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ABSTRACT

Büchi sequences are sequences whose second di!erence

of squares is the sequence (2, . . . , 2), like for instance

(6, 23, 32, 39) — so they can be seen as a generalization of

arithmetic progressions. No (non-trivial) length 5 Büchi se-

quence is known to exist. Length four Büchi sequences were

parameterized by D. A. Buell in 1987. We revisit his theo-

rem, fixing the statement (about 26% of the Büchi sequences

from R. G. E. Pinch’s 1993 table were missed), and giving a

much simpler proof.

RESUMEN

Las secuencias de Büchi son secuencias para las cuales la

segunda diferencia de sus cuadrados es la sucesión (2, . . . , 2),

como por ejemplo (6, 23, 32, 39) — luego pueden ser vistas

como una generalización de las progresiones aritméticas. No

se sabe de la existencia de ninguna secuencia de Büchi (no-

trivial) de largo 5. Las secuencias de Büchi de largo 4 fueron

parametrizadas por D. A. Buell en 1987. Revisitamos este

teorema, corrigiendo el enunciado (faltan alrededor del 26%

de las secuencias de Büchi de la tabla de R. G. E. Pinch de

1993), y dando una demostración bastante más simple.

Keywords and Phrases: Representation of systems of quadratic forms, Büchi’s n-squares problem, second dif-

ference of squares.
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1 Introduction and result

Recall that the first (forward) di!erence of a sequence (yn)n is the sequence (yn+1 → yn)n, so the

second di!erence is ((yn+2 → yn+1)→ (yn+1 → yn))n = (yn+2 → 2yn+1 + yn)n. A Büchi sequence is a

sequence (x1, . . . , xM ) whose second di!erence of its sequence of squares is the constant sequence

(. . . , 2, . . . ), namely, it is a sequence which satisfy the system of Büchi equations x2
n+2 → 2x2

n+1 +

x2
n = 2, for n = 1, . . . ,M → 2. We call trivial Büchi sequence any such sequence such that

x2
n+1 = (xn±1)2 for every n = 1, . . . ,M→1. Büchi’s problem asks whether there exists an M such

that every Büchi sequence of integers of length M is trivial. It is not known whether any such M

exists, and actually no non-trivial length 5 Büchi sequence of integers is known to exist. However,

Büchi’s problem has a positive answer, namely, an M can be proved to exist, under some classical

conjectures in Number Theory — see [11] and [6]. For a general survey on Büchi’s problem and

variations, see [5] and the references therein.

Length 3 Büchi sequences of integers were characterized by D. Hensley [2,3] through a parametriza-

tion in two variables coming from the line and circle method, and later by P. Sáez and the sec-

ond author [8] using matrices. In [1], D. A. Buell builds on Hensley’s parametrization to find a

parametrized family, say by a pair (k, ω) of integers, of quadratic equations whose solutions corre-

spond to length 4 Büchi sequences of integers (BS4 in the sequel) — see Equation (1.1) below. As

J. Lipman pointed out in [4, page 4], it is not clear how to characterize the pairs (k, ω) for which

the equation is solvable.

See [7], [10] and [9] for other approaches to the problem of understanding the BS4.

In this short note, we fix two mistakes in the statement of the original theorem — see the comments

before the proof — and give a much simpler and more transparent proof.

Theorem 1.1 (D. A. Buell, 1987, revisited). A sequence ε = (x1, . . . , x4) is a Büchi sequence of

integers if and only if there exist coprime integers k and ω of opposite parity, an integer x, and a

rational number y such that 3y ↑ Z, which satisfy






x1 = x(→2ω+ 3k) + y(→3ω+ 6k)

x2 = x(→ω+ 2k) + y(→2ω+ 3k)

x3 = xk + yω

x4 = xω+ 3yk

and

(ω→ k)2x2 + (2ω2 → 6kω+ 6k2)xy + (ω→ 3k)2y2 = 1. (1.1)

The proof below allows to find easily some of the possible parameters k and ω from a given BS4
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— this was our original motivation, as this is not clear how to do it from [1]. This is also how we

realized that the possibility of having a 3 in the denominator of the y cannot be dropped, as can

be seen with the Büchi sequence (16, 87, 122, 149), for which yk = → 40
3 . Indeed, about 26% of the

sequences with some entry at most 1000 need a 3 in the denominator (see [7] for the list). This

phenomenon was overlooked in Buell’s statement, though one could detect it while going through

his intricate proof: his quotient a+t
ω→3k , line 4 before the Theorem, can actually have a 3 in the

denominator. The other issue in Buell’s original statement has to do with trivial sequences, which

cannot be put aside in the statement, as our proof shows.

Proof. If direction. When computing the second di!erence of squares of the xi, one obtains the

left hand-side of Equation (1.1) multiplied by two. So ε is a Büchi sequence. If y is an integer,

there is nothing else to prove. Otherwise, replacing y by y→

3 in Equation (1.1), then multiplying by

9 and taking modulo 3, we see that 3 divides ω, so the xi are indeed integers.

Only if direction. Assume that (x1, . . . , x4) is a Büchi sequence of integers. The idea is to pretend

that ϑ1 := xk is a variable, as well as ϑ2 := xω, ϑ3 := yk and ϑ4 := yω, so that the system of the

statement can be seen as a linear system:





x1

x2

x3

x4




=





3 →2 6 →3

2 →1 3 →2

1 0 0 1

0 1 3 0









xk

xω

yk

yω




. (1.2)

By inverting the system we get:






2ϑ1 = →x1 + 2x2 + x3

2ϑ2 = →2x1 + 3x2 + x4

6ϑ3 = 2x1 → 3x2 + x4

2ϑ4 = x1 → 2x2 + x3.

(1.3)

Observe that, since xi and xi+1 have opposite parity for each i (which can be easily seen from the

Büchi equations), ϑ1, ϑ2, 3ϑ3 and ϑ4 are integers.

If ϑ1 = ϑ2 = 0, then one can choose x = 0, and y = 1, ω = x3, k = x4
3 if 3 divides x4, and

y = 1
3 , ω = 3x3 and k = x4 if not. From (1.3), we get x2 + 2x3 → x4 = 0, which, together with the

Büchi equation x2
4 = 2x2

3 → x2
2 + 2 gives (x2 + x3)2 = 1, hence the sequence is trivial. Similarly,

if ϑ3 = ϑ4 = 0, then one can choose y = 0, x = 1, k = x3 and ω = x4, and again the sequence is

trivial. Since in both cases the sequence is trivial, we have x4 = ±x3 ± 1, so in particular, k and

ω are coprime and of opposite parity. One readily checks that (1.2) and (1.1) are satisfied in both

cases.
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We assume now that (ϑ1,ϑ2) ↓= (0, 0) and (ϑ3,ϑ4) ↓= (0, 0). A direct computation gives

12(ϑ1ϑ4 → ϑ2ϑ3) = x2
1 → 3x2

2 + 3x2
3 → x2

4 = (x2
1 → 2x2

2 + x2
3)→ (x2

2 → 2x2
3 + x2

4) = 0,

so we have

ϑ1ϑ4 = ϑ2ϑ3. (1.4)

Hence ϑ1 = 0 if and only if ϑ3 = 0, in which case we choose k = 0, ω = 1, x = ϑ2 and y = ϑ4, so

that xk = ϑ1, xω = ϑ2, yk = ϑ3 and yω = ϑ4. Similarly, ϑ2 = 0 if and only if ϑ4 = 0, in which

case we choose ω = 0, k = 1, x = ϑ1 and y = ϑ3, so that xk = ϑ1, xω = ϑ2, yk = ϑ3 and yω = ϑ4.

Assume that ϑ1ϑ2ϑ3ϑ4 ↓= 0. Let ϖ be the sign of ϑ1ϑ3. Choose x = ϖ gcd(ϑ1,ϑ2), k = ε1
x , ω = ε2

x

(so k and ω are coprime integers), and y = y→

3 , where y↑ = gcd(3ϑ3, 3ϑ4). Note that if both ϑ1 and

ϑ3 are positive, then we obtain

3ϑ3 gcd(ϑ1,ϑ2) = gcd(3ϑ1ϑ3, 3ϑ2ϑ3) = gcd(3ϑ1ϑ3, 3ϑ1ϑ4) = ϑ1 gcd(3ϑ3, 3ϑ4).

In general, we have 3ϑ3 gcd(ϑ1,ϑ2) = ϖϑ1 gcd(3ϑ3, 3ϑ4), hence

3ϑ3 =
ϖϑ1

gcd(ϑ1,ϑ2)
↔ gcd(3ϑ3, 3ϑ4) = ky↑

hence ϑ3 = yk. Since ϑ1 ↓= 0, we have ϑ4 = ε2ε3
ε1

= xω·yk
xk = yω. By inverting the system (1.3), we

see that the system (1.2) is satisfied.

Equation (1.1) comes from replacing the xi in x2
4 → 2x2

3 + x2
2 = 2 (for instance) by their expression

in terms of x, y, k and ω. Equation (1.1) implies immediately that k and ω cannot have the same

parity.

While working on this note, we realized that the solutions of (1.1) with k = ω + 1, described in

Section 5 of [1], are precisely the BS4 that were found by the second author in [10] with a di!erent

method.
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ABSTRACT

In this paper we introduce a new generalized fractional in-

tegral unifying most of previous existing fractional integrals.

Then, we prove some essential properties of this new opera-

tor under some classical assumptions. As application, we use

this novel fractional integral to establish a several inequali-

ties of Minkowski type. Our results recover a large number

of a well known inequalities in the literature.

RESUMEN

En este artículo introducimos una nueva integral frac-

cionaria generalizada, que unifica la mayoría de las inte-

grales fraccionarias existentes. Luego demostramos algunas

propiedades esenciales de este nuevo operador bajo algunas

suposiciones clásicas. Como aplicación, usamos esta nueva

integral fraccionaria para establecer varias desigualdades de

tipo Minkowski. Nuestros resultados recuperan un amplio

número de desigualdades bien conocidas en la literatura.

Keywords and Phrases: Fractional calculus, fractional integral, Riemann-Liouville integral, reverse Minkowski

inequality.
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1 Introduction

Fractional calculus has been the subject of a lot of works during the last years. Fractional models

has been used to diverse problems in various domains of science, see [43]. In fact, it is mainly

used in modeling di!erent phenomena, as mechanics [6], economy [45], human body modeling [14],

visco-elasticity [18,30], biology [28], circuits [31], material sciences [41], porous-medium equations

[36] and many other domains. In order to modeling such problems, di!erent integral operators

or di!erential operators were defined. Nevertheless, some of fractional operators defined with a

special “kernel” are used only in some cases. In [27], the authors defined a fractional integral

according to another function ω as a general integral. Choosing a particular function ω, we obtain

a pre-existing non-integer integral. This allows us to select the most adapted integral for proving

the result under examination.

In [47], Sousa-Oliveira defined a new fractional-derivative according to another function; the “ω-

Hilfer fractional derivative”. They proved many interesting properties and they presented also

a large number of integrals and derivatives as a special cases of the ω-Hilfer derivative and the

integral according to another function.

In [25], Katugampola defined the following new fractional integral

(ωIε,ϑ
a+;ϖ,kf)(x) =

ε1→ϑxk

!(ϑ)

∫
x

a

uω(1+ϖ)→1

(xω → uω)1→ε
f(u)du.

He proved that the above integral unifies six pre-existing fractional integrals.

With the numerous propositions of fractional derivatives and integrals, it was very important to

propose a new definition of fractional integral that unifies most of the pre-existing definitions. The

new generalized ω-fractional integral proposed in this paper, will be the first step in order to obtain

a single general model, which can be used to di!erent problems and to prove di!erent results only

for this general model, rather than proving similar results each time in each di!erent model. In

the first part of this paper, our purpose is to define this new fractional integral. Then, we prove

some important properties to justify the originality of this new generalization. Among other, we

show that the new operator is well defined, bounded and satisfies the semigroup property.

As application of the numerous fractional integrals proposed in the last years, a large number of

works are interested to several important inequalities for di!erent definitions of fractional integrals.

See for example [2, 8, 19, 48, 49] for the Ostrowski type inequalities, [7, 10, 16, 20, 40] for the Grüss

type inequalities, [4,11,12,17,26,35] for the Hermite-Hadamard type inequalities, [21,23,34,42,46]

for the "eby#ev type inequalities, [5,13,15,17,32,33,37–39,44] for the Minkowski type inequalities

and many others, (see [3, 29]). Such types of inequalities are very important in di!erent areas of

science, (see [32,38]).
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Motivated by the above large literature and as application of the new generalized ω-fractional

integral defined in the first part, our second aim in this work is to generalize the Minkowski type

inequalities using the new generalized ω- fractional integral. Our results recover the Minkowski type

inequalities proved in [5, 13, 15, 17, 33, 37–39] and [44]. Then, we prove di!erent other inequalities

related to the Minkowski’s inequalities.

The remainder of the paper is organized as follows. In the next section we present the definition

of the new generalized ω-fractional integral and some examples. In section three we give some

principal properties of this new operators. In section four, we prove the main results related

to Minkowski inequality and in the last section, we prove other inequalities related to the new

fractional integral.

2 Definition and examples

Definition 2.1 ([24]). Let f ↑ L1(a, b) and ω be a positive function such that its derivative is

continuous and satisfying ω↑(x) > 0, ↓x ↑ (a, b). For 1 ↔ p < ↗, we denote

Xp

ϱ
(a, b) := {f : (a, b) ↘ R, Lebesgue-measurable s.t. ≃f≃Xp

ω
< ↗},

where
∥∥f

∥∥p
X

p
ω
=

∫
b

a

|f(s)|pω↑(s)ds.

For p = ↗,

≃f≃X→
ω

= ess sup
s↓(a,b)

|ω↑(s)f(s)|.

When ω(s) = s, the space Xp

ϱ
(a, b), (1 ↔ p < ↗), is identical to Lp(a, b).

Definition 2.2. For 1 ↔ p ↔ ↗, let f ↑ Xp

ϱ
(a, b) and ω as defined in the previous Definition 2.1.

For ϑ > 0, ϖ, ϱ, ς, k, ε,↑ R, we define the following new generalized ω-fractional integral, (left side

and right side), by

Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x) =

[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

[ω(u)]ϖω↑(u) exp
(
→ ϱω(u)

)(
ω(x)→ ω(u)

)ε→1
f(u)du (2.1)

Iε,ϑ;ϱ
b→;ϖ,k,ς,ωf(x) =

[ω(x)]ϖ exp(→ϱω(x))

!(ϑ)εϑ

∫
b

x

[ω(u)]kω↑(u) exp
(
ϱω(u)

)(
ω(u)→ ω(x)

)ε→1
f(u)du (2.2)

Remark 2.3. Most of the pre-existing fractional integrals are a particular cases of integrals (2.1)

and (2.2). For example, if ω(x) = x, ϑ > 0, ϱ = 0, k = 0, ς = 0, ε > 0, ϖ = 0, then we obtain

the integral of Riemann Liouville (left sided). For a = →↗, we obtain the integral of Liouville
LIε+f(x). If a = 0 then (2.1) is the analogue of the integral of Riemann RIε+f(x). For a general

case of function ω, (2.1) is reduced to the integral of Riemann Liouville according to a function ω,
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RLIε;ϱ
a+ f(x) =

1

!(ϑ)

∫
x

a

ω↑(s)(ω(x)→ ω(s))ε→1f(s)ds.

If ω(x) = lnx, ϑ > 0, ϱ = 0, k = 0, ς = 0, ε > 0, ϖ = 0 then (2.1) is reduced to the integral of

Hadamard HIε
a+f(x) and for ϱ ↑ R and a = 0, we get the integral of Hadamard type (called also

Butzer et al. integral),

HIε
a+;ςf(x) =

1

!(ϑ)

∫
x

0

(u
x

)→ς (
ln
(x
u

))ε→1
f(u)

du

u
.

If ω(x) = xω, ϑ > 0, ϱ = 0, k = →ϑ → ς, ε > 0, ϖ = 0, then we get the fractional-integral of

“Erdélyi-Kober”,

EKIε
a+;ϖ,ωf(x) =

εx→ω(ε+ϖ)

!(ϑ)

∫
x

a

f(s)sω(1+ϖ)→1
(
xω → sω

)ε→1
ds.

For a = 0, we get the fractional-integral of “Erdélyi” EIε
a+;ϖ,ωf(x) and for ε = 1, a = 0, we get the

fractional-integral of “Kober”, KIε
a+;ϖ,ωf(x).

If ω(x) = xω, ϑ > 0, ε ↑ R, ϱ = 0, ϖ = ϑ, ς = k = 0, then (2.1) is reduced to “Katugampola”

integral, and for ς ↑ R, ϖ ↑ R, k = s/ε, we get the “generalized Katugampola” fractional integral

ωIε,ϑ
a+;ϖ,sf(x) =

xs

!(ϑ)εϑ→1

∫
x

a

uω(1+ϖ)→1
(
xω → uω

)ε→1
f(u)du.

If ω(x) = x, ϱ = ω→1
ω

, ϑ > 0, k = ς = 0, ε ↑ (0, 1], ϖ = ϑ, we obtain the fractional (left sided)

generalized proportional integral Iε
a+;ωf(x) (Jarad-Abdeljawad-Alzabut integral) and for a general

case of ω, we obtain the fractional (left sided) proportional integral in the general form according

to a function ω,

Iε;ϱ
a+;ωf(x) =

1

εε!(ϑ)

∫
x

a

ω↑(u) exp

[
ε→ 1

ε

(
ω(x)→ ω(s)

)] (
ω(x)→ ω(s)

)ε→1
f(s)ds.

If ω(x) = x
ε+r

ω+r
, ϱ = 0, ϑ > 0, k = ς = ϖ = 0, ε ↑ (0, 1], and r ↑ R, we obtain the generalized

conformable fractional (left sided) integrals, rKε

a+;ωf(x). If ω(x) = lnx, ϱ = ω→1
ω

, ϑ > 0, k = ς =

0, ε ↑ (0, 1], ϖ = ϑ, we obtain the generalized proportional integral of “Hadamard” (left sided),

Iε;ϱ
a+;ωf(x).

In the following, we plot some examples of the new ω-fractional integral of the function f(x) from

Theorem 3.2, in the case ε = 0.5, ϖ = 1, k = 1 for a di!erent example of ω and di!erent values of ϱ.

The first two figures plot the expression of Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x) against the variables x and ϑ. The third

and fourth figures plot the expression of Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x) against the variables x and φ. Since the

fractional integral of the above mentioned function f(x) = [ω(x)]→ϖ exp
(
ϱω(x)

)(
ω(x)→ ω(a)

)φ→1

is the solution of many well known fractional di!erential equations (see [43]), each figure is the
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solution of a specific di!erential equation. This fact will be the subject of a forthcoming work.

ω(x) = x ω(x) = x2 ω(x) =
→
x ω(x) = log(x)

Figure 1: ω-fractional integral Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x) where f(x) = [ω(x)]→ϖ exp

(
ϱω(x)

)(
ω(x)→ω(a)

)φ→1

with ϱ = 1, φ = 2, 1 ↔ x ↔ 10 and 0.1 ↔ ϑ ↔ 0.9.

ω(x) = x ω(x) = x2 ω(x) =
→
x ω(x) = log(x)

Figure 2: ω-fractional integral Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x) where f(x) = [ω(x)]→ϖ exp

(
ϱω(x)

)(
ω(x)→ω(a)

)φ→1

with ϱ = →1, φ = 2, 0.1 ↔ ϑ ↔ 0.9 and 1 ↔ x ↔ 10.

ω(x) = x ω(x) = x2 ω(x) =
→
x ω(x) = log(x)

Figure 3: ω-fractional integral Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x) where f(x) = [ω(x)]→ϖ exp

(
ϱω(x)

)(
ω(x)→ω(a)

)φ→1

with ϱ = 1, ϑ = 0.5, 1 ↔ x ↔ 2 and 0.5 ↔ φ ↔ 10.
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ω(x) = x ω(x) = x2 ω(x) =
→
x ω(x) = log(x)

Figure 4: ω-fractional integral Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x) where f(x) = [ω(x)]→ϖ exp

(
ϱω(x)

)(
ω(x)→ω(a)

)φ→1

with ϱ = →1, ϑ = 0.5, 1 ↔ x ↔ 2 and 0.5 ↔ φ ↔ 10.

3 Main properties of the new generalized ω-fractional inte-

gral

We present in this section some essential properties of the new generalized ω-fractional integral.

First, we give some elementary properties having obvious proofs.

Theorem 3.1. Let ϑ > 0, ϖ, ϱ, k, ς, ε,↑ R and ω as defined in Definition 2.1. For 1 ↔ p ↔ ↗
and f ↑ Xp

ϱ
(a, b), we have the following properties:

• Iε,ϑ;ϱ
a+;ϖ,k,ς,ωω(x)

φf(x) = Iε,ϑ;ϱ
a+;ϖ+φ,k,ς,ω

f(x),

• Iε,ϑ;ϱ
a+;ϖ,k,ς,ω exp(φω(x)) f(x) = exp(φω(x)) Iε,ϑ;ϱ

a+;ϖ+φ,k,ς→φ,ω
f(x),

• Iε,ϑ;ϱ
b→;ϖ,k,ς,ωω(x)

φf(x) = Iε,ϑ;ϱ
b→;ϖ,k+φ,ς,ω

f(x),

• Iε,ϑ;ϱ
b→;ϖ,k,ς,ω exp(φω(x)) f(x) = exp(φω(x)) Iε,ϑ;ϱ

b→;ϖ+φ,k,ς+φ,ω
f(x).

Theorem 3.2. Let ϑ > 0, ϖ, ϱ, k, ς, ε,↑ R and ω as defined in Definition 2.1. We have

• Iε,ϑ;ϱ
a+;ϖ,k,ς,ω[ω(t)]

→ϖ exp
(
ϱω(t)

)(
ω(t)→ ω(a)

)φ→1
=

!(φ)[ω(t)]k exp
(
ϱω(t)

)

!(φ+ ϑ)εϑ

(
ω(t)→ ω(a)

)φ+ε→1
,

• Iε,ϑ;ϱ
b→;ϖ,k,ς,ω[ω(t)]

→k exp
(
→ ϱω(t)

)(
ω(b)→ ω(t)

)φ→1
=

!(φ)[ω(t)]ϖ exp
(
→ ϱω(t)

)

!(φ+ ϑ)εϑ

(
ω(b)→ ω(t)

)φ+ε→1
.

Next we prove that for a positive increasing function ω on (a, b), the new ω-fractional operator

Iε,ϑ;ϱ
a+;ϖ,k,ς,ω is well-defined and bounded on the space Xp

ϱ
(a, b).

Theorem 3.3. Let ϱ > 0, ϑ > 0, ϖ, k, ς, ε ↑ R and ω as defined in Definition 2.1. For 1 ↔ p ↔ ↗
and f ↑ Xp

ϱ
(a, b), we have ∥∥∥Iε,ϑ;ϱ

a+;ϖ,k,ς,ωf
∥∥∥
X

p
ω

↔ K≃f≃Xp
ω
,

where

K =
exp

(
ϱω(b)

)

!(ϑ)εϑ
[ω(b)]ε+ϖ+k

∫
ϱ

↑1( ω(b)
ω(a) )

ϱ↑1(1)
[ω(u)]→ε→ϖ

[
ω(u)→ 1

]ε→1
ω↑(u)du.
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Proof. Let 1 ↔ p < ↗. Using (2.1) and Definition 2.1, we have

∥∥∥Iω,ε;ϑ
a+;ϖ,k,ϱ,ςf

∥∥∥
Xp

ω

=

(∫ b

a

∣∣∣∣
[ω(x)]k exp(εω(x))

!(ϑ)ϖε

∫ x

a

ω→(u)[ω(u)]ϖ exp(↑εω(u))

↓
(
ω(x)↑ ω(u)

)ω↑1
f(u)du

∣∣∣∣
p

ω→(x)dx

) 1
p

=
1

!(ϑ)ϖε

(∫ b

a

∣∣∣∣
∫ x

a

[ω(x)]k exp
(
ε(ω(x)↑ ω(u))

)
[ω(u)]ϖω→(u)

(
ω(x)↑ ω(u)

)ω↑1
f(u)du

∣∣∣∣
p

ω→(x)dx

) 1
p

↔
exp

(
εω(b)

)

!(ϑ)ϖε

(∫ b

a

∣∣∣∣
∫ x

a

[ω(x)]kω→(u)[ω(u)]ϖ+ω↑1

(
ω(x)
ω(u)

↑ 1

)ω↑1

f(u)du

∣∣∣∣
p

ω→(x)dx

) 1
p

.

If we suppose ϱ(x)
ϱ(u) = ω(s), we get

∥∥∥Iω,ε;ϑ
a+;ϖ,k,ϱ,ςf

∥∥∥
Xp

ω

↔
exp

(
εω(b)

)

!(ϑ)ϖε

(∫ b

a

∣∣∣∣
∫ ϑ↑1

(
ω(x)
ω(a)

)

ϑ↑1(1)

[ω(x)]k+ϖ+ωω→(s)[ω(s)]↑1↑ϖ↑ω[ω(s)↑ 1
]ω↑1

↓ f

(
ω↑1

(
ω(x)
ω(s)

))
ds

∣∣∣∣
p

ω→(x)dx

) 1
p

.

Using the generalized Minkowski-inequality ([1]), we obtain

∥∥∥Iω,ε;ϑ
a+;ϖ,k,ϱ,ςf

∥∥∥
Xp

ω

↔
exp

(
εω(b)

)

!(ϑ)ϖε

∫ ϑ↑1
(

ω(b)
ω(a)

)

ϑ↑1(1)

(ω(s))↑ϖ↑ω(ω(s)↑ 1
)ω↑1

ω→(s)[ω(b)]ϖ+k+ω

↓
(∫ b

ϑ↑1(ϑ(a)ϑ(t))

ω→(x)
ω(s)

∣∣∣∣f
(
ω↑1

(
ω(x)
ω(s)

))∣∣∣∣
p

dx

) 1
p

ds

↔
exp

(
εω(b)

)

!(ϑ)ϖε

∫ ϑ↑1
(

ω(b)
ω(a)

)

ϑ↑1(1)

(ω(s))↑ϖ↑ω(ω(s)↑ 1
)ω↑1

ω→(s)[ω(b)]k+ϖ+ω

(∫ ϑ↑1
(

ω(b)
ω(s)

)

a

∣∣∣f(t)
∣∣∣
p
ω→(t)dt

) 1
p

ds

↔ K
∥∥f

∥∥
Xp

ω
,

where

K =
exp

(
ϱω(b)

)

!(ϑ)εϑ
[ω(b)]k+ϖ+ε

∫
ϱ

↑1( ω(b)
ω(a) )

ϱ↑1(1)
(ω(u))→ϖ→ε

(
ω(u)→ 1

)ε→1
ω↑(u)du.

Thus, the result is proved for 1 ↔ p < ↗. For p = ↗, we have

∥∥∥Iω,ε;ϑ
a+;ϖ,k,ϱ,ςf

∥∥∥
X→

ω

= ess sup
t↓(a,b)

∣∣∣ω→(t) Iω,ε;ϑ
a+;ϖ,k,ϱ,ςf(t)

∣∣∣

↔ [ω(b)]k exp(εω(b))
!(ϑ)ϖε

∫ x

a

[ω(u)]ϖω→(x)
(
ω(x)↑ ω(u)

)ω↑1
∣∣∣ω→(u)f(u)

∣∣∣du

↔
exp

(
εω(b)

)

!(ϑ)ϖε
[ω(b)]k+ϖ+ω

∫ ϑ↑1
(

ω(b)
ω(a)

)

ϑ↑1(1)

[ω(s)]↑ϖ↑ω(ω(s)↑ 1
)ω↑1

ω→(s)ds
∥∥f

∥∥
X→

ω
.

Theorem 3.3 is thereby proved.

In the next result, we prove that the new generalized ω-fractional integral satisfies the property of

semigroup.
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Theorem 3.4. Let ϑ > 0, ϖ, k, ς, ε, ϱ ↑ R and ω as defined in Definition 2.1. For 1 ↔ p ↔ ↗ and

f ↑ Xp

ϱ
(a, b), we have:

Iε1,ϑ1;ϱ
a+;ϖ1,k1,ς,ω

Iε2,ϑ2;ϱ
a+;ϖ2,→ϖ1,ς,ω

f(x) = Iε1+ε2,ϑ1+ϑ2;ϱ
a+;ϖ2,k1,ς,ω

f(x),

Iε1,ϑ1;ϱ
b→;ϖ1,→ϖ2,ς,ω

Iε2,ϑ2;ϱ
b→;ϖ2,k2,ς,ω

f(x) = Iε1+ε2,ϑ1+ϑ2;ϱ
b→;ϖ1,k2,ς,ω

f(x).

Proof. Using Definition 2.1, we have

Iε1,ϑ1;ϱ
a+;ϖ1,k1,ς,ω

Iε2,ϑ2;ϱ
a+;ϖ2,k2,ς,ω

f(x) =
[ω(x)]k1 exp(ϱω(x))

!(ϑ1)εϑ1

∫
x

a

[ω(t)]ϖ1 exp(→ϱω(t))
(
ω(x)→ ω(t)

)ε1→1

⇐ [ω(t)]k2 exp(ϱω(t))

!(ϑ2)εϑ2
ω↑(t)

∫
t

a

ω↑(s)[ω(s)]ϖ2 exp(→ϱω(s))
[
ω(t)→ ω(s)

]ε2→1
f(s)ds dt

=
[ω(x)]k1 exp(ϱω(x))

!(ϑ1)!(ϑ2)εϑ1+ϑ2

∫
x

a

ω↑(s)[ω(s)]ϖ2 exp(→ϱω(s))f(s)

∫
x

s

ω↑(t)[ω(t)]ϖ1+k2

⇐
(
ω(x)→ ω(t)

)ε1→1(
ω(t)→ ω(s)

)ε2→1
dt ds.

For k2 = →ς1 and supposing that u :=
ω(t)→ ω(s)

ω(x)→ ω(s)
, we derive that

∫
x

s

(ω(t))ϖ1+k2ω↑(t)
(
ω(x)→ ω(t)

)ε1→1(
ω(t)→ ω(s)

)ε2→1
dt

=
(
ω(x)→ ω(s)

)ε1+ε2→1
∫ 1

0
(1→ u)ε1→1uε2→1du

=
!(ϑ1)!(ϑ2)

!(ϑ1 + ϑ2)

(
ω(x)→ ω(s)

)ε1+ε2→1
.

Thus,

Iε1,ϑ1;ϱ
a+;ϖ1,k1,ς,ω

Iε2,ϑ2;ϱ
a+;ϖ2,→ϖ1,ς,ω

f(x)

=
[ω(x)]k1 exp(ϱω(x))

!(ϑ1 + ϑ2)εϑ1+ϑ2

∫
x

a

ω↑(s)[ω(s)]ϖ2 exp(→ϱω(s))
(
ω(x)→ ω(s)

)ε1+ε2→1
f(s)ds

= Iε1+ε2,ϑ1+ϑ2;ϱ
a+;ϖ2,k1,ς,ω

f(x).

The first identity in Theorem 3.4 is thereby proved. The second one follows using the same

arguments.

Theorem 3.5. Let ϑ > 0, ϖ, k, ς, ε, ϱ ↑ R and ω as defined in Definition 2.1. For 1 ↔ p ↔ ↗, we

have ∫
b

a

f(u)
[
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

]
(u)ω↑(u)du =

∫
b

a

g(u)
[
Iε,ϑ;ϱ
b→;ϖ,k,ς,ωf

]
(u)ω↑(u)du.
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Proof. We have

∫
b

a

f(u)
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

)
(u)ω↑(u)du =

∫
b

a

f(u)ω↑(u)
[ω(u)]k exp(ϱω(u))

!(ϑ)εϑ

⇐
∫

u

a

[ω(t)]ϖ exp
(
→ ϱω(t)

)(
ω(u)→ ω(t)

)ε→1
g(t)ω↑(t)dt du

=

∫
b

a

g(t)
[ω(t)]ϖ exp(→ϱω(t))

!(ϑ)εϑ
ω↑(t)

∫
b

t

[ω(u)]kω↑(u) exp
(
ϱω(u)

)(
ω(u)→ ω(t)

)ε→1
f(u)du dt

=

∫
b

a

ω↑(u)g(u)
(
Iε,ϑ;ϱ
b→;ϖ,k,ς,ωf

)
(u)du.

Theorem 3.6. Let ϑ > 0, ϖ, k, ς, ε, ϱ ↑ R and ω as defined in Definition 2.1. For f ↑ X↔
ϱ
(a, b)

and x, y ↑ (a, b), we have

∥∥∥Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x)→ Iε,ϑ;ϱ

a+;ϖ,k,ς,ωf(y)
∥∥∥ ↔

2
∥∥∥[ω(u)]ϖ exp(→ϱω(u))f(u)

∥∥∥
X

→
ω

!(ϑ+ 1)εϑ
[ω(y)]k exp(ϱω(y))

[
ω(y)→ ω(x)

]ε
.

Proof. We have

∥∥∥Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x)→ Iε,ϑ;ϱ

a+;ϖ,k,ς,ωf(y)
∥∥∥ =

∥∥∥∥
exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

[ω(u)]ϖω↑(u) exp
(
→ ϱω(u)

)
.
[
ω(x)→ ω(u)

]ε→1
f(u)du

→exp(ϱω(y))

!(ϑ)εϑ

∫
y

a

[ω(u)]ϖω↑(u) exp
(
→ ϱω(u)

)(
ω(y)→ ω(u)

)ε→1
f(u)du

∥∥∥∥

=

∥∥∥∥
1

!(ϑ)εϑ

∫
x

a

f(u)(ω(u))ϖω↑(u) exp
(
→ ϱ(ω(u))

)

⇐
(
exp(ϱ(ω(x)))[ω(x)]k

(
ω(x)→ ω(u)

)ε→1 → exp(ϱ(ω(y)))[ω(y)]k
[
ω(y)→ ω(u)

]ε→1
)
dt

→exp(ϱω(y))

!(ϑ)εϑ

∫
y

x

[ω(u)]ϖω↑(u) exp
(
→ ϱω(u)

)(
ω(y)→ ω(u)

)ε→1
f(u)du

∥∥∥∥

↔
≃[ω(u)]ϖ exp(→ϱω(u))f(u)≃X→

ω

!(ϑ)εϑ

∫
x

a

ω↑(u)

(
[ω(x)]k exp(ϱ(ω(x)))

(
ω(x)→ ω(u)

)ε→1

→[ω(y)]k exp(ϱ(ω(y)))
(
ω(y)→ ω(u)

)ε→1
)
du

+
≃[ω(u)]ϖ exp

(
→ ϱω(u)

)
f(u)≃X→

ω

!(ϑ)εϑ

∫
y

x

ω↑(u)[ω(y)]k exp(ϱω(y))
(
ω(y)→ ω(u)

)ε→1
du

↔
≃[ω(u)]ϖ exp(→ϱω(u))f(u)≃X→

ω

!(ϑ+ 1)εϑ

(
[ω(x)]k exp(ϱ(ω(x)))

(
ω(x)→ ω(a)

)ε

→ exp(ϱ(ω(y)))[ω(y)]k
([

ω(y)→ ω(a)
]ε →

[
ω(y)→ ω(x)

]ε))

+
≃[ω(u)]ϖ exp(→ϱω(u))f(u)≃X→

ω

!(ϑ+ 1)εϑ
[ω(y)]k exp(ϱω(y))

(
ω(y)→ ω(x)

)ε

↔
2≃[ω(u)]ϖ exp(→ϱω(u))f(u)≃X→

ω

!(ϑ+ 1)εϑ
[ω(y)]k exp(ϱω(y))

[
ω(y)→ ω(x)

]ε
.
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Theorem 3.7. Let n→1 < ϑ < n, ϖ, ς, k, ε, ϱ ↑ R and ω as defined in Definition 2.1. For (fn)n↗1

a sequence uniformly convergent in X↔
ϱ
(a, b), we have

Iε,ϑ;ϱ
a+;ϖ,k,ς,ω lim

n↘↔
fn(x) = lim

n↘↔
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωfn(x).

Proof. Let f(x) = lim
n↘↔

fn(x). We have

∣∣∣Iε,ϑ;ϱ
a+;ϖ,k,ς,ωfn(x)→ Iε,ϑ;ϱ

a+;ϖ,k,ς,ωf(x)
∣∣∣

↔
([ω(x)]k exp

(
ϱ(ω(x))

)

!(ϑ)εϑ

∫
x

a

[ω(u)]ϖω↑(u) exp
(
→ ϱ(ω(u))

)(
ω(x)→ ω(u)

)ε→1∣∣fn(u)→ f(u)
∣∣du

↔
∥∥∥ exp(→ϱ(ω(u)))[ω(u)]ϖ

(
fn(u)→ f(u)

)∥∥∥
X

→
ω

([ω(x)]k exp(ϱ(ω(x)))

!(ϑ+ 1)εϑ
(
ω(x)→ ω(a)

)ε
.

Since the sequence (fn)n↗1 is uniformly convergence, the result follows.

Theorem 3.8. Let f be a uniformly continuous function on [0, b]. For ϖ, ς, k, ε, ϱ ↑ R and ω as

defined in Definition 2.1, if there exists ϑ ↑ (0, 1] satisfying

lim
x↘↔

Iε,ϑ;ϱ
a+;ϖ,k,ς,ω|f(x)| = 0,

then

lim
x↘↔

|f(x)| = 0.

Proof. Arguing by contradiction, we assume that there exists an unbounded sequence (xi)i↓N and

↼ > 0 such that

|f(xi)| ⇒ ↼, ↓xi ↑ [0, b].

