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RESUMEN

Mostramos que a cada homomorfismo entre variedades abe-
lianas polarizadas le podemos asociar lo que llamamos su
homomorfismo pseudoinverso, el cual es la nocién homologa
de la matriz de Moore-Penrose de una matriz compleja dada.

Estudiamos algunas propiedades de este homomorfismo.
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ABSTRACT

We show that to each homomorphism between polarized abe-
lian varieties, we can associate its so-called pseudoinverse ho-
momorphism, which can be seen as analogous to the Moore-
Penrose matrix of a given complex matrix. We study some

properties of this homomorphism.
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1. Introducciéon

Al estudiar los toros complejos, es inevitable darse cuenta que préacticamente todo lo que se trabaja
en ellos es linealizable en algtn sentido. En palabras técnicas, al asignar a un toro complejo su es-
pacio tangente en el origen, y al asignar a un homomorfismo entre toros su representaciéon analitica,
obtenemos un funtor fiel de la categoria de toros complejos a la categoria de espacios vectoriales.
Ahora bien, lamentablemente la intuicion de élgebra lineal muchas veces no sirve cuando estamos
trabajando con toros complejos en toda su generalidad; sin embargo, cuando nos restringimos a
aquellos toros que son a la vez variedades proyectivas (es decir, variedades abelianas), volvemos a
recuperar esta intuicion. Por ejemplo, si fijamos una polarizacion en un toro complejo, entonces
obtenemos que todo subtoro tiene un subtoro complementario, ortogonal respecto a la polariza-
cion en algtun sentido, de la misma forma que dada una forma sesquilineal no degenerada en un
espacio vectorial, todo subespacio vectorial tiene su complemento ortogonal. Ejemplos de este tipo
de buen comportamiento abundan en las variedades abelianas, y por otro lado comportamientos

patologicos también abundan cuando nos extendemos al universo completo de toros complejos.

El proposito de este articulo es presentar un tal fenémeno que es conocido en algebra lineal, pero
hasta donde sabe el autor, no se ha estudiado para variedades abelianas. Este concepto es el de la
matriz pseudoinversa de una matriz dada. Si M € M,,«,(C) es una matriz compleja de m X n, es
conocido que posee una matriz pseudoinversa (a veces conocida como la inversa de Moore-Penrose)

M € Mpyxm(C) que se caracteriza por las siguientes propiedades:

1. MM*M =M
2. MYMM+* =M+
3. (MM*)* = MM+

4. (M*TM)* = M+M.

Aqui M* denota la matriz conjugada traspuesta de M. Si M es invertible, M T es claramente la

matriz inversa de M.

En este articulo mostraremos que dadas dos variedades abelianas polarizadas (X, Hx) e (Y, Hy),
a cada elemento f € Homg(X,Y) := Hom(X,Y) ® Q le podemos asociar un homomorfismo pseu-
doinverso ft € Homg(Y, X) que también se caracteriza por propiedades similares a las descritas
arriba (véase el Teorema 3.2). Mostraremos algunas propiedades de este pseudoinverso, y mostra-
remos, por ejemplo, que no existe en general cuando extendemos a toros complejos que no son
variedades abelianas (véase la Observacion 3.3). En otras palabras, siguiendo [3], la categoria de
variedades abelianas es una categoria de daga de Moore-Penrose, pero la categoria de toros com-
plejos no lo es. Finalmente, usaremos este pseudoinverso para calcular el idempotente simétrico de

la suma e (componente conexa que contiene el 0 de la) interseccion de dos subvariedades abelianas.
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2. Preliminares

Recordemos y establezcamos algunas notaciones y resultados preliminares. En todo lo que sigue,

un subindice @Q en un grupo abeliano denotara que estamos tensorizando el grupo con Q sobre Z.

2.1. Variedades abelianas

Para nuestros propoésitos, una polarizacidn en un toro complejo X = C9/A va a ser una forma
hermitiana positiva definida H : C9 x C9 — C tal que Im(H)(A x A) C Z. En un toro complejo,
toda forma diferencial real es cohomologa a una forma constante, lo cual implica (véase [2, Lemma

1.3.1]) que para todo k € N,

k k
H*X,Z)~ \H"(X,Z) ~ /\A".

En particular, si H es una forma hermitiana en C9 tal que Im(H)(A x A) C Z, entonces la forma
real alternante Im(H) induce naturalmente un elemento de A* AV y luego de H2(X,Z). Es posible
probar que H es una polarizacion si y sélo si es la primera clase de Chern de un fibrado en lineas

amplio sobre X.

Para todo fibrado en lineas £ € Pic(X), tenemos el morfismo

or: X = XV :=Pic’(X)

o

que resulta ser un homomorfismo de grupos por el Teorema del Cuadrado, y que depende solamente
de la primera clase de Chern de L. Si £ es amplio, entonces ¢, es una isogenia. Por esta razon, si
H es una polarizacion en X, induce un morfismo ¢g : X — XV. Si Hx es una polarizaciéon en X

y Hy es una polarizacién en un toro Y, entonces inducen una involucion de Rosati

1 : Homg(X,Y) — Homg(Y, X)

Vs @Eifv@Hr

Si X =Y, usaremos siempre la misma polarizacion para definir la involuciéon de Rosati. Un
endomorfismo de X es simétrico si es un punto fijo de T, y el grupo de endomorfismos simétricos
de X se denotara por End®(X). Es conocido (véase [2, Prop. 5.2.1]) que tenemos un isomorfismo

de espacios vectoriales
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NSg(X) — End§(X)

-1
= P Pa,

y en todo el articulo identificaremos estos espacios vectoriales sin mayor explicacion.

A cada homomorfismo f : X — Y le podemos asociar su representacion analitica po(f) €
Home (To(X), To(Y)), que en la mayoria de las circunstancias la interpretaremos simplemente como
una matriz. Observamos que si fijamos polarizaciones en X e Y, entonces pq(f1) = pa(f)*, donde

*

pa(f)* es la matriz adjunta de p,(f)* respecto a las formas hermitianas dadas.

2.2. Pseudoinversas de matrices.

Como se describié en la introduccion, si M es una matriz compleja de m X n, existe una matriz
M, llamada la pseudoinversa de M, que satisface las propiedades descritas. Una descripcién
geométrica de M™* se puede obtener como sigue: Podemos escribir C" = (ker M) @ (ker M)+ y
C™ = im(M) @ (im(M))*, donde el espacio ortogonal se toma respecto a la forma hermitiana
estandar de ambos espacios (i.e. con matriz identidad). Entonces M se puede interpretar como la
transformacion lineal que restringida a im(M) es igual a (M |(ker M)J_)_l, y restringida a im(M )+
es 0. Es trivial verificar que efectivamente esta es precisamente la transformacion lineal que cumple

las propiedades descritas en la introducciéon. Usaremos esta descripciéon geométrica para definir un

homomorfismo pseudoinverso en el contexto de variedades abelianas.

