�2 +

p
64�4 + 64�2

8
= 1� �2 +

p
�4 + �2.

We consider the continuous function x 7! 1 � x2 +
p
x4 + x2. The line y = 3

2 is an horizontal

asymptote for this function, hence we have

1� �2 +
p
�4 + �2 <

3

2
,

for every � � 1.
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Lemma 3.7. Let x = a+ bx1 2 O1, with a, b 2 Z. If 0 < a± bx1 < 2d↵e, then x 2 X1.

Proof. By Lemma 3.5, we have b = ±1 or b = 0.

• If a  d↵e � (k1 + 1), then b = 0. Indeed, if |b| = 1, by choosing � such that x� = a� |b|x1,

we obtain:

a� |b|x1  d↵e � (k1 + 1)� x1  0,

by the definition of k1, contradicting our hypothesis.

• If a � d↵e + (k1 + 1), then b = 0. If |b| = 1, by choosing � such that x� = a + |b|x1, we

obtain:

a+ |b|x1 � d↵e+ (k1 + 1) + x1 � 2d↵e,

again contradicting our hypothesis.

Therefore, we have either |a� d↵e| � k1 + 1 and b = 0, or |a� d↵e| < k1 + 1 and |b|  1. In both

cases, we have x 2 X1.

Lemma 3.8. Assume n > m � 1 and � � 2.

(1) We have d↵e± j + xm + xn � 2d↵e for every 0  j  km.

(2) We have d↵e± j � xm � xn  0 for every 0  j  km.

Proof.

(1) Note that dx1e = d↵e � k1. By Lemma 3.4, and using the fact that (xn) is increasing, we

have

xm + xn + d↵e � k1 � 2d↵e,

for each n > m � 1. Since k1 � km for each m � 1, we have

xm + xn + d↵e± j � 2d↵e,

for every 0  j  km.

(2) For every 0  j  km, we have d↵e± j�xm�xn  0 if and only if xm+xn+d↵e± j � 2d↵e.

So we can conclude by item (1).
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Lemma 3.9. Assume � � 2. We have dxne+xn � d↵e+2 for each n � 1. In particular, we have

xn � kn + 2 for each n � 1.

Proof. Since (xn) is increasing, it is enough to prove that we have x1 + dx1e > ↵ + 3. If � = 2,

then we have (recalling that we have x0 � 1 and ⌫ � 10 by Assumption 3.1)

x1 + dx1e �
p
⌫ + 2 + d

p
⌫ + 2e >

p
⌫ + 1 + d

p
12e = 3 + ↵.

For � � 3, we have

2x1 + 2dx1e �

p
4⌫ + �2 +

p
9�2 + 8 >

p
4⌫ + �2 + �+ 6 = 2(↵+ 3),

where the first inequality is by Assumption 3.1, and the second inequality is because � � 3. In

particular, using dxne = d↵e � kn for each n � 1, we have dxne + xn � d↵e + 2 if and only if

xn � kn + 2.

Lemma 3.10. Let x 2 O. If 0 ⌧ x ⌧ 2d↵e, then x 2 X.

Proof. For � = 1, this is [7, Lemma 4.9]. For � � 2, which we now assume, we start as in [7, Lemma

4.9]. We prove by induction on n that if x 2 On is such that 0 ⌧ x ⌧ 2d↵e, then x 2 Xn. This

is clear for n = 0. For n = 1, we have x 2 X1 by Lemma 3.7. Assume n � 2. Let us fix

x = a + bxn 2 On with a, b 2 On�1. By Lemma 2.15, we have 0 ⌧ a ⌧ 2d↵e, so a 2 Xn�1 by

induction hypothesis. Also, by Lemma 2.15, we have

|b| <
d↵ep

⌫ � �xn�1

<
d↵e

p
⌫ � �↵

 d↵e,

since
p
⌫ � �↵ � 1 by Lemma 3.6. Hence, we have 0 ⌧ d↵e + b ⌧ 2d↵e, and by induction

hypothesis we have d↵e + b 2 Xn�1. From the definition of Xn�1, we have either b 2 Z, or

|b| = |j ± xs| for some 1  s  n � 1 and 0  j  ks. In the first case, we have either b = 0

or b = ±1 by Lemma 3.5. In the second case, we have, also by Lemma 3.5, either |j + xs| < 2

or |xs � j| < 2. If |j + xs| < 2, then xs < 2 � j  2 and we have a contradiction by Lemma

3.9. If |xs � j| < 2, then xs < j + 2  ks + 2, which is a contradiction, again by Lemma 3.9.

Therefore, we have b 2 {�1, 0, 1}. For b = 0, there is nothing to prove, as we already know that

x = a lies in Xn�1. Assume |b| = 1. We can write x = a± xn, and since a 2 Xn�1, we have either

a 2 {1, . . . , 2d↵e � 1}, or a = d↵e± j ± xs for some 1  s  n� 1 and 0  j  ks.

• If a 2 {1, . . . , d↵e � (kn + 1)}, then we can choose an embedding � such that:

x� = a� xn  d↵e � (kn + 1)� xn < 0,
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by definition of kn, which contradicts our hypothesis.

• If a 2 {d↵e+ (kn + 1), . . . , 2d↵e � 1}, then again we can choose � such that

x� = a+ xn � d↵e+ (kn + 1) + xn > 2d↵e,

which again contradicts our hypothesis on x.

• If a = d↵e± j + xs, with 0  j  ks, then

a+ xn = d↵e± j + xs + xn � 2d↵e,

by Lemma 3.8, a contradiction.

• If a = d↵e± j � xs, with 0  j  ks, then

a� xn = d↵e± j � xs � xn  0,

also by Lemma 3.8, again a contradiction.

So, we have a 2 {d↵e � kn, . . . , d↵e+ kn}. Therefore, if |b| = 1, then x is of the form d↵e± j ± xn

where 0  j  kn. In all the cases we obtain x 2 X.

Proof Lemma 3.3. Thanks to Lemma 3.10, we need only to prove the lemma from right to left.

Assume x 2 X. For x 2 X0, there is nothing to prove. Assume x 2 Xn for some n � 1, so that

x = d↵e ± j ± xs for some s and j such that 1  s  n and 0  j  ks. By definition of ks, we

have xs + ks < d↵e. Hence, we have

d↵e± j + xs  d↵e+ ks + xs < 2d↵e,

and

d↵e± j � xs � d↵e � ks � xs > 0.

Thus, we have 0 < x� < 2d↵e for every embedding � of Os since |xs| = xs by Lemma 2.7.

Proposition 3.11. The ring O has the JR property and JR(O) = d↵e+ ↵.

Proof. For each n we have xn + d↵e < ↵ + d↵e. By Theorem 2.7, we have |xn| = xn, and hence,

there are infinitely many x 2 O such that 0 ⌧ x ⌧ d↵e+ ↵. Since the sequence (xn) is increasing

and converges to ↵, for each " > 0, there are only finitely many n such that xn+d↵e < ↵+d↵e�".

Moreover, almost all n we have kn = 0. Hence, there are only finitely many elements of the form

xn + d↵e + j where 0  j  kn and kn � 1. In particular, only finitely many of them satisfy
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0 ⌧ xn + d↵e + j ⌧ d↵e + ↵. Therefore, by Lemma 3.3, for each " > 0, there are only finitely

many x 2 O such that 0 ⌧ x ⌧ d↵e+ ↵� ".

4 Decreasing case

Assumption 4.1. For this section, let us assume that the sequence (xn) is strictly decreasing.

We define the following sets:

X0 = {1, 2, . . . , 2b↵c+ 1}

Xn = X0 [ {b↵c+ 1± xk : 1  k  n}

X =
[

n�0

Xn.

The following lemma and theorem are exactly as [7, Lemma 3.2, Proposition 3.4 and Proposition

3.5], changing their hypothesis ⌫ � x1 � 1 by ⌫ � �x1 � 1. For this reason, we will omit the proof.

Lemma 4.2 ([7, Lemma 3.2]). Assume ⌫ � �x1 � 1 and x1 < b↵c+1. For each n � 0, if x 2 On

and 0 ⌧ x ⌧ 2b↵c+ 2, then x 2 Xn.

Theorem 4.3 ([7, Propositions 3.4 and 3.5]). Assume ⌫ � �x1 � 1 and x1 < b↵c + 1. The JR

number of O is b↵c+ ↵+ 1 and O satisfies the isolation property.

The following proposition proves that there are infinitely many pairs (⌫, x0) for which Theorem

4.3 holds.

Proposition 4.4. For any � congruent to 1 or 3 modulo 4, there are infinitely many distinct

values of ↵ corresponding to pairs (⌫, x0) of rational integers such that

(1) ⌫ < x2
0 � �x0,

(2)
p
⌫ + �x0 is not a rational integer,

(3) For every n � 1, we have [Kn : Kn�1] = 2,

(4) �3x0 < ⌫2 � �2⌫,

(5) ⌫ � �x1 � 1,

(6)
p
⌫ + �x0 < b↵c+ 1.

Proof. For any � � 1 which is congruent to 1 or 3 modulo 4, we choose ⌫ = 4�4 and x0 = 2�2 +�.

The first two conditions are immediate. The condition 3 holds by Proposition 2.13. The condition
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4 holds because ⌫2 > �2⌫ + �3x0 iff 16�4 > 4�2 + 2� + 1 which is true for all � � 1. For the

condition 5 we have

⌫ � �x1 > ⌫ � �x0 = 4�4
� 2�3

� �2
� 1.

for each � � 1. Finally, we have

↵ =
�+

p
�2 + 4⌫

2
=

�+
p
16�4 + �2

2
=

�+ 4�2 + "

2
=

�� 1

2
+ 2�2 +

1

2
+

"

2

for some 0 < " < 1. Since � is congruent to 1 or 3 modulo 4, we have b↵c = 2�2 + ��1
2 . Therefore,

we have

(b↵c+ 1)2 = 4�4 + 2�3 + 2�2 +

✓
�+ 1

2

◆2

> 4�4 + 2�3 + �2 = ⌫ + �x0,

so the last condition is satisfied.

For � = 1, M. Castillo [1, Theorem 1] was able to remove the hypothesis ⌫�x1 � 1 and x1 < b↵c+1,

and obtain the following theorem:

Theorem 4.5. Assuming � = 1 and ⌫ > 3, O has JR number b↵c + ↵ + 1 and it satisfies the

isolation property.

Now we will present some new results for � = 3. The same proof can be easily adapted to the case

� = 2, 4, 5 . . . We could not find the general pattern that would let us write a general proof since

for each value of � there are cases that must be studied independently.

We will prove the following theorem at the end of this section.

Theorem 4.6. Assume � = 3. If x1 < b↵c + 1 and ⌫ 6= 19, then O has JR number b↵c + ↵ + 1

and it satisfies the isolation property.

Assumption 4.7. For the following lemmas we assume that � = 3.

Lemma 4.8. If x1 < b↵c+ 1 and ⌫ 6= 19, then ⌫ � 3x2 � 1.

Proof. Since x1 < b↵c+ 1, we have

⌫ � 3x2 > ⌫ � 3(b↵c+ 1) � ⌫ � 3↵� 3.

Therefore, it suffices to prove ⌫ � 3↵� 3 � 1. This is satisfied if and only if 2⌫ � 17 � 3
p
9 + 4⌫,

which is true for every ⌫ � 24. By Lemma 2.9, we have ⌫ � 3, so we must analyze the cases when

⌫ 2 {3, . . . , 23}. A simple calculation shows that for ⌫ 2 {3, . . . , 18}, there is no x0 that satisfies

the inequalities given in Theorem 2.7. Hence, ⌫ 2 {19, . . . , 23}, and again solving the inequalities

given in Theorem 2.7, we obtain the following cases:
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⌫ x0 x1 x2 ⌫ � 3x1 ⌫ � 3x2

19 7
p
40

p
19 + 3

p
40 0.03 0.51

20 7
p
41

p
20 + 3

p
41 0.79 1.21

8
p
44

p
20 + 3

p
44 0.10 1.05

21

7
p
42

p
21 + 3

p
42 1.56 1.92

8
p
45

p
21 + 3

p
45 0.88 1.76

9
p
48

p
21 + 3

p
48 0.22 1.61

22

7
p
43

p
22 + 3

p
43 2.33 2.63

8
p
46

p
22 + 3

p
46 1.65 2.48

9 7
p
22 + 3

p
49 1 2.33

10
p
52

p
22 + 3

p
52 0.37 2.18

23

7
p
44

p
23 + 3

p
44 3.10 3.35

8
p
47

p
23 + 3

p
47 2.43 3.20

9
p
50

p
23 + 3

p
50 1.79 3.05

10
p
53

p
23 + 3

p
53 1.16 2.91

11
p
56

p
23 + 3

p
56 0.55 2.78

Table 1: Approximate values of ⌫ � 3x1 and ⌫ � 3x2 for ⌫ 2 {19, . . . , 23}.

Lemma 4.9. Let x 2 O1 be such that 0 ⌧ x ⌧ 2b↵c+2. If (⌫, x0) 2 {(20, 7), (20, 8), (21, 8), (21, 9)},

then x 2 X1.

Proof. Let x = a + bx1 2 O1, with a, b 2 Z, be such that 0 ⌧ x ⌧ 2b↵c + 2. Note that in all

cases we have b↵c + 1 = 7 and x1 �
p
41. Since 0 ⌧ x ⌧ 2b↵c + 2, by Lemma 2.15, we have

a 2 {1, . . . , 13} and

|b| <
b↵c+ 1

x1


7
p
41

,

so we have b 2 {�1, 0, 1}. Finally, using a computer program (we used SageMath 9.2, see below)

we can analyze all the cases to see that x is indeed in X1.

def cases_X1(x_0, nu, l):

x_1=sqrt(nu+l*x_0)

floor_alpha=math.floor((l+sqrt(l**2+4*nu))/2)

for a in srange(1,2*floor_alpha+2,1):

for b in [-1,0,1]:

if 0<a+b*x_1<2*floor_alpha+2 and

0<a-b*x_1<2*floor_alpha+2:

print(a+b*x_1)

cases_X1(7,20,3)

cases_X1(8,20,3)

cases_X1(8,21,3)

cases_X1(9,21,3)
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Lemma 4.10. Let x 2 O2 be such that 0 ⌧ x ⌧ 2b↵c+2. If (⌫, x0) 2 {(20, 7), (20, 8), (21, 8), (21, 9)},

then x 2 X2.

Proof. Let x = a + bx2 2 O2, with a, b 2 O1. Note that in all cases we have x1 �
p
41, x2 �

p
20 + 3

p
41 and b↵c + 1 = 7. Since 0 ⌧ a + bx2 ⌧ 2b↵c + 2, by Lemma 2.15 we have 0 ⌧ a ⌧

2b↵c+ 2. Hence, a 2 {1, . . . , 13} [ {7± x1} by Lemma 4.9. We will prove that we have |b| < 1.2.

Assume, for the sake of contradiction, that this is not the case. We will see that for whatever

choice of a, there is an embedding � such that x� is either negative or larger than 14, contradicting

our hypothesis.

• Assume first a 2 {1, 2, 3, 4, 5, 6}: We choose � such that x� = a� |b|x2, so that we have

x� = a� |b|x2  6� x2 < 0.

• Assume a 2 {8, 9, 10, 11, 12, 13}: We choose � such that x� = a+ |b|x2, so that we have

(a+ bx2)
� = a+ |b|x2 � 8 + x2 > 14.

• Assume a = 7 + x1: We choose � such that x� = a+ |b|x2, so that we have

a+ |b|x2 � 7 + x1 + x2 > 14.

• Assume a = 7� x1: We choose � such that x� = a� |b|x2, so that we have

a� |b|x2  7� x1 � x2 < 0.

• Assume a = 7. We choose � such that x� = a� |b|x2, so that we have

a+ |b|x2 � 7 + 1.2x2 � 7 + 1.2

q
20 + 3

p
41 > 14.

We conclude |b| < 1.2.

Write b = b1 + b2x1, with b1, b2 2 Z, so that

|b1 + b2x1| < 1.2.

Hence in particular, we have |b1| < 1.2 and |b2| < 1.2p
41

. The only choices for b1 and b2 are

(b1, b2) 2 {(�1, 0), (0, 0), (1, 0)}. Therefore, if a 2 {1, . . . , 6}[ {8, . . . , 13}[ {7±x1}, then b = 0 by

the first four cases above. Otherwise, if a = 7, then we can have either x = 7� x2, or x = 7 + x2,

or x = 7. In all cases we obtain x 2 X2.
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Lemma 4.11. Assume x1 < b↵c+1 and ⌫ 6= 19. For each n � 0, if x 2 On and 0 ⌧ x ⌧ 2b↵c+2,

then x 2 Xn.

Proof. If ⌫ � 3x1 � 1, then we are done by Lemma 4.2. Assume ⌫ � 3x1 < 1. By Lemma 4.8, the

only cases where ⌫ � 3x1 < 1 are when

(⌫, x0) 2 {(20, 7), (20, 8), (21, 8), (21, 9), (22, 10), (23, 11)}

(see Table 1). However, when (⌫, x0) 2 {(22, 10), (23, 11)}, a simple calculation shows that x1 >

b↵c + 1, so we may assume (⌫, x0) 2 {(20, 7), (20, 8), (21, 8), (21, 9)}. We will prove by induction

on n that if x 2 On is such that 0 ⌧ x ⌧ 2d↵e+ 2, then x 2 Xn. It is clear for n = 0. For n = 1

and n = 2 we are done by Lemmas 4.9 and 4.10 respectively. Assume n � 3. By Lemmas 2.15 and

4.8 we have

|b�| <
b↵c+ 1

p
⌫ � 3xn�1


b↵c+ 1
p
⌫ � 3x2

 b↵c+ 1

for every n � 3. The rest of the proof goes exactly as the proof of [7, Lemma 3.2].

Lemma 4.12. Assume x1 < b↵c+ 1 and ⌫ 6= 19. Let x 2 O. We have 0 ⌧ x ⌧ 2b↵c+ 2 if and

only if x 2 X.

Proof. By Lemma 4.11, we need only to prove the lemma from right to left. Let x 2 X. If x 2 X0,

then there is nothing to prove. Assume x 2 Xn for some n � 1, so that x = b↵c+ 1± xk for some

1  k  n. Since the sequence (xn) is decreasing, we have

b↵c+ 1 + xk < 2b↵c+ 2,

and

b↵c+ 1� xk > 0

for every 1  k  n. Therefore, we have 0 ⌧ x ⌧ 2b↵c+ 2 since |xk| = xk by Theorem 2.7.

Proof Theorem 4.6. We will prove that b↵c+↵+1 is the JR number of O and that it satisfies the

isolation property. Since (xn) is a decreasing sequence and converges to ↵, for every " > 0 there

exist infinitely many n such that

xn + b↵c+ 1 < b↵c+ ↵+ 1 + ".

So, by Lemma 4.12 and Theorem 2.7, for every " > 0, there exist infinitely many x 2 O such that

0 ⌧ x ⌧ b↵c + ↵ + 1 + ". Also, for each n � 1, we have b↵c + 1 + xn > b↵c + 1 + ↵. Hence, if

x 2 O is such that 0 ⌧ x ⌧ b↵c + ↵ + 1, by Lemma 4.12, then we have x 2 {1, . . . , 2b↵c + 1}.
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Therefore, b↵c + ↵ + 1 is the JR number of O, and it is not a minimum. We now show that it

satisfies the isolation property. Let M = b↵c+ 1� ↵ and x 2 O be such that

0 ⌧ x ⌧ JR(O) +M = 2b↵c+ 2.

By Lemma 4.12, we have

x 2 {1, 2, . . . , 2b↵c+ 1} [ {b↵c+ 1± xn : n � 1}

and since (xn) is decreasing with limit ↵, we have

b↵c+ 1 + xn � b↵c+ 1 + ↵+ "

for only finitely many n.
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ABSTRACT

This study extensively investigates a specific category of

Kirchhoff-Schrödinger systems in fractional Sobolev space

with Dirichlet boundary conditions. The main focus is on

exploring the existence and multiplicity of non-negative so-

lutions. The non-linearity of the problem generally exhibits

singularity. By employing minimization arguments involving

the Nehari manifold and a variational approach, we estab-

lish the existence and multiplicity of positive solutions for

our problem with respect to the parameters ⌘ and ⇣ in suit-

able fractional Sobolev spaces. Our key findings are novel

and contribute significantly to the literature on coupled sys-

tems of Kirchhoff-Schrödinger system with Dirichlet bound-

ary conditions.

RESUMEN

Este estudio investiga en detalle una categoría específica de

sistemas de Kirchhoff-Schrödinger en espacios de Sobolev

fraccionarios con condiciones de borde de Dirichlet. El ob-

jetivo principal es explorar la existencia y multiplicidad de

soluciones no-negativas. La no-linealidad del problema ge-

neralmente exhibe singularidades. Empleando argumentos

de minimización que involucran la variedad de Nehari y un

enfoque variacional, establecemos la existencia y multiplici-

dad de soluciones positivas para nuestro problema con res-

pecto a los parámetros ⌘ y ⇣ en espacios de Sobolev frac-

cionarios apropiados. Nuestros hallazgos principales son

novedosos y contribuyen significativamente a la literatura de

sistemas de Kirchhoff-Schrödinger acoplados con condiciones

de borde de Dirichlet.
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1 Introduction

The Kirchhoff-Schrödinger problem is a class of partial differential equations that combines aspects

of Kirchhoff and Schrödinger equations. It takes the form:

M

✓Z

Q
|ru|2dx

◆
(��u) + V (x)u = f(x, u),

where M is a function representing the Kirchhoff-type nonlinearity, V (x) is a potential function,

and f(x, u) denotes the nonlinearity in the system. This type of system generalizes the classical

Schrödinger equation by incorporating a nonlinear term dependent on the integral of the gradient,

reflecting the influence of the entire domain on the local behavior of the solution.

The Kirchhoff-Schrödinger system arises in various physical contexts, such as the study of quantum

mechanical systems, nonlinear optics, and the dynamics of elastic strings and membranes. These

systems are particularly challenging due to their nonlocal nature and the potential presence of sin-

gularities in the nonlinearity f(x, u), which can complicate both theoretical analysis and numerical

simulations.

In this study, we consider the following fractional Kirchhoff-Schrödinger equations with singular

nonlinearity,

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

K

✓Z

Q
V ()|w|pd+

Z

Q⇥Q

|w()� w(y)|p

|� y|d+sp
d dy

◆h
(��)spw + V ()|w|p�2

w

i

= ⌘↵()|w|q�2
u+

1� %

2� %� ⌧
⇠()|w|�%|v|1�⌧

, in Q,

K

✓Z

Q
V ()|v|pd+

Z

Q⇥Q

|v()� v(y)|p

|� y|d+sp
d dy

◆h
(��)spv + V ()|v|p�2

v

i

= ⇣�()|v|q�2
v +

1� ⌧

2� %� ⌧
⇠()|w|1�%|v|�⌧

, on Q,

w = v = 0, on Rd \Q,

(1.1)

where Q ⇢ Rd (d � 3) is a bounded domain with smooth boundary, s 2 (0, 1), 0 < ⌧ < 1,

0 < % < 1, d > ps, 2 � % � ⌧ < p  p� < q < p
⇤
s = dp

d�sp , ↵,�, ⇠ 2 C(Q) are non-negative weight

functions, ⌘, ⇣ are two parameters, (��)sp is the fractional p-Laplacian operator defined as (see

[10])

(��)spw() = 2 lim
✏&0

Z

Q\B✏

|w()� w(y)|p�2(w()� w(y))

|� y|d+sp
dy,  2 Rd

,

and K : (0,+1) �! (0,+1) is the continuous Kirchhoff function defined by

K(t) = k + lt
��1 with k > 0, l, � � 1. (1.2)

Recently, there has been a lot of interest in examining non local problems of this kind. For an
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interesting one, we refer to learn more about Kirchhoff problems, specifically those dealing with

the Laplace operator and a singular term, in references like [19–22]. Additionally, the study of the

fractional Kirchhoff problem, which involves a singular term like u
�� , can be found in [14]. This

research combines a variational approach with a specific truncation argument. For more details on

the fractional system, you can check out [23,36].

These problems involve studying how things spread unevenly in complicated environments. This

happens because of random movements, like jumps, where entities can move to nearby places or

make longer trips using a specific kind of flight pattern called Lévy flights. These issues are also

used to model things like turbulence, chaotic movements, plasma physics, and financial dynamics.

Check [1, 7] and references therein for more information.

The system expressed in (1.1) without a Kirchhoff function and potential function has been thor-

oughly explored in recent years. For the case involving the fractional p-Laplacian, the existence

results have been investigated using Morse theory, as discussed in [18]. Perera-Squassina-Yang [25]

introducing a novel abstract result based on a pseudo-index associated with the Z2-cohomological

index. These constraints are employed to establish the existence within a certain range of the

Palais-Smale condition. It is worth noting that, in this study, bifurcation and multiplicity results

are obtained with specific limitations on the parameter ⌘. Additionally, the investigation into the

multiplicity of solutions is conducted through the Nehari manifold and fibering maps in works like

[6, 15,29,31].

In a distinct context, the investigation of the problem was undertaken in [6].

8
>>>>>>>>>>><

>>>>>>>>>>>:

(��)spu = ⌘|w|q�2
u+

2%

%+ ⌧
|w|%�2

u|v|⌧ , in Q,

(��)spv = ⇣|v|q�2
v +

2⌧

%+ ⌧
|w|%|v|⌧�2

v, in Q,

u = v = 0, on Rd \Q,

where Q is a bounded domain in Rn with smooth boundary @Q, d > sp, s 2 (0, 1), p < %+ ⌧ < p
⇤
s,

⌘, ⇣ are two parameters. The scholars investigated the Nehari manifold associated with the problem,

employing fibering maps, and established the existence of solutions under certain conditions for

the parameter pair (⌘, ⇣).

The problem expressed in (1.1) without a Kirchhoff coefficient has been thoroughly explored in

recent years. For the case involving the fractional p-Laplacian, the existence results have been
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investigated using Morse theory, as discussed in [24]

8
>>>>><

>>>>>:

(��)spu+ |w|q�2
u =

Hw(, u, v)

||� , in Rd
,

(��)spv + |w|q�2
u =

Hw(, u, v)

||� in Rd
,

where d � 1, 0 < s < 1, d = ps, � 2 (0, d) and H has exponential growth. By using a version

of the mountain pass theorem without (PS) condition, they established the existence of nontrivial

solution to the above system. In [35] the authors studied the existence of solutions to the following

quasi linear Schrödinger system

8
>>>><

>>>>:

(��)spu+ ↵()|w|q�2
u = Hw(, u, v) in Rd

,

(��)spv + �()|w|q�2
u = Hw(, u, v) in Rd

,

where 1 < q  p, sp < d, they used the critical approach, to obtain the existence of nontrivial and

non negative solutions for the above system.

Following this, the issue has been explored by various authors in the context of Laplacian, p-

Laplacian, and fractional N -Laplacian operators, employing either the technique employed in this

paper or employing critical point methods. Noteworthy references encompass [2, 4, 5, 9, 12, 16, 28,

30,34].

Motivated by the results above, by using minimization arguments and implicit function theorem

together with variational approach, we prove the existence and multiplicity of nontrivial, non-

negative solutions for the singular fractional Kirchhoff-Schrödinger system described in (1.1) within

suitable fractional Sobolev spaces.

This paper is organized as follow: In the second section, we discuss familiar properties and results

related to fractional Sobolev spaces. In the third section, we show the existence theorem and

its proof, which uses the Nehari manifold and fibering map approach. In the fourth section, we

demonstrate the existence of multiple nontrivial positive solutions for our problem (1.1).
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2 Preliminaries

In this paper, Q ⇢ Rd represents a bounded domain with a smooth boundary, and h·, ·i denotes

the standard duality between X and its dual space X
⇤.

Let u : Q⇥Q �! R be a measurable function,

[w]s,p =

✓Z

Q⇥Q

|w()� w(y)|p

|� y|d+ps
d dy

◆1/p

,

is the Gagliardo seminorm. We denote by Ws,p(Q) the fractional Sobolev space given by

Ws,p(Q) := {u 2 Lp(Q) : [w]s,p < 1},

with the norm

kwks,p :=
⇣
kwkpLp(Q) + [w]ps,p

⌘1/p
,

where

kwkLp(Q) =

✓Z

Q
|w|pd

◆1/p

.

For our analysis, we assume the following assumption:

(V) V 2 L1
loc(Q)\{0}, ess inf2QV () > 0 and meas({x 2 q : V (x)  L}) < 1, for all L > 0,

where meas(·) denotes the Lebesgue measure in Q.

When V satisfies (V), the basic space

Ws(Q) :=
n
w 2 Ws,p(Q) : V |w|p 2 L1(Q); u = 0 in Rd\Q

o

denotes the completion of C1
0 (Q) with respect to the norm

kwkWs :=
⇣
kwkpLp(V,Q) + [w]ps,p

⌘1/p
,

where

kwkLp(V,Q) =

✓Z

Q
V ()|w|pd

◆1/p

.

In Ws we have the following embedding

Lemma 2.1 ([33]). Let 0 < s < 1 < p < +1 with ps < d and suppose that the assumption (V)

holds. Then,

Ws(Q) ,! Lq(Q) for all q 2 [p, p⇤s). (2.1)
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When r + r
0 2 (p, p⇤), then, for any u 2 Ws, we obtain

kwkLr+r0 (Q)  SkwkWs . (2.2)

Let us define the functional  s,p : Ws �! R by

 s,p(w) =

Z

Q⇥Q

|w()� w(y)|p

|� y|d+ps
d dy +

Z

Q
V ()|w|pd.

At this point, we introduce our working space W = Ws ⇥Ws, which is a reflexive Banach space

endowed with the norm

k(w, v)kW =
⇣
 s,p(w) + s,p(v)

⌘1/p
. (2.3)

We say that (w, v) 2 W is a weak solution to system (1.1) if u, v > 0 in Q, one has

K
�
kwkWs

�✓Z

Q
V ()|w|p�2

u�d+

Z

Q

|w()� w(y)|p�2(w()� w(y))(�()� �(y))

|� y|d+sp
d dy

◆

+K
�
kvkWs

�✓Z

Q
V ()|v|p�2

v�d+

Z

Q

|v()� v(y)|p�2(v()� v(y))( ()�  (y))

|� y|d+sp
d dy

◆

=

Z

Q

�
⌘↵()|w|q�2

u�+ ⇣�()|v|q�2
v�
�
d+

1� %

2� %� ⌧

Z

Q
⇠()u�%

v
1�⌧

 d

+
1� ⌧

2� %� ⌧

Z

Q
⇠()u1�%

v
�⌧
 d,

for all (�, ) 2 W.

Now, with the essential tools in place, we are ready to state our main results, which take the

following form:

Theorem 2.2. There exists

⇤0 =

✓
q + %+ ⌧ � 2

k⇣k1k(q � p)

◆ p
p+%+⌧�2

✓
2� %� ⌧ � q

k(2� %� ⌧ � p)
|Q|

p⇤s�q

p⇤s

◆� p
p�q

S
2�%�⌧

p+%+⌧�2 ,

such that if

0 <
�
⌘k↵k1

� p
p�q +

�
⇣k�k1

� p
p�q

< ⇤0,

then system (1.1) has at least two nontrivial positive solutions.
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3 Nehari manifold & fibering map analysis

In this part, we gather basic information about a Nehari manifold and discuss fibering maps.

Obviously, the energy functional J⌘,⇣ : Ws �! R associated with problem (1.1) is given by

J⌘,⇣(w, v) =
1

p

⇣
K̂(||w||pWs

) + K̂(||v||pWs
)
⌘
� 1

q

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d

� 1

2� %� ⌧

Z

Q
⇠()(w+)1�%(v+)1�⌧

d,

where K̂(t) =

Z t

0
K(%)d%. This together with (1.2) gets to

J⌘,⇣(w, v) =
k

p

⇣
 s,p(w) + s,p(v)

⌘p
+

l

p�

⇣
 s,p(w) + s,p(v)

⌘p�

� 1

q

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d� 1

2� %� ⌧

Z

Q
⇠()(w+)1�%(v+)1�⌧

d

=
k

p
k(w, v)kpW +

l

p�
k(w, v)kp�W � 1

q

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d

� 1

2� %� ⌧

Z

Q
⇠()(w+)1�%(v+)1�⌧

d, (3.1)

where r
+ = max{r, 0} and r

� = max{�r, 0} for r 2 R.

Keep in mind that J⌘,⇣ does not behave smoothly in W. So, standard variational methods will

not work here. If (w, v) is a weak solution for the problem (1.1), it means that both w and v are

positive in Q and satisfy the equation

K
�
kwkWs

�
 s,p(w) +K

�
kvkWs

�
 s,p(V) � ⌘

Z

Q
↵()|w|q d

� ⇣

Z

Q
�()|v|q d�

Z

Q
⇠()|w|1�%|v|1�⌧

d = 0,

which implies by using (1.2) that

kk(w, v)kpW + lk(w, v)kp�W � ⌘

Z

Q
↵()|w|q d� ⇣

Z

Q
�()|v|q d�

Z

Q
⇠()|w|1�%|v|1�⌧

d = 0.

(3.2)

It is simple to confirm that the energy functional J⌘,⇣(w, v) is not bounded below in the space W.

However, we will demonstrate that on the Nehari manifold, defined below, J⌘,⇣(w, v) is bounded

below. We will establish a solution by minimizing this functional over specific subsets. The Nehari

manifold is defined as follows:
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N⌘,⇣ =

⇢
(w, v) 2 W \ {(0, 0)}; k

p
k(w, v)kpW +

l

k
k(w, v)kp�W � ⌘

Z

Q
↵()|w|q d

�⇣
Z

Q
�()|v|q d�

Z

Q
⇠()|w|1�%|v|1�⌧

d = 0

�
.

Now, understanding that the Nehari manifold is intricately connected to a fibering maps which

is introduced by Drábek and Pohozaev in [11]. The form of the fibrering maps is as follows,

⌥w,v : t 7! J⌘,⇣(tw, tv) for t > 0 defined by

⌥w,v(t) =
1

p

⇣
K̂
�
t
P ||w||pWs

�
+ K̂

�
t
p||v||pWs

�⌘
� t

q

q

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d

� t
2�%�⌧

2� %� ⌧

Z

Q
⇠()|w|1�%|v|1�⌧

d.

The first and second derivative of ⌥ respectively, is given by

⌥0
w,v(t) = kt

p�1k(w, v)kpW + lt
p��1k(w, v)kp�W � t

q�1

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d

� t
1�%�⌧

Z

Q
⇠()|w|1�%|v|1�⌧

d

(3.3)

and
⌥00

w,v(t) = (p� 1)ktp�2k(w, v)kpW + l(p� � 1)tp��2k(w, v)kp�W

� (q � 1)tq�2

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d

� (1� %� ⌧)t�%�⌧

Z

Q
⇠()|w|1�%|v|1�⌧

d.