Using the fact that f is uniformly continuous, we deduce that for each xi, ⇑µ > 0 such that

∣∣f(xi)→ f(x)
∣∣ < ↼

2
, ↓x ↑ [xi → µ, xi + µ]

Thus, for all x ↑ [xi → µ, xi + µ] we have:

|f(x)| ⇒
∣∣∣|f(xi)|→ |f(xi)→ f(x)|

∣∣∣ ⇒
↼

2
. (3.1)

From another part, we have

Iε,ϑ;ϱ
a+;ϖ,k,ς,ω|f(xi)| =

([ω(xi)]k exp(ϱ(ω(xi)))

!(ϑ)εϑ

(∫
xi→1

x0

[ω(u)]ϖω↑(u) exp
(
→ ϱ(ω(u))

)(
ω(xi)→ ω(u)

)ε→1|f(u)|du

+

∫
xi→µ

xi→1
[ω(u)]ϖω↑(u) exp

(
→ ϱ(ω(u))

)(
ω(xi)→ ω(u)

)ε→1|f(u)|du
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+

∫
xi

xi→µ

[ω(u)]ϖω↑(u) exp
(
→ ϱ(ω(u))

)(
ω(xi)→ ω(u)

)ε→1|f(u)|du
)
.

If we suppose that [ω(u)]ϖω↑(u) exp
(
→ ϱ(ω(u))

)(
ω(xi)→ ω(u)

)ε→1 ⇒ 1, ↓t ↑ [xi → 1, xi], then

Iε,ϑ;ϱ
a+;ϖ,k,ς,ω|f(xi)| ⇒

([ω(xi)]k exp(ϱ(ω(xi)))

!(ϑ)εϑ

(∫
xi→1

x0

[ω(u)]ϖω↑(u) exp
(
→ ϱ(ω(t))

)
(3.2)

⇐
(
ω(xi)→ ω(u)

)ε→1∣∣f(u)
∣∣du+

∫
xi→µ

xi→1

∣∣f(u)
∣∣du+

∫
xi

xi→µ

∣∣f(u)
∣∣du

)
.

Using (3.1) and (3.2) and denoting c =
(
[ω(0)]k exp(ϱ(ω(0)))

)
, we obtain

Iε,ϑ;ϱ
a+;ϖ,k,ς,ω|f(xi)| ⇒

c↼

2!(ϑ)εϑ
,

which contradicts the hypothesis of the Theorem.

4 On a Minkowski type inequality

First, we recall the celebrated Minkowski inequality as follows, (see [1, 22]).

Theorem 4.1. If p ⇒ 1 and f, g two positives functions in Lp([a, b]), then

∫
b

a

|f(t) + g(t)|pdt
1/p

↔
∫

b

a

|f(t)|pdt
1/p

+

∫
b

a

|g(t)|pdt
1/p

.

As a reverse of Minkowski’s inequality, Bougo!a [9] proved the following result.

Theorem 4.2. If p ⇒ 1, f and g two positives functions satisfying 0 < m ↔ f(t)

g(t)
↔ M , ↓t ↑ [a, b],

then ∫
b

a

|f(t)|pdt
1/p

+

∫
b

a

|g(t)|pdt
1/p

↔ c

∫
b

a

|f(t) + g(t)|pdt
1/p

,

where c =
M

M + 1
+

1

m+ 1
.

The above result was generalized by Dahmani [17] using Riemann-Liouville fractional integral, by

Chinchane-Pachpatte [13] and Taf-Brahim [44] using the Hadamard fractional integral, by Sousa-

Oliveira [15] using Katugampola generalized fractional integral, by Aljaaidi-Pachpatte [5] using

the ω Riemann Liouville integral, by Rahman et al. [37] using generalized proportional fractional

integral, by Rachid-Jarad-Chu [39] using generalized proportional integral according to another

function, by Rachid et al. [38] using generalized conformable integral, by Nale-Panchal-Chinchane

[33] using generalized proportional Hadamard fractional integral.
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In the following, we prove the reverse of the Minkowski inequality using the new generalized ω-

Hilfer integral, recovering the results of the above cited papers.

Theorem 4.3. Let ϖ, k, ς, ε, ϱ ↑ R,ϑ > 0, p ⇒ 1 and ω as defined in Definition 2.1. Let also f, g

be two positive functions in Xp

ϱ
(a, b). If 0 < m ↔ f(t)

g(t)
↔ M, ↓t ↑ [a, b] for m and M two strictly

positive constants, then:

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(t)
) 1

p
+
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(t)
) 1

p ↔ c
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(f + g)p(t)

) 1
p
,

where c =
1

m+ 1
+

M

M + 1
.

Proof. Since
f(s)

g(s)
↔ M, ↓s ↑ [a, b], then

f(s) +Mf(s) ↔ M
(
g(s) + f(s)

)
, ↓s ↑ [a, b],

thus

(M + 1)pfp(s) ↔ Mp
(
f(s) + g(s)

)p
, ↓s ↑ [a, b].

Multiplying both sides by
[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ
ω↑(s)[ω(s)]ϖ exp(→ϱω(s))

[
ω(x)→ω(s)

]ε→1 and inte-

grating with respect to s, we obtain

(M + 1)p
[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
fp(s)ds

↔ Mp
[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
(f + g)p(s)ds.

Which implies that

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p ↔ M

M + 1

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(g + f)p(x)

) 1
p
. (4.1)

From another part, since 0 < m ↔ f(s)

g(s)
, for all s ↑ [a, b], then

g(s) ↔ f(s)

m
, ↓s ↑ [a, b].

Thus

g(s)

(
1 +

1

m

)
↔ f(s)

m
+

g(s)

m
, ↓s ↑ [a, b],

and consequently

gp(s)

(
1 +

1

m

)p

↔
(

1

m

)p [
g(s) + f(s)

]p
.
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Multiplying both sides by
[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ
ω↑(s)[ω(s)]ϖ exp(→ϱω(s))

[
ω(x)→ω(s)

]ε→1 and inte-

grating with respect to s, we derive that

(
1 +

1

m

)p [ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
gp(s)ds

↔
(

1

m

)p [ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
[
g(s) + f(s)

]p
ds.

Thus, (
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p ↔ 1

m+ 1

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(g + f)p(x)

) 1
p
. (4.2)

Using (4.1) and (4.2), the result follows.

Theorem 4.4. Let ϖ, ε, ϱ, k, ς ↑ R, ϑ > 0, p ⇒ 1 and ω as defined in Definition 2.1. Let also f, g

be two positive functions in Xp

ϱ
(a, b). If 0 < m ↔ f(t)

g(t)
↔ M, ↓t ↑ [a, b] for m > 0,M > 0, then:

[
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
] 2

p
+
[
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
] 2

p ⇒ ĉ
[
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
] 1

p
[
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
] 1

p
,

where ĉ =
(M + 1)(m+ 1)

M
→ 2.

Proof. From (4.1) and (4.2), we have:

(M + 1)(m+ 1)

M

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p ↔
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(g + f)p(x)

) 2
p
. (4.3)

Using Minkowski’s inequality, we obtain

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(g + f)p(x)

) 1
p ↔

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p
+
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p
(4.4)

Using (4.3) and (4.4), we deduce that

(M + 1)(m+ 1)

M

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p ↔
((

Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p
+

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p

)2

.

Thus,

(
(M + 1)(m+ 1)

M
→ 2

) (
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p ↔
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 2

p
+

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 2

p
.

Remark 4.5. Using Remark 2.3, it is easy to see that Theorems 4.3 and 4.4 recover Theorems

2.1 and 2.3 of [17], Theorems 3.1 and 3.2 of [13], Theorems 2.9 and 2.10 of [44], Theorems 7 and

8 of [15], Theorems 3.1 and 3.2 of [5], Theorems 3.1 and 3.2 of [37], Theorems 5 and 6 of [39],

Theorems 3.1 and 3.2 of [38] and Theorems 3.1 and 3.2 of [33].
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5 Other inequalities related to the Minkowski type inequality

In this section, we state other inequalities related to the Minkowski type inequality, using general-

ized ω-fractional integral.

Theorem 5.1. Let ϖ, ς, ε, ϱ, k ↑ R, ϑ > 0, p ⇒ 1 and ω as defined in Definition 2.1. For f, g two

positive functions in Xp

ϱ
(a, b), if 0 < m ↔ f(s) ↔ M and 0 < n ↔ g(s) ↔ N for all s ↑ [a, b], then

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p
+
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p ↔ c̃
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(g + f)p(x)

) 1
p
.

Here c̃ =
M

M + n
+

N

N +m
.

Proof. Since 0 < n ↔ g(s) ↔ N for all s ↑ [a, b], then

1

N
↔ 1

g(s)
↔ 1

n
, ↓s ↑ [a, b].

Thus,
m

N
↔ f(s)

g(s)
↔ M

n
. (5.1)

From (5.1), we deduce that

g(s)
(m
N

+ 1
)
↔ g(s) + f(s), (5.2)

( n

M
+ 1

)
f(s) ↔ g(s) + f(s). (5.3)

Thus,

gp(s) ↔
(

N

m+N

)p

(g(s) + f(s))p, (5.4)

fp(s) ↔
(

M

n+M

)p

(g(s) + f(s))p. (5.5)

Multiplying both sides of (5.4) by
[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ
ω↑(s)[ω(s)]ϖ exp(→ϱω(s))

[
ω(x) → ω(s)

]ε→1

and integrating with respect to s, we obtain

[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
gp(s)ds

↔ [ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
(

N

m+N

)p

(f + g)p(s)ds,
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which implies that

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p ↔ N

m+N

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(g + f)p(x)

) 1
p
. (5.6)

From another part, using the same argument to equation (5.5), we derive that

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p ↔ M

n+M

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(g + f)p(x)

) 1
p
. (5.7)

Adding (5.6) and (5.7), the result follows.

Theorem 5.2. Let ϖ, ε, k, ς, ϱ,↑ R, ϑ > 0, p ⇒ 1 and ω as defined in Definition 2.1. Let f, g two

positive functions in Xp

ϱ
(a, b). If 0 < m ↔ f(s)

g(s)
↔ M, ↓s ↑ [a, b] for m,M ↑ R≃

+, then

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p
+
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p ↔ 2
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωh

p(g(x) + f(x))
) 1

p
,

where h(g(x) + f(x)) = max

(
M

m
+ 1

)
f(x)→Mg(x),

(M +m)g(x)→ f(x)

m


.

Proof. Since 0 < m ↔ f(s)

g(s)
↔ M, ↓s ↑ [a, b], then

0 < m ↔ M → f(s)

g(s)
+m.

Thus

g(s) ↔ (M +m)g(s)→ f(s)

m
,

which implies that

g(s) ↔ h(f(s), g(s)). (5.8)

From another part, since 0 <
1

M
↔ g(s)

f(s)
↔ 1

m
, then

1

M
↔ 1

M
+

1

m
→ g(s)

f(s)
.

Thus,
1

M
↔

(
1
M

+ 1
m

)
f(s)→ g(s)

f(s)
,

which implies that

f(s) ↔ M

(
1

M
+

1

m

)
f(s)→Mg(s) ↔

(
M

m
+ 1

)
f(s)→Mg(s) ↔ h(f(s), g(s)). (5.9)
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From (5.8) and (5.9), we get

fp(s) ↔ hp(f(s), g(s)), (5.10)

gp(s) ↔ hp(f(s), g(s)). (5.11)

Multiplying both sides of (5.10) by
[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ
ω↑(s)[ω(s)]ϖ exp(→ϱω(s))

[
ω(x)→ ω(s)

]ε→1

and integrating with respect to s, we derive that

[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
fp(s)ds

↔ [ω(x)]k exp(ϱω(x))

!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
hp(f(s), g(s))ds.

Which implies that

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf

p(x)
) 1

p ↔
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωh

p(g(x), f(x))
) 1

p
. (5.12)

Using the same argument to equation (5.11), we obtain

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωg

p(x)
) 1

p ↔
(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωh

p(g(x), f(x))
) 1

p
(5.13)

and the result follows.

Theorem 5.3. Under the hypothesis of Theorem 5.2, we have

1

M

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x)g(x)

)
↔ 1

(M + 1)(m+ 1)

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(f + g)2(x)

)
↔ 1

m

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x)(g)(x)

)
.

Proof. Since 0 < m ↔ f(s)

g(s)
↔ M for all s ↑ [a, b], then

g(s)(1 +m) ↔ f(s) + g(s) ↔ g(s)(1 +M). (5.14)

Additionally, using the fact that 0 <
1

M
↔ g(s)

f(s)
↔ 1

m
, ↓s ↑ [a, b], we obtain

f(s)

(
1

M
+ 1

)
↔ f(s) + g(s) ↔ f(s)

(
1 +

1

m

)
. (5.15)

From (5.14) and (5.15), we deduce that

g(s)f(s)

M
↔

(
g(s) + f(s)

)2

(1 +m)(1 +M)
↔ f(s)g(s)

m
. (5.16)
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Multiplying both sides of equation (5.16) by
[ω(x)]k exp(ϱω(x))

!(ϑ)εϑ
ω↑(s)[ω(s)]ϖ exp(→ϱω(s))

[
ω(x) →

ω(s)
]ε→1 and integrating with respect to s, we obtain

[ω(x)]k exp(ϱω(x))

M!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
f(s)g(s)ds

↔ [ω(x)]k exp(ϱω(x))

(m+ 1)(M + 1)!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
(f + g)2(s)ds

↔ [ω(x)]k exp(ϱω(x))

m!(ϑ)εϑ

∫
x

a

ω↑(s)[ω(s)]ϖ exp(→ϱω(s))
[
ω(x)→ ω(s)

]ε→1
f(s)g(s)ds.

Thus,

1

M

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x)g(x)

)
↔ 1

(1 +m)(1 +M)

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ω(f + g)2(x)

)
↔ 1

m

(
Iε,ϑ;ϱ
a+;ϖ,k,ς,ωf(x)g(x)

)
.

6 Conclusion

Minkowski type inequalities play a crucial role in various fields of science. In recent years, these

inequalities have been proved by numerous researchers using di!erent fractional integrals. The

aim of this work was to prove a generalized Minkowski type inequality which recovers most of

the previous results. For this purpose, we defined a new generalized ω fractional integral, which

generalizes most of the pre-existing fractional integrals. Then, we gave some essential properties of

this new operator and we presented some examples. As an application, we used this generalized ω

fractional integral to prove a Minkowski type inequality and several related ones. These inequalities

recover a large number of a well known results. Many other interesting inequalities as Grüss-type,

Hermite-Hadamard type or "eby#ev type inequalities can be proved using the newly defined integral

operator. These questions will be discussed in a forthcoming paper.
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ABSTRACT

In this work, we prove the existence and uniqueness

of µ-pseudo almost automorphic solutions for a class

of semilinear nonautonomous evolution equations of

the form: u→(t) = A(t)u(t) + f(t, u(t)), t → R where

(A(t))t↑R is a family of closed linear operators act-

ing in a Banach space X that generates an evolu-

tion family having an integrable dichotomy on R and

f : R ↑ X ↓↔ X is µ-pseudo almost automorphic

with respect to t and Lipshitzian in the second vari-

able. Moreover we provide an application illustrating

our results.

RESUMEN

En este trabajo, demostramos la existencia y unicidad

de soluciones µ-pseudo casi automorfas para una clase

de ecuaciones de evolución semilineales no autónomas

de la forma: u→(t) = A(t)u(t)+f(t, u(t)), t → R donde

(A(t))t↑R es una familia de operadores lineales cerra-

dos actuando en un espacio de Banach X que genera

una familia de evolución que posee una dicotomía in-

tegrable en R y f : R ↑ X ↓↔ X es µ-pseudo casi

automorfa con respecto a t y Lipschitziana en la se-

gunda variable. Más aún presentamos una aplicación

ilustrando nuestros resultados.
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1 Introduction

The current paper deals with the existence and uniqueness of µ-pseudo almost automorphic solu-

tions for the following evolution equations:

u
→(t) = A(t)u(t) + f(t), t → R (1.1)

and

u
→(t) = A(t)u(t) + f(t, u(t)), t → R, (1.2)

and the perturbed delay system

u
→(t) = A(t)u(t) + f(t, u(t), u(t↑ ω)), t → R, (1.3)

where (A(t), D(A(t))), t → R is a family of closed linear operators that generates a strongly

continuous evolution family (U(t, s))t↑s on a Banach space X which has an integrable dichotomy

on R. The function f is µ-pseudo almost automorphic in t for each x → X and Lipschitzian with

respect to the second and third arguments, ω > 0 is a fixed constant . This work is a continuation

of the works done in [21,22].

In the theory of di!erential equations, exponential dichotomy is a classical concept and it plays a

central role for getting important results. So, there exist many researchs on this topics see [15,20]. It

is well-known that the concept of integrable dichotomy is a generalization of exponential dichotomy

[1, 21, 22]. This concept was introduced by Pinto et al. [21], they proved the existence and

uniqueness of bounded periodic solutions of nonlinear integro-di!erential equations with infinite

delay. In [22], the authors proved the existence and uniqueness of almost periodic and pseudo-

almost periodic mild solutions of equations (4.1) and (4.2) under the light of integrable bi-almost

periodic Green’s functions. In fact, the authors established some examples of purely integrale

dichotomy (i.e., which is not necessarily of exponential type). Recently, in [1], Abadias et al.

investigate the semi-linear di!erential equation x
→(t) = A(t)x(t) + f(t, x(t),ε[ϑ(t, x(t))]), t → R,

where (A(t), D(A(t))), t → R, generate an evolution family which has an integrable dichotomy.

They obtained several results of existence and uniqueness of (ϖ, c)-periodic mild solutions under

some assumptions on the nonlinear term. To our knowledge in the literature, there are few papers

which deal with integrable dichotomy.

The concept of almost periodic functions is introduced by H. Bohr [12]. This notion has been much

invested before being generalized by the concept of almost automorphic functions introduced by S.

Bochner [8–11]. In [24], the authors introduced the notion of pseudo almost automorphic functions

which is more general than the notion of almost automorphic functions. Moreover, they proved that

the space (PAA(R, X), ↓ · ↓0) is complete and they obtained an existence and uniqueness result
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of pseudo almost automorphic mild solutions to equation (4.1) in Banach spaces. In [4], Blot et

al. introduced the notion of weighted pseudo almost automorphic functions which generalizes the

concept of pseudo almost automorphic functions. For more details on these topics, one can see

[19, 26]. More recently, the concept of µ-pseudo almost automorphy due to Ezzinbi et al. [5, 16]

generalizes both notions of pseudo almost automorphy and weighted pseudo almost automorphy.

For more details, one can see [4, 14,17,24].

In this work, our main results are Theorems 3.1 and 4.3. We show that equations (4.1) and

(4.2) have respectively, unique bounded almost automorphic and µ-pseudo almost automorphic

solutions. It should be noted that we obtained these results under light of integrable dichotomy,

dominated convergence Theorem, Banach fixed point, standard and locally Lipschitz conditions.

The nonlinear term f is in PAA(R, X, µ).

The rest of this paper is organized as follows. Section 2 is devoted to some preliminaries. In

sections 3 and 4, we present some criteria ensuring the existence of µ-pseudo almost automorphic

mild solutions to equations (4.1) and (4.2). An example is given to illustrate our theoretical result

in section 5.

2 Almost automorphic functions and integrable dichotomy

This section is concerned with some notations and preliminary facts that are used in the sequel of

this work.

Definition 2.1 ([12]). A continuous function f : R ↔ X is to be almost periodic if for every

ϱ > 0, there exists lω > 0, such that for every a → R, there exists ω → [a, a+ lω] satisfying:

↓f(t+ ω)↑ f(t)↓ < ϱ for all t → R

The space of all such functions is denoted by AP(R, X).

Definition 2.2 ([9]). A continuous function f : R ↔ X is called almost automorphic if for every

sequence (s→n)n↑0 of real numbers, there exist a subsequence (sn)n↑0 ↗ (s→n)n↑0 and a measurable

function g : R ↔ X, such that

g(t) = lim
n↓↔

f(t+ sn) and f(t) = lim
n↓↔

g(t↑ sn) for all t → R.

The space of all such functions is denoted by AA(R, X).
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Remark 2.3 ([3]). An almost automorphic function may not be uniformly continuous. Indeed,

the real function f(t) = sin

(
1

2 + cos(t) + cos(
↘
2t)

)
for t → R, belongs to AA(R,R), but is not

uniformly continuous. Hence, f does not belong to AP (R,R).

Then, we have the following inclusions:

AP (R, X) ↗ AA(R, X) ↗ BC(R, X).

Definition 2.4 ([3]). A bounded continuous function f : R≃X ↔ Y is called almost automorphic

if for each bounded set K ↗ X and for every sequence of real numbers {ω →n}n↑0, there exist a

subsequence {ωn}n↑0 ↗ {ω →n}n↑0 and a mesurable function f̃ : R≃X ↔ Y , such that

f̃(t, x) = lim
n↓↔

f(t+ ωn, x) and f(t, x) = lim
n↓↔

f̃(t↑ ωn, x)

are well defined in t → R and x → K ↗ X.

Definition 2.5 ([3]). A continuous function F : R≃ R ↔ X is said to be bi-almost automorphic

if for every sequence (s→n)n↑0 of real numbers, there exist a subsequence (sn)n↑0 ↗ (s→n)n↑0 and a

measurable function G : R≃ R ↔ X, such that

G(t, s) = lim
n↓↔

F (t+ sn, s+ sn) and F (t, s) = lim
n↓↔

G(t↑ sn, s↑ sn) for all t, s → R.

The space of all such functions is denoted by bAA(R, X).

2.1 µ-pseudo almost automorphic functions

This section is devoted to properties of µ-ergodic and µ-pseudo almost automorphic functions. In

the sequel, we denote by B(R) the Lebesgue ς-field of R and by M the set of all positive measures

µ on B(R) satisfying µ(R) = +⇐ and µ([a, b]) < +⇐ for all a, b → R with (a ⇒ b), we denote also

by Y any other Banach space. We assume the following hypothesis.

(M) For all ω → R, there exist φ > 0 and a bounded interval I such that

µ({a+ ω : a → A}) ⇒ φµ(A) where A → B(R) and A ⇑ I = ⇓.

Definition 2.6 ([6]). Let µ → M. A continuous bounded function f : R ↑↔ X is called µ-ergodic,

if

lim
r↓+↔

1

µ([↑r, r])

∫

[↗r,r]
↓f(t)↓dµ(t) = 0.

The space of all such functions is denoted by E(R, X, µ).
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Proposition 2.7 ([6]). Let µ → M. Then,

(i) (E(R, X, µ), ↓ · ↓↔) is a Banach space.

(ii) If µ satisfies (M), then E(R, X, µ) is translation invariant.

Example 2.8. (1) An ergodic function in the sense of Zhang [25] is a µ-ergodic function in the

particular case where the measure µ is the Lebesgue measure.

(2) Let ↼ : R ↑↔ [0,+⇐) be a B(R)-measurable function. We define the positive measure µ on

B(R) by

µ(A) =

∫

A
↼(t)dt for A → B(R),

where dt denotes the Lebesgue measure on B(R). The measure µ is absolutely continuous

with respect to dt and the function ↼ is called the Radon-Nikodym derivative of µ with respect

to dt. In this case µ → M if and only if the function ↼ is locally Lebesgue-integrable on R
and it satisfies ∫

R
↼(t)dt = +⇐.

(3) In [18], the authors considered the space of bounded continuous functions f : R ↑↔ X

satisfying

lim
r↓+↔

1

2r

∫

[↗r,r]
↓f(t)↓dt = 0 and lim

N↓+↔

1

2N + 1

N∑

n=↗N

↓f(n)↓ = 0.

This space coincides with the space of µ-ergodic functions where µ is defined in B(R) by the

sum µ(A) = µ1(A) + µ2(A) with µ1 is the Lebesgue measure on (R,B(R)) and

µ2(A) =





card(A ⇑ Z) if A ⇑ Z is finite,

⇐ if A ⇑ Z is infinite.

Definition 2.9 ([5]). Let µ → M. A continuous function f : R ↑↔ X is said to be µ-pseudo

almost automorphic if f is written in the form:

f = g + ε,

where g → AA(R, X) and ε → E(R, X, µ).

The space of all such functions is denoted by PAA(R, X, µ).
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Proposition 2.10 ([5]). Let µ → M satisfy (M). Then the following are true:

(i) The decomposition of a µ-pseudo almost automorphic in the form f = g + ε where g →
AA(R, X) and ε → E(R, X, µ), is unique.

(ii) PAA(R, X, µ) equipped with the supnorm is a Banach space.

Definition 2.11 ([7]). A continuous function f : R≃X ↑↔ Y is said to be almost automorphic

in t uniformly with respect to x → X if the following two conditions hold:

(i) For all x → X, f(·, x) → AA(R, Y ),

(ii) f is uniformly continuous on each compact K ↗ X with respect to the second variable x,

namely, for each compact K ↗ X, for all ↽ > 0, there exists ⇀ > 0 such that all x1,x2 → K,

one has ↓x1 ↑ x2↓ ⇒ ⇀ ⇔ supt↘R ↓f(t, x1)↑ f(t, x2)↓ ⇒ ↽.

Denote by AAU(R≃X,Y ) the set of all such functions.

Definition 2.12. Let µ → M. A continuous function f : R≃X ↑↔ Y is said to be µ-ergodic in t

uniformly with with respect to x → X, if the following two conditions hold:

(i) For all x → X, f(·, x) → E(R, Y, µ),

(ii) f is uniformly continuous on each compact K ↗ X with respect to the second variable x.

Denote by EU(R≃X,Y, µ) the set of all such functions.

Definition 2.13. Let µ → M. A continuous function f : R ≃ X ↑↔ Y is said to be µ-pseudo

almost automorphic in t uniformly with with respect to x → X, if f is written in the form:

f = g + h

where g → AAU(R≃X,Y ) and h → EU(R≃X,Y, µ).

PAAU(R≃X,Y ) denotes the set of such functions. We have

AAU(R≃X,Y ) ↗ PAAU(R≃X,Y ).

Proposition 2.14 ([5]). Let µ → M and f : R≃X ↑↔ Y be a µ-pseudo almost automorphic in t

uniformly with with respect to x → X. Then

(i) For all x → X, f(·, x) → PAA(R, Y, µ),

(ii) f is uniformly continuous on each compact K ↗ X with respect to the second variable x.
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Theorem 2.15 ([5]). Let µ → M, f → PAAU(R≃X,Y, µ) and x → PAA(R, X, µ). Assume that

the following hypothesis holds:

(C) For all bounded subset K of X, f is bounded on R≃K.

Then [t ↖↔ f(t, x(t))] → PAA(R, Y, µ).

2.2 Integrable dichotomy

Let X and Y be any Banach spaces with norms ↓ · ↓ and ↓ · ↓Y respectively. Throughout this work

we will assume that Y is densely and continuously imbedded in X i.e., Y is a dense subspace of

X and there is a constant C such that

↓⇁↓ ⇒ C↓⇁↓Y for ⇁ → Y.

Consider the following linear evolution equation:





u
→(t) = A(t)u(t), t ↙ s,

u(s) = x → X,

(2.1)

The associated inhomogeneous equation is given by:

d

dt
u(t) = A(t)u(t) + f(t), t → R, (2.2)

where f : R ↑↔ X is continuous and bounded.

Definition 2.16 ([20]). Let X be a Banach space. The family (A(t))t↑0 of infinitesimal generators

of C0-semigroup on X is called stable if there are constants M ↙ 1 and ϖ → R such that

(ϖ,⇐) ↗ ↼(A(t)) for t ↙ 0

and ∥∥∥∥∥∥

k∏

j=1

R(λ, A(tj))

∥∥∥∥∥∥
⇒ M(λ↑ ϖ)↗k

for λ > ϖ and for every finite sequence {t}kj=1 with 0 ⇒ t1 ⇒ · · · ⇒ tk < ⇐ and k = 1, 2, . . .

Definition 2.17. For each t → R, let A(t) be the infinitesimal generator of a C0 semigroup Tt(s),

s → R, on X. A subspace Y of X is called A(t)-admissible if it is an invariant subspace of Tt(s),

s → R, and the restriction of Tt(s) to Y is a C0 semigroup in Y (i.e. it is strongly continuous in

the norm ↓ · ↓Y ).
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We will make the following assumptions.

(A1) (A(t))t↘R is a stable family with stability constants M , ϖ.

(A2) Y is A(t)-admissible for t → R and the family (Ã(t))t↘R of parts Ã(t) of A(t) in Y , is a stable

family in Y with stability constants M̃ , ϖ̃.

(A3) For each t → R, D(A(t)) ∝ Y , A(t) is a bounded operator from Y into X and t ↔ A(t) is

continuous in the B(Y,X) norm ↓ · ↓Y↓X .

It is well known that if a family (A(t))t↘R satisfies conditions (A1)-(A3), then one can associate a

unique evolution family (U(t, s))s≃t with the equation (2.1), (see [15, 20]). Throughout this work

(A(t), D(A(t))), t → R satisfies conditions (A1)-(A3).

Definition 2.18 ([15,20]). An evolution family (U(t, s))s≃t on a Banach space X is said to have

an exponential dichotomy (or hyperbolic) in R if there exists a family of projections P (t) → L(X),

t → R, being strongly continuous with respect to t, and constants ⇀,M > 0 such that

(i) U(t, s)P (s) = P (t)U(t, s),

(ii) U(t, s) : Q(s)X ↔ Q(t)X is invertible with the inverse Ũ(t, s),

(iii) ↓U(t, s)P (s)↓ ⇒ Me
↗ε(t↗s) and ↓Ũ(t, s)Q(t)↓ ⇒ Me

↗ε(t↗s),

for all t, s → R with s ⇒ t, where, Q(t) = I ↑ P (t).

Definition 2.19. Let (U(t, s))s≃t have an exponential dichotomy. We define the Green function

by:

G(t, s) =





U(t, s)P (s), t, s → R, s ⇒ t

↑Ũ(t, s)Q(s), t, s → R, s > t.

For a given evolution family (U(t, s))s≃t associated to equation (2.1), that has an dichotomy

exponential, the Green function associated to the evolution family satisfies

↓G(t, s)↓ =





Me

↗ε(t↗s)
, if t ↙ s

Me
↗ε(s↗t)

, if s > t.

where M > 0 and ⇀ > 0 are positive constant.

Definition 2.20 ([22]). We say that equation (2.1) has an integrable dichotomy with data (λ, P )

if there are projections P (t), t → R, uniformly bounded and strongly continuous in t satisfying (i)

and (ii), with Q(t) = I ↑ P (t) and there exists a function λ : R2 ↔ (0,⇐) such that

↓G(t, s)↓ ⇒ λ(t, s), for all t, s → R, (2.3)
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and

sup
t↘R

∫

R
λ(t, s)ds ⇒ L < ⇐. (2.4)

In the pseudo almost automorphic context, we will make the following additional assumption for

the function λ(t, s) in Definition 2.20.

(A) Let λ1 : (↑⇐,↑T ) ↔ (0,⇐) and λ2 : (T,⇐) ↔ (0,⇐) defined by λ1(s) =
∫ T
↗T λ(t, s)dµ(t),

λ2(s) =
∫ T
↗T λ(t, s)dµ(t) for all T > 0. We assume that there exists a constant C > 0 such

that for all T > 0,

∫ T

s
λ(t, s)dµ(t) ⇒ C, and

∫ s

↗T
λ(t, s)dµ(t) ⇒ C, (2.5)

∫ ↗T

↗↔
λ1(s)ds ⇒ C, and

∫ ↔

T
λ2(s)ds ⇒ C. (2.6)

Remark 2.21. We notice that some di!erences between exponential dichotomy and integrable

dichotomy. In the case of exponential dichotomy, if we consider the Lebesgue mesure on B(R), the

constante C quoted in (A) is equal to max{M
ε ,

M
ε2 } and L = 2M

ε . Indeed, for T > 0, we have

∫

R
G(t, s)ds = M

∫ t

↗↔
e
↗ε(t↗s)

ds+M

∫ ↔

t
e
↗ε(s↗t)

ds = 2
M

⇀
= L, (2.7)

for t ↙ s, M

∫ T

s
e
↗ε(t↗s)

dt =
M

⇀

[
↑e

↗ε(T↗s) + 1
]
⇒ M

⇀
, (2.8)

for t ↙ s, M

∫ ↗T

↗↔

∫ T

↗↔
e
↗ε(t↗s)

dtds =
M

⇀

(
e
εT ↑ e

↗εT
) ∫ ↗T

↗↔
e
εs
ds ⇒ M

⇀2
. (2.9)

If t < s, we obtain the same results. Moreover a system that admits integrable dichotomy is

not necessarily exponentially stable what means that integrable dichotomy is more general than

exponential dichotomy. For more details, one can see [13,22].

Theorem 2.22 ([21]). Assume that equation (2.1) has an integrable dichotomy and f is a bounded

function. Then equation (2.2) has a unique bounded integral solution given by

u(t) =

∫

R
G(t, s)f(s)ds, t → R. (2.10)
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3 Almost automorphic and pseudo almost automorphic solu-

tions in the nonhomogeneous linear case

(H1) We assume that (A(t))t↘R generates an evolution family {U(t, s)}(s≃t↘R), on X i.e. (A(t), D(A(t))),

t → R satisfy conditions (A1)-(A3).

(H2) The evolution family U(t, s) generated by A(t) has an integrable dichotomy satisfying (2.3)

with function λ, dichotomy projections P (t), t → R, and Green’s function G(t, s).

(H3) The Green’s function G(t, s)x function is bi-almost automorphic in t, s → R, for all x → X.

We first consider the nonhomogeneous linear case

u
→(t) = A(t)u(t) + f(t), (3.1)

where f : R ↔ X is a function.

3.1 Almost automorphic solutions of equation (3.1)

Theorem 3.1. Assume that (H1), (H2) hold and f → AA(R, X). Then equation (3.1) has a

unique almost automorphic mild solution given by

u(t) =

∫

R
G(t, s)f(s)ds, t → R. (3.2)

Proof. By the Theorem 2.22, u is a unique mild solution to equation (3.1). Now, it remains to

show that u → AA(R, X). Let {ω →n} be a sequence of real numbers. Since f → AA(R, X), there

exists a subsequence {ωn} of {ω →n} such that

lim
n

G(t+ ωn, s+ ωn) = G̃(t, s), and lim
n

G̃(t↑ ωn, s↑ ωn) = G(t, s),

f̃(t) = limn↓↔ f(t+ sn) and f(t) = limn↓↔ f̃(t↑ sn) for each t, s → R. Now, we define

ũ(t) =

∫

R
G̃(t, s)f̃(s)ds, t → R.

Note that

↓u(t+ ωn)↑ ũ(t)↓ =

∥∥∥∥
∫

R
G(t+ ωn, s)f(s)ds↑

∫

R
G̃(t, s)f̃(s)ds

∥∥∥∥

=

∥∥∥∥
∫

R
G(t+ ωn, s+ ωn)f(s+ ωn)ds↑

∫

R
G̃(t, s)f̃(s)ds

∥∥∥∥
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⇒
∫

R

∥∥∥G(t+ ωn, s+ ωn)
[
f(s+ ωn)↑ f̃(s)

]∥∥∥ ds

+

∫

R

∥∥∥
[
G(t+ ωn, s+ ωn)↑ G̃(t, s)

]
f̃(s)

∥∥∥ ds.

Let

I1,n :=

∫

R
G(t+ ωn, s+ ωn)

[
f(s+ ωn)↑ f̃(s)

]
ds

and

I2,n :=

∫

R

[
G(t+ ωn, s+ ωn)↑ G̃(t, s)

]
f̃(s)ds.

We have

I1,n ⇒
∫

R
λ(t, s)

[
f(s+ ωn)↑ f̃(s)

]
ds.

Since f → AA(R, X) and by the dominated convergence Theorem, it follows that I1,n ↔ 0 as

n ↔ ⇐.

For I2,n since G(t, s) is bi-almost automorphic, given ϱ > 0, there is N > 0 such that for n ↙ N ,

we have

↓G(t+ ωn, s+ ωn)f̃(s)↑ G̃(t, s)f̃(s)↓ < ϱ↓f↓↔, t, s → R,

so for n ↙ N ,

I2,n ⇒
∫

R
↓G(t+ ωn, s+ ωn)f̃(s)↑ G̃(t, s)f̃(s)↓ds

Thus, by the dominated convergence Theorem we have that I2,n ↔ 0 as n ↔ ⇐. Thus limn u(t+

ωn) = ũ(t). We can show in a similar way that limn ũ(t↑ ωn) = u(t). Hence, limn u(t+ ωn) = ũ(t)

and limn ũ(t↑ ωn) = u(t), for t → R. Therefore, we conclude that u → AA(R, X).

Theorem 3.2. Let µ → M. Assume that (H1)-(H3) are satisfied and f → PAA(R, X, µ). Let u

be a bounded solution of equation (3.1). Then u → PAA(R, X, µ).

Proof. Let f = g + h → PAA(R, X, µ), where g → AA(R, X) and h → E(R, X, µ). Then u has a

unique decomposition:

u = u1 + u2

where, for all t → R, we have

u1(t) =

∫

R
G(t, s)g(s)ds

and

u2(t) =

∫

R
G(t, s)h(s)ds

Using Theorem 3.1, we obtain that u1 → AA(R, X). It remains to show that u2 → E(R, X, µ). Let
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r > 0. Then,

1

µ([↑r, r])

∫ r

↗r
↓u2(t)↓ dµ(t) =

1

µ([↑r, r])

∫ r

↗r

∥∥∥∥
∫

R
G(t, s)h(s)ds

∥∥∥∥ dµ(t)

⇒ 1

µ([↑r, r])

∫ r

↗r

∥∥∥∥
∫ t

↗↔
G(t, s)h(s)ds

∥∥∥∥ dµ(t)

+
1

µ([↑r, r])

∫ r

↗r

∥∥∥∥
∫ ↔

t
G(t, s)h(s)ds

∥∥∥∥ dµ(t).