3. Pseudoinversos de homomorfismos entre variedades abelia-

nas

Sean ahora (X, Hx) y (Y, Hy) variedades abelianas polarizadas, y sea f € Hom(X,Y) un ho-
momorfismo. Podemos escribir X = C9/Ax y Y = C"/Ay, y como se dijo en la introduccién,
interpretar Hx y Hy como formas hermitianas positivas definidas en sus espacios vectoriales co-
rrespondientes. Sea p,(f) € M} x4(C) la representacion analitica de f; observemos que posee una
matriz pseudoinversa p,(f)" € My, (C) (donde ahora x, en vez de ser conjugacion y trasposicion,

es la matriz adjunta respecto a las dos formas hermitianas).
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Lema 3.1. Existe e € N tal que ep,(f)T(Ay) C Ax; en otras palabras, p.(f)" induce un Q-
homomorfismo f € Homg(Y, X).

Demostracion. Usaremos la descripcion geométrica de la pseudoinversa descrita en la Subsecciéon
2.2. Podemos descomponer CI = ker(p,(f)) @ ker(pa(f))t y C" = im(p.(f)) ® im(p.(f))*, don-
de los complementos ortogonales se toman respecto a las formas hermitianas respectivas. Ahora
tenemos que p,(f) restringido a im(p,(f)) es exactamente la inversa de la transformacion lineal

invertible po(f)lker(p (£))2s Y Pa(f)T restringido a im(pa(f))* es 0.

Sea A la subvariedad abeliana complementaria de (ker f)° con respecto a Hy, y sea B la subva-
riedad abeliana complementaria de im(f) con respecto a Hy. Entonces f restringido a A es una
isogenia con su imagen, y por lo tanto existe j € Hom(im(f), A) tal que jo f|a y f o j son multi-
plicacion por un entero t. Sea m € N el exponente del grupo finito im(f)N B, y sea p € Hom(Y, X)
donde para = € im(f), p(z) = mj(z), y si x € B, entonces p(x) = 0. Observemos que p esté bien
definida pues si « € im(f) N B, entonces 0 = p(x) = mj(x) = j(ma). Mas ain, por construccion,

pa(p) = npo(f)+ para algtin n € Z, y queda demostrado el lema. O
Esencialmente la misma demostracion muestra que si f € Homg(X,Y'), entonces podemos también

definir f en una manera similar. Obtenemos lo siguiente:

Teorema 3.2. Dado f € Homg(X,Y), existe un unico f+ € Homg(Y, X) tal que

1L ffef=f

2. fTfft =17
3. (ffO) =117
4o (fEOT =TS

En otras palabras, siguiendo lo definido en [3], la categoria de variedades abelianas polarizadas (y
donde los morfismos no necesariamente preservan las polarizaciones) es una categoria de daga

de Moore-Penrose.

Demostracion. Esto sigue del analisis anterior, ya que dado f € Homg(X,Y'), podemos definir
/1 € Homg(Y, X) tal que las representaciones complejas de f y f* satisfacen las condiciones (1),
(2), (3) y (4) de la Introduccion. Esto implica entonces que fy fT satisfacen las ecuaciones descritas
en el enunciado del teorema. La unicidad sigue de la unicidad de la inversa de Moore-Penrose de
la representacion analitica de f, y como la representacion analitica es una representacion fiel de

Homg(X,Y) en Home(CY, C"), obtenemos lo buscado. O
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Observacion 3.3. Esta construccion no se puede realizar en general para toros que no sean varie-
dades abelianas. De hecho, ni siquiera debe existir un homomorfismo que cumpla las dos primeras
propiedades del Teorema 3.2. Por ejemplo, sean Ty y Ty dos toros complejos de dimension positiva
con Ty simple. Entonces por [1, Prop. 5.7, Cor. 6.3], existe un toro X (de hecho, una cantidad no

numerable de toros) que cabe en una sucesion ezxacta
0—-Ty - X i> T — 0

y tal que Ty, visto como subtoro de X, no tiene un subtoro complementario. Si f+ fuese un homo-
morfismo que cumple las primeras propiedades del Teorema 3.2, tendria que ser una Q-isogenia
entre Ty y su imagen, y ademds por la simplicidad de Ty, o bien fT(T3) C Ty o fT(Te)NTy = 0.
En el primer caso, obtendriamos que ff+ = 0, una contradiccion por la propiedad (1) del Teorema

3.2. En el sequndo caso, f¥(Ty) seria un subtoro complementario para Ty, una contradiccion.

Volvamos ahora al caso de variedades abelianas, usando la notacién anterior. Notamos que cuando

f es una isogenia, entonces f* es simplemente f~1, el Q-inverso de f.

Teorema 3.4. Tenemos funciones bien definidas

@ : Homg(X,Y) — Endj(X) ~ NSg(X)
fe fTf

¥ : Homg(X,Y) — End3(Y) ~ NSg(X)
fefr

donde resulta que ®(f) es el idempotente simétrico asociado a la subvariedad abeliana comple-
mentaria de (ker f)° respecto a Hx, y U(f) es el idempotente simétrico asociado a la subvariedad
abeliana im(f). Mds ain, si X =Y y f € Endg(X) es punto fijo de ® o de U, entonces es tam-
bién punto fijo del otro, y esto ocurre si y solamente si f es el idempotente simétrico asociado a

la subvariedad abeliana im(f).

Demostracion. Por la Propiedad (3) del Teorema 3.2, tenemos que efectivamente f*f y ffT son

endomorfismos simétricos respecto a la involuciéon de Rosati. Mas atn,
P> =1ff =1

(FFO? =fFffT =11,

lo cual implica que son idempotentes. Por [2, Theorem 5.3.2], cada una de estas involuciones
corresponde al idempotente simétrico de su imagen. Por la construccién de f* en la demostra-

cion del Lema 3.1, es claro que im(fT f) es la subvariedad abeliana complementaria de (ker f)° e
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im(ff*) = im(f).
Ahora si X =Y y f € Endg(X) es tal que ®(f) = f, entonces f*f = f, lo cual implica que
f=FffTf=f? Ademas, f entonces es simétrico respecto a la involucion de Rosati. Por lo tanto,

f es el idempotente simétrico de im(f), y por lo tanto ¥(f) = f. Lo mismo ocurre si f es punto

fijo de W. O

Notamos que f “casi nunca” es un homomorfismo honesto, en el sentido de que casi nunca perte-

nece a Hom(Y, X) (aunque siempre es un Q-homomorfismo):

Proposicién 3.5. Si f € Hom(X,Y), A es la subvariedad abeliana complementaria de (ker £)° y B
es la subvariedad abeliana complementaria de im(f), entonces f+ es un homomorfismo honesto si
y sdlo si Anker f = {0} eim(f)NB = {0}. En particular, si o bien Hx o Hy es indescomponible
y f no es ni el homomorfismo 0 ni un isomorfismo, entonces f™ nunca es un homomorfismo

honesto.