(3.4)

Now, we prove some useful inequality. Using Hölder’s and Sobolev inequalities, one has

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d  |Q|

p⇤s�q

p⇤s

⇣
⌘k↵k1kwkqp⇤

s
+ ⇣k�k1kvkqp⇤

s

⌘

 |Q|
p⇤s�q

p⇤s S
� q

p

⇣
⌘k↵k1kwkq + ⇣k�k1kvkq

⌘

 |Q|
p⇤s�q

p⇤s S
� q

p

⇣
(⌘k↵k1)

p
p�q + ⇣k�k1)

p
p�q

⌘ p�q
p

(kwkq + kvkq)

 C|Q|
p⇤s�q

p⇤s S
� q

p

⇣
(⌘k↵k1)

p
p�q + (⇣k�k1)

p
p�q

⌘ p�q
p k(w, v)kqW

(3.5)

and
Z

Q
⇠()|w|1�%|v|1�⌧

d  k⇣k1
✓

1� %

2� %� ⌧

Z

Q
|w|2�%�⌧

d+
1� ⌧

2� %� ⌧

Z

Q
|v|2�%�⌧

d

◆

 k⇣k1S
� 2�%�⌧

p k(w, v)k2�%�⌧
W .

(3.6)



CUBO
26, 3 (2024)

Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems... 415

Lemma 3.1. Let (w, v) 2 W \ {(0, 0)}. Then (tw, tv) 2 N⌘,⇣ if and only if ⌥0
w,v(t) = 0.

Proof. The conclusion is derived from the observation that

⌥0
w,v(t) = hJ0⌘,⇣(w, v), (w, v)i

= kt
p�1k(w, v)kpW + lt

p��1k(w, v)kp�W � t
q�1

✓Z

Q
⌘↵()|w|q d�

Z

Q
⇣�()|v|q d

◆

� t
1�%�⌧

Z

Q
⇠()|w|1�%|v|1�⌧

d = 0

if and only if (tw, tv) 2 N⌘,⇣ .

Due to Lemma 3.1, we have (w, v) 2 N⌘,⇣ are associated with stationary points of ⌥w,v(tw, tv)

and in particular, (w, v) 2 N⌘,⇣ if and only if ⌥0
w,v(1) = 0. Hence, we split N⌘,⇣ into three parts:

N+
⌘,⇣ =

n
(w, v) 2 N⌘,⇣ : ⌥00

w,v(1) > 0
o
=
n
(tw, tv) 2 W \ {0, 0} : ⌥0

w,v(t) = 0,⌥00
w,v(t) > 0

o
,

N�
⌘,⇣ =

n
(w, v) 2 N⌘,⇣ : ⌥00

w,v(1) < 0
o
=
n
(tw, tv) 2 W \ {0, 0} : ⌥0

w,v(t) = 0,⌥00
w,v(t) < 0

o
,

N0
⌘,⇣ =

n
(w, v) 2 N⌘,⇣ : ⌥00

w,v(1) = 0
o
=
n
(tw, tv) 2 W \ {0, 0} : ⌥0

w,v(t) = 0,⌥00
w,v(t) = 0

o
.

For the proof of the following lemma we refer to [32].

Lemma 3.2. If (w, v) is a minimizer of J⌘,⇣ on N⌘,⇣ such that (w, v) 62 N0
⌘,⇣ . Then, (w, v) is a

critical point for J⌘,⇣ .

Our initial result is as follows:

Lemma 3.3. J⌘,⇣ is bounded below on N⌘,⇣ and coercive.

Proof. As (w, v) 2 N⌘,⇣ , then using (3.2) and the embedding of Ws in L2�%�⌧ (Q), we obtain

J⌘,⇣(w, v) = k

✓
1

p
� 1

q

◆
k(w, v)kpW+l

⇣ 1

p�
�1

q

⌘
k(w, v)kp�W �

✓
1

2� %� ⌧
� 1

q

◆Z

Q
⇠()|w|1�%|v|1�⌧

d.

Then by (3.6), we obtain

J⌘,⇣(w, v) � k

✓
1

p
� 1

q

◆
k(w, v)kpW + l

✓
1

p�
� 1

q

◆
k(w, v)kp�W

�
✓

1

2� %� ⌧
� 1

q

◆
k⇣k1S

� 2�%�⌧
2 k(w, v)k2�%�⌧

W .

Since 2� %� ⌧ < p  p�, it follows that J⌘,⇣ is coercive and bounded below on N⌘,⇣ .
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Lemma 3.4. For every (w, v) 2 N�
⌘,⇣ (respectively N+

⌘,⇣) with u, v � 0, and all (�, ) 2 N⌘,⇣ with

(�, ) � 0, there exist " > 0 and a continuous function h = h(r) > 0 such that for all r 2 R with

|r| < " we have h(0) = 1 and h(r)(w + r�, v + r ) 2 N�
⌘,⇣ (respectively N+

⌘,⇣).

Proof. First, let us introduce the function f : R⇥ R �! R defined by

f(t, r) = kt
p+%+⌧�2k(w + r�, v + r )kp + lt

p�+%+⌧�2k(w + r�, v + r )kp�

� (q + %+ ⌧ � 2)tq+%+⌧�3

Z

Q

⇣
⌘↵()(w + r�)q + ⇣�()(v + r )q

⌘
d

�
Z

Q
⇠()(w + r�)1�%(v + r )1�⌧

d.

Therefore,

df

dt
(t, r) = k

�
p+ %+ ⌧ �

�
t
p+%+⌧�3k(w + r�, v + r )kp

+ l
�
p� + %+ ⌧ � 2

�
t
p�+%+⌧�3k(w + r�, v + r )kp�

� t
q+%+⌧�2

Z

Q

⇣
⌘↵()(w + r�)q + ⇣�()(v + r )q

⌘
d.

Hence, df
dt is continuous. Recall that (w, v) 2 N�

⌘,⇣ ⇢ N⌘,⇣ , we have f(1, 0) = 0, and

df

dt
(1, 0) = k

�
p+ %+ ⌧ � 2

�
k(w, v)kpW + l

�
p� + %+ ⌧ � 2

�
k(w, v)kp�W

�
�
q + %+ ⌧ � 2

� Z

Q

⇣
⌘↵()wq + ⇣�()vq

⌘
d < 0.

Thus, by applying the implicit function theorem to the function f at the point (1, 0), we deduce

the existence of � > 0 and a positive continuous function h = h(r) > 0, defined for r 2 R with

|r| < �, satisfying:

h(0) = 1 and h(r)(w + r�, v + r ) 2 N⌘,⇣ , for all r 2 R, |r| < �.

Hence, for a small possible " > 0 (" < �), we obtain

h(r)(w + r�, v + r ) 2 N�
⌘,⇣ , 8r 2 R, |r| < ".

Similarly, we prove the other case.
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Lemma 3.5. There exists

⇤0 =

✓
q + %+ ⌧ � 2

k⇣k1k(q � p)

◆ p
p+%+⌧�2

✓
2� %� ⌧ � q

k(2� %� ⌧ � p)
|Q|

2⇤s�q

2⇤s

◆� p
p�q

S
2�%�⌧

p+%+⌧�2 ,

such that for 0 <
�
⌘k↵k1

� p
p�q +

�
⇣k�k1

� p
p�q

< ⇤0 we have:

(i) If
Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d > 0, then, there exist a unique Tl > 0 and t0 < Tl < t1

such that

⌥w,v(t0) = ⌥w,v(t1),

⌥0
w,v(t0) < 0 < ⌥0

w,v(t1);

that is, (t0w, t0v) 2 N+
⌘,⇣ , (t1w, t1v) 2 N�

⌘,⇣ and

J⌘,⇣(t0w, t0v) = min
0tt1

J⌘,⇣(tw, tv),

J⌘,⇣(t1w, t1v) = max
t�Tl

J⌘,⇣(tw, tv).

(ii) If
Z

Q

⇣
⌘↵()|w|q+⇣�()|v|q

⌘
d < 0, then there exists a unique Tl > 0 such that (Tlw, Tlv) 2

N�
⌘,⇣ and J⌘,⇣(Tlw, Tlv) = max

t�0
J⌘,⇣(tw, tv).

Proof. (i) Suppose that
Z

Q

⇣
⌘↵()|w|q+⇣�()|v|q

⌘
d > 0. Define the function  w,v : R+ �! R

by

 w,v(t) = kt
p�qk(w, v)kpW + lt

p��qk(w, v)kp�W � t
2�%�⌧�q

Z

Q
⇠()|w|1�%|v|1�⌧

d.

Note that (tw, tv) 2 N⌘,⇣ if and only if

 w,v(t) =

Z

Q

�
⌘↵()|w|q + ⇣�()|v|q

�
d.

Now, the first derivative of the function  is

 
0
w,v(t) = k(p� q)tp�q�1k(w, v)kpW + (p� � q)ltp��q�1k(w, v)kp�W

� (2� %� ⌧ � q)t1�%�⌧�q

Z

Q
⇠()|w|1�%|v|1�⌧

d

= t
�q�1

⇣
k(p� q)tpk(w, v)kpW + (p� � q)ltp�k(w, v)kp�W

� (2� %� ⌧ � q)t�%�⌧+2

Z

Q
⇠()|w|1�%|v|1�⌧

d

⌘
.

(3.7)
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It is clear that  w,v(t) �! �1 as t �! 1. Moreover, using (3.7), it is simple to see that

limt�!0+  
0
w,v(t) > 0 and limt�!1  

0
w,v(t) < 0. Thus, there exists Tl > 0 such that  w,v(t)

is decreasing on (Tl,1), increasing on (0, Tl), and  0
w,v(Tl) = 0. Thus,

 w,v(Tl) = kT
p�q
l k(w, v)kpW + lT

p��q
l k(w, v)kp�W � T

2�%�⌧�q
l

Z

Q
⇠()|w|1�%|v|1�⌧

d,

where Tl is the solution of

k(p� q)tpk(w, v)kpW + (p� � q)ltp�k(w, v)kp�W

� (2� %� ⌧ � q)t�%�⌧+2

Z

Q
⇠()|w|1�%|v|1�⌧

d = 0.
(3.8)

Then, using (3.8), we obtain

T0 :=

 
(2� %� ⌧ � q)

R
Q ⇠()|w|

1�%|v|1�⌧
d

k(p� q)k(w, v)kpW

! 1
p+⌧+%�2

 Tl. (3.9)

From inequality (3.9), we can find a constant C = C(p, q, %, ⌧) > 0 such that

 w,v(Tl) �  w,v(T0)

� kT
p�q
0 k(w, v)kpW � T

2�%�⌧�q
0

Z

Q
⇠()|w|1�%|v|1�⌧

d

� k
� %+ ⌧

q + %+ ⌧ � 2

�⇣q + %+ ⌧ � 2

k(q � 2)

⌘ 2�q
⌧+% k(w, v)k2

q+%+⌧�2
⌧+%

W
� R

Q ⇠()|w|1�%|v|1�⌧ d
� q�2

⌧+%

� |Q|
2⇤s�q

2⇤s S
� q

2

⇣
(⌘k↵k1)

2
2�q + (⇣k�k1)

2
2�q

⌘ 2�q
2 k(w, v)kqW > 0,

if and only if

(⌘k↵k1)
2

2�q + (⇣k�k1)
2

2�q

<

✓
k(q � 2)

k⇣k1(q + %+ ⌧ � 2)

◆� 2
%+⌧

✓
q + %+ ⌧ � 2

k(%+ ⌧)
|Q|

2⇤s�q

2⇤s

◆� 2
2�q

S
%+⌧�2
%+⌧ + q

2�q = ⇤0.

Then, there exist exactly two points t0 < Tl and t1 > Tl with

 
0
w,v(t0) =

Z

Q

�
⌘↵()|w|q + ⇣�()|v|q

�
d =  

0
w,v(t1).

Also,  0
w,v(t0) > 0 and  0

w,v(t1) < 0. That is, (t0u, t0v) 2 N+
⌘,⇣ and (t1u, t1v) 2 N�

⌘,⇣ . Since

⌥0
w,v(t) = t

q

✓
 w,v(t)�

Z

Q

�
⌘↵()|w|q + ⇣�()|v|q

�
d

◆
.
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Thus, ⌥0
w,v(t) < 0 for all t 2 [0, t0) and ⌥0

w,v(t) > 0 for all t 2 (t0, t1). Hence J⌘,⇣(t0w, t0v) =

min
0tt1

J⌘,⇣(tw, tv). In the same way, ⌥0
w,v(t) > 0 for all t 2 (t0, t1), ⌥0

w,v(t) = 0 and

⌥0
w,v(t) < 0 for all t 2 (t1,1) that is J⌘,⇣(t1w, t1v) = max

t�Tl

J⌘,⇣(tw, tv).

(ii) Suppose that
Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d < 0. So  w,v(t) �! �1 as t �! 1. There-

fore, for all (⌘, ⇣) there exists Tl > 0 such that (Tlw, Tlv) 2 N�
⌘,⇣ and J⌘,⇣(Tlw, Tlv) =

max
t�0

J⌘,⇣(tw, tv).

The consequence of Lemma 3.5 is summarized in the following Lemma.

Lemma 3.6. There exists

⇤0 =

✓
q + %+ ⌧ � 2

k⇣k1k(q � p)

◆ p
p+%+⌧�2

✓
2� %� ⌧ � q

k(2� %� ⌧ � p)
|Q|

p⇤s�q

p⇤s

◆� p
p�q

S
2�%�⌧

p+%+⌧�2 ,

such that for 0 < (⌘k↵k1)
p

p�q + (⇣k�k1)
p

p�q < ⇤0, we have N±
⌘,⇣ 6= ; and N0

⌘,⇣ = ;.

Proof. From Lemma 3.4, we infer that N±
⌘,⇣ are non-empty for all (⌘, ⇣) with 0 < (⌘k↵k1)

p
p�q +

(⇣k�k1)
p

p�q < ⇤0. Next, we employ a proof by contradiction to show that N0
⌘,⇣ = ; for all (⌘, ⇣),

with 0 < (⌘k↵k1)
p

p�q + (⇣k�k1)
p

p�q < ⇤0. Let (w, v) 2 N0
⌘,⇣ . Then, we have two cases:

Case 1: (w, v) 2 N+
⌘,⇣ and

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d = 0. Using (3.3) and (3.4) with t = 1,

it follows that

(p� 1)kk(w, v)kpW + l(p� � 1)k(w, v)kp�W � (1� %� ⌧)

Z

Q
⇠()|w|1�%|v|1�⌧

d

= (p+ %+ ⌧ � 2)kk(w, v)kpW + l(p� + %+ ⌧ � 2)k(w, v)kp�W > 0,

which is a contradiction.

Case 2: Let (w, v) 2 N�
⌘,⇣ and

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d = 0. Using (3.3) and (3.4) with

t = 1, it follows that

(p� q)kk(w, v)kpW + l(p� � q)k(w, v)kp�W = �(q + %+ ⌧)

Z

Q
⇠()|w|1�%|v|1�⌧

d, (3.10)

(2� %� ⌧ � p)kk(w, v)kpW + l(2� %� ⌧ � p�)k(w, v)kp�W

= (2� %� ⌧ � q)

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d.

(3.11)
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Now, define E⌘,⇣ : N⌘,⇣ �! R as follows

E⌘,⇣(w, v) =
2� %� ⌧ � p

2� %� ⌧ � q
kk(w, v)kpW +

2� %� ⌧ � p�

2� %� ⌧ � q
lk(w, v)kp�W

�
Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d.

Therefore, from (3.11), E⌘,⇣(w, v) = 0 for all (w, v) 2 N0
⌘,⇣ . Furthermore,

E⌘,⇣(w, v) �
2� %� ⌧ � p

2� %� ⌧ � q
kk(w, v)kpW �

Z

Q

⇣
⌘↵()|w|q + ⇣�()|v|q

⌘
d

� 2� %� ⌧ � p

2� %� ⌧ � q
kk(w, v)kpW

� C|Q|
p⇤s�q

p⇤s S
� q

p

⇣
(⌘k↵k1)

p
p�q + (⇣k�k1)

p
p�q

⌘ p�q
p k(w, v)kqW

� k(w, v)kqW
✓
2� %� ⌧ � p

2� %� ⌧ � q
kk(w, v)kp�q

W

�C|Q|
p⇤s�q

p⇤s S
� q

p

⇣
(⌘k↵k1)

p
p�q + (⇣k�k1)

p
p�q

⌘ p�q
p

◆
.

Then, utilizing (3.6) and (3.10), we get

k(u, v)k � 1

k⇣k1
S
� 2�%�⌧

p(p+%+⌧�2)

⇣
k(p� q)

2� %� ⌧ � q

⌘� 1
p+%+⌧�2

. (3.12)

From (3.12) we get

E⌘,⇣(w, v) � k(w, v)kqW

 
2� %� ⌧ � p

2� %� ⌧ � q
k

⇣
k(p� q)k⇣k1S

2�%�⌧
p(p+%+⌧�2)

⌘⇣
k(p� q)

2� %� ⌧ � q

⌘ q�p
p+%+⌧�2

� C|Q|
p⇤s�q

p⇤s S
� q

p

⇣
(⌘k↵k1)

p
p�q + (⇣k�k1)

p
p�q

⌘ p�q
p

!
.

This implies that for 0 < (⌘k↵k1)
p

p�q + (⇣k�k1)
p

p�q < ⇤0, we have E⌘,⇣(w, v) > 0, for all

(w, v) 2 N0
⌘,⇣ . The proof is complete.

Due to Lemmas 3.3 and 3.4, for 0 < (⌘k↵k1)
p

p�q + (⇣k�k1)
p

p�q < ⇤0, we can write N⌘,⇣ =

N+
⌘,⇣ [N�

⌘,⇣ and define

c
+
⌘,⇣ = inf

(w,v)2N+
⌘,⇣

J⌘,⇣(w, v), c
�
⌘,⇣ = inf

(w,v)2N�
⌘,⇣

J⌘,⇣(w, v).
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3.1 Existence of a minimizer on N+
⌘,⇣.

In this subsection, we establish that the minimum of J⌘,⇣ is found within N+
⌘,⇣ . Furthermore, we

demonstrate that this minimizer also serves as a solution to problem (1.1).

Lemma 3.7. If 0 < (⌘k↵k1)
p

p�q +(⇣k�k1)
p

p�q < ⇤0, then for all (w, v) 2 N+
⌘,⇣ , we have c

+
⌘,⇣ < 0.

Proof. Let (w+
0 , v

+
0 ) 2 N+

⌘,⇣ , then ⌥00
(w+

0 ,v+
0 )
(1) > 0 which from (3.2) gives

Z

Q
⇠()|w|1�%|v|1�⌧

d <
k(p� q)

2� %� ⌧ � q
k(w, v)kpW +

l(p� � q)

2� %� ⌧ � q
k(w, v)kp�W . (3.13)

Thus, according to (3.2) with (3.13), we obtain

J⌘,⇣(w, v)  k

⇣1
p
� 1

q

⌘
k(w, v)kpW + l

✓
1

p�
� 1

q

◆
k(w, v)kp�W

�
✓

1

2� %� ⌧
� 1

q

◆Z

Q
⇠()|w|1�%|v|1�⌧

d



k

✓
1

p
� 1

q

◆
�
✓

1

2� %� ⌧
� 1

q

◆
k(p� q)

2� %� ⌧ � q

�
k(w, v)kpW

+


l

✓
1

p�
� 1

q

◆
�
✓

1

2� %� ⌧
� 1

q

◆
l(p� � q)

2� %� ⌧ � q

�
k(w, v)kp�W .

(3.14)

Hence, using (3.14), we get

J⌘,⇣(w, v) < �
✓
k(q � p)(p+ %+ ⌧ � 2)

pq(2� %� ⌧)
k(w, v)kp + l(q � p)(p+ %+ ⌧ � 2)

pq(2� %� ⌧)
k(w, v)kp�

◆
< 0.

Therefore, the definition of c+⌘,⇣ owing to c
+
⌘,⇣ < 0.

Theorem 3.8. If 0 < (⌘k↵k1)
p

p�q + (⇣k�k1)
p

p�q < ⇤0, then there exists (w+
0 , v

+
0 ) in N+

⌘,⇣

satisfying J⌘,⇣(w
+
0 , v

+
0 ) = inf

(w,v)2N+
⌘,⇣

J⌘,⇣(w, v).

Proof. From the fact that J⌘,⇣ is bounded below on N⌘,⇣ , then it bounded on N+
⌘,⇣ . Thus, there

exists {(w+
n , v

+
n )} ⇢ N+

⌘,⇣ a sequence such that

J⌘,⇣(w
+
n , v

+
n ) �! inf

(w,v)2N+
⌘,⇣

J⌘,⇣(w, v) as n �! 1.

Since J⌘,⇣ is coercive, {wn, vn} is bounded in W. Then, there exists a sub-sequence, still denoted

by (w+
n , v

+
n ) and (w+

0 , v
+
0 ) 2 W such that, as n �! 1,
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w
+
n * w

+
0 , v

+
n * v

+
0 weakly in Ws(Q),

w
+
n �! w

+
0 , v

+
n �! v

+
0 strongly in Lr(Q) for 1  r < p

⇤
s,

w
+
n �! w

+
0 , v

+
n �! v

+
0 a.e. in Q.

Claim:

lim
n�!1

Z

Q
↵()|w+

n |1�%
d =

Z

Q
↵()|w+

0 |1�%
d. (3.15)

Indeed, due to Vitali’s theorem (see [26, pp. 133]), we only need to prove that

⇢Z

Q
↵()|w+

n |1�%
d, n 2 N

�
is equi-absolutely-continuous.

Since {wn} is bounded, by the Sobolev embedding theorem, there exists a constant C > 0 such

that |wn|p⇤
s
 C < 1. Moreover, by the Hölder inequality we have

Z

Q
↵()w1�%

d  k↵k1
Z

Q
|w|1�%

d  k↵k1|Q|
p⇤s

p⇤s+%�1 |w|1�%
p⇤
s

. (3.16)

From (3.16), for every " > 0, setting

� =

✓
"

k↵k1C1�%

◆ p⇤s
p⇤s+��1

,

when A ⇢ Q with meas(A) < �, we have

Z

A
↵()|w+

n |1�%
d  k↵k1kwk1�%

p⇤
s

�
meas(A)

� p⇤s+%�1

p⇤s  k↵k1C
1�%

�

p⇤s+%�1

p⇤s < ".

Thus, our claim is true. Similarly, we claim that

lim
n�!1

Z

Q
�()|v+n |1�⌧

d =

Z

Q
�()|v+0 |1�⌧

d. (3.17)

On the other hand, by [3] there exists l 2 Lr(Rd) such that

|w+
n ()|  l(), |v+n ()|  l(), as k �! 1

for 1  r < p
⇤
s. Therefore by the dominated convergence theorem,

Z

Q

⇣
⌘|w+

n |q + ⇣|v+n |q
⌘
d �!

Z

Q

⇣
⌘|w+

0 |q + ⇣|v+0 |q
⌘
d.

Furthermore, from Lemma 3.5, there exists t0 such that (t0w+
0 , t0v

+
0 ) 2 N+

⌘,⇣ . Now, we shall prove
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that w
+
n �! w

+
0 strongly in Ws, v+n �! v

+
0 strongly in Ws. Suppose otherwise, then

k(w+
0 , v

+
0 )kW  lim inf

n�!1
k(w+

n , v
+
n )kW.

On the other hand, since (w+
n , v

+
n ) 2 N+

⌘,⇣ , one has

lim
n�!1

⌥0
w+

n ,v+
n
(t0) = lim

n�!1

⇣
kt

p�1
0 k(w+

n , v
+
n )kp + lt

p��1
0 k(w+

n , v
+
n )kp�

� t
q�1
0

Z

Q

�
⌘↵()|w+

n |q + ⇣�()|v+n )|q
�
d� t

1�%�⌧
0

Z

Q
⇠()|w+

n |1�%|v+n |1�⌧
d

⌘

> kt
p�1
0 k(w+

0 , v
+
0 )kp + lt

p��1
0 k(w+

0 , v
+
0 )kp�

� t
q�1
0

Z

Q

�
⌘↵()|w+

0 |q + ⇣�()|v+0 )|q
�
d� t

1�%�⌧
0

Z

Q
⇠()|w+

0 |1�%|v+0 |1�⌧
d

= ⌥0
w+

0 ,v+
0
(t0) = 0.

Therefore, ⌥0
w+

n ,v+
n
(t0) > 0 for n large enough. Furthermore, (w+

n , v
+
n ) 2 N+

⌘,⇣ , and we can see for

all n that ⌥0
w+

n ,v+
n
(t) < 0 for t 2 (0, t) and ⌥0

w+
n ,v+

n
(1) = 0. Thus we must have t0 > 1. Moreover

⌥w+
n ,v+

n
(1) is decreasing for t 2 (0, t0) and that is

J⌘,⇣(t0w
+
0 , t0v

+
0 ) < J⌘,⇣(w

+
0 , v

+
0 ) = lim

n�!1
J⌘,⇣(w

+
n , v

+
n ) = inf

(w,v)2N+
⌘,⇣

J⌘,⇣(w, v)

which gives a contradiction. Thus, w+
n �! w

+
0 strongly in Ws, v+n �! v

+
0 strongly in Ws and

J⌘,⇣(w
+
0 , v

+
0 ) = inf

(w,v)2N+
⌘,⇣

J⌘,⇣(w, v). The proof of Theorem 3.8 is complete.

3.2 Existence of a minimizer on N�
⌘,⇣.

In this subsection, we aim to establish the existence of a solution to problem (1.1) by demonstrating

the existence of a minimizer for J⌘,⇣ within the set N�
⌘,⇣ .

Lemma 3.9. If 0 < (⌘k↵k1)
p

p�q +(⇣k�k1)
p

p�q < ⇤0, then for all (w, v) 2 N+
⌘,⇣ , one has c�⌘,⇣ > d0

for some d0 = d0

�
%, ⌧, p, q,↵,�, ⌘, ⇣, |Q|

�
> 0.

Proof. Let (w�
0 , v

�
0 ) 2 N�

⌘,⇣ , then we have ⌥00
w�

0 ,v�
0

(1) < 0 which from (3.2) gives

Z

Q
⇠()|w|1�%|v|1�⌧

d >
k(p� q)

2� %� ⌧ � q
k(w, v)kpW +

l(p� � q)

2� %� ⌧ � q
k(w, v)kp�W . (3.18)

Hence, using (3.6), we get

k(w, v)kW >
1

k⇣k1
S
� 2�%�⌧

p(p+%+⌧�2)

✓
k(p� q)

2� %� ⌧ � q

◆� 1
p+%+⌧�2

. (3.19)
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Therefore, by (3.5) and (3.19), we obtain

J⌘,⇣(w, v) � k

✓
1

p
� 1

2� %� ⌧

◆
k(w, v)kpW �

✓
1

q
� 1

2� %� ⌧

◆
|Q|

p⇤s�q

p⇤s

⇥ S
� q

p

⇣
(⌘k↵k1)

p
p�q + (⇣k�k1)

p
p�q

⌘ p�q
p k(w, v)kqW

= k(w, v)kqW

"
k

✓
1

p
� 1

2� %� ⌧

◆
k(w, v)kp�q

W �
✓
1

q
� 1

2� %� ⌧

◆
|Q|

p⇤s�q

p⇤s

⇥ S
� q

p

⇣
(⌘k↵k1)

p
p�q + (⇣k�k1)

p
p�q

⌘ p�q
p

#

> k(w, v)kqW

"
k

✓
1

p
� 1

2� %� ⌧

◆
S

(p�q)
p

✓
p� q

2� %� ⌧ � q

◆ q�p
p+%+⌧�2

�
✓
1

q
� 1

2� %� ⌧

◆
|Q|

p⇤s�q

p⇤s S
� q

p

⇣
(⌘k↵k1)

p
p�q + (⇣k�k1)

p
p�q

⌘ p�q
p

#
.

Hence, if 0 < (⌘k↵k1)
p

p�q + (⇣k�k1)
p

p�q < ⇤0, then J⌘,⇣(w, v) > d0 for all (w, v) 2 N�
⌘,⇣ for some

d0 = d0

�
%, ⌧, p, q,↵,�, ⌘, ⇣, |Q|

�
> 0. Therefore c

�
⌘,⇣ > d0 follows from the definition c

�
⌘,⇣ .

Theorem 3.10. If 0 < (⌘k↵k1)
p

p�q + (⇣k�k1)
p

p�q < ⇤0, then there exists (w�
0 , v

�
0 ) in N�

⌘,⇣

satisfying J⌘,⇣(w
�
0 , v

�
0 ) = inf

(w,v)2N�
⌘,⇣

J⌘,⇣(w, v).

Proof. As J⌘,⇣ is bounded below on N⌘,⇣ and then on N�
⌘,⇣ . Thus, there exists {(w�

n , v
�
n )} ⇢ N�

⌘,⇣ ,

a sequence such that

J⌘,⇣(w
�
n , v

�
n ) �! inf

(w,v)2N�
⌘,⇣

J⌘,⇣(w, v) as n �! 1.

Since J⌘,⇣ is coercive, {(wn, vn)} is bounded in W. Then there exists a sub-sequence, still denoted

by (w�
n , v

�
n ) and (w�

0 , v
�
0 ) 2 W such that, as n �! 1,

w
+
n * w

�
0 , v

�
n * v

�
0 weakly in Ws(Q),

w
�
n �! w

�
0 , v

�
n �! v

�
0 strongly in Lr(Q) for 1  r < p

⇤
s,

w
�
n �! w

�
0 , v

�
n �! v

�
0 a.e. in Q.

Furthermore, similar to the proof in Lemma 3.8, we have

lim
n�!1

Z

Q
|w�

n |1�%
d =

Z

Q
|w�

0 |1�%
d,

lim
n�!1

Z

Q
|v�n |1�⌧

d =

Z

Q
|v�0 |1�⌧

d,

Z

Q

⇣
⌘↵()|w+

n |q + ⇣�()|v+n |q
⌘
d �!

Z

Q

⇣
⌘↵()|w+

0 |q + ⇣�()|v+0 |q
⌘
d.



CUBO
26, 3 (2024)

Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems... 425

Moreover, by Lemma 3.5, there exists t1 such that (t1w
�
0 , t1v

�
0 ) 2 N�

⌘,⇣ . Now, we prove that

w
�
n �! w

�
0 strongly in Ws, v�n �! v

�
0 strongly in Ws. Suppose otherwise, then

k(w�
0 , v

�
0 )kW  lim inf

n�!1
k(w�

n , v
�
n )kW.

Thus, since (w�
n , v

�
n ) 2 N�

⌘,⇣ and J⌘,⇣(tw
�
0 , tv

�
0 )  J⌘,⇣(w

�
0 , v

�
0 ), for all t � 0 we have

J⌘,⇣(t1w
�
0 , t1v

�
0 ) < lim

n�!1
J⌘,⇣(t1u

�
n , t1v

�
n )  lim

n�!1
J⌘,⇣(w

�
n , v

�
n ) = c

�
⌘,⇣ ,

which gives a contradiction. Hence, w�
n �! w

�
0 strongly in Ws(Q), v�n �! v

�
0 strongly in Ws(Q)

and J⌘,⇣(w
�
0 , v

�
0 ) = inf

(w,v)2N�
⌘,⇣

J⌘,⇣(w, v). Which complete the proof.

4 Multiple solutions

In this section, we shall prove Theorem (2.2), which gives the multiplicity of solutions for problem

(1.1).

Proof of Theorem 2.2. To begin, let us establish the existence of non-negative solutions. Initially,

according to Theorems 3.8 and 3.10, there exist(w+
0 , v

+
0 ) 2 N+

⌘,⇣ , (w
�
0 , v

�
0 ) 2 N�

⌘,⇣ satisfying

J⌘,⇣(w
+
0 , v

+
0 ) = inf

(w,v)2N+
⌘,⇣

J⌘,⇣(w, v),

J⌘,⇣(w
�
0 , v

�
0 ) = inf

(w,v)2N�
⌘,⇣

J⌘,⇣(w, v).

Also, from the fact that J⌘,⇣(w+
0 , v

+
0 ) = J⌘,⇣(|w+

0 |, |v
+
0 |) and (|w+

0 |, |v
+
0 |) 2 N+

⌘,⇣ . Similarly we have

J⌘(w
�
0 , v

�
0 ) = J⌘,⇣(|w�

0 |, |v
�
0 |) and (|w�

0 |, |v
�
0 |) 2 N�

⌘,⇣ , thus we can assume (w±
0 , v

±
0 ) � 0. Due

to Lemma 3.2, (w±
0 , v

±
0 ) are the nontrivial non-negative solutions of problem (1.1). Finally, we

need to establish that the solutions obtained in Theorems 3.8 and 3.10 are distinct. Given that

N�
⌘,⇣ \N+

⌘,⇣ = ;, it follows that (w±
0 , v

±
0 ) are indeed distinct. This completes the proof.
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ABSTRACT

In 2019, Bagul et al. posed two open problems dealing with

inequalities involving trigonometric and hyperbolic functions

and an adjustable parameter. This article is an attempt to

solve these open problems. The results are supported by

three-dimensional graphics, taking into account the variation

of the parameter involved.

RESUMEN

En 2019, Bagul et al. propusieron dos problemas relaciona-

dos con desigualdades que involucran funciones trigonométri-

cas e hiperbólicas y un parámetro ajustable. Este artículo es

un intento de resolver estos problemas abiertos. Los resulta-

dos están apoyados con gráficas tridimensionales, tomando

en consideración la variación del parámetro involucrado.
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1 Introduction

When studying mathematical inequalities, it is often useful to find generalizations of known results.

These generalizations can provide deep insights into the structure of inequalities and their applica-

tions in various areas of mathematics. They can be established using integer series expansions of

well-known elementary functions. For a more rigorous treatment of this topic, see [2,5,7,9,11–15].

A brief discussion of recent progress in the inequalities of some trigonometric and hyperbolic

functions is given below. In 2021, Bagul et al. [2] studied the following inequalities: For r > 0 and

x 2 (0, r), we have

✓
1 +

x2

⇡2

◆
eax

2

<
sinhx

x
<

✓
1 +

x2

⇡2

◆
ebx

2

,

where a = ln
⇥
⇡2(sinh r)/r(⇡2 + r2)

⇤
/r2 and b = 1/6� 1/⇡2 are the best possible constants in the

exponential term. To prove these inequalities, the author used the concept of series expansion.