For any fixed r > 0, we have

1

µ([↑r, r])

∫ r

↗r

∥∥∥∥
∫ t

↗↔
G(t, s)h(s)ds

∥∥∥∥ dµ(t) ⇒
1

µ([↑r, r])

∫ r

↗r

∫ ↗r

↗↔
↓G(t, s)h(s)↓ds dµ(t)

+
1

µ([↑r, r])

∫ r

↗r

∫ t

↗r
↓G(t, s)h(s)↓ds dµ(t)

⇒ 1

µ([↑r, r])

∫ r

↗r

∫ ↗r

↗↔
λ(t, s)↓h(s)↓ds dµ(t)

+
1

µ([↑r, r])

∫ r

↗r

∫ t

↗r
λ(t, s)↓h(s)↓ds dµ(t).

By assumption (H3) and by changing the order of integration, we have

∫ r

↗r

∫ ↗r

↗↔
λ(t, s)↓h(s)↓dsdµ(t) :=

∫ ↗r

↗↔

(∫ r

↗r
λ(t, s)dµ(t)

)
↓h(s)↓ds ⇒ ↓h↓↔

∫ ↗r

↗↔
λ1(s)ds ⇒ C↓h↓↔,

and

∫ r

↗r

∫ t

↗r
λ(t, s)↓h(s)↓ds dµ(t) :=

∫ r

↗r

(∫ r

t
λ(t, s)dµ(t)

)
↓h(s)↓ds ⇒ C

∫ r

↗r
↓h(s)↓ds.

By a similary way, we have

1

µ([↑r, r])

∫ r

↗r

∥∥∥∥
∫ ↔

t
G(t, s)h(s)ds

∥∥∥∥ dµ(t) ⇒
1

µ([↑r, r])

∫ r

↗r

∫ ↔

t
↓G(t, s)h(s)↓ds dµ(t)

⇒ 1

µ([↑r, r])

∫ r

↗r

∫ ↔

t
λ(t, s)↓h(s)↓ds dµ(t)

⇒ 1

µ([↑r, r])

∫ r

↗r

∫ r

t
λ(t, s)↓h(s)↓ds dµ(t)

+
1

µ([↑r, r])

∫ r

↗r

∫ ↔

r
λ(t, s)↓h(s)↓ds dµ(t).

By assumption (H3) and by changing the order of integration, we have

∫ r

↗r

∫ r

t
λ(t, s)↓h(s)↓ds dµ(t) :=

∫ r

↗r

(∫ s

↗r
λ(t, s)dµ(t)

)
↓h(s)↓ds ⇒ C

∫ r

↗r
↓h(s)↓ds,
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and

∫ r

↗r

∫ ↔

r
λ(t, s)↓h(s)↓ds dµ(t) =

∫ ↔

r

(∫ s

↗r
λ(t, s)dµ(t)

)
↓h(s)↓ds ⇒ ↓h↓↔

∫ ↔

r
λ2(s)ds ⇒ C↓h↓↔.

Thus, we have

1

µ([↑r, r])

∫ r

↗r
↓u2(t)↓dµ(t) ⇒

2C

µ([↑r, r])

(
↓h↓↔ +

∫ r

↗r
↓h(s)↓ds

)
. (3.3)

From (3.3), we claim that

lim
r↓↔

1

µ([↑r, r])

∫ r

↗r
↓u2(t)↓dµ(t) = 0.

Hence, u2 → PAA(R, X, µ). We obtain the proof of the theorem.

4 µ-pseudo almost automorphic solutions of equations (4.1)

and (4.2)

Let X and Y be Banach spaces and BC(R≃X,Y ) be the Banach space of all bounded continuous

functions from R ≃ X in Y with the supremum norm of ↓ · ↓↔. In this section, we consider

the nonlinear di!erential equation (4.1), where f : R ≃ X ↔ X is a function under convenient

conditions,

u
→(t) = A(t)u(t) + f(t, u(t)), t → R, (4.1)

and we analyze the delay case, were ω > 0 is fixed,

u
→(t) = A(t)u(t) + f(t, u(t), u(t↑ ω)), t → R. (4.2)

Definition 4.1. A bounded continuous function u : R ↔ X is called a mild solution of equation

(4.1) if

u(t) =

∫

R
G(t, s)f(s, u(s), u(s↑ ω))ds, t → R. (4.3)

Definition 4.2. A bounded continuous function u : R ↔ X is called a mild solution of equation

(4.2) if

u(t) =

∫

R
G(t, s)f(s, u(s))ds, t → R. (4.4)
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4.1 Existence of almost automorphic solutions to equation (4.1)

We need the following additional assumption:

(H4) There exists κ > 0 constant such that

↓f(t, u1)↑ f(t, u2)↓ ⇒ κ↓u1 ↑ u2↓, for all t → R, u1, u2 → X. (4.5)

Theorem 4.3. Let µ → M satisfy (M). Asumme that (H1)-(H4) hold and f → PAA(R≃X,X, µ)

with

κ <
1

L

Then, equation (4.1) has a unique mild solution u → PAA(R, X, µ) given by

u(t) =

∫

R
G(t, s)f(s, u(s))ds, t → R.

Proof. Let define the functional ! on PAA(R, X, µ) by

(!▷)(t) =

∫

R
G(t, s)f(s,▷(s))ds, t → R.

By the composition Theorem 2.15 and Theorem 3.2, one has !(PAA(R, X, µ)) ↗ PAA(R, X, µ).

Moreover we prove existence and uniqueness of solution to equation (4.1). Considering the fact

that ↓f↓↔ < ⇐, for all t → R, we have

↓(!▷)(t)↓ ⇒
∫ ↔

↗↔
↓G(t, s)f(s,▷(s))↓ds ⇒

∫ ↔

↗↔
λ(t, s)↓f(s,▷(s))↓ds ⇒ ↓f↓↔

∫ ↔

↗↔
λ(t, s)ds ⇒ L↓f↓↔.

This proves that !▷ is bounded. Now, we will prove that ! is a contraction.

↓(!▷)(t)↑ (!ε)(t)↓ ⇒
∫ ↔

↗↔
↓G(t, s)↓↓f(s,▷(s))↑ f(s,ε(s))↓ds

⇒
∫ ↔

↗↔
λ(t, s)↓f(s,▷(s))↑ f(s,ε(s))↓ds

⇒ κ↓▷↑ ε↓↔
∫

R
λ(t, s)ds ⇒ κL↓▷↑ ε↓↔.

Therefore, by the Banach fixed point theorem, ! has a unique fixed point such that !▷ = ▷, which

is a µ-pseudo almost automorphic mild solution of equation (4.1).
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4.2 Existence of almost automorphic solutions to equation (4.2)

We need the following additional assumption:

(H5) The function f(t, u, v) is locally Lipschitz in u, v → X i.e. for each positive number ◁, for

all, u1, u2, v1, v2 with ↓ui↓ ⇒ ◁, ↓vi↓ ⇒ ◁, i = 1, 2

↓f(t, u1, v1)↑ f(t, u2, v2)↓ ⇒ k1(◁)↓u1 ↑ u2↓+ k2(◁)↓v1 ↑ v2↓, (4.6)

where k1, k2 : [0,⇐) ↔ [0,⇐) are functions and there is a positive constant ↼, such that

2max(k1(↼), k2(↼)) <
1
L and supt↘R ↓f(t, 0, 0)↓ ⇒ ϑ

L [1↑ 2Lmax(k1(↼), k2(↼))] .

Theorem 4.4. Assume that (H1)-(H3) and f hold (H5). Then, equation (4.2) has a unique

bounded solution u(t), t → R, with ↓u↓↔ ⇒ ↼.

Proof. Let G(t, s) be the Green’s function associated with the equation (4.2) and we define the

functional on X by

(”▷)(t) =

∫ ↔

↗↔
G(t, s)f(s,▷(s),▷(s↑ ω))ds, t → R.

We show that ” has a fixed point. First, we prove that ” is bounded. There are ↼ constant positive

and a ball B(0, ↼) which satisfies assumption (H5). Thus, we have,

↓(”▷)(t)↓ ⇒
∫ ↔

↗↔
↓G(t, s)f(s,▷(s),▷(s↑ ω))↓ds ⇒

∫ ↔

↗↔
λ(t, s)↓f(s,▷(s),▷(s↑ ω))↓ds

⇒ (k1(↼) + k2(↼))

∫ ↔

↗↔
λ(t, s)↓▷(s)↓ds+

∫ ↔

↗↔
λ(t, s)↓f(s, 0, 0)↓ds

⇒ L(k1(↼) + k2(↼))↓▷↓↔ + L sup
t↘R

↓f(t, 0, 0)↓

⇒ 2Lmax(k1(↼), k2(↼))↼+ ↼ [1↑ 2Lmax(k1(↼), k2(↼))] ⇒ ↼

This proves that ”▷ → B(0, ↼) for all ▷ → B(0, ↼). Finally, we prove that ” is a contraction in

B(0, ↼). In fact,

↓(”▷)(t)↑ (”ε)(t)↓ ⇒
∫ ↔

↗↔
↓G(t, s)↓↓f(s,▷(s),▷(s↑ ω))↑ f(s,ε(s),ε(s↑ ω))↓ds

⇒
∫ ↔

↗↔
λ(t, s)↓f(s,▷(s),▷(s↑ ω))↑ f(s,ε(s),ε(s↑ ω))↓ds

⇒ L

∫ ↔

↗↔
↓k1(↼)↓▷(s)↑ ε(s)↓+ k2(↼)↓▷(s↑ ω)↑ ε(s↑ ω)↓ds

⇒ L(k1(↼) + k2(↼))↓▷↑ ε↓↔.

Using Banach fixed point Theorem, we deduce by (H5) that ” has a fixed point ▷.
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Now, we will prove that equation (4.2) has an almost automorphic solution.

Theorem 4.5. Assume that (H1)-(H3) and (H5) hold and f → AA(R ≃ X ≃ X,X). Then,

equation (4.2) has a unique almost automorphic mild solution u(t), t → R, with ↓u↓↔ ⇒ ↼.

Proof. We define the functional on X as in Theorem 4.4 by

(”▷)(t) =

∫ ↔

↗↔
G(t, s)f(s,▷(s),▷(s↑ ω))ds, t → R.

We show that ”(AA(R, X)) ↗ AA(R, X). Since f → AA(R≃X ≃X,X), and for each u → B(0, ↼)
there exists a subsequence {ωn} of {ω →n} such that

lim
n

G(t+ ωn, s+ ωn)x↑ G̃(t, s)x = 0, and lim
n

G̃(t↑ ωn, s↑ ωn)x↑G(t, s)x = 0,

f̃(t, u(t), u(t↑ ω)) = lim
n↓↔

f(t+ sn, u(t+ sn), u(t+ sn ↑ ω))

and

f(t) = lim
n↓↔

f̃(t↑ sn, u(t↑ sn), u(t↑ sn ↑ ω))

for each t, s → R, x → K. Thus, we have

”̃u(t) =

∫

R
G̃(t, s)f̃(s, ũ(s), ũ(s↑ ω))ds, t → R.

Note that

↓”u(t+ ωn)↑ ”̃u(t)↓=
∥∥∥∥
∫

R
G(t+ ωn, s)f(s, u(s), u(s↑ ω))ds↑

∫

R
G̃(t, s)f̃(s, ũ(s), ũ(s↑ ω))ds

∥∥∥∥

=

∥∥∥∥
∫

R
G(t+ ωn, s+ ωn)f(s+ ωn, u(s+ sn), u(s+ sn ↑ ω))ds

↑
∫

R
G̃(t, s)f̃(s, ũ(s), ũ(s↑ ω))ds

∥∥∥∥

⇒
∫

R

∥∥∥G(t+ ωn, s+ ωn)
[
f(s+ ωn, u(s+ sn), u(s+ sn ↑ ω))↑ f̃(s, ũ(s), ũ(s↑ ω))

]∥∥∥ ds

+

∫

R

∥∥∥
[
G(t+ ωn, s+ ωn)↑ G̃(t, s)

]
f̃(s, ũ(s), ũ(s↑ ω))

∥∥∥ ds.

Let

J1,n :=

∫

R
G(t+ ωn, s+ ωn)

[
f(s+ ωn, u(s+ sn), u(s+ sn ↑ ω))↑ f̃(s, ũ(s), ũ(s↑ ω))

]
ds

and

J2,n :=

∫

R

[
G(t+ ωn, s+ ωn)↑ G̃(t, s)

]
f̃(s, ũ(s), ũ(s↑ ω))ds.
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We have

J1,n ⇒
∫

R
λ(t, s)

[
f(s+ ωn, u(s+ sn), u(s+ sn ↑ ω))↑ f̃(s, ũ(s), ũ(s↑ ω))

]
ds.

Since f → AA(R≃X ≃X,X) and by the dominated convergence theorem, it follows that J1,n ↔ 0

as n ↔ ⇐.

For J2,n since G(t, s) is bi-almost automorphic, given ϱ > 0, there is N > 0 such that for n ↙ N ,

we have

↓G(t+ ωn, s+ ωn)f̃(s, ũ(s), ũ(s↑ ω)↑ G̃(t, s)f̃(s, ũ(s), ũ(s↑ ω))↓ < ϱ↓f↓↔, t, s → R,

so for n ↙ N ,

J2,n ⇒
∫

R
↓G(t+ ωn, s+ ωn)f̃(s, ũ(s), ũ(s↑ ω)↑ G̃(t, s)f̃(s, ũ(s), ũ(s↑ ω))↓ds.

Thus, by the dominated convergence theorem we have that J2,n ↔ 0 as n ↔ ⇐ . Thus limn ”u(t+

ωn) = ”̃u(t). We can show in a similar way that limn ”̃u(t↑ ωn) = ”u(t). Hence, limn ”u(t+ ωn) =

”̃u(t) and limn ”̃u(t↑ωn) = ”u(t), for t → R. By Theorem 3.2, equation (4.2) has a unique bounded

mild solution u(t), t → R , with ↓u↓↔ ⇒ ↼ and u → AA(R, X).

Theorem 4.6. Let µ → M and µ satisfy (M). Assume that (H1)-(H3) and (H5) hold and

f → PAA(R≃X≃X,X, µ). Then, equation (4.2) has a unique µ-pseudo almost automorphic mild

solution u(t), t → R, with ↓u↓↔ ⇒ ↼.

Proof. We define the functional on X as in Theorem 4.4 by

”▷(t) =

∫ ↔

↗↔
G(t, s)f(s,▷(s),▷(s↑ ω))ds, t → R.

By Theorem 4.4, equation (4.2) has a unique bounded mild solution u(t), t → R , with ↓u↓↔ ⇒ ↼.

Let f = g+h → PAA(R≃X≃X,X, µ) where g → AA(R≃X≃X,X) and h → E(R≃X≃X,X, µ).

Thus, ”▷ has a unique decomposition:

”▷(t) = u1(t) + u2(t)

where, for all t → R, we have

u1(t) =

∫

R
G(t, s)g(s, u(s), u(s↑ ω))ds

and

u2(t) =

∫

R
G(t, s)h(s, u(s), u(s↑ ω))ds.
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Using Theorem 4.5, we obtain that u1 → AA(R, X). It remains to show that u2 → E(R, X, µ). Let

r > 0. Then,

1

µ([↑r, r])

∫ r

↗r
↓u2(t)↓ dµ(t) =

1

µ([↑r, r])

∫ r

↗r

∥∥∥∥
∫

R
G(t, s)h(s, u(s), u(s↑ ω))ds

∥∥∥∥ dµ(t)

⇒ 1

µ([↑r, r])

∫ r

↗r

∥∥∥∥
∫ t

↗↔
G(t, s)h(s, u(s), u(s↑ ω))ds

∥∥∥∥ dµ(t)

+
1

µ([↑r, r])

∫ r

↗r

∥∥∥∥
∫ ↔

t
G(t, s)h(s, u(s), u(s↑ ω))ds

∥∥∥∥ dµ(t)

For any fixed r > 0, by calculations similar as to the Theorem 3.2, we have

1

µ([↑r, r])

∫ r

↗r
↓u2(t)↓dµ(t) ⇒

2C

µ([↑r, r])

(
↓h↓↔ +

∫ r

↗r
↓h(s)↓ds

)
(4.7)

From (4.7), we claim that

lim
r↓↔

1

µ([↑r, r])

∫ r

↗r
↓u2(t)↓dµ(t) = 0

Hence, u2 → PAA(R, X, µ). We obtain the proof of the Theorem.

5 Applications

In the next example, we show that integrable dichotomy is a generalization of exponential di-

chotomy.

Example 5.1. We give an example of family of operators (A(t))t↘R that generates an evolution

family with an integrable dichotomy. Let {bk}k↘Z be a positive Riemamn sequence such that bk =
1

k2+1 . Let Jk := [k ↑ b
2
k, k + b

2
k], for k → Z. Let 0 : R ↔ (0,⇐) be continuously di!erentiable

function given by 0(t) = 1, if t ′→ Jk and in Jk, 0(t) →
[

1
k2+1 , 1

]
where 0(k) = bk. We have

∑

k↘Z

∫

Jk

0
↗1(s)ds =

∑

k↘Z

∫ k+ 1
(k2+1)2

k↗ 1
(k2+1)2

(k2 + 1)ds = 2
∑

k↘Z

k
2 + 1

(k2 + 1)2

⇒ 2

(
1 + 2

↔∑

k=1

1

k2


⇒ 2

(
1
2

3
+ 1

)
< ⇐.

Consider the scalar di!erential equation

u
→(t) = a(t)u(t), a(t) = ↑ϑ+ 0

→(t)0(t)↗1
, ϑ > 0, (5.1)

one has

u(t) = u0e
↗ϖt

0(t) where u0 is the initial data .
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It is well-known that the evolution family of the equation (5.1) with projections P (t) = I, t → R
is given by U(t, s) = e

↗ϖ(t↗s) ϱ(t)
ϱ(s) . We have Green’s function G(t, s) = U(t, s) has an integrable

dichotomy. Indeed,

∫ t

↗↔
U(t, s)ds ⇒

∫ t

↗↔
e
↗ϖ(t↗s) +

[t]+2∑

k=↗↔

∫

Jk

0
↗1(s)ds ⇒ 1

ϑ
+ 2

(
1
2

3
+ 1

)
< ⇐.

Condition (2.4) is satisfied with L = 1
ϖ +2


ς2

3 + 1

. The equation (5.1) is not exponentialy stable.

In fact,

U(k + b
2
k, k) = (k2 + 1)e

↗ ω
(k2+1)2 ↔ ⇐, as k ↔ ⇐.

Thus integrable dichotomy is more general than the exponential dichotomy. Note that

| U(t, s) |⇒ e
↗ϖ(t↗s) + λ0(s), s ⇒ t

with

λ0(s) =
∑

k↘Z
0
↗1(s)2Jk(s),

where 2Jk is the characteristic function on Jk. It is clear that λ0 → L
1(R). Then equation (5.1)

has an integrable dichotomy with λ(t, s) = e
↗ϖ(t↗s) + λ0(s), s ⇒ t satisfying

sup
t↘R

∫ t

↗↔
λ(t, s)ds ⇒ L. (5.2)

In a similar way, we can prove that

sup
t↘R

∫ ↔

t
U(t, s)ds ⇒ L, (5.3)

but the evolution family is not exponentially stable at ↑⇐. Let the diagonal matrix

A(t) = diag(b1(t), b2(t), . . . , bn(t))

with each bi satisfying (5.2) for i = 1, . . . , k and satisfying (5.3) for i = k+1, . . . , n (k > 0). Then,

this construction yields the linear system

x
→ = A(t)x

which has an integrable dichotomy with

λ(t, s) = e
↗|t↗s| + λ0(s), t, s → R,
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λ0 integrable in R. We consider the projections

P (t) =



Ir 0

0 0



 , Q(t) = I ↑ P (t) =



0 0

0 In↗r



 ,

where Ir and In↗r are identity matrix of order respectively r and n ↑ r. Finally, one extend the

diagonal and integrable caracter of the dichotomy of A(t) to a diagonal infinite dimensional.

Example 5.2. Let µ be a mesure with a Radon-Nikodym derivative ↼ defined by:

↼(t) =





e
t
, t ⇒ 0

1, t > 1.
(5.4)

We consider the existence and uniqueness of a µ-pseudo almost automorphic solutions for the

following system:






3u(t, ⇁)

3t
=

3
2
u(t, ⇁)

3⇁2
+ ϑ(t)u(t, ⇁) + g(t, u(t, ⇁)), t → R, ⇁ → [0,1],

u
→(t, 0) = u

→(t,1) = 0, t → R,
(5.5)

where ϑ(t) = 1
2 sin


1

2+cos t+cos
⇐
2t


→ AA(R, X). Take X = L

2[0,1] with norm ↓ · ↓ and inner

product (·, ·)2. g : R≃ L
2[0,1] ↔ L

2[0,1] is µ-pseudo almost automorphic with

g(t, ⇁) = e
↗|t|

4(⇁),

where t ↖↔ e
↗|t| belongs to E(R,R, µ). The function 4 is Lipschitzian. Let κ > 0

|4(x)↑ 4(y)| ⇒ κ|x↑ y|.

Let f : R≃ L
2[0,1] ↔ L

2[0,1] be a function defined by

f(t, v)(x) = e
↗|t|

4(v(x)).

We define A : D(A) ↗ X ↔ X by

A▷ = ▷
→→ for ▷(·) → D(A),

with domain

D(A) = {u → H
2(0,1) : u→(0) = u

→(1) = 0}.
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It is well-known that the operator A generates a C0-semigroup (T (t))t↑0 on X such that ↓T (t)↓ ⇒ 1

for t ↙ 0. Moreover, we have

T (t)▷ =
↔∑

n=0

e
↗n2t(▷, en)2en, for all t ↙ 0, ▷ → X,

with en(t) =


2
ς cos(nt) for each n → N. Define a family of linear operators A(t) by:

A(t) =
3
2

3x2
+ ϑ(t)I = A+ ϑ(t)I for t → R,

with domain

D(A(t)) = D(A) = {u → H
2(0,1) : u→(0) = u

→(1) = 0}.

It is easy to see that the family of linear operators A(t) satisfy assumptions (A1)-(A3). Indeed,

just take Y = X, M = 1 and ϖ = 1
2 .

Let v(t) = u(t, ·). Then (5.5) becomes

d

dt
v(t) = A(t)v(t) + f(t, v(t)).

The operators A(t) generate an evolution family (U(t, s))t↑s given by:

U(t, s)▷ =
↔∑

n=0

e

∫ t
s [ϖ(φ)↗n2]dφ (▷, en)2en, for all t ↙ s, ▷ → X.

Lemma 5.3. The evolution family has an integrable dichotomy with data (λ, P ).

Proof. We divide the series in two parts i.e., thus

U(t, s)▷ = e

∫ t
s [ϖ(φ)↗1]dφ (▷, e0)2e0 +

↔∑

n=1

e

∫ t
s [ϖ(φ)↗n2]dφ (▷, en)2en, for all t ↙ s, ▷ → X.

For t ↙ s and ▷ → V ect{e0},

|U(t, s)▷| = |e
∫ t
s ϖ(φ)dφ (▷, e0)2e0| ⇒ e

1
2 (t↗s)|▷|.

Let ▷ → V ect{en;n = 1, 2, . . . },

|U(t, s)▷| =



↔∑

n=1

e

∫ t
s [ϖ(φ)↗n2]dφ (▷, en)2en

 ⇒ e

∫ t
s [ϖ(φ)↗1]dφ



↔∑

n=1

(▷, en)2en

 ⇒ e
↗

∫ t
s [1↗ϖ(φ)]dφ |▷|.
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Let I↑P = diag(1, 0, . . . , 0, 0, 0, . . . ) and P = diag(0, 1, 1, . . . ) be projections with Rank(I↑P ) = 1

and Rank(P ) = ⇐. Thus, the Green function is defined by

G(t, s) =






U(t, s)P =
↔

n=1 e

∫ t
s [ϖ(φ)↗n2]dφ

en, if t ↙ s,

↑Ũ(t, s)(I ↑ P ) = ↑e
↗

∫ t
s ϖ(φ)dφ

e0, if t < s.

Then, u→(t) = A(t)u(t) has an integrable dichotomy with data (λ, P ), where λ is given by:

λ(t, s) =






e
↗

∫ t
s [1↗ϖ(φ)]dφ

, if t ↙ s,

e
↗

∫ t
s ϖ(φ)dφ

, if t < s.

Let us calculate L and C as mentioned in Definition 2.20. Let t → R, using the fact that ↑ 1
2 ⇒

ϑ(ω) ⇒ 1
2 , one obtain

sup
t↘R

∫

R
λ(t, s)ds = sup

t↘R

(∫ t

↗↔
e
↗

∫ t
s [1↗ϖ(φ)]dφ

ds+

∫ ↔

t
e
↗

∫ t
s ϖ(φ)dφ

ds

)

⇒
(∫ t

↗↔
e
↗ 1

2 (t↗s)
ds+

∫ ↔

t
e

1
2 (t↗s)

ds

)
= 4 = L.

Now, let us verify hypothesis (A). Let T > 0, we have

∫ ↔

T

∫ T

↗T
λ(t, s)dµ(t)ds =

∫ ↔

T

(∫ 0

↗T
e
t
e

1
2 (t↗s)

dt+

∫ T

0
e

1
2 (t↗s)

dt


ds

⇒
(
2

3
+ 2e

1
2T

)∫ ↔

T
e
↗ 1

2 sds ⇒ 16

3
= C.

In a similar way, we can show that

∫ T

s
λ(t, s)dµ(t) ⇒ C,

∫ s

↗T
λ(t, s)dµ(t) ⇒ C, and

∫ ↗T

↗↔

∫ T

↗T
λ(t, s)dµ(t)ds ⇒ C.

Hence, (H1) and (H2) hold.

Lemma 5.4. The Green’s function is bi-almost automorphic.

Proof. Let ϑ → AA(R, X), then, for every sequence (s→k)k↑0 of real numbers, there exists a subse-

quence (sk)k↑0 ↗ (s→k)k↑0 and a measurable function ϑ̃, such that

lim
k

ϑ(ω + sk) = ϑ̃(ω) and lim
k

ϑ̃(ω ↑ sk) = ϑ(ω) for all ω → R.



CUBO
27, 1 (2025)

Almost automorphic solutions for some nonautonomous... 51

Let us define, Ũ(t, s)▷ = T (t↑s)e
∫ t
s ϖ̃(φ)dφ

▷, for all t ↙ s, ▷ → X. Since U is bi-almost automorphic,

we have

lim
k

U(t+ sk, s+ sk)▷↑ Ũ(t, s)▷ ⇒ lim
k

∥∥∥∥T (t↑ s)e
∫ t+sk
s+sk

ϖ(φ)dφ
▷↑ T (t↑ s)e

∫ t
s ϖ̃(φ)dφ

▷

∥∥∥∥

⇒ lim
k

∥∥∥∥T (t↑ s)

(
e

∫ t+sk
s+sk

ϖ(φ)dφ ↑ e

∫ t
s ϖ̃(φ)dφ

)
▷

∥∥∥∥

⇒ lim
k

∥∥∥T (t↑ s)

e

∫ t
s ϖ(φ↗sk)dφ ↑ e

∫ t
s ϖ̃(φ)dφ


▷

∥∥∥

⇒ lim
k

∥∥∥T (t↑ s)e
∫ t
s ϖ̃(φ)dφ


e

∫ t
s |ϖ(φ↗sk)↗ϖ̃(φ)|dφ ↑ 1


▷

∥∥∥

As ϑ → AA(R, X), we have

e
∫ t
s |ϖ(φ↗sk)↗ϖ̃(φ)|dφ ↑ 1

 ↔ 0 as k ↔ ⇐.

Then

lim
k

U(t+ sk, s+ sk)▷↑ Ũ(t, s)▷ = 0.

In a similar way, we can prove that limk Ũ(t ↑ sk, s ↑ sk)▷ ↑ U(t, s)▷ = 0. Then, U is bi-almost

automorphic.

Consequently, all assumptions of the Theorem 4.3 are satisfied. We can deduce by the Theorem 4.3

that the problem (4.1) has an unique µ-pseudo almost automorphic mild solution on R, under the

condition κ small enough.
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ABSTRACT

For the nth remainder Rn(p) :=
∑→

k=n+1(→1)k+1k↑p
of an

alternating p-series, several asymptotic estimates are pre-

sented. For example, for any integer n ↑ 3, and p ↓ R+
, we

have

Rn(p) =
(→1)n

2
(
2↔n+1

2 ↗
)p → p

4
(
2↔n+1

2 ↗
)p+1 + ω↓n(p)

and

|ω↓n(p)| <
p(p+ 1)

5 (n→ 2)p+2
,

where ↔x↗ denotes the integer part (the floor) of x.

RESUMEN

Para el residuo n-ésimo Rn(p) :=
∑→

k=n+1(→1)k+1k↑p
de

una p-serie alternante, se presentan diversas estimaciones

asintóticas. Por ejemplo, para cualquier entero n ↑ 3 y

p ↓ R+
, tenemos

Rn(p) =
(→1)n

2
(
2↔n+1

2 ↗
)p → p

4
(
2↔n+1

2 ↗
)p+1 + ω↓n(p)

y

|ω↓n(p)| <
p(p+ 1)

5 (n→ 2)p+2
,

donde ↔x↗ denota la parte entera (el piso) de x.
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1 Introduction

In [5] it was shown that the best constants a and b such that inequalities

1

2n+ a
→

∣∣∣∣∣

→∑

k=n+1

(↑1)k↑1 1

k

∣∣∣∣∣ <
1

2n+ b
(1.1)

hold for every n ↓ 1 are a = 1
1↑ln 2 ↑ 2 ↔ 1.25 8891 and b = 1.

In the paper [1] it was proved for the nth remainder Rn(p),

Rn(p) :=
→∑

k=n+1

(↑1)k+1

kp
, (1.2)

for alternating p-series (for Dirichlet eta function ω(p), i.e. for the Riemann alternating zeta

function),

ω(p) :=
→∑

k=1

(↑1)k+1

kp
, (1.3)

the relations

a(n, p) :=
1

2(n+ 1)p ↑ ε(p)
→ |Rn(p)| →

1

2np + ϑ(p)
=: b(n, p), (1.4)

true for integers n ↓ 1 and p ↓ 2 and with (the best) constants

ε(p) := 2p+1
↑

1

1↑ (1↑ 21↑p)ϖ(p)
and ϑ(p) :=

1

1↑ (1↑ 21↑p)ϖ(p)
↑ 2. (1.5)

Accuracy or sharpness of the double inequality A(x) → F (x) → B(x) at the point x we define

as the di!erence B(x) ↑ A(x), i.e. as the width of the interval [A(x), B(x)]. For example the

double inequality (1.1) has the sharpness equal to a↑b
(2n+a)(2n+b) , i.e. O( 1

n2 ), using the Landau big

O notation. Similarly, the double inequality (1.4) has the sharpness O( 1
np+1 ).

Motivated by [3, 4] and [5], and especially by [1], where the validity of (1.4) is based on the

supposition that p is a positive integer di!erent from 1, we shall provide some estimates of the

remainder Rn(p), which are close to the relation (1.4) and are valid for any p ↗ R+.

2 Background

We shall use the results from the paper [2], where appear special sums1

ϑ↓
q (x, p) :=

↔q/2↗∑

i=1

(
4i ↑ 1

) B2i · p(2i↑1)

xp+2i↑1 · (2i)!
(q ↗ N, p, x ↗ R), (2.1)

1
By definition,

∑n
i=m xi = 0 if m > n.
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where Bk denotes the kth Bernoulli coe"cient (or Bernoulli number)2, defined by the identity
t

et↑1 ↘
∑→

k=0 Bk
tk

k! (|t| < 2ϱ), where the symbol x(k) designates the upper (rising) Pochhammer

product defined as

x(0) := 1, x(k) :=
k↑1∏

i=0

(x+ i) = x(x+ 1) · · · (x+ k ↑ 1) (x ↗ R, k ↗ N), (2.2)

and where the symbol ≃x⇐ denotes the integer part (the floor) of any x ↗ R+.

We will use the following lemma.

Lemma 2.1 ([2, Theorem 1]). For p ↗ R+ and every k, n, q ↗ N, with n ↓ 2k + 1 ↓ 3, the nth

remainder Rn(p) := ω(p)↑
∑n

j=1(↑1)j+1 1
jp is given in the form

Rn(p) = !q(n, p) + ςq(k, p),

with

!q(n, p) =
(↑1)n

2
(
2≃n+1

2 ⇐
)p ↑ ϑ↓

q

(
2≃n+1

2 ⇐, p
)
,

and

|ςq(k, p)| <
5p(q↑1)

3ϱq↑1
·

1

(2k)p+q↑1
.

3 Asymptotic estimates of the remainder Rn(p)

Now, for any integer n ↓ 3, the floor (the integer part) φ :=
⌊
n↑1
2

⌋
is a positive integer estimated

as n↑1
2 ↑ 1 < φ →

n↑1
2 . Consequently n↑ 3 < 2φ → n↑ 1, that is

n↑ 2 → 2φ → n↑ 1. (3.1)

Therefore, using k = φ in Lemma 2.1, together with the new naming ↼n(p, q) := ςq(φ, p), we obtain

the next result.

Proposition 3.1. For integers n ↓ 3 and q ↓ 1, and for p ↗ R+, we have

Rn(p) =
(↑1)n

2
(
2≃n+1

2 ⇐
)p ↑

↔q/2↗∑

i=1

(
4i ↑ 1

) B2i · p(2i↑1)

(
2
⌊
n+1
2

⌋)p+2i↑1
· (2i)!

+ ↼n(p, q),

2B1 = → 1
2 , B2 = 1

6 , B3 = B5 = B7 = · · · = 0, B4 = B8 = → 1
30 , B6 = 1

42 , . . .



78 Vito Lampret CUBO
27, 1 (2025)

where

|↼n(p, q)| <
5p(q↑1)

3ϱq↑1
·

1
(
2≃n↑1

2 ⇐
)p+q↑1 →

5p(q↑1)

3ϱq↑1
·

1

(n↑ 2)p+q↑1
.

Here q is a parameter controlling the magnitude of the error term ↼n(p, q).

Using q = 1 in Proposition 3.1, we obtain the first corollary.

Corollary 3.2. For an integer n ↓ 3 and p ↗ R+ there hold the following estimates:

(↑1)n

2
(
2≃n+1

2 ⇐
)p ↑

5

3
(
n↑ 2

)p < Rn(p) <
(↑1)n

2
(
2≃n+1

2 ⇐
)p +

5

3
(
n↑ 2

)p

and

|Rn(p)| <
1

2
(
n↑ 1

)p +
5

3
(
n↑ 2

)p .

Putting q = 3 in Proposition 3.1, we get the following corollary.

Corollary 3.3. For p ↗ R+ and every integer n ↓ 3, the formulas

Rn(p) =
(↑1)n

2
(
2≃n+1

2 ⇐
)p ↑

p

4
(
2≃n+1

2 ⇐
)p+1 + ↼n(p, 3),

hold true, where

|↼n(p, 3)| <
5

3ϱ2
·

p(p+ 1)
(
2≃n↑1

2 ⇐
)p+2 <

p(p+ 1)

5 (n↑ 2)p+2

and
∣∣∣∣∣

∣∣∣Rn(p)
∣∣∣↑

∣∣∣∣
(↑1)n

2
(
2≃n+1

2 ⇐
)p ↑

p

4
(
2≃n+1

2 ⇐
)p+1

∣∣∣∣

∣∣∣∣∣ <
p(p+ 1)

5 (n↑ 2)p+2
.

Setting q = 5 in Proposition 3.1, we provide the following result.

Corollary 3.4. For every integer n ↓ 3 and p ↗ R+, there holds the equality

Rn(p) =
(↑1)n

2
(
2≃n+1

2 ⇐
)p ↑

p

4
(
2≃n+1

2 ⇐
)p+1 +

p(p+ 1)(p+ 2)

48
(
2≃n+1

2 ⇐
)p+3 + ↼n(p, 5)

with the estimate

|↼n(p, 5)| <
5

3ϱ4
·
p(p+ 1)(p+ 2)(p+ 3)

(
2≃n↑1

2 ⇐
)p+4 <

p(p+ 1)(p+ 2)(p+ 3)

58 (n↑ 2)p+4
.
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4 Approximations of
∣∣Rn(p)

∣∣

Using the Landau big O notation, the relation (1.4) means that
∣∣Rn(p)

∣∣ = O

(
1

np

)
as n ⇒ ⇑, for

integers p ↓ 2. However, the next Proposition 4.1 improves this result.

Proposition 4.1. For integers n ↓ 3 and q ↓ 1, for any p ↗ R+, and for Sn(p, q) :=
(↑1)n

2
(
2≃n+1

2 ⇐
)p↑

↔q/2↗∑

i=1

(
4i ↑ 1

) B2i · p(2i↑1)

(
2
⌊
n+1
2

⌋)p+2i↑1
· (2i)!

, we have
∣∣Rn(p)

∣∣ = O

(
1

np+q↑1

)
as n ⇒ ⇑; more precisely3

∣∣Sn(p, q)
∣∣↑ 5p(q↑1)

3ϱq↑1(n↑ 2)p+q↑1
→

∣∣Rn(p)
∣∣ →

∣∣Sn(p, q)
∣∣+ 5p(q↑1)

3ϱq↑1(n↑ 2)p+q↑1
.

Proof. Thanks to Proposition 3.1, using the triangle inequalities, we have

∣∣Rn(p)
∣∣ =

∣∣∣
∣∣Sn(p, q)

∣∣↑
(∣∣Sn(p, q)

∣∣↑
∣∣Rn(p)

∣∣)
∣∣∣ ↓

∣∣Sn(p, q)
∣∣↑

∣∣∣
∣∣Sn(p, q)

∣∣↑
∣∣Rn(p)

∣∣
∣∣∣

↓
∣∣Sn(p, q)

∣∣↑
∣∣Sn(p, q)↑Rn(p)

∣∣ =
∣∣Sn(p, q)

∣∣↑
∣∣↼n(p, q)

∣∣

and

∣∣Rn(p)
∣∣ =

∣∣∣
∣∣Sn(p, q)

∣∣↑
(∣∣Sn(p, q)

∣∣↑
∣∣Rn(p)

∣∣)
∣∣∣ →

∣∣Sn(p, q)
∣∣+

∣∣∣
∣∣Sn(p, q)

∣∣↑
∣∣Rn(p)

∣∣
∣∣∣

→
∣∣Sn(p, q)

∣∣+
∣∣Sn(p, q)↑Rn(p)

∣∣ =
∣∣Sn(p, q)

∣∣+
∣∣↼n(p, q)

∣∣.