Demostracion. Por la construcciéon de f* en la demostracién del Lema 3.1, tenemos que fT es un
homomorfismo honesto solamente cuando f restringido a la subvariedad abeliana complementaria
de (ker f)° es un isomorfismo con su imagen (lo cual es equivalente a que esta restriccion sea
inyectiva), y la interseccion entre la imagen de f y la subvariedad abeliana complementaria de
la imagen de f es 0. Esta ultima condiciéon inmediatamente implica que si f no es sobreyectivo,

entonces Hy es descomponible.

Tenemos entonces que f restringido a la subvariedad abeliana complementaria de (ker f)° es in-
yectivo si y solamente si la interseccion entre ker f y la subvariedad abeliana complementaria de

(ker £)° es trivial. O

Terminamos esta seccion observando, por el Teorema 3.2, que si f € Endf@(X ), entonces f1 €
End(X) también, ya que (f7)" = (f7)". Esto implica que tenemos una involucién (no lineal)

+: NSg(X) — NSg(X).

Ejemplo 3.6. Trabajemos un ejemplo sencillo. Si consideramos X = E? con E una curva
eliptica sin multiplicacion compleja, entonces via la representacion analitica podemos identificar
End(X) = My(Z). Ahora bien, en este caso la involucion de Rosati es simplemente trasposicion, y
entonces podemos identificar NSq(E?) con las matrices simétricas de 2 x 2 con coeficientes en Q,
o equivalentemente, con Q3. Siguiendo los pasos anteriores para calcular + : NSg(X) — NSg(X),

obtenemos que si (a,b,c) # (0,0,0), entonces

c —b a
ac—b2" ac— b2’ ac — b2

a b c
(a+¢)?" (a+c)? (a+c)?

> siac—b*#0

+(a,b,c) =
( ) > siac—b2=0
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Notamos entonces que, en caso que ac — b2 =0, tenemos

<I>(a7b,c):\I/(a,b7c)=< a b _c )

a+c a+c a+c

Mads ain, tenemos que (a,b,c) es un punto fijo de estas funciones si y sdlo si a+c = 1. Por lo tanto,
el conjunto de todos los idempotentes simétricos en E? que no sean la identidad estd parametrizado
por (a,b,1—a), donde b*> = a(1—a). Ahora, si queremos encontrar idempotentes simétricos que no
sean 0, entonces podemos parametrizar el circulo b*> = a(1 — a) usando la proyeccion estereogrdfica

desde el origen, y obtener que todas las soluciones son de la forma (a,b) = ( ) En

Lt
210 241
conclusion, hay una biyeccion entre curvas elipticas en E? y los elementos del conjunto

1 t t? teQ
2+12 4182 +1) ’

donde a cada racional t € Q, le podemos asociar la curva eliptica

Ey = {(z,y) € E* : tz = y}.

Notamos que no estd bien definida la division en una variedad abeliana, pero como los toros son

grupos divisibles, si estd bien definida la ecuacion anterior.

4. Intersecciones y sumas de subvariedades abelianas

Si (X, H) es una variedad abeliana polarizada y A, B C X son subvariedades abelianas con idem-
potentes simétricos €4, € Endg(X), es natural preguntarse como obtener los idempotentes
simétricos de A + B y (A N B)?. Usando el pseudoinverso y los resultados principales de [4],

podemos encontrarlos:

Proposicion 4.1. Si A, B C X son subvariedades abelianas (no necesariamente complementarias)

yeqx =1—ca (y lo mismo para B), tenemos las siguientes identidades:

1. Suma:
carp = (ea+ep)eaten)?t

= (ea+eB)T(ea+eB)

=ep + [(eacp)t(cacp)]

=ca+eu(eaen)t
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2. Interseccion:

eanpyp = 2e5(ea+ep)Tea

+

=2(ea —calea+ep)ten)

ea—(ea—epea)t(ea —epean)
1 1L

=ca— (epea)(epea)

_ Ly+

=ca—caleacs)”.

En las identidades anteriores también se puede intercambiar A y B, claramente, para obtener

nuevas identidades.

Demostracion. Para demostrar estas identidades, primero es necesario observar que To(A + B) =
To(A) + To(B) v To((AN B)Y) = Ty(A) N Ty(B) en Tp(X). Esto implica que solo es necesario
encontrar las proyecciones ortogonales de To(A + B) y To(A) N To(B) respecto a H en términos de
las proyecciones ortogonales de To(A) y To(B), ya que entonces estas proyecciones inducirian Q-
endomorfismos de X que serfan idempotentes simétricos, y cuyas imagenes serfan A+ By (ANB)°,
respectivamente. Esto es precisamente lo que se hace en las demostraciones de los Teoremas 3 y
4 de [4], donde encuentran las identidades expuestas arriba para proyecciones ortogonales. Esto

concluye la demostracion. O

Seria interesante en el futuro seguir estudiando propiedades de + como funciéon del grupo de

Néron-Severi en si mismo, y ver si es posible usarla para descomponer variedades abelianas.
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1. Introducciéon

Sea a € Q un ndmero algebraico y h(a) la altura logaritmica absoluta de Weil. Por un teorema
de Kronecker, h(a)) = 0 si y solo si « es cero o una raiz de la unidad. Fuera de estos casos, D. H.
Lehmer pregunto si [Q(a) : QJh(«) se puede acotar inferiormente de manera uniforme en « (ver

[12, §13, pagina 476]). De manera mas precisa:

Problema de Lehmer. FExiste un nimero real positivo ¢ tal que para todo o € @X que no sea

raiz de la unidad

Algunos de los resultados més cercanos al respecto se deben a Dobrowolski en [7] y a Smyth en
[20]. Sin embargo, una posible solucion parece estar fuera de alcance en estos momentos, por lo
que se estudian variantes méas débiles del problema. Siguiendo [4], decimos que un conjunto A de
nameros algebraicos tiene la propiedad de Bogomolov (B) si existe un ntimero real positivo 7' tal

que el conjunto

A(T) = {a € A\ {0} : h(a) < T}

consiste de todas las raices de la unidad en A. En otras palabras, los conjuntos con la propiedad

(B) cumplen que el cero esta aislado de los valores de h(«) y existe una cota inferior para la altura.

Todo cuerpo de ntmeros cumple la propiedad (B), asi que para encontrar ejemplos no triviales
debemos ver extensiones algebraicas infinitas de Q. También es facil encontrar cuerpos que no
tengan la propiedad (B), por ejemplo el cuerpo Q(v/2,¥/2, v/2,...) no tiene (B) pues h(2'/") =
h(2)/n. Al dia de hoy se conocen ejemplos y criterios de cuerpos con la propiedad (B). Daremos

un breve resumen de los resultados mas generales.