For the details, see [2]. Later, in 2023, Li et al. [8] presented the proof of the following inequalities

involving sine and hyperbolic sine functions using power series expansion: For |x| < ⇡/2, we have

4

15

✓
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11

4

◆2

� 3

4
 sin (2x)

2x
+ 2

sinx

x
 4

15
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+

1

1260
x6

and, for x 2 R and an integer n � 2, we have

1 + 2 coshx+
nX

k=2

bkx
2k  sinh (2x)

2x
+ 2

sinhx

x
 4

15

✓
coshx+

11

4

◆2

� 3

4
,

where bk = (22k � 4k)/(2k + 1)! for k = 2, 3, . . . , n.

In 2018, Malešević, et al. [10] gave the following generalized inequalities: For x 2 (0,⇡/2) and an

integer n � 1, we have

2 + cosx

3
+

2nX

k=2

(�1)k+1B(k)x2k <
sinx

x
<

2 + cosx

3
+

2n+1X

k=2

(�1)k+1B(k)x2k,

where B(k) = 2(k � 1)/[2(2k + 1)!].

The following result gives us sharper bounds on the above inequalities established by Bagul et al.

[4]: For an integer n � 1, m = 2n� 1, and x 2 (0,⇡), we have

F (x) <
sinx

x
< G(x),
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where

F (x) =
2m+ cosx

2m+ 1
+

2

2m+ 1

m+1X

k=1

k �m

(2k + 1)!
(�1)k+1x2k

and

G(x) =
(2m+ 1) + cosx

2m+ 3
+

2

2m+ 3

m+2X

k=1

k �m� 1

(2k + 1)!
(�1)k+1x2k.

In parallel to these remarkable modern results, there are some open problems on similar functions.

For example, in 2019, Bagul et al. [3] posed the following open problems on some trigonometric

and hyperbolic functions:

(1) For x 2 (0,⇡/2) and p � 2, we have

p+ (cosx)p >
sin (px)

px
+ p

✓
sinx

x

◆
.

(2) For x 2 (0,⇡/2) and p 2 (0, 2], we have

sin (px)

px
+ p

✓
sinx

x

◆
> 1 + p cosx.

(3) For x 2 R� {0} and p 2 (0, 2], we have

p+ (coshx)p >
sinh (px)

px
+ p

✓
sinhx

x

◆
.

(4) For x 2 R� {0} and p � 2, we have

sinh (px)

px
+ p

✓
sinhx

x

◆
> 1 + p coshx.

This article is an attempt to prove two open problems, namely those presented in Items 2 and 4,

which are further listed in the main results. Our focus is to show that these inequalities hold for a

wide range of p. It is important to note that while the inequalities we prove are useful for a wide

range of p and x, we do not claim that these inequalities are optimal in the sense of sharpness.

There is scope in the future to find sharper bounds on these inequalities for particular values of

p. In particular, the first inequality we prove holds for p � 2, and the second for p 2 (0, 2), which

may also be useful to researchers for further development.

The plan is as follows: First, Section 2 gives some preliminary remarks that will be useful for the

gradual development of this article. Section 3 deals with our main results, supported by graphics,

and Section 4 is the concluding part.
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2 Preliminaries

Well-known power series expansions derived from sinhx and coshx are the following formulas:

sinhx =
1X

n=0

x2n+1

(2n+ 1)!
, (2.1)

sinh (px) =
1X

n=0

p2n+1x2n+1

(2n+ 1)!
, (2.2)

coshx =
1X

n=0

x2n

(2n)!

and, an immediate consequence of the previous formula,

x coshx =
1X

n=0

x2n+1

(2n)!
. (2.3)

We may refer to [1] and [6].

3 Main results

In this section, using power series expansion and some trigonometric identities, we present the

proof of two inequalities.

Theorem 3.1. For x > 0 and p � 2, we have

sinh (px)

px
+ p

✓
sinhx

x

◆
> 1 + p coshx.

Proof. To prove this result, let us consider the following function:

f(x) = sinh (px) + p2 sinhx� px� p2x coshx.

A differentiation work gives

f 0(x) = p cosh (px) + p2 coshx� p� p2{coshx+ x sinhx}

= p cosh (px) + p2 coshx� p� p2 coshx� p2x sinhx

= p cosh (px)� p� p2x sinhx

and

f 00(x) = p2 sinh (px)� p2{sinhx+ x coshx}.
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From Equations (2.1), (2.2) and (2.3), we can decompose f 00(x) as

f 00(x) = p2
" 1X

n=0

p2n+1x2n+1

(2n+ 1)!
�

1X
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�
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#
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n=0

⇥
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.

For p � 2, the Bernoulli inequality gives

p2n+1 � (2 + 2n) � (1 + 1)2n+1 � (2 + 2n) � 1 + (2n+ 1)� (2 + 2n) = 0.

Therefore, for any x > 0, we have f 00(x) > 0. Hence, we conclude that, for x > 0, f 0(x) is strictly

increasing. As a result, we have f 0(x) > f 0(0) with f 0(0) = p � p = 0. This implies that f(x) is

strictly increasing, so f(x) > f(0) with f(0) = 0. By taking into account the definition of f(x),

we find
sinh (px)

px
+ p

✓
sinhx

x

◆
> 1 + p coshx.

The proof ends.

Thus, through Theorem 3.1, we provide the solution to one of the open problems in Bagul et al.

[3]. Figures 1 and 2 illustrate the validity of Theorem 3.1 by considering the following bivariate

function with respect to x and p:

f?(x, p) =
sinh (px)

px
+ p

✓
sinhx

x

◆
� 1� p coshx,

with x > 0 and p � 2.
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Figure 1: Three-dimensional shape plots of the function f?(x, p) for x 2 (0, 2) and p 2 [2, 4).
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Figure 2: Three-dimensional intensity plots of the function f?(x, p) for x 2 (0, 2) and p 2 [2, 4).

It is clear that the zone corresponding to the negative values is never reached, implying that

f?(x, p) > 0 for the considered configuration, which is consistent with Theorem 3.1 as expected.

The next result concerns another open problem in Bagul et al. [3].

Theorem 3.2. For x 2 (0,⇡/2) and p 2 (0, 2], we have

sin (px)

px
+ p

✓
sinx

x

◆
> 1 + p cosx.
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Proof. To prove this theorem, let us consider the following function:

g(x) = sin (px) + p2 sinx� px� p2x cosx.

A differentiation work gives

g0(x) = p cos (px) + p2 cosx� p� p2(cosx� x sinx) = p cos (px)� p+ p2x sinx

and

g00(x) = �p2 sin (px) + p2(sinx+ x cosx) = p2[sinx+ x cosx� sin (px)].

Owing to basic trigonometric identities, we obtain

sin (px) = sin [(p� 1)x+ x] = cos [(p� 1)x] sinx+ sin [(p� 1)x] cosx.

Hence, we can rewrite g00(x) as

g00(x) = p2{sinx+ x cosx� cos [(p� 1)x] sinx� sin [(p� 1)x] cosx}

= p2[{1� cos [(p� 1)x]} sinx+ {x� sin[(p� 1)x]} cosx].

We know that, for x 2 (0,⇡/2), we have sinx > 0 and cosx > 0. Also, for any p 2 (0, 2] we have

cos[(p� 1)x]  1, implying that 1� cos [(p� 1)x] � 0.

Now, let us discuss the sign of the term x� sin[(p� 1)x] by distinguishing the cases p 2 (0, 1] and

p 2 (1, 2].

For p 2 (0, 1] and x 2 (0,⇡/2), it is immediate that

� sin [(p� 1)x] = sin [(1� p)x] � 0.

Hence, we can conclude that x� sin [(p� 1)x] > 0.

Now for p 2 (1, 2] and x 2 (0,⇡/2), thanks to the classical sine inequality: sin y < y for y > 0, we

have

sin [(p� 1)x] < (p� 1)x  x.

Thus, we have x� sin [(p� 1)x] > 0.

As a result, we can conclude that g00(x) > 0. Thus, for x 2 (0,⇡/2), g0(x) is strictly increasing. As

a result, we have g0(x) > g0(0) with g0(0) = p� p = 0. This implies that g(x) is strictly increasing,

so g(x) > g(0) with g(0) = 0. Thanks to the definition of g(x), we establish that

sin (px)

px
+ p

✓
sinx

x

◆
> 1 + p cosx.
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This achieves the proof.

Hence, through Theorem 3.2, we offer a solution to one of the open problems in Bagul et al. [3].

Figures 3 and 4 illustrate the validity of Theorem 3.2 by considering the following bivariate function

with respect to x and p:

g?(x, p) =
sin (px)

px
+ p

✓
sinx

x

◆
� 1� p cosx,

with x 2 (0,⇡/2) and p 2 (0, 2].
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Figure 3: Three-dimensional shape plots of the function g?(x, p) for x 2 (0,⇡/2) and p 2 (0, 2].
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Figure 4: Three-dimensional intensity plots of the function g?(x, p) for x 2 (0,⇡/2) and p 2 (0, 2].
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We note that the zone associated with the negative values is never reached, suggesting that

g?(x, p) > 0 for the configuration under consideration, which is in expected agreement with Theo-

rem 3.2.

During our graphical investigation, we found that Theorem 3.2 can be conjectured to be valid for

x 2 (0,⇡) instead of just x 2 (0,⇡/2), as shown in Figure 5 with the absence of a negative value

zone. The rigorous proof, however, remains a new challenge to be investigated in the future.
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Figure 5: Three-dimensional intensity plots of the function g?(x, p) for x 2 (0,⇡) and p 2 (0, 2].

4 Conclusion

In this article, we have given simple and elegant proofs for two open problems posed by Bagul et

al. in 2019 [3], which concern inequalities related to trigonometric and hyperbolic functions for a

large range of p and x. The presented inequalities generalize existing results for large values of p

and provide researchers with valuable insights and tools for further developments in this area.
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where Bk denotes the boolean lattice with k atoms, is not the

congruence lattice of any finite semidistributive lattice. Nei-
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a finite semidistributive lattice. However, each (Bk)++ with

k � 3 is the congruence lattice of a finite semidistributive
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sense of McKenzie), as no (Bk)++ (k � 0) is the congruence

lattice of a finite bounded lattice. A companion paper shows

that every (Bk)++ (k � 0) can be represented as the congru-
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RESUMEN

Mostramos que existen reticulados distributivos finitos que

no son el reticulado de congruencia de cualquier reticulado

semidistributivo finito. Para 0  k  2, el reticulado dis-

tributivo (Bk)++ = 2 +Bk, donde Bk denota el reticulado

booleano con k átomos, no es el reticulado de congruencia

de cualquier reticulado semidistributivo finito. Estos reticu-

lados tampoco pueden ser un filtro en el reticulado de con-

gruencia de un reticulado semidistributivo finito. De todas

formas, cada (Bk)++ con k � 3 es el reticulado de con-

gruencia de un reticulado semidistributivo finito, digamos

Lk. Estos reticulados Lk no pueden ser acotados (en el

sentido de McKenzie), puesto que ningún (Bk)++ (k � 0)

es el reticulado de congruencia de un reticulado finito aco-

tado. Un artículo acompañante muestra que todo (Bk)++

(k � 0) puede ser representado como el reticulado de con-

gruencia de un reticulado infinito semidistributivo. También

encontramos condiciones suficientes para que un reticulado

finito distributivo sea representable como el reticulado de

congruencia de un reticulado finito acotado (y por lo tanto

semidistributivo).

Keywords and Phrases: Distributive lattice, semidistributive lattice, congruence lattice.
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1 Introduction

R. P. Dilworth proved in the 1940’s that every finite distributive lattice is the congruence lattice

of a finite lattice. Not every finite distributive lattice is isomorphic to the congruence lattice of a

finite join semidistributive (or meet semidistributive) lattice, but it turns out that there is only one

restriction; see Theorem 1.1 below, from [1]. This note shows that there is at least one additional

restriction on a finite distributive lattice D in order for D to be the congruence lattice of a finite

(meet and join) semidistributive lattice; see Theorem 3.1.

In the paper K. Adaricheva et al. [1] it was shown that a finite distributive lattice D ⇠= O(P) is the

congruence lattice of a finite join semidistributive lattice if and only if every non-maximal element

of P is below at least two maximal elements. In fact, the equivalence of five conditions is proved

in that paper.

Theorem 1.1. The following are equivalent for a finite distributive lattice D. Let D ⇠= O(P) for

an ordered set P (isomorphic to J(D)).

(1) D ⇠= Con L for a finite join semidistributive lattice L.

(2) D ⇠= Con S for a finite lower bounded lattice S.

(3) D ⇠= Con G for a finite convex geometry G.

(4) D ⇠= Con A for a finite, lower bounded, atomistic convex geometry A.

(5) Every non-maximal element of P is below at least two maximal elements.

(6) The three-element chain is not a filter in D.

We will show that there is at least one additional restriction for the congruence lattice Con K

when K is a finite lattice that is both join and meet semidistributive. The restrictions are perhaps

best expressed in terms of the lattices (Bk)++ obtained by adjoining a new zero twice to a boolean

lattice with k atoms. Theorem 3.1 is that neither (B0)++ nor (B2)++ can be a filter in the

congruence lattice of a finite semidistributive lattice. (Since (B0)++ is a three-element chain and

(B1)++ is a four-element chain, excluding the latter is redundant.) We can show that every (Bk)++

with k � 3 is the congruence lattice of a finite semidistributive lattice (Theorem 4.8). However, a

lattice K with Con K ⇠= (Bk)++ for K finite, semidistributive and k � 3 cannot be bounded in the

sense of McKenzie (Theorem 4.2). To complicate matters, it turns out that every lattice (Bk)++

with k � 0 is isomorphic to the congruence lattice of an infinite semidistributive lattice, as shown

by the author and G. Grätzer [11]. It remains open whether every finite distributive lattice is the

congruence lattice of an infinite semidistributive lattice.
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2 Preliminaries on congruence lattices and semidistributivity

A lattice is join semidistributive if it satisfies the condition

x _ y = x _ z implies x _ y = x _ (y ^ z) .

The dual is called meet semidistributive, and a lattice is semidistributive if it is both join and meet

semidistributive. This notion was introduced in Jónsson [12] as a basic property of free lattices;

summaries of semidistributive lattices can be found in [3, 7].

A lattice homomorphism h : K ! L is lower bounded if for every a 2 L, h�1("a) is either empty

or has a least element. Dually, h is an upper bounded homomorphism if h�1(# a) has a greatest

element whenever it is nonempty. A homomorphism that is both lower and upper bounded is

called bounded.

A finitely generated lattice is said to be bounded if it is a bounded homomorphic image of a free

lattice. The basic historical sources are R. McKenzie [15] and A. Day [5]; again more recent

summaries can be found in [3, 7]. Bounded lattices inherit semidistributivity from free lattices.

For k � 0, Bk denotes the boolean lattice with k atoms; in particular, B0 is a one-element lattice.

Given a lattice K, let K+ denote the lattice obtained by adjoining a new zero element. The lattices

(Bk)++ will play an important role in this paper.

For finite subsets X, Y of a lattice L, we say that X refines Y , written X ⌧ Y , if for each x 2 X

there exists y 2 Y such that x  y. An inclusion p 
W
Q, where p 2 L and Q ✓ L is a finite

nonempty subset, is a minimal nontrivial join cover if p ⇥ q for all q 2 Q and Q cannot be properly

refined, i.e., if p 
W
R and R ⌧ Q, then Q ✓ R. When p 

W
Q is a minimal nontrivial join cover,

then Q is an antichain of join irreducible elements. We say that a minimal nontrivial join cover

p 
W

Q is doubly minimal if there is no minimal nontrivial join cover S with p 
W

S <
W
Q.

A join irreducible element p in a finite lattice has a unique lower cover, denoted p⇤. A finite lattice

L is meet semidistributive if and only if for each join irreducible element p 2 J(L), there is a

unique element (p) that is maximal with respect to the property of being above p⇤ and not above

p; see e.g. Theorem 2.56 of [7]. Thus x  (p) if and only if p⇤ _ x ⇤ p. Indeed, (p) will be

meet irreducible with the unique upper cover (p)⇤ = p _ (p). Note that if p 
W
Q is a minimal

nontrivial join cover and q 2 Q, then
W
(Q\{q})  (q); else q could be replaced by q⇤ for a proper

refinement.

Let us review congruence lattices of finite lattices and the special properties of bounded ones.

Define five relations on the set of join irreducible elements J(L), the first three requiring meet

semidistributivity.
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• pA q if q < p < q _ (q),

• pB q if p 6= q, p  p⇤ _ q, p ⇥ p⇤ _ q⇤, or equivalently, p 6= q, q ⇥ (p), q⇤  (p),

• C = A [B,

• pD q if q 2 Q for some minimal nontrivial join cover Q of p,

• pE q if q 2 R for some doubly minimal nontrivial join cover R of p.

Now in a finite semidistributive lattice E ✓ C ✓ D, and the containments can be proper (The-

orem 2.59 of [7]). Form the reflexive, transitive closures of the last three: C, D, E. These are

quasi-orders.

An order ideal of a quasi-ordered set (Q,) is a subset I ✓ Q such that s  t 2 I implies s 2 I.

The order ideals of Q form a distributive lattice O(Q,). A standard result is that for any finite

lattice, Con L ⇠= ( J(L), D), see Chapter 10 of [17] or Section II.3 of [7]. But for bounded finite

lattices, we also have Con L ⇠= O(J(L), E), see Section 6.6 of [3] or Section 9 of [4]. (This does not

mean that D and E are the same, but their reflexive, transitive closures D and E are.)

We assume a familiarity with the following basic facts of lattice theory.

• Every finite distributive lattice is isomorphic to the lattice of order ideals of its join irreducible

elements, D ⇠= O(P) where P = (J(D),). By convention, O(P) includes the empty ideal.

• Equivalently, D is isomorphic to the lattice of order filters of meet irreducible elements,

D ⇠= F(Q), where Q = (M(D),) and filters are ordered by reverse set inclusion.

• For disjoint unions of ordered sets, O(P [̇Q) ⇠= O(P)⇥O(Q), while lattices satisfy Con(K⇥
L) ⇠= (Con K) ⇥ (Con L). Hence we may restrict our attention to connected finite ordered

sets.

• For any finite lattice L, the congruence lattice Con L is isomorphic to the ideal lattice of the

quasi-ordered set Q = (J(L), D), i.e., Con L ⇠= O(J(L), D).

• In particular, maximal members of Q correspond to simple homomorphic images of L.

• The two-element lattice 2 is the only finite simple semidistributive lattice. (Infinite simple

semidistributive lattices exist; see [8].)

• Thus for a finite semidistributive lattice, coatoms of Con L correspond to maximal members

of Q = (J(L), D), which in turn correspond to join prime elements of L. That is, the maximal

proper congruences on a finite semidistributive lattice are exactly those with two classes, "p
and #(p), where p is a join prime element.
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• Every element in a finite join semidistributive lattice has a canonical join representation [13].

This canonical representation is the unique non-refinable join representation of the element,

and refines every other join representation. Thus if a =
W
B canonically and also a =

W
C,

then B ⌧ C.

• In a finite join semidistributive lattice, the canonical joinands of 1L are join prime.

• The atoms of a finite meet semidistributive lattice are join prime.

While the whole theory of Day doubling of intervals is relevant to bounded lattices, for this paper

we need only double points, which is easily described; see [5, 6, 10]. If L is a lattice and a 2 L, let

L[a] be the lattice on the set L\{a}[{(a, 0), (a, 1)} with the order 0 such that, for x, y 2 L\{a}
and i 2 {0, 1},

• x 0 y iff x  y,

• (a, 0) 0 (a, 1),

• x 0 (a, i) iff x  a,

• (a, i) 0 y iff a  y.

Note that (a, 1) is join irreducible in L[a]. Doubling intervals, and in particular points, preserves

both meet and join semidistributivity, and both lower and upper boundedness [5].

3 Congruence lattices of finite semidistributive lattices

Consider the two ordered sets in Figure 1.

Theorem 3.1. The distributive lattices O(2) and O(Y) are not the congruence lattice of a finite

semidistributive lattice.

Recall that the homomorphic images of a finite semidistributive lattice L are semidistributive.

(More generally, bounded homomorphisms preserve semidistributivity; see the proof of Theo-

rem 2.20 in [7].) It follows that neither 2 nor Y can be a filter in (J(L), D) when L is a finite semidis-

tributive lattice. Note that O(2) = 3 is the three-element chain (B0)++, while O(Y) = (B2)++.

The four-element chain 4 = (B1)++ has 3 as a filter, so neither is it the congruence lattice of a

finite semidistributive lattice. See also Lemma 3.3 below.

Proof. Elements of (J(L), D) may be equivalence classes induced by the quasi-order D, but maximal

elements of (J(L), D) correspond to singleton classes with one join prime element. This is because
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n

m

p

q

r s

Figure 1: Ordered sets 2 and Y

every finite nontrivial semidistributive lattice contains join prime elements, and a join prime ele-

ment p has no nontrivial join cover, making pD q impossible when p is maximal in (J(L), D). Now

2 is the only finite semidistributive lattice with only one join prime element, and its congruence

lattice is 2 = O(1), not 3 = O(2). We conclude that Con L ⇠= 3 cannot occur. (This argument

applies with join semidistributivity only; see Theorem 1.1.)

So suppose L is a finite semidistributive lattice with Con L ⇠= O(Y). Then L has two join prime

elements, which includes its atoms and the canonical joinands of 1. The trivial case with one atom

and 1L join prime would give L ⇠= 3, while Con 3 ⇠= 2 ⇥ 2, so that does not occur. Thus L has

exactly two atoms, say r and s, and 1L = r _ s. Since r is an atom, (r) is the largest element

not above r, and similarly for (s). So the coatoms of L are (r) and (s), and they satisfy

(r) ^ (s) = 0L. Thus L = {0, 1} [̇ [r,(s)] [̇ [s,(r)], as in Figure 2.

Put U = [r,(s)] and V = [s,(r)]. Note u _ v = 1 and u ^ v = 0 for any u 2 U and v 2 V .

Hence congruences behave independently on the sublattices U and V. It follows that Con L is

isomorphic to Con U ⇥ Con V with three additional elements on top, as illustrated in Figure 2.

If Con L ⇠= O(Y), then Con U ⇥ Con V ⇠= 3 = O(2), which is impossible by the first part.

Therefore there is no finite semidistributive lattice with Con L ⇠= O(Y).

In the preceding argument, U and V are intervals of L, and hence finite semidistributive lattices.

On the other hand, one or both of these could have only one element. Hence, from the proof we

conclude:

Corollary 3.2. The following are equivalent for a finite distributive lattice D with two coatoms.

(1) D ⇠= Con L for some finite semidistributive lattice L.

(2) D is a glued sum D = E� (2⇥ 2) where E ⇠= Con K for some finite semidistributive lattice

K.

While the corollary applies only to distributive lattices with two coatoms, it allows us to con-

struct a multitude of examples of distributive lattices, both representable and non-representable

as congruence lattices of finite semidistributive lattices. The construction in the positive direction

mimics Figure 2 with say U = K and |V| = 1.
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U V

0

r s

1

(s) (r)

Con U⇥ Con V

�

r

 r  s

Figure 2: L and Con L for a finite semidistributive lattice with exactly two join prime elements,
r and s. The congruence  r collapses the intervals [r, 1] and [0,(r)], the congruence  s collapses
the interval [s, 1] and [0,(s)], so that L/( r ^  s) ⇠= 2⇥ 2.

It is currently unknown whether additional restrictions apply to congruence lattices of finite

semidistributive lattices. By analogy with situation for finite join semidistributive lattices (Theo-

rem 1.1) we conjecture that the restrictions of Theorem 3.1 are the only ones.

Conjecture: A finite distributive lattice D is the congruence lattice of a finite semidistributive

lattice if and only if neither the 3-element chain nor O(Y) = (B2)++ is a filter of D.

With respect to such characterizations, we remind the reader of an elementary fact.

Lemma 3.3. Let S and P be finite ordered sets. Then O(S) is isomorphic to a filter of O(P) if

and only if S is a filter of P.

Proof. If S is a filter of P, let L = P \ S. Clearly "L is a filter of O(P) isomorphic to O(S).

Conversely, assume that O(S) is isomorphic to a filter of O(P), say O(S) ⇠= "K. Set T = P \K
and T = (T,) with the order inherited from P. As the complement of an ideal, T is a filter in

P. Now S ⇠= J(O(S)). We want to establish an isomorphism ⌫ : T ⇠= J("K) between T and the

ideals that are join irreducible in the filter "K (which need not be join irreducible in O(P)).

For t 2 T , define ⌫(t) = K [ # t. Note that ⌫(t) is join irreducible in " K. In fact, for an ideal

L � K, t 2 L iff L � ⌫(t).

On the other hand, if L is join irreducible in "K, then there is a unique ideal L† with L � L† � K.

There is only one element in L \ L†, and it must be in T . Denote this element by ⌧(L), so that

⌧(L) 2 T and L = L† [̇ {⌧(L)}.

Now ⌧⌫(t) = t because ⌫(t) � ⌫(t) \ {t} � K. Let us show that ⌫⌧(L) = K [ # ⌧(L) = L when

L is join irreducible in "K. Clearly K [ # ⌧(L) ✓ L. Suppose the reverse inclusion fails. That

means there exists an element `0 2 L \ T with `0 ⇥ ⌧(L). Let `1 � `0 be maximal in L, so also



CUBO
26, 3 (2024)

Congruences of finite semidistributive lattices 451

`1 2 T and `1 ⇤ ⌧(L). Then L � L \ {`1} � K, yielding another lower cover of L in "K besides

L†, contrary to the assumption that L is join irreducible in the interval. Therefore ⌫(⌧(L)) = L.

It remains to show that for I, L join irreducible in "K, ⌧(I)  ⌧(L) iff I  L. But I = ⌫⌧(I) =

K [ #⌧(I) and L = ⌫⌧(L) = K [ #⌧(L) with ⌧(I) and ⌧(L) not in K, from which the claim follows

immediately.

4 Congruence lattices of finite bounded lattices

Now we turn to finite lattices that are bounded homomorphic images of a free lattice. These inherit

semidistributivity from the free lattice. Finite bounded lattices have many special properties, which

we summarize here from [3], Sections 3-2.6 and 3-2.7, or [7], Sections II-4 and II-5, both of which

have references to the original sources.

Theorem 4.1. The following are equivalent for a finite semidistributive lattice L.

(1) L is bounded.

(2) L is lower bounded.

(3) L is upper bounded.

(4) J(L) contains no D-cycle

p0 Dp1 Dp2 D . . . D pm�1 Dp0.

(5) J(L) contains no E-cycle

p0 E p1 E p2 E . . . E pn�1 E p0.

(6) | J(Con L)| = | J(L)|.

Condition (6), from Pudlák and Tůma [19], is particularly important for us: if L is a finite bounded

lattice with Con L ⇠= O(P), then there is a bijection between J(L) and P. This is not true for

unbounded semidistributive lattices in general, because of the presence of D-cycles as in (4).

Moreover, bounded finite lattices have Con L ⇠= O(J(L), E), where E is the relation on J(L)

determined by doubly minimal join covers. This need not be true for unbounded lattices.

Recall that Bk denotes the boolean lattice with k atoms, and L+ denotes the lattice obtained by

adding a new least element 0 to L.

Theorem 4.2. For k � 0, the distributive lattice (Bk)++ is not the congruence lattice of a finite

bounded lattice.

The proof uses a technical lemma, which is Theorem 2.60 in [7].
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Lemma 4.3. Let K be a finite semidistributive lattice, and let q 2 J(K). Assume q 
W
R is a

doubly minimal nontrivial join cover. Then there is a unique r0 2 R such that r0 ⇥ q, and q B r0

holds. The remaining r 2 R \ {r0} satisfy r < q and q A r.

Proof. Assume that q 
W
R is doubly minimal, and consider any r 2 R. Let S = R \ {r}, noting

that
W
S  (r) else r_

W
S = r⇤_

W
S, contradicting minimality. If r < q, then r < q < r_

W
S 

r _ (r) = (r)⇤ so that q A r holds.

Meanwhile, q 
W

R implies
W
R ⇥ (q). Hence q  q⇤ _ r0 for at least one r0 2 R. This refines

to a minimal nontrivial join cover q 
W
T with T ⌧ {q⇤, r0}. Clearly

W
T  q _ r0 

W
R; by the

double minimality,
W

T = q _ r0 =
W
R.

We have q  q⇤ _ r0 =
W
R. Suppose q  q⇤ _ r0⇤. Then by the double minimality of

W
R we get

W
R = q⇤ _ r0⇤. Put S = R \ {r0}, noting

W
S  q⇤ by the preceding paragraph. Recall that in a

join semidistributive lattice, u =
W
ai =

W
bj implies u =

W
i,j(ai ^ bj). (This is Theorem 1.21 in

[7], from Jónsson and Kiefer [13].) Thus we calculate

_
R =

_
S _ r0 = q⇤ _ r0⇤ =

_
S _ (r0 ^ q⇤) _ r0⇤ =

_
S _ r0⇤

which contradicts q 
W
R being a minimal (nonrefinable) join cover. So q ⇥ q⇤ _ r0⇤, whence

q B r0 holds.

By (SD_), R = T consists of the canonical joinands of q _ r0, all except one of which, namely r0,

lie below q⇤.

Corollary 4.4. If q E s and s ⇥ q in a finite semidistributive lattice, then q B s.

Now we can prove Theorem 4.2.

Proof. We may assume k � 3, as the cases 0  k  2 are covered by Theorem 3.1.

Suppose that L is a bounded lattice and that Con L ⇠= (Bk)++. Then (J(L), E) is isomorphic to

the ordered set drawn in Figure 3. Note that because L is bounded, the relation E is antisymmetric

(as there are no E-cycles), making E-classes singletons. So each point in Figure 3 represents an

element of J(L).

Moreover, the elements labeled r1, . . . , rk in the top row are join prime in L. Let R1 = {r1, . . . , r`}
be the join prime elements with ri < q, and let R2 = {r`+1, . . . , rk} be those with rj ⇥ q. As the

diagram indicates, we have pE q and q E ri for all i. Since pE q, in L there is at least one doubly

minimal nontrivial join cover p  q _
W
S with S ✓ R1 [R2.

Clearly S \ R1 = ?, i.e., we cannot have s < q with both in the same minimal join cover. So

S ✓ R2. But if s0 2 R2, then q B s0 by Corollary 4.4, so q  q⇤ _ s0. Thus p  q⇤ _
W
S,

contradicting the minimality of {q} [ S.
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r`+1

R1 R2

p

q

r1 r` rk

Figure 3: (J(L), E) for (Bk)++

But now we encounter an unexpected surprise. The lattice U in Figure 4 is obtained by dou-

bling the point p0 in a lattice U0 from [14]. Now U is not bounded, because it has the D-cycle

p0 Ap1 Ap2 B p3 B p0. However, its congruence lattice Con U is (B3)++.

Theorem 4.5. The lattice (B3)++ is the congruence lattice of a finite semidistributive lattice.

A couple of lemmas are required to prove this.

When a point a is doubled in a finite lattice L, then the principal congruence ↵ = Cg((a, 0), (a, 1))

has only one nontrivial congruence class, so that ↵ is an atom of Con L[a] with L[a]/↵ ⇠= L. But

we need a little more information as to which congruences lie above ↵. The calculation is based

on the following straightforward lemmas.

Lemma 4.6. Let L be a finite lattice. Double a join irreducible element a 2 J(L), replacing a by

(a, 0) and (a, 1). Note that both (a, 0) and (a, 1) are join irreducible in L[a].

(1) If aD b in L, then (a, 0)D b and (a, 1)D b in L[a].

(2) If cD a in L, then cD (a, 0) in L[a], but c 6D (a, 1).

(3) If L is meet semidistributive and (a) 6= a⇤, then (a, 1)D (a, 0).

If p and q are join irreducible elements with pD q, then we have the congruence inclusion Cg(p, p⇤) 
Cg(q, q⇤). Thus whenever there is a D-cycle p0 Dp1 D . . . D pn�1 Dp0, then Cg(pi, pi⇤) = Cg(pj , pj⇤)

for all i, j. We refer to this congruence as the congruence generated by the cycle.

Lemma 4.7. Let L be a finite, subdirectly irreducible, semidistributive lattice with Con L ⇠= D.

Suppose the monolith µ of L is generated by a proper D-cycle, and let a be a join irreducible

element in that cycle. Then Con L[a] ⇠= D+.

The crucial observation is that if p0 Dp1 D . . . D pn�1 Dp0 is a D-cycle in L, then by Lemma 4.6(1)

and (2),

p0 Dp1 D . . . D (pj , 0)D . . . D pn�1 Dp0
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a

p2

c

p3

b

p1

p0

m

m

p

a b c

Figure 4: A finite semidistributive lattice with Con U ⇠= (B3)++. On the left U, on the right
(J(U), D).

is a D-cycle in L[pj ].

In our situation, for Theorem 4.5 we have the original lattice from [14] with congruence lattice

isomorphic to (B3)+. Doubling p0 to get the element labeled m in U, as in the figure, yields

Con U ⇠= (B3)++ and thus Theorem 4.5.

With the lattice U as a pattern, we can find more examples. The lattice U0 from [14] has a D-cycle

of the form AABB and 3 join prime elements. We would like to find finite, subdirectly irreducible,

semidistributive lattices L0 whose join irreducibles consist of a D-cycle and k join prime elements,

so that Con L0
⇠= (Bk)+. Then double an element p in the D-cycle to obtain (Bk)++ as the

congruence lattice of L0[p].

In [18] there is a finite, semidistributive, unbounded lattice V6 based on a D-cycle of the form

(AB)3 that has Con V6
⇠= (B6)+. Doubling a join irreducible in the cycle yields another finite

semidistributive lattice W6 with Con W6
⇠= (B6)++. A straightforward generalization of the

construction in [18], using a cycle of the form (AB)m for m � 3, gives a finite semidistributive

lattice W2m with Con W2m
⇠= (B2m)++. The general construction to represent all (Bn)++ with

n � 4 is somewhat more complicated.

Theorem 4.8. For all k � 3, the lattice (Bk)++ is the congruence lattice of a finite semidistribu-

tive lattice.

As noted earlier, all the lattices (Bk)++ (k � 0) can be represented as the congruence lattice of

an infinite semidistributive lattice [11].



CUBO
26, 3 (2024)

Congruences of finite semidistributive lattices 455

Proof. The case k = 3 is Theorem 4.5, so let us consider n � 4. We will construct a finite

semidistributive lattice Xn whose join irreducible elements have the following properties:

• there is a D-cycle of the form B2An�2,

p0 B p1 B p2 Ap3 A . . . A pn�1 Ap0 ;

• there are n join prime elements p0⇤, p1⇤, x3, . . . , xn ;

• for each join prime element q there is a pj such that pj D q ;

• there are no more join irreducible elements in Xn.

Thus Con Xn
⇠= (Bn)+. Applying Lemma 4.7 to double an element in the cycle yields a lattice

Yn with Con Yn
⇠= (Bn)++.