Numerical experiment. Using the Mathematica computer system [6] and considering (1.4),

together with Proposition 3.1, we obtain for functions

A(n, p, q) :=

∣∣∣∣
(↑1)n

2
(
2≃n+1

2 ⇐
)p ↑

↔q/2↗∑

i=1

(4i ↑ 1)B2i · p(2i↑1)

(
2
⌊
n+1
2

⌋)p+2i↑1
· (2i)!

∣∣∣∣↑
5p(q↑1)

3ϱq↑1np+q↑1

and

B(n, p, q) :=

∣∣∣∣
(↑1)n

2
(
2≃n+1

2 ⇐
)p ↑

↔q/2↗∑

i=1

(4i ↑ 1)B2i · p(2i↑1)

(
2
⌊
n+1
2

⌋)p+2i↑1
· (2i)!

∣∣∣∣+
5p(q↑1)

3ϱq↑1np+q↑1

the following estimates:

A(n, 3, 3) > a(n, 3), for 6 → n → 100,

B(n, 3, 3) < b(n, 3), for 4 → n → 100,

B(n, 3, 3)↑A(n, 3, 3) < b(n, 3)↑ a(n, 3), for 5 → n → 100.

3
At q = 1, the given lower bound for

∣∣Rn(p)
∣∣ is negative.
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Similarly, we get

A(n, 3, 5) > a(n, 3), for 4 → n → 100,

B(n, 3, 5) < b(n, 3), for 3 → n → 100,

B(n, 3, 5)↑A(n, 3, 5) < b(n, 3)↑ a(n, 3), for 3 → n → 100.

These inequalities are illustrated in Figures 1–3, where the graphs of the functions

n ⇓⇒ A(n, 3, q)/a(n, 3), n ⇓⇒ B(n, 3, q)/b(n, 3) and n ⇓⇒
(
B(n, 3, q)↑A(n, 3, q)

)/(
b(n, 3)↑ a(n, 3)

)
,

having q ↗ {3, 5}, are plotted using the Mathematica software [6]. Thus, numerical examples

confirm that our estimates of |Rn(p)|, given in Proposition 4.1, are more accurate, for n ↓ 5 and

q ↓ 3, than that given in (1.4). This is consistent with the fact that the sharpness of the estimates

for |Rn(p)| given in Proposition 4.1, is equal to O
(

1
np+q→1

)
.
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Figure 1: The graphs of the sequences n ⇓⇒ A(n, 3, 3)/a(n, 3) (left) and n ⇓⇒ B(n, 3, 3)/b(n, 3),
(right).
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Figure 2: The graphs of the sequences n ⇓⇒ A(n, 3, 5)/a(n, 3) (left) and n ⇓⇒ B(n, 3, 5)/b(n, 3),
(right).
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Figure 3: The graphs of the sequences n ⇓⇒
B(n,3,3)↑A(n,3,3)

b(n,3)↑a(n,3) (left) and n ⇓⇒
B(n,3,5)↑A(n,3,5)

b(n,3)↑a(n,3) (right).

4.1 Conclusion

The paper easily provides several asymptotic estimates of a remainder of an alternating p-series

for all p ↗ R+. The presented relations supplement the double inequality for a remainder, given

in the paper [1], which works only for integers p ↓ 2. In addition, the derived estimates are very

useful even in the case of p ↔ 0.
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gruence lattice of a finite semidistributive lattice. This note

provides a construction showing that many of these finite
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RESUMEN

No todo reticulado distributivo finito es isomorfo al reticu-

lado de congruencia de un reticulado finito semidistributivo.

Esta nota proporciona una construcción mostrando que mu-
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1 Introduction

Congruence lattices of lattices are distributive, and every finite distributive lattice is isomorphic

to the congruence lattice of a finite lattice. We would like to know more about: Which finite

distributive lattices are the congruence lattice of some semidistributive lattice?

Not every finite distributive lattice D is isomorphic to ConL for a finite semidistributive lattice L.

There are two known restrictions [2, 9]: if D is the congruence lattice of a finite semidistributive

lattice, then considering D as the lattice O(P ) of order ideals of an ordered set, neither 2 nor Y

(Figure 1) can be an order filter in P . An equivalent formulation is that neither a 3-element chain

nor (B2)++ := 2+ 22 can be a filter in D. There may be other restrictions.

This note presents a construction to show that many finite distributive lattices with 3 or (B2)++

as a filter are isomorphic to the congruence lattice of an infinite semidistributive lattice.

B2

a b

2 Y

Figure 1: Ordered sets referred to in the text: B2, 2, Y

2 Background

The join-semidistributive law for lattices is

(JSD) x → y = x → z implies x → y = x → (y ↑ z).

Its dual is the meet-semidistributive law, (MSD). Lattices that satisfy both are called semidis-

tributive, abbreviated SD. The semidistributive laws were found by B. Jónsson as a property of

free lattices; see [6–8] and the survey [1].

Finite distributive lattices are isomorphic to the lattice of order ideals (downsets) of an ordered

set. In fact, D ↓= O(P ), where P = (J(D),↔) is the set of join-irreducible elements of D. This

reflects the fact that join-irreducible elements in a distributive lattice are join-prime. Our results

are formulated in terms of this duality.

Let n denote an n-element chain, An an n-element antichain, and Bn the boolean lattice with

n atoms. For the ordered sets, P and Q, the ordered set P ↗̇ Q has the elements of P and Q

incomparable, while the ordered set P +Q has every element of P below every element of Q. For
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the lattices K and L with 0 and 1, let K#L denote the glued sum, where 1K = 0L.

Lemma 2.1. Let P and Q be ordered sets. If O(P ) = K and O(Q) = L, then

(1) O(P ↗̇ Q) = K ↘ L,

(2) O(P +Q) = K#L.

If L is a lattice, then L+ denotes the lattice obtained by adjoining a new zero element, that is,

L+ = 1 + L. Thus L++ = 2 + L. Likewise, L+ is the lattice obtained by adjoining a new top

element, that is, L+ = L+ 1.

The congruence lattice of a finite lattice is a finite distributive lattice. There are two restrictions

mentioned in the introduction: if O(P ) ↓= Con K for a finite semidistributive lattice, then neither

2 nor Y can be an order filter (upset) of P . Note that O(2) = 3 and O(Y ) = (B2)++; remember

to include the empty order ideal. The following elementary technical observation [9] then shows

that neither 3 nor (B2)++ is a filter of O(P ).

Lemma 2.2. Let S and P be finite ordered sets. Then O(S) is isomorphic to a filter of O(P ) if

and only if S is an order filter of P .

Now 2 is the only finite simple SD lattice. Indeed, if L is JSD and has a largest element 1, then it

has a prime ideal, and hence L has 2 as a homomorphic image. There are however infinite simple

SD lattices [4].

The original lattices in [4] contained no completely doubly irreducible (c.d.i.) elements, that is,

elements that are completely join-irreducible and completely meet-irreducible. A straightforward

modification of the construction yields infinite simple semidistributive lattices containing infinitely

many c.d.i. elements; see [3]. (Replace the defining relations (7) and (8) in [4] by bi < bi+1 and

di < di+1; these are slightly stronger.)

The infinite simple SD lattices constructed in [3,4], containing an infinite chain of c.d.i. elements,

are called FN lattices. The letter F will denote an arbitrary FN lattice with c.d.i. elements. An

infinite simple semidistributive lattice necessarily has neither 0 nor 1. We will use FN lattices as

the building blocks for our constructions.

The least congruence on a lattice is denoted by !, and the greatest congruence ≃. In this note we

are dealing with infinite lattices that have finite congruence lattices. Of course, that is not always

the case.
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3 Direct products

The first operation for building new representations from existing ones is the direct product.

Lemma 3.1. If K and L are lattices, then Con(K ↘L) ↓= Con K ↘Con L. For ordered sets, this

translates to the disjoint union, that is, if Con K ↓= O(P ) and Con L ↓= O(Q), then

Con(K ↘ L) ↓= O(P )↘O(Q) = O(P ↗̇Q).

The lemma allows us to represent Bm = O(Am) as Con 2m or Con F
m where F is an FN lattice.

The following properties will play a role later.

IGD(K) The congruence generated by collapsing any nonempty ideal of K is ≃.

FGD(K) The congruence generated by collapsing any nonempty filter of K is ≃.

A lattice satisfying both IGD and FGD is called half-simple, and FN lattices (being simple) clearly

are half-simple. Half-simple lattices can have neither 0 nor 1.

Lemma 3.2. A finite direct product of lattices with FGD has FGD. Likewise, for IGD and half-

simple.

Proof. Let L = K1 ↘ · · · ↘Kn, with each Kj having FGD, and let G be a nonempty filter of L.

Let ω denote the congruence on L obtained by collapsing G. We want to show that ω = ≃L.

Lattices have factorable congruences, as a consequence of congruence distributivity. This means

that there exist congruences ωi ⇐ Con Ki such that, for x, y ⇐ L, we have x ω y i! xi ωi yi for all

1 ↔ i ↔ n. But each ωi is the congruence generated on Ki by the projection of the filter G onto Ki,

which is a nonempty filter. Since Ki has FGD, this implies that ωi = ≃Ki , whence ω = ≃L.

4 Replacing a c.d.i. element with a half-simple lattice

Let d be a c.d.i. element in a lattice K, and let H be half-simple. The lattice K(d ε⇒ H) is the set

(K ⇑ {d}) ↗̇H with the natural order, that is, for k ⇐ K ⇑ {d} and h ⇐ H, k ↔ h i! k ↔ d, and

k ⇓ h i! k ⇓ d. Joins and meets are well-defined in K(d ε⇒ H), because d is doubly irreducible.

Indeed, K ⇑ {d} and H are sublattices, while

k → h =






h, if k ↔ d;

k → d, otherwise;
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and dually. Thus, K(d ε⇒ H) is semidistributive, if both K and H are semidistributive. The

construction is illustrated schematically in Figure 2.

B2

a F

B2(a ε⇒ F ) K

d

d→

d
→

F

K(d ε⇒ F )

d→

d
→

Figure 2: Schematic representation of the construction, replacing a c.d.i. element with an FN
lattice F

One can also replace multiple c.d.i. elements independently, forming K(d1 ε⇒ H1, . . . , dn ε⇒ Hn).

Let us now analyze Con (K(d ε⇒ H)).

For any element u ⇐ K, considering how joins of congruences work, there is a unique largest

congruence ϑu in Con K such that the congruence class [u]ω is a singleton, that is, [u]ω = {u} i!

ω ↔ ϑu. Note that when Con K ↓= O(P ), the congruence ϑu corresponds to an order ideal of P ,

which we also denote ϑu.

Theorem 4.1. Let K be a lattice with a c.d.i. element d, and let H be a half-simple lattice. Form

L = K(d ε⇒ H). Then

Con L ↓= {(ω,ϖ) ⇐ Con K ↘ Con H : ω ⊋ ϑd ⇒ ϖ = ≃H}.

In terms of ordered sets, if Con K ↓= O(P ) and Con H ↓= O(Q), then Con L ↓= O(R) where

R = Q ↗ P with the order q ↔ p i! p /⇐ ϑd for p ⇐ P , q ⇐ Q.

Figure 3 illustrates how Theorem 4.1 applies to N5(c ε⇒ F ) and ϑc > !.

Proof. Let ϱ be the congruence on L = K(d ε⇒ H) that collapses H back to a single point, so

that L/ϱ ↓= K. By the isomorphism theorems, ⇔ϱ in Con L is isomorphic to Con K. Explicitly,

if f : L ↭ K with ker f = ϱ and ς ⇓ ϱ, then k f(ς) k↑ if and only if there exist x, x↑ in L with

k = f(x), k↑ = f(x↑), and xς x
↑. Equivalently, in view of ς ⇓ ϱ, for all x, x↑ in L, we have that

f(x) f(ς) f(x↑) if and only if xς x
↑.

Let S be the sublattice of Con K ↘ Con H given in the theorem. We establish inverse lattice

homomorphisms φ : Con L ⇒ S and ↼ : S ⇒ Con L.
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For ς ⇐ Con L, let φ(ς) = (f(ς → ϱ),ς|H). For (ω,ϖ) ⇐ S and k, k↑ ⇐ K ⇑ {d}, h, h↑
⇐ H, let

k ↼(ω,ϖ) k↑ i! k ω k
↑
,

h ↼(ω,ϖ)h↑ i! hϖh
↑
,

k ↼(ω,ϖ)h i! k ω d.

The crucial observations are these.

• If f(ς → ϱ) ⊋ ϑd, then k f(ς → ϱ) d for some k ⇐ K ⇑ {d}. Hence k ς h for some h ⇐ H (as

f(h) = d).

• If k ς h for some k ⇐ K ⇑ {d} and h ⇐ H, then ς collapses either an ideal or a filter of H (or

both). Because H is half-simple, this implies ς|H = ≃H .

• The condition ς|H = ≃H is equivalent to ς ⇓ ϱ.

On the other hand, if ω ⇐ Con K with ω ↔ ϑd, and ϖ ⇐ Con H, let ↽ be the relation on L such

that ↽|K↓{d} = ω|K↓{d}, ↽|H = ϖ, and ↽ contains no pairs of the form (k, h) or (h, k). Then ↽ is a

congruence on L and ↽ = ↼(ω,ϖ). The remaining details are left as an exercise to the reader.

Corollary 4.2. Let K be a lattice with a c.d.i. element d, and let H be a half-simple lattice. If

ϑd = !K , then

Con K(d ε⇒ H) ↓= Con H# Con K.

In particular, with an FN lattice,

Con K(d ε⇒ F ) ↓= 1+Con K = (Con K)+ when ϑd = !K ,

Con F (d ε⇒ H) ↓= Con H + 1 = (Con H)+ when H is half-simple.
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N5 =K c
a

b

P

ϑc

Q ϱ

R

ϱ ϑc

Figure 3: Example N5(c ε⇒ F ) for Theorem 4.1. Note ϑc = Cg(a, b).

Recall that for n ⇓ 3, the n-element chain is not the congruence lattice of a finite semidistributive

lattice (or even a finite join-semidistributive lattice [2]).

Corollary 4.3. For every n ⇓ 2, the n-element chain n can be represented as the congruence

lattice of an infinite semidistributive lattice.

2 = O(1) F

3 = O(2) F ↖d1 ε⇒ F ↙

4 = O(3) F ↖d1 ε⇒ F ↖d2 ε⇒ F ↙↙

5 = O(4) F ↖d1 ε⇒ F ↖d2 ε⇒ F ↖d3 ε⇒ F ↙↙↙

etc.

As an application of direct products (Lemma 3.1):

Corollary 4.4. For positive integers n1, . . . , nk, the lattices n1 ↘ · · ·↘ nk are congruence lattices

of infinite SD lattices.

If any nj ⇓ 3, then n1 ↘ · · ·↘ nk is not the congruence lattice of a finite SD lattice.

The lattice O(Y ) = (B2)++ is the other lattice minimally not representable as the congruence

lattice of a finite SD lattice. However, O(Y ) ↓= Con K for both of the following infinite SD

lattices:

• K1 = B2(a ε⇒ F (d ε⇒ F ))
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• K2 = N5(a0 ε⇒ F ) where N5 = B2[a], doubling an atom.

These lattices are drawn schematically in Figure 4.

K1 K2

Figure 4: Schematic representation of lattices Kj with Con Kj = O(Y ).

One can just as easily use K = Bn and one of its atoms to represent (Bn)++ for any n ⇓ 2 as the

congruence lattice of an infinite SD lattice, generalizing either of the representations K1 or K2.

A dual tree is a connected finite ordered set such that every element has at most one cover. A

dual forest is a disjoint union of finitely many dual trees. When P is a dual forest, there is a

straightforward way to represent O(P ) as a congruence lattice. For branching in the dual tree, we

replace multiple c.d.i. elements.

Theorem 4.5. If P is a finite dual forest, then O(P ) is the congruence lattice of an infinite SD

lattice.

Proof. Without loss of generality P is a dual tree, as we can use direct products for a dual forest.

Let u ∝ v1, . . . , vn in P , and assume inductively that each O(′ vj) ↓= Con Hj for a half-simple

SD lattice Hj . Let F be an FN lattice, and choose distinct c.d.i. elements d1, . . . , dn ⇐ F . Form

L = F (d1 ε⇒ H1, . . . , dn ε⇒ Hn). Then L is half-simple, and Con L ↓= O(′u) by the straightforward

extension of Corollary 4.2 for multiple substitutions.

1

2

3

4

5 6

7

Figure 5: Dual tree example
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The method is best illustrated by an example. Let P be the dual tree in Figure 5. To find an

infinite SD lattice K with Con K ↓= O(P ), we use K = F1↖b1 ε⇒ H1, b2 ε⇒ H2, b3 ε⇒ H3↙ where

H1 = F2↖b4 ε⇒ F3↙

H2 = F4↖b5 ε⇒ F5, b6 ε⇒ F6↙

H3 = F7.

Also observe that Theorem 4.5 includes O(An + k) = B
+···+
n

with k “+” signs.

5 Conclusion

We have shown that many finite distributive lattices that are not the congruence lattice of a finite

semidistributive lattice, are the congruence lattice of an infinite semidistributive lattice. Some of

these examples were included in an earlier version of this note [5].

This suggests two problems.

Question 1. Are there additional restrictions on congruence lattices of finite SD lattices?

Question 2. Is every finite distributive lattice the congruence lattice of an infinite SD lattice?

We conjecture that the answers are NO and YES, respectively.
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ABSTRACT

To avoid studying iterative di!erential equations with dis-
tinct fractional order derivatives it is essential to treat them
with a broad fractional derivative, which leaves other frac-
tional derivatives as a special case. In this way, we study an
initial value problem for non-linear iterative fractional dif-
ferential equations involving !-Hilfer fractional derivative.
We establish the existence and uniqueness of the solution
through fixed point theorems. We prove results concerning
the dependence of solution and Ulam-Hyers stability of the
problem. Finally, we present an example for illustration to
demonstrate our outcome.

RESUMEN

Para evitar estudiar ecuaciones diferenciales iterativas con
dereivadas fraccionarias de distintos órdenes, es esencial
tratarlas a través de una derivada fraccionaria amplia, que
deje otras derivadas fraccionarias como un caso especial. De
este modo, estudiamos un problema de valor inicial para
ecuaciones diferenciales fraccionarias iterativas no-lineales
que involucra la derivada fraccionaria !-Hilfer. Establece-
mos la existencia y unicidad de la solución a través de teo-
remas de punto fijo. Demostramos resultados relacionados
a la dependencia de la solución y la estabilidad de Ulam-
Hyers del problema. Finalmente, presentamos un ejemplo
para ilustrar lo obtenido.
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1 Introduction

Fractional calculus is a branch of mathematics in which we obtain definitions of derivatives and

integrals with arbitrary positive real order so that the classical derivative can act as a special case.

There are many more definitions of fractional derivatives, see the monographs [17,28,29]. It is worth

obtaining the most generalized fractional di!erential operator to unify all these definitions. Later,

Sousa and Oliveira (2018) [35] investigated the most generalized !-Hilfer fractional derivative. In

[14,21,22,27], significant theoretical advancements concerning various forms of nonlinear !-Hilfer

fractional di!erential equations and several important properties of their solutions are examined.

Development of theory after the proposal of the !-Hilfer fractional derivative, other versions of

fractional operators were studied. For example, a work that addresses the fractional derivative in

variable order with respect to the ! function [38] and the work on calculus of !-Hilfer fractional

derivative with an additional parameter k > 0 and associated fractional di!erential equations

[15,20].

We note that fractional calculation has been extensively studied and its theory, although well

consolidated, still new versions of fractional operators are presented and, certainly interesting and

important applications arising from them, will be discussed in the near future. On the other hand,

we can also highlight problems of fractional di!erential equations with p-Laplacian, which have been

attracting the attention of researchers. In 2022, Sousa et al. [39] first work on variational problems

using the !-Hilfer fractional derivative was presented. In the work, the authors presented a new

fractional Sobolev space for the !-Hilfer fractional derivative, and built a variational structure

so that it was possible to investigate the existence of weak solutions to a fractional p-Laplacian

problem via Nehari manifold [33,34,37].

The di!erential equations which involves the iterates of unknown function is called as Iterative

di!erential equations (IDEs). IDEs are especially useful for simulating real-world systems where

the rate of change is dependent on both the function and the number of times the unknown function

is applied. They extend traditional di!erential equations to capture more complex, nonlinear, and

self-referential dynamics, with applications across various fields, including biology, physics, and

engineering. Examples include infectious disease models [45], the motion of charged particles with

retarded interaction [11], insect population dynamics [2], and Nicholson’s blowflies model [16]. Due

to their wide range of applications, IDEs are an essential area of study.

Eder [7] studied the IDEs of the form

u→(t) = u(u(t)),

and showed that every solution either identically vanishes or is strictly monotonic. Feckan [8]
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investigated the functional di!erential equation

u→(t) = h(u(u(t))), u(0) = 0.

Vasile Bernide [1] proved convergence theorems under weaker conditions than those suggested by

A. Buica [3] and proved the existence of solutions for first-order iterative di!erential equations.

Iterative fractional di!erential equations (FDEs) deals iterative di!erential equations associated

with various types of fractional derivatives. They serve as powerful tools for modeling complex

systems that exhibit memory e!ects, non-local interactions, and long-term dependencies. Here, we

highlight a few significant studies on iterative FDEs.

Ibrahim [11] investigated the existence and approximation of solution for the iterative Riemann-

Liouville FDEs of the form

Dωu(t) = h(t, u(t), u(u(t))), u(0) = u0.

Damag et al. [4] proved the existence of solution for the iterative FDEs

Dωu(t) = h(t, u(t), u(u(t)), u→(t)), u(t0) = u0, t0 → J,

by applying non-expansive operator method and Browder-Ghode-Kirk fixed point theorem. Guerfi

and Ardjouni [9] investigated existence, uniqueness, continuous dependence and Ulam-Hyers sta-

bility of mild solution for the Caputo iterative FDEs of the form

CDω

0+u(t) = h
(
u[0](t), u[1](t), . . . , u[n](t)

)
,

u(0) = u→(0) = 0.

Existence and approximation problems for the iterative di!erential equations are solved in [5,6,12,

24, 44–46, 48]. Also, iterative integro-di!erential equations are studied [10, 13, 18, 32]. For further

development of iterative di!erential equations see [26,31,41,42] and the references therein.

Vivek et al. [40] examined the class of !-Riemann-Liouville iterative fractional di!erential equation

with non-local condition

Dω;!u(t) = h(t, u(u(t))), 0 < ω < 1,

u(0) + f(u) = u0.
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Motivated by interesting work mentioned above on iterative di!erential equations we consider the

non-linear iterative FDEs of the form

HDω, ε;!
0+ u(t) = h

((
(!(·)↑ !(0))1↑ϑu

)[0]
(t),

(
(!(·)↑ !(0))1↑ϑu

)[1]
(t),

. . . ,
(
(!(·)↑ !(0))1↑ϑu

)[n]
(t)

)
, t → J, (1.1)

I1↑ϑ;!
0+ u(0) = u0, u0 ↓ 0, ε = ω + ϑ(1↑ ω), (1.2)

where J = [0, T ], ! is an increasing function on J such that ! → C1(J) and !
→
(t) ↔= 0, for all t → J,

HDω, ε;!
0+ (·) is the !-Hilfer derivative of order ω → (0, 1) and type ϑ → [0, 1]. Further,

(
(!(·)↑ !(0))1↑ϑ u

)[0]
(t) = t, (1.3)

(
(!(·)↑ !(0))1↑ϑ u

)[j]
(t) = (!(·)↑ !(0))1↑ϑ u

((
(!(·)↑ !(0))1↑ϑ u

)[j↑1]
(t)

)
, j = 1, . . . n,

(1.4)

are the iterates of the function (!(·)↑ !(0))1↑ϑ u and h → C(Jn+1,R) is a positive non-linear

function that fulfills a few other requirements, which are detailed subsequently.

We believe that the main results of this paper are best presented as follows:

(1) Before attacking the main results, it was necessary to discuss some properties for the space

with weight C1↑ϑ;!(J,R,M).

(2) The first contribution of the paper was to investigate the existence and uniqueness of solutions

to the problem (1.1)-(1.2) through the theory of fixed points.

(3) In addition to the above, we investigated the continuous dependence and Ulam-Hyers stabil-

ity.

(4) Finally, we present an example, in order to elucidate the results discussed.

We analyzed iterative di!erential equations associated !-Hilfer fractional derivative for the exis-

tence and qualitative properties of solutions in the space of weighted Lipschitz functions.

The iterates of unknown functions defined by (1.3) and (1.4) that appears in the equations (1.1)-

(1.2) make the study challenging as it requires domain and codomain of unknown functions should

be same and hence appropriate solutions space is required to deal with the solutions of itera-

tive FDEs (1.1)-(1.2). In this context the two weighted spaces are defined. The weighted space

C1↑ϑ;!(J,R, L) ensures that that the iterates are well defined and C1↑ϑ;!(J,R,M) ensures the

existence of solution for the iterative FDEs.

The !-Hilfer fractional derivative is the most generalized form of fractional derivatives, encompass-

ing various fractional di!erential operators described in [35] as special cases for varying values of
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ϑ and di!erent choices of the function !. In this context, the !-Hilfer fractional derivative serves

as a powerful tool in fractional calculus that unifies the study of fractional di!erential equations

(FDEs) under a single framework. As a result, it is no longer necessary to conduct independent

analyses of FDEs using various fractional derivative operators.

This paper is organized as follows. In Section 2, we discuss about !-fractional calculus, define

some weighted spaces that required for further calculation. Section 3 deals with the properties

of weighted space. In Section 4, we investigate existence via fixed point theorem and uniqueness

result. Further Section 5 includes continuous dependence, Ulam-Hyers and generalized Ulam-Hyers

stability of solution. In Section 6, example is provided to illustrate our results.

2 Preliminaries

In this section, we provide definitions and few basic results pertaining to !-fractional calculus.

Further, we provide the suitable weighted space to deal with solutions of iterative FDEs.

2.1 !-fractional calculus

Definition 2.1 ([17]). The !-Riemann-Liouville fractional integral of order ω > 0 (ω → R) of the

function u → C ([a, b],R) is given by

Iω ;!
a+ u (t) =

1

” (ω)

∫
t

a

!→ (s) (! (t)↑ ! (s))ω↑1 u (s) ds. (2.1)

Definition 2.2 ([35]). The !-Hilfer fractional derivative of a function u → Cm ([a, b],R) of order

m↑ 1 < ω < m and type ϑ → [0, 1], is defined by

HDω, ε;!
a+ u(t) = Iε(m↑ω);!

a+

(
1

!→(t)

d

dt

)m

I(1↑ε)(m↑ω);!
a+ u(t), t → (a, b].

Lemma 2.3 ([35]). Let m↑ 1 < ω < m → N, u → (Cm[a, b],R) and ϑ → [0, 1]. Then

(i) Iω ;!
a+

HDω, ε;!
a+ u (t) = u (t) ↑

m∑
k=1

(!(t)↑!(a))ω↑k

”(ω↑k+1) u[m↑k]
! I(1↑ε)(m↑ω) ;!

a+ u (a), where u[m↑k]
! u(t) =

(
1

!→(t)
d

dt

)m↑k

u(t),

(ii) HDω, ε;!
a+ Iω ;!

a+ u (t) = u (t),

where ε = ω + ϑ(m↑ ω).
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2.2 Weighted spaces

Consider the weighted space

C1↑ϑ;!(J,R) = {u : (0, T ] ↗ R| (!(t)↑ !(0))1↑ϑ u(t) → C[0, T ]}

with the norm

||u||C1↑ω ;!(J,R) = sup
t↓J

∣∣∣(!(t)↑ !(0))1↑ϑ u(t)
∣∣∣ , 0 < ε ↘ 1.

Then the space
(
C1↑ϑ;!(J,R), || · ||C1↑ω;!(J,R)

)
is Banach space.

For 0 < L ↘ T and M > 0, we define the following sets

C1↑ϑ ;!(J,R;L) =
{
u → C1↑ϑ;!(J,R) : 0 ↘ (!(t)↑ !(0))1↑ϑ u(t) ↘ L

}
,

and

C1↑ϑ;!(J,R;M) =

{
u → C1↑ϑ;!(J,R;L) :

∣∣∣(!(t2)↑ !(0))1↑ϑ u(t2)↑ (!(t1)↑ !(0))1↑ϑ u(t1)
∣∣∣ ↘ M |t2 ↑ t1| , t1, t2 → J

}
.

If ε = 1 then above weighted spaces reduces respectively to

C(J,R;L) = {u → C(J,R) : 0 ↘ u(t) ↘ L, ≃t → J}

and

C(J,R;M) = {u → C(J,R;L) : |u(t2)↑ u(t1)| ↘ M |t2 ↑ t1|, ≃t1, t2 → J}, M > 0

which are defined in [9].

Lemma 2.4 ([48]). If u1, u2 → C(J,R;M), then

∥∥∥u[n]
1 ↑ u[n]

2

∥∥∥
C(J)

↘
n↑1∑

j=0

M j ⇐u1 ↑ u2⇐C(J) , n = 1, 2, . . .

where C(J,R) = {u|u : J ↗ R is continuous} is Banach space with the supremum norm.
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3 Properties of weighted space C1↑ε;!(J,R;M).

To prove existence of solution of iterative FDEs (1.1)-(1.2) we use the following Schauder’s fixed

point theorem.

Theorem 3.1 (Schauder’s fixed point theorem [30]). Let U be a non-empty compact convex subset

of Banach space (B, || · ||) and A : U ↗ U is a continuous mapping. Then A has a fixed point.

In the view of Theorem 3.1, we have to prove that the space C1↑ϑ;!(J,R;M) is non-empty, convex

and compact subset of a Banach space C1↑ϑ;!(J,R), and the proof of the same is provided in

following theorems.

Theorem 3.2. For 0 < L ↘ T and M > 0, the weighted space C1↑ϑ;!(J,R;M) is non-empty,

closed and convex subset of C1↑ϑ;!(J,R).

Proof. Define v : (0, T ] ↗ R by v(t) = (!(t)↑ !(0))ϑ↑1 L, t → (0, T ]. Then (!(t)↑ !(0))1↑ϑ v(t) =

L → C(J,R). Therefore v → C1↑ϑ;!(J,R;L). Further for any t1, t2 → J , we have

∣∣∣(!(t2)↑ !(0))1↑ϑ v(t2)↑ (!(t1)↑ !(0))1↑ϑ v(t1)
∣∣∣

=
∣∣∣(!(t2)↑ !(0))1↑ϑ (!(t2)↑ !(0))ϑ↑1 L↑ (!(t1)↑ !(0))1↑ϑ (!(t1)↑ !(0))ϑ↑1 L

∣∣∣

= 0 ↘ M |t2 ↑ t1|.

From above discussion it follows that v → C1↑ϑ;!(J,R;M).

Let {un}↔n=1 be any sequence in C1↑ϑ;!(J,R;M) and u → C1↑ϑ;!(J,R) is such that

lim
n↗↔

||un ↑ u||C1↑ω;!(J,R) = 0. (3.1)

Note that

0 ↘
∣∣∣(!(t)↑ !(0))1↑ϑ (un(t)↑ u(t))

∣∣∣

↘ sup
t↓J

∣∣∣(!(t)↑ !(0))1↑ϑ (un(t)↑ u(t))
∣∣∣ = ||un ↑ u||C1↑ω;!(J,R). (3.2)

Using squeeze theorem for sequences from (3.1) and (3.2) it follows that

lim
n↗↔

∣∣∣(!(t)↑ !(0))1↑ϑ un(t)↑ (!(t)↑ !(0))1↑ϑ u(t)
∣∣∣ = 0. (3.3)

Further if un → C1↑ϑ;!(J,R;M) then un → C1↑ϑ;!(J,R;L) for all n. Thus

0 ↘ (!(t)↑ !(0))1↑ϑ un(t) ↘ L, for all n and t → J . (3.4)
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Taking limit as n ↗ ⇒ in inequality (3.4) and using the continuity of modulus and the limit (3.3),

we have

0 ↘ (!(t)↑ !(0))1↑ϑ u(t) ↘ L, for all t → J.

Therefore u → C1↑ϑ;!(J,R;L).

Consider for t1, t2 → J ,

∣∣∣(!(t2)↑ !(0))1↑ϑ u(t2)↑ (!(t1)↑ !(0))1↑ϑ u(t1)
∣∣∣

↘
∣∣∣(!(t2)↑ !(0))1↑ϑ (un(t2)↑ u(t2))

∣∣∣+
∣∣∣(!(t1)↑ !(0))1↑ϑ (un(t1)↑ u(t1))

∣∣∣

+
∣∣∣(!(t2)↑ !(0))1↑ϑ un(t2)↑ (!(t1)↑ !(0))1↑ϑ un(t1)

∣∣∣

↘ 2 ⇐un ↑ u⇐
C1↑ω;!(J,R) +M |t2 ↑ t1|.

Letting n ↗ ⇒ we get,
∣∣∣(!(t2)↑ !(0))1↑ϑ u(t2)↑ (!(t1)↑ !(0))1↑ϑ u(t1)

∣∣∣ ↘ M |t2 ↑ t1|. Thus

u → C1↑ϑ;!(J,R,M).

Consider any v, w → C1↑ϑ;!(J,R,M) and s → [0, 1]. Then (!(t)↑ !(0))1↑ϑ v(t) and

(!(t)↑ !(0))1↑ϑ w(t) are continuous on J hence (!(t)↑ !(0))1↑ϑ (sv + (1↑ s)w) (t) is contin-

uous on J . This gives sv + (1 ↑ s)w → C1↑ϑ;!(J). Since v, w → C1↑ϑ;!(J,R, L) we have

0 ↘ (!(t)↑ !(0))1↑ϑ v(t) ↘ L and 0 ↘ (!(t)↑ !(0))1↑ϑ w(t) ↘ L. Therefore for any t → J ,

yields that

0 ↘ (!(t)↑ !(0))1↑ϑ (sv + (1↑ s)w) (t)

= s (!(t)↑ !(0))1↑ϑ v(t) + (!(t)↑ !(0))1↑ϑ w(t)↑ s (!(t)↑ !(0))1↑ϑ w(t)

↘ sL+ L↑ sL = L.

This proves sv + (1↑ s)w → C1↑ϑ;!(J,R, L). Consider any t1, t2 → J , then

∣∣∣(!(t2)↑ !(0))1↑ϑ (sv + (1↑ s)w) (t2)↑ (!(t1)↑ !(0))1↑ϑ (sv + (1↑ s)w)(t1)
∣∣∣

= s
∣∣∣(!(t2)↑ !(0))1↑ϑ v(t2)↑ (!(t1)↑ !(0))1↑ϑ v(t1)

∣∣∣

+ (1↑ s)
∣∣∣(!(t2)↑ !(0))1↑ϑ w(t2)↑ (!(t1)↑ !(0))1↑ϑ w(t1)

∣∣∣

↘ sM |t2 ↑ t1|+ (1↑ s)M |t2 ↑ t1| = M |t2 ↑ t1|.

From above discussion it follows that sv + (1 ↑ s)w → C1↑ϑ;!(J,R;M) for any s → [0, 1]. Thus

proof of C1↑ϑ;!(J,R;M) is non-empty, closed and convex subset of C1↑ϑ;!(J,R) is completed.
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Theorem 3.3. For 0 < L ↘ T and M > 0, the weighted space C1↑ϑ;!(J,R;M) is uniformly

bounded and equicontinuous.

Proof. Let any u → C1↑ϑ;!(J,R;M) then u → C1↑ϑ;!(J,R;L). Hence

0 ↘ (!(t)↑ !(0))1↑ϑ u(t) ↘ L, for all t → J.

This gives ||u||C1↑ω;!(J,R) ↘ L, for all u → C1↑ϑ ;!(J,R;M). This proves C1↑ϑ;!(J,R;M) is uni-

formly bounded.

Let any u → C1↑ϑ;!(J,R;M). Then (!(t) ↑ !(0))1↑ϑu(t) is continuous for each t → J . Further,

we have

∣∣∣(!(t2)↑ !(0))1↑ϑ u(t2)↑ (!(t1)↑ !(0))1↑ϑ u(t1)
∣∣∣ ↘ M |t2 ↑ t1|, for all t1, t2 → J.

Let any ϖ > 0. Define ϱ = ϖ

M
. Then t1, t2 → J, |t2 ↑ t1| < ϱ implies

∣∣∣(!(t2)↑ !(0))1↑ϑ u(t2)↑ (!(t1)↑ !(0))1↑ϑ u(t1)
∣∣∣ < ϖ.

This proves C1↑ϑ;!(J,R;M) is equicontinuous. This completes the proof of C1↑ϑ;!(J,R;M) is

uniformly bounded and equicontinuous.

Remark 3.4. From Theorem 3.3 and Arzela-Ascoli theorem it follows that C1↑ϑ;!(J,R;M) is

relatively compact. But C1↑ϑ;!(J,R;M) is also closed subset of C1↑ϑ;!(J,R) and

hence C1↑ϑ;!(J,R;M) is compact subspace of C1↑ϑ;!(J,R).