1973: En [17], A. Schinzel demostré que el cuerpo de niimeros algebraicos totalmente reales Q%

tiene la propiedad (B).

2000: En [2], F. Amoroso y U. Zannier mostraron que la maxima extensién abeliana K de un
cuerpo de nimeros K satisface (B). En particular, cada extension abeliana de K satisface
(B).

2001: En [4, Theorem 2|, E. Bombieri y U. Zannier probaron que cada extension de Galois infinita

L/Q con grado local acotado en algin primo racional (ver definicion 2.1) tiene la propiedad
(B).

2011: En [9], P. Habegger introdujo una familia de extensiones de Galois infinitas no abelianas
sobre @ que no tienen grado local acotado sobre algtin primo racional y que satisfacen (B).
Mas concretamente, sea E una curva eliptica definida sobre Q y FEios €l grupo de puntos

de torsion en E definido en alguna clausura algebraica de Q. Habegger consider6 el cuerpo



194 B. Castillo CUBO

27, 2 (2025)

Q(E4ors) generado por el conjunto de coordenadas de los puntos en Eiq,s respecto a un modelo

de Weierstrass de E con coeficientes racionales.

En [1], F. Amoroso, S. David y U. Zannier generalizaron el resultado sobre cuerpos con grado local

acotado ([4, Theorem 2]) y extensiones abelianas ([2]).

Teorema 1.1 (Amoroso, David, Zannier). Sea K un cuerpo de nimeros y L/K una extension de
Galois infinita con grupo de Galois G. Si E C L es el cuerpo fijo por el centro Z(G) y E/K tiene
grado local acotado en algin lugar no arquimedeano v en K acotado por dy, entonces L tiene la

propiedad (B), con cota inferior uniforme en v, dy y [K : Q).

Sumado a un resultado de S. Checcoli ([5, Theorem 1]), obtuvieron el siguiente corolario:

Corolario 1.2. Si K es un cuerpo de nimeros y L/ K una extension de Galois infinita con grupo
de Galois G tal que G/Z(QG) tiene exponente finito b, entonces L tiene la propiedad (B), de manera
uniforme en b y [K : Q).

En este trabajo exhibiremos una familia de extensiones algebraicas infinitas de Q que satisfacen
(B) como consecuencia del Teorema 1.1. Ademads, en algunos casos particulares mostraremos que
las extensiones no satisfacen la hipotesis del Corolario 1.2 (lo que se interpreta como estar «lejos

del caso abeliano») y que no pertenecen a la familia expuesta por P. Habegger en [9].

Nuestra construccion es la siguiente. Sea ¢ un nimero primo, K, = Q({) el cuerpo ciclotémico
donde (; es una rafz f-ésima de la unidad primitiva, y sea p C O, un ideal primo en el anillo de

enteros algebraicos de K. Definimos
Sp ¢ ={L/K, | una extension de Galois con [L : K;] = ¢ y tal que p no se escinde en L} .

Para cada L € S, ¢, sea Hy, el cuerpo de clases de Hilbert de L (es decir, la maxima extensién

abeliana no ramificada de L). Finalmente, sea L, ¢ el compositum de todos los Hy, para L € Sy .

Teorema 1.3. L, , satisface (B).

Si £ = 2 entonces K, es simplemente Q, asi que escribimos p en vez de p y Sp2 es el conjunto de

cuerpos cuadraticos donde p no se escinde. En este caso obtenemos los siguientes resultados.

Teorema 1.4. Sea p un nimero primo tmpar y E un cuerpo de nimeros contenido en Ly, o tal

que L, o/ E es una extension de Galois infinita. Entonces,
Gal(L,2/E)/Z(Gal(Ly 2/ E))

tiene exponente infinito.
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Teorema 1.5. Sea p un primo impar. Si E es una curva eliptica definida sobre un cuerpo de

numeros K, entonces Ly o ¢ K(Eiors)-

El Teorema 1.3 se sigue de que L, ¢/K, es una extension de Galois que tiene grado local acotado
en el valor absoluto inducido por p. Los Teoremas 1.4 y 1.5 esencialmente extienden lo que ya se
sabia del trabajo de A. Galateau en [8], donde se demuestran resultados similares para un cuerpo
contenido estrictamente en L, o cuya construccion es muy parecida (la diferencia es que Galateau

impone mas restricciones al conjunto Sp2).

La demostracion del Teorema 1.4 usa la misma idea de [8, Proposition 3.2], la cual es que el expo-
nente del grupo de clases de cuerpos cuadraticos imaginarios crece a medida que su discriminante
(en valor absoluto) lo hace (ver por ejemplo [16]). Para demostrar el Teorema 1.5 replicaremos exac-
tamente la prueba de [8, Proposition 3.3|; si bien podrfamos limitarnos a citarla, probablemente

para el lector sera mas comodo leerla aqui.

Para concluir la introduccién deberfamos justificar que Ly, en la mayoria de los casos es una
extension interesante, o sea que es una extension infinita de Q. Basta mostrar que el conjunto Sy, ¢

no es finito, lo cual demostramos al final de la seccién 4.

2. Grado local acotado

Manteniendo la notacion usada en la introduccion, en esta seccion demostraremos que Ly ¢/ Ky es
una extension de Galois que tiene grado local acotado en el valor absoluto inducido por p, lo que

nos permite mostrar la propiedad (B) para L, ; (ver Teorema 1.3). Empecemos con una definicion.

Definiciéon 2.1. Sea K un cuerpo de nimeros, v un lugar no arquimedeano en K y L/K una
extension algebraica. Decimos que L/K tiene grado local acotado en v si existe un entero n tal que
para cada extension w de v en L se tiene que [L,, : K,] <n, donde L., y K, son las completaciones

correspondientes a w y v.

Lema 2.2. Sea K un cuerpo de numeros y fijemos un valor absoluto no arquimedeano v en K. Sea
F una familia infinita de extensiones finitas de K. Supongamos que eziste un entero d tal que para
todo H en F y para toda extension |l a H de v se tiene que [H; : K,] < d. Si L es el compositum

de las extensiones en F, entonces L tiene grado local acotado en v.

Demostracion. Béasicamente replicamos la demostracion de [4, Proposition 1].

K, tiene una cantidad finita de extensiones de grado m (ver por ejemplo [14, Corollary 2, pagina
226]), lo cual aplica para todo m € N. Luego, la coleccion C de extensiones de K, de grado a lo
més d es finita. En particular, si M es el compositum de los cuerpos en C, entonces la extension

M/K, es finita. Por hipotesis, para cada H € F su completacion en cualquier valor absoluto I|v
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esta contenido en C, entonces, si w es cualquier valor absoluto en L sobre v, podemos incrustar
L, — M ya que L es el compositum de las extensiones en F. Asi, [L,, : K,] < [M : K,] donde el

altimo sélo depende de v y d. Por lo tanto, L tiene grado local acotado en v. O

Ahora mostremos que podemos aplicar este lema a nuestra construccion.