A standard duality for finite lattices is to regard L as a closure system on the ordered set of

its join irreducibles J = (J(L),). Given L, the map a 7! # a \ J represents the lattice as an

intersection-closed collection of subsets of J. The corresponding closure operator � on J is given

by

x 2 �({y}) if x  y,

x 2 �(Y ) if x 
_

Y

for x, y 2 J and Y ✓ J . Then L is isomorphic to the lattice of �-closed subsets of J (which are

automatically order ideals by the first rule, including the empty ideal ?).

To construct a lattice using the duality, we must specify the ordered set J and a basis for the desired

join operation. Following custom, we write the closure rules as x  y and x 
W
Y , respectively.

Part of the verification will include checking that  is a partial order, and that �(x)\{x} = #x\{x}
is closed for x 2 J , so that x is join irreducible.

To construct Xn with the properties described above, for n � 4 we take

Jn = {p0⇤, p0, p1⇤ , p1, p2, . . . , pn�1, x3, . . . , xn}.
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xn�2xn�1 x3

p0⇤

p0

pn�1

p4

p3

p2

p1⇤

p1

xn

Figure 5: The order on the join irreducibles of Xn

The order on Jn is given by

p2 > p3 > · · · > pn�1 > p0 > p0⇤

xj > pj+1 for 3  j < n� 1

xn�1 > p0

xn > p0⇤

p1 > p1⇤

as illustrated in Figure 5. The defining join covers are

p0  p0⇤ _ p1

p1  p1⇤ _ p2

p2  p3 _ x3

(‡) · · ·

pn�2  pn�1 _ xn�1

pn�1  p0 _ xn

p1  p1⇤ _ x3

The last is a bit of a mystery, but is required for meet semidistributivity, and does the job.

Set Xn to be the lattice of closed ideals of Jn. Routine checks, with multiple cases, show that the

elements of Jn are join irreducible, with the lower covers u⇤ as indicated in Figure 5, and that the

join covers given in the basis (‡) are minimal (nonrefinable). Thus for each inclusion u  y _ z in

(‡) we have uD y and uD z. These facts give the desired properties from the first paragraph of

the proof. It remains to prove that Xn is semidistributive.
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To see that Xn is meet semidistributive, we must show that every join irreducible element q has a

unique element (q) 2 Xn that is maximal w.r.t. being above q⇤ and not above q. The elements

p0⇤, p1⇤ , x3, . . . , xn are join prime, so for them (q) =
W
{u 2 J : u ⇤ q}. For the rest, we calculate

as follows.

(p0) = p1⇤ _ xn

(p1) = p1⇤ _ p3 _
_

4jn

xj

(p2) = p1 _ p3 _
_

4jn

xj

(p3) = p1 _ x3 _
_

5jn

xj

(p4) = p1 _ x4 _
_

6jn

xj

· · ·

(pn�2) = p1 _ xn�2 _ xn

(pn�1) = p1 _ xn�1

Now we appeal to two lemmas from [18], the second one slightly enhanced.

Lemma 4.9. Let L be a finite lattice. Then L satisfies (SD^) if and only if (a) exists for each

a 2 J(L).

Lemma 4.10. Let L be a finite lattice that satisfies (SD^). The following are equivalent.

(1) L satisfies (SD_).

(2) There do not exist a, b 2 J(L) such that aB bB a.

(3) There do not exist a, b 2 J(L) such that a 6= b and (a) = (b).

Proof. The equivalence of (1) and (2) is Theorem 8 of [18].

The definition of aB b is equivalent to a 6= b, b⇤  (a), b ⇥ (a). Thus aB b implies (a)  (b)

in a meet semidistributive lattice (though not conversely). If aB bB a, then a 6= b and (a) = (b).

Finally, assume a 6= b and (a) = (b) = m, say. Then a _m = m⇤ = b _m > (a ^ b) _m, since

a ^ b  a⇤ or a ^ b  b⇤. This is a failure of (SD_).

We have just checked that (a) exists for each a 2 J(Xn), with the values given above. By

Lemma 4.9, Xn satisfies (SD^). Moreover, it is straightforward to check that the values of (a)

are all distinct, so Xm satisfies (SD_) by Lemma 4.10. Thus Xn is semidistributive.
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This completes the proof of Theorem 4.8.

Some comments on the differences between representing congruence lattices of bounded versus

unbounded lattices are in order. The problems are twofold.

First, while Con L ⇠= O(J(L), D) holds for all finite lattices, we would like to use the order induced

by the E-relation. However, Con L ⇠= O(J(L), E) holds for all bounded finite lattices, does not

hold for all finite join semidistributive lattices, and it is unknown whether the E-relation suffices

for finite semidistributive lattices. See the discussion in Section 6.6 of [2].

The second difficulty is that unbounded finite semidistributive lattices contain D-cycles, making

the order on J(L) a proper quasi-order rather than a partial order. In that case it is necessary

to work with D-equivalence classes of join irreducibles. Little is known about the structure of

unbounded finite semidistributive lattices, except that they fail Whitman’s condition (W ) [16].

The examples used above, from [14] and [18], may be the only examples in the literature.

W. Geyer constructed others using formal concept analysis in connection with [9], but they may

not have been published. Our general construction was modeled on [18].

5 A sufficient condition

If behooves us then to find sufficient conditions for a finite distributive lattice to be the congruence

lattice of a finite semidistributive lattice.

Theorem 5.1. Let P be a finite ordered set satisfying

(}) P is a tree, i.e., no element has more than one lower cover,

(|) every non-maximal element in P has at least two upper covers.

Then O(P) is isomorphic to the congruence lattice of a finite bounded (and in particular semidis-

tributive) lattice.

In fact, the condition (}) that P be a tree is much stronger than needed for the construction to

work, and is just the simplest way to guarantee that the technical condition of Theorem 5.11 holds.

Here is a sketch of our itinerary. We are given the ordered set P = (P,). Define a new ordered

set P = (P,v) with the same base set but a different order, described below. In fact, it will have

the property that x v y implies x � y. The lattice M that we construct with Con M ⇠= O(P) will

be the lattice of closed ideals of a closure operator on P. The join irreducible elements of M will

be the principal ideals #vu with u 2 P .

When there is any chance of confusion, we write either (P,) or (P,v). The base set of both is

P , and P by itself means (P,).
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The order v uses a function † : P ! P so that if x is not maximal in (P,), then x† is the unique

lower cover of x in (P,v). This will imply that if #v x is not an atom of M, then #v x† is its

unique lower cover in M, whence #vx is join irreducible. The basic idea is to define the join on M

so that x v x† _ y whenever x† 6= y � x in (P,). There is a slight complication: if x v x† _ y is a

minimal nontrivial join cover and y v y† _ z, then meet semidistributivity implies x v x† _ z. The

recursive definitions in the construction are a way of addressing this difficulty. With that guide,

let us proceed.

Assume that P satisfies (|). For each non-maximal p 2 P , choose an element p† � p in (P,). If

p is maximal, then p† is undefined. Let p† < p, and take the reflexive, transitive closure of < as

the order v on P . (There will in general be many options for the †-function, but choose one.)

Let us consider the order v on the elements of P . The ideal of (P,v) generated by an element

u 2 P is #v u = {u, u†, u††, . . . }. Use u(k) to denote u†···† with k daggers.

Lemma 5.2. The order v on P satisfies the following.

(1) u v v if and only if u = v(k) for some k � 0.

(2) u v v implies u � v.

(3) #v v is a chain.

(4) "v u is a tree.

The proofs are straightforward. Note that (3) and (4) are equivalent in any ordered set.

Next, for each x 2 P , we partition P into subsets K(x) and L(x) = P \ K(x). This is done

recursively on the depth of x in (P,). If x is a maximal element, then

K(x) = {z 2 P : x 6v z}

L(x) = {z 2 P : x v z} = "vx .

If x is not maximal in (P,) and K(u), L(u) are defined for all u > x, set

K(x) =
\

x† 6=y�x

K(y) \ {z 2 P : x 6v z}

L(x) =
[

x† 6=y�x

L(y) [ {z 2 P : x v z} .

By induction on the depth of x in (P,), and using DeMorgan’s laws, one can show that P =

K(x) [̇L(x) for all x 2 P .
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Lemma 5.3. For x 2 P ,

(1) x 2 L(x), whence x /2 K(x),

(2) if x† 6= y � x, then y 2 L(x),

(3) if z v u 2 K(x), then z 2 K(x),

(4) if t w v 2 L(x), then t 2 L(x).

The last pair says that K(x) is an order ideal in (P,v) and L(x) is an order filter. Item (3) requires

an easy induction, and (4) follows by complementation.

Let us describe L(x) and K(x) more completely. Recursively define subsets L⇤(x) ✓ P for x 2 P

by

L⇤(x) =

8
><

>:

{x} if x is maximal in (P,),

{x} [
S

x† 6=y�x L
⇤(y) otherwise.

Lemma 5.4. For all x 2 P ,

(1) L⇤(x) is contained in " x,

(2) u 2 L(x) if and only if u w v for some v 2 L⇤(x).

The proofs are straightforward induction using the definitions of L(x) and L⇤(x).

Now to describe K(x).

Lemma 5.5. For each x 2 P ,

K(x) = P \
[

u2L⇤(x)

"v u

Proof. If x is maximal, K(x) = P \ "v x. So assume the statement holds for all u > x. Then

K(x) =
\

x† 6=y�x

K(y) \ {z 2 P : x 6v z}

=
\

x† 6=y�x

0

@P \
[

u2L⇤(y)

"v u

1

A \ (P \ "v x)

=
\

u2L⇤(x)

(P \ "v u)

= P \
[

u2L⇤(x)

"v u

by DeMorgan’s laws.
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Now we make additional assumptions about (P,) and †:

(~) if x† 6= y � x in (P,), then

(a) x† 2 K(y),

(b) y 2 K(x†),

(c) y† 2 K(x).

The condition looks mysterious, so some discussion is in order.

Long aside on (~).

The first observation is straight from the definitions, using (a), but important.

Lemma 5.6. If (~) holds and x 2 P is not maximal in (P,), then x† 2 K(x).

Consequently, condition (c) is equivalent to

(c0) if both y and y0 satisfy x† 6= u � x, then y† 2 K(y0).

Corollary 5.7. Assume (~) holds and x 2 P is not maximal in (P,). If w 2 P satisfies w w x†

and w 6w x, then w 2 K(x).

Proof. If w /2 K(x) then w 2 L(x), which means that w w t for some t 2 L⇤(x). Remember that

#v w is a chain, so x† = w(i) and t = w(j) for some pair i, j. But w 6w x, so t 2 L⇤(y) for some y

with x† 6= y � x. This implies t > x. Hence i < j, making x† = t, which is a contradiction since

x† 2 K(x) and t 2 L(x).

How could (~) fail? Consider x† 6= y � x in (P,), and for (iii) also x† 6= y0 � x. Here are some

failures of (a), (b), and (c0) respectively.

(i) If y† 6= x(k) � y for some k > 0, then x(k) 2 L(y), whence x† 2 L(y) since x† w x(k).

(ii) If x†† 6= y(`) � x† for some ` > 0, then y(`) 2 L(x†), whence y 2 L(x†) since y w y(`).

(iii) If y0† 6= y(m) � y0 for some m > 0, then y(m) 2 L(y0), whence y† 2 L(y0) since y† w y(m),

contra (c0).

Figures 6 and 7 illustrate these situations. Figure 6 shows the conditions (i)–(iii) prohibited by

(~), while Figure 7 indicates the exceptions allowed. Solid black lines are covers, solid red lines

are covers of the form u† � u, and dashed red lines indicate sequences of covers from u to u(k)

with k � 1.
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(i)
x

x† y

x(k) y†

(ii)
x

x† y

y(`)x††

(iii)
x

x† y

y(m)

y0

y0†

Figure 6: Configurations prohibited in (P,) by (~)

(i)
x

x† y

x(k)=y†

(ii)
x

x† y

y(`)=x††

(iii)
x

x† y

y0†=y(m)

y0

Figure 7: Exceptions allowed by (~)

The failures of (~) in (i)–(iii) were direct, in that they used x† and y. The next type of failures

are once removed, using a cover z of one of those elements. Again let x† 6= y � x.

(iv) If x(k) � z � y for some k > 0, with x(k) 6= z† and z 6= y†, then x(k) 2 L(y), whence

x† 2 L(y).

(v) If y(`) � z � x† for some ` > 0, with y(`) 6= z† and z 6= x††, then y(`) 2 L(x†), whence

y 2 L(x†).

(vi) If y(m) � z � y0 for some m > 0, with y(m) 6= z† and z 6= y0†, then y(m) 2 L(y0), whence

y 2 L(y0), contra (c0).

Cases (iv)–(vi) are illustrated in Figure 8.

Continuing in this manner, we arrive at the following characterization.

Theorem 5.8. An ordered set P with a †-function satisfies (~) if and only if there do not exist

k, ` � 2 and elements u, x and covering chains

u = c0 � c1 � · · · � ck�1 � x

u = d0 � d1 � · · · � d`�1 � x

with ci�1 = ci† for 1  i  k � 1 and dj�1 6= dj† for 1  j  `� 1.
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(iv)
x

x† y

y†z

x(k) z†

(v)
x

x†

y

y(`)

x†† z

z†

(vi)
x

x† y

y(m)

y0

z y0†

z†

Figure 8: More configurations prohibited in (P,) by (~), cases (iv)–(vi)

x

ck�1 d`�1

c1 d1

u

Figure 9: Prohibited configuration from Theorem 5.8. The blue and green edges can be red or
black, but not both red.

The forbidden configuration is illustrated in Figure 9 where again red edges indicate ci�1 = ci†

and black edges indicate dj�1 6= dj†. The blue and green edges can be either, except they cannot

both be red, i.e., we can have x† = ck�1 or x† = d`�1 or neither, but not both.

This must be balanced with the requirement that x† be defined for every non-maximal x 2 P .

As an immediate consequence of Theorem 5.8, we see that there is a †-function satisfying (~)

whenever

• P is a tree (the condition (}) of Theorem 5.1), or

• the height of P is at most 2, i.e., P contains no 3-element chain.

To find a more general sufficient condition for P, satisfying (|), to admit a †-function satisfying

(~), we imagine that † is given, and color the edges (covers) of the form (c, c†) of P red, the
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Figure 10: An ordered set with an edge-coloring that satisfies the conditions of Theorem 5.9, and
hence O(P) is representable by Theorem 5.11.

remaining edges black. Classify the non-minimal vertices of P thusly.

• An element of P is a ⇤-node if it has � 2 lower covers.

• An element with 1 lower cover is an S-node.

• s is a red ⇤-node if all its lower covering edges are red.

• t is a black ⇤-node if all its lower covering edges are black.

• u is a red S-node if its unique lower covering edge is red.

• v is a black S-node if its unique lower covering edge is black.

• w is a mixed node if it is a ⇤-node with both red and black lower covers.

Theorem 5.9. Let P be a finite ordered set that satisfies (|). Suppose there is a coloring of the

edges of P such that

(i) P has no mixed nodes,

(ii) every non-maximal node has exactly 1 red upper cover and � 1 black upper covers.

For non-maximal elements x 2 P , define x† to be the red upper cover of x. Then P with the

function † satisfies (~).

For the configuration of Theorem 5.8 cannot occur, as every ⇤-node is either red or black. Item

(ii) guarantees that there is a unique choice for x†. Examples are given in Figures 10 and 12.

Conjecture: If P is planar, then it has a coloring satisfying the conditions of Theorem 5.9.

The ordered sets P for which O(P) is known not to be representable as the congruence lattice

of a finite semidistributive or bounded lattice are all excluded by the condition (|). It takes a
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m0

a0

m1

a1

m2

a2

m0

b2b1b0

a0

m1

b1

a1

m2

b2

a2

m0

b0

Figure 11: The ordered set Q at the top that satisfies (|) but has no †-function satisfying (~).
Note that Q is a torus: m0 is depicted twice. Nonetheless, O(Q) ⇠= Con K for the bounded lattice
at the bottom.

little effort to find an ordered set Q that satisfies (|) but fails (~). Nonetheless, they exist, and

the ordered set Q at the top of Figure 11 gives one such. By circular symmetry we may assume

m0† = a0. To avoid the configuration of Figure 9, that implies m1† = a0. Hence m1† 6= a1, whence

m2† 6= a1. That in turn leads to m2† = a2 and m0† = a2, a contradiction.

Even though Theorem 5.11 does not apply, O(Q) is the congruence lattice of a finite bounded

lattice. The lattice K at the bottom of Figure 11 was obtained from B3 by two sets of doubling

three intervals, so it is bounded. The minimal nontrivial join covers in K are

mi  ai _ ai+2

bi  mi _ ai+1

bi  mi+1 _ ai+2

where the subscripts are taken modulo 3. Thus (J(K), D) ⇠= Q.

The argument against the ordered set in Figure 11 satisfying (~) depended on having an odd
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m m

n n

Figure 12: An ordered set that is a torus and has an edge-coloring satisfying the conditions of
Theorem 5.9.

p

p† y p

p†

p† _ y

y

Figure 13: Illustrating a basic closure rule: on left p†, y � p in P, on right p v p† _ y in M.

number of squares across the top row. With an even number, there is no problem satisfying the

conditions of Theorem 5.9, and the pattern can be extended downward as well, as in Figure 12.

Finally we are in position to construct the lattice M. Assume that (P,) satisfies (|) and that

the †-function has been chosen to satisfy (~). Form the ordered set P = (P,v) with u v v iff

u = v(k) for some k � 0. Then define closure rules on P by setting p 2 �({y}) if p v y, and

p 2 �({p†, u})

for each non-v-minimal p 2 P and every u 2 L(p). With a slight abuse of notation, it is convenient

to think of � as a join operation and write the closure rule as

p v p† _ u

for each u 2 L(p). The condition (|) makes this not vacuous. Let M be the lattice of �-closed

order ideals of (P,v), i.e., subsets closed under joins and downward containment w.

The closure rule p v p† _ y when p† 6= y � p in (P,) is illustrated in Figure 13. In general there

will be other closure rules: if p† 6= y � p and y† 6= z � y, then we also have p v p† _ z, etc.

Lemma 5.10. Let M be the lattice constructed above. Then the order v on P and the set of

closure rules x v x† _ u with u 2 L⇤(x) are a basis for M. Moreover, the join irreducible elements

of M are exactly the ideals #vu for u 2 P .
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a

a†

a†† b c

#a

#a†

#a††

#c

#b

a††

a†

a

cb

Figure 14: Representing a small distributive lattice as Con M with M semidistributive: P, O(P),
M.

Proof. The first part follows from Lemma 5.4.

Clearly every ideal in M is the join of the principal ideals #vu that it contains. Note that for any

u 2 P , #v u is closed with respect to the join operation in M, since #v u is a chain. Thus you can

identify u with the ideal #v u, as usual, and observe that u† is the unique lower cover of u in M.

In particular, each u 2 P is join irreducible in M. (This is slightly more subtle than it appears.

If we had p† v u and p 6v u, then u 2 K(p) by Corollary 5.7. That implies #v u ✓ K(p), so no

closure rule can apply in #v u.)

Now we can state the stronger version of Theorem 5.1.

Theorem 5.11. Let P be a finite ordered set with a †-function satisfying (~) and (|). Then O(P)

is isomorphic to the congruence lattice of a finite bounded (and hence semidistributive) lattice.

Figure 14 provides an example of the construction, giving P, O(P), and M. The defining relations

for M are a = a† = a††, a v a† _ c, and a† v a†† _ b. It is straightforward to verify that

Con M ⇠= O(P).

Figure 15 provides another example of the construction. The defining relations for M are a = a†,

b = b†, a v a† _ b†, and b v a† _ b†.
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a b

a† b†

#a

#a† #b†

#b
a†

a b

b†

Figure 15: Representing a small distributive lattice as Con M with M semidistributive: P, O(P),
M.

a b

c=a†=b† d

#a

#c #d

#b c

a b d

Figure 16: The same P as Figure 15 with a different †-function: P, O(P), M0.

Figure 16 has the same ordered set P as Figure 15, with a different †-function. Thus O(P) remains

the same, but the closure rules for M0 are c v a, b and a, b v c _ d.

Now let us return to the business of proving that the construction works, i.e., produces a bounded

lattice M with Con M ⇠= O(P) when the two conditions (~) and (|) are satisfied.

Lemma 5.12. Let Q ✓ P . The join
W

Q in M is obtained by:

(1) for each q 2 Q, add #v q to obtain Q1;

(2) recursively, if x†, u 2 Qj with u 2 L⇤(x), let Qj+1 = Qj [ {x}.

If Qm denotes the end result of applying (2) as long as possible, then Qm is a closed ideal of

(P,v), and hence
W
Q = Qm. In particular, one need not go back to (1).

The crucial observation here is that when one adds x to Qj in step (2), we already have #v x† ✓ Qj .

Lemma 5.13. Let x 2 P . Then every join cover x v
W

Q refines to a join cover x v
W
R with

R ⌧ Q and R ✓ " x. Thus every minimal nontrivial join cover of x is contained in " x.
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Proof. Suppose x 2 Qm0 with m0  m from Lemma 5.12. If m0 = 1 then x v q for some q 2 Q;

note that implies x � q in (P,), i.e., the trivial cover {x} refines Q. So assume m0 > 1. Then

there exists u 2 L⇤(x) such that x†, u 2 Qm0�1. Note x  x†, x  u, and both x†, u 
W

Q. By

induction, there exist R1 ✓" x† with R1 ⌧ Q and x† v
W

R1, and R2 ✓" u with R2 ⌧ Q and

u v
W
R2. Then R1 [R2 ⌧ Q, R1 [R2 ✓ (" x†) [ (" u) ✓" x, and

x v x† _ u v
_

R1 _
_

R2

as desired.

Lemma 5.14. For each x 2 P , K(x) is a closed ideal of (P,v).

Proof. Since maximal elements of (P,) are join prime in M, this certainly holds for them. So

assume x is not maximal and that K(y) is a closed ideal for every y > x. Recall that

K(x) =
\

x† 6=y�x

K(y) \ Sx

where Sx = {z 2 P : x 6v z}.

Suppose K(x) is not a closed ideal. Now K(x) is an ideal with respect to v by Lemma 5.3(3).

Assume it is not join-closed. Let u v u† _ v be the first instance where a basic closure rule applies,

i.e., u /2 K(x) but u†, v 2 K(x) and v 2 L⇤(u). (We can do this because K(x) is w-closed.) Then,

since each K(y) is closed, we must have u /2 Sx and u†, v 2 Sx. Now u† 2 Sx means u†(k) 6= x for

all k � 0. But that implies u(k+1) 6= x for all k � 0. Meanwhile u /2 Sx says u(`) = x for some

` � 0. This only makes sense if ` = 0, i.e., u = x. But then v 2 L⇤(x) ✓ L(x), whence v /2 K(x),

a contradiction.

Lemma 5.15. If x† 6= y � x in (P,), then x v x† _ y is a minimal nontrivial join cover in M.

Hence xD x† and xD y.

Proof. Let x 2 P , so #v x 2 M. We have x†† 2 K(x†) by Lemma 5.6, while y 2 K(x†) by (~)(b).

Thus x†† _ y v
W
K(x†) = K(x†) using Lemma 5.14, while x /2 K(x†) since x = x†. Therefore

x 6v x†† _ y.

Similarly, x† 2 K(x) by Lemma 5.6, while y† 2 K(x) by (~)(c). Thus x† _ y† v
W
K(x) = K(x),

while x /2 K(x). Hence x 6v x† _ y†.

Lemma 5.13 does not tell us exactly which join covers are minimal. It is often the case in semidis-

tributive lattices that compounding the defining join covers produces more minimal nontrivial join

covers (though not doubly minimal join covers!). However, we know the following.
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(i) The join irreducible elements of M are exactly the ideals #v x for x 2 P (Lemma 5.10).

(ii) If z � p in (P,) then xD z (Lemma 5.15).

(iii) If p v
W
Q is a minimal nontrivial join cover in M, then p < q in (P,) for each q 2 Q

(Lemma 5.13).

Consequently, the dependency relation D on M satisfies �P✓ D ✓P and we get ConM ⇠= O(P).

Moreover, in view of (iii), there can be no D-cycles. Thus M is lower bounded, and hence join

semidistributive

(It is interesting to note how the construction fails on the ordered set Y, which fails (|). On the

other hand, in nature the defining closure operators need not use only covers.)

Now let us prove that M is meet semidistributive by showing that (x) exists for each x 2 P . It

is useful to have a slightly enhanced technical version of Lemma 4.9.

Lemma 5.16. In a finite lattice L, the following conditions are equivalent (to (SD^)).

(1) For all x 2 J(L) there exists (x) such that x ⇥ (x) and for all u 2 L, x ⇥ x⇤ _ u implies

u  (x).

(2) For all x 2 J(L) there exists (x) such that x ⇥ (x) and for all join irreducible elements

w 2 J(L), x ⇥ x⇤ _ w implies w  (x).

Condition (1) is a traditional equivalent to meet semidistributivity, and (2) allows us to check it

at join irreducibles only.

Proof. Clearly (1) implies (2). Conversely, assume that L satisfies (2) and that x ⇥ x⇤ _ u for

some u 2 L. Let u =
W
ui with each ui 2 J(L). Since ui  u we have x ⇥ x⇤ _ ui for all i, whence

ui  (x) by (2). Thus u =
W
ui  (x) as well.

For each x 2 P we claim that K(x) ✓ P has these properties.

(a) K(x) is a closed ideal of (P,v), i.e.,
W
K(x) = K(x),

(b) x† 2 K(x),

(c) x /2 K(x),

(d) for all u 2 P we have x 6v x† _ u if and only if u 2 K(x).

Indeed, (a) is Lemma 5.13, (b) is Lemma 5.6, and (c) is Lemma 5.3(1). For (d), if u 2 L(x) then

x v x† _ u by the definition of join in M. If u 2 K(x), though, then x† _ u 2 K(x) by (a) and (b),

while x /2 K(x). Thus we cannot have x v x† _ u if u 2 K(x).



CUBO
26, 3 (2024)

Congruences of finite semidistributive lattices 471

We conclude by Lemma 5.16 that M is meet semidistributive. Moreover, since M is lower bounded

and semidistributive, it is also upper bounded by Theorem 4.1.

Thus M as constructed is a finite bounded lattice with Con M ⇠= O(P,), completing the proof

of Theorem 5.1.
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ABSTRACT

The metric dimension of a graph serves a fundamental role

in organizing structures of varying dimensions and establish-

ing their foundations through diverse perspectives. Studying

symmetric network characteristics like connectedness, diam-

eter, vertex centrality, and complexity depends heavily on

the distance parameter. In this article, we explore the ex-

act value for different hexagonal networks’ metric dimensions,

such as cyclic hexagonal chains, triangular honeycomb mesh,

and pencil graphs.

RESUMEN

La dimensión métrica de un grafo cumple un rol fundamen-

tal para organizar estructuras de dimensiones variables y es-

tablecer sus fundamentos a través de perspectivas diversas.

Estudiar características de redes simétricas como la conexi-

dad, diámetro, centralidad de vértices y complejidad depende

fuertemente del parámetro de distancia. En este artículo ex-

ploramos el valor exacto de la dimensión métrica de diferentes

redes hexagonales, tales como cadenas hexagonales cíclicas, la

malla triangular panal y grafos lápices.
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pencil graph.
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1 Introduction

In the field of robotics, the metric dimension problem is important. A robot is an automated

machine designed to move through space while avoiding obstacles. It does not understand either

direction or visibility. However, it is presumable that it can detect the separation of a collection

of landmarks. Evidently, the robot can establish its precise location in space if it is aware of the

distances to a significant number of landmarks. In order to perform this, the idea of “landmarks

in a graph” was created [12], and later it was expanded to the metric dimension in which networks

are taken into consideration within the framework of the graph structure.

Finding a metric basis for the graph is the goal of the metric dimension problem in graph theory; the

landmarks that make up a metric basis are known as landmarks, and the cardinality of a metric

basis is referred to as the metric dimension of the graph. Harary and Melter [10] did the first

investigation into the metric dimension problem. They provided a description of the trees’ metric

dimensions. Melter and Tomescu investigated the grid graphs’ metric dimension problem [18]. For

each arbitrary graph, the metric dimension problem is NP-complete [9]. Since then, a great deal

of study has been conducted on this problem. In many fields of science and technology, the metric

dimension has several uses. For grid graphs and trees, the metric dimension problem has been

studied [12], hexagonal and honeycomb networks [15], silicate networks [16], torus networks [14],

and enhanced hypercubes [17]. Metric dimension is used to address issues with robot navigation

and pattern recognition [12], network discovery and validation [5], and issues with coin weighing

and graph joins [20,22].

In this paper, in Section 2, preliminaries and basis definitions are discussed. Section 3, deals with

the metric dimension of the cyclic hexagonal chain, honeycomb triangular mesh, and pencil graph.

Finally, the Significance and Contributions of the Results, concluding remarks and, open problem

are given in Section 4 and Section 5 respectively.

2 Basis concepts

A finite simple connected graph G = (V,E) is used in this paper, where V and E are the set

of vertices and edges respectively. The distance between two vertices a and b in a graph G,

denoted as d(a, b), is defined as the minimum number of edges in any path from a to b. It is

normal to have questions about the characterizations of graphs based on their metric dimension.

Researchers are continuously interested in determining whether the metric dimension of a network

family is constant, bounded, or unbounded. Consequently, there has been significant research

focused on finding the metric dimension of networks, resulting in numerous findings. Examples of

such findings include: Muhammad et al. [19] investigated the metric dimension of some chemical
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structures. Akhter and Farooq [3] investigated the metric dimension of the Indu-Bala product of

graphs. The metric dimension of the subdivided honeycomb network and Aztec diamond network

was determined by Xiujun et al. [23]. Ahmad et al. [1] found the metric dimension for benzenoid

hammer graph. A bicyclic network’s metric dimension was examined by Khan et al. [11]. Bokhary

et al. [11] studied the metric dimension of the subdivision graph of a circulant network. Koam

et al. [13] investigated the metric dimension and exchange property of nanotubes. Resolving sets

have been discussed across the literature [2, 4, 8, 10,18].

In this study, we obtain the metric dimension of specific planar architectures. To prove the main

results we need the following.

Definition 2.1. The diameter of a graph is the greatest distance between any pair of vertices,

where the distance is defined as the length of the shortest path connecting them.

Definition 2.2. The metric basis or resolving set for a graph G = (V,E), a resolving set of G

is a subset of vertices S ✓ V such that every vertex v 2 V is uniquely determined by its distance

vector to the vertices in S. For each vertex v 2 V , its distance vector with respect to S is defined

as (d(v, s1), d(v, s2), . . . , d(v, sk)), where s1, s2, . . . , sk 2 S, and d(v, si) is the shortest distance

between v and si in the graph.

The subset S is a metric basis if, for any two distinct vertices u, v 2 V , their distance vectors

relative to S are distinct, i.e.,

d(u, si) 6= d(v, si) for at least one si 2 S.

The cardinality of the metric basis or resolving set S is called the metric dimension of the graph

and is denoted as dim(G).

Theorem 2.3 ([7]). A simple connected graph G has a metric dimension 1 if and only if it is

precisely identical in structure to the path graph Pn.

Theorem 2.4 ([12]). Suppose G is a graph with a minimum metric dimension of 2, and let {a, b}
be a subset of the vertices set V that forms a metric basis in B. In this context, the subsequent

statements hold true:

(a) Only one shortest route is possible between a and b.

(b) Each a and b has a maximum degree of three.
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3 Main results

In this section, we determine the metric dimension of the cyclic hexagonal chain, honeycomb

triangular mesh, and pencil graph.

3.1 Cyclic hexagonal chain

A catacondensed hexagonal structure known as a hexagonal chain has each hexagon being next

to no more than two other hexagons. The graph representation of linear polyacene is a linear

hexagonal chain, which is a hexagonal chain. A cyclic hexagonal chain is created when the ends

of a linear hexagonal chain are bent to touch. The symbol Hn will be used to represent a cyclic

hexagonal chain of dimension n respectively. We split the vertices of Hn as I and J , where I

and J are the set of all vertices in the inner and outer cycle respectively. The cyclic hexagonal

chain is symmetric in rotation and has 4n vertices in which 2n vertices are in each of the inner

and outer cycles labeled as I = {i1, i2, i3, . . . , i2n} and J = {j1, j2, j3, . . . , j2n} in the clockwise

direction respectively. For example, the labeling of a cyclic hexagonal chain of dimension n is given

in Figure 1.

Figure 1: Labeling of cyclic hexagonal chain Hn
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Theorem 3.1. The metric dimension of the graph of the cyclic hexagonal chain Hn is more than

2 for n � 2.

Proof. Based on Theorem 2.4, suppose that there exists a resolving set T with size 2. There are

two cases for T .

Case 1. Suppose that T = {jk, jl} for some k and l where 1  k  n+1 (by the symmetry of Hn,

it is enough to consider the first half of the cycle). Then we have r(il+1|T ) = r(jl+2|T ) =
(2, l � k + 2).

Case 2. Suppose that T = {ik, jl} for some k, l = 1, 2, . . . , n + 1. If k = 1, then we have

r(ik�1|T ) = r(ik+1|T ) = (1, 2). If k < l (without loss of generality), then we have two sub-

cases: if l is odd, then r(il|T ) = r(jl�1|T ) = (1, l � k), and if l is even, then r(ik+2|T ) =

r(jk+1|T ) = (2, l � k � 1).

From these two cases, we find two vertices having the same representations. Therefore, T is not a

resolving set of Hn, a contradiction.

Theorem 3.2. The metric dimension of the graph of the cyclic hexagonal chain Hn is 3 for n � 2.

Proof. Let T = {j1, j2, jn+1} be a resolving set of Hn. To prove that T is a resolving set. It is

enough to prove that all the vertices jl, il 1  l  2n of Hn have unique representations with

respect to T .

For 1  l  2n, the representation jl of Hn with respect to T is given as follows:

r(jl|T ) =

8
>>>>><

>>>>>:

(l � 1, 1, n), if l = 1

(l � 1, l � 2, n� l + 1) if 2  l  n

(l � 1, l � 2, 0) if l = n+ 1

(2n� l + 1, 2n� l + 2, l � n� 1) if n+ 2  l  2n.

For 1  l  2n, the representation of il of Hn with respect to T is given as follows:

r(il|T ) =

8
>>>>><

>>>>>:

(3, 2, n+ 1) if l = 1

(l, l � 1, n+ 2� l) if 2  l  n

(n+ 1, n, 1) if l = n+ 1

(2n� l + 2, 2n� l + 3, l � n) if n+ 2  l  2n.