4 Existence and uniqueness results

Theorem 4.1. Assume that the function h : Jn+1 ↗ [0,⇒) satisfies the Lipschitz type condition

|h(t, u1, u2, . . . , un)↑ h(t, v1, v2, . . . , vn)| ↘
n∑

i=1

ci|ui ↑ vi|, where ci > 0. (4.1)

Then, the iterative FDEs (1.1)-(1.2) has at least one solution in the weighted space

C1↑ϑ;!(J,R;M), provided

u0

”(ε)
+

ς↘

”(ω + 1)
(!(T )↑ !(0))ω↑ϑ+1 ↘ L, (4.2)

and
ς↘

”(ω + 1)

∣∣∣(ω ↑ ε + 1) (!(c)↑ !(0))ω↑ϑ !→(c)
∣∣∣ ↘ M, for some c → (0, T ), (4.3)
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where

ς = sup
t↓J

{h(t, 0, 0, . . . , 0)} and ς↘ = ς+ L
n∑

i=1

ci

i↑1∑

j=0

M j .

Proof. Considering equivalent fractional integral equation [36] to the iterative FDEs (1.1)-(1.2),
we define an operator A on C1↑ϑ;!(J,R;M) by

(Au)(t) =
(!(t)→ !(0))ω→1

”(ω)
u0 +

1
”(ε)

∫
t

0

!↑(ϑ) (!(t)→ !(ϑ))ε→1

↑ h

((
(!(·)→ !(0))1→ωu

)[0]
(ϑ),

(
(!(·)→ !(0))1→ωu

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ωu

)[n]
(ϑ)

)
dϑ,

(4.4)

where t → (0, T ]. In the view of Schauder’s fixed point theorem, we have to show that the mapping

A : C1↑ϑ;!(J,R;M) ↗ C1↑ϑ;!(J,R;M) is well defined and continuous. Proof of the same is given

in several steps.

Since h is continuous on J we have h → C1↑ϑ;!(J). Further, Iω;!0+ is bounded from C1↑ϑ;!(J) to

C1↑ϑ;!(J) implies Iω;!0+ h → C1↑ϑ;!(J). This gives Au → C1↑ϑ;!(J), for all u → C1↑ϑ;!(J). Thus

the mapping A is well defined.

Now, we show that the mapping A is continuous. Using Lipschitz condition on h, for any t → J ,
one has

∣∣∣(!(t)→ !(0))1→ω (Au→Av)(t)
∣∣∣

↓ (!(t)→ !(0))1→ω

”(ε)

∫
t

0

!↑(ϑ) (!(t)→ !(ϑ))ε→1

↑
∣∣∣∣h

((
(!(·)→ !(0))1→ωu

)[0]
(ϑ),

(
(!(·)→ !(0))1→ωu

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ωu

)[n]
(ϑ)

)

→ h

((
(!(·)→ !(0))1→ωv

)[0]
(ϑ),

(
(!(·)→ !(0))1→ωv

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ωv

)[n]
(ϑ)

) ∣∣∣∣dϑ

↓ (!(t)→ !(0))1→ω

”(ε)

∫
t

0

!↑(ϑ)(!(t)→ !(ϑ))ε→1

↑
n∑

i=1

ci

∣∣∣∣
(
(!(·)→ !(0))1→ω u

)[i]
(ϑ)→

(
(!(·)→ !(0))1→ω v

)[i]
(ϑ)

∣∣∣∣ dϑ

↓ (!(t)→ !(0))1→ω

”(ε)

↑
n∑

i=1

ci

∥∥∥∥
(
(!(·)→ !(0))1→ω u

)[i]
→

(
(!(·)→ !(0))1→ω v

)[i]
∥∥∥∥
C(J,R)

∫
t

0

!↑(ϑ) (!(t)→ !(ϑ))ε→1 dϑ

↓ (!(t)→ !(0))ε→ω+1

”(ε + 1)

n∑

i=1

ci

i→1∑

j=0

M j

∥∥∥(!(·)→ !(0))1→ω u→ (!(·)→ !(0))1→ω v
∥∥∥
C(J,R)

=
(!(t)→ !(0))ε→ω+1

”(ε + 1)

n∑

i=1

ci

i→1∑

j=0

M j

∥∥∥(!(·)→ !(0))1→ω (u→ v)
∥∥∥
C(J,R)

=
n∑

i=1

ci

i→1∑

j=0

M j (!(t)→ !(0))ε→ω+1

”(ε + 1)
||u→ v||C1↑ω;!(J,R).
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Therefore, we get

⇐Au↑Av⇐
C1↑ω;!(J,R) ↘

1

”(ω + 1)

n∑

i=1

ci

i↑1∑

j=0

M j(!(T )↑ !(0))ω↑ϑ+1||u↑ v||C1↑ω;!(J,R). (4.5)

Let any ϖ > 0. Define

ϱ =
ϖ”(ω + 1)

(!(T )↑ !(0))ω↑ϑ+1
n∑

i=1
ci

i↑1∑
j=0

M j

.

Then for any u, v → C1↑ϑ;!(J,R;M) and ||u↑v||C1↑ω,!(J,R) < ϱ we have ||Au↑Av||C1↑ω;!(J,R) < ϖ.

This proves A is continuous mapping. Next we prove that

A (C1↑ϑ;!(J,R;M)) ⇑ C1↑ϑ;!(J,R;M).

Let any u → C1↑ϑ;!(J,R;M). Then,

∣∣∣(!(t)→ !(0))1→ω(Au)(t)
∣∣∣ ↓

u0

”(ω)
+

(!(t)→ !(0))1→ω

”(ε)

∫
t

0

!↑(ϑ)(!(t)→ !(ϑ))ε→1

↑
∣∣∣∣h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)∣∣∣∣ dϑ.

(4.6)

Using Lipschitz condition on h for any u ↔ C1→ω;!(J,R;M), it follows that
∣∣∣∣h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)∣∣∣∣

↓
∣∣∣∣h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)

→ h(ϑ, 0, . . . , 0)

∣∣∣∣+ |h(ϑ, 0, . . . , 0)|

↓
n∑

i=1

ci

∣∣∣∣
(
(!(·)→ !(0))1→ω u

)[i]
(ϑ)

∣∣∣∣+ ϖ ↓
n∑

i=1

ci

∥∥∥∥
(
(!(·)→ !(0))1→ω u

)[i]
∥∥∥∥
C(J,R)

+ ϖ.

Using the inequality in Lemma 2.4, we obtain
∣∣∣∣h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)∣∣∣∣

↓ ϖ+
n∑

i=1

ci

i→1∑

j=0

M j

∥∥∥(!(·)→ !(0))1→ω u
∥∥∥
C(J,R)

.

Using the definition of space C1→ω;!(J,R;M), we get
∣∣∣∣h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)∣∣∣∣

↓ ϖ+
n∑

i=1

ci

i→1∑

j=0

M jL = ϖ↓, u ↔ C1→ω;!(J,R;M). (4.7)
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Using inequality (4.7) in (4.6) for any u ↔ C1→ω;!(J,R;M), we obtain

∣∣∣(!(t)→ !(0))1→ω(Au)(t)
∣∣∣ ↓

u0

”(ω)
+

ϖ↓

”(ε)
(!(t)→ !(0))1→ω

∫
t

0

!↑(ϑ)(!(t)→ !(ϑ))ε→1dϑ

↓ u0

”(ω)
+

ϖ↓

”(ε + 1)
(!(t)→ !(0))ε→ω+1 ↓ u0

”(ω)
+

ϖ↓

”(ε + 1)
(!(T )→ !(0))ε→ω+1

↓ L.

Therefore

0 ↘ (!(t)↑ !(0))1↑ϑ(Au)(t) ↘
∣∣(!(t)↑ !(0))1↑ϑ(Au)(t)

∣∣ ↘ L, u → C1↑ϑ;!(J,R;M). (4.8)

This proves Au → C1↑ϑ;!(J,R;L).

Further, for any t1, t2 → J with t1 < t2, using inequality (4.7), we have

∣∣(!(t2)→ !(0))1→ω(Au)(t2)→ (!(t1)→ !(0))1→ω(Au)(t1)
∣∣ =

∣∣∣∣
(!(t2)→ !(0))1→ω

”(ε)

∫
t2

0

!↑(ϑ)(!(t2)→ !(ϑ))ε→1

↑
∣∣∣∣h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)∣∣∣∣

→ (!(t1)→ !(0))1→ω

”(ε)

∫
t1

0

!↑(ϑ)(!(t1)→ !(ϑ))ε→1

↑
∣∣∣∣h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)∣∣∣∣ dϑ
∣∣∣∣

↓
∣∣∣∣
ϖ↓

”(ε)
(!(t2)→ !(0))1→ω (!(t2)→ !(0))ε

ε
→ ϖ↓

”(ε)
(!(t1)→ !(0))1→ω (!(t1)→ !(0))ε

ε

∣∣∣∣

=

∣∣∣∣
ϖ↓

”(ε + 1)

[
(!(t2)→ !(0))ε→ω+1 → (!(t1)→ !(0))ε→ω+1

] ∣∣∣∣.

Define g(t) = (!(t)↑ !(0))ω↑ϑ+1, t → [0, T ]. Then clearly g is continuous on [t1, t2] and di!eren-

tiable on (t1, t2) for any t1, t2 → J with t1 < t2. Therefore using mean value theorem there exists

c → (0, T ) such that

g→(c) =
g(t2)↑ g(t1)

t2 ↑ t1
.

Using definition of function g, it follows that

(!(t2)↑ !(0))ω↑ϑ+1 ↑ (!(t1)↑ !(0))ω↑ϑ+1 = {(ω ↑ ε + 1) (!(c)↑ !(0))ω↑ϑ !→(c)}(t2 ↑ t1).

Therefore, using condition (4.3), one has

∣∣(!(t2)↑ !(0))1↑ϑ(Au)(t2)↑ (!(t1)↑ !(0))1↑ϑ(Au)(t1)
∣∣

↘ ς↘

”(ω + 1)

∣∣∣{(ω ↑ ε + 1) (!(c)↑ !(0))ω↑ϑ !→(c)}
∣∣∣ (t2 ↑ t1) ↘ M |t2 ↑ t1|. (4.9)

From inequalities (4.8) and (4.9) , it follows that (Au) → C1↑ϑ;!(J,R;M). This completes the

proof of A (C1↑ϑ;!(J,R;M)) ⇑ C1↑ϑ;!(J,R;M).
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We have proved that A fulfills all the conditions of Schauder’s fixed point theorem. Therefore, A

has at least one fixed point which is the solution of the iterative FDEs (1.1)-(1.2).

Theorem 4.2. Suppose that all conditions of Theorem 4.1 hold. Then the problem (1.1)-(1.2) has

a unique solution in C1↑ϑ;!(J,R;M) provided

(!(T )↑ !(0))ω+1↑ϑ

”(ω + 1)

n∑

i=1

ci

i↑1∑

j=0

M j < 1. (4.10)

Proof. If possible the iterative FDEs (1.1)-(1.2) has two distinct solution v1 and v2 in the weighted

space C1↑ϑ;!(J,R;M). Then in view of equivalent fractional integral equation to the iterative

FDEs (1.1)-(1.2) and the operator A defined in (4.4), we have Av1 = v1 and Av2 = v2.

Therefore

||v1 ↑ v2||C1↑ω;!(J,R) = ||Av1 ↑Av2||C1↑ω;!(J,R).

Proceeding as in the proof of Theorem 4.1, we obtain the estimation on the line of equation (4.5),

as follows

||v1 ↑ v2||C1↑ω;!(J,R) = ||Av1 ↑Av2||C1↑ω;!(J,R)

↘ 1

”(ω + 1)

n∑

i=1

ci

i↑1∑

j=0

M j(!(T )↑ !(0))ω↑ϑ+1||v1 ↑ v2||C1↑ω;!(J,R).

Using condition (4.10), in above estimation, we obtain

||v1 ↑ v2||C1↑ω;!(J,R) < ||v1 ↑ v2||C1↑ω;!(J,R),

which is not possible. Therefore iterative FDEs (1.1)-(1.2) has a unique solution.

5 Continuous dependence and stability results

5.1 Continuous dependence results

To investigate the data dependency of solution of the nonlinear iterative FDEs (1.1)-(1.2), we
consider the another nonlinear iterative FDEs of the form

HDε, ϑ;!
0+ ũ(t) = h̃

((
(!(·)→ !(0))1→ω ũ

)[0]
(t),

(
(!(·)→ !(0))1→ω ũ

)[1]
(t), . . . ,

(
(!(·)→ !(0))1→ω ũ

)[n]
(t)

)
,

t ↔ J, (5.1)

I1→ω,!
0+ ũ(0) = ũ0, ũ0 ↗ 0, ω = ε + ϱ(1→ ε), (5.2)

where h̃ is a function di!erent from h that satisfies all the assumptions of h.
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Theorem 5.1. Suppose that all the assumptions of Theorem 4.2 hold. Then, solution u of iterative

FDEs (1.1)-(1.2) and solution ũ of iterative FDEs (5.1)-(5.2) satisfies the inequality

||ũ↑ u||C1↑ω;!(J,R) ↘
1

”(ϑ)

1↑ (!(T )↑!(0))ε↑ω+1

”(ω+1)

n∑
i=1

ci
i↑1∑
j=0

M j

|ũ0 ↑ u0|

+

(!(T )↑!(0))ε↑ω+1

”(ω+1)

1↑ (!(T )↑!(0))ε↑ω+1

”(ω+1)

n∑
i=1

ci
i↑1∑
j=0

M j

∥∥∥h̃↑ h
∥∥∥
C(J,R)

. (5.3)

Proof. Using equivalent fractional integral of iterative FDE (1.1)-(1.2) and (5.1)-(5.2), for any
t → J we have

∣∣∣(!(t)→ !(0))1→ω(ũ(t)→ u(t))
∣∣∣ ↓

∣∣∣∣
ũ0

”(ω)
→ u0

”(ω)

∣∣∣∣+
(!(t)→ !(0))1→ω

”(ε)

∫
t

0

!↑(ϑ)(!(t)→ !(ϑ))ε→1

↑
∣∣∣∣h̃

((
(!(·)→ !(0))1→ω ũ

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω ũ

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω ũ

)[n]
(ϑ)

)

→ h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

) ∣∣∣∣dϑ. (5.4)

Next, using Lipschitz condition on h̃, for any φ → J , we have
∣∣∣∣h̃

((
(!(·)→ !(0))1→ω ũ

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω ũ

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω ũ

)[n]
(ϑ)

)

→ h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

) ∣∣∣∣

↓
∣∣∣∣h̃

((
(!(·)→ !(0))1→ω ũ

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω ũ

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω ũ

)[n]
(ϑ)

)

→ h̃

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

) ∣∣∣∣

+

∣∣∣∣h̃
((

(!(·)→ !(0))1→ω u
)[0]

(ϑ),
(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)

→ h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

) ∣∣∣∣

↓
n∑

i=1

ci

∣∣∣∣
(
(!(·)→ !(0))1→ω ũ

)[i]
(ϑ)→

(
(!(·)→ !(0))1→ω u

)[i]
(ϑ)

∣∣∣∣+
∥∥∥h̃→ h

∥∥∥
C(J,R)

↓
∥∥∥h̃→ h

∥∥∥
C(J,R)

+
n∑

i=1

ci

∥∥∥∥
(
(!(·)→ !(0))1→ω ũ

)[i]
→

(
(!(·)→ !(0))1→ω u

)[i]
∥∥∥∥
C(J,R)

.
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Using Lemma 2.4, for any ϑ ↔ J , we obtain
∣∣∣∣h̃

((
(!(·)→ !(0))1→ω ũ

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω ũ

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω ũ

)[n]
(ϑ)

)

→ h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

) ∣∣∣∣

↓
∥∥∥h̃→ h

∥∥∥
C(J,R)

+
n∑

i=1

ci

i→1∑

j=0

M j

∥∥∥(!(·)→ !(0))1→ω ũ→ (!(·)→ !(0))1→ω u
∥∥∥
C(J,R)

↓
∥∥∥h̃→ h

∥∥∥
C(J,R)

+
n∑

i=1

ci

i→1∑

j=0

M j ||ũ→ u||C1↑ω,!(J,R). (5.5)

Using estimation (5.5) in the inequality (5.4), for any t → J , we have

∣∣(!(t)↑ !(0))1↑ϑ(ũ(t)↑ u(t))
∣∣

↘ |ũ0 ↑ u0|
”(ε)

+
(!(t)↑ !(0))ω↑ϑ+1

”(ω + 1)




∥∥∥h̃↑ h

∥∥∥
C(J,R)

+
n∑

i=1

ci

i↑1∑

j=0

M j ⇐ũ↑ u⇐
C1↑ω;!(J)





↘ |ũ0 ↑ u0|
”(ε)

+
(!(T )↑ !(0))ω↑ϑ+1

”(ω + 1)




∥∥∥h̃↑ h

∥∥∥
C(J,R)

+
n∑

i=1

ci

i↑1∑

j=0

M j ||ũ↑ u||C1↑ω;!(J,R)





Therefore, we obtain

||ũ↑ u||C1↑ω;!(J,R) ↘
1

”(ϑ)

1↑ (!(T )↑!(0))ε↑ω+1

”(ω+1)

n∑
i=1

ci
i↑1∑
j=0

M j

|ũ0 ↑ u0|

+

(!(T )↑!(0))ε↑ω+1

”(ω+1)

1↑ (!(T )↑!(0))ε↑ω+1

”(ω+1)

n∑
i=1

ci
i↑1∑
j=0

M j

∥∥∥h̃↑ h
∥∥∥
C(J,R)

.

Remark 5.2. (1) Theorem 5.1 gives the continuous dependence of the solution of the problem

(1.1)-(1.2) on the initial condition as well as on the nonlinear functions.

(2) If h = h̃ in (5.3) then Theorem 5.1 gives the dependency of the solution of (1.1)-(1.2) on

initial condition.

(3) If u0 = ũ0 in (5.3) then Theorem 5.1 gives the dependency of the solution of (1.1)-(1.2) on

the nonlinear functions.

(4) If h = h̃ and u0 = ũ0 in (5.3), Theorem 5.1 gives the uniqueness of solution of the problem

(1.1)-(1.2).
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5.2 Stability results

To discuss the Ulam-Hyers stablity results we need the following definitions.

Definition 5.3 ([19]). The iterative FDEs (1.1)-(1.2) is said to be Ulam-Hyers stable if there
exists a real number K > 0 such that for each ϖ > 0 and for each solution v → C1↑ϑ;!(J,R;M) of
the inequality

∣∣∣HDε, ϑ;!
0+ v(t)

→h

((
(!(·)→ !(0))1→ω v

)[0]
(t),

(
(!(·)→ !(0))1→ω v

)[1]
(t), . . . ,

(
(!(·)→ !(0))1→ω v

)[n]
(t)

)∣∣∣∣ ↓ ς, (5.6)

with I1↑ϑ;!
o+ v(0) = u0, there exists a solution u → C1↑ϑ;!(J,R;M) of problem (1.1)-(1.2) that

satisfy

||u↑ v||C1↑ω;!(J,R;M) ↘ Kϖ, t → J.

Definition 5.4 ([19]). The iterative FDEs (1.1)-(1.2) is said to be generalized Ulam-Hyers sta-

ble if there exists ↼ → C(J,R+) with ↼(0) = 0 such that for each ϖ > 0 and for each solu-

tion v → C1↑ϑ;!(J,R;M) of the inequality (5.6) with I1↑ϑ;!
o+ v(0) = u0, there exists a solution

u → C1↑ϑ;!(J,R;M) of the problem (1.1)-(1.2) satisfying

||u↑ v||C1↑ω;!(J,R;M) ↘ ↼(ϖ), t → J.

Theorem 5.5. Assume all the assumptions of Theorem 4.2 hold. Then the problem (1.1)-(1.2) is

Ulam-Hyers stable.

Proof. Consider v → C1↑ϑ;!(J,R;M) be a function such that I1↑ϑ;!
o+ v(0) = u0, that satisfy the

inequality (5.6). Then integrating it, we obtain

∣∣∣∣v(t)↑
(!(t)↑ !(0))ϑ↑1

”(ε)
u0 ↑

1

”(ω)

∫
t

0
!→(φ)(!(t)↑ !(φ))ω↑1

⇓ h

((
(!(·)↑ !(0))1↑ϑ v

)[0]
(φ),

(
(!(·)↑ !(0))1↑ϑ v

)[1]
(φ), . . . ,

(
(!(·)↑ !(0))1↑ϑ v

)[n]
(φ)

)
dφ

∣∣∣∣

↘ Iω;!0+ ϖ =
ϖ

”(ω + 1)
(!(t)↑ !(0))ω, t → (0, T ].

If u → C1↑ϑ;!(J,R;M) is the solution of the iterative FDEs (1.1)-(1.2) then using Lipschitz con-
dition of h, we obtain

|v(t)→ u(t)|

=

∣∣∣∣v(t)→
(!(t)→ !(0))ω→1

”(ω)
u0 →

1
”(ε)

∫
t

0

!↑(ϑ)(!(t)→ !(ϑ))ε→1

↑ h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)
dϑ

∣∣∣∣
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↓
∣∣∣∣v(t)→

(!(t))→ !(0))ω→1

”(ω)
u0 →

1
”(ε)

∫
t

0

!↑(ϑ)(!(t)→ !(ϑ))ε→1

↑ h

((
(!(·)→ !(0))1→ω v

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω v

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω v

)[n]
(ϑ)

)
dϑ

∣∣∣∣

+

∣∣∣∣
1

”(ε)

∫
t

0

!↑(ϑ)(!(t)→ !(ϑ))ε→1

↑
[
h

((
(!(·)→ !(0))1→ω v

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω v

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω v

)[n]
(ϑ)

)

→ h

((
(!(·)→ !(0))1→ω u

)[0]
(ϑ),

(
(!(·)→ !(0))1→ω u

)[1]
(ϑ), . . . ,

(
(!(·)→ !(0))1→ω u

)[n]
(ϑ)

)]
dϑ

∣∣∣∣

↓ ς
”(ε + 1)

(!(t)→ !(0))ε +
1

”(ε)

∫
t

0

!↑(ϑ)(!(t)→ !(ϑ))ε→1

↑
n∑

i=1

ci

∣∣∣∣
(
(!(·)→ !(0))1→ω v

)[i]
(ϑ)→

(
(!(·)→ !(0))1→ω u

)[i]
(ϑ)

∣∣∣∣ dϑ.

Using the inequality in the Lemma 2.4, we have

|v(t)→ u(t)|

↓ ς
”(ε + 1)

(!(t)→ !(0))ε +
(!(t)→ !(0))ε

”(ε + 1)

n∑

i=1

ci

∥∥∥∥
(
(!(·)→ !(0))1→ω v

)[i]
→

(
(!(·)→ !(0))1→ω u

)[i]
∥∥∥∥
C(J)

↓ ς
”(ε + 1)

(!(t)→ !(0))ε +
(!(t)→ !(0))ε

”(ε + 1)

n∑

i=1

ci

i→1∑

j=0

M j

∥∥∥(!(·)→ !(0))1→ω v → (!(·)→ !(0))1→ω u
∥∥∥
C(J)

=
ς

”(ε + 1)
(!(t)→ !(0))ε +

(!(t)→ !(0))ε

”(ε + 1)

n∑

i=1

ci

i→1∑

j=0

M j ↘v → u↘
C1↑ω;!(J) , t ↔ J.

Therefore consider for all t ↔ J,

↘v → u↘C1↑ω;!(J,R;M)= sup
t↔J

∣∣∣(!(t)→ !(0))1→ω(v(t)→ u(t))
∣∣∣

↓ ς
”(ε + 1)

(!(T )→ !(0))ε→ω+1 +
(!(T )→ !(0))ε→ω+1

”(ε + 1)

n∑

i=1

ci

i→1∑

j=0

M j ↘v → u↘
C1↑ω;!(J) .

This gives

⇐v ↑ u⇐
C1↑ω;!(J) ↘

ϖ

”(ω+1) (!(T )↑ !(0))ω↑ϑ+1

1↑ 1
”(ω+1)

n∑
i=1

ci
i↑1∑
j=0

M j(!(T )↑ !(0))ω↑ϑ+1

.

Define K =

(!(T )↑ !(0))ω↑ϑ+1

”(ω + 1)

1↑ 1
”(ω+1)

n∑
i=1

ci
i↑1∑
j=0

M j(!(T )↑ !(0))ω↑ϑ+1

. Then K > 0 and we have

⇐v ↑ u⇐
C1↑ω;!(J) ↘ Kϖ.

This proves iterative FDEs (1.1)-(1.2) is Ulam-Hyers stable.
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Corollary 5.6. Suppose all the assumptions of Theorem 5.5 are satisfied then the iterative FDEs

(1.1)-(1.2) is generalized Ulam-Hyers stable.

Proof. Follows by taking ↽(ϖ) = Kϖ.

6 Examples

Example 6.1. Consider the following initial value problem for iterative fractional di!erential
equations

HD
1
2 ,ϑ;!
0+ v(t) =

(!(t)→ !(0))
1
2

≃
φ

+
1

100
(!(t)→ !(0))2→ω

+
1

200
(!(t)→ !(0))1→ω

(
!

(
(!(t)→ !(0))2→ω

2

)
→ !(0)

)
→ 1

50

(
(!(·)→ !(0))1→ωv

)[1]
(t)

→ 1
100

(
(!(·)→ !(0))1→ωv

)[2]
(t), (6.1)

I1→ω;!
0+ v(0) = 0, t ↔ J̃ = [0, 1]. (6.2)

Define the function h : J̃3 ↗ [0,⇒) by,

h(t, u, v) =
(!(t)↑ !(0))

1
2

⇔
⇀

+
1

100
(!(t)↑ !(0))2↑ϑ

+
1

200
(!(t)↑ !(0))1↑ϑ

(
!

(
(!(t)↑ !(0))2↑ϑ

2

)
↑ !(0)

)
↑ 1

50
u↑ 1

100
v.

Then for any t → J̃ and ui, vi → J̃ , (i = 1, 2), we have

|h(t, u1, u2)↑ h(t, v1, v2)| ↘
1

50
|u1 ↑ v1|+

1

100
|u2 ↑ v2|.

This shows h satisfies Lipschitz type condition (4.1) with c1 = 1
50 and c2 = 1

100 . We have T = 1,

choose L = 1 then the condition 0 < L ↘ T hold. Further, in the view of condition (4.2) and (4.3)

choose c = 1
3 , M > 0 and the function ! such that

2ς↘⇔
⇀

∣∣∣∣∣

(
3

2
↑ ε

)(
!

(
1

3

)
↑ !(0)

) 1
2↑ϑ

!→
(
1

3

)∣∣∣∣∣ ↘ M, (6.3)

and
2ς↘⇔
⇀
(!(1)↑ !(0))

3
2↑ϑ ↘ 1, (6.4)
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where

ς = sup
t↓[0,1]

{h(t, 0, 0)}

=
(!(1)↑ !(0))

1
2

⇔
⇀

+
(!(1)↑ !(0))2↑ϑ

100
+

(!(1)↑ !(0))1↑ϑ

200

(
!

(
(!(1)↑ !(0))2↑ϑ

2

)
↑ !(0)

)
,

(6.5)

ς↘ = ς+ c1 + c2(1 +M) = ς+
1

50
+

1

100
(1 +M). (6.6)

With the choices of constant M and the function ! that satisfies conditions (6.3) and (6.4), all the

assumptions of Theorem 4.1 are satisfied. Thus Schauder’s fixed point Theorem 3.1 guarantee the

at least one solution of the iterative FDEs (6.1)-(6.2) in the weighted space C1↑ϑ;!(J̃ ,R;M). By

actual substitution one can verify that

v(t) =
!(t)↑ !(0)

2
, t → [0, 1], (6.7)

is the solution of the iterative FDEs (6.1)-(6.2). Further in addition to the conditions (6.3) and

(6.4), if the constant M and the function ! satisfy the condition

2(!(1)↑ !(0))
3
2↑ϑ

⇔
⇀

(
1

50
+

1

100
(1 +M)

)
< 1, (6.8)

the problem (6.1)-(6.2) has unique solution in the weighted space C1↑ϑ;!(J̃ ,R;M).

Note that the function v defined in (6.7) is the unique solution of the problem (6.1)-(6.2). If we

take !(t) = t, t → [0, 1] and ϑ = 1 the problem (6.1)-(6.2) involving !-Hilfer fractional derivative

reduces to the following initial value problem for iterative FDEs of the form

CD
1
2
0+v(t) =

t
1
2

⇔
⇀
+

1

100
t+

1

400
t↑ 1

50
v[1](t)↑ 1

100
v[2](t) (6.9)

v(0) = 0. (6.10)

In this case

ς =
1⇔
⇀
+

1

100
+

1

400
= 0.5766.

If we choose M = 1 then

ς↘ = 0.5766 +
1

50
+

2

100
= 0.6166.
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Further, the conditions (6.3), (6.4) and (6.8) reduce respectively to

2ς↘⇔
⇀

∣∣∣∣∣

(
3

2
↑ ε

)(
!

(
1

3

)
↑ !(0)

) 1
2↑ϑ

!→
(
1

3

)∣∣∣∣∣ =
0.6166⇓ 2⇔

⇀

∣∣∣∣∣
1

2

(
1

3

)↑1
2

∣∣∣∣∣ = 0.6025 < 1 (6.11)

2ς↘⇔
⇀
(!(1)↑ !(0))

3
2↑ϑ =

0.6166⇓ 2⇔
⇀

= 0.6957 < 1 (6.12)

and

2(!(1)↑ !(0))
3
2↑ϑ

⇔
⇀

(
1

50
+

1

100
(1 +M)

)
=

2⇔
⇀

(
1

50
+

2

100

)
= 0.0451 < 1. (6.13)

Note that all the conditions of Theorem 4.2 are satisfied. Therefore the initial value problem

for Caputo iterative FDEs (6.9)-(6.10) has a unique solution in the space C(J̃ ,R; 1). By actual

substitution, one can verify that

v(t) =
t

2
, t → [0, 1], (6.14)

is the unique solution of the problem (6.9)-(6.10).

We remark that the constants c1 and c2 appears naturally as h satisfy Lipschitz condition. T = 1

is the end point of the interval on which the problem (6.1)-(6.2) is considered. The constant L

(0 < L ↘ T ), c → (0, T ) and M > 0 one choose in the view of condition (4.2) and (4.3). These

constants depends on the choice of function !.

7 Conclusion

Through analytical approaches we examine the nonlinear iterative FDEs with !-Hilfer fractional

derivative for existence, uniqueness, stability and dependency of solutions. The conditions (4.2)

and (4.3) required to prove the existence and uniqueness results Theorem 4.1 and Theorem 4.2 are

strong. Achieving the same kind of outcomes by removing the restrictions in (4.2) and (4.3) will

be very interesting. We have given specific examples to demonstrate our findings. Investigating

alternative conditions with weaker constraints is essential for ensuring the existence and uniqueness

of solutions for iterative !-Hilfer fractional di!erential equations (FDEs). In this context, one can

analyze iterative !-Hilfer FDEs under various types of initial and boundary conditions to study

their existence, uniqueness, di!erent forms of stability, and other qualitative properties. Further,

the work explored in [23, 25, 43, 47, 49] can be analyzed by integrating the iterates of unknown

function and the fractional calculus.
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ABSTRACT

This paper investigates the properties of weighted composi-

tion operators acting between di!erent weighted lp spaces.

Inspired by recent advancements in the field, we explore cri-

teria for the continuity and compactness of these operators.

Specifically, we provide simple conditions, in terms of normal-

ized canonical sequences, for the continuity and compactness

of the di!erence between two weighted composition opera-

tors, Wω,u and Wε,v. Furthermore, we calculate the essen-

tial norm of these operators. Our results extend and general-

ize previous works, o!ering new insights into the behavior of

weighted composition operators in Banach sequence spaces.

The findings contribute to the understanding of these opera-

tors’ topological properties, particularly their applications in

sequence spaces and functional analysis.

RESUMEN

Este artículo investiga las propiedades de operadores de com-

posición con peso actuando entre diferentes espacios lp con

pesos. Inspirados por avances recientes en el área, exploramos

criterios para la continuidad y compacidad de estos ope-

radores. Específicamente, entregamos condiciones simples, en

términos de sucesiones canónicas normalizadas, para la con-

tinuidad y compacidad de la diferencia entre dos operadores

de composición con peso, Wω,u y Wε,v. Más aún, calculamos

la norma esencial de estos operadores. Nuestros resultados

extienden y generalizan trabajos previos, ofreciendo nuevas

formas de entender el comportamiento de operadores de com-

posición con peso en espacios de Banach de sucesiones. Los

hallazgos contribuyen a la comprensión de las propiedades

topológicas de estos operadores, particularmente sus aplica-

ciones a espacios de sucesiones y análisis funcional.

Keywords and Phrases: Banach sequence spaces, weighted composition operators, compactness.

2020 AMS Mathematics Subject Classification: 47B33, 46B45, 47B37, 46B50.

Published: 30 April, 2025

Accepted: 17 April, 2025

Received: 13 September, 2024
©2025 J. D. Cardona-Gutierrez et al. This open access article is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2701.119
https://orcid.org/0009-0005-5411-2205
https://orcid.org/0000-0002-7329-5263
https://orcid.org/0000-0001-7017-0070
mailto:jdcardona@math.cinvestav.edu.mx
mailto:jcramosf@udistrital.edu.co
mailto:hvacca@udistrital.edu.co


120 J. D. Cardona-Gutierrez, J. C. Ramos-Fernández & H. Vacca-González CUBO
27, 1 (2025)

1 Introduction

The study of the properties of weighted composition operators has captivated numerous researchers

worldwide. These operators play a significant role in various areas of functional analysis and have

applications in sequence spaces and spaces of analytic functions. Specifically, in the context of

Banach sequence spaces, weighted composition operators are useful for studying processes where

the inputs are infinite collections of data {x(k)} that undergo an organization and selection process,

and are finally assigned a weight to obtain an output, similar to creating frequency tables in

statistics. Organizing a sequence x = {x(k)} involves defining a function ω : N → N, while

assigning weights involves multiplying by a sequence u = {u(k)}. This leads to the definition of

the weighted composition operator Wω,u by

Wω,u(x) := u · (x ↑ ω).

The operator Wω,u can be seen as a composition of two important classical transformations: the

multiplication operator Mu and the composition operator Cω. In fact, when ω is the identity, Wω,u

becomes Mu, and when u(n) = 1 for all n, it becomes Cω. The properties of these operators have

been widely studied in various contexts, including weighted sequence spaces [5,9,14,15], which we

define in the next paragraph.

Throughout the development of this document, p represents a fixed parameter in [1,↓). A nu-

merical sequence x = {x(k)} is said to belong to the weighted l
p space, denoted as x ↔ l

p(r),

if

↗x↗
lp(r) =

( →∑

k=1

|x(k)|p r(k)p
)1/p

< ↓, (1.1)

where r = {r(k)} is a weight, that is, r(k) > 0 for all k ↔ N. The pair
(
l
p (r) , ↗·↗

lp(r)

)
constitutes

a Banach space. These kinds of spaces naturally appear in the literature when studying properties

of some operators in sequence spaces. For instance, for p > 1, the Cesàro space cesp is contained

in l
p
(
k
1↑p

)
, indicating that every evaluation functional on cesp is continuous.

Inspired by the work of Carpintero et al. [5], where they explored in detail the properties of

weighted composition operators acting on weighted ε
→(r) sequence spaces, and as a continuation

of the recent work of Cardona-Gutierrez et al. [4], which characterized the functions u and ω

that define weighted composition operators with closed ranges when acting between two di!erent

weighted l
p spaces and analyzed when this operator is upper or lower semi-Fredholm, we aim to give

simple criteria in terms of the normalized canonical sequences for the continuity and compactness

of the di!erence of two weighted composition operators Wω,u ↘Wv,ε acting between two di!erent

weighted l
p spaces. An important consequence of our results is the computation of the essential

norm of the weighted composition operators Wω,u acting between two distinct weighted l
p spaces.
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Our findings significantly extend and generalize previous works, such as those by [8, 10], which

analyzed the case of weighted ε
2, and more recently, the work by Albanese and Mele [2], where the

continuity and compactness of Wω,u between two di!erent weighted l
p spaces were characterized.

In this article, we are particularly interested in knowing when Wω,u(x) ↔ l
p(s) for all x ↔ l

p(r)

(continuity problem) and in establishing other topological properties such as the compactness of

the di!erence of two weighted composition operators (compactness problem). These problems

have been widely studied in the context of holomorphic function spaces (see [7, 11, 13] and refer-

ences therein), but in the context of Banach sequence spaces, they are still under development.

Specifically, we shall prove the following properties:

(1) The operator Wω,u is continuous from l
p (r) into l

p (s) if and only if

Lω,u = sup
n↓N

↗Wω,u(en)↗lp(s)
↗en↗lp(r)

< ↓.

In this case, ↗Wω,u↗ = Lω,u.

(2) The di!erence of weighted composition operators Wω,u ↘ Wε,v from l
p (r) into l

p (s) is

compact if and only if

lim
n↔→

↗(Wω,u ↘Wε,v)(en)↗lp(s)
↗en↗lp(r)

= 0.

(3) The essential norm of Wω,u from l
p (r) to l

p (s) is computed by

↗Wω,u↗e = lim sup
n↔→

↗Wω,u(en)↗lp(s)
↗en↗lp(r)

.

This last result extends a result by Castillo et al. in [6].

The problem (1), was recently solved by Albanese and Mele [2]; however, in Section 2, for the sake

of completeness and to benefit the reader, we provide a simple proof.

Additionally, in Section 3, we establish a very general criteria for the compactness of pointwise

continuous operators acting between di!erent weighted l
p spaces, which allows us to characterize

the compactness of the di!erence of two weighted composition operators (see Theorem 3.1).