Proposicion 2.3. Sea L € S, y H su cuerpo de clases de Hilbert. Sil es un valor absoluto en

H sobre p, entonces
[H; : (Ky)p] < €2 - (orden de p en el grupo de clases de K)
donde (Ky), es la completacion de K, respecto a p.

Demostracion. Por definicion de S, ¢ se tiene que p no se escinde en L y L/K, es una extension de
Galois de grado £, asi, w denotara a un representante del tnico lugar en L bajo [; ademas, 3 C Oy

v g € Of, denotaran a los primos correspondientes a cada valor absoluto.

Primero es claro que [L., : (K;)p] = £. Por otro lado, sabemos que [H; : Ly = eq/n(B) fu/n(B),
donde ey y fr/r son el indice de ramificacién y grado de inercia de B, asi que basta calcular estos
invariantes. H/L es una extension abeliana no ramificada, por lo que eg/(B) =1y fru/L(F) =
ord(oy) = ord([g]), donde oy es el elemento de Frobenius. La ultima igualdad viene del isomorfismo
de Reciprocidad de Artin C(Opr) ~ Gal(H/L) dado por [g] — o4, donde C(Or) es el grupo de

clases de Oy, (ver [11, Chapter V, Theorem 5.7] para una demostracion).

Si p es inerte en L entonces g = pOy. En el otro caso, si p se ramifica en L entonces g* = pOy.

Luego, si n es el orden de p en el grupo de clases de K, tenemos que

£-n  sip seramifica en L
[H, : L] = ord([g]) <
n si p es inerte en L

con lo cual el resultado sigue de la ley de las torres. O

El altimo ingrediente que falta para probar que L, ,/K, satisface (B) es mostrar que Ly, ¢/ K, es
una extension de Galois. Para esto es suficiente la siguiente buena propiedad que tienen los cuerpos

de clases de Hilbert.

Lema 2.4. Sea k un cuerpo de nimeros, F/k una extension de Galois finita y Hp el cuerpo de

clases de Hilbert de F. La extension Hp/k es de Galois.

Demostracion. Sea L/Hp una extension de cuerpos y ¢ : Hrp — L un morfismo de k-algebras.
Notemos que o(HF) es una extension abeliana no ramificada de o (F) = F, conlo cual 0(Hp) C Hp

y por tanto o(Hp) = Hp. Luego, la extension Hp/k es de Galois. O
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Ahora demostrar que Ly ¢ tiene la propiedad (B) es sencillo.

DEMOSTRACION DEL TEOREMA 1.3. Primero la extension LM/Kg es de Galois por el Lema 2.4.
Por la Proposicién 2.3 tenemos que Ly ¢ es el compositum de cuerpos de ntimeros tal que, para
cada valor absoluto en ellos sobre p, el grado de su completacion sobre (Ky), estd acotado por
% - ord([p]), donde [p] es la clase de p en el grupo de clases de K,. Luego, Ly, tiene grado local

acotado en p por el Lema 2.2. Por lo tanto, L, , satisface (B) por el Teorema 1.1. O

3. El caso (¢ =2

En esta seccién realizaremos un anélisis mas explicito de qué cuerpo aparece al completar Ly o,
obteniendo la extension bi-cuadrética de Q, en el sentido de que es la extensiéon de Q, de grado 4
cuyo indice de ramificacion y grado residual es 2. Esto nos va permitir dar una cota inferior para

el limite inferior de la altura en Ly 5 gracias a [4, Theorem 2].

Recordemos que en el caso ¢ = 2 se tiene que K; = Q, por lo que simplificaremos la notacién
cambiando p por p un nimero primo impar (en lo que sigue es relevante que el primo p sea impar),
Sp,2 por S, ¥ Ly 2 por Ly,. En resumen, nuestro cuerpo base es Q, S, son los cuerpos cuadraticos

donde p no se escinde y L, es el compositum de los cuerpos de clases de Hilbert Hg para K € S,.

Fijando notacién, dado K en S, sea Hg su cuerpo de clases de Hilbert, p C Ok el ideal primo
sobre p, B C Of, cualquier ideal primo sobre p y K,, Hyp los cuerpos completados de K y Hg

respecto a estos primos. El siguiente resultado es claro.

Lema 3.1. Para K, tenemos las siguientes posibilidades:

v Sip esinerte en K: K, es la extension cuadrdtica no ramificada de Q.

= Sip se ramifica en K: K, es una extension cuadrdtica ramificada de Q,.

Por otro lado, siguiendo la demostracién de la Proposicion 2.3 obtenemos lo siguiente.

Proposicion 3.2. Para Hy tenemos las siguientes posibilidades:

v Sip esinerte en K: Hy es la extension cuadrdtica no ramificada de Q, .
= Sip se ramifica en K yp es principal: Hy es una extension cuadrdtica ramificada de Q,.

= Sip se ramifica en K y p no es principal: Hy es una extension de Q, de grado 4 moderada-

mente ramificada, es decir, e(Hy/Qp) = f(Hyp/Qp) = 2.

[1P*]

Demostracion. Ver la demostracion de la Proposicion 2.3 y tener en mente que “g” y “p” en esa

proposiciéon son, en este caso, p y p respectivamente. O
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Ahora somos capaces de especificar quienes son los cuerpos Hyp.

Proposicion 3.3. Sea p un primo impar y K € S,. Los cuerpos p-ddicos que pueden aparecer al

completar Hy respecto a un valor absoluto sobre p son Q,(+v/C), Qp(v/C7), Qp(v/7) ¥y Qp(v/7, V),

donde m es un primo fijo en Zy, y ¢ es una raiz primitiva de la unidad de orden p — 1.

En particular, el compositum de todos ellos es Q,(y/m, /().

Demostracion. La herramienta clave de la demostracion es [14, Proposition 5.31].

El primer y segundo punto de la Proposicion 3.2 recaen en las opciones Q,(v/C), Q,(v/(), Q,(/7),

donde 7 es un primo fijo en Z, y ¢ es una raiz primitiva de la unidad de orden p — 1.

Para el tercer punto de la Proposicion 3.2, notemos que Hy es la extension cuadratica no ramificada

de K, (ver Proposicién 2.3), asi que por [14, Proposition 5.31]

Hq} = KP(\/Z)a

donde (¢ se puede escoger igual que antes pues estamos en el caso en que p se ramifica en K. Por

el Lema 3.1 tenemos que K, = Q,(y/7) 6 K, = Q,(v/(m). En cualquier caso,

que es la extension bi-cuadratica de Q,, por [14, Proposition 5.32]. O

Proposicién 3.4. L, satisface que

p log p
> ==
hc?elg,,lf @) 4(p2+1)

Demostracion. Sea M = Q,(y/7,1/{) la extension bi-cuadratica de @, donde 7 es un primo fijo
en Z, y ¢ una raiz de la unidad de orden p — 1. En particular, e(M/Q,) = f(M/Q,) = 2.