We can see that each vertex of Hn has a distinct representation and satisfies the notion of a

resolving set with regard to T. Hence dim(Hn) = 3.
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3.2 Honeycomb triangular mesh

In this section, we show that the construction and the metric dimension of the honeycomb tri-

angular mesh are discussed. Honeycomb triangular mesh is built recursively using hexagonal

tessellations with three pendant edges. The honeycomb triangular mesh HTM1 is a single vertex.

The honeycomb triangular mesh HTM2 is obtained by adding 3 pendant edges to HTM1. In a

similar manner, the n-dimensional honeycomb triangular mesh HTMn is adding (n� 2) hexagons

to the boundary of HTMn�1 with three pendent edges in the triangular form. The number of

vertices, edges, faces, and diameter of HTMn are n
2, 3(n2�n)

2 ,
n2�3n+4

2 , and (2n� 2) respectively.

A honeycomb triangular mesh HTM1, HTM2, HTM3, and HTM4 are shown in Figure 2.

(a) (b) (c)

Figure 2: Honeycomb triangular mesh (a) HTM1, (b) HTM2, (c) HTM3, and (d) HTM4

The strip between two successive lines is marked in Honeycomb Triangular mesh is called the

segments and it is denoted by SL. The representation of any two points p(l1,m1) and q(l2,m2)

in the honeycomb triangular mesh is defined by if l1 = l2, then p and q lies in the same segment,

and if l1 6= l2, then p and q are lies in the different segments. The distance between any two

vertices p(l1,m1) and q(l2,m2) is non zero, when p and q lie in the same and different segments.

We partition the vertices of HTMn into n segments, namely S1, S2, S3, . . . , Sn, and the segment

representation of Honeycomb triangular mesh is shown in Figure 3.
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a b

Figure 3: Honeycomb triangular mesh of dimension HTMn with segments S1, S2, . . . , Sn

Theorem 3.3. The metric dimension of the graph of the honeycomb triangular mesh HTMn is 2

for n � 2.

Proof. Based on Theorem 2.3, we have dim(HTMn) � 2. Next, we will show that dim(HTMn)  2.

Let A = {x : deg(x) = 1} and T = {a, b} where a, b 2 A. We will show that T is a resolving set or

not.

Now, we have the following cases.

Let p = (l1,m1) and q = (l2,m2) be any two distinct vertices in HTMn.

Case 1: If l1 = l2 and m1 6= m2, then p and q are resolved by either a or b. Suppose that,

if d(p, a) = d(q, b), then p and q are resolved by either a or b, i.e., d(p, a) 6= d(q, a) or

d(p, b) 6= d(q, b).
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Case 2: If l1 6= l2 and m1 = m2, then both p and q are resolved by a and b.

Case 3: If l1 6= l2 and m1 6= m2, then p and q are resolved by either a or b. Suppose that, if p

and q are at equal distance to a, then p and q must be resolved by b, i.e., if d(p, a) = d(q, a),

then d(p, b) 6= d(q, b).

From the above cases if we take any two vertices in a honeycomb triangular mesh are resolved by

a and b. Therefore dim(HTMn) � 2. Hence, dim(HTMn) = 2

3.3 Pencil graph

In this section, we determine the pencil graph’s metric dimension. In 2015, Simamora and Salman

[23] introduced and studied vertex rainbow connection numbers for a new cubic graph called pencil

graph. Pencil graph are a specific type of graph in graph theory that consist of a central hub vertex

connected to a set of outer vertices called spokes. Pencil graphs have applications in various areas,

including network topology, and algorithm design.

Definition 3.4. Suppose that n is a positive integer with n � 2. The graph PCn is a pencil graph

with 2n+ 2 vertices and the vertex and edge sets are as follows: V (PCn) = {a} [ {b} [ {xi : 1 
i  n}[{yi : 1  i  n} and E(PCn) = {(ax1), (ay1), (ab), (bxn), (byn)}[{(xixi+1), (yiyi+1) : 1 
i  n� 1} [ {(xiyi) : 1  i  n}

For n � 2, the pencil graph PCn is a 3-regular graph with diameter dn/2e+ 1 and 3(n+ 1).

ba

Figure 4: Labeling of pencil graph of dimension n

Theorem 3.5. The metric dimension of the graph of the pencil graph PCn, for n � 1 is

dim(G) =

8
<

:
2 if n is even

3 if n is odd
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Proof. Case 1 (For n even):

Let T = {a, xn
2
} be a resolving set of PCn. To prove that T is a resolving set, it is enough to prove

all the vertices a, b, x1, x2, x3, . . . , xn and y1, y2, y3, . . . , yn of PCn have distinct representations

with respect to T .

The representation of a and b in PCn with respect to T as r(a|T ) = (0, n
2 ) and r(b|T ) = (1, n

2 +1).

For 1  i  n, the representation of xi in PCn with respect to T is given as follows:

r(xi|T ) =

8
<

:
(i, n�i

2 ) if 1  i  n
2

(n� i+ 2, 2i�n
2 ) if n

2 + 1  i  n

For 1  i  n, the representation of yi in PCn with respect to T is given as follows:

r(yi|T ) =

8
<

:
(i, n�2i+2

2 ) if 1  i  n
2

(n� i+ 2, 2i�n+2
2 ) if n

2 + 1  i  n

Since all vertices have distinct representations we obtain dim(PCn) = 2 in this case.

Case 2 (For n odd): Let T = {a, xn+1
2
, yn�1

2
} be a resolving set of PCn. To prove that T is a

resolving set, it is enough to prove all the vertices a, b, x1, x2, x3, . . . , xn and y1, y2, y3, . . . , yn of

PCn have distinct representations with respect to T .

The representation of a and b in PCn with respect to T as r(a|T ) = (0, n+1
2 ,

n�1
2 ) and r(b|T ) =

(1, n+1
2 ,

n+1
2 ).

For 1  i  n, the representation of xi in PCn with respect to T as follows

r(xi|T ) =

8
>><

>>:

(i, n+1�2i
2 ,

n+1�2i
2 ) if 1  i  n�1

2

(i, 0, 2) if i = n+1
2

(n� i+ 2, 2i�n�1
2 ,

2i�n+3
2 ) if n+3

2  i  n

For 1  i  n, the representation of yi in PCn with respect to T as follows

r(yi|T ) =

8
>><

>>:

(i, n+3�2i
2 ,

n�1�2i
2 ) if 1  i  n�1

2

(i, 1, 1) if i = n+1
2

(n� i+ 2, 2i�n+1
2 ,

2i�n+1
2 ) if n+3

2  i  n

It is clear that every vertex of PCn has a unique representation with repect to T . Therefore

dim(PCn)  3.

Next we show that dim(PCn) � 3. We suppose on contrary that dim(PCn) = 2. Now we have

the following cases.
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Subcase 2.1: For 1  i  n, let T = {a, b} be a resolving set, then r(xi|T ) = r(yi|T ), which is a

contradiction to our assumption.

Subcase 2.2: Let T = {a, x1} be a resolving set, then r(xn|T ) = r(yn|T ), which leads to a

contradiction.

Subcase 2.3: For 2  i  n+1
2 , let T = {a, xi} be a resolving set, then r(xn+3

2
|T ) = r(yn+1

2
|T ),

which is a contradiction to our assumption.

Subcase 2.4: For n+3
2  i  n, let T = {a, xi} be a resolving set, then r(xn+1

2
|T ) = r(yn+3

2
|T ),

which is a contradiction to our assumption.

Subcase 2.5: For 2  i  n+1
2 , let T = {x1, xi} be a resolving set, then r(xi+1|T ) = r(yi|T ),

which is a contradiction to our assumption.

Subcase 2.6: For n+3
2  i  n, let T = {x1, xi} be a resolving set, then r(xi+1|T ) = r(yi�1|T ),

which is a contradiction to our assumption.

Subcase 2.7: Let T = {x1, y1} be a resolving set, then r(xn|T ) = r(yn|T ), which leads to a

contradiction.

Subcase 2.8: For 2  i  n+3
2 , let T = {x1, yi} be a resolving set, then r(xn+3

2
|T ) = r(yn+5

2
|T ),

which is a contradiction to our assumption.

Subcase 2.9: For n+5
2  i  n, let T = {x1, yi} be a resolving set, then r(xn+3

2
|T ) = r(yn+1

2
|T ),

which is a contradiction to our assumption.

By the symmetrical nature of the pencil graph the remaining possibility of resolving sets for

1  i  n, T = {{a, b}, {a, yi}, {b, xi}, {b, yi}, {yi, xi}} is ruled out. From all the above cases it is

clear that dim(PCn) � 3. Hence dim(PCn) = 3.

4 Significance and contributions of the results

This research offers valuable insights into the metric dimension of cyclic hexagonal chains, hon-

eycomb triangular meshes, and pencil graphs, with direct applications in modern network design,

particularly in the field of robot navigation for smart home environments. The primary significance

and contributions are as follows:

Novel Metric Dimension Analysis: This study presents a detailed investigation of the met-

ric dimension of three distinct graph structures: cyclic hexagonal chains, honeycomb triangular

meshes, and pencil graphs. The results contribute to expanding the mathematical foundation of

graph theory, particularly in relation to chemical, geometric, and computational networks.
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Applications in Robot Navigation: By determining the metric dimension of these structures,

the research provides optimized strategies for robot navigation. The results are critical for local-

ization and pathfinding within networks like smart homes, where robots or autonomous agents

need precise positioning with minimal sensors.

Insights for Chemical Graph Theory: Cyclic hexagonal chains represent fundamental struc-

tures in chemical graph theory, modeling molecular systems. Understanding their metric dimension

helps chemists analyze molecular distances and design efficient chemical compounds or materials

with predictable properties.

Optimizing Network Design: The honeycomb triangular mesh and pencil graphs offer useful

models for wireless networks and sensor systems. Analyzing their metric dimension improves

the efficiency of node placement and minimizes redundancy, supporting the development of more

reliable and cost-effective communication networks.

Bridging Theory and Practical Applications: This work bridges theoretical graph metrics

with real-world applications, especially in robot-assisted smart homes. The findings enable better

design of indoor networks, where efficient navigation plays a critical role in tasks such as surveil-

lance, cleaning, and elderly assistance.

Framework for Future Studies: The approach and results of this research provide a basis

for future investigations into other graph families with similar structures. Researchers working

on emerging technologies, such as smart cities or the Internet of Things (IoT), can build on the

analytical methods presented here.

In summary, this study significantly advances the understanding of the metric dimension in three

important graph classes, contributing to both theory and practice. It offers practical solutions for

smart environments while enriching the field of graph theory with new perspectives and methods.

5 Concluding remarks

In this paper, we investigated the metric dimension of three significant graph structures: cyclic

hexagonal chains, honeycomb triangular meshes, and pencil graphs. Metric dimensions of honey-

comb networks and hexagonal-type derived networks have constant metric dimensions, according

to research by Manuel et al. [15]. In this article, a different kind of honeycomb network known

as a triangular honeycomb mesh was created and it was demonstrated that its metric dimension

is 2. This research also looked at pencil graphs and the metric dimension of cyclic hexagonal

chains. Further obtaining the metric dimensions for symmetric types of honeycomb and hexago-

nal networks is under investigation. Moreover, computing the metric dimension of the triangular

honeycomb network is still an open problem.
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ABSTRACT

We consider the three-dimensional Dirac operator coupled
with a combination of electrostatic and Lorentz scalar �-shell
interactions. We approximate this operator with general lo-
cal interactions V . Without any hypotheses of smallness on
the potential V , we investigate convergence in the strong re-
solvent sense to the Dirac Hamiltonian coupled with a �-shell
potential supported on ⌃, a bounded smooth surface. How-
ever, the coupling constant depends nonlinearly on the po-
tential V.

RESUMEN

Consideramos el operador de Dirac tridimensional acoplado
con una combinación de interacciones electrostáticas y �-
cáscara escalar de Lorentz. Aproximamos este operador con
interacciones locales generales V . Sin ninguna hipótesis en la
pequeñez del potencial V , investigamos la convergencia en el
sentido resolvente fuerte del Hamiltoniano de Dirac acoplado
con un potencial �-cáscara soportado en ⌃, una superficie
suave acotada. Sin embargo, la constante de acoplamiento
depende no-linealmente del potencial V .
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1 Introduction

Dirac Hamiltonians of the type Dm + V , where Dm is the free Dirac operator and V represents a

suitable perturbation, are used in many problems where the implications of special relativity play

an important role. This is the case, for example, in the description of elementary particles such

as quarks, or in the analysis of graphene, which is used in research for batteries, water filters, or

photovoltaic cells. For these problems, mathematical investigations are still in their infancy. The

current study focuses on analyzing the three-dimensional Dirac operator with a singular interaction

on a closed surface ⌃.

Mathematically, the Hamiltonian of interest is formally represented as

D⌘,⌧ = Dm +B⌘,⌧�⌃ = Dm +
�
⌘ I4 + ⌧�

�
�⌃, (1.1)

where B⌘,⌧ :=
�
⌘ I4+⌧�

�
is a combination of electrostatic and Lorentz scalar potentials of strengths

⌘ and ⌧ , respectively. Physically, the Hamiltonian D⌘,⌧ is used as an idealized model for Dirac op-

erators with strongly localized electric and massive potential near an interface ⌃ (e.g., an annulus),

i.e., it replaces a Hamiltonian of the form

H⌘̃,⌧̃ = Dm +
�
⌘̃ I4 + ⌧̃�

�
B⌃, (1.2)

where B⌃ is a regular potential localized in a thin layer containing the interface ⌃.

The operators D⌘,⌧ have been studied in detail recently. The initial direct study on the spectral

analysis of the Hamiltonian D⌘,⌧ dates back to Ref. [9], in which the authors treated all self-

adjoint realizations for spherical surfaces. Besides, they also noted that a shell can confine a

particle under the coupling constants assumption: ⌘2 � ⌧
2 = �4, a phenomenon known in physics

as the confinement case, which indicates the stability of a particle (for example, an electron) within

its initial region during time evolution. In other words, if the particle is confined within a region

⌦ ⇢ R
3 at time t = 0, it cannot cross the boundary @⌦ and enter the region R

3\⌦ for all subsequent

times t > 0. Mathematically, this implies that the Dirac operator under consideration can be

decomposed into a direct sum of two Dirac operators acting on ⌦ and R
3\⌦, respectively, each with

appropriate boundary conditions. Subsequently, spectral analyses involving Schrödinger operators

coupled to �-shell interactions have developed considerably, while research into the spectral aspects

of �-shell interactions associated with Dirac operators were comparatively inactive. However, in

2014, a resurgence in the spectral study of �-shell interactions of Dirac operators occurred in [1],

where the authors developed a new technique to characterize the self-adjointness of the free Dirac

operator coupled to a �-shell potential. In a special case, they treated pure electrostatic �-shell

interactions (i.e., ⌧ = 0) supported on the boundary of a bounded regular domain and proved

that the perturbed operator is self-adjoint. The same authors continued their investigation into
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the spectral analysis of the electrostatic case, exploring the existence of a point spectrum and

associated issues in works such as [2] and [3].

The approximation of the Dirac operator D⌘,⌧ by Dirac operators with regular potentials with

shrinking support (i.e., of the form (1.2)) provides a justification of the considered idealized model.

In the one-dimensional framework, the analysis is carried out in [17], where Šeba showed that

convergence is true in the norm resolvent sense. Subsequently, Hughes and Tušek established

strong resolvent convergence and norm resolvent convergence for Dirac operators with general

point interactions in [11, 12] and [20], respectively. In the two-dimensional case, [8, Section 8]

addressed the approximation of Dirac operators with electrostatic, Lorentz scalar, and magnetic

�-shell potentials on closed and bounded curves. A related problem was also considered in [7] for

a straight line scenario. More precisely, taking parameters (⌘̃, ⌧̃) 2 R
2 in (1.2) and a potential B"

⌃

that converges to �⌃ when " tends to 0 (in the sense of distributions), then Dm +
�
⌘̃ I4 + ⌧̃�

�
B"

⌃

converges to the Dirac operator D⌘,⌧ with different coupling constants (⌘, ⌧) 2 R
2 that depend

nonlinearly on the potential B"

⌃. This dependence has been observed in the one-dimensional case,

for example [17,20], and in higher dimensional cases, see [8, 15].

In the three-dimensional case, the situation seems to be even more complex, as recently shown in

[15]. There, too, the authors were able to show convergence in the strong resolvent sense in the

non-confining case, however, a smallness assumption on the potential B"

⌃ was required to achieve

such a result. On the other hand, this assumption unfortunately prevents us from obtaining an

approximation of the operator D⌘,⌧ with the physically or mathematically more relevant parameters

⌘ and ⌧ . Recognizing this limitation, the authors of the recent paper [4] delved into and verified

the approximation problem for two- and three-dimensional Dirac operators with �-shell potential

in the norm resolvent sense. Without the smallness assumption on the potential B"

⌃ no results

could be obtained here either. Finally, in [14], the authors of [15] treated the approximation of

the operator (1.2) in the case of the sphere without assuming any hypothesis of smallness on the

potential.

The primary aim of our work is to extend the approximation result explored in [8, Section 8]

to the three-dimensional case. We seek to verify whether the methodologies employed in the

two-dimensional context allow us to establish a comparable approximation in terms of strong

resolvent. Specifically, we aim to achieve this in the non-critical and non-confinement cases (i.e.,

when ⌘2 � ⌧
2 6= ±4) without relying on the smallness assumption as stipulated in [15].

Organization of the paper. The present paper is structured as follows. We start with Section

2, where we define the free Dirac operators Dm and the model to be studied in our paper by

introducing the family {E⌘̃,⌧̃ ,"}", which is the approximate Dirac operators family of operator

D⌘,⌧ . We also discuss our main results by establishing Theorem 2.2. Moreover, in this section we

give some geometric aspects characterizing the surface ⌃, as well as some spectral properties of the
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Dirac operator coupled with the �-shell interaction presented in Lemma 2.6. Section 3 is devoted

to the proof of Theorem 2.2, which approximates the Dirac operator with �-shell interaction by

sequences of Dirac operators with regular potentials at the appropriate scale in the strong resolvent

sense.

2 Model and main results

First, let me define the free Dirac operator and describe some of its properties. Given m > 0, the

free Dirac operator Dm on R
3 is defined by

Dm := �i↵ ·r+m�,

where

↵k =

0

@ 0 �k

�k 0

1

A for k = 1, 2, 3, � =

0

@I2 0

0 �I2

1

A , I2 :=

0

@1 0

0 1

1

A ,

and

�1 =

0

@0 1

1 0

1

A , �2 =

0

@0 �i

i 0

1

A , �3 =

0

@1 0

0 �1

1

A ,

is the family of Dirac and Pauli matrices satisfying the anticommutation relations:

{↵j ,↵k} = 2�jkI4, {↵j ,�} = 0, and �
2 = I4, j, k 2 {1, 2, 3}, (2.1)

where {·, ·} is the anticommutator bracket. We use the notation ↵ · x =
P3

j=1 ↵jxj for x =

(x1, x2, x3) 2 R
3. We recall that (Dm, dom(Dm)) is self-adjoint (see, e.g., [18, Subsection 1.4]),

and that

Sp(Dm) = Spess(Dm) = (�1,�m] [ [m,+1).

Throughout this paper, for ⌦ ⇢ R
3 a C

1-smooth bounded domain with boundary ⌃ := @⌦, we

refer to H
1(⌦,C4) := H

1(⌦)4 as the first order Sobolev space

H
1(⌦)4 = {' 2 L

2(⌦,C4) : there exists '̃ 2 H
1(R3)4 such that '̃|⌦ = '}.

We denote by H
1/2(⌃,C4) := H

1/2(⌃)4 the Sobolev space of order 1/2 along the boundary ⌃, and

by t⌃ : H1(⌦)4 ! H
1/2(⌃)4 the classical trace operator. The surface ⌃ divides the Euclidean space

into the disjoint union R
3 = ⌦+[⌃[⌦�, where ⌦+ := ⌦ is a bounded domain and ⌦� = R

3 \⌦+.

We denote by ⌫ and dS the unit outward pointing normal to ⌦ and the surface measure on ⌃,

respectively. We also denote by f± := f ⌫ ⌦± the restriction of f in ⌦±, for all C4–valued functions

f defined on R
3
. Then, we define the distribution �⌃f by
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h�⌃f, gi :=
1

2

Z

⌃
(t⌃f+ + t⌃f�) g dS, for any test function g 2 C

1
0 (R3

,C
4).

Finally, we define the Dirac operator coupled with a combination of electrostatic and Lorentz scalar

�-shell interactions of strengths ⌘ and ⌧ , respectively, which we will denote D⌘,⌧ in what follows.

Definition 2.1. Let ⌦ be a bounded domain in R
3 with boundary ⌃ = @⌦. Let (⌘, ⌧) 2 R

2. Then,

D⌘,⌧ = Dm +B⌘,⌧�⌃ := Dm + (⌘I4 + ⌧�)�⌃ acting in L
2(R3)4 is defined as follows:

D⌘,⌧f = Dmf+ �Dmf�,

8f 2 dom(D⌘,⌧ ) := {f = f+ � f� 2 H
1(⌦)4 �H

1(R3 \ ⌦)4 :

the transmission condition (T.C) below holds in H
1/2(⌃)4}.

Transmission condition:

i↵ · ⌫(t⌃f+ � t⌃f�) +
1

2
(⌘ I4 + ⌧�)(t⌃f+ + t⌃f�) = 0, (2.2)

where ⌫ is the outward pointing normal to ⌦.

Recall that for ⌘2 � ⌧
2 6= 4, the Dirac operator (D⌘,⌧ , dom(D⌘,⌧ )) is self-adjoint and verifies the

following assertions (see, e.g., [6, Theorem 3.4, 4.1])

(i) Spess(D⌘,⌧ ) = (�1,m] [ [m,+1).

(ii) Spdis(D⌘,⌧ ) \ (�m,m) is finite.

Now, we explicitly construct regular symmetric potentials V⌘̃,⌧̃ ," 2 L
1(R3

,C
4⇥4) supported on a

tubular "-neighbourhood of ⌃ and such that

V⌘̃,⌧̃ ," ���!
"!0

(⌘̃ I4 + ⌧̃�)�⌃ in the sense of distributions.

To explicitly describe the approximate potentials V⌘̃,⌧̃ ,", we will introduce some additional nota-

tions. For � > 0, we define ⌃� := {x 2 R
3
, dist(x,⌃) < �} a tubular neighborhood of ⌃ with

width �. For � > 0 small enough, ⌃� is parametrized in a similar way as in [5, 15], given by

⌃� = {x⌃ + p⌫(x⌃), x⌃ 2 ⌃ and p 2 (��, �)}. (2.3)

For 0 < " < �, let h"(p) :=
1

"
h

⇣
p

"

⌘
, for all p 2 R, with the function h verifies the following

h 2 L
1(R,R), supph ⇢ (�1, 1) and

Z 1

�1
h(t) dt = 1.
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Thus, we have:

supph" ⇢ (�", "),
Z

"

�"

h"(t) dt = 1, and lim
"!0

h" = �0 in the sense of distributions, (2.4)

where �0 is the Dirac �-function supported at the origin. Finally, for any " 2 (0, �), we define the

symmetric approximate potentials V⌘̃,⌧̃ ," 2 L
1(R3

,C
4⇥4), as follows:

V⌘̃,⌧̃ ,"(x) :=

8
<

:
B⌘̃,⌧̃h"(p), if x = x⌃ + p⌫(x⌃) 2 ⌃",

0, if x 2 R
3 \ ⌃".

(2.5)

It is easy to see that lim"!0 V⌘̃,⌧̃ ," = B⌘̃,⌧̃�⌃, in D0
(R3

,C
4⇥4). For 0 < " < �, we define the family

of Dirac operators {E⌘̃,⌧̃ ,"}" as follows:

dom(E⌘̃,⌧̃ ,") := dom(Dm) = H
1(R3)4,

E⌘̃,⌧̃ ," = Dm + V⌘̃,⌧̃ ," , for all  2 dom(E⌘̃,⌧̃ ,").
(2.6)

The main purpose of the present manuscript is to study the strong resolvent limit of E⌘̃,⌧̃ ," at

"! 0. The following theorem is the main result of this paper.

Theorem 2.2. Let (⌘̃, ⌧̃) 2 R
2 such that d̃ := ⌘̃

2 � ⌧̃
2. Let (⌘, ⌧) 2 R

2 be defined as follows:

• if d̃ < 0, then (⌘, ⌧) =
tanh

⇣p
�d̃/2

⌘

p
�d̃/2

(⌘̃, ⌧̃),

• if d̃ = 0, then (⌘, ⌧) = (⌘̃, ⌧̃),

• if d̃ > 0 such that d 6= (2k + 1)2⇡2, k 2 N [ {0}, then (⌘, ⌧) =
tan

⇣p
d̃/2
⌘

p
d̃/2

(⌘̃, ⌧̃).

Now, let E⌘̃,⌧̃ ," be defined as in (2.6) and D⌘,⌧ as in Definition 2.1. Then,

E⌘̃,⌧̃ ," ���!
"!0

D⌘,⌧ in the strong resolvent sense. (2.7)

Remark 2.3. We mention that in this work we find approximations by regular potentials in the

sense of strong resolvent for the Dirac operator with �-shell potentials E⌘̃,⌧̃ ," in the non-critical

case (i.e., when d 6= 4) and the non-confining case, (i.e., when d 6= �4) everywhere on ⌃. This is

what we will show in the proof of Theorem 2.2.

Now, we will introduce some notations and geometrical aspects which we will use in the rest of the

paper.
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2.1 Notations and geometric aspects

Let ⌃ be parametrized by the family {�j , Uj , Vj , }j2J with J a finite set, Uj ⇢ R
2
, Vj ⇢ R

3
, ⌃ ⇢

S
j2J

Vj and �j(Uj) = Vj \ ⌃ ⇢ ⌃ ⇢ R
3 for all j 2 J. We set s = �

�1
j

(x⌃) for any x⌃ 2 ⌃.

Definition 2.4 (Weingarten map). For x⌃ = �j(s) 2 ⌃ \ Vj with s 2 Uj , the Weingarten map

(arising from the second fundamental form) is defined as the following linear operator

Wx⌃ := W (x⌃) : Tx⌃ ! Tx⌃

@i�j(s) 7! W (x⌃)[@i�j ](s) := �@i⌫(�j(s)),

where Tx⌃ denotes the tangent space of ⌃ on x⌃ and {@i�j(s)}i=1,2 are the basis vectors of Tx⌃ .

Proposition 2.5 ([19, Chapter 9 (Theorem 2), 12 (Theorem 2)]). Let ⌃ be an n�surface in R
n+1,

oriented by the unit normal vector field ⌫, and let x 2 ⌃. The principal curvatures of ⌃ at x (i.e.,

the eigenvalues k1(x), . . . , kn(x) of the Weingarten map Wx) are uniformly bounded on ⌃.

2.1.1 Tubular neighborhood of ⌃

Recall that for ⌦ ⇢ R
3 a bounded domain with smooth boundary ⌃ parametrized by � 2 {�j}j2J .

Let {�, U�, V�} belong to {�j , Uj , Vj}j2J and set ⌫� = ⌫ �� : U� ⇢ R
2 �! R

3, with ⌫ the outward

pointing unit normal to ⌦.

For � > 0, ⌃� (2.3) is a tubular neighborhood of ⌃ with width �. We define the diffeomorphism

�� as follows:

�� : U� ⇥ (��, �) �! R
3

(s, p) 7�! ��(s, p) = �(s) + p⌫(�(s)).

For sufficiently small �, �� is a smooth parametrization of ⌃� . Moreover, the matrix of the

differential d�� of �� in the canonical basis of R3 is given by

d��(s, p) =
⇣
@1�(s) + p d⌫(@1�)(s) @2�(s) + p d⌫(@2�)(s) ⌫�(s)

⌘
. (2.8)

Thus, the differential on U� and the differential on (��, �) of �� are respectively given by

ds��(s, p) = @i�j(s)� pW (x⌃)@i�j(s) for i = 1, 2 and x⌃ = �(s) 2 ⌃,

dp��(s, p) = ⌫�(s),
(2.9)

where @i�, ⌫� should be understood as column vectors, and W (x⌃) is the Weingarten map defined



496 M. Zreik CUBO
26, 3 (2024)

in Definition 2.4. Next, we define

P� :=
⇣
��1

�

⌘

1
: ⌃� �! U� ⇢ R

2; P�

�
�(s) + p⌫(�(s))

�
= s 2 R

2
,

P? :=
⇣
��1

�

⌘

2
: ⌃� �! (��, �); P?

�
�(s) + p⌫(�(s))

�
= p.

(2.10)

Using the inverse function theorem and equation (2.8), for x = �(s) + p⌫(�(s)) 2 ⌃� , we obtain

the following differential

rP�(x) =
⇣
J��1

�

⌘

1
:=

0

BB@

1 0 0

0 1 0

0 0 0

1

CCA J��1
�

and rP?(x) = ⌫�(s), (2.11)

with J��1
�

the Jacobian matrix of the diffeomorphism ��1
�

given by the following formula:

J��1
�

=
1

det(J��)
⇥Adj(J��).

Here Adj(J��) is expressed in terms of the partial derivatives of �, J�� is the Jacobian matrix

of the diffeomorphism �� and det(J��) = 1 + p1 + p
2
2 (see, for example [13, Lemma 2.3 (1)]),

where 1 and 2 depend on the principal curvatures k1, . . . , kn of ⌃.

2.2 Preparations for the proof

Before presenting the tools for the proof of Theorem 2.2, we state several properties satisfied by the

operator D⌘,⌧ , which appeared in almost the same form in several papers, for example, [8, Section

5] and [6, Section 3].

Lemma 2.6. Let (⌘, ⌧) 2 R
2
, and let D⌘,⌧ be defined as in Definition 2.1. Then, the following

hold:

(i) If ⌘2 � ⌧
2 6= �4, there exists an invertible matrix R⌘,⌧ such that a function f = f+ � f� 2

H
1(⌦+)4 �H

1(⌦�)4 belongs to dom(D⌘,⌧ ) if and only if t⌃f+ = R⌘,⌧ t⌃f�, with R⌘,⌧ given

by

R⌘,⌧ :=

✓
I4 �

i↵ · ⌫
2

(⌘ I4 + ⌧�)

◆�1✓
I4 +

i↵ · ⌫
2

(⌘ I4 + ⌧�)

◆
. (2.12)

(ii) If ⌘2 � ⌧
2 = �4, then a function f = f+ � f� 2 H

1(⌦+)4 �H
1(⌦�)4 belongs to dom(D⌘,⌧ )

if and only if

✓
I4 �

i↵ · ⌫
2

(⌘ I4 + �⌧)

◆
t⌃f+ = 0 and

✓
I4 +

i↵ · ⌫
2

(⌘ I4 + �⌧)

◆
t⌃f� = 0.
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Proof. Let us show (i). Using the transmission condition in equation (2.2), we find that for all

f = f+ � f� 2 dom(D⌘,⌧ ),

✓
i↵ · ⌫ + 1

2
(⌘I4 + ⌧�)

◆
t⌃f+ =

✓
i↵ · ⌫ � 1

2
(⌘I4 + ⌧�)

◆
t⌃f�.

Thanks to properties in (2.1) and the fact that (i↵ · ⌫)�1 = �i↵ · ⌫, we have

�
I4 �M

�
t⌃f+ =

�
I4 +M

�
t⌃f�, (2.13)

with M a 4⇥ 4 matrix having the following form

M =
i↵ · ⌫
2

(⌘ I4 + �⌧),

thus (2.12) is established.

Now, using the anticommutation relations from (2.1), we have:

M
2 = �d

4
I4 and (I4 �M)(I4 +M) =

4 + d

4
I4,

where d := ⌘
2 � ⌧

2
. When d 6= �4, then I4 �M is invertible with (I4 �M)�1 =

4

4 + d
(I4 +M).

Consequently, using (2.13) we obtain that t⌃f+ = R⌘,⌧ t⌃f�, where R⌘,⌧ has the explicit form

R⌘,⌧ =
4

4 + d

✓
4� d

4
I4 + i↵ · ⌫(⌘I4 + ⌧�)

◆
. (2.14)

For assertion (ii), we multiply (2.13) by (I4 ±M), giving

(I4 +M)2t⌃f� = 0 and (I4 �M)2t⌃f+ = 0.

Moreover, we mention that in the case d = �4, we have (I4 ±M)2 = 2(I4 ±M). This completes

the proof of Lemma 2.6.

3 Proof of Theorem 2.2

Proof. Following the ideas in [8, Section 8], the key step in proving Theorem 2.2 is to establish the

convergence (2.7) in the strong graph limit sense. Let {E⌘̃,⌧̃ ,"}"2(0,�) and D⌘,⌧ be as defined in (2.6)

and Definition 2.1, respectively. Since the singular interactions V⌘̃,⌧̃ ," are bounded and symmetric,

the Kato-Rellich theorem implies that the operatorsE⌘̃,⌧̃ ," are self-adjoint in L
2(R3

,C
4). Moreover,

we know that D⌘,⌧ is self-adjoint, with dom(D⌘,⌧ ) ⇢ H
1(R3 \ ⌃)4. Thus, the convergence of

{E⌘̃,⌧̃ ,"}"2(0,�) to D⌘,⌧ in the strong resolvent sense as " ! 0 holds if and only if it converges in
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the strong graph limit sense, as shown in [16, Theorem VIII.26]. This means we must show the

following:

For  2 dom(D⌘,⌧ ), there is a family of vectors { "}"2(0,�) ⇢ H
1(R3)4 such that

(a) lim
"!0

 " =  and (b) lim
"!0

E⌘̃,⌧̃ ," " = D⌘,⌧ in L
2(R3)4, (3.1)

with H
1(R3)4 = dom(E⌘̃,⌧̃ ,") for all " 2 (0, �).

Let  ⌘  + �  � 2 dom(D⌘,⌧ ). From Theorem 2.2, we have that

d = ⌘
2 � ⌧

2 = �4 tanh2
✓q

�d̃/2

◆
, if d̃ < 0,

d = ⌘
2 � ⌧

2 = 4 tan2
⇣p

d̃/2
⌘
, if d̃ > 0,

d = ⌘
2 � ⌧

2 = 0, if d̃ = 0.

(3.2)

In all cases, we have that d > �4 (in particular d 6= �4). Then, by Lemma 2.6 (i),

t⌃ + = R⌘,⌧ t⌃ �,

where R⌘,⌧ is given in (2.14). Moreover, using Definition 2.1, we obtain that t⌃ ± 2 H
1/2(⌃)4.

Show that

e
i↵·⌫B⌘̃,⌧̃ = R⌘,⌧ . (3.3)

Recall the definition of the family E⌘̃,⌧̃ ," and the potential V⌘̃,⌧̃ ," defined in (2.6) and (2.5),

respectively. We have that

(i↵ · ⌫B⌘̃,⌧̃ )
2 = (i↵ · ⌫(⌘̃I4 + ⌧̃�))2 = �(⌘̃2 � ⌧̃

2) =: D̃2
, with D̃ =

p
�(⌘̃2 � ⌧̃2) =

q
�d̃.