Finally, in this article, we use x = {x(k)} to denote a numerical complex sequence, while (xn)

denotes a sequence of sequences. Also, for a fixed n ↔ N, we consider the canonical sequence en,

defined as en(k) = 1 if k = n and en(k) = 0 otherwise.
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2 Continuity of the weighted composition operators on lp(r)

In this section we characterize all continuous weighted composition operators between two di!erent

weighted l
p spaces in terms of the norm of the images of the normalized canonical sequence. From

now, for a function ω : N → N, it is convenient to define

Ran (ω) = {n ↔ N : n = ω(k) for some k ↔ N} .

We can see that

↗Wω,u(en)↗plp(s) =
∑

k:ω(k)=n

|u(k)|p s(k)p

and ↗Wω,u (en)↗lp(s) = 0 whenever n /↔ Ran (ω). The following result is due to Albanese and Mele

[2], and we include a brief proof for the benefit of the reader.

Theorem 2.1 ([2]). Let r, s be two weights. Suppose that u = {u(k)} is a complex sequence and

let ω : N → N be a function. The operator Wω,u : lp(r) → l
p(s) is continuous if and only if

Lω,u = sup
n↓N

↗Wω,u(en)↗lp(s)
↗en↗lp(r)

< ↓. (2.1)

In this case, ↗Wω,u↗op = Lω,u.

Proof. Since en ↔ l
p(r) for all n ↔ N, the condition (2.1) holds when we suppose that the operator

Wω,u : lp(r) → l
p(s) is continuous. Conversely, if there exists Lω,u > 0 such that

↗Wω,u(en)↗lp(s) ≃ Lω,u ↗en↗lp(r) = Lω,ur(n),

and we fix any x = {x(k)} ↔ l
p(r), then we have

↗Wω,u (x)↗plp(s) =
→∑

k=1

|u(k)|p |x (ω(k)) |ps(k)p ≃
∑

n↓ω(N)
|x(n)|pLp

ω,u
r(n)p

≃ L
p

ω,u

→∑

n=1

|x(n)|pr(n)p = L
p

ω,u
↗x↗p

lp(r),

and the operator Wω,u : lp(r) → l
p(s) is continuous. The above argument also proves that

↗Wω,u↗op = sup
n↓N

↗Wω,u(en)↗lp(s)
↗en↗lp(r)

= Lω,u.

This proves the result.
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Since weighted composition operators generalize multiplication and composition operators, we have

the following two important consequences:

Corollary 2.2. Let r, s be two weights and suppose that u = {u(k)} is a complex sequence. The

multiplication operator Mu : lp(r) → l
p(s) is continuous if and only if

sup
n↓N

↗Mu (en)↗lp(s)
↗en↗lp(r)

= sup
n↓N

s(n)

r(n)
|u(n)| < ↓.

Proof. It follows from Theorem 2.1 with ω = Id, the identity function on N, and by recalling that

WId,u = Mu.

Corollary 2.3. Let r, s be two weights and let ω : N → N be a function. The composition operator

Cω : lp(r) → l
p(s) is continuous if and only if

sup
n↓ω(N)

↗Cω (en)↗lp(s)
↗en↗lp(r)

= sup
n↓ω(N)

1

r(n)




∑

k:ω(k)=n

s(k)p




1/p

< ↓.

Proof. It follows from Theorem 2.1 with u(n) = 1 for all n ↔ N, a constant function on N, and by

recalling that, in this case, Wω,u = Cω.

Similar results were obtained in [3] in the context of analytic functions (see also [12]).

3 On the compactness

In this section we shall obtain a characterization for the compactness of the di!erence operator

Wω,u ↘Wε,v : lp(r) → l
p(s) in terms of the canonical sequences. We said that a linear operator

K : lp(r) → l
p(s) is pointwise continuous if for each sequence (xn) ⇐ l

p(r) such that xn → 0

pointwise ( lim
n↔→

xn(m) = 0 for all m ↔ N), we have

lim
n↔→

(K (xn)) (m) = 0

for all m ↔ N. Clearly, the di!erence between two weighted composition operators is pointwise

continuous. For this kind of operators, we have the following result which could have some interest

by itself. A much more general result can be found in [1]. We include a proof for benefit of the

reader.
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Theorem 3.1. Let r, s be two weights and suppose that K : lp(r) → l
p(s) is a pointwise continuous

operator. The operator K : lp(r) → l
p(s) is compact if and only if for each norm-bounded sequence

(xn) ⇐ l
p(r) such that xn → 0 pointwise, we have

lim
n↔→

↗K (xn)↗lp(s) = 0. (3.1)

Proof. Let us suppose first that K : lp(r) → l
p(s) is a compact operator. Let (xn) ⇐ l

p(r) be any

norm-bounded sequence such that xn → 0 pointwise and suppose that the condition (3.1) is false.

Then, there exists an ϑ > 0 and a subsequence (xnk) of (xn) such that

↗K (xnk)↗lp(s) ⇒ ϑ (3.2)

for all k ↔ N. Thus, the compactness of K implies that, by passing to a subsequence, if necessary,

we can suppose that (K (xnk)) converges to y ↔ l
p(s). That is,

lim
k↔→

↗K (xnk)↘ y↗
lp(s) = 0. (3.3)

We shall prove that y = 0 (the null sequence). Indeed, for m ↔ N arbitrary but fixed, we have

|ynk(m)↘ y(m)|p ≃ 1

s(m)p
↗K (xnk)↘ y↗p

lp(s) ,

with y
nk

= K (xnk). Thus, since K is pointwise continuous, we can write

|y(m)|p = lim
k↔→

|ynk(m)↘ y(m)|p ≃ lim
k↔→

1

s(m)p
↗K (xnk)↘ y↗p

lp(s) = 0.

This last fact produces a contradiction between (3.2) and (3.3). Therefore

lim
n↔→

↗K (xn)↗lp(s) = 0,

and the implication is proved.

Next, we suppose that for all norm-bounded sequence (xn) ⇐ l
p(r) such that xn → 0 pointwise,

we have

lim
n↔→

↗K (xn)↗lp(s) = 0.

We are going to show that the operator K : lp(r) → l
p(s) is compact. To see this, we fix any

(y
n
) ⇐ l

p(r) such that ↗y
n
↗
lp(r) ≃ 1 for all n ↔ N. The numerical sequence {yn(1)} of all first

components is bounded since

|yn(1)|p r(1)p ≃
→∑

k=1

|yn(k)|p r(k)p = ↗y
n
↗p
lp(r) ≃ 1.
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Hence, the Bolzano–Weierstrass theorem guarantees that there exists a convergent subsequence{
y
(1)
n (1)

}
of {yn(1)} and we can find y(1) ↔ C such that

lim
n↔→

|y(1)
n

(1)↘ y(1)| = 0.

Hence, we obtain a subsequence
(
y(1)
n

)
of (y

n
) whose first component is a convergent numerical

sequence.

Arguing similarly, we have
∣∣∣y(1)n (2)

∣∣∣ r(2)p ≃ 1, so there is a y(2) ↔ C and a subsequence
(
y(2)
n

)
of

(
y(1)
n

)
such that

lim
n↔→

∣∣∣y(2)n
(2)↘ y(2)

∣∣∣ = 0.

Furthermore, we also have

lim
n↔→

∣∣∣y(2)n
(1)↘ y(1)

∣∣∣ = 0.

Thus, by repeating this process, we obtain a subsequence
(
y
nk

)
of (y

n
) and a numerical sequence

y = {y(j)} such that y
nk

→ y pointwise. Also, for H ↔ N fixed we have

H∑

j=1

|y(j)|pr(j)p = lim sup
k↔→

H∑

j=1

|ynk(j)|pr(j)p ≃ lim sup
k↔→

∥∥y
nk

∥∥p
lp(r)

≃ 1

and y ↔ l
p(r). Thus, applying the hypothesis to the sequence xk = y

nk
↘ y which converges to

zero pointwise, we conclude that

lim
k↔→

↗K (xk)↗lp(s) = lim
k↔→

∥∥K
(
y
nk

)
↘K (y)

∥∥
lp(s)

= 0

and the operator K : lp(r) → l
p(s) is compact.

As an important consequence of the above result we have:

Theorem 3.2. Let r, s be two weights, suppose that u = {u(k)} and v = {v (k)} are complex

sequences, ω,ϖ : N → N are functions and Wω,u,Wε,v : lp (r) → l
p (s) are continuous operators.

The di!erence Wω,u ↘Wε,v from l
p (r) into l

p (s) is compact if and only if

lim
n↔→

↗(Wω,u ↘Wε,v) (en)↗lp(s)
↗en↗lp(r)

= 0. (3.4)

Proof. Let us suppose first that the di!erence Wω,u↘Wε,v : lp (r) → l
p (s) is a compact operator.

For each n ↔ N, we set

xn =
en

↗en↗lp(r)
.

Then (xn) is a norm-bounded sequence which converges pointwise to the null sequence. Hence,
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Theorem 3.1 implies that the expression (3.4) holds.

Assume now that (3.4) holds and suppose that (xn) is any bounded sequence in l
p (r) such that

lim
n↔→

xn(m) = 0

for all m ↔ N. We shall prove that

lim
n↔→

↗(Wω,u ↘Wε,v) (xn)↗lp(s) = 0.

We can write

↗ (Wω,u ↘Wε,v) (xn) ↗plp(s) = S1(n) + S2(n),

where
S1(n) =

∑

k:ω(k)=ε(k)

|u (k)↘ v (k)|p |xn (ω (k))|p s (k)p ,

S2(n) =
∑

k:ω(k) ↗=ε(k)

|u (k)xn (ω (k))↘ v (k)xn (ϖ (k))|p s (k)p .

For the first sum we have

S1(n) ≃
→∑

m=1

|xn (m)|p r(m)p
↗(Wω,u ↘Wε,v) (em)↗p

lp(s)

↗em↗p
lp(r)

.

While for the second sum we can see that

S2(n) ≃ 2p
∑

k:ω(k) ↗=ε(k)

(|u (k)xn (ω (k))|p + |v (k)xn (ϖ (k))|p) s (k)p ≃ S3(n) + S4(n)

with
S3(n) = 2p

∑

m↓ω(N)
|xn (m)|p

∑

l↓ε(N)↑{m}

∑

k↓ω→1({m})↘ε→1({l})

|u (k)|p s (k)p ,

S4(n) = 2p
∑

l↓ε(N)
|xn (l)|p

∑

m↓ω(N)↑{l}

∑

k↓ω→1({m})↘ε→1({l})

|v (k)|p s (k)p .

But, if k ↔ ω
↑1 ({m}) ⇑ ϖ

↑1 ({l}), then ω(k) = m and ϖ(k) = l ⇓= m and thus em (ω(k)) = 1,

em (ϖ(k)) = 0 and the third sum on the right of S3(n) can be written as

∑

k↓ω→1({m})↘ε→1({l})

|u (k) em (ω(k))↘ v(k)em (ϖ(k))|p s (k)p .

Thus

S3(n) ≃ 2p
→∑

m=1

|xn (m)|p r(m)p
↗(Wω,u ↘Wε,v) (em)↗p

lp(s)

↗em↗p
lp(r)
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and the same is also true for S4(n). Therefore,

↗(Wω,u ↘Wε,v) (xn)↗plp(s) ≃ 2p+2
→∑

m=1

|xn (m)|p r(m)p
↗(Wω,u ↘Wε,v) (em)↗p

lp(s)

↗em↗p
lp(r)

.

Finally, by hypothesis, for any ϱ > 0, we can find m0 ↔ N such that

↗(Wω,u ↘Wε,v) (em)↗p
lp(s)

↗em↗p
lp(r)

<
ϱ

2p+2

for all m ⇒ m0. Also, there exists M > 0 such that ↗xn↗lp(r) ≃ M . Thus, we can write

↗(Wω,u ↘Wε,v) (xn)↗plp(s) ≃ 2p+2
m0∑

m=1

|xn (m)|p r(m)p
↗(Wω,u ↘Wε,v) (em)↗p

lp(s)

↗em↗p
lp(r)

+ ϱM
p

and the result follows from Theorem 3.1 since (xn) converges pointwise to zero as n → ↓.

As an immediate consequence, we have:

Corollary 3.3. Let r, s be two weights, suppose that u = {u(k)} is a complex sequence and

ω : N → N is a function.

(1) The operator Wω,u from l
p (r) into l

p (s) is compact if and only if

lim
n↔→

↗Wω,u (en)↗lp(s)
↗en↗lp(r)

= 0.

This result was recently obtained by Albanese and Mele in [2, Theorem 3.12].

(2) The multiplication operator Mu, as defined in the proof of Corollary 2.2, from l
p (r) into

l
p (s) is compact if and only if

lim
n↔→

↗Mu (en)↗lp(s)
↗en↗lp(r)

= lim
n↔→

s(n)

r(n)
|u(n)| = 0.

(3) The composition operator Cω, as defined in the proof of Corollary 2.3, from l
p (r) into l

p (s)

is compact if and only if

lim
n↔→

↗Cω (en)↗lp(s)
↗en↗lp(r)

= lim
n↔→

1

r(n)




∑

k:ω(k)=n

s(k)p




1/p

= 0.
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4 On the essential norm of Wς,u : lp(r) → lp(s)

In this section we calculate the essential norm of weighted composition operators acting between

weighted l
p spaces in terms of canonical basis. We recall that if X and Y are Banach spaces and

K(X,Y ) denotes the set of all compact operators from X into Y , then the essential norm of T is

denoted by ↗T↗e and it is the distance of T to K(X,Y ). That is,

↗T↗e = inf{↗T ↘K↗op : K ↔ K(X,Y )}.

It is clear that T : X → Y is compact if and only if ↗T↗e = 0. Hence, in virtue of Corollary 3.3 (1),

the following result is expected.

Theorem 4.1. Let r, s be two weights, suppose that u = {u(k)} is a complex sequence, ω : N → N
is a function and suppose that the operator Wω,u : lp (r) → l

p (s) is continuous. Then

↗Wω,u↗e = lim sup
n↔→

↗Wω,u (en)↗lp(s)
↗en↗lp(r)

.

Proof. It is convenient to consider, for ϑ > 0 fixed, the following set

Sϑ =


n ↔ N :

↗Wω,u (en)↗lp(s)
↗en↗lp(r)

⇒ ϑ


.

Then

lim sup
n↔→

↗Wω,u (en)↗lp(s)
↗en↗lp(r)

= inf {ϑ > 0 : Sϑ is finite} .

Clearly Sϑ ⇐ ω(N) for all ϑ > 0 and Sϑ1 ⇐ Sϑ2 whenever ϑ1 > ϑ2. The set

S = {ϑ > 0 : Sϑ is finite}

is bounded from below by zero, hence we can consider the number

φ = inf {ϑ > 0 : Sϑ is finite} .

We have two case: φ = 0 and φ > 0. We are going to prove that in both of the cases we can

conclude ↗Wω,u↗e = φ.

Suppose first that φ = 0. Then Sϑ is finite for all ϑ > 0. We shall prove that the operator

Wω,u : lp(r) → l
p(s) is compact. Indeed, if Wω,u : lp(r) → l

p(s) is not a compact operator, then

by Corollary 3.3, we can find an ϑ0 > 0 and an unbounded and increasing sequence {nk} ⇐ N such

that
↗Wω,u (enk)↗lp(s)

↗enk↗lp(r)
⇒ ϑ0
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for all k ↔ N. This means that Sϑ0 is an infinite set and it is a contradiction to the fact that φ = 0.

Suppose now that φ > 0. Consider ϑ > 0 such that φ ↘ 1
2ϑ > 0. Then by definition of infimum,

φ ↘ 1
2ϑ /↔ S, the set

S
ϖ↑ 1

2 ϑ
=


n ↔ N :

↗Wω,u (en)↗lp(s)
↗en↗lp(r)

⇒ φ ↘ ϑ

2



is infinite and we can find an unbounded and increasing sequence {nk} of positive integers contained

in S
ϖ↑ 1

2 ϑ
. Hence, the sequence (xk) defined by

xk =
enk

↗enk↗lp(r)

is bounded in l
p(r), it converges pointwise to zero as k → ↓ and therefore, Theorem 3.1 allows us

to say that

lim
k↔→

∥∥∥∥∥K
(

enk

↗enk↗lp(r)

)∥∥∥∥∥
lp(s)

= 0

for any compact operator K from l
p(r) into l

p(s). Thus, for any K ↔ K (lp(r), lp(s)) we have

↗Wω,u ↘K↗ ⇒

∥∥∥∥∥(Wω,u ↘K)

(
enk

↗enk↗lp(r)

)∥∥∥∥∥
lp(s)

⇒

∥∥∥∥∥Wω,u

(
enk

↗enk↗lp(r)

)∥∥∥∥∥
lp(s)

↘

∥∥∥∥∥K
(

enk

↗enk↗lp(r)

)∥∥∥∥∥
lp(s)

⇒ φ ↘ 1

2
ϑ↘

∥∥∥∥∥K
(

enk

↗enk↗lp(r)

)∥∥∥∥∥
lp(s)

for all nk ↔ S
ϖ↑ 1

2 ϑ
. Taking k → ↓, we obtain

↗Wω,u ↘K↗ ⇒ φ ↘ 1

2
ϑ

and since K ↔ K (lp(r), lp(s)) and ϑ > 0 are arbitrary, we really have ↗Wω,u↗e ⇒ φ.

Next, we shall prove that ↗Wω,u↗e ≃ φ. By definition of infimum, for any ϑ > 0, the number φ + ϑ

is not a lower bound, hence the set

Sϖ+ϑ =


n ↔ N :

↗Wω,u (en)↗lp(s)
↗en↗lp(r)

⇒ φ + ϑ



is finite. We set the symbol v by

v(k) =






u(k), if ω(k) ↔ Sϖ+ϑ,

0, otherwise.



130 J. D. Cardona-Gutierrez, J. C. Ramos-Fernández & H. Vacca-González CUBO
27, 1 (2025)

Since Sϖ+ϑ is finite, it is clear that

lim
n↔→

↗Wω,v (en)↗lp(s)
↗en↗lp(r)

= 0.

Indeed, for n > max Sϖ+ϑ, we have

↗Wω,v (en)↗plp(s) =
→∑

k=1

|v(k)|p |en(ω(k))|p s(k)p =
∑

k:ω(k)↓Sω+ε

|u(k)|p |en (ω(k))|p s(k)p = 0.

In particular, Wω,v : lp(r) → l
p(s) is a compact operator (see Corollary 3.3 (1)). Hence, the

definition of essential norm of Wω,u allow us to write

↗Wω,u↗e ≃ ↗Wω,u ↘Wω,v↗ = sup


↗Wω,u↑v (en)↗lp(s)

↗en↗lp(r)
, n ↔ N



= sup


↗Wω,u↑v (en)↗lp(s)

↗en↗lp(r)
, n ↔ N \ Sϖ+ϑ


≃ φ + ϑ,

since u(k) ↘ v(k) = 0 when ω(k) ↔ Sϖ+ϑ. Hence, we conclude that ↗Wω,u↗e ≃ φ and the proof of

theorem is complete.

Remark 4.2. From the proof of the above theorem, we can see that φ = 0 when ω(N) is finite.

Hence, any weighted composition operator Wω,u from l
p(r) into l

p(s) in which the symbol ω is

a bounded function is a compact operator. Furthermore, since a linear operator K : X → Y is

compact if and only if its essential norm is zero, an immediate consequence of our Theorem 4.1 is

Theorem 3.12 in [2], which is stated in Corollary 3.3 (1).

Corollary 4.3. Let r, s be two weights, suppose that u = {u(k)} is a complex sequence and

ω : N → N is a function.

(1) Suppose that the multiplication operator Mu : l
p (r) → l

p (s), as defined in the proof of

Corollary 2.2, is continuous. The essential norm of this operator Mu from l
p (r) into l

p (s)

is computed by

lim sup
n↔→

↗Mu (en)↗lp(s)
↗en↗lp(r)

= lim sup
n↔→

s(n)

r(n)
|u(n)|.

(2) Suppose that the composition operator Cω : lp (r) → l
p (s), as defined in the proof of Corollary

2.3, is continuous. The essential norm of this operator Cω from l
p (r) into l

p (s) is computed

by

lim sup
n↔→

↗Cω (en)↗lp(s)
↗en↗lp(r)

= lim sup
n↔→

1

r(n)




∑

k:ω(k)=n

s(k)p




1/p

.
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ABSTRACT

For U(2)-invariant 4-metrics, we show that the Bt
-flat met-

rics are very di!erent from the other canonical metrics

(Bach-flat, Einstein, extremal Kähler, etc.) We show every

U(2)-invariant metric is conformal to two separate Kähler

metrics, leading to ambiKähler structures. Using this ob-

servation we find new complete extremal Kähler metrics on

the total spaces of O(→1) and O(+1) that are conformal to

the Taub-bolt metric. In addition to its usual hyperKäh-

ler structure, the Taub-NUT’s conformal class contains two

additional complete Kähler metrics that make up an ambi-

Kähler pair, making five independent compatible complex

structures for the Taub-NUT, each of which is conformally

Kähler.

RESUMEN

Para 4-métricas U(2)-invariantes, mostramos que las métri-

cas Bt
-planas son muy diferentes de las otras métricas

canónicas (Bach-planas, Einstein, Kähler extremas, etc.)

Mostramos que toda métrica U(2)-invariante es conforme a

dos métricas Kähler separadas, lo que nos lleva a estructuras

ambiKähler. Usando esta observación encontramos nuevas

métricas Kähler extremas completas en los espacios totales

de O(→1) y O(+1) que son conformes a la métrica Taub-bolt.

Adicionalmente a su estructura usual hiperKähler, la clase

conforme de Taub-NUT contiene dos métricas Kähler com-

pletas adicionales que hacen un par ambi-Kähler, lo que ge-

nera cinco estructuras complejas compatibles independientes

para el Taub-NUT, cada una de las cuales es conformemente

Kähler.
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1 Introduction

Cohomogeneity-1 metrics with U(2) symmetry have the form

g = A(r) dr2 +B(r) (ω1)2 + C(r)
(
(ω2)2 + (ω3)2

)
(1.1)

where ω
1, ω2, ω3 are the usual left-invariant covector fields on S3. Naively the topology is R→ S3,

but there could be a quotient on the S2 factor, and topological changes occur at locations where B

or C reach zero. We classify canonical metrics of this form including the Bt-flat metrics, and create

new explicit examples of canonical metrics using the ambiKähler techniques of [2]. This project

began as a way to develop supporting examples for other work, and treads such familiar ground

that we expected few surprises. But we did find surprises, two of which we feel worth reporting to

the wider community.

The first is how the B
t-flat metrics fit among the other canonical metrics. The space of U(2)-

invariant extremal Kählers is rather small—up to homothety the moduli space is 3-dimensional—

and except for the B
t flat metrics there are basically no other canonical metrics. Up to a choice

of conformal factor, the Bach-flat metrics are a 2-parameter subspace of the extremal1 metrics.

The Einstein and harmonic-curvature metrics [14] are identical, and up to conformal factors are

exactly the Bach-flat metrics. Half-conformally flat metrics are conformally extremal, and up to

conformal factors the metrics with W
+ = 0 (or W

→ = 0) form a 1-parameter subspace of the

Bach-flat metrics. The KE metrics and the Ricci-flat metrics are each a 1-parameter subclass of

the Bach-flats. Up to homothety there are exactly three complete Ricci-flat KE metrics: flat R4,

the Eguchi-Hanson, and the Taub-NUT. The Taub-NUT is extraordinary; see Proposition 2.5 and

Section 4.

The B
t-flat metrics of [25] are exceptions to this framework. A B

t-flat metric is a metric satisfying

the Euler-Lagrange equations of the functional

B
t =

∫
|W |

2 + t

∫
s
2 (1.2)

where t ↑ (↓↔,↔], and we set B
↑ =

∫
s
2. The B

0 extremals are the Bach-flat metrics, and the

B
↑ extremals are either scalar-flat or Einstein (see [5] for stable points of the

∫
s
2 functional).

For t ↗= 0,↔ the B
t Euler-Lagrange equations are an overdetermined 8th order system. After an

appropriate reduction we find a 5-dimensional moduli space of Bt-flat metrics up to homothety.

If the constant scalar curvature (CSC) condition is imposed, the CSC B
t-flat metrics constitute a

4-parameter family up to homothety. Intuitively, as t varies in [0,↔], the B
t-flat metrics would

seem to interpolate between the Bach-flat metrics at t = 0 and the Einstein metrics at t = ↔.

As we pointed out, up to conformal factors these are exactly the same class, so it would stand
1
We will use extremal to mean extremal Kähler, and KE to mean Kähler-Einstein.
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to reason that the B
t-flat metrics would stay within this class. We find this is not the case; see

Theorem 1.4.

The second surprise has to do with the global nature of certain complete ambiKähler pairs. Any

metric (1.1) is automatically compatible with two complex structures which give opposite orien-

tations that are both conformally Kähler—in short, each Kähler metric of the form (1.1) is a

partner in an ambiKähler pair [2]. In Section 4 we consider four examples: an ambiKähler pair

conformal to the classic Taub-NUT, and an ambiKähler pair conformal to the classic Taub-bolt.

The two metrics conformal to the Taub-NUT are complete extremal Kähler metrics, one of which

has zero scalar curvature (ZSC) and is 2-ended, and the other of which is one-ended and strictly

extremal. The two metrics conformal to the Taub-bolt are complete extremal metrics, and exist on

two di!erent underlying complex surfaces, O(↓1) and O(+1) ↘ CP 2
\ {pt}. The metric on O(+1)

is the only complete extremal Kähler metric, known to the authors, with a curve of positive self

intersection. For instance the Eguchi-Hanson [17] and LeBrun metrics [29] lie on the total spaces

of various O(k) with k < 0.

Placing the metric (1.1) in a more useful form, we solve dz = 2
↓
AB
C dr for z to obtain

g = C

(
1

4F
dz

2 + F (ω1)2 + (ω2)2 + (ω3)2
)

(1.3)

where we have abbreviated F = B
C , now a function of z. If f = f(z) is any function and {e1, e1, e3}

is the S3 frame dual to {ω
1
, ω

2
, ω

3
}, then

Jf = ↓2f
ε

εz
≃ ω

1 +
1

2f
e1 ≃ dz ↓ e2 ≃ ω

3 + e3 ≃ ω
2 (1.4)

is a complex structure; see Lemma 2.1. Setting f = ±F , the two complex structures J
± = J±F

are compatible with g, and produce opposite orientations. The (1,1) forms are

ϑ
± = g(J±

·, ·) = ±
1

2
Cdz ⇐ ω

1 + Cω
2
⇐ ω

3
. (1.5)

From dω
i = ↓ϖ

i
jkω

j
⇐ ω

k we have dϑ
± = (±C + Cz)dz ⇐ ω

2
⇐ ω

3, so a U(2)-invariant metric g is

always conformally Kähler, and is Kähler when the conformal factor is C = C0e
↔z, respectively.

The following linear operators appear frequently:

L
+ =

(
↓
1

2

d

dz
+ 1

)(
↓

d

dz
+ 1

)
, L

→ =

(
1

2

d

dz
+ 1

)(
d

dz
+ 1

)
(1.6)

as does the 4th order linear operator L
+
⇒ L

→ = 1
4

ω4

ωz4 ↓
5
4

ω2

ωz2 + 1. The third-order nonlinear
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operator B also appears:

B(F, F ) =

(
↓
1

2
Fzz +

3

2
Fz + F ↓ 1

)
(L+(F )↓ 1) + Fz

(
L
+(F )

)
z. (1.7)

This is a bit messy, but B can be understood as a first integral of the inhomogeneous operator

F ⇑⇓ L
+(L→(F ))↓1; see equation (3.15). We will often use {ϱ

0
,ϱ

1
,ϱ

2
,ϱ

3
}, where ϱ

0 = 1
|dz|dz and

ϱ
i = 1

|εi|ω
i, to mean the orthonormal frame found by normalizing orthogonal frame {dz, ω1, ω2, ω3}.

Proposition 1.1. The metric (1.3) has scalar curvature

s = ↓4C→1

(
ε
2
F

εz2
+

1

2
F ↓ 2

)
↓ 24C→ 3

2
ε

εz

(
F

εC
1
2

εz

)
(1.8)

and trace-free Ricci tensor

Rı→c =
4F
⇔
C

(
ε
2

εz2

1
⇔
C

↓
1

4

1
⇔
C

)
·
(
(ϱ0)2 ↓ (ϱ1)2

)

+ 2

(
1

⇔
C

ε

εz

(
F

ε

εz

1
⇔
C

)
↓

1

C

(
1

2

ε
2
F

εz2
↓

3

4
F + 1

))
·
(
(ϱ0)2 + (ϱ1)2 ↓ (ϱ2)2 ↓ (ϱ3)2

)
. (1.9)

The Weyl curvatures and their divergences are

W
± = ↓

1

C
(L±(F )↓ 1)

(
ϑ
±
≃ ϑ

±
↓

2

3
Id∧±

)

ςW
± = W

±
(
↖ log

∣∣∣e±
3
2 z(L±(F )↓ 1)

⇔

C

∣∣∣ , · , · , ·
)
. (1.10)

The Bach tensor is

Bach =
16

3C2
· F ·

(
L
→(L+(F ))↓ 1

)
·

(
↓ 2(ϱ1)2 + (ϱ2)2 + (ϱ3)2

)

+
8

3C2
· B(F, F ) ·

(
↓ (ϱ0)2 ↓ (ϱ1)2 + (ϱ2)2 + (ϱ3)2

)
.

(1.11)

If the metric is Kähler with respect to J
+
, then the scalar curvature and Ricci form are

s = ↓
8

C

(
L
+(F )↓ 1

)
, and

φ = ↓
2

C

(
L
+(F )↓ 1

)
ϑ
+
↓

2

C

((
↓
1

2

ε

εz
+ 1

)(
ε

εz
+ 1

)
F ↓ 1

)
ϑ
→
. (1.12)

We remark that the U(2)-ansatz linearizes the Bach-flat equations Bach = 0, reducing them to

L
+
⇒L

→(F )↓1 = 0. The equation B(F, F ) = 0 is then an algebraic restriction on initial conditions.

When studying metrics—rather than just solutions of ODEs—it is useful to reduce the metrics by

homothetic equivalence. In our setting this reduces the dimension of the solution space by two:

one dimension for translation in z and one for multiplication of g by a positive constant.
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Proposition 1.2 (Extremal and Bach-flat metrics). The metric (1.3) is extremal with complex

structure J
+

if and only if C = C0e
→z

and L
+(L→(F ))↓ 1 = 0, meaning

F (z) = 1 +
1

2
C1e

→2z + C2e
→z + C3e

z +
1

2
C4e

2z
. (1.13)

Such a metric is Bach-flat if and only if, in addition to (1.13), also C1C4 ↓ C2C3 = 0.

Consequently, up to homothety, the extremal metrics form a 3-parameter family, and up to homoth-

ety and conformal factors the Bach-flat metrics constitute a 2-parameter subfamily of the extremal

metrics.

A metric is said to have harmonic curvature if ςRm = 0, which is equivalent to ςW = 0 and

s = const; see [7, 14]. In the U(2)-invariant case ςW = 0 actually implies s = const.

Proposition 1.3 (Einstein and harmonic-curvature metrics). For the metric (1.3) the following

are equivalent: 1) ςW = 0, 2) ςRm = 0, 3) the metric is Einstein: Rı→c = 0, 4) F and C satisfy

F = 1 +
1

2
C1e

→2z + C2e
→z + C3e

z +
1

2
C4e

2z
, C =

e
→z

(C5 + C6e
→z)2

, (1.14)

with the two relations C1C5 ↓ C2C6 = 0 and C3C5 ↓ C4C6 = 0. Given (1.14), scalar curvature is

the constant s = ↓24(C2C
2
5 ↓ 2C5C6 + C3C

2
6 ).

A U(2)-invariant metric is Bach-flat if and only if it is conformally Einstein. The metric (1.14)

is KE with respect to J
+ if and only if C6 = 0 (so also C1 = C3 = 0), and KE with respect

to J
→ if and only if C5 = 0 (so also C2 = C4 = 0). Up to homothety, there is a 1-parameter

family of Ricci-flat metrics, and exactly three complete Ricci-flat KE metrics: the flat metric, the

Taub-NUT metric, and the Eguchi-Hanson metric. See Propositions 3.2 and 3.5.

Theorem 1.4. In the U(2)-invariant case, the space of solutions to the B
t
-flat equations is 7-

dimensional. Up to homothety, these constitute a 5-parameter family of metrics and the CSC

B
t
-flat metrics constitute a 4-parameter family. When t ↗= 0,↔, there exist CSC B

t
-flat metrics

that are not conformal to any extremal metric.

The overdetermined 8th order B
t-flat system is complicated, but appears explicitly in Lemma

3.8. In Section 4 we discuss the ambiKähler transform, and examine complete extremal metrics

conformal to the classic Taub-NUT and -bolt metrics.
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2 Complex structures, metrics, and topology

The metric (1.3), complex structures J
±, and (1, 1) forms ϑ

± = g(J±
·, ·) are

g = C

( 1

4F
dz

2 + F (ω1)2 + (ω2)2 + (ω3)2
)

J
± = ↙2F

ε

εz
≃ ω

1
±

1

2F
e1 ≃ dz ↓ e2 ≃ ω

3 + e3 ≃ ω
2

ϑ
± = ±

1

2
Cdz ⇐ ω

1 + Cω
2
⇐ ω

3
.

(2.1)

In Section 2.1 we study the complex structures. In Section 2.2 we compute curvature quantities

up through the Bach tensor. In Section 2.3 we examine the topology and asymptotics which the

U(2) ansatz may produce.

2.1 The complex structures

Here we check the integrability of the left-invariant almost complex structures Jf . We also study

the right-invariant compatible complex structures that we call I±.

Lemma 2.1. Given any f = f(z) ↗= 0, the complex structure Jf is integrable.

Proof. The splitting
∧

1
C =

∧
1,0

∝
∧

0,1 into ±
⇔
↓1 eigenspaces of Jf gives

∧
0,1 = spanC

{
1

2f
dz ↓

⇔
↓1ω1, ω

2
↓
⇔
↓1ω3

}
. (2.2)

On bases we compute

d

(
1

2f
dz ↓

⇔
↓1ω1

)
= ↓2

⇔
↓1ω2 ⇐ ω

3 = 2ω2 ⇐
(
ω
2
↓
⇔
↓1ω3

)
,

d
(
ω
2
↓
⇔
↓1ω3

)
= 2ω1 ⇐ ω

3 + 2
⇔
↓1ω1 ⇐ ω

2 = 2
⇔
↓1ω1 ⇐

(
ω
2
↓
⇔
↓1ω3

)
.

(2.3)

Therefore d
∧

0,1
′

∧
1
⇐
∧

0,1 =
∧1,1

∝
∧0,2 so we conclude that Jf is integrable.

Lemma 2.2. The complex structures J
±

are metric compatible. Their (1, 1) forms ϑ
± = g(J±

·, ·)

are closed if and only if C = C0e
↔z

, respectively.

Proof. Checking compatibility with the metric is an elementary computation which we omit. From

(1.5), dϑ± = 0 if and only if C = C0e
↔z

.

To create right-invariant complex structures and relate them to the metric (which is left-invariant)

we require background coordinates. Polar coordinates on R4
↘ C2 are

(r,↼, ↽,⇀) ⇑↓⇓

(
r cos(↽/2)e→

i
2 (ϑ+ϖ)

, r sin(↽/2)e→
i
2 (ϑ→ϖ)

)
. (2.4)
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The three “Euler coordinates” (↼, ↽,⇀) have ranges |↼ ± ⇀| < 2⇁ and ↽ ↑ [0,⇁]. The transitions

between the coordinate framing and the left-invariant framing are

ω
0 = dz =

↓
F

2
↓
C
dr e0 = ω

dz =
↓
F

2
↓
C

ω
ωr

ω
1 = 1

2 (d↼ + cos ↽ d⇀) e1 = 2 ω
ωϑ

ω
2 = 1

2 (sin↼ d↽ ↓ cos↼ sin ↽ d⇀) e2 = 2
(
cos↼ cot ↽ ω

ωϑ + sin↼ ω
ωϱ ↓ cos↼ csc ↽ ω

ωϖ

)

ω
3 = 1

2 (cos↼ d↽ + sin↼ sin ↽ d⇀) e3 = 2
(
↓ sin↼ cot ↽ ω

ωϑ + cos↼ ω
ωϱ + sin↼ csc ↽ ω

ωϖ

)
.

(2.5)

To create the right-invariant frames we apply quaterionic conjugation T (z, w) = (z̄,↓w) to C2,

which changes the parameterization of C2 to

(r,↼, ↽,⇀) ⇑↓⇓

(
r cos(↽/2)e

i
2 (ϖ+ϑ)

, ↓r sin(↽/2)e
i
2 (ϖ→ϑ)

)
. (2.6)

In coordinates, T is T (r,↼, ↽,⇀) = (r,↓⇀,↓↽,↓↼). The left-invariant forms ω
i pull back to right-

invariant forms ω̄
i = T

↗(ωi). In the bases {ω
i
}, {ω̄i}, the linear map T

↗ :
∧

1
⇓

∧
1 is

T
↗ =





1 0 0 0

0 ↓ cos ↽ cos↼ sin ↽ ↓ sin↼ sin ↽

0 ↓ sin ↽ cos⇀ ↓ cos↼ cos ↽ cos⇀+ sin↼ sin⇀ sin↼ cos ↽ cos⇀+ cos↼ sin⇀

0 ↓ sin ↽ sin⇀ ↓ cos↼ cos ↽ sin⇀↓ sin↼ cos⇀ sin↼ cos ↽ sin⇀↓ cos↼ cos⇀




. (2.7)

In the bases {ei}, {ēi} we have that T↗ : TM ⇓ TM is the transpose T↗ = (T ↗)T . One can check

directly that T
↗
, T↗ ↑ O(4).