Si v|p es un valor absoluto en Ly, por la Proposiciéon 3.2 podemos tomar un Hg tal que (Hg ), =~

Qp(v/7,v/C). Luego, por la Proposiciéon 3.3 tenemos la incrustacion
Hi = Ly = Qp(v/7, /()

con lo cual (L), ~ Q,(y/7, Q).

Con esto, p € S(L,) donde S(L,) es el conjunto de nimeros primos ¢ tal que L, se puede incrustar
en una extension finita L de Q4. Como L,/Q es una extensién normal (ver Lema 2.4) podemos

usar la cota inferior de [4, Theorem 2|, la cual es
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L. 1 logq logp
liminf h(a) > = > . O
minthle) 2 2;: lah 1) 2 0P )

4. Resultados auxiliares

En esta seccion demostraremos los resultados necesarios para la demostracién del Teorema 1.4.
Esta seccion se inspira en precisar la idea utilizada en [8, Proposition 3.2]. Como la demostracion
del Teorema 1.4 es sencilla, para el lector probablemente sea mas eficiente pasar directamente a
la siguiente seccion y volver en caso de querer verificar los detalles. Al final también mostraremos

que Sy ¢ no es finito. Empecemos con la nocién de grupo dihedral generalizado.

Definicion 4.1. Sea N un grupo abeliano no trivial. El grupo dihedral generalizado de N es el

producto semidirecto
N X Z/2Z

donde Z/27 actia en N invirtiendo elementos, asi que la operacion de grupo viene dada por

(n1,0) - (n2,a) = (n1nz, a)

(n1,1) - (ng,a) = (nlngl, 1+a)

Lo denotamos por Dih(N).
El siguiente resultado elemental nos seré bastante ttil.
Lema 4.2. Si N es un grupo abeliano no trivial entonces Z(Dih(N)) es un grupo de exponente 2.
Demostracion. Sea n € N. Si (n,0) € Z(Dih(N)), operando (n,0) con (n,1) vemos que
(n,0) - (n,1) = (n?, 1) = (en,1) = (n,1) - (n,0)

con lo cual n? = ey y (n,0) tiene orden 2.

Por otro lado, es claro que todo elemento en Dih(N) de la forma (n,1) tiene orden 2. O

Lema 4.3. Si K es un cuerpo cuadrdtico imaginario y Hy su cuerpo de clases de Hilbert, el grupo

de Galois de Hi /Q es un grupo dihedral generalizado

Demostracion. La extension Hg /Q es de Galois por el Lema 2.4. Fijemos una incrustacion Hx C C
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y sea 7 : C — C la conjugaciéon compleja. Notemos que tenemos la secuencia exacta
0 — Gal(Hg/K) — Gal(Hg /Q) — Gal(K/Q) — 0
la cual se escinde pues 7 € Gal(Hg /Q) (ver Lema 2.4) y tenemos la seccion 7k — 7|, . Entonces,
Gal(Hg /Q) ~ Gal(Hk /K) x Gal(K/Q)

donde 7 actia en Gal(Hg /K) conjugando elementos.

Si p es un ideal primo de Ok y oy el elemento de Frobenius, es sabido que o, = 700, 0 1

asi que en vista del isomorfismo de Reciprocidad de Artin C(Ok) ~ Gal(H/K) dado por [p] — oy
(ver [11, Chapter V, Theorem 5.7] para una demostracion), Gal(K/Q) actia en el grupo de clases
C(Ok) mandando a un primo a su conjugado, que es su inverso pues estamos en una extension
cuadratica. Por lo tanto,

donde Z/2Z actia en C(Ok) invirtiendo elementos. O

El lema anterior es lo que nos va a permitir hablar sobre el exponente del grupo de clases C(Ok)
de un cuerpo cuadratico imaginario K (recordamos que el exponente de un grupo es el minimo
comtn multiplo de los ordenes de los elementos del grupo). Ahora precisaremos la idea de que
este exponente va creciendo a medida que el discriminante de K lo hace. Primero necesitamos un

resultado de densidad.

Lema 4.4. Sea p un nimero primo impar. Si A es el conjunto de primos que son residuos cua-
drdticos mddulo p y que ademds son congruentes a 3 mddulo 4, entonces d(A) = 1/4 donde d(A)

es la densidad de Dirichlet.

Demostracion. Sean a,m € Z con (a,m) = 1, sea P(a;m) el conjunto de primos ¢ tal que ¢ = a

mod m.

Si 7 es un residuo cuadratico médulo p y r = 3 mdd 4, por el teorema chino del resto existe
una Gnica clase s en Z/4pZ tal que r = s mdd 4p. Por el teorema de Dirichlet sobre primos en
progresion aritmeética d(P(s;4p)) = 1/(2(p — 1)) (ver [10, Theorem 1, pagina 251]). Ademas, es
sabido que la cantidad de residuos cuadraticos modulo p es (p — 1)/2, asi que por la aditividad de

la densidad d(A) = 1/4. O



CUBO

Algunas extensiones infinitas de Q con la propiedad de Bogomolov 201

27, 2 (2025)

El siguiente teorema se debe a F. Pappalardi.

Teorema 4.5. Si d es un entero positivo y m(d) es el exponente del grupo de clases de Q(v/—d),
para todos los d < x tales que —d es un discriminante se tiene que

logd/4

m(d) > loglogd’

—1 . . . .
salvo a lo mds O (wl’A(log logz) ) excepciones. Mds precisamente, para cada A < %logQ se tiene
que

#{dgaj:m(d) < log d/4

1—A(loglogz)~!
< loglogd} <A .

Demostracion. Ver [16, Theorem 1.2]. O

Observacion 4.6. En particular, el conjunto de excepciones tiene densidad natural cero y por

ende también tiene densidad de Dirichlet cero.

Nos interesa que el exponente vaya creciendo en un grupo especifico de cuerpos cuadraticos ima-

ginarios.

Proposicion 4.7. Sea p un nidmero primo impar. Si C es la coleccion de cuerpos cuadrdticos
Q(y/=q) donde q es un primo congruente a 3 mdédulo 4 que es residuo cuadrdtico mdédulo p, enton-

ces, para todo n € N existe Q(v/—qn) € C tal que
m(qn) > n
donde m(qy) es el exponente del grupo de clases de Q(v/—qn).
Demostracion. La condicion ¢ =3 modd 4 ciertamente hace que —¢ sea un discriminante. Notemos

que si A es un numero real positivo, se tiene que

-1
xA(log log x)

lim ——— = 4o0.
x——+00 log x

_T
logz

la cantidad de primos menores o iguales a x sobrepasa al conjunto de excepciones del Teorema

Por el teorema de los ntumeros primos, 7(x) ~ , luego, el calculo anterior nos muestra que
4.5 a medida que x crece, y por ende podemos encontrar un primo ¢ suficientemente grande tal
que m(q) > n. Como esta condicién depende del tamafio de ¢, podemos tomar un g, tal que
Q(v/=¢n) € C y m(gn) > n. Notemos que si esto tltimo no fuera posible, quiere decir que los
nimeros mayores que ¢ del conjunto A del Lema 4.4 estan todos contenidos en el conjunto de
excepciones del Teorema 4.5. Sin embargo, esto implicaria que A tiene densidad de Dirichlet cero,

lo cual no es cierto. O
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Observacion 4.8. Lo mismo aplica si consideramos q que no es residuo cuadrdtico mddulo p, lo

cual serd necesario en la demostracion del Teorema 1.4.