Using this equality, we can write: e
i↵·⌫B⌘̃,⌧̃ = e

�D̃⇧� + e
D̃⇧+, with ±D̃ the eigenvalues of

i↵ · ⌫B⌘̃,⌧̃ , and ⇧± the eigenprojections are given by:

⇧± :=
1

2

✓
I4 ±

i↵ · ⌫B⌘̃,⌧̃

D̃

◆
.

Therefore,

e
(i↵·⌫B⌘̃,⌧̃ ) =

 
e
D̃ + e

�D̃

2

!
I4 +

i↵ · ⌫B⌘̃,⌧̃

D̃

 
e
D̃ � e

�D̃

2

!

= cosh(D̃)I4 +
sinh(D̃)

D̃
(i↵ · ⌫(⌘̃I4 + ⌧̃�)).
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Now, the idea is to show (3.3), i.e., that it remains to show

4

4 + d

✓
4� d

4
I4 + i↵ · ⌫(⌘I4 + ⌧�)

◆
= cosh(D̃)I4 +

sinh(D̃)

D̃
(i↵ · ⌫(⌘̃I4 + ⌧̃�)) . (3.4)

To this end, set U =
4� d

4 + d
�cosh(D̃) and V =

4

4 + d
� sinh(D̃)

D̃
. If we apply (3.4) to the unit

vector e1 = (1 0 0 0)t, and, since the matrices I4 and ↵ ·⌫(⌘I2+ ⌧�) are linearly independent

for (⌘, ⌧) 6= (0, 0), then we find that U = V = 0. Hence, (3.4) makes sense if and only if

cosh(D̃) =
4� d

4 + d
and

sinh(D̃)

D̃
(⌘̃, ⌧̃) =

4

4 + d
(⌘, ⌧).

Consequently, we have R⌘,⌧ = e
i↵·⌫B⌘̃,⌧̃ .

Dividing
sinh(D̃)

D̃
by (1 + cosh(D̃)) we obtain (⌘, ⌧) =

sinh(D̃)

1 + cosh(D̃)

1

D̃/2
(⌘̃, ⌧̃).

Now, applying the elementary identity tanh

✓
✓

2

◆
=

sinh(✓)

1 + cosh(✓)
, for all ✓ 2 C \ {i(2k + 1)⇡,

k 2 Z}. We conclude that

tanh(
p

�d̃/2)p
�d̃/2

(⌘̃, ⌧̃) = (⌘, ⌧), if d̃ < 0,

and so, for d̃ > 0 we apply the elementary identity �i tanh(i✓) = tan(✓) for all ✓ 2 C \⇢
⇡

✓
k +

1

2

◆
, k 2 Z

�
, and then we get that

tanh
⇣p

�d̃/2
⌘

p
�d̃/2

=
tan

⇣p
d̃/2
⌘

p
d̃/2

.

Hence, for d̃ > 0 such that d̃ 6= (2k + 1)2⇡2, we obtain (⌘, ⌧) =
tan(

p
d̃/2)p

d̃/2
(⌘̃, ⌧̃). Conse-

quently, the equality e
i↵·⌫B⌘̃,⌧̃ = R⌘,⌧ is shown, with the following parameters satisfying:

•
tanh(

p
�d̃/2)p

�d̃/2
(⌘̃, ⌧̃) = (⌘, ⌧), if d̃ < 0,

•
tan(

p
d̃/2)p

d̃/2
(⌘̃, ⌧̃) = (⌘, ⌧), if d̃ > 0,

• (⌘̃, ⌧̃) = (⌘, ⌧), if d̃ = 0.

Moreover, the fact that
R
"

�"
h"(t)dt = 1 (see, (2.4)) with the statement (3.3) make it possible

to write

exp

"
�
� i

Z 0

�"

h"(t) dt
�
(↵ · ⌫B⌘,⌧ )

#
t⌃ + = exp

"
�
i

Z
"

0
h"(t) dt

�
(↵ · ⌫B⌘,⌧ )

#
t⌃ �. (3.5)
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Remark 3.1. We mention that, in the case where D̃ = 0, the phenomenon of renormalization

of the coupling constants does not arise. This was already observed in the one-dimensional

setting in [20]. Indeed, using (3.2) and equation (3.4), we find that (⌘̃, ⌧̃) = (⌘, ⌧), where
sinh(D̃)

D̃
is taken to be equal to 1 when D̃ = 0.

Construction of the family { "}"2(0,�). Proceeding as in the construction of [8, Section 8],

one can construct the following family. The reader should look at that paper for the details.

For all 0 < " < �, we define the function H" : R \ {0} ! R as follows:

H"(p) :=

8
>>>>>><

>>>>>>:

Z
"

p

h"(t) dt, if 0 < p < ",

�
Z

p

�"

h"(t) dt, if � " < p < 0,

0, if |p| � ".

Clearly, H" 2 L
1(R) and is supported in (�", "). Since ||H"||L1  ||h||L1 , we get that {H"}"

is bounded uniformly in ". For all " 2 (0, �), the restrictions of H" to R± are uniformly

continuous, with finite limits at p = 0 exist, and are differentiable a.e., with a bounded

derivative, since h" 2 L
1(R,R). Using these functions, we set the matrix functions U" :

R
3 \ ⌃ ! C

4⇥4 such that

U"(x) :=

8
<

:
e
(i↵·⌫)B⌘̃,⌧̃H"(P?(x))

, if x 2 ⌃" \ ⌃,

I4, if x 2 R
3 \ ⌃",

2 L
1(R3

,C
4⇥4), (3.6)

where the mapping P? is defined as in (2.10). The functions U" are bounded, uniformly in

", and uniformly continuous in ⌦±, with a jump discontinuity across ⌃. Then,  " can be

constructed by

 " =  ",+ �  ",� := U" 2 L
2(R3

,C
4), where 8x⌃ 2 ⌃, y± 2 ⌦± :

U"(x
�
⌃) := lim

y�!x⌃

U"(y�) = exp


i

✓Z
"

0
h"(t) dt

◆
(↵ · ⌫(x⌃))B⌘̃,⌧̃

�
,

U"(x
+
⌃) := lim

y+!x⌃

U"(y+) = exp


�i

✓Z 0

�"

h"(t) dt

◆
(↵ · ⌫(x⌃))B⌘̃,⌧̃

�
.

(3.7)

Since U" are bounded, uniformly in ", using the construction of  " we get that  "� := (U"�
I4) . Then, by the dominated convergence theorem and the fact that supp (U" � I4) ⇢ |⌃"|
with |⌃"| ! 0 as "! 0, it is easy to show that

 " ���!
"!0

 in L
2(R3

,C
4). (3.8)

This proves assertion (a).
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Show that  " 2 dom(E⌘̃,⌧̃ ,") = H
1(R3)4. This means that we must show, for all 0 < " < �,

(i) ",± 2 H
1(⌦±)

4 and (ii) t⌃ ",+ = t⌃ ",� 2 H
1/2(⌃)4.

Let us show point (i). By the construction of  ", we have  " 2 L
2(R3

,C
4). It remains

to show that @jU" 2 L
1(R3

,C
4⇥4), for j = 1, 2, 3. To do so, recall the parametrization

� of ⌃ defined at the beginning of Subsection 2.1 and let A 2 C
1(R2

,C
4⇥4) such that

A(s) := i↵ · ⌫(�(s))B⌘̃,⌧̃ , for s = (s1, s2) 2 U ⇢ R
2
. Thus, the matrix functions U" in (3.6)

can be written

U"(x) =

8
<

:
e
A(P�(x))H"(P?(x))

, if x 2 ⌃" \ ⌃,

I4, if x 2 R
3 \ ⌃",

2 L
1(R3

,C
4⇥4),

where P� is defined as in (2.10).

For j = 1, 2, 3, we have supp @jU" ⇢ ⌃". By the Wilcox formula as used in [8, Eq. 8.12], we

obtain that

@jU"(x) =

Z 1

0

"
exp
⇣
zA(P�(x))H"(P?(x))

⌘
@j

⇣
A(P�(x))H"(P?(x))

⌘
⇥

exp
⇣
(1� z)A(P�(x))H"(P?(x))

⌘#
dz.

Based on the quantities (2.11), for x = �(s)+p⌫(�(s)) 2 ⌃� , and for s = P�(x), p = P?(x),

with P�(x) and P?(x) the mappings introduced in (2.10), together with

@j

⇣
A(P�(x))H"(P?(x))

⌘
= @j

⇣
A(P�(x)

⌘
H"(p)�A(s)h"(p)(⌫�(s))j ,

yields that @jU" has the following form

@jU"(x) = �A(s)h"(p)(⌫�(s))jU"(x)+

Z 1

0

e
zA(s)H"(p)

h
@j

⇣
A(P�(x)

⌘
H"(p)

i
e
(1�z)A(s)H"(p) dz, (3.9)

with

@j

⇣
A(P�(x)

⌘
=

2X

k=1

@A(s)

@sk
(J��1

�
)kj ,

where (J��1
�
)kj is the coefficient of the k-th row and j-th column of the matrix

⇣
J��1

�

⌘
given

in (2.11).

We denote by E",j the second term of the right-hand side of the equality (3.9), i.e.,

E",j =

Z 1

0
e
zA(s)H"(p)

"
@sA(s)⇥

2X

k=1

@A(s)

@sk
(J��1

�
)kj ⇥H"(p)

#
e
(1�z)A(s)H"(p) dz. (3.10)
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Thanks to Proposition 2.5, the matrix-valued functions E",j are bounded, uniformly for

0 < " < �, and suppE",j ⇢ ⌃". Moreover, we have U" and @jU" 2 L
1(⌦±,C

4⇥4), and we

deduce that for all  ± 2 H
1(⌦±)4 we have that  ",± = U" ± 2 H

1(⌦±)4 and statement (i)

is verified.

Let us now check point (ii). Since  ",± 2 H
1(⌦±)4, we get that t⌃ ",± 2 H

1/2(⌃)4. On the

other hand, as U" is continuous in ⌦±, we get

t⌃ ",±(x⌃) = U"(x
±
⌃)t⌃ ±(x⌃) for a.e. x⌃ 2 ⌃;

see [10, Chapter 4 (p.133)] and [8, Section 8] for a similar argument.

Consequently, (3.5) with (3.7) give us that t⌃ ",+ = t⌃ ",� 2 H
1/2(⌃)4. With this, (ii) is

valid and  " 2 dom(E⌘̃,⌧̃ ,").

To complete the proof of Theorem 2.2, it remains to show the property (b), mentioned in

(3.1). Since (E⌘̃,⌧̃ ," " �D⌘,⌧ ) belongs to L
2(R3

,C
4), it suffices to prove the following:

E⌘̃,⌧̃ ," ",± �D⌘,⌧ ± ���!
"!0

0 in L
2(⌦±,C

4). (3.11)

To do this, let  ⌘  + �  � 2 dom(D⌘,⌧ ) and  " ⌘  ",+ �  ",� 2 dom(E⌘̃,⌧̃ ,"). We have

E⌘̃,⌧̃ ," ",± �D⌘,⌧ ± = �i↵ ·r ",± +m�( ",± �  ±) + V⌘̃,⌧̃ ," ",± + i↵ ·r ±

= �i↵ ·r(U" ±) + i↵ ·r ± +m�(U" � I4) ± + V⌘̃,⌧̃ ," ",±

= �i

3X

j=1

↵j

⇥
(@jU") ± + (U" � I4)@j ±

⇤
+m�(U" � I4) ± + V⌘̃,⌧̃ ," ",±.

(3.12)

Using the form of @jU" given in (3.9), the quantity �i
P3

j=1 ↵j(@jU") ± yields

�i

3X

j=1

↵j(@jU") ± = �i

3X

j=1

↵j

⇥
� i↵ · ⌫V⌘̃,⌧̃ ,"⌫jU" ± + E",j ±

⇤

= �(↵ · ⌫)2V⌘̃,⌧̃ ," ",± � i

3X

j=1

↵jE",j ± = �V⌘̃,⌧̃ ," ",± + R" ±,

where E",j is given in (3.10) and R" = �i
P3

j=1 ↵jE",j , a matrix-valued function in L
1(R3

,C
4⇥4),

verifies the same property of E",j for all " 2 (0, �). Thus, (3.12) becomes

E⌘̃,⌧̃ ," ",± �D⌘,⌧ ± = �i

3X

j=1

↵j

⇥
(U" � I4)@j ±

⇤
+m�(U" � I4) ± + R" .

Since  ± 2 H
1(⌦±)4, (U" � I4) and R" are bounded, uniformly in " 2 (0, �) and supported

in ⌃", and |⌃"| tends to 0 as " ! 0. By the dominated convergence theorem, we conclude
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that

E⌘̃,⌧̃ ," ",± �D⌘,⌧ ± ���!
"!0

0, holds in L
2(⌦±,C

4), (3.13)

and this achieves the assertion (3.11).

Thus, both conditions mentioned in (3.1)
�
i.e., (a) and (b)

�
of the convergence in the strong

graph limit sense are proved (see, (3.8) and (3.13)). Hence, the family {E⌘̃,⌧̃ ,"}"2(0,�) con-

verges in the strong resolvent sense to D⌘,⌧ as " ! 0. The proof of the Theorem 2.2 is

complete.
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ABSTRACT

We consider trapezoid type inequalities for twice differen-

tiable convex functions, perturbed by a non-negative weight.

Applications on a normed space (X, k · k) are considered, by

establishing bounds for the term

1
2

���
x+ y
2

���
p

+
kxkp + kykp

2

�
�
Z 1

0

k(1� t)x+ tykp dt,

x, y 2 X,

which can be seen as a combination of both the midpoint and

the trapezoid p-norm (with 2  p < 1) inequalities.

RESUMEN

Consideramos desigualdades de tipo trapezoidal para fun-

ciones convexas dos veces diferenciables, perturbadas por un

peso no-negativo. Se consideran aplicaciones en un espacio

normado (X, k · k), estableciendo cotas para el término

1
2

���
x+ y
2

���
p

+
kxkp + kykp

2

�
�
Z 1

0

k(1� t)x+ tykp dt,

x, y 2 X,

que se puede ver como una combinación de las desigualdades

de punto medio y trapezoidal para las p-normas (con 2  p <

1).
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norm inequality, semi-inner product.
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1 Introduction

The following inequality, which is known in the literature as the Hermite-Hadamard inequality,

holds for any convex function f defined on R and all a, b 2 R:

f

✓
a+ b

2

◆
(b� a) 

Z b

a
f (t) dt  f (a) + f (b)

2
(b� a) . (1.1)

Let a, b 2 R with a < b, f : [a, b] ! R be a differentiable mapping on (a, b) with M > 0 such that

|f 0(x)|  M for all x 2 (a, b). Then the following inequality, known as the Ostrowski inequality:

�����f(x)�
1

b� a

Z b

a
f(t) dt

����� 
"
1

4
+

(x� a+b
2 )2

(b� a)2

#
(b� a)M, (1.2)

holds for all x 2 [a, b]. The constant 1
4 is best possible in the sense that it cannot be replaced by

a smaller constant. Note that when f is convex and x = (a+ b)/2, the Ostrowski inequality (1.2)

provides a sharp bound for the midpoint difference

Z b

a
f(t) dt� f

✓
a+ b

2

◆
(b� a), (1.3)

in view of the middle and the left-hand terms of (1.1). The following result provides some sharp

bounds for the midpoint difference (cf. [5, Corollary 2.3]). We note the use of the notation f 0
± to

denote the right-hand and left-hand derivatives of f , which exist for any convex function f .

Proposition 1.1. Let f : [a, b] ! R be a convex function on [a, b]. Then we have the inequality

0  1

8


f 0
+

✓
a+ b

2

◆
� f 0

�

✓
a+ b

2

◆�
(b� a)2 

Z b

a
f (t) dt� f

✓
a+ b

2

◆
(b� a) (1.4)

 1

8

⇥
f 0
� (b)� f 0

+ (a)
⇤
(b� a)2 .

The constant
1
8 is sharp in both inequalities.

In what follows, a similar result provides some sharp bounds for the trapezoid difference (cf.

[6, Corollary 2.3]):
f (a) + f (b)

2
(b� a)�

Z b

a
f (t) dt, (1.5)

in view of the middle and the right-hand terms of (1.1).
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Proposition 1.2. Let f : [a, b] ! R be a convex function on [a, b]. Then we have the inequality

0  1

8


f 0
+

✓
a+ b

2

◆
� f 0

�

✓
a+ b

2

◆�
(b� a)2  f (a) + f (b)

2
(b� a)�

Z b

a
f (t) dt (1.6)

 1

8

⇥
f 0
� (b)� f 0

+ (a)
⇤
(b� a)2 .

The constant
1
8 is sharp in both inequalities.

There are many results in the literature which provide bounds for both midpoint and trapezoids

differences. We refer the readers to the survey paper [9].

Let X be a real linear space, x, y 2 X, x 6= y and let [x, y] := {(1� �)x+ �y, � 2 [0, 1]} be the

segment generated by x and y. We consider the function f : [x, y] ! R and the associated function

g (x, y) : [0, 1] ! R,

g (x, y) (t) := f [(1� t)x+ ty] , t 2 [0, 1] .

It is well known that f is convex on [x, y] if and only if g (x, y) is convex on [0, 1], and the following

lateral derivatives exist and satisfy the following properties:

(i) g0± (x, y) (s) = (5±f [(1� s)x+ sy]) (y � x), s 2 [0, 1);

(ii) g0+ (x, y) (0) = (5+f (x)) (y � x) ;

(iii) g0� (x, y) (1) = (5�f (y)) (y � x) ;

where (5±f (x)) (y) are the Gâteaux lateral derivatives, i.e.

(5±f (x)) (y) := lim
h!0±


f (x+ hy)� f (x)

h

�
,

for x, y 2 X.

Now, assume that (X, k · k) is a normed linear space. The function f0 (s) = 1
2 kxk

2, x 2 X, is

convex and thus the following limits exist

(iv) hx, yis := (5+f0 (y)) (x) = lim
t!0+

"
ky + txk2 � kyk2

2t

#
;

(v) hx, yii := (5�f0 (y)) (x) = lim
t!0�

"
ky + txk2 � kyk2

2t

#
;

for any x, y 2 X. They are called the lower and upper semi-inner products associated to the norm

k · k.
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In [14] Kikianty et al. obtained, among others, the following midpoint p-norm inequalities:

0 
Z 1

0
k(1� t)x+ tykpdt�

����
x+ y

2

����
p

(1.7)

 pky � xk

8
>>>><

>>>>:

1
4 max{kxkp�1, kykp�1},

1

2(q0+1)
1
q0

✓
kxkq(p�1) + kykq(p�1)

2

◆ 1
q

, q > 1, 1
q + 1

q0 = 1;

1
4 (kxk

p�1 + kykp�1),

that hold for any x, y 2 X. The constants in the first and second cases of (1.7) are sharp.

Furthermore, in [13], the following trapezoid p-norm inequalities are obtained:

0  1

8
p

����
x+ y

2

����
p�2 ⌧

y � x,
x+ y

2

�

s

�
⌧
y � x,

x+ y

2

�

i

�

 kykp + kxkp

2
�
Z 1

0
k(1� t)x+ tykp dt (1.8)

 1

8
p
h
kykp�2 hy � x, yii � kxkp�2 hy � x, xis

i

that hold for any x, y 2 X whenever p � 2; otherwise, they hold for linearly independent x, y 2 X.

The constant 1
8 is best in (1.8).

In this paper, we provide bounds for the term

1

2

����
x+ y

2

����
p

+
kxkp + kykp

2

�
�
Z 1

0
k(1� t)x+ tykp dt

which can be seen as a combination of both the midpoint and the trapezoid p-norm inequalities.

This is done via a series of results on twice differentiable convex functions and we take integrals

with respect to a weight function as outlined in Section 2.

2 Main results

Let ' be a twice differentiable convex function on [0, 1] , w integrable and non-negative on [0, 1],

and � 2 (0, 1) . In this section, we establish bounds for the following

✓Z 1

�
w (s) ds

◆
' (1) +

 Z �

0
w (s) ds

!
' (0)�

Z 1

0
w (t)' (t) dt

� ' (1)� ' (�)

1� �

Z 1

�
(1� t)w (t) dt+

' (�)� ' (0)

�

Z �

0
tw (t) dt,

using Ostrowski’s and Čebyšev’s inequalities (cf. Propositions 2.1 and 2.4 below).
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Recall the following inequality by Ostrowski [16], which was proven in 1970.

Proposition 2.1 (Ostrowski). Let h be integrable and n  h  N for some constants n, N on

[a, b], while g is absolutely continuous and its derivative is essentially bounded. Then,

�����
1

b� a

Z b

a
g (t)h (t) dt� 1

b� a

Z b

a
g (t) dt

1

b� a

Z b

a
h (t) dt

����� 
1

8
(b� a) (N � n) kg0k1 . (2.1)

The constant
1
8 is best possible in the general case.

We derive the first set of inequalities.

Theorem 2.2. Let ' be a twice differentiable convex function on [0, 1] , w integrable and non-

negative on [0, 1] and � 2 (0, 1) . Then

0 
✓Z 1

�
w (s) ds

◆
' (1) +

 Z �

0
w (s) ds

!
' (0)�

Z 1

0
w (t)' (t) dt

� ' (1)� ' (�)

1� �

Z 1

�
(1� t)w (t) dt+

' (�)� ' (0)

�

Z �

0
tw (t) dt (2.2)

 1

8

"
(1� �)2

✓Z 1

�
w (s) ds

◆
+ �2

 Z �

0
w (s) ds

!#
k'00k1,[0,1] .

Proof. Let � 2 [0, 1] . By using integration by parts, we have

Z �

0

 Z �

t
w (s) ds

!
'0 (t) dt =

 Z �

t
w (s) ds

!
' (t)

�����

�

0

+

Z �

0
w (t)' (t) dt

=

Z �

0
w (t)' (t) dt�

 Z �

0
w (s) ds

!
' (0)

and

Z 1

�

✓Z t

�
w (s) ds

◆
'0 (t) dt =

✓Z t

�
w (s) ds

◆
' (t)

����
1

�

�
Z 1

�
w (t)' (t) dt

=

✓Z 1

�
w (s) ds

◆
' (1)�

Z 1

�
w (t)' (t) dt.

Then we have the following identity of interest

Z 1

0

✓Z t

�
w (s) ds

◆
'0 (t) dt =

Z 1

�

✓Z t

�
w (s) ds

◆
'0 (t) dt�

Z �

0

 Z �

t
w (s) ds

!
'0 (t) dt (2.3)

=

✓Z 1

�
w (s) ds

◆
' (1) +

 Z �

0
w (s) ds

!
' (0)�

Z 1

0
w (t)' (t) dt

for � 2 [0, 1]. If we use (2.1) for h (t) =
R t
� w (s) ds and g (t) = '0 (t) on the interval [�, 1] , then we
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get

0 
Z 1

�

✓Z t

�
w (s) ds

◆
'0 (t) dt� ' (1)� ' (�)

1� �

Z 1

�

✓Z t

�
w (s) ds

◆
dt

=

Z 1

�

✓Z t

�
w (s) ds

◆
'0 (t) dt� ' (1)� ' (�)

1� �

Z 1

�
(1� t)w(t)dt

 1

8
(1� �)2

✓Z 1

�
w (s) ds

◆
k'00k1,[�,1] .

We also have, again using (2.1) for h (t) = �
R �
t w (s) ds and g (t) = '0 (t) on the interval [0,�] ,

that

0  �
Z �

0

 Z �

t
w (s) ds

!
'0 (t) dt+

' (�)� ' (0)

�

Z �

0

 Z �

t
w(s)ds

!
dt

= �
Z �

0

 Z �

t
w (s) ds

!
'0 (t) dt+

' (�)� ' (0)

�

Z �

0
tw (t) dt  1

8
�2

 Z �

0
w (s) ds

!
k'00k1,[0,�] .

If we add these inequalities, then we get

0 
Z 1

�

✓Z t

�
w (s) ds

◆
'0 (t) dt�

Z �

0

 Z �

t
w (s) ds

!
'0 (t) dt

� ' (1)� ' (�)

1� �

Z 1

�
(1� t)w (t) dt+

' (�)� ' (0)

�

Z �

0
tw (t) dt

 1

8
(1� �)2

✓Z 1

�
w (s) ds

◆
k'00k1,[�,1] +

1

8
�2

 Z �

0
w (s) ds

!
k'00k1,[0,�]

 1

8

"
(1� �)2

✓Z 1

�
w (s) ds

◆
+ �2

 Z �

0
w (s) ds

!#
k'00k1,[0,1]

and by (2.3) we obtain (2.2).

When � = 1/2 in Theorem 2.2, we have the following corollary.

Corollary 2.3. With the assumptions of Theorem 2.2, we have

0 
 Z 1

1
2

w (s) ds

!
' (1) +

 Z 1
2

0
w (s) ds

!
' (0)�

Z 1

0
w (t)' (t) dt

� 2

"
' (1)� '

✓
1

2

◆�Z 1

1
2

(1� t)w (t) dt�

'

✓
1

2

◆
� ' (0)

� Z 1
2

0
tw (t) dt

#

 1

32

✓Z 1

0
w (s) ds

◆
k'00k1,[0,1] .

(2.4)
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The following result obtained by Čebyšev in 1882, [2]. For a function ' with a bounded derivative,

we use the following notation

k'0k1 = sup
t2[a,b]

|'0 (t)| .

Proposition 2.4. Let g, h be differentiable functions such that g0, h0
exist and are continuous on

[a, b]. Then,

�����
1

b� a

Z b

a
g (t)h (t) dt� 1

b� a

Z b

a
g (t) dt

1

b� a

Z b

a
h (t) dt

����� 
1

12
(b� a)2 kh0k1 kg0k1 . (2.5)

The constant
1
12 cannot be improved in the general case.

We now derive the second set of inequalities.

Theorem 2.5. Let ' be a twice differentiable convex function on [0, 1] , w bounded and non-

negative on [0, 1] and � 2 (0, 1) . Then

0 
✓Z 1

�
w (s) ds

◆
' (1) +

 Z �

0
w (s) ds

!
' (0)�

Z 1

0
w (t)' (t) dt

� ' (1)� ' (�)

1� �

Z 1

�
(1� t)w (t) dt+

' (�)� ' (0)

�

Z �

0
tw (t) dt

 1

12

h
(1� �)3 kwk1,[�,1] + �3 kwk1,[0,�]

i
k'00k1,[0,1]

 1

12

"
1

4
+ 3

✓
�� 1

2

◆2
#
kwk1,[0,1] k'

00k1,[0,1] .

(2.6)

Proof. If we use (2.5) for h (t) =
R t
� w (s) ds and g (t) = '0 (t) on the interval [�, 1] , then we get

0 
Z 1

�

✓Z t

�
w (s) ds

◆
'0 (t) dt� ' (1)� ' (�)

1� �

Z 1

�

✓Z t

�
w (s) ds

◆
dt

=

Z 1

�

✓Z t

�
w (s) ds

◆
'0 (t) dt� ' (1)� ' (�)

1� �

Z 1

�
(1� t)w(t) dt

 1

12
(1� �)3 sup

s2[�,1]
w (s) k'00k1,[�,1] .

Again, by (2.5) for h (t) = �
R �
t w (s) ds and g (t) = '0 (t) on the interval [0,�] , we get

0  �
Z �

0

 Z �

t
w (s) ds

!
'0 (t) dt+

' (�)� ' (0)

�

Z �

0

 Z �

t
w(s) ds

!
dt

= �
Z �

0

 Z �

t
w (s) ds

!
'0 (t) dt+

' (�)� ' (0)

�

Z �

0
tw (t) dt

 1

12
�3 sup

s2[0,�]
w (s) k'00k1,[0,�] .
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If we add these inequalities, then we get

0 
Z 1

�

✓Z t

�
w (s) ds

◆
'0 (t) dt�

Z �

0

 Z �

t
w (s) ds

!
'0 (t) dt

� ' (1)� ' (�)

1� �

Z 1

�
(1� t)w (t) dt+

' (�)� ' (0)

�

Z �

0
tw (t) dt

 1

12

"
(1� �)3 sup

s2[�,1]
w (s) k'00k1,[�,1] + �3 sup

s2[0,�]
w (s) k'00k1,[0,�]

#
,

which proves (2.6).

When � = 1/2 in Theorem 2.5, we have the following corollary.

Corollary 2.6. With the assumptions of Theorem 2.5, we have

0 
 Z 1

1
2

w (s) ds

!
' (1) +

 Z 1
2

0
w (s) ds

!
' (0)�

Z 1

0
w (t)' (t) dt

� 2

"
' (1)� '

✓
1

2

◆�Z 1

1
2

(1� t)w (t) dt�

'

✓
1

2

◆
� ' (0)

� Z 1
2

0
tw (t) dt

#

 1

96

h
kwk1,[ 12 ,1]

+ kwk1,[0, 12 ]

i
k'00k1,[0,1] 

1

48
kwk1,[0,1] k'

00k1,[0,1] .

(2.7)

3 Symmetrical weight functions

Simpler forms of the inequalities in Theorems 2.2 and 2.5 (also, Corollaries 2.3 and 2.6) are obtained

when we consider the case that the weight w is symmetrical on [0, 1]. Assume that w is symmetrical

on [0, 1]. Then,
Z 1

1
2

(1� t)w (t) dt =

Z 1
2

0
tw (t) dt.

By assuming the symmetry of w on [0, 1] in Corollary 2.3, we have

0  ' (1) + ' (0)

2

✓Z 1

0
w (s) ds

◆
�
Z 1

0
w (t)' (t) dt (3.1)

� 4


' (1) + ' (0)

2
� '

✓
1

2

◆�Z 1
2

0
tw (t) dt  1

32

✓Z 1

0
w (s) ds

◆
k'00k1,[0,1] ,

and similarly in Corollary 2.6, we get

0  ' (1) + ' (0)

2

✓Z 1

0
w (s) ds

◆
�
Z 1

0
w (t)' (t) dt (3.2)

� 4


' (1) + ' (0)

2
� '

✓
1

2

◆�Z 1
2

0
tw (t) dt  1

48
kwk1,[0,1/2] k'

00k1,[0,1] .
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We give now some examples for simple symmetrical weights.

Example 3.1. First, consider the weight w (t) =
��t� 1

2

�� , t 2 [0, 1] . Observe that

Z 1

1
2

(1� t)

✓
t� 1

2

◆
dt =

1

48
,

Z 1
2

0
t

✓
1

2
� t

◆
dt =

1

48

and Z 1

1
2

✓
t� 1

2

◆
dt =

Z 1
2

0

✓
1

2
� t

◆
dt =

1

8
.

From (3.1) we obtain

0  1

12


' (1) + ' (0) + '

✓
1

2

◆�
�
Z 1

0

����t�
1

2

����' (t) dt  1

128
k'00k1,[0,1] , (3.3)

while from (3.2)

0  1

12


' (1) + ' (0) + '

✓
1

2

◆�
�
Z 1

0

����t�
1

2

����' (t) dt  1

96
k'00k1,[0,1] (3.4)

which is not as good as (3.3).

In the above example, we choose a weight function w for which the bound obtained from Corollary

2.3 (and thus Theorem 2.2) is better than that obtained from Corollary 2.6 (and thus Theorem

2.5). Is this always the case? In what follows, we choose a weight function for which we obtain

identical bounds.

Example 3.2. Consider the weight w (t) = t (1� t) , t 2 [0, 1] . Observe that

Z 1

1
2

(1� t)2 t dt =
5

192
,

Z 1
2

0
t2 (1� t) dt =

5

192

and Z 1

1
2

t (1� t) dt =

Z 1
2

0
t (1� t) dt =

1

12
.

From (3.1) we get

0  1

96


3 [' (1) + ' (0)] + 10'

✓
1

2

◆�
�
Z 1

0
t (1� t)' (t) dt  1

192
k'00k1,[0,1] , (3.5)

while from (3.2)

0  1

96


3 [' (1) + ' (0)] + 10'

✓
1

2

◆�
�
Z 1

0
t (1� t)' (t) dt  1

192
k'00k1,[0,1] , (3.6)

which is the same as (3.5).
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In other cases, the bound obtained from Theorem 2.2 is better than that of Theorem 2.5, as

outlined in the next two examples.

Example 3.3. If w ⌘ 1 in Theorem 2.2, then

0  1

2
[' (�) + (1� �)' (1) + �' (0)]�

Z 1

0
' (t) dt  1

8

h
(1� �)3 + �3

i
k'00k1,[0,1] (3.7)

for all � 2 (0, 1) . Since

�3 + (1� �)3 =
1

4
+ 3

✓
�� 1

2

◆2

,

then (3.7) can be written as

0  1

2
[' (�) + (1� �)' (1) + �' (0)]�

Z 1

0
' (t) dt  1

8

"
1

4
+ 3

✓
�� 1

2

◆2
#
k'00k1,[0,1] . (3.8)

In particular, we derive the inequality

0  1

2


' (1) + ' (0)

2
+ '

✓
1

2

◆�
�
Z 1

0
' (t) dt  1

32
k'00k1,[0,1] . (3.9)

Example 3.4. If w ⌘ 1 in Theorem 2.5, then

0  1

2
[' (�) + (1� �)' (1) + �' (0)]�

Z 1

0
' (t) dt  1

12

"
1

4
+ 3

✓
�� 1

2

◆2
#
k'00k1,[0,1] (3.10)

for all � 2 (0, 1) . In particular, we have

0  1

2


' (1) + ' (0)

2
+ '

✓
1

2

◆�
�
Z 1

0
' (t) dt  1

48
k'00k1,[0,1] . (3.11)

These inequalities are better than the ones in Example 3.3.

4 Applications for norms

We assume that (X, k · k) is a real normed space throughout the sequel.

4.1 Smoothness of the norms and semi-inner products

The terminologies, definitions, and results in this subsection follow those of [7]. Let x, y 2 X with

x 6= 0, then the following limits exist

lim
t!0±

kx+ tyk2 � kxk2

2t
.



CUBO
26, 3 (2024)

Perturbed weighted trapezoid inequalities... 517

The mapping [·, ·] : X ⇥X ! R given by

[y, x] := lim
t!0+

kx+ tyk2 � kxk2

2t
,

is called the T -semi-inner-product.

Definition 4.1. The T -semi-inner-product [·, ·] is said to be continuous on X if

lim
t!0

[y, x+ ty] = [y, x] , for all x, y 2 X.

Proposition 4.2. The normed space X is smooth if and only if

lim
t!0+

kx+ tyk � kxk
t

= lim
t!0�

kx+ tyk � kxk
t

for all x, y 2 X with x 6= 0.