Let ϱ
i = 1

|εi|ω
i be the unit length forms

ϱ
0 =


C

4F
dz, ϱ

1 =
⇔

CFω
1
, ϱ

2 =
⇔

Cω
2
, ϱ

3 =
⇔

Cω
3 (2.8)

and let {fi} = 1
|ei|ei be the corresponding frame. Then the complex structures J

± are

J
± = ↙f0 ≃ ϱ

1
± f1 ≃ ϱ

0
↓ f2 ≃ ϱ

3 + f3 ≃ ϱ
2
. (2.9)

Under T , J± are conjugate to right-invariant complex structures I
↔, given by T↗ ⇒ I

±
⇒ T↗ = J

↔.

Because I
↔ are isomorphic to J

± under a di!eomorphism on M
4 (the S3 antipodal map), I+ and

I
→ are integrable. We summarize this in the following lemma.

Lemma 2.3. The structures I
±

are integrable, right-invariant, and g-compatible. The structures

J
+
, I

+
produce a common orientation, with corresponding (1, 1)-forms ϑ

+
,ϑ

+
I ↑

∧+
. Similarly

J
→
, I

→
produce a common orientation, and ϑ

→
,ϑ

→
I ↑

∧→
.
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The Hermitian structures (g, J±) produce a very flexible array of Kähler metrics, as F may be

chosen freely. By contrast, the Kähler conditions for (g, I±) are far more restrictive. This is because

the left-action of SU(2) fixes g but permutes I± among an S2 worth of complex structures; therefore

if ϑ±
I is Kähler, it is part of a hyperKähler structure. In particular dϑ

±
I = 0 forces Ricg = 0.

Proposition 2.4. Letting ϑ
→
I = g(I→·, ·), then dϑ

→
I = 0 if and only if

F = (1 + C1e
z)2 and C =

C0e
z

(1 + C1e
z)2

. (2.10)

Any such metric is Ricci-flat. The same holds for ϑ
+
I after replacing z by ↓z in (2.10).

Proof. We may compute dϑ
→
I explicitly using the matrices for T

↗ in (2.7) and its transpose T↗.

The computation is tedious but completely elementary, and works out to be

∞dϑ
→
I =

2
⇔
C

(
cos ↽

(
(↓2 + F

1
2 ) + F

1
2
ε

εz
log C

)
ω
1

↓ F
→ 1

2 sin ↽ cos↼

(
2F

1
2 ↓ 2F

ε

εz
log C ↓

ε

εz
F

)
ω
2 (2.11)

↓ F
→ 1

2 sin ↽ sin↼

(
2F

1
2 ↓ 2F

ε

εz
log C ↓

ε

εz
F

)
ω
3

)
.

Setting this to zero gives the partially decoupled system

ε

εz
F

1
2 =

(
↓1 + F

1
2

)
,

ε

εz
log C =

(
↓1 + 2F→ 1

2

)
(2.12)

which has general solution F = (1 + C1e
z)2, C = C0e

z

(1+C1ez)
2 . Ricci-flatness follows from the general

fact that any hyperKähler metric is Ricci flat [5], or from Proposition 3.2 below.

Proposition 2.4 gives a two parameter family of solutions. Up to homothety we have two metrics.

Proposition 2.5. Up to homothety, there are exactly two metrics g of the form (1.3) for which

I
→

is a Kähler structure. The first is

F = (1↓ e
z)2 and C =

e
z

(1↓ ez)2
. (2.13)

This hyperKähler metric has an ALF end at z = 0 a nut at z = +↔. The second is

F = (1 + e
z)2 and C =

e
z

(1 + ez)2
. (2.14)

This metric is incomplete, with a nut at z = ↓↔ and a curvature singularity at z = +↔.

For an analysis of the nut-like topology see Section 2.3.1 and for ALF ends see Section 2.3.2. To
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verify the claim that (2.14) has a curvature singularity as z ⇓ +↔, we may use (2.27) below to

find |W
+
|
2 = 384(↓1 + e

z)6. The metric (2.13) is the Euclidean Taub-NUT; see Section 4.

2.2 Curvature quantities

It is useful to place the metric (2.1) into LeBrun ansatz form [30]. Referring to the polar coordinates

of (2.4), from (r,⇀, ↽,↼) we change to (Z, τ, x, y) where x = log tan ϱ
2 , y = ⇀, τ = ↼, and Z solves

dZ = 1
4Cdz. Then (ω2)2 + (ω3)2 = 1

4 (d↽
2 + sin2 ↽ d⇀2) = 1

4 cosh2 x (dx
2 + dy

2) and the metric is

g =
C

4 cosh2 x
(dx2 + dy

2) +
FC

4
(dτ ↓ tanh(x)dy)2 +

4

FC
dZ

2
. (2.15)

Written this way, the metric (2.15) is precisely in the form of Proposition 1 of [30]—the LeBrun

ansatz—where w = 4
FC and e

u = FC2

16 cosh2 x . The complex structures in these coordinates are

J
±(dZ) = ↙2FCω

1
, J

±(dx) = ↓dy. (2.16)

We record the useful fact that ω
2
⇐ ω

3 = 1
4 cosh2(x)dx ⇐ dy.

Proposition 2.6 (Ricci Curvature in the Kähler case). If g is Kähler with respect to J
+
, its Ricci

form φ = Ric(J ·, ·) and scalar curvature are

φ = ↓
2

C

(
L
+(F )↓ 1

)
ϑ
+
↓

2

C

(
↓
1

2

ε

εz
+ 1

)(
ε

εz
+ 1

)
F ↓ 1


ϑ
→
, (2.17)

s = ↓
8

C

(
L
+(F )↓ 1

)
. (2.18)

Proof. Setting C = C0e
→z we follow the computation in [30]. From that paper, the Ricci form is

φ = ↓iεε̄u = 1
2d(Jdu) where in our case u = log(FC

2) ↓ log(16cosh2(x)), as we found in (2.15).

Using coordinates (z, τ, x, y) (specifically using z, not Z from (2.15)), we have J(dz) = ↓2Fω
1 and

J(dx) = ↓dy from (1.4) and (2.16). Using also dx ⇐ dy = 4 cosh2(x)ω2 ⇐ ω
3 and dω

1 = ↓2ω2 ⇐ ω
3,

u = logF ↓ 2z + 2 logC0 ↓ 2 log(4 cosh x)

du = (FzF
→1

↓ 2)dz ↓ 2 tanh(x)dx (2.19)

Jdu = (↓2Fz + 4F )ω1 + 2 tanh(x)dy

dJdu = (↓2Fzz + 4Fz)dz ⇐ ω
1 + (↓4Fz ↓ 8F + 8)ω2 ⇐ ω

3

From (2.1), dz ⇐ ω
1 = C

→1(ϑ+
↓ ϑ

→) and ω
2
⇐ ω

3 = 1
2C

→1(ϑ+ + ϑ
→). Therefore

φ =
2

C

(
↓
1

2
Fzz +

3

2
Fz ↓ F + 1

)
ϑ
+ +

2

C

(
1

2
Fzz ↓

1

2
Fz ↓ F + 1

)
ϑ
→ (2.20)
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as claimed. Scalar curvature for any Kähler metric is s = 2 ∞ (ϑ+
⇐ φ), so (2.17) along with the

facts ϑ
+
⇐ ϑ

→ = 0 and ∞(ϑ+
⇐ ϑ

+) = 2 gives (2.18).

Proposition 2.7 (Ricci curvature, general case). Scalar curvature is

s = ↓4C→1

(
ε
2
F

εz2
+

1

2
F ↓ 2

)
↓ 24C→ 3

2
ε

εz

(
F

ε

εz
C

1
2

)
. (2.21)

Using the unit frames ϱ
i
of (2.8) the trace-free Ricci curvature is

Rı→c = 4FC
→ 1

2

(
ε
2

εz2
C

→ 1
2 ↓

1

4
C

→ 1
2

)
·
(
(ϱ0)2 ↓ (ϱ1)2

)

+ 2

(
C

→ 1
2
ε

εz

(
F

ε

εz
C

→ 1
2

)
↓ C

→1

(
1

2

ε
2
F

εz2
↓

3

4
F + 1

))

·
(
(ϱ0)2 + (ϱ1)2 ↓ (ϱ2)2 ↓ (ϱ3)2

)
.

(2.22)

Proof. We use the conformal change formulas from [5]. The scalar curvature (2.21) follows from

(2.18) along with the formula s̃ = U
→2(s↓ 6U→1

∈gU) when g̃ = U
2
g. In the Kähler metric where

C = e
→z, the Laplacian ∈g acting on any U = U(z) is ∈gU = 4e2z ω

ωz

(
e
→z

F
ωU
ωz

)
. To obtain (2.21),

use U = e
1
2 zC

1
2 .

To compute Rı→c, again we start with the Kähler case; (2.17) gives

Rı→c g = 2ez
(
1

2
Fzz ↓

1

2
Fz ↓ F + 1

)(
↓(ϱ0)2 ↓ (ϱ1)2 + (ϱ2)2 + (ϱ3)2

)
(2.23)

The trace-free Ricci conformally changes by Rı→cg̃ = Rı→cg +2U(↖2
gU

→1
↓

1
4 (∈gU

→1)g). Then using

2U
(
↖

2
gU

→1
↓

1

4
(∈gU

→1)g
)
= ↓4UF (ez(U→1)z)z

(
↓(ϱ0)2 + (ϱ1)2

)

↓ 2U(ezF (U→1)z)z
(
↓ (ϱ0)2 ↓ (ϱ1)2 + (ϱ2)2 + (ϱ3)2

) (2.24)

and U = e
1
2 zC

1
2 , we add (2.24) to (2.23) to give (2.22).

Proposition 2.8. The metric (2.1) has Weyl curvatures

W
± = ↓C

→1
(
L
±(F )↓ 1

)(
ϑ
±
≃ ϑ

±
↓

2

3
Id∧±

)
. (2.25)

Proof. We use Derdzinski’s Theorem (see [15, Section 3, Proposition 2]) to find W
+ in the

Kähler case, then conformally change to the arbitrary case. By Derdzinski’s Theorem W
+ =

s
12

(
3
2ϑ ≃ ϑ ↓ Id∧+

)
where ϑ is a Kähler form. When C = e

→z, ϑ+ is Kähler and Proposition 2.6

gives

W
+ = ↓

2

3
e
z (L+(F )↓ 1)

(
3

2
ϑ
+
≃ ϑ

+
↓ Id∧+

)
. (2.26)
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Conformally changing from C = e
→z to any C = C(z) gives (2.25). Computing W

→ is the same,

after setting C = e
z to make ϑ

→ rather than ϑ
+ into a Kähler form.

From Proposition 2.8, |W±
|
2 and |W

±
|
2
dV ol are

|W
±
|
2 =

32

3C2

(
L
±(F )↓ 1

)2 and

|W
±
|
2
dV ol =

16

3

(
L
±(F )↓ 1

)2
dz ⇐ ω

1
⇐ ω

2
⇐ ω

3
.

(2.27)

We compute the divergences ςW
± and the Bach tensor.

Proposition 2.9. For the metric (2.1),

ςW
± = W

±
(
↖ log

∣∣∣e±
3
2 z(L±(F )↓ 1)

⇔

C

∣∣∣ , · , · , ·
)
. (2.28)

Proof. Again we first conformally change the metric so it is Kähler. By Lemma (2.4) the metric

g̃ = e
→z

C
→1

g is Kähler and the form ϑ = g̃(J+
·, ·) is closed. Then ς̃ϑ = ↓ ∞ dϑ = 0 so also

ς̃(ϑ ≃ ϑ) = 0, and ς̃(Id∧+) = 0 because Id∧+ is covariant-constant. Therefore (2.25) gives

ς̃W+(·, ·, ·) = ς̃

(
↓e

z(L+(F )↓ 1)

(
ϑ ≃ ϑ ↓

2

3
Id∧+

))
(·, ·, ·)

= ↓

(
ϑ ≃ ϑ ↓

2

3
Id∧+

)(
↖(ez(L+(F )↓ 1)), · , · , ·

)

= W+
(
↖ log

∣∣ez(L+(F )↓ 1)
∣∣ , · , · , ·

)

= W
+
(
↖ log

∣∣ez(L+(F )↓ 1)
∣∣ , · , · , ·

)
.

(2.29)

Derdzinski’s conformal change formula, equation (19) of [15], is

ς̃W+ = ςW
+
↓

1

2
W

+ (↖ log (ezC) , · , · , · ) (2.30)

so changing the metric back with conformal factor e
z
C, (2.29) and (2.30) give

ςW
+ = W

+
(
↖ log

∣∣∣e
3
2 z(L+(F )↓ 1)

⇔

C

∣∣∣ , · , · , ·
)
. (2.31)

The argument for ςW→ is entirely the same, after conformally changing so ϑ̃
→ not ϑ̃ is closed.

Proposition 2.10 (The Bach Tensor). The Bach tensor of (2.1) is

Bach =
16

3C2
F
(
L
→(L+(F ))↓ 1

)
·

(
↓ 2(ϱ1)2 + (ϱ2)2 + (ϱ3)2

)

+
8

3C2
B(F, F ) ·

(
↓ (ϱ0)2 ↓ (ϱ1)2 + (ϱ2)2 + (ϱ3)2

)
.

(2.32)
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Proof. In the Kähler case we decompose the Bach tensor into its J-invariant and J-anti-invariant

parts Bach
+, Bach

→ respectively. It is known that Bach
+ = 1

3 (↖
2
s)+0 + 1

6sRı→c and Bach
→ =

↓
1
6 (↖

2
s)→; see Eq. (39) of [15], Eq. (20) of [1] or Lemma 6 of [10]. We have

↖
2
s =

4F

C
szzϱ

0
≃ ϱ

0 + sz↖dz

=

(
4F

C
szz ↓

2F 2

C2
sz

(
F

→1
C
)
z

)
(ϱ0)2 +

2

C2
sz (FC)z (ϱ1)2 +

2F

C2
szCz

(
(ϱ2)2 + (ϱ3)2

)
.

(2.33)

In the Kähler case where C = e
→z and s = ↓8ez(L+(F )↓ 1), we compute

(↖2
s)→ = ↓32e2zF

(
L
→(L+)(F )↓ 1

) (
(ϱ0)2 ↓ (ϱ1)2

)

(↖2
s)+ = ↓16e2z

(
2F (L→(L+(F )↓ 1)↓ FzL

+(Fz + F )↓ 1
) (

(ϱ0)2 + (ϱ1)2
)

+ 16e2zF
(
L
+(Fz + F )↓ 1

) (
(ϱ0)2 + (ϱ1)2 + (ϱ2)2 + (ϱ3)2

)

∈s = 4e→2z (FC) (FCsz)z.

(2.34)

Then (↖s)+0 = (↖2
s)+ ↓

1
4 (∈s)g and using the expression for Rı→c of (2.23),

Bach
+ =

16e2z

3

(
1

2
B(F, F ) + F ·

(
L
→(L+(F ))↓ 1

))
·

(
↓ (ϱ0)2 ↓ (ϱ1)2 + (ϱ2)2 + (ϱ3)2

)

Bach
→ =

16e2z

3
· F ·

(
L
→(L+(F ))↓ 1

)
·

(
(ϱ0)2 ↓ (ϱ1)2

) (2.35)

Conformally changing from C = e
→z to arbitrary C, we obtain (2.32).

Compare also with Proposition 14 of [1].

Compare equation (2.32) with (3.3) of [34]; after substituting C = 1, F = f
2 and dz = 2fdt the

expression here and the expression there are identical.

2.3 Topology: “nuts”, “bolts”, and asymptotics

Here we discuss global aspects of U(2)-invariant metrics. Ostensibly the metric (2.1) is well defined

on R→ S3 but topology changes occur if F or C attain 0 somewhere. If F reaches zero, the metric

most naturally lives on a quotient I → (S3/!)/ ∋ where ! is some discrete subgroup of SU(2), and

∋ identifies some 3-sphere to a 2-sphere, via the Hopf map. Where F or C is infinite, there is a

(possibly incomplete) manifold end.
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2.3.1 Bolts, Nuts

C

F

Bolt, Pos.
Self-Int.

Bolt, Neg.
Self-Int.

C ≈ e -z

F=O(1)

Nut ⟶

Figure 1: A compact manifold with a bolt of positive and of negative self-intersection. A nut at

z = +↔.

The first kind of topology change occurs when the Hopf fiber collapses but the conformal factor

remains non-zero, meaning F but not C reaches zero. When F (z0) = 0, the locus z = z0 is not a

3-sphere but a 2-sphere, colloquially known as a “bolt” [21] (see also [17,29,32]).

As this is well known, we describe it only briefly. Recalling the coordinates of Section 2.1, transver-

sals to the bolt are 2-dimensional submanifolds locally given by ↽ = const, ⇀ = const, and the

metric is smooth at the bolt provided it is smooth on such transversals. The inherited metric on

the transversal is ĝ2 = 1
4F dz

2 + F
4 d↼

2 with ↼ ↑ [↓2⇁, 2⇁), which we write ĝ2 = dr
2+(

⇔
Fd( 12↼))

2

by solving dr = 1↓
4F

dz with r = 0 at z = z0. If
⇔
F = kr + O(r2), where k ↗= 0, then

(
⇔
Fd( 12↼))

2
↘ r

2(d(k2↼))
2 so the metric ĝ2 will be conical at r = 0 with cone angle 2⇁|k| (so

smooth if and only if k = ±1). If k ↑ Z \ {0} however, we can obtain a smooth metric on the quo-

tient I→S3/! where ! is a cyclic subgroup of order |k| of the Hopf action. From
⇔
F = kr+O(r2)

we have k = d
↓
F

dr , and because d
dr = 2

⇔
F

d
dz , k = dF

dz . We summarize this in the following

Proposition.

Proposition 2.11 (The “bolting condition”). Assume z = z0 is a zero of F (z) but not C(z). If

dF

dz

∣∣∣∣
z=z0

= k (2.36)

where k ↗= 0 then we may identify the locus {z = z0} with a 2-sphere (a “bolt”). Assuming

k ↑ Z \ {0}, then taking the |k|-to-1 quotient of the S3 factor, the metric is smooth near {z = z0}

and the “bolt” is a 2-sphere of self intersection number k.

It is possible that two bolts occur, one at z0 and one at z1 where z0 < z1, as in Figure 1. We

certainly must have dF
dz △ 0 at z0 and dF

dz ▽ 0 at z1, so the bolts, assuming they are both smooth

after resolution, must have self-intersection numbers k and ↓k where k ↑ Z \ {0}. With either

complex structure J
+ or J

→, this is the “odd” Hirzebruch surface ”2k→1; see [33].

A nut, by contrast, occurs when the S3 factor contracts to a point; the nearby topology is that

of a ball in R4. This occurs when C becomes zero but F remains finite. When ϑ is Kähler and
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C = C0e
→z, a nut may occur at z = +↔; this is depicted in Figure 1. When ϑ

→ is Kähler and

C = C0e
→z a nut may occur at z = ↓↔.

Proposition 2.12 (The Nut condition at z = ↔). Assume C = O(e→z) and F = 1 + O(e→z) as

z ⇓ ↔. Adding a point at z = ↔, this point is a finite distance away and has a neighborhood with

bounded curvature and the topology of a ball.

2.3.2 ALE, ALF, and cusp-like ends

C ≈ e z

F=O(1)
ALE End ⟶ C=O(z-2)

F=O(z2)

ALF end

C=e -z

F=O(z2)

Cusp-like End

Figure 2: ALE, ALF, and cusp-like ends in the U(2) ansatz.

If g is Kähler with respect to J
→ so C = C0e

z, an ALE end can occur as z ⇓ ↔, as depicted in

Figure 2. If instead g is Kähler with respect to J
+ then replacing z by ↓z, Figure 2 is flipped and

an ALE end occurs as z ⇓ ↓↔.

Proposition 2.13. Assume g is Kähler with respect to J
+
, so C = e

→z
. If F = 1 + O(z→2) as

z ⇓ ↓↔, the metric is ALE with better-than-quadratically decaying curvature.

Proof. Letting r be the distance function that solves dr = 1
2


C/Fdz = 1

2e
→ 1

2 z(1 + O(z→2))dz,

by assumption we have r = e
→ 1

2 z + O(z→1). Then C = e
→z = r

2 + O(r→4), so the metric is

g ↘ dr
2 + (r2 + O(r→4))dϱS3 as r ⇓ ↔, so it is ALE. To check curvature decay, Proposition 2.6

gives

φ = ↓2C→1

(
1

2
Fzz ↓

3

2
Fz + F ↓ 1

)
ϑ + 2C→1

(
1

2
Fzz ↓

1

2
Fz ↓ F + 1

)
ϑ
→ (2.37)

so asymptotically φ ↘ e
z
O(z→2)ϑ + e

z
O(z→2)ϑ→ = o(r→2). The expressions for |W

+
|, |W→

| in

(2.27) give the same decay rates. Thus the Riemann tensor decays like |Rm | = o(r→2).

The ALF end has cubic volume growth, cubic curvature decay, and R3 tangent cone at infinity.

See for example [13, 16, 18, 26]. By a “cusp-like” end, we mean an end that locally resembles a

Riemannian product of a tractrix of revolution (sometimes called a pseudosphere) with a sphere.

Toward infinity the scalar and Weyl curvatures decrease rapidly, whereas the Ricci curvature ap-

proaches a constant bilinear form of signature (↓,↓,+,+). These two kinds of ends are conformal

to each other: we have C = ez

(1→ez)2 in the ALF case and C = e
→z or C = e

z in the cusp-like case.

In both cases F has a second-order zero at z = 0. See Figure 2.
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Proposition 2.14. Assume F = z
2 +O(z3) near z = 0.

If C remains finite then the manifold forms a complete, cusp-like end near z = 0. Asymptotically

the Hopf fiber shrinks to zero and the metric has the local geometry of the product of a psuedosphere

times a sphere.

If C = O(z→2) then the the metric forms an ALF end near z = 0.

Proof. The distance function r satisfies dr = 1
2


C
F dz so in the cusp-like case, where C remains

finite, then
⇔
F = O(z) gives r ↘

1
2 log |z| near 0 and indeed the distance to 0 is infinite so the

metric is complete. From ϑ ⇐ ϑ = ↓C
2
dz ⇐ ω

1
⇐ ω

2
⇐ ω

3, we see the volume is finite. Checking the

tensors W±, from F = z
2 +O(z3) we find that L±(F )↓ 1 = O(z) and so |W

±
| ̸ 0 as z ⇓ 0. In

the Kähler case φ is a multiple of ϑ added to a multiple of ϑ→. The multiple on ϑ is also O(z), but

the multiple on ϑ
→, by (2.17), approaches 4C→1. This justifies the assertion that, in the Kähler

case, the local geometry approaches a +1 times a ↓1 curvature surface. In the non-Kähler case,

the usual conformal change formulas for Ricci curvature shows this remains true.

Next we verify that when C = z
→2 + O(1) near z = 0, the metric has an ALF end. Then

dr = 1
2


C
F dz =

(
1
2z

→2 +O(1)
)
dz so r = z

→1 + O(z) near z = 0. To compute volume, we use

C
3
2 = O(r3) and F

1
2 = O(z) = O(r→1), so we have

dV ol = ↓C
3
2F

1
2 dr ⇐ dϱS3 ↘ r

2
dr ⇐ dϱS3 . (2.38)

Integrating (2.38) and noting that r is a distance function, indeed we observe cubic volume growth.

Next we check curvature decay. From (2.27) we have L
±(F )↓ 1 = O(1) so that |W

+
| ↘

32
3 C

→2 =

O(z2) = O(r→2) and similarly for |W
→
|. Inserting F , C into the Ricci form φ from (2.19), we see

Ricci curvature decays quadratically.

We close by noting that ALE ends are conformal to nuts and vice-versa—by changing between

C = e
→z and C = e

z—and similarly ALF ends and cusp-like ends are conformal to each other.

3 Special Metrics

We use the computations of Section 2.2 to determine what conditions are needed to make a U(2)-

invariant metric special or canonical.



150 B. Weber & K. Na! CUBO
27, 1 (2025)

3.1 Scalar Curvature

From (2.21) of Proposition 2.7, specifying scalar curvature is equivalent to

sC
3
2 + 4C

1
2

(
ε
2
F

εz2
+

1

2
F ↓ 2

)
+ 24

ε

εz

(
F

ε

εz
C

1
2

)
= 0, (3.1)

for given s = s(z). This underdetermined equation is linear in F . Imposing the Kähler condition

C = C0e
±z creates a critically determined linear equation.

3.2 Extremal Kähler metrics

A Kähler metric is extremal if the functional g ⇑⇓
∫
s
2
dV ol is stable under those perturbations of

g that preserve the Kähler class. From [9] the Euler-Lagrange equations are that the gradient ↖s

is a holomorphic vector field, but there are several ways to assess whether (1.3) is extremal. In

our context we are less concerned with global functionals such as
∫
s
2. We use the local condition

that a Kähler metric is extremal if and only if J↖s is Killing.

Proposition 3.1 (The extremal condition). The metric (2.1) with complex structure J
+

is ex-

tremal Kähler if and only if C = C0e
→z

and L
→(L+(F )) = 1, which is

F = 1 +
1

2
C1e

→2z + C2e
→z + C3e

z +
1

2
C4e

2z
. (3.2)

Its scalar curvature is s = ↓
24
C0

(C1e
→z + C2).

Likewise, the metric with complex structure J
→

is extremal Kähler if and only if C = C0e
z

and

again L
→(L+(F )) = 1. Its scalar curvature is s = ↓

24
C0

(C3 + C4e
z).

Proof. From (2.1) and (2.5), we have ↖z = 4F
C

ω
ωz = 4

C J
ω
ωϑ . Because the coordinate field ω

ωϑ

is itself a Killing field and because s = s(z) is a function of z alone, the extremal condition is

↖s = ↓4αJ ω
ωϑ = ↓αe

z
↖z = ↖ (αe→z) where α is a constant. Therefore s = αe

→z + ▷ where ▷ is

another constant. Using s = ↓8C→1
0 e

z(L+(F )↓ 1), from (2.18) we obtain

↓8C→1
0 e

z

(
1

2

ε
2
F

εz2
↓

3

2

εF

εz
+ F ↓ 1

)
= αe

→z + ▷. (3.3)

After setting C1 = ↓
1
24αC0 and C2 = ↓

1
24▷C0 we obtain (3.2).

For J
→ in place of J+, reverse the sign on z in all computations.
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3.3 Einstein metrics

By (2.22), Rı→c = 0 if and only if

ε
2

εz2
C

→ 1
2 =

1

4
C

→ 1
2 and C

1
2
ε

εz

(
F

ε

εz
C

→ 1
2

)
=

(
1

2

ε
2
F

εz2
↓

3

4
F + 1

)
. (3.4)

This is critically determined and partly decoupled. It is 4th order in total so we will have a

4-parameter solution space. The general solution is

F = 1 +
1

2
C1e

→2z + C2e
→z + C3e

z +
1

2
C4e

2z
, C =

e
→z

(C5 + C6e
→z)2

,

where C1C5 ↓ C2C6 = 0, and C3C5 ↓ C4C6 = 0.

(3.5)

With six constants and two algebraic relations we have the expected four-parameter family of

solutions. Compare with Proposition 2.4. The algebraic relations on the Ci are equivalent to the

pairs (C1, C2), (C3, C4), and (C5, C6) being proportional to each other. These imply also that

C1C4 ↓C2C3 = 0, so we recover the fact that Einstein metrics are Bach-flat; see (3.14) below. By

Lemma 2.2 the metric is Kähler when C6 = 0 (for J
+) or C5 = 0 (for J

→).

To be Ricci-flat, C and F require, in addition to (3.4), that s = 0. This third relation appears to

make the overall system overdetermined, but it does not, for the reason that s is a first integral

for the system (3.4) so only contributes an algebraic relation. From (3.1),

s = ↓24(C2C
2
5 ↓ 2C5C6 + C3C

2
6 ). (3.6)

Proposition 3.2 (The Einstein conditions). The metric (1.3) is Einstein if and only if

F = 1 +
1

2
C1e

→2z + C2e
→z + C3e

z +
1

2
C4e

2z
, C =

e
→z

(C5 + C6e
→z)2

,

C1C5 ↓ C2C6 = 0, and C3C5 ↓ C4C6 = 0.

(3.7)

Its scalar curvature is the constant s = ↓24(C2C
2
5 ↓ 2C5C6 + C3C

2
6 ).

Up to homothety, there is a 2-dimensional family of Einstein metrics. Up to homothety, there is

a 1-dimensional family of Ricci-flat metrics, a 1-dimensional family of KE metrics with respect

to J
+
, and a 1-dimensional family of KE metrics with respect to J

→
. Up to homothety and

biholomorphism, there are exactly five Ricci-flat Kähler metrics, three of which are complete.

Proof. We have proven everything except the final assertion, that exactly five metrics of the form

(1.3) are Ricci-flat Kähler, up to homothety. We prove this regardless of the complex structure,

whether one of the structures considered here or not. A U(2)-invariant metric is Einstein if and

only if it has the form (3.7). By Derdzinski’s theorem [15], if a scalar-flat metric is Kähler—
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regardless of the complex structure—then it is half-conformally flat. In particular C1 = C2 = 0 or

C3 = C4 = 0.

So assume C3 = C4 = 0; the case C1 = C2 = 0 is identical under the isomorphism z ⇑⇓ ↓z. We

have four remaining variables C1, C2, C5, C6 and two relations: C1C5 ↓ C2C6 = 0 from (3.5) and

C2C
2
5 ↓ 2C5C6 = 0 from (3.6). If in addition to C3 = C4 = 0 we have both C1 = C2 = 0 then

either C5 = 0 or else C6 = 0 and in either case we have the flat metric: F = 1 and C = C0e
±z.

Suppose C1 = 0 but C2 ↗= 0; then the two relations force C5 = C6 = 0, an impossibility. Suppose

C1 ↗= 0 but C2 = 0; then the relations force C6 = 0 so

F = 1 +
1

2
C1e

→2z
, C =

1

C2
5

e
→z (3.8)

which is Kähler with respect to J
+. Up to homothety, there are exactly two such metrics: the first

is given by F = 1↓ e
→2z, C = e

→z, which is the Eguchi-Hanson metric, and the second is given by

F = 1 + e
→2z

, C = e
→z (3.9)

which is incomplete and has a curvature singularity at z = ↓↔.

Lastly it is possible that neither C1 nor C2 are zero. The two relations now give C6
C5

= C1
C2

and
C6
C5

= C2
2 , so C1 = 1

2C
2
2 . Therefore the metric is

F = 1 +
1

4
C

2
2e

→2z + C2e
→z =

(
1 +

1

2
C2e

→z

)2

, C =
C

2
5e

→z

(
1 + 1

2C2e
→z

)2 . (3.10)

Under the isomorphism z ⇑⇓ ↓z this is the Kähler metric of Proposition 2.4 which is Kähler with

respect to the complex structure I
→; therefore the metric (3.10) is Kähler with respect to the

complex structure I
+. As in Proposition 2.5 there are two such metrics: one where C2 < 0 (which

is the Taub-NUT metric) and one where C2 > 0 (which has a curvature singularity).

3.4 Half-conformally flat, half-harmonic, and Bach-flat metrics

Proposition 3.3. The metric (1.3) has W
± = 0 if and only if L

±(F )↓ 1 = 0, meaning

F = 1 + C3e
z +

1

2
C4e

2z
or F = 1 +

1

2
C1e

→2z + C2e
→z

, (3.11)

respectively. Up to homothety, each case constitutes a 1-parameter family of such metrics, each a

subspace of the 2-parameter family of Bach-flat metrics.

In the case g is Kähler with respect to J
+

so C = C0e
→z

, then W
+ = 0 implies s = 0, and W

→ = 0

implies s = ↓
24
C0

(C1e
→z + C2).
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The half-harmonic condition ςW
+ = 0 (or ςW

→ = 0) is underdetermined, and requires an addi-

tional condition to be critically determined. Three possibilities are s = const, the Kähler condition,

and both ςW
± = 0.

Proposition 3.4. The metric (1.3) has ςW
+ = 0 if and only if a constant k1

exists so e
3
2 z (L+(F )↓ 1)C = k1, and ςW

→ = 0 if and only if e
→ 3

2 z (L→(F )↓ 1)C = k2 for some

k2 ↑ R.

Assume (2.1) is Kähler with respect to J
+
, meaning C = C0e

→z
. Then

a) ςW
+ = 0 if and only if F = 1+C2e

→z+C3e
z+ 1

2C4e
2z

. In particular s = →24C2
C0

is constant.

b) ςW
→ = 0 if and only if F = 1 + 1

2C1e
→2z + C2e

→z + 1
2C4e

2z
. In particular the metric is

extremal and s = ↓24 1
C0

(C1e
→z + C2).

Proof. For ςW
+ = 0 this follows from Proposition 2.9 with C = C0e

→z, e 3
2 z(L+(F )↓ 1)

⇔
C = k1

and finding the general solution. In the Kähler case, a) and b) follow from Proposition 3.1.

In the U(2)-invariant case, ςW = 0 is equivalent to the Einstein condition.

Proposition 3.5 (Harmonic curvature). The metric (2.1) has ςW = 0 if and only if g is Einstein.

Proof. Because ςW
+
↑ T

↗
M ≃

∧+ and ςW
→
↑ T

↗
M ≃

∧→, we have ςW = 0 if and only if ςW+

and ςW
→ are both zero. Then by Lemma 2.9 constants k1, k2 exist so

e
3
2 z(L+(F )↓ 1)

⇔

C = k1 and e
→ 3

2 z(L→(F )↓ 1)
⇔

C = k2. (3.12)

Eliminating C, we obtain k2e
3
2 z(L+(F )↓ 1) = k1e

→ 3
2 z(L→(F )↓ 1) which has solution

F = 1 + k1

(
1

2
C1e

→2z + C2e
→z

)
+ k2

(
C1e

z +
1

2
C2e

2z

)
. (3.13)

Using either equation in (3.12), C = C0e
→z

(C2+C1e→z)2
. By Proposition 3.2, the metric is Einstein.

Next we consider the case of Bach-flat metrics. By Proposition 2.10, F solves the fourth order

linear equation L
→(L+(F )) ↓ 1 = 0 and the third order non-linear equation B(F, F ) = 0. This

seems to be overdetermined, but due to (3.15) the two equations are not independent.

Lemma 3.6. If F solves L
+(L→(F )) ↓ 1 then B(F, F ) = const. If F solves B(F, F ) = 0, then

L
+(L→(F ))↓ 1 = 0. Lastly B(F, F ) = L

+(L→(F ))↓ 1 = 0 if and only if

F = 1 +
1

2
C1e

→2z + C2e
→z + C3e

z +
1

2
C4e

2z
and C1C4 ↓ C2C3 = 0. (3.14)
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Proof. A tedious but completely elementary computation shows

ε

εz
B(F, F ) = 2

(
L
+(L→(F ))↓ 1

) εF
εz

. (3.15)

Therefore B(F, F ) is indeed constant on solutions of L
+(L→(F )) ↓ 1 = 0. Next, B(F, F ) = 0

implies either F = const or L
+(L→(F )) = 1. By direct computation the only constant that

satisfies B(F, F ) = 0 is F = 1, which indeed solves L
+(L→(F )) ↓ 1 = 0. We conclude that

B(F, F ) = 0 implies L
+(L→(F ))↓ 1 = 0.

The general solution of L+(L→(F )) = 1 is F = 1+ 1
2C1e

→2z +C2e
→z +C3e

z + 1
2C4e

2z, and in this

case direct computation shows that B(F, F ) = 3(C2C3 ↓ C1C4). Therefore the general solution of

L
+(L→(F )) = 1, B(F, F ) = 0 is the three parameter family of (3.14).

Proposition 3.7. The metric (2.1) is Bach-flat if and only if

F = 1 +
1

2
C1e

→2z + C2e
→z + C3e

z +
1

2
C4e

2z
and C1C4 ↓ C2C3 = 0. (3.16)

In particular g is Bach-flat if and only if it is conformally Einstein. Up to conformal factors and

translation in z, the Bach-flat metrics constitute a 2-parameter family of metrics.

Proof. The metric g is Bach-flat if and only if L+(L→(F ))↓ 1 = 0 and B(F, F ) = 0. From Lemma

3.6, this holds if and only if F = 1 + 1
2C1e

→2z + C2e
→z + C3e

z + 1
2C4e

2z and C1C4 ↓ C2C3 = 0,

giving a 3-parameter family of solutions. Factoring out by translation in z, this is a 2-parameter

family, as claimed. To see that any Bach-flat metric is conformal to an Einstein metric, simply let

C be a conformal factor from Proposition 3.2.

3.5 Bt-flat metrics

The Bt-flat metrics [25] extremize the functional Bt(g) =
∫
|W |

2+t
∫
s
2, where we take B↑ =

∫
s
2.

The Euler-Lagrange equations of this functional [25] are

↓4Bach+ t C = 0 (3.17)

where C = 2
(
↖

2
s↓ (∈s)g ↓ sRı→c

)
. The Bach tensor is always trace-free and Tr(C) = ↓6∈s, so

tracing the B
t-flat condition (3.17) gives ∈s = 0. Then we can rewrite the B

t-flat condition as the

two equations 2Bach+ t(sRı→c↓↖
2
s) = 0 and ∈s = 0. We can express these as an ODE system.

Lemma 3.8 (The unreduced B
t-flat equations). In the metric (2.1) the B

t
-flat equations ∈s = 0,

2Bach+ t(sRı→c↓↖
2
s) = 0 are equivalent to

ε

εz

(
CF

εs

εz

)
= 0, F1(F,C) = 0, F2(F,C) = 0, T (F,C) = 0 (3.18)
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where F1, F2 and T are the operators

F1(F,C) = 24
ω
ωz

(
F

ω
ωz

C
1
2

)
+ 4C

1
2

(
ω2F
ωz2

+
1
2
F → 2

)
+ sC

3
2

F2(F,C) =
8
3

(
L

+(L→(F ))→ 1
)
+ t sC

3
2

(
ω2

ωz2
C→ 1

2 →
1
4
C→ 1

2

)
+

t
2
C
F

ωF
ωz

ωs
ωz

+ t
ωC
ωz

ωs
ωz

T (F,C) = 16B(F, F )→ 18tF
ωC
ωz

ωs
ωz

→ 6tC
ωF
ωz

ωs
ωz

→
3
4
tsC→1

(
C2(→16 + 4F + Cs) + 12F

(
ωC
ωz

)2

+ 8C
ωC
ωz

ωF
ωz

)

(3.19)

and B is the operator from (1.7).