Los siguientes resultados son para justificar que L, en general es una extension infinita de Q.

Recordemos que la notaciéon utilizada se encuentra en la introduccion.

Lema 4.9. Para cada clase @ € Ok, /p, existen infinitos § = o méd p tal que zt — B es irreducible

en K.

Demostracion. Sea « representante de alguna clase en Ok, /p y supongamos que « es una potencia
(-ésima en Ky, es decir, existe a € K, tal que a = a*. En particular, a € Ok, .

Si p € p tenemos que a = o+ (p¥)” méd p para todo n € N. Si o+ (p®)™ es una potencia (-ésima,

L L

digamos, a + (p*)" = ¢!, con ¢, € Ok,, entonces a’ + (p")’ = ¢ y (a,p",¢n) € (Ok,)? serian

soluciones de la ecuacion

en Ok, = Z[(y).

Si ¢ > 3, el Teorema de Faltings (cf. [3, pagina 352]) asegura que la curva X* + Y* = 1 tiene una
cantidad finita de puntos racionales en Ky. Si £ = 3, la ecuacién no tiene soluciones por el teorema
de Kummer sobre la ecuacion de Fermat para primos regulares (cf. [15, pp. 37-38]). Luego, en

ambos casos existen infinitos 3, = a + (p®)" tal que x* — 3, es irreducible.

Si ¢ = 2, el argumento anterior no funciona. Sin embargo, en ese caso O, = Z por lo que el

resultado es claro. O

Proposicion 4.10. S, ¢ no es finito cuando p 1 £.

Demostracion. Si L es una extension de Galois de Ky de grado ¢ podemos asumir que L = K;(/«)
para algin o € Og,, i.e., cuyo generador tiene polinomio minimal zt—a € Ok, [x]. Nos limitaremos
a analizar bajo que condiciones p es inerte en L.

¢ — o es separable modulo p y por ende p no se ramifica en L. Ademas,
4 =

Sia#0 méd p entonces
p se escinde en L si y solo si x a méd p tiene solucién en Ok, (ver por ejemplo [6, Proposition
5.11]). Tomando un generador de (O, /p)* es un simple ejercicio ver que esto ultimo es equivalente
a que

N(p)—1 ,
a@N¥®m-D =1 mdbd p.
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Sea s la caracteristica de Ok, /p. Notemos que N(p)—1 = sfe —1 donde fp es el grado de inercia de
p. Por otro lado, recordemos que K; = Q(¢¢) es un cuerpo ciclotémico, con lo cual f, = ordle (s)

y por ende (¢, N(p) — 1) = £. En resumen,

Np)—1

pseescindeen L <= o~ ¢ =1 mdd p.

Luego, en el caso de que a no sea raiz del polinomio x - (xmpé)_l — 1) modulo p se tendra que p es

inerte en L. El lema anterior muestra que podemos encontrar una cantidad infinita de extensiones

L/ Ky de este tipo, lo cual concluye la demostracion. O

5. Relacion de L, con otras familias

En esta ultima seccién vamos a probar el Teorema 1.4 y Teorema 1.5. También recordamos que
la demostracion del Teorema 1.5 se puede encontrar en [8, Proposition 3.3] y aqui simplemente la

vamos a reescribir.

Al igual que en la secciéon 3, simplificamos la notaciéon cambiando p por p un ntimero primo impar,
Sp,2 por S, y Ly 2 por L. En resumen, nuestro cuerpo base es Q, S, son los cuerpos cuadraticos

donde p no se escinde y L, es el compositum de los cuerpos de clases de Hilbert Hg para K € S).

Consideremos la coleccion
R, = {Q(\/?q) igesprimo, =3 méd4y <—q> _ _1}
p

donde (—) es el simbolo de Legendre (de hecho, esta es la coleccion utilizada por A. Galateau en
[8]). Con estas condiciones —¢ es un discriminante y p es inerte en Q(y/—¢q), por lo que R, C S,,.
La ventaja de trabajar con los cuerpos de clases de Hilbert de estos cuerpos cuadraticos es que su

intersecciéon a pares es trivial.

Lema 5.1. Sean K y K’ cuerpos cuadrdticos distintos contenidos en R, y Hy, Hg+ los cuerpos

de clases de Hilbert respectivos. Se tiene que Hx N Hyr = Q.

Demostracion. Sea ¢ un numero primo. Notemos que HQ(\/jq)/Q se ramifica solo en ¢, ya que
Q(v/—¢)/Q se ramifica solo en q y Hg(/=4)/Q(y/—¢) no se ramifica.

Si ¢y s son primos distintos, la interseccion de Hg(,/=g) v Hg, /=) es trivial, pues en caso contrario
tendria ramificacion por el teorema de Minkowski (¢f. [15, Chapter III, (2.17)]) la cual se extenderia

sobre estos dos cuerpos. O
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Ahora estamos listos para probar el Teorema 1.4.

DEMOSTRACION DEL TEOREMA 1.4. La demostracion sera por contradiccién, asumamos que este

exponente es finito y llamémoslo I.

Al existir una cantidad finita de cuerpos intermedios E /M /Q solo puede haber una cantidad finita
de K € R, tal que Hx N E # Q, ya que por el Lema 5.1 estos cuerpos no pueden repetirse
cuando variamos K. Entonces, por la Proposicién 4.7 podemos fijar un K € R, tal que C(Ok)
tiene exponente mayor que 21 y Hx N E = Q. Con esto, siendo Hx E el compositum de Hx y F,
tenemos que

Gal(HxE/E) ~ Gal(Hg /Q)

y por el Lema 4.3
Gal(HxE/E) ~ C(Ok) x Z/2Z. (5.1)

Tenemos las extensiones L,/HxgE/E y ademés la extension HxE/E es de Galois, por lo que
Gal(Hg E/E) es isomorfo a un cociente de Gal(L,/E) que llamaremos C. Notemos que la proyec-

cion 7 : Gal(L,/E) — C induce un homomorfismo sobreyectivo
Gal(Ly/E)/Z(Gal(Ly/ E)) — C/Z(C),

con lo cual Gal(HxE/E)/Z(Gal(Hx E/E)) tiene exponente menor o igual que I. Luego, el iso-
morfismo (5.1) y Lema 4.2 nos dice que C'(Of) tiene exponente menor o igual que 27, lo cual es

una contradiccién. Por lo tanto, I no puede ser finito. O
Por altimo, veamos que L, no pertenece a la familia establecida por Habegger ([9]).