Proposition 4.3. The normed space X is smooth if and only if the T -semi-inner-product is

continuous.

Definition 4.4. A smooth normed space (X, k · k) is of (D)-type if the following limit

lim
t!0

[y, x+ ty]� [y, x]

t

exists for all x, y 2 X, in which case the above limit is denoted as [y, x]0.

Every inner product space is a smooth normed space of (D)-type. Every `p space is a smooth

normed space of (D)-type when p � 2.

Proposition 4.5. Let (X, k ·k ) be a smooth normed space of (D)-type and x, y 2 X. Then, the

mapping 'x,y : R ! R given by

'x,y(t) := kx+ tyk2

is twice differentiable on R,

'0
x,y(t) = 2 [y, x+ ty] , '00

x,y(t) = 2 [y, x+ ty]0 , for all t 2 R,

and '00
x,y is non-negative on R.

Definition 4.6. A smooth normed space of (D)-type is of (BD)-type if there exists a real number

k � 1 such that

[y, x]0  k2 kyk2 , for all x, y 2 X. (4.1)

The least number k such that (4.1) holds will be called the boundedness modulus of [·, ·]0 and we

denote such a number by k0.
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Example 4.7. Every inner product space is of (BD)-type. In fact, X is an inner product space if

and only if its boundedness modulus k0 is exactly 1. For all x, y 2 X, we have [y, x]0 = kyk2 .

Example 4.8. Every `p space is a smooth normed space of (BD)-type when p � 2. In particular,

for all x, y 2 `p, x 6= 0, we have

[y, x]0  (4k + 1) kyk2

with k = (p� 2)/2.

4.2 Convex functions on normed spaces

Let (X, k · k) be a smooth normed space of (D)-type and x, y 2 X. Let fx,y : R ! R be given by

fx,y(t) := k(1� t)x+ tyk2 = kx+ t(y � x)k2 .

By Proposition 4.5, f is convex and twice differentiable on R, and

f 0
x,y(t) = 2 [y � x, (1� t)x+ ty] , and f 00

x,y(t) := 2 [y � x, (1� t)x+ ty]0 ,

for all t 2 R.

Let (X, k · k) be a smooth normed space of (D)-type, x, y 2 X, and 1  p < 1. Let gx,y,p : R ! R
be given by

gx,y,p(t) := k(1� t)x+ tykp =
⇣
k(1� t)x+ tyk2

⌘ p
2
.

Then, for all t 2 R, we have

g0x,y,p(t) =
p

2

⇣
k(1� t)x+ tyk2

⌘ p
2�1 d

dt
k(1� t)x+ tyk2 = p k(1� t)x+ tykp�2 [y � x, (1� t)x+ ty] ,

and

g00x,y,p(t) = p


[y � x, (1� t)x+ ty]

d
dt

k(1� t)x+ tykp�2 + (k(1� t)x+ tyk)p�2 d
dt

[y � x, (1� t)x+ ty]

�

= p
⇥
(p� 2) k(1� t)x+ tykp�4 [y � x, (1� t)x+ ty]2 + (k(1� t)x+ tyk)p�2 [y � x, (1� t)x+ ty]0

⇤

= p k(1� t)x+ tykp�4 ⇥(p� 2) [y � x, (1� t)x+ ty]2 + (k(1� t)x+ tyk)2 [y � x, (1� t)x+ ty]0
⇤
.

Note that since [y�x, (1� ·)x+ ·y]0 is non-negative, then g00x,y,p is also non-negative and thus gx,y,p
is convex. If we assume further that X is (BD)-smooth with constant k � 1, then, for all t 2 R,
we have

g00x,y,p(t) = p k(1� t)x+ tykp�4 ⇥(p� 2) [y � x, (1� t)x+ ty]2 + (k(1� t)x+ tyk)2 [y � x, (1� t)x+ ty]0
⇤

 p k(1� t)x+ tykp�4 ⇥(p� 2) ky � xk2 k(1� t)x+ tyk2 + k2 (k(1� t)x+ tyk)2 ky � xk2
⇤
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= p(p� 2 + k2) k(1� t)x+ tykp�2 ky � xk2 .

Consequently,

��g00x,y,p
��
1,[0,1]

 p(p� 2 + k2) ky � xk2 max
n
kxkp�2 , kykp�2

o
. (4.2)

Remark 4.9. Recall that when X = `p with p � 2, we have that

[y, x]0p  (4k + 1) kyk2p ,

with k = (p� 2)/2, that is

[y, x]0p  (2p� 3) kyk2p ,

for all x, y 2 `p with x 6= 0. We use the subscripts p in the notation for the norms and semi-inner

products here to highlight the fact that we consider the special case of `p spaces. Therefore (4.2)

becomes ��g00x,y,p
��
1,[0,1]

 p(p� 2 + (2p� 3)2) ky � xk2p max
n
kxkp�2

p , kykp�2
p

o

= (4p3 � 11p2 + 7p) ky � xk2p max
n
kxkp�2

p , kykp�2
p

o
.

(4.3)

4.3 Application of Theorem 2.2

Let w be a non-negative, bounded, integrable weight on [0, 1] and � 2 (0, 1). Then, applying

Theorem 2.2 to the function gx,y,p, we have

0 
✓Z 1

�
w (s) ds

◆
kykp +

 Z �

0
w (s) ds

!
kxkp �

Z 1

0
w (t) k(1� t)x+ tykp dt

� kykp � k(1� �)x+ �ykp

1� �

Z 1

�
(1� t)w (t) dt+

k(1� �)x+ �ykp � kxkp

�

Z �

0
tw (t) dt

 1

8

"
(1� �)2

✓Z 1

�
w (s) ds

◆
+ �2

 Z �

0
w (s) ds

!#
��g00x,y,p

��
1,[0,1]

.

When the weight w is symmetrical on [0, 1] and � = 1/2, we have

0  kxkp + kykp

2

✓Z 1

0
w (s) ds

◆
�
Z 1

0
w (t) k(1� t)x+ tykp dt

� 4


kxkp + kykp

2
�
����
x+ y

2

����
p� Z 1

2

0
tw (t) dt  1

32

✓Z 1

0
w (s) ds

◆��g00x,y,p
��
1,[0,1]

.

We obtain a simple inequality when w ⌘ 1 and we assume further that X is (BD)-smooth

0  1

2

����
x+ y

2

����
p

+
kxkp + kykp

2

�
�
Z 1

0
k(1� t)x+ tykp dt  1

32

��g00x,y,p
��
1,[0,1]
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 1

32
p(p� 2 + k2) ky � xk2 max

n
kxkp�2 , kykp�2

o
.

4.4 Application of Theorem 2.5

Let w be a non-negative, bounded, integrable weight on [0, 1] and � 2 (0, 1). Then, applying

Theorem 2.5 to the function gx,y,p, we have

0 
✓Z 1

�
w (s) ds

◆
kykp +

 Z �

0
w (s) ds

!
kxkp �

Z 1

0
w (t) k(1� t)x+ tykp dt

� kykp � k(1� �)x+ �ykp

1� �

Z 1

�
(1� t)w (t) dt+

k(1� �)x+ �ykp � kxkp

�

Z �

0
tw (t) dt

 1

12

h
(1� �)3 kwk1,[�,1] + �3 kwk1,[0,�]

i ��g00x,y,p
��
1,[0,1]

 1

12

"
1

4
+ 3

✓
�� 1

2

◆2
#
kwk1,[0,1]

��g00x,y,p
��
1,[0,1]

.

When the weight w is symmetrical on [0, 1] and � = 1/2, we have

0  kxkp + kykp

2

✓Z 1

0
w (s) ds

◆
�
Z 1

0
w (t) k(1� t)x+ tykp dt

� 4


kxkp + kykp

2
�
����
x+ y

2

����
p� Z 1

2

0
tw (t) dt  1

48
kwk1,[0,1/2]

��g00x,y,p
��
1,[0,1]

.

We obtain a simple inequality when w ⌘ 1 and we assume further that X is (BD)-smooth

0  1

2

����
x+ y

2

����
p

+
kxkp + kykp

2

�
�
Z 1

0
k(1� t)x+ tykp dt  1

48

��g00x,y,p
��
1,[0,1]

 1

48
p(p� 2 + k2) ky � xk2 max

n
kxkp�2 , kykp�2

o
.

4.5 Case of inner product spaces

In the case that (X, h·, ·i) is an inner product space, we have

g00x,y,p(t) = p k(1� t)x+ tykp�4 ⇥(p� 2) hy � x, (1� t)x+ tyi2 + (k(1� t)x+ tyk)2 hy � x, (1� t)x+ tyi0
⇤

 p k(1� t)x+ tykp�4 ⇥(p� 2) ky � xk2 k(1� t)x+ tyk2 + k(1� t)x+ tyk2 ky � xk2
⇤

= p(p� 1) k(1� t)x+ tykp�2 ky � xk2 ,

and specifically when p = 2,

g00x,y,2(t)  2 ky � xk2 ,
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We obtain simple inequalities when w ⌘ 1, from (3.9) and (3.11),

0  1
2

���
x+ y
2

���
p

+
kxkp + kykp

2

�
�
Z 1

0

k(1� t)x+ tykp dt  1
32

p(p� 1) ky � xk2 max
�
kxkp�2 , kykp�2 

(4.4)

and

0  1
2

���
x+ y
2

���
p

+
kxkp + kykp

2

�
�
Z 1

0

k(1� t)x+ tykp dt  1
48

p(p� 1) ky � xk2 max
�
kxkp�2 , kykp�2 .

(4.5)

In particular, when p = 2

0  1

2

"����
x+ y

2

����
2

+
kxk2 + kyk2

2

#
�
Z 1

0
k(1� t)x+ tyk2 dt  1

16
ky � xk2 (4.6)

and

0  1

2

"����
x+ y

2

����
2

+
kxk2 + kyk2

2

#
�
Z 1

0
k(1� t)x+ tyk2 dt  1

24
ky � xk2 . (4.7)

This last inequality is, in fact, an equality, since

1
2

���
x+ y
2

���
2

+
kxk2 + kyk2

2

�
�
Z 1

0

k(1� t)x+ tyk2 dt = 1
2


1
4
(kxk2 + kyk2 + 2 hx, yi) + kxk2 + kyk2

2

�

�
Z 1

0

[(1� t)2 kxk2 + 2t(1� t) hx, yi+ t2 kyk2]dt

=
1
8
(3 kxk2 + 3 kyk2 + 2 hx, yi)� 1

3
(kxk2 + kyk2 + hx, yi)

=
1
24

(kxk2 + kyk2 � 2 hx, yi) = 1
24

ky � xk2 .

The above shows that (4.5) is sharp, and consequently (2.6), (2.7), (3.2), (3.10), and (3.11), are

also sharp.

We again consider p = 2, and we further consider the weight w (t) =
��t� 1

2

�� , t 2 [0, 1] , as in

Example 3.1, then (3.3) becomes

0  1

12

"
kxk2 + kyk2 +

����
x+ y

2

����
2
#
�
Z 1

0

����t�
1

2

���� k(1� t)x+ tyk2 dt  1

64
ky � xk2 .

We conjecture that the above bound is not sharp.

We again consider p = 2 with the weight w (t) = t (1� t) , t 2 [0, 1] , as in Example 3.2, then (3.5)

becomes

0  1

96

"
3(kxk2 + kyk2) + 10

����
x+ y

2

����
2
#
�
Z 1

0
t (1� t) k(1� t)x+ tyk2 dt  1

96
ky � xk2 .

We conjecture that the above bound is not sharp.
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ABSTRACT

In this paper, we present semilocal convergence of Steffensen-

like method for approximating zeros of a vector field in

Riemannian manifolds. We establish the convergence of

Steffensen-like method under Lipschitz continuity condition

on first order covariant derivative of a vector field. Finally,

two examples are given to show the application of our theo-

rem.

RESUMEN

En este artículo, presentamos la convergencia semilocal del

método de tipo Steffensen para aproximar los ceros de un

campo de vectores en una variedad Riemanniana. Estable-

cemos la convergencia del método de tipo Steffensen bajo

la condición de continuidad Lipschitz de la derivada cova-

riante de primer orden de un campo de vectores. Finalmente,

damos dos ejemplos para mostrar la aplicabilidad de nuestro

teorema.
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1 Introduction

There are many problems in applied sciences and other including engineering, optimization, dy-

namic economic system, physics, biological problems which is formulated in an equation by using

mathematical modeling to find the zeros of equations (see for example [7, 9, 10, 17, 19] and the

references therein). To solve the nonlinear equations many types of iterative methods have been

studied in Banach spaces. The most famous second order iterative method to solve a non-linear

equation in Banach space is Newton’s method. Recently, attention has been paid in studying

iterative methods in Riemannian manifolds. There are many types of numerical methods that

have been studied in manifolds which arise in many contexts. Some problems including eigen-

value problem, minimization problems with orthogonality constraints, optimization problems with

equality constraints, invariant subspace computations (see for example [1–3,6–8,12–15,21] and the

references therein). To solve this problem, we have to find the zeros of a vector field in Riemannian

manifolds. Generally convergence of iterative methods are usually centered on two types: semilo-

cal and local convergence analysis. The convergence analysis which provides information around

a solution and calculates the radius of convergence, it is local and when the convergence analysis

provides information around an initial point, it is semilocal. The Steffensen-like method [5] which

is second order method in Banach space is defined as:

x0 2 ⌦,

yn�1 = xn�1 � aM(xn�1), a 2 R+, n 2 N,

zn�1 = xn�1 + bM(xn�1), b 2 R+,

xn = xn�1 � [yn�1, zn�1;M]�1M(xn�1),

9
>>>>>>=

>>>>>>;

(1.1)

where M is a nonlinear operator defined in an open convex subset ⌦ of a Banach space B into itself

and M is first Fréchet differentiable in ⌦. The computational efficiency of Steffensen-like method is

the same as Newton’s method, when it is applied to find the solution of finite dimensional system

of nonlinear equations. The convergence of this second order method in Banach space has been

studied in [5]. As motivation, the numerical solution of the vector field

G(u1, u2, u3) = (�u2, u1 � u1u
2
3, u1u2u3)

using Newton’s and Euler-Chebyshev’s method on R3 is difficult to find as the Jacobian is a non-

invertible matrix at the point (0, 0,�1)T , but using the algorithm given in [11] such singularity is

found on the two-dimensional sphere S2. In this paper, we extend the method (1.1) to the case of

equations in Riemannian manifolds to find the singular point of a vector field.

The paper is organized as follows: Section 2, contains all the necessary background on fundamental

properties and notation of Riemannian manifolds. In Section 3, we present the semilocal conver-
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gence of Steffensen-like method under Lipschitz continuity condition on the first order covariant

derivative of vector field. In Section 4, two examples are given to show the application of our

theorem. Finally, in Section 5, some brief conclusions are given.

2 Preliminaries

In this section, we introduce some basic definitions and properties of Riemannian manifolds (for

more details see [16,18,20]).

Let Q be a real n-dimensional Riemannian manifold, X(Q) be a set of all vector fields of class C1

on Q, TuQ be a tangent space of Q at u, and TQ be a tangent bundle defined as TQ =
S

u2Q
TuQ.

Suppose Q is equipped with a Riemannian metric h ., .i with corresponding norm k · k. The arc

length of piecewise smooth curve  : [0, 1] ! Q joining u to v is defined by l( ) =
R 1
0 k 0(z)kdz

and the Riemannian distance joining u to v is defined by d(u, v) = inf l( ). Let D(Q) be the ring

of real-valued functions of class C1 defined on Q. An affine connection r on Q is a map

r : X(Q)⇥ X(Q) �! X(Q)

(X,G) 7�! rXG

which satisfies the properties

(i) rfX+gGV = frXV+ grGV.

(ii) rX(G+V) = rXG+rXV.

(iii) rX(fG) = frXG+X(f)G,

where X,G,V 2 X(Q) and f, g 2 D(Q). The covariant derivative of G determined by the connec-

tion r defines at each point u 2 Q a linear application as

DG(u) : TuQ �! TuQ

v 7�! DG(u)(v) = rXG(u),

where G 2 X(Q) of class C1 on Q and X is a vector field that satisfies X(u) = v. We define the

open and closed geodesic ball with centre u and radius v respectively, as

V (u, v) = {t 2 Q : d(u, t) < v} and V [u, v] = {t 2 Q : d(u, t)  v}.

A parametrized curve  : I ! Q is said to be a geodesic at t0 2 I if r 0(t) 
0(t) = 0 in the point

t0. If  is a geodesic at t, for all t 2 I, we say that  is a geodesic. If [p, q] ✓ I, the restriction of

 to [a, b] is called a geodesic segment joining  (p) to  (q). By the Hopf-Rinow theorem, if Q is
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complete metric space then for any u, t 2 Q there exists a geodesic  , called minimizing geodesic

joining u to t with

l( ) = d(u, t).

Also, if v 2 TuQ, then there exists a unique minimizing geodesic  such that  (0) = u and

 0(0) = v. The point  (1) is called the image of v by the exponential map at u, i.e.

expu : TuQ �! Q

such that expu(v) =  (1) and for all p 2 [0, 1],  (p) = expu(pv). Let  be a piecewise smooth

curve, then for any x, y 2 R, the parallel transport along  is a mapping from T (x)Q to T (y)Q.

It is denoted by M ,.,. and given by

M ,x,y : T (x)Q �! T (y)Q

v 7�! V ( (y)),

where V is the unique vector field along  which satisfies r 0(t)V = 0 and V ( (x)) = v. It is

easy to show that M ,x,y is linear and one-to-one. Therefore M ,x,y : T (x)Q ! T (y)Q is an

isomorphism and inverse of parallel transport is denoted by M ,y,x. Thus M ,x,y is an isometry

between T (x)Q and T (y)Q. For i 2 N, we define Mi
 as

Mi
 ,x,y : (T (x)Q)i �! (T (y)Q)i,

where

Mi
 ,x,y(u1, u2, . . . , ui) = (M ,x,y(u1),M ,x,y(u2), . . . ,M ,x,y(ui)).

It has the important properties:

M�1
 ,y,x = M ,x,y, M ,x,y �M ,y,z = M ,x,z.

Definition 2.1. Let G 2 X(Q) of class Ck on Q and j 2 N. The covariant derivative of order j

of G is denoted by DjG and defined as:

DjG : Ck(TQ)⇥ Ck(TQ)⇥ · · ·⇥ Ck(TQ)| {z }
j-times

�! Ck�j(TQ),

where
DjG(A1, A2, . . . , Aj�1, A) = rAD

j�1G(A1, A2, . . . , Aj�1)

�
j�1X

i=1

Dj�1G(A1, A2, . . . ,rAAi, . . . , Aj�1)
(2.1)

for all A1, A2, . . . , Aj�1 2 Ck(TQ).
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Definition 2.2. Let 0 ✓ Q be an open convex set and G 2 X(Q). The covariant derivative

DG = r(.)G is Lipschitz with constant E > 0, if for any geodesic  and x, y 2 R such that

 [x, y] ✓ 0, and it holds the inequality

kM ,y,xDG( (y))M ,x,y �DG( (x))k  E

Z y

x
k 0(t)kdt,

and we write DG 2 LipE(0). If Q is finite dimensional Euclidean space, then it coincides with

Lipschitz condition for DG : Q ! Q.

Definition 2.3. Let 0 ✓ Q, be an open convex set. Suppose  is a curve in Q, [t, t+�e] ⇢ Dom( )

and G 2 X(Q) of class C0 on Q. The divided difference of first order for G on the points  (t) and

 (t+ �e) in the direction  0(t), is defined by

[ (t+ �x), (t);G] 0(t) =
1

�e
(M ,t+�e,tG( (t+ �e))�G( (t))). (2.2)

When Q is a Banach space, if  is the geodesic joining u1 and u2, such that

 (t) = u1 + t(u2 � u1), t 2 R,

then from (2.2), we obtain

[u2, u1;G](u2 � u1) = G(u2)�G(u1).

Also if DG(u) exists, then DG(u) = [u, u;G].

Proposition 2.4. The covariant derivative of G in the direction of  0(t) is defined as:

DG( (t)) 0(t) = r 0(t)G (t)

= lim
�e!0

1

�e
(M ,t+�e,tG( (t+ �e))�G( (t))),

where  is a curve on Q and G 2 X(Q) of class C1 on Q. If Q is finite dimensional Euclidean

space, then it coincides with the directional derivative in finite dimensional Euclidean space.

Next, we will show Taylor-type expansions in Riemannian manifolds which will be used in the

proof of the convergence of our iterative method.

Theorem 2.5. Let  be a geodesic in Q and G 2 X(Q) of class C1 on Q. Then

M ,t,0G( (t)) = G( (0)) +

Z t

0
M ,e,0DG( (e)) 0(e)de. (2.3)

Proof. See [4].
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3 Steffensen-like method in Riemannian manifolds

In this section, we will prove convergence and uniqueness of Steffensen-like method in Riemannian

manifolds. The method (1.1) in Riemannian manifolds has the form

u0 2 0,

Ln�1 = �aG(un�1), a 2 R+, n 2 N,

vn�1 = expun�1
(Ln�1),

 n�1(t) = expun�1
(tLn�1),

Mn�1 = bG(un�1), b 2 R+,

wn�1 = expun�1
(Mn�1),

Nn = �M n�1,1,0[vn�1, wn�1;G]�1M n�1,0,1G(un�1),

un = expun�1
(Nn).

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

(3.1)

Assume that G(u) satisfies the following conditions:

(1) kG(u0)k  ⇠,

(2) kDG(u0)�1k  ⇣0,

(3) kM�,j,iDG(�(j))M�,i,j � DG(�(i))k  K
R j
i k�0(x)kdx, where � is a geodesic such that

�[i, j] ✓ 0.

Firstly, we shall show that a operator [v0, w0;G]�1 is bounded. Let Iu0 : Tu0Q ! Tu0Q be a

identity operator,  n and ↵n be a family of minimizing geodesics such that  n(0) = un,  n(1) = vn,

↵n(0) = wn, ↵n(1) = vn for each n = 0, 1, 2, . . . , we have

kDG(u0)
�1M 0,1,0[v0, w0;G]M 0,0,1 � Iu0k  kDG(u0)

�1M 0,1,0([v0, w0;G]�DG(v0))M 0,0,1k

+ kDG(u0)
�1(M 0,1,0DG(v0)M 0,0,1 �DG(u0))k

 kDG(u0)
�1k

Z 1

0
kM↵0,1,0DG(↵0(t))M↵0,0,1 �DG(v0)kdt

+ kDG(u0)
�1kkM 0,1,0DG(v0)M 0,0,1 �DG(u0)k

 ⇣0
⇣
Kd(v0, u0) +

K

2
d(v0, w0)

⌘
 (3a+ b)

2
K⇣0⇠,

if (3a+ b)K⇠⇣0 < 2, then the operator M 0,1,0[v0, w0;G]M 0,0,1 is invertible and

k[v0, w0;G]�1k  2⇣0
2� (3a+ b)K⇠⇣0

= c.
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Now, we define the polynomial

z(f) =
L

2
f2 � f

c
+ ⇠, L = K

✓
1 +

3a+ b

c

◆
, f 2 [0, f 0]. (3.2)

Let f⇤ =
1�

p
1� 2L⇠c2

Lc
and f⇤⇤ =

1 +
p
1� 2L⇠c2

Lc
be two positive roots of z(f) such that

0 < f⇤  f⇤⇤ < f 0 if L⇠c2  1
2 . Also for all n � 0, define the sequences

fn+1 = fn � z(fn)

z0(fn)
, f0 = 0,

⇣n+1 =
⇣0

1� ⇣0Kd(un+1, u0)
.

(3.3)

Before proving the convergence of iterative method firstly we will prove some lemmas which will

be used to prove the theorem.

Lemma 3.1. Let G 2 X(Q) of class C1 on Q, then for any n 2 N, we have

M�,1,0G(un) =
⇣Z 1

0

�
M�,1,0DG(�(t))M�,0,1 �DG(un�1)

�
dt

+
�
DG(un�1)�M n�1,1,0[vn�1, wn�1;G]M n�1,0,1

�⌘
Nn,

where � is a family of minimizing geodesics such that �(0) = un�1, �(1) = un.

Proof. We know that

[�(s+ h),�(s);G]�
0
(s) =

1

h

⇣
M�,s+h,sG(�(s+ h))�G(�(s))

⌘
,

put s = 0 and h = 1 in above equality, we get

[un, un�1;G]�
0
(0) = M�,1,0G(un)�G(un�1).

Since �(t) = expun�1
(tNn), we have �

0
(0) = Nn.

We obtain that

[un, un�1;G]Nn = M�,1,0G(un)�G(un�1). (3.4)

By (3.1), we have

Nn = �M n�1,1,0[vn�1, wn�1;G]�1M n�1,0,1G(un�1)

or

G(un�1) = �M n�1,1,0[vn�1, wn�1;G]M n�1,0,1Nn. (3.5)
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By (3.4) and (3.5), we obtain

M�,1,0G(un) =
⇣
[un, un�1;G]�M n�1,1,0[vn�1, wn�1;G]M n�1,0,1

⌘
Nn

=

 Z 1

0

�
M�,1,0DG(�(t))M�,0,1 �DG(un�1)

�
dt

+
�
DG(un�1)�M n�1,1,0[vn�1, wn�1;G]M n�1,0,1

�
!
Nn.

Lemma 3.2. Suppose the sequence {fn} is generated by (3.3). If L⇠c2  1
2 and f 2 [0, f⇤], then

the sequence {fn} is increasing and bounded above. Hence converges to f⇤.

Proof. We define the function h by

h(f) = f � z(f)

z0(f)
.

Then differentiating both sides, we get

h0(f) =
z(f)z00(f)
�
z0(f)

�2 ,

as z(f) � 0, z00(f) > 0, z0(f) < 0 in [0, f⇤]. We have

h0(f) =
z(f)z00(f)
�
z0(f)

�2 � 0, 8f 2 [0, f⇤].

It shows that the function h is increasing on [0, f⇤]. So, if fk 2 [0, f⇤] for some k 2 N, then

fk  fk � z(fk)

z0(fk)
= fk+1

and

fk+1 = fk � z(fk)

z0(fk)
 f⇤ � z(f⇤)

z0(f⇤)
= f⇤.

Thus, it completes the proof of Lemma 3.2.

Now we can demonstrate the convergence of our method.

Theorem 3.3. Let Q be a complete Riemannian manifold, 0 ✓ Q be an open convex set and

G 2 X(Q) satisfies the conditions (1)� (3) with:

(3a+ b)⇠K⇣0 < 2, L⇠c2  1

2
, ⇣0Kf⇤ < 1, K⇣0(3f

⇤ + ⇠ + f⇤⇤) < 2, V (u0, f
⇤) ✓ 0.

Then, the method given by (3.1) converges to a singular point u⇤ of the vector field G in V [u0, f⇤]

and the solution u⇤ is unique in V [u0, f⇤⇤ + ⇠].
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Proof. To prove the theorem, at first we shall prove some conditions for all i = 0, 1, 2, . . .

(C1) ui 2 V [u0, f⇤],

(C2) vi 2 V [u0, f⇤],

(C3) wi 2 V [u0, f⇤],

(C4) kDG(ui)�1k  ⇣i.

For i = 0, (C1) and (C4) are trivial and since

d(v0, u0) = a⇠  f⇤, d(w0, u0) = b⇠  f⇤,

therefore (C1)� (C4) are true for i = 0. Now we will prove for i 2 N. We have

d(u1, u0)  k[v0, w0;G]�1kkG(u0)k  c⇠ = f1 � f0  f⇤,

therefore u1 2 V [u0, f⇤]. By Lemma 3.1, we have

M�,1,0G(un) =

 Z 1

0

�
M�,1,0DG(�(t))M�,0,1 �DG(un�1)

�
dt

+
�
DG(un�1)�M n�1,1,0[vn�1, wn�1;G]M n�1,0,1

�
!
Nn.

For n = 1, we obtain that

kG(u1)k = kM�,1,0G(u1)k =

�����

 Z 1

0

�
M�,1,0DG(�(t))M�,0,1 �DG(u0)

�
dt

+
�
DG(u0)�M 0,1,0[v0, w0;G]M 0,0,1

�
!
N1

�����


Z 1

0
kM�,1,0DG(�(t))M�,0,1 �DG(u0)kkN1kdt

+ kDG(u0)�M 0,1,0[v0, w0;G]M 0,0,1

+M 0,1,0DG(v0)M 0,0,1 �M 0,1,0DG(v0)M 0,0,1kkN1k

 K

2
d(u1, u0)

2 + kM 0,1,0DG(v0)M 0,0,1 �DG(u0)kkN1k

+ k[v0, w0;G]�DG(v0)kkN1k

=
K

2
d(u1, u0)

2 + kM 0,1,0DG(v0)M 0,0,1 �DG(u0)kkN1k

+

Z 1

0
k
�
M↵0,1,0DG(↵0(t))M↵0,0,1 �DG(v0)

�
kkN1kdt

 K

2
d(u1, u0)

2 +
K(3a+ b)

2
kG(u0)kd(u1, u0)

 K

2
(f1 � f0)

2 +
K(3a+ b)

2
z(f0)(f1 � f0) 

L

2
(f1 � f0)

2 = z(f1).
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As the sequence (3.3) is increasing and the polynomial (3.2) is decreasing in [0, f⇤], we have

d(v1, u0)  d(u1, u0) + d(v1, u1) = d(u1, u0) + kL1k = d(u1, u0) + akG(u1)k  f⇤,

d(w1, u0)  d(u1, u0) + d(w1, u1) = d(u1, u0) + kM1k = d(u1, u0) + bkG(u1)k  f⇤,

so that v1, w1 2 V [u0, f⇤]. We suppose that ui, vi�1, wi�1 2 V [u0, f⇤], for i = 2, 3, 4, . . . , n. Then

we will prove for i = n+ 1. Since

z(fn) =

Z 1

0

⇣
z0
�
fn�1 + x(fn � fn�1)

�
� z0(fn�1)

⌘
dx(fn � fn�1)

= L

Z 1

0
x(fn � fn�1)

2dx =
L

2
(fn � fn�1)

2,

we have kG(un)k  z(fn), for all n 2 N, as

kG(un)k = kM�,1,0G(un)k =

�����

 Z 1

0

�
M�,1,0DG(�(t))M�,0,1 �DG(un�1)

�
dt

+
�
DG(un�1)�M n�1,1,0[vn�1, wn�1;G]M n�1,0,1

�
!
Nn

�����


Z 1

0
kM�,1,0DG(�(t))M�,0,1 �DG(un�1)kkNnkdt

+ kDG(un�1)�M n�1,1,0[vn�1, wn�1;G]M n�1,0,1

+M n�1,1,0DG(vn�1)M n�1,0,1 �M n�1,1,0DG(vn�1)M n�1,0,1kkNnk

 K

2
d(un, un�1)

2 + kM n�1,1,0DG(vn�1)M n�1,0,1 �DG(un�1)kkNnk

+ k[vn�1, wn�1;G]�DG(vn�1)kkNnk

=
K

2
d(un, un�1)

2 + kM n�1,1,0DG(vn�1)M n�1,0,1 �DG(un�1)kkNnk

+

Z 1

0
k
�
M↵n�1,1,0DG(↵n�1(t))M↵n�1,0,1 �DG(vn�1)

�
kkNnkdt

 K

2
d(un, un�1)

2 +
K(3a+ b)

2
kG(un�1)kd(un, un�1)

 K

2
(fn � fn�1)

2 +
K(3a+ b)

2
z(fn�1)(fn � fn�1) 

L

2
(fn � fn�1)

2 = z(fn).

We have

d(vn, u0)  d(un, u0) + d(vn, un) = d(un, u0) + akLnk = d(un, u0) + akG(un)k  f⇤,

d(wn, u0)  d(un, u0) + d(wn, un) = d(un, u0) + bkMnk = d(un, u0) + bkG(un)k  f⇤,

so that vn, wn 2 V [u0, f⇤]. Now we will show that the operator [vn, wn;G]�1 is bounded. Let ⇡
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be a minimizing geodesic such that ⇡(0) = u0, ⇡(1) = vn. We have

kDG(u0)
�1M⇡,1,0[vn, wn;G]M⇡,0,1 � Iu0k  kDG(u0)

�1M⇡,1,0([vn, wn;G]�DG(vn))M⇡,0,1k

+ kDG(u0)
�1(M⇡,1,0DG(vn)M⇡,0,1 �DG(u0))k

 kDG(u0)
�1k

Z 1

0
kM↵n,1,0DG(↵n(t))M↵n,0,1 �DG(vn)kdt

+ kDG(u0)
�1kkM⇡,1,0DG(vn)M⇡,0,1 �DG(u0)k

 K⇣0
2

�
2(fn � f0) + (3a+ b)z(fn)

�
< 1,

therefore M⇡,1,0[vn, wn;G]M⇡,0,1 is invertible and

k[vn, wn;G]�1k = kM⇡,1,0[vn, wn;G]�1M⇡,0,1k

 kDG(u0)�1k
1� kDG(u0)�1kkM⇡,1,0[vn, wn;G]�1M⇡,0,1 �DG(u0)k

 �1

z0(fn)
.

We have

d(un+1, un)  k[vn, wn;G]�1kkG(un)k  �z(fn)

z0(fn)
= fn+1 � fn (3.6)

and

d(un+1, u0)  d(un+1, un) + d(un, u0)  fn+1 � fn + fn � f0 = fn+1 � f0  f⇤.

So that un+1 2 V [u0, f⇤]. Suppose (C4) holds for i = 1, 2, . . . , n and then we will prove for

i = n+1. Let � be a minimizing geodesic � from [0, 1] to Q such that �(0) = u0, �(1) = un+1, and

k�0(0)k = d(un+1, u0).

We obtain that

kM�,1,0DG(un+1)M�,0,1 �DG(u0)k  K

Z 1

0
k�0(0))kds = Kd(un+1, u0)  Kf⇤

and

kDG(u0)
�1kkM�,1,0DG(un+1)M�,0,1 �DG(u0)k  ⇣0Kf⇤ < 1,

as ⇣0Kf⇤ < 1. Therefore M�,1,0DG(un+1)M�,0,1 is invertible by Banach’s lemma and

kDG(un+1)
�1k = kM�,1,0DG(un+1)

�1M�,0,1k  kDG(u0)
�1k

1� kDG(u0)�1kkM�,1,0DG(un+1)M�,0,1 �DG(u0)k

 ⇣0
1� ⇣0Kd(un+1, u0)

= ⇣n+1,

therefore it holds for i = n+ 1. Thus (C1)� (C4) hold for all i 2 N.