Proof. In coordinates, ∈ = 1↓
det g

ω
ωxi

(⇔
det g gij ω

ωxj

)
. Using (Z, τ, x, y)-coordinates of (2.15) we

have det g = 1
16 cosh2(x)C

2 and g
11 = 4FC. Because s = s(Z) is a function of Z alone, then 0 = ∈s

is

0 =
4 cosh2(x)

C

ε

εZ

(
C

4 cosh2(x)
4FC

εs

εZ

)
=

4

C

ε

εZ

(
FC

2 εs

εZ

)
. (3.20)

The coordinate change from z to Z of (2.15) gives C
ω
ωZ = ω

ωz , so we obtain the first equation of

(3.18). The second equation F1(F,C) = 0 is precisely the scalar curvature equation (3.1). With

∈s = 0 the Hessian ↖
2
s is trace-free; then a straightforward computation gives

↖
2
s = ↓2C→4 εs

εz

ε(FC
3)

εz
(ϱ0)2 + 2C→2 εs

εz

ε(FC)

εz
(ϱ1)2 + 2FC

→2 εs

εz

εC

εz

(
(ϱ2)2 + (ϱ3)2

)
. (3.21)

Now for the third and fourth equations we use (2.22), (2.32), and (3.21). We expect precisely two

additional relations, due to the fact that each of the tensors Bach, Rı→c, and ↖
2
s have four non-zero

components, but also the two algebraic relations of being trace-free, and having identical (3, 3) and

(4, 4) entries. We take one relation from 2(Bach00+Bach22)+t(sRı→c 00+sRı→c 22↓s,00↓s,22) = 0.

Using (1.9), (1.11), and (3.21), this is

8

3

(
L
→(L+(F ))↓ 1

)
+ tsC

3
2

(
ε
2 1↓

C

εz2
↓

1

4

1
⇔
C

)
+

t

2

C

F

εF

εz

εs

εz
+ t

εC

εz

εs

εz
= 0 (3.22)

which is F2(C,F ) = 0. We take another relation from 2Bach00 + t(sRı→c 00 ↓ s,00) = 0, which is

0 = 16B(F, F )↓ 18tF
εC

εz

εs

εz
↓ 6tC

εF

εz

εs

εz

↓
3

4
tsC

→1

(
C

2(↓16 + 4F + sC) + 12F

(
εC

εz

)2

+ 8C
εC

εz

εF

εz

)

+
3

4
tsC

1
2

(
4C

1
2

(
ε
2
F

εz2
+

1

2
F ↓ 2

)
+ 24

ε

εz

(
F
εC

1
2

εz

)
+ sC

3
2

)
.

(3.23)

Using (3.1) to eliminate the last term, this is F1(F,C) = 0.
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The equations (3.18) give four equations for the three unknowns s, F , C, so the system appears

to be overdetermined. But the equations of (3.18) are not independent.

Lemma 3.9. We have the following relation:

εT

εz
=

↓3t

2
⇔
C

ε(sC)

εz
F1 + 12

εF

εz
F2 ↓ 6t

ε log(C3
F )

εz

ε

εz

(
CF

εs

εz

)
. (3.24)

In particular T (F,C) is constant along solutions of the system F1(F,C) = F2(F,C) = ∈s = 0.

Proof. This follows from a tedious but completely elementary computation.

Lemma 3.10. At all points where C ↗= 0 and F ↗= 0, the 8th order system

ε

εz

(
CF

εs

εz

)
= 0, F1(F,C) = 0, F2(F,C) = 0 (3.25)

is critically determined, T is a constant of the motion, and (3.25) combined with the restraint

T (F,C) = 0 admits a 7-parameter family of solutions.

Up to homothety, in the U(2)-invariant setting the B
t
-flat metrics form a 5-parameter family, and

the CSC B
t
-flat metrics form a 4-parameter family.

Proof. To ascertain whether the system (3.25) is critically determined, we examine the coe"cients

on the derivatives of s, F , and C. These coe"cients of the form FC, CF
→1, C 1

2 , C→ 1
2 , FC

→ 3
2 and

so on. Provided F and C remain bounded away from 0 and +↔, we have a non-singular principal

symbol. We conclude that the system (3.25), which has three unknowns and three equations,

remains critically determined when F and C remain positive.

We count the degrees of freedom in the solution space. The equations ω
ωz

(
CF

ωs
ωz

)
= 0, F1 = 0,

and F2 = 0 are fourth order in F , second order in C, and second order in s, which makes eight

derivatives in total, requiring eight initial conditions. Then we restrict to T = 0. From Lemma 3.9,

T is constant along solutions so is completely determined by the system’s initial conditions. T (F,C)

is third order in F , second order in C, and first order in s, so T = 0 is a single algebraic relationship

among the initial conditions, and reduces the solution space from eight dimensions to seven. Up to

homothety the solution space is therefore 5-dimensional. Finally, requiring s = const is the same

as imposing an initial condition of sz = 0, so the CSC B
t-flat solution space is 4-dimensional up

to homothety.

Theorem 3.11. The ZSC B
t
-flat metrics, t ↗= ↔, are the ZSC Bach-flat metrics.

Assume g is B
t
-flat, conformally extremal, and t ↗= 0,↔. Then it is CSC if and only if it is ZSC

or Einstein.

If t ↗= 0, 1
3 ,↔ there exist CSC B

t
-flat solutions that are not conformally extremal.
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Proof. The CSC B
t-flat equations are (3.18) with initial condition sz = 0. As discussed above,

this is a system with 6 degrees of freedom (4 up to homothety). First we examine the ZSC case,

where s = 0. In this case T = 16B, so B(F, F ) = 0 and so the metric is Bach-flat. Thus F lies

in the 3-parameter family given by Lemma 3.6. Fixing F , F1 = 0 gives a 2-parameter family of

solutions for C and we obtain the expected 5-parameter solution space of ZSC Bach-flat metrics

(which has 3 parameters up to homothety).

Next assume the metric is CSC B
t-flat, s ↗= 0, and g conformally extremal. By Proposition 3.1,

F = 1
2C1e

→2z + C2e
→z + C3e

z + 1
2C4e

2z. Plugging in this, along with ωs
ωz = 0 into F2 = 0, we

obtain (
ε
2

εz2
C

→ 1
2 ↓

1

4
C

→ 1
2

)
= 0. (3.26)

Therefore C = e→z

(C5+C6e→z)2 . Plugging this into F1 = 0 provides

0 = C5(C1C5 ↓ C2C6)e
→z +

(
↓

s

24
+ C2C

2
5 ↓ 2C5C6 ↓ C3C

2
6

)
+ C6(C4C6 ↓ C3C5)e

z
. (3.27)

We have the seven unknown constants C1, C2, C3, C4, C5, C6, and s, and (3.27) contributes three

relations so we have a 4-parameter solution space. We consider the possibilities. First, the expres-

sion for C makes it impossible that C5 and C6 are both zero. If C5 ↗= 0, C6 = 0 then C = C
→2
5 e

→z

so the metric is Kähler with respect to J
+, and (3.27) forces C1 = 0, C2 = s

24C2
5
. Then 0 = T is

0 = ↓
1

2
e
2z
s
(
3st↓ 4e2z(1↓ 3t)C3C

2
5

)
, (3.28)

and because t ↗= 0, this forces s = 0, contradicting the assumption s ↗= 0. (Similarly assuming

C5 = 0, C6 ↗= 0 also gives s = 0, again contradicting s ↗= 0.)

Therefore both C5, C6 ↗= 0. Then (3.27) forces C1C5 ↓ C2C6 = 0, C4C6 ↓ C3C5 = 0, and by

Proposition 3.2 the metric is Einstein. We conclude that if a CSC B
t-flat metric is conformally

extremal, it is ZSC or Einstein.

Finally we prove that some CSC B
t-flat metrics are not conformally extremal. The family of

Einstein solutions is 4-dimensional, and therefore, by what we just proved, the family of CSC

B
t-flat that are conformally extremal is also 4-dimensional. But the space of CSC B

t-flat metrics

is 6-dimensional. We conclude that some CSC B
t-flat metrics fail to be conformally extremal.
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4 AmbiKähler Pairs

AmbiKähler pairs are from [2]. An ambiKähler structure on a manifold is a pair of Kähler manifolds

(Mn
, J1, g1) and (Mn

, J2, g2) where the complex stuctures J1 and J2 produce opposite orientations

and the Kähler metrics g1 and g2 are conformal. Either member of the pair can be called the

ambiKähler transform of the other. From Lemma 2.2, every U(2)-invariant metric on a 4-manifold

has an ambiKähler structure using J
±, conformally related by letting C be e

+z or e
→z.

Consequently the classic U(2)-invariant Kähler metrics all have ambiKähler transforms. Most of

these ambiKähler transforms produce nothing interesting. The ambiKähler transform of the Burns

metric is the Fubini-study metric, for example, and the transforms of the other LeBrun instanton

metrics are extremal Kähler metrics on weighted projective spaces—these are Bochner-flat metrics

found by Bryant in [8, Section 2.2], although their conformal relationship with the LeBrun instan-

tons was not discussed there. The transform of an odd Hirzebruch surface is precisely itself. The

transforms of the Taub-NUT-# and Eguchi-Hanson-# metrics have curvature singularities.

The Taub-NUT and Taub-bolt cases, however, are more interesting. The Taub-NUT is hyperKähler

with its family of complex structures being I
→ and its left-translates. By Propositions 2.4 and 2.5

F = (1↓ e
→z)2, C =

C0e
→z

(1↓ e→z)2
(4.1)

with coordinate range z ↑ (0,↔]. The nut is located at z = ↔, and the ALF end is at z = 0;

see Section 2.3 and Figure 3. Separate from the hyperKähler structure an ambiKähler structure

exists, given by complex structures J
→ and J

+ and conformal factors C = C0e
z, C = C0e

→z.

Thus the conformal orbit of the Taub-NUT meets three complete canonical metrics: itself which

is hyperKähler, a 2-ended ZSC Kähler metric, and a 1-ended extremal Kähler metric. We call the

latter two the modified Taub-NUT metrics of the first and second kinds.

The modified Taub-NUT of the first kind has complex structure J→ and conformal factor C = C0e
z,

which gives it the same orientation as the original Taub-NUT. This metric is two-ended: the nut

at z = ↓↔ becomes an ALE end, and the ALF end at z = 0 becomes a cusp-like end. This

complete, 2-ended metric is scalar flat by Proposition 1.1. Letting J
+ be the complex structure

with conformal factor C = C0e
→z produces the modified Taub-NUT of the second kind. This

metric is one-ended: it still has a nut at z = ↔, but the conformal change turns the ALF end into

a cusp-like end. By Theorem 3.1 it is extremal Kähler. It has scalar curvature s = 48(1 ↓ e
→z),

which is positive and approaches 0 asymptotically along the cusp.
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C= C0ⅇ-z
(1-ⅇ-z)2

F=(1-ⅇ-z)2

ALF end

Nut⟶

C=C0ⅇ-z

F=(1-ⅇ-z)2

Cusp

Nut⟶

C=C0ⅇz

F=(1-ⅇ-z)2

Cusp

ALE end⟶

Figure 3: The Taub-NUT and modified Taub-NUTs of the first and second kinds.

The modified Taub-NUT of the first kind on C2
\ {(0, 0)} is the ZSC Kähler metric of [19] for

n = 2, and the modified Taub-NUT of the second kind is a complete Bochner-flat metric from

[8, Section 2.2] (see also [39]) and is explored in [20].

C= ⅇ-z
(1-ⅇ-z)2

ALF endBolt, -

C=ⅇz

CuspBolt, -

C=ⅇ-z

CuspBolt, +

Figure 4: The Taub-bolt, and the modified Taub-bolts of the first and second kinds.

The classic Taub-bolt is Ricci-flat but not Kähler (and certainly not hyperKähler) with respect to

any complex stucture2. The Taub-bolt metric is

C =
C0e

→z

(1↓ e→z)2
, F = 1↓

1

8
e
→2z +

1

4
e
→z

↓
9

4
e
z +

9

8
e
2z (4.2)

on z ↑ [↓ log(3), 0). This metric is complete, Ricci-flat, Bach-flat, but not half-conformally flat:

both W
+ and W

→ are non-zero by Proposition 3.3; see [35, 36]. It has an ALF end at z = 0

and a bolt of self-intersection ↓1 at z = ↓ log(3). The underlying manifold is the total space of

O(↓1). It is conformally Kähler with respect to either J→ or J+, creating an ambiKähler pair—the

modified Taub-bolt metrics of the first and second kinds, respectively. Changing between J
→ and

J
+ reverses the orientation, so changes the self-intersection number of the bolt from ↓1 to +1.

With the complex structure J
→ and conformal factor C = C0e

z we obtain an extremal Kähler

metric we call the modified Taub-bolt of the first kind. This metric continues to have a bolt of

self-intersection ↓1 at z = ↓ log(3), but the ALF end at z = 0 has been transformed into a cusp-

like end. The scalar curvature is s = 54C→1
0 (1 ↓ e

z), which is positive and approaches 0 along

the cusp. Its underlying complex manifold is the total space of O(↓1). Its ambiKähler transform

has complex structure J
+ and conformal factor C = C0e

→z; we call this extremal Kähler metric

the modified Taub-bolt of the second kind. The orientation has been reversed and the bolt has

self-intersection +1 at z = ↓ log(3). The ALF end at z = 0 has again been transformed into a

cusp-like end. The scalar curvature is s = 6C→1
0 (↓1+e

→z), which again is positive and approaches

2
If it were Kähler with respect to any complex structure, whether a complex structure considered here or not,

Derdzinski’s theorem would imply it is half-conformally flat which it is not.
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zero asymptotically along the cusp. Its underlying complex manifold is the total space of O(+1),

which is CP 2
\ {pt}.

Like the Taub-NUT, the Taub-bolt’s conformal orbit meets three canonical metrics: itself, which

is Ricci flat, and two extremal Kähler metrics. See also [6] which explores the Taub-bolt among

other topics (electronically released almost simultaneously with this paper). Neither of the modified

Taub-bolts is Bochner-flat or half-conformally flat.

Notable is the presence of a rational curve of positive self intersection in the modified Taub-bolt

of the second kind. This is the only example of a complete extremal Kähler metric with a curve of

positive self-intersection, that is known to the authors. By contrast there are many examples with

curves of zero or negative self intersection. These include the Burns, Eguchi-Hanson, and LeBrun

metrics which are all Kähler metrics on O(k) with k < 0 [29]; the Chen-Teo metrics [11, 12] and

conformally related Kähler metrics [6] which are on surfaces with rational curves of non-positive

self-intersection; and the extremal Kähler “asymptotically equivariantly R2
→ S2” [40, 41] metrics

which all have rational curves of non-positive self-intersection.
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1 Introduction

It is well known that we often need to deal with the problem of approximating the factorial function

n!, and its extension to real numbers called the gamma function, defined by

!(x) =

∫ →

0
tx↑1e↑tdt, Re(x) > 0,

and the logarithmic derivative of !(x) called the psi-gamma function, denoted by

ω(x) =
d

dx
ln!(x) =

!↓(x)

!(x)
.

For x > 0, the derivative ω↓(x) is called the tri-gamma functions, while the derivatives ω(k)(x),

k = 1, 2, 3, . . . are called the poly-gamma functions.

In recent years, some authors paid attention to giving increasingly better approximations for the

gamma function using continued fractions. For detailed information, please refer to the papers [1,2,

9,11,12] and references cited therein. In fact, it is quite well-known in the theory the algorithm for

transforming every formal power series into an associated continued fraction, see [6]. In particular,

there are certain methods of transforming the power series
∑→

n=0 cnx
↑n↑1 into continued fractions,

see [10, Section III].

For any integer i and x > 0, we have

ω(i)(x+ 1)→ ω(i)(x) = (→1)i
i!

xi+1
,

and when i = 0, it yields

ω(x+ 1)→ ω(x) =
1

x
.

By adding equalities of the form

ω(j + 1)→ ω(j) =
1

j

from j = n2 + 1 to j = n2 + n, we get

ω(n2 + n+ 1)→ ω(n2 + 1) =
n∑

j=1

1

n2 + j
= S(n) (1.1)

Graham, Knuth and Patashnik [5] proposed the problem of obtaining the asymptotic value of the

finite sum

S(n) =
n∑

j=1

1

n2 + j
=

1

n2 + 1
+

1

n2 + 2
+ · · ·+ 1

n2 + n
(1.2)

with a given absolute error.
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In this paper, we handle the problem with the aid of the multiple-correction method [3,4,13]. We

will give some rational approximations of S(n) =
∑n

j=1
1

n2+j by the multiple-correction method,

and prove some inequalities for the upper and lower bounds. Throughout the paper, the notation

P (x; k) means a polynomial of degree k in x, which may be di!erent at each occurrence.

2 Some lemmas

The following lemma gives a method for measuring the rate of convergence, for its proof see Mortici

[7, 8].

Lemma 2.1. If the sequence (xn)n↔N is convergent to zero and there exists the limit

lim
n↗+→

ns(xn → xn+1) = l ↑ [→↓,+↓], (2.1)

with s > 1, then

lim
n↗+→

ns↑1xn =
l

s→ 1
. (2.2)

We also need the following intermediary result.

Lemma 2.2. For every positive integer k, we define

fk(x) = lnx+
s1

x+ t1 +
s2

x+t2+···+ sk
x+tk

,

where s1 = → 1
2 , t1 = → 1

6 ; s2 = 1
36 , t2 = → 13

30 ; s3 = 9
25 , t3 = → 17

630 ; s4 = 6241
15876 , t4 = → 417941

786366 ; . . .

Then for x > 1, we have

f2(x+ 1)→ f2(x) <
1

x
< f3(x+ 1)→ f3(x). (2.3)

Proof. We will apply the multiple-correction method [3, 4, 13] to study the two-sided inequality

(2.3) as follows.

(Step 1) The initial-correction. Since (lnx)↓ = 1
x , so we choose f0(x) = lnx and develop

F0(x) := f0(x+ 1)→ f0(x)→ 1
x into power series expansion in 1

x , we have

F0(x) = f0(x+ 1)→ f0(x)→
1

x
= →1

2

1

x2
+

1

3

1

x3
+O

(
1

x4

)
. (2.4)
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(Step 2) The first-correction. Let f1(x) = lnx+ s1
x+t1

and develop F1(x) := f1(x+1)→f1(x)→ 1
x

into power series expansion in 1
x , we have

F1(x) =

(
→1

2
→ s1

)
1

x2
+

(
1

3
+ s1 + 2s1t1

)
1

x3
+O

(
1

x4

)
. (2.5)

Then let the coe"cients of 1
x2 and 1

x3 in (2.5) equal zero, we have s1 = → 1
2 , t1 = → 1

6 and

F1(x) =
1

24

1

x4
+O

(
1

x5

)
. (2.6)

(Step 3) The second-correction. Let f2(x) = lnx + s1
x+t1+

s2
x+t2

and develop F2(x) := f2(x +

1)→ f2(x)→ 1
x into power series expansion in 1

x , it can be derived that

F2(x) =

(
1

24
→ 3s2

2

)
1

x4
+

(
→ 11

270
+

7s2
3

+ 2s2t2

)
1

x5
+O

(
1

x6

)
. (2.7)

Then let the coe"cients of 1
x4 and 1

x5 in (2.7) equal zero, we have s2 = 1
36 , t2 = → 13

30 and

F2(x) = f2(x+ 1)→ f2(x)→
1

x
= → 1

40

1

x6
+O

(
1

x7

)
. (2.8)

Furthermore, we obtain

F ↓
2(x) =

P (x)

3x2(1 + x)(1→ 6x+ 10x2)2(5 + 14x+ 10x2)2
,

where P (x) = 75→ 480x→ 508x2 + 3680x3 + 4500x4.

As all coe"cients of P (x+ 1) = 7267 + 27544x+ 37532x2 + 21680x3 + 4500x4 are positive,

which implies that F2(x) is strictly increasing. Since F2(↓) = 0, it can be found that

F2(x) < 0 on x > 1. This finishes the proof of the left-hand inequality in (2.3).

(Step 4) The third-correction. Similarly, let f3(x) = lnx + s1
x+t1+

s2
x+t2+

s3
x+t3

and develop

F3(x) := f3(x+ 1)→ f3(x)→ 1
x into power series expansion in 1

x , we have

F3(x) =

(
→ 1

40
+

5s3
72

)
1

x6
+

802→ 2275s3 → 1750s3t3
21000

1

x7
+O

(
1

x8

)
. (2.9)

Then let the coe"cients of 1
x6 and 1

x7 in (2.9) equal zero, we have s3 = 9
25 , t3 = → 17

630 and

F3(x) = f3(x+ 1)→ f3(x)→
1

x
=

6241

453600

1

x8
+O

(
1

x9

)
. (2.10)
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Furthermore, we obtain

F ↓
3(x) =

Q(x)

3x2(1 + x)(→79 + 600x→ 790x2 + 1260x3)2(991 + 2800x+ 2990x2 + 1260x3)2
,

where Q(x) = 18387502563 → 175398675600x → 226510750180x2 → 500966546560x3 →
1400497343100x4 → 1903983580800x5 → 832289774400x6.

As all coe"cients of Q(x+1) = →5021259168077→ 22246965738440x→ 41656576872460x2 →
41788587214960x3 → 23404761863100x4 → 6897722227200x5 → 832289774400x6 are negative,

which implies that F3(x) is strictly decreasing. Since F3(↓) = 0, it can be found that

F3(x) > 0 on x > 1. This finishes the proof of the right-hand inequality in (2.3).

The proof of Lemma 2.2 is completed.

3 Main results

By adding inequalities (2.3) of the form

f2(x+ 1)→ f2(x) <
1

x
< f3(x+ 1)→ f3(x)

from x = n2 + 1 to x = n2 + n, we get

f2(n
2 + n+ 1)→ f2(n

2 + 1) <
n∑

j=1

1

n2 + j
< f3(n

2 + n+ 1)→ f3(n
2 + 1). (3.1)

This two-sided inequalities give the estimate of
∑n

j=1
1

n2+j . So we have

Theorem 3.1. For positive integer n > 1,

ln

(
1 +

n

n2 + 1

)
+

P (n; 5)

3P1(n; 4)P2(n; 4)
<

n∑

j=1

1

n2 + j
< ln

(
1 +

n

n2 + 1

)
+

5P (n; 9)

3P1(n; 6)P2(n; 6)
, (3.2)

where

P (n; 5) = 44n+ 85n2 + 170n3 + 150n4 + 150n5,

P1(n; 4) = 5 + 14n2 + 10n4,

P2(n; 4) = 5 + 14n+ 24n2 + 20n3 + 10n4,

P (n; 9) = 387838n+ 655457n2 + 1744984n3 + 1983990n4 + 2717310n5

+ 2199960n6 + 1942920n7 + 952560n8 + 476280n9,

P1(n; 6) = 991 + 2800n2 + 2990n4 + 1260n6,

P2(n; 6) = 991 + 2800n+ 5790n2 + 7240n3 + 6770n4 + 3780n5 + 1260n6.
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Proof. The double inequality (3.1) can be equivalently written as (3.2).

Theorem 3.1 gives an asymptotic formula of the sum S(n) =
∑n

j=1
1

n2+j , but we want to ob-

tain the rational approximation. It ensures the following approximation formula as n ↔ ↓,

ln
(
1 + n

n2+1

)
↗ n

n2+1 , but the rate of convergence is not satisfied. Now we estimate the function

ln
(
1 + n

n2+1

)
as following.

Theorem 3.2. For positive integer n > 1, we have

n2 + 133
109n→ 769

6540

n3 + 375
218n

2 + 768
545n+ 2401

2180

< ln

(
1 +

n

n2 + 1

)
<

n→ 1
22

n2 + 5
11n+ 59

66

. (3.3)

Proof. Developing the function ln
(
1 + n

n2+1

)
→ s2n

2+s1n+s0
n3+t2n2+t1n+t0

into power series expansion in 1
n ,

we have

ln

(
1 +

n

n2 + 1

)
→ s2n2 + s1n+ s0

n3 + t2n2 + t1n+ t0
(3.4)

= (1→ s2)
1

n
+

(
→1

2
→ s1 + s2t2

)
1

n2
+

(
→2

3
→ s0 + s2t1 + s1t2 → s2t

2
2

)
1

n3

+

(
3

4
+ s2t0 + s1t1 + s0t2 → 2s2t1t2 → s1t

2
2 + s2t

3
2

)
1

n4

+

(
1

5
+ s1t0 + s0t1 → s2t

2
1 → 2s2t0t2 → 2s1t1t2 → s0t

2
2 + 3s2t1t

2
2 + s1t

3
2 → s2t

4
2

)
1

n5

+

(
→2

3
+ s0t0 → 2s2t0t1 → s1t

2
1 → 2s1t0t2 → 2s0t1t2 + 3s2t

2
1t2 + 3s2t0t

2
2 + 3s1t1t

2
2

+ s0t
3
2 → 4s2t1t

3
2 → s1t

4
2 + s2t

5
2

)
1

n6
+O

(
1

n7

)
.

According to Lemma 2.1, to get the highest rate of convergence, we have s2 = 1, s1 = 133
109 ,

s0 = → 769
6540 , t2 = 375

218 , t1 = 768
545 , t0 = 2401

2180 and

ln

(
1 +

n

n2 + 1

)
→ s2n2 + s1n+ s0

n3 + t2n2 + t1n+ t0
=

31721

305200

1

n7
+O

(
1

n8

)
.

Furthermore, we denote G1(x) = ln
(
1 + x

x2+1

)
→ x2+ 133

109x↑
769
6540

x3+ 375
218x

2+ 768
545x+

2401
2180

, then we can get

G↓
1(x) = → 1409315 + 4813232x+ 3457589x2

(1 + x2)(1 + x+ x2)(2401 + 3072x+ 3750x2 + 2180x3)2
< 0,

which implies that G1(x) is strictly decreasing. Since G1(↓) = 0, it can be found that G1(n) > 0

for every positive integer n. Then we have

n2 + 133
109n→ 769

6540

n3 + 375
218n

2 + 768
545n+ 2401

2180

< ln

(
1 +

n

n2 + 1

)
. (3.5)
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This finishes the proof of the left-hand inequality in (3.3).

Similarly, developing the function ln
(
1 + n

n2+1

)
→ u1n+u0

n2+v1n+v0
into power series expansion in 1

n , we

have

ln

(
1 +

n

n2 + 1

)
→ u1n+ u0

n2 + v1n+ v0
(3.6)

= (1→ u1)
1

n
+

(
→1

2
→ u0 + u1v1

)
1

n2
+

(
→2

3
+ u1v0 + u0v1 → u1v

2
1

)
1

n3

+

(
3

4
+ u0v0 → 2u1v0v1 → u0v

2
1 + u1v

3
1

)
1

n4
+O

(
1

n5

)
.

According to Lemma 2.1, to get the highest rate of convergence, we have u1 = 1, u0 = → 1
22 ,

v1 = 5
11 , v0 = 59

66 and

ln

(
1 +

n

n2 + 1

)
→ u1n+ u0

n2 + v1n+ v0
= → 109

1980

1

n5
+O

(
1

n6

)
.

Furthermore, we denote G2(x) = ln
(
1 + x

x2+1

)
→ x↑ 1

22

x2+ 5
11x+

59
66

, then we can get

G↓
2(x) =

→503→ 840x+ 1199x2

(1 + x2)(1 + x+ x2)(59 + 30x+ 66x2)2
> 0

when x > 1, which implies that G2(x) is strictly increasing. Since G2(↓) = 0, it can be found

that G2(n) > 0 for positive integer n > 1. Then we have

ln

(
1 +

n

n2 + 1

)
<

n→ 1
22

n2 + 5
11n+ 59

66

. (3.7)

This finishes the proof of the right-hand inequality in (3.3).

The proof of Theorem 3.2 is completed.

Combining (3.2) and (3.3), we have

Theorem 3.3. As n ↔ ↓,

P (n; 10)

3P (n; 3)P1(n; 4)P2(n; 4)
<

n∑

j=1

1

n2 + j
<

P (n; 13)

3P (n; 2)P1(n; 6)P2(n; 6)
, (3.8)

where

P (n; 10) = →19225 + 251314n+ 915243n2 + 2580666n3 + 4566456n4 + 6735890n5

+ 7304720n6 + 6514900n7 + 4331300n8 + 2106000n9 + 654000n10,

P (n; 3) = 2401 + 3072n+ 3750n2 + 2180n3,
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P (n; 13) = →8838729 + 283891048n+ 724331705n2 + 2291454430n3 + 3803306340n4

+ 6508603530n5 + 7775628660n6 + 9153584460n7 + 8099239500n8 + 6891737400n9

+ 4319179200n10 + 2549232000n11 + 928746000n12 + 314344800n13,

P (n; 2) = 59 + 30n+ 66n2.

So we can get the rational approximation P (n;10)
3P (n;3)P1(n;4)P2(n;4)

of the finite sum S(n) =
∑n

j=1
1

n2+j ,

and the error can be bounded as following,

Theorem 3.4. As n ↔ ↓, we have

n∑

j=1

1

n2 + j
↗ T (n) =

P (n; 10)

3P (n; 3)P1(n; 4)P2(n; 4)
. (3.9)

Furthermore, we can give the bounds of the error estimation,

0 <
n∑

j=1

1

n2 + j
→ T (n) <

109

1980

1

n5
. (3.10)

Proof. Set D = 109
1980 , from (3.8) we can get

P (n; 13)

3P (n; 2)P1(n; 6)P2(n; 6)
→ T (n)→ D

n5
(3.11)

= → P (n; 24)

1980n5P (n; 2)P1(n; 3)P1(n; 4)P2(n; 4)P1(n; 6)P2(n; 6)
< 0,

where

P (n; 24) = 379103668732775 + 2810435887808320n+ 14242250073272280n2

+ 52307052296627116n3 + 157936445498291068n4 + 399973820542120296n5

+ 882209143385828432n6 + 1711892774844546448n7 + 2970795182632943800n8

+ 4635720249539129840n9 + 6558910458343361680n10 + 8434105620517736160n11

+ 9897520754047548080n12 + 10594749646379864160n13 + 10355798883536793600n14

+ 9208131536164270400n15 + 7433462344335679600n16 + 5402752686291200000n17

+ 3514488757828417600n18 + 2012863116859364800n19 + 1001770606450320000n20

+ 417999105909504000n21 + 141577633391040000n22 + 34754556120480000n23

+ 5414684436000000n24.

Proof of Theorem 3.4 is completed.
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Remark 3.5. As n ↔ ↓, we also can get the rational approximation

W (n) =
P (n; 13)

3P (n; 2)P1(n; 6)P2(n; 6)
(3.12)

of the finite sum S(n) =
∑n

j=1
1

n2+j .

Remark 3.6. Using the Maclaurin series of the left and right hand of (3.2), we obtain

29

440

1

n11
+

1

30

1

n12
+O

(
1

n13

)
↘

n∑

j=1

1

n2 + j
→ U(n) ↘ 1

11

1

n11
→ 1

24

1

n12
+O

(
1

n13

)
. (3.13)

So we have another approximation, as n ↔ ↓,

n∑

j=1

1

n2 + j
↗ U(n) =

1

n
→ 1

2

1

n2
→ 1

6

1

n3
+

1

4

1

n4
→ 2

15

1

n5
+

1

12

1

n6
→ 1

42

1

n7
→ 1

24

1

n8
+

7

90

1

n9
→ 1

10

1

n10
.

(3.14)

Furthermore, we denote H1(x) = ln
(
1 + x

x2+1

)
+ P (x;5)

3P1(x;4)P2(x;4)
→ U(x)→ 29

440
1

x11 , then we can get

H ↓
1(x) =

P (x;19)
120x12(1+x2)(1+x+x2)P 2

1 (x;4)P
2
2 (x;4)

, where

P (x; 19) = 54375 + 283875x+ 1223550x2 + 3541475x3 + 8928955x4 + 18003620x5

+ 32386512x6 + 48945976x7 + 66608504x8 + 76840064x9 + 79734920x10

+ 68524380x11 + 52231532x12 + 29887232x13 + 14214864x14 + 1988640x15

→ 1179920x16 → 2468400x17 → 927200x18 → 480000x19.

As all coe!cients of

P (x+ 3; 19) = →1095798626414130→ 6922138869735924x→ 20458381656316617x2

→ 37730683241040109x3 → 48798043215225557x4 → 47107553905950172x5

→ 35247917132102064x6 → 20940823139217776x7 → 10032400214888248x8

→ 3912613116855772x9 → 1247976394963924x10 → 325701204911892x11

→ 69291596265604x12 → 11915674458880x13 → 1632596145936x14 → 174202919520x15

→ 13962062720x16 → 791257200x17 → 28287200x18 → 480000x19

are negative, which implies that H1(x) is strictly decreasing on x > 3. Since H1(↓) = 0, it can be

found that H1(n) > 0 for positive integer n > 3. Then we have

29

440

1

n11
↘

n∑

j=1

1

n2 + j
→ U(n). (3.15)
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Similarly, we denote H2(x) = ln
(
1 + x

x2+1

)
+ 5P (x;9)

3P1(x;6)P2(x;6)
→ U(x) → 1

11
1

x11 , then we can get

H ↓
2(x) =

P (x;27)
30x12(1+x2)(1+x+x2)P 2

1 (x;6)P
2
2 (x;6)

, where

P (x; 27) = 28934492716830 + 163504701528000x+ 781783155292011x2

+ 2561640891519341x3 + 7366886663076127x4 + 17465244022945601x5

+ 37293047508784116x6 + 69715428169427545x7 + 119236982847280685x8

+ 183471922929904370x9 + 260745743812768040x10 + 338060035189670685x11

+ 406969201616917085x12 + 450014549032420100x13 + 463005366631670400x14

+ 438405464461473000x15 + 385877522700724000x16 + 311756448527065800x17

+ 233075982007921000x18 + 158623848613552500x19 + 98916577490962500x20

+ 55177732215522000x21 + 27657182228634000x22 + 11962175918742000x23

+ 4459721484330000x24 + 1316647483200000x25 + 296695768320000x26

+ 37807106400000x27.

As all coe!cients of P (x; 27) are positive, which implies that H2(x) is strictly increasing. Since

H2(↓) = 0, it can be found that H2(n) < 0 for every positive integer n. Then we have

n∑

j=1

1

n2 + j
→ U(n) ↘ 1

11

1

n11
. (3.16)

So we can give the upper and lower bounds as follow, for positive integer n > 3,

29

440

1

n11
↘

n∑

j=1

1

n2 + j
→ U(n) ↘ 1

11

1

n11
. (3.17)

4 Some new estimates and double side inequalities

In order to prove the announced inequalities, we use the direct consequence of Theorem 8 of Alzer

[2] who proved that the double-sided inequalities for the function of arbitrary accuracies

lnx→ 1

2x
→

2n↑1∑

i=1

B2i

2ix2i
< ω(x) < lnx→ 1

2x
→

2n∑

i=1

B2i

2ix2i
, (x > 0, n ↑ N), (4.1)

where Bj , j ≃ 0 denote the Bernoulli numbers which may be generated by

z

ez → 1
=

→∑

j=1

Bj
zj

j!
.
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In particular, for i = 2, we deduce that:

lnx→ 1

2x
→Q6(x) < ω(x) < lnx→ 1

2x
→Q8(x), (4.2)

where Q6(x) =
1

12x2 → 1
120x4 + 1

252x6 , Q8(x) =
1

12x2 → 1
120x4 + 1

252x6 → 1
240x8 . Combining (1.1) and

(4.2), we get

ln
n2 + n+ 1

n2 + 1
+

P1(n; 25)

5040(n2 + 1)8(n2 + n+ 1)6
< S(n) =

n∑

j=1

1

n2 + j

= ω(n2 + n+ 1)→ ω(n2 + 1) < ln
n2 + n+ 1

n2 + 1
+

P2(n; 25)

5040(n2 + 1)8(n2 + n+ 1)6
, (4.3)

where

P1(n; 25) = →21 + 3186n+ 15651n2 + 69238n3 + 202356n4 + 529934n5

+ 1122353n6 + 2160262n7 + 3588004n8 + 5473222n9 + 7408367n10

+ 9267866n11 + 10416693n12 + 10852108n13 + 10193994n14 + 8875980n15

+ 6943146n16 + 5020008n17 + 3220812n18 + 1898232n19 + 966000n20

+ 446880n21 + 167580n22 + 56280n23 + 12600n24 + 2520n25,

and

P2(n; 25) = 21 + 3312n+ 22842n2 + 105784n3 + 354605n4 + 972552n5

+ 2229004n6 + 4439168n7 + 7749915n8 + 12075104n9 + 16850506n10

+ 21261744n11 + 24267221n12 + 25182808n13 + 23708364n14 + 20294352n15

+ 15714090n16 + 11002824n17 + 6899676n18 + 3862152n19 + 1894620n20

+ 808080n21 + 287700n22 + 84000n23 + 17640n24 + 2520n25.

So we can immediately obtain the new estimates of the finite sum S(n) =
∑n

j=1
1

n2+j as following,

Theorem 4.1. As n ↔ ↓, we have

n∑

j=1

1

n2 + j
↗ V (n) = ln

n2 + n+ 1

n2 + 1
+

2520n25

5040(n2 + 1)8(n2 + n+ 1)6
. (4.4)

Remark 4.2. If we select a lager n in the double-sided inequalities (4.1), we can get others double-

sided rational estimates for the considered function Sn with arbitrary accuracies.
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