DEMOSTRACION DEL TEOREMA 1.5. Por contradicciéon supongamos que L, C K (Ejoys).

Si E tiene multiplicacion compleja, K (FEiors) C K2 (ver por ejemplo [19, pagina 428]) con lo cual
Gal(L,/L, N K) ~ Gal(L,K/K) seria abeliano, lo que contradice el Teorema 1.4.

Si F no tiene multiplicacién compleja, sea ¢ un ntimero primo que satisface las condiciones de R,
y es suficientemente grande de tal forma que ¢ no ramifica en K, la curva eliptica E tiene buena
reducciéon en todos los primos de K sobre ¢ y es posible ocupar el teorema de imagen abierta de
Serre ([18]):

Gal(K (Elq))/K) ~ GLs(F,)

donde E[q] son los puntos de ¢-torsion de E.
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Si My = Q(v/—q) y Hu, su cuerpo de clases de Hilbert, la extension Hyy, /Q ramifica moderada-
mente en ¢ y no ramifica en otros primos por lo que Hyy, € K(E[q]). Ademas, podemos escoger ¢

tal que
Gal(HMq/Q) ~ C(OMQ) X Z/?Z

(donde Z/27 acttia invirtiendo elementos) no sea abeliano, para esto basta que C(Oyy,) no tenga

exponente 2 (ver Lema 4.2 y Lema 4.3).

Es posible incrustar este grupo de Galois como un subgrupo normal de GL2(F,) que no esta
contenido en su centro. Al ser PSL;(F,) un grupo simple, se tiene que |Gal(Hyy, /Q)| > q(¢* — 1)
y por ende

qa(¢* - 1)

C(Om,)| 2 =5—-

Siguiendo [13], por la férmula analitica del nimero de clases tenemos que

C(Ou,) = “BNT 11y,

donde w(M,) es el nimero de raices de la unidad en M, y x el caracter asociado a M,. Sabemos

que w(M,) <6y L(1,x) <log(y/q) + 1, como se observa en [13, pagina 214|. Luego,

(O, < 2 Vallog(y/a) +1)

llegando a una contradiccion. O
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RESUMEN

Una superficie de Riemann cerrada S es llamada una curva
generalizada de Fermat de tipo (k,n), donde k,n > 2 son
enteros tales que (k—1)(n—1) > 2, si admite un grupo H 2
Zy, de automorfismos conformes de manera que el orbifold
cociente S/H sea de género cero y tenga exactamente n + 1
puntos coénicos, cada uno de ellos de orden k.

Si un elemento de H, de orden k, tiene puntos fijos, entonces
tiene exactamente k"' puntos fijos, digamos qi, . . ., ggn—1 €
S. Por cada g; tenemos asociado su vector de constantes de
Riemann —2/Cy; € JS, donde JS es la variedad jacobiana de
S. Nuestra primera observacion es que Kq, +---+Kq,,, , €s
un punto de torsiéon de orden dos en JS.

Sea D un divisor efectivo de grado gi », el género de S. Ober-
vamos que D no puede ser H-invariante. En el caso que D
tenga soporte en los puntos fijos de los elementos no-triviales
de H, entonces obtenemos condiciones algebraicas, necesa-

rias y suficientes, para que D sea no-especial.
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A simple observation concerning the vector of
Riemann constants and non-special divisors of
generalized Fermat curves

RUBEN A. HipaLGOM®

ABSTRACT
1 Departamento de Matemdtica y A closed Riemann surface S is called a generalized Fermat
Estadistica, Universidad de La Frontera, curve of type (k,n), where k,n > 2 are integers such that
Temuco, Chile. (k—1)(n—1) > 2, if it admits a group H = Zj, of conformal
ruben. hidalgo@ufrontera. 1™ automorphisms such that the quotient orbifold S/H has ge-

nus zero and has exactly n + 1 conical points, each of them
of order k.

If an element of H, of order k, has fixed points, then it has
exactly k"' fixed points, say qi,...,qwm-1 € S. To each ¢;
we associate its vector of Riemann constants —2/Cq; € JS,
where JS is the jacobian variety of S. Our first observation
is that Kq, +--- + Kq,,,_, is an order two torsion point in
JS.

Let D be an effective divisor of degree gi, n, the genus of S.
We observe that D cannot be H-invariant. In the case that D
is supported on the fixed points of the non-trivial elements
of H, then we obtain algebraic conditions, necessary and

sufficient, for D to be not-special.
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1. Introducciéon

Sea S una superficie de Riemann compacta de género g > 2 y Aut(S) su grupo (finito) de auto-
morfismos conformes (holomorfos). En la teoria general de superficies de Riemann, hay un interés
en encontrar féormulas tipo Thomae [16,17] para cubrimientos (ramificados) Galois 7 : S — C,
cuyo grupo de transformaciones de cubrimiento A < Aut(S) es abeliano (decimos que 7 es un
cubrimiento abeliano). Con tal propdésito, es importante encontrar divisores efectivos de grado g
no-especiales que sean A-invariantes y cuyo soporte esta contenido en el conjunto de los puntos

fijos de los elementos no-triviales de A.

En el caso que S es hipereliptica y A & Zs es generado por la involucion hipereliptica, esto ha sido
resuelto por Thomae [16,17] y Frobenius [7]. Una generalizacion se ha obtenido para algunos casos
de superficies ciclicas n-gonales (n > 2) es decir, cuando A = Z,, y S/A tiene género cero (ver [§]
en el caso n primo, y [1-4,6,15,18] para el caso totalmente ramificado). En el caso general, en [14],
se ha observado que, en caso de existir, un divisor efectivo en S que es A-invariante y de grado g
es no-especial si y solo si cierta relacion algebraica se cumple. Ademés, tales divisores deben estar
necesariamente soportados en los puntos fijos de los elementos no-triviales de A (|14, Theorem
4.4]). Desafortunadamente, no siempre pueden existir tales tipos de divisores. En este articulo,

veremos pares (S, A) donde esta situacion de no existencia ocurre.

Un par (S, H) es llamado un par generalizado de Fermat de tipo (k,n), donde k,n > 2 son
enteros tales (n — 1)(k — 1) > 2, si H = Z}, y el orbifold cociente S/H es de género cero y con
exactamemte n + 1 puntos conicos, cada uno de ellos de orden k. La superficie S (respectivamente,
el grupo H) es llamada una curva generalizada de Fermat (respectivamente, un grupo generalizado
de Fermat) de tipo (k,n). La formula de Riemann-Hurwitz asegura que S tiene género gy, =