Now we will prove the Theorem. Since {fn} is a convergent sequence and hence it is a Cauchy

sequence therefore from (3.6) the sequence {un} is also a convergent sequence and let the sequence
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{un} converges to u⇤ 2 V [u0, f⇤]. Now we will show that u⇤ is a singularity of G. As for all n 2 N,

kG(un)k  z(fn),

taking n ! 1 both sides, we get

kG(u⇤)k  z(f⇤) = 0.

Then, we have G(u⇤) = 0. Finally, we will show that the singularity is unique in V [u0, f⇤⇤ + ⇠].

Let v⇤ be another singularity of G in V [u0, f⇤⇤ + ⇠]. Let ⇢ be a minimizing geodesic from [0, 1] to

Q such that ⇢(0) = u⇤, ⇢(1) = v⇤, and k⇢0(0)k = d(u⇤, v⇤).

We obtain

kM⇢,t,0DG(⇢(t))M⇢,0,t �DG(u⇤)k  K

Z t

0
k⇢0(0)kds = Ktd(u⇤, v⇤)  Kt (d(u0, u

⇤) + d(u0, v
⇤))

and

kDG(u⇤)�1k
Z 1

0

kM⇢,t,0DG(⇢(t))M⇢,0,t �DG(u⇤)kdt 
✓

1
⇣0

�Kf⇤
◆�1 Z 1

0

Kt (d(u0, u
⇤) + d(u0, v

⇤)) dt


✓

1
⇣0

�Kf⇤
◆�1 K

2
(f⇤ + f⇤⇤ + ⇠) < 1.

It shows that the operator

T =

Z 1

0
M⇢,t,0DG(⇢(t))M⇢,0,tdt

is invertible by Banach’s lemma and we have

0 = M⇢,1,0G(v⇤)�G(u⇤) =

Z 1

0
M⇢,t,0DG(⇢(t))M⇢,0,t(⇢

0(0))dt.

So that ⇢0(0) = 0. We have 0 = k⇢0(0)k = d(u⇤, v⇤), implies that u⇤ = v⇤. Thus it completes the

proof.

Theorem 3.4. Suppose that u⇤ is a singular point of G in V [u0, f⇤], if V (u0, f⇤⇤) ✓ 0, then the

only singular point of G in V [u0, r] is u⇤, where f⇤ < r  f⇤⇤.

Proof. Let v⇤ be a singular point of G in V [u0, r]. Let ⇤ be a minimizing geodesic such that

⇤(0) = u0, ⇤(1) = v⇤. Then by (2.3), we have

M⇤,1,0G(v⇤) = M⇤,1,0G(v⇤)�G(u0) +G(u0) +DG(u0)⇤
0(0)�DG(u0)⇤

0(0)

=

Z 1

0
M⇤,t,0DG(⇤(t))M⇤,0,t⇤

0(0)dt�DG(u0)⇤
0(0) +G(u0) +DG(u0)⇤

0(0)

=

Z 1

0

�
M⇤,t,0DG(⇤(t))M⇤,0,t �DG(u0)

�
⇤0(0)dt+G(u0) +DG(u0)⇤

0(0).



CUBO
26, 3 (2024)

Steffensen-like method in Riemannian manifolds 537

Thus, we have

Ld(u0, v⇤)2

2
�Kd(u0, v⇤)2

2
� kG(u0) +DG(u0)⇤

0(0)k � 1

kDG(u0)�1kkDG(u0)
�1G(u0) + ⇤0(0)k

� 1

⇣0

⇣
k⇤0(0)k � kDG(u0)

�1G(u0)k
⌘
�
✓
d(u0, v⇤)

⇣0
� ⇠

◆
�
✓
d(u0, v⇤)

c
� ⇠

◆
.

Therefore

z(d(u0, v
⇤)) =

Ld(u0, v⇤)2

2
� d(u0, v⇤)

c
+ ⇠ � 0.

Since d(u0, v⇤)  r  f⇤⇤, we have d(u0, v⇤)  f⇤, hence by Theorem 3.3, u⇤ = v⇤.

4 Numerical examples

In this section, two examples are given to show the application of our theorem.

Example 4.1. Let us consider the vector field G from 0 = (�1, 1)3 ✓ Q = R3 to 0 = (�1, 1)3

given by

G

0

BB@

u1

u2

u3

1

CCA =

0

BB@

eu1 � 1

u2
2 + u2

u3

1

CCA

with the max norm k · k1. For the point u = (u1, u2, u3)T , the first and second Fréchet derivatives

of G are:

DG(u) =

2

664

eu1 0 0

0 2u2 + 1 0

0 0 1

3

775 , D2G(u) =

2

664

eu1 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0

3

775 .

Initially for u0 = (�0.005,�0.005,�0.005)T , we obtain

kG(u0)k = max(|� 0.005|, |� 0.005|, |� 0.005|) = 0.005 = ⇠,

kDG(u0)
�1k = 1.0101 = ⇣0, kD2G(u)k = max(0.995, 2, 0) = 2 = K.

Now, for a = 1, b = 1, all the assumptions of the convergence theorem are satisfied and the

Steffensen-like method can be applied to get the desired singular point.

Example 4.2. Let us consider the vector field G from R2 to R2 given by

G

0

@u1

u2

1

A =

0

@
cosu1+4u1

4

u2

1

A
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with the max norm k · k1. For the point u = (u1, u2)T , the first and second Fréchet derivatives of

G are:

DG(u) =

2

4
� sinu1+4

4 0

0 1

3

5 , D2G(u) =

2

4
� cosu1

4 0 0 0

0 0 0 0

3

5 .

Initially for u0 = (0, 0)T , we obtain

kG(u0)k =
1

4
= ⇠, kDG(u0)

�1k = 1 = ⇣0, kD2G(u)k  1

4
= K.

Now, for a = 1, b = 1, all the assumptions for convergence are satisfied and the Steffensen-like

method can be applied to get the desired singular point.

5 Conclusion

In this paper, we have studied the semilocal convergence of Steffensen-like method for approximat-

ing the zeros of a vector field in Riemannian manifolds and established convergence theorem under

Lipschitz continuity condition on the first order covariant derivative of a vector field. Finally, two

examples are given to show the application of our theorem.
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ABSTRACT

In this article, we want to discuss variational methods such

as the Mountain pass theorem and the Symmetric Mountain

pass theorem, without the Ambrosetti-Rabinowitz condition.

We prove the existence and multiplicity of nontrivial weak

solutions for the problem of the following form

8
>>>>>>>>>><

>>>>>>>>>>:

�
✓
↵� �

Z

⌦

1
'(x)

|r�|'(x)dx
◆
�'(x)� + |�| (x)�2�

= �⌘(x, �),

x 2 ⌦,✓
↵� �

Z

@⌦

1
'(x)

|r�|'(x) dx
◆
|r�|'(x)�2 @�

@⌫
= 0

x 2 @⌦,

where ↵ � � > 0, �'(x)� is the '(x)-Laplacian operator, ⌦

is a smooth bounded domain in RN
with smooth boundary

@⌦ and ⌫ is the outer unit normal to @⌦, '(x), (x) 2 C(⌦̄)

with 1 < '(x) < N, '(x) <  (x) < '⇤(x) :=
N'(x)

N � '(x)
,

� > 0 is a real parameter and ⌘(x, t) 2 C(⌦̄⇥ R,R).
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RESUMEN

En este artículo discutimos métodos variacionales, como el

teorema del paso de la montaña y el teorema simétrico

del paso de la montaña, sin la condición de Ambrosetti-

Rabinowitz. Demostramos la existencia y multiplicidad de

soluciones débiles no triviales para el problema de la siguiente

forma

8
>>>>>>>>>><

>>>>>>>>>>:

�
✓
↵� �

Z

⌦

1
'(x)

|r�|'(x)dx
◆
�'(x)� + |�| (x)�2�

= �⌘(x, �),

x 2 ⌦,✓
↵� �

Z

@⌦

1
'(x)

|r�|'(x) dx
◆
|r�|'(x)�2 @�

@⌫
= 0

x 2 @⌦,

donde ↵ � � > 0, �'(x)� es el '(x) operador Laplaciano, ⌦

es un dominio acotado y suave en RN
con borde suave @⌦ y

⌫ es la normal unitaria exterior a @⌦, '(x), (x) 2 C(⌦̄) con

1 < '(x) < N, '(x) <  (x) < '⇤(x) :=
N'(x)

N � '(x)
, � > 0 es

un parámetro real y ⌘(x, t) 2 C(⌦̄⇥ R,R).

Keywords and Phrases: Generalized Lebesgue-Sobolev spaces, weak solutions, mountain pass theorem, symmet-

ric mountain pass theorem.
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1 Introduction

In this article, we consider the following problem

8
>><

>>:

�
✓
↵� �

R
⌦

1

'(x)
|r�|'(x) dx

◆
�'(x)� + |�| (x)�2� = � ⌘(x, �), x 2 ⌦,

✓
↵� �

R
@⌦

1

'(x)
|r�|'(x) dx

◆
|r�|'(x)�2 @�

@⌫
= 0, x 2 @⌦,

(1.1)

where ↵ � � > 0, �'(x)� is the '(x)-Laplacian operator, defined as �'(x)� := div(|r�|'(x)�2r�) =
PN

i=1

✓
|r�|'(x)�2 @�

@xi

◆
, ⌦ is a smooth bounded domain in RN with smooth boundary @⌦ and

⌫ is the outer unit normal to @⌦ and '(x), (x) 2 C(⌦̄) with 1 < '(x) < N , '(x) <  (x) <

'⇤(x) :=
N'(x)

N � '(x)
, � > 0 is a real parameter. We define 'l and 's for convenience as follows:

'l := inf⌦ '(x) and 's := sup⌦ '(x), for all '(x) 2 C(⌦̄). The function ⌘(x, t) 2 C(⌦̄ ⇥ R,R)
satisfies:

(⌘1) |⌘(x, t)|  c(1 + |t|r(x)�1), 8(x, t) 2 ⌦⇥ R, where c > 0 and '(x) < r(x) < '⇤(x),

(⌘2) lim
t!0

⌘(x, t)

|t|'(x)�2t
= 0, uniformly a.e. x 2 ⌦,

(⌘3) lim
|t|!1

⌘(x, t)

|t|'s
= +1, uniformly a.e. x 2 ⌦,

(⌘4) there exists a constant c0 > 0 such that Ĥ(x, t)  Ĥ(x, s) + c0 for each x 2 ⌦, 0 < |t| < s,

where Ĥ(x, t) := t ⌘(x, t)� 'sH(x, t) and H(x, t) :=
R t
0 ⌘(x, s)ds,

(⌘5) ⌘(x,�t) = �⌘(x, t) for all (x, t) 2 ⌦⇥ R.

In addition to the conditions given for ⌘, the functions '(x), (x), r(x) must satisfy the following

condition, which we call the (' r)-condition:

1 < 'l < '(x) < 's <  l <  (x) <  s < 2'l < rl < r(x) < rs < '⇤(x).

Sobolev spaces are essential in contemporary analysis, especially in the study of partial differential

equations (PDEs) and functional analysis. These spaces generalize the classical concepts of dif-

ferentiability and integrability, offering a more adaptable structure for analyzing functions whose

derivatives might not be classically well-defined. By incorporating weak derivatives, Sobolev spaces

allow for the examination of broader issues in areas such as mathematical physics, fluid dynamics,

and engineering applications, see [1, 4, 5, 7–9,12,20,21,26,27,32,34,38].

The necessity of Sobolev spaces arises from their ability to handle irregularities and discontinuities

in functions that appear naturally in real-world problems. For instance, solutions to PDEs often

lack classical differentiability but possess weak derivatives that allow their analysis within Sobolev
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spaces. This makes them indispensable in addressing variational problems and boundary value

problems.

Kirchhoff’s problems, named after the German physicist Gustav Kirchhoff [28], are fundamental in

the study of mechanics and mathematical physics, particularly in understanding wave propagation

and elasticity theory. Kirchhoff’s equations describe the motion of elastic surfaces and play a key

role in modeling vibrating systems, such as strings, membranes, and plates. Recent research in this

field has focused on nonlinear versions of Kirchhoff’s equations, particularly in higher dimensions,

where the complexity of the problem increases, see [2, 6, 10,11,14,17–19,24,25,31,34,37].

Variational methods have a relatively long history. Many scientists have studied in this field and

have achieved many successes. Due to the applicability of this method in experimental sciences, it

has always been of interest [?, 3, 8, 13, 15, 16, 22, 23, 26, 29, 33, 35, 36]. In these methods, especially

those used to solve boundary value problems, the Palais-Smale condition ((PS)-condition in short)

plays a crucial role in ensuring the existence of critical points, which correspond to solutions of the

problem. This condition provides a framework for the analysis of functionals in infinite-dimensional

spaces, such as Sobolev spaces. On the other hand, the Cerami condition ((C)-condition in short)

is a variation of the (PS)-condition that is particularly useful in dealing with problems where the

(PS)-condition might not hold. This modified condition is often more applicable in certain classes

of problems, particularly those involving non-compact domains or complex geometries.

Now we state our main results.

Theorem 1.1. Suppose (⌘1)� (⌘4) and the (' r)-condition hold. Then problem (1.1) has at least

a nontrivial weak solution for all � < �0 (�0 which has been given in Section 3).

Theorem 1.2. Suppose (⌘1), (⌘2), (⌘4), (⌘5) and the (' r)-condition hold. Then problem (1.1) has

infinitely many weak solutions for all � < �0 (�0 which has been given in Section 3).

To prove our results, we will use inequalities and applied theorems such as Hölder and Poincaré

inequalities and the embedding, Mountain pass and Symmetric Mountain pass theorems.

2 Preliminary results

In this section, we recall some important definitions and essential characteristics of the generalized

Lebesgue-Sobolev spaces L'(x)(⌦) and W 1,'(x)(⌦) where ⌦ ⇢ RN is an open set. In this regard,

we refer readers to the book of Musielak [32] and the papers [20,21]. Set

C+(⌦̄) := {h : h 2 C(⌦̄), h(x) > 1 for all x 2 ⌦̄},

and for each '(x) 2 C+(⌦̄)
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L'(x)(⌦) =

⇢
� : a measurable real-valued function such that

Z

⌦
|�(x)|'(x) dx < 1

�
,

is the definition of variable exponent Lebesgue space, that by mentioned the following norm (so-

called Luxemburg norm) is reflexive and separable Banach space

k�k'(x) := inf

(
µ > 0;

Z

⌦

����
�(x)

µ

����
'(x)

dx  1

)
.

These spaces are similar to classical Lebesgue spaces in many aspects [35]:

a) If 0 < |⌦| < 1 and '1(x),'2(x) are variable exponents so that '1(x)  '2(x) a.e. x 2 ⌦,

then there is a continuous embedding

L'2(x)(⌦) ,! L'1(x)(⌦).

b) The Hölder inequality holds, i.e., if L'
0(x)(⌦) is a conjugate of L'(x)(⌦), where

1

'(x)
+

1

'0(x)
= 1, we have

����
Z

⌦
uv dx

���� 
✓

1

'l

+
1

'0
l

◆
kuk'(x)kvk'0(x), 8u 2 L'(x)(⌦), 8v 2 L'

0(x)(⌦).

The modular plays an essential role in manipulating the L'(x) spaces and is defined by the

following relation, ⇢'(x) : L'(x) ! R;

⇢'(x)(�) =

Z

⌦
|�|'(x)dx.

Proposition 2.1 ([20]). If �, �n 2 L'(x)(⌦) and 's < +1, then the following relations hold

(1) k�k'(x) > 1 =) k�k'l

'(x)  ⇢'(x)(�)  k�k's

'(x);

(2) k�k'(x) < 1 =) k�k's

'(x)  ⇢'(x)(�)  k�k'l

'(x);

(3) k�k'(x) < 1 (respectively, = 1; > 1) () ⇢'(x)(�) < 1 (respectively, = 1; > 1);

(4) k�nk'(x) ! 0 (respectively, ! +1) () ⇢'(x)(�) = 0 (respectively, ! +1);

(5) lim
n!1

k�n � �k'(x) = 0 () lim
n!1

⇢'(x)(�n � �) = 0;

(6) For � 6= 0, k�k'(x) = � () ⇢
⇣�
�

⌘
= 1.

Definition 2.2 ([21]). If ⌦ ⇢ RN
, the Sobolev space with variable exponent W 1,'(x)(⌦) is defined

as

W 1,'(x)(⌦) := {� : ⌦ ! R : � 2 L'(x)(⌦), |r�| 2 L'(x)(⌦)},
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endowed with the following norm

k�kW 1,'(x) := |||�||| = k�k'(x) + kr�k'(x),

or equivalently

|||�||| = inf

8
<

:µ > 0,

Z

⌦

kr�(x)k'(x)'(x) + k�k'(x)'(x)

µ'(x)
dx  1

9
=

; .

Proposition 2.3 ([20]). The Poincaré inequality in W 1,'(x)(⌦) holds, that is, there exists a positive

constant c so that

k�k'(x)  ckr�k'(x), 8� 2 W 1,'(x)(⌦). (2.1)

Proposition 2.4 (Sobolev embedding [21]). If '(x), (x) 2 C+(⌦̄) and 1   (x)  '⇤(x) for

each x 2 ⌦̄, then there exists a continuous embedding

W 1,'(x)(⌦) ,! L (x)(⌦). (2.2)

If 1 <  (x) < '⇤(x), the continuous embedding is compact.

In the sequel, the constant cemb represents the Sobolev embedding quantity, and we denote by

X := W 1,'(x)(⌦);X⇤ = (W 1,'(x)(⌦))⇤, the dual space and h·, ·i, the dual pair.

Lemma 2.5 ([21]). Suppose

J(�) =

Z

⌦

1

'(x)
|r�|'(x) dx, 8� 2 X,

then J(�) 2 C1(X,R) and the derivative operator J 0
of J is

hJ 0(�),#i =
Z

⌦
|r�|'(x)�2r�r# dx, 8�,# 2 X

and the following relations hold:

(1) J is a convex functional,

(2) J 0 : X ! X⇤
is a strictly monotone operator and bounded homeomorphism,

(3) J 0
is a mapping of type (S+), it means, �n * � (weakly) and lim

n!+1
suphJ 0(�), �n � �i  0,

imply �n ! � (strongly) in W 1,'(x)
0 (⌦).
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Definition 2.6. � 2 X is a weak solution of problem (1.1), if

✓
↵� �

Z

⌦

1

'(x)
|r�|'(x) dx

◆Z

⌦
|r�|'(x)�2r�r⌫ dx+

Z

⌦
|�| (x)�2�⌫ dx = �

Z

⌦
⌘(x, �)⌫ dx,

8⌫ 2 X.

The energy functional related to our problem, J� : X ! R such that

J�(�) = ↵

Z

⌦

1

'(x)
|r�|'(x) dx� �

2

✓Z

⌦

1

'(x)
|r�|'(x) dx

◆2

+

Z

⌦

1

 (x)
|�| (x) dx� �

Z

⌦
H(x, �) dx, 8� 2 X, (2.3)

which is also well defined and of class C1
in (X,R).

Now we define J 0
� as the derivative operator of J� in the weak sense, by the following formula,

hJ 0
�(�), ⌫i =

✓
↵� �

Z

⌦

1

'(x)
|r�|'(x) dx

◆Z

⌦
|r�|'(x)�2r�r⌫ dx

+

Z

⌦
|�| (x)�2�⌫ dx� �

Z

⌦
⌘(x, �)⌫ dx, 8�, ⌫ 2 X. (2.4)

A critical point of J� is clearly a weak solution of problem (1.1).

Definition 2.7. If (X, k · k) is a real Banach space and J 2 C1(X,R), then we can say that

J ensures Cerami-condition in level c ((C)c-condition in short), if for all sequence {�n} ⇢ X

satisfying

J(�n) ! c and kJ 0(�n)kX⇤(1 + k�nkX) ! 0, (2.5)

then, {�n} contains a convergent subsequence.

If this condition holds for each c 2 R, it can be called (C)-condition.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we will use the following Mountain pass theorem.

Theorem 3.1 (Mountain pass theorem [8]). Let X be a real Banach space, let J� : X ! R as

J� 2 C1(X,R) that ensures the (C)c-condition and J�(0) = 0, such that

(a) there exists R > 0 and ↵ > 0, so that J�(�) � ↵ for each � 2 X with |||�||| = R,

(b) there is a function e 2 X such that |||e||| > R and J�(e)  0.

So, J� has a critical value c � ↵, that is � 2 X, such that J�(�) = c and J 0
�(�) = 0 in X⇤

.
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First, we prove that J� has the geometry of the above Mountain pass theorem.

Lemma 3.2. (a) Under the condition (⌘3) the functional J� is unbounded from below.

(b) Under the conditions (⌘1) and (⌘2), � = 0 is a strict local minimum for J�.

Proof. (a) By (⌘3), we have

8M > 0, 9cM > 0; ⌘(x, t) � M |t|'s � cM , 8x 2 ⌦, t 2 R. (3.1)

If v 2 X for v > 0, and (3.1), we have

J�(tv) = ↵

Z

⌦

t'(x)

'(x)
|rv|'(x) dx� �

2

✓Z

⌦

t'(x)

'(x)
rv|'(x) dx

◆2

+

Z

⌦

t (x)

 (x)
|v| (x) dx

� �

Z

⌦
H(x, tv) dx

 ↵t's

Z

⌦

1

'(x)
|rv|'(x) dx� �

2
t2'l

✓Z

⌦

1

'(x)
|rv|'(x) dx

◆2

+ t s

Z

⌦

1

 (x)
|v| (x) dx

�M�t's

Z

⌦
|v|'(x) dx+ �cM |⌦| ! �1, as t ! +1,

since 's <  s < 2'l , thus, J� is unbounded from below.

(b) According to the conditions (⌘1) and (⌘2), we have

8" > 0, 9c" > 0; H(x, t)  "|t|'(x) + c"|t|r(x), 8(x, t) 2 ⌦⇥ R.

Therefore, if � 2 X with |||�|||  1, by Poincaré inequality and Sobolev embedding (2.2), we

have

J�(�) = ↵

Z

⌦

1

'(x)
|r�|'(x) dx� �

2

✓Z

⌦
|r�|'(x) dx

◆2

+

Z

⌦

1

 (x)
|�| (x) dx� �

Z

⌦
H(x, �) dx,

� ↵

's

Z

⌦
|r�|'(x)dx� �

2'2
l

✓Z

⌦
|r�|'(x) dx

◆2

� "�

Z

⌦
|�|'(x) dx� c"�

Z

⌦
|�|r(x) dx

�
✓
↵

's
� c2�"

◆Z

⌦
|r�|'(x) dx� �

2'l

✓Z

⌦
|r�|'(x) dx

◆2

� c"�
⇣
k�krlr(x) + k�krsr(x)

⌘

�
✓
↵

's
� c2"�

◆
|||�|||'s � �

2'2
l

|||�|||2'l � c"�
⇣
c
r
l

emb|||�|||
r
l + crsemb|||�|||

rs
⌘

�
✓
↵

's
� c2"�

◆
|||�|||'s � �

2'2
l

|||�|||2'l � c"�
⇣
c
r
l

emb + crsemb

⌘
|||�|||rl ,

where embedding constant cemb > 0. By selecting "  ↵

2c2's�
, we have

J�(�) �
↵

2's
|||�|||'s � �

2'2
l

|||�|||2'l � c"�
⇣
c
r
l

emb + crsemb

⌘
|||�|||rl .
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By dividing the previous inequality sides on the positive value |||�|||'s and since, we know

that 's < 2'l < rl , we have

J�(�) � |||�|||'s


↵

2's
� �

2'2
l

|||�|||2'l
�'s � c"�

⇣
c
r
l

emb + crsemb

⌘
|||�|||rl�'s

�
,

now, we can choose |||�||| = R > 0, such that

↵

2's
� �

2'2
l

R2'
l
�'s � c"�

⇣
c
r
l

emb + crsemb

⌘
Rr

l
�'s > 0. (3.2)

We can infer that

c"�
⇣
c
r
l

emb + crsemb

⌘
Rrl�'s <

↵

2's
� �

2'2
l

R2'l�'s =
↵'2

l � �'sR2'l�'s

2's'2
l

,

since c" and cemb > 0, we can infer that

� <
↵'2

l � �'sR2'l�'s

2c"
⇣
c
r
l

emb + crsemb

⌘
's'2

lR
rl�'s

:= �0, (3.3)

therefore, by (3.2) and (3.3) we have

↵

2's
� �

2'2
l

R2'
l
�'s � c"�

⇣
c
r
l

emb + crsemb

⌘
Rr

l
�'s > 0, 8� 2 (0,�0).

So, there exists � > 0 so that J�(�) � � > 0 for all � 2 X with |||�||| = R. Thus, the proof

is complete.

Now, we prove that J� ensures the (C)c-condition.

Lemma 3.3. If (⌘1) � (⌘4) hold, then for all � � 0, J� ensures the (C)c-condition at any level

c 2
✓
�1,

↵2

2�

◆
.

Proof. At the beginning, we consider the boundary condition for {�n}, let {�n} ⇢ X be a (C)c

sequence related to the J�, such that

J�(�n) ! c and kJ 0
�(�n)kX⇤(1 + |||�n|||) ! 0. (3.4)

Using (⌘3) and (3.4), we can write

'sc+On(1) � 'sJ�(�n)� hJ 0
�(�n), �ni

= ↵

Z

⌦

✓
's

'(x)
� 1

◆
|r�n|'(x) dx+

Z

⌦

✓
 s

 (x)
� 1

◆
|�n| (x) dx

+ �

Z

⌦

Ĥ(x, �n) dx� �

✓Z

⌦

1
'(x)

|r�n|'(x) dx
◆✓Z

⌦


's

2'(x)
� 1

�
|r�n|'(x) dx

◆
.
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Since ↵ � � and 2'l > 's we have

'sc+On(1) � �

✓
1

's
� 1

2'l

◆✓Z

⌦
|r�n|'(x) dx

◆2

+

Z

⌦

✓
 s

 (x)
� 1

◆
|�n| (x) dx

+ �

Z

⌦
(Ĥ(x, 0)� c0) dx

� �

✓
1

's
� 1

2'l

◆
|||�n|||2'l +

Z

⌦

✓
 s

 (x)
� 1

◆
|�n| (x) dxa+ �

Z

⌦
(Ĥ(x, 0)� c0) dx,

therefore

'sc+On(1) � �

✓
1

's
� 1

2'l

◆
|||�n|||2'l +

Z

⌦

✓
 s

 (x)
� 1

◆
|�n| (x) dx+ �

Z

⌦
(Ĥ(x, 0)� c0) dx.

Since � � 0, we have

'sc+On(1) � �

✓
1

's
� 1

2'l

◆
|||�n|||2'l � �c0|⌦|,

thus

�

✓
1

's
� 1

2'l

◆
|||�n|||2'l  'sc+On(1) + �c0|⌦|.

Since 's < 2'l , � > 0 and � � 0, it is clear that {�n} is bounded in X. Then

�n * � weakly in X. (3.5)

By Sobolev embedding (2.2), we have the following compact embedding

X ,! Ls(x)(⌦) for 1  s(x) < '⇤(x). (3.6)

From (3.5) and (3.6), we can infer that

�n * � in X, �n ! � in Ls(x)(⌦), �n(x) ! �(x), a.e. in ⌦. (3.7)

Using Hölder inequality and (3.7), we have

����
Z

⌦
|�n| (x)�2�n(�n � �) dx

���� 
Z

⌦
|�n| (x)�1|�n � �| dx

 k|�n| (x)�1k  (x)
 (x)�1

k�n � �k (x) ! 0 as n ! 1,

thus Z

⌦
|�n| (x)�2�n(�n � �) dx ! 0, as n ! 1. (3.8)
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By (⌘1) and (⌘2), we have that for each " 2 (0, 1), there is c" > 0 so that

|⌘(x, �n)|  "|�n|'(x)�1 + c"|�n|r(x)�1. (3.9)

By Sobolev embedding (2.2), Hölder inequality and (3.9), we have

����
Z

⌦
⌘(x, �n)(�n � �) dx

���� 
Z

⌦
("|�n|'(x)�1|�n � �|+ c"|�n|r(x)�1|�n � �|) dx

 "k|�n|'(x)�1k '(x)
'(x)�1

k�n � �k'(x) + c""k|�n|r(x)�1k r(x)
r(x)�1

k�n � �kr(x) ! 0,

as n ! 1. Therefore Z

⌦
⌘(x, �n)(�n � �) dx ! 0, as n ! 1. (3.10)

From (3.4), we have hJ 0
�(�n), �n � �i ! 0, as n ! 1, so, we can infer that

✓
↵� �

Z

⌦

1

'(x)
|r�n|'(x) dx

◆Z

⌦
|r�n|'(x)�2r�n(r�n �r�) dx

+

Z

⌦
|�n| (x)�2�n(�n � �) dx� �

Z

⌦
⌘(x, �n)(�n � �) dx ! 0. (3.11)

From (3.8), (3.10), (3.11), we can write

✓
↵� �

Z

⌦

1

'(x)
|r�n|'(x) dx

◆Z

⌦
|r�n|'(x)�2r�n(r�n �r�) dx ! 0, as n ! 1. (3.12)

Since {�n} is bounded in X, therefore, it is necessary for the following positive sequence to converge

to a non-negative value such as �p, which means,

Z

⌦

1

'(x)
|r�n|'(x) dx ! �p � 0, as n ! 1.

Similar to the proof of Lemma 3.1 in [23], we have the sequence
⇢
↵� �

Z

⌦

1

'(x)
|r�n|'(x) dx

�
is

bounded, when n is large enough. So, it follows from (3.12) that

Z

⌦
|r�n|'(x)�2r�n(r�n �r�) dx ! 0,

as n ! 1. So, by the (S+) property (see Lemma 2.5), we get |||�n||| ! |||�||| (strongly) in X,

that means J� ensures the (C)c-condition. Moreover, considering the proof of Lemma 3.1, Lemma

3.2 and Remark 3.1 in [23], we deduce that the (C)c-condition is satisfied for c <
↵2

2�
.
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3.1 Proof of Theorem 1.1

Proof. It is clear that J�(0) = 0, by Lemma 3.3, J� ensures the (C)c-condition where c 2✓
�1,

↵2

2�

◆
. Considering Lemma 3.2, we prove that J� has the geometry of the Mountain pass

theorem, thus, all the assumptions of Mountain pass theorem are satisfied, therefore, for each

� < �0, our problem has at least a nontrivial weak solution in X.

4 Proof of Theorem 1.2

In this section, we will prove that problem (1.1) has many pairs of solutions by using the following

Symmetric Mountain pass theorem.

Theorem 4.1 ([8]). Let X be a real Banach space, and J� 2 C1(X,R) that ensures the (C)c-

condition and J�(0) = 0 and J� be an even functional, such as

(A) there exist two constants a,R > 0, so that J�(�) � a for each u 2 X with |||�||| = R,

(B) for each finite dimensional subspace E ⇢ X, there exists RE > 0 so that J�(�)  0 on E\BR.

Then J� has a sequence of critical points {�n} such that J�(�n) ! +1.

It is clear that for the even functional J�, we have J�(0) = 0 and by Lemma 3.3, J� ensures the

(C)c-condition where c 2
✓
�1,

↵2

2�

◆
. Therefore, it suffices to prove that the two conditions (A)

and (B) of the Theorem 4.1 are true for the functional J�. On the other hand by the proof of

Lemma 3.2 (a), where

a0 =
↵'2

l � �'sR2'l�'s

2c"
⇣
c
r
l

emb + crsemb

⌘
's'2

lR
rl�'s

and a = a0R's for each � 2 (0, a0), there is a > 0 so that for each � 2 X with |||�||| = R, we have

J�(�) � a > 0. Thus, it suffices to consider only the condition (B).

We use the indirect proof method, thus assume that {�n} ⇢ E such that if |||�n||| ! +1 as

n ! +1, then there is M 2 R so that it is a fixed constant, then

J�(�n) � M, 8n 2 N. (4.1)

Now, for any �n 2 E ✓ X, put Vn :=
�n

|||�n|||
. It is clear that |||Vn||| = 1. On the other hand, since

dim E < +1, we have

9V 2 E\{0}; |||Vn � V ||| ! 0.

We can infer that

Vn(x) ! V (x) a.e. x 2 ⌦, as n ! 1,
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since V (x) 6= 0 ! |�n(x)| ! +1, as n ! +1, (by (4.1)).

By (⌘3), we can infer that

lim
n!+1

H(x, �n(x))

|||�n|||'s
= lim

n!+1

H(x, �n(x))

|�n(x)|'s
|Vn(x)|'s = +1,

for all x 2 ⌦0 := {x 2 ⌦ : V (x) 6= 0} and by (⌘4), there is s0, such that

H(x, s)

|s|'s
> 1, 8x 2 ⌦ and |s| > s0. (4.2)

Now by (⌘1), we can write

9C2 > 0; |H(x, s)|  C2, 8(x, s) 2 ⌦⇥ [�s0, s0]. (4.3)

Using (4.2) and (4.3), we conclude that

9C4 2 R, H(x, s) � C4, 8(x, s) 2 ⌦⇥ R. (4.4)

Thus
H(x, �n)� C4

|||�n|||'s
� 0, 8x 2 ⌦, 8n 2 N.

Then, we have
H(x, �n)

|�n(x)|'s
|Vn(x)|'s � C4

|||�n|||'s
� 0, 8x 2 ⌦, 8n 2 N. (4.5)

Thus, by Poincaré inequality, (4.1) and (4.5), we can infer that

0  lim
n!+1

J�(�n)

|||�n|||'s

 lim
n!+1

"
↵
R
⌦

1
'(x) |r�n|

'(x) dx+
R
⌦

1
 (x) |�n|

 (x) dx

|||�n|||'s
� �

Z

⌦

H(x, �n)

|||�n|||'s
dx

#
.

Since  s > 's, and � > 0, we have

0  lim
n!+1

"
↵
R
⌦

1
'(x) |r�n|

'(x) dx

|||�n|||'s
+

R
⌦

1
 (x) |�n|

 (x) dx

|||�n||| s
� �

Z

⌦

H(x, �n)

|||�n|||'s
dx

#

 ↵

'l

+
C5

 s
� � lim

n!+1

Z

⌦

H(x, �n)� C4

|||�n|||'s
dx

 ↵

'l

+
C5

 s
� � lim inf

n!+1

Z

⌦0

H(x, �n)� C4

|||�n|||'s
dx

 ↵

'l

+
C5

 s
� � lim inf

n!+1

Z

⌦0

H(x, �n)

|�n(x)|'s
|Vn(x)|'s dx ! �1,

which is a contradiction. Then, the proof of (B) in the Theorem 4.1 is complete.
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4.1 Proof of Theorem 1.2

Proof. Now, by Theorem 4.1, we can deduce that J� has a sequence of critical points {�n} such

that J�(�n) ! +1, thus, we prove that our problem has infinitely many weak solutions and the

Theorem 1.2 is proven.
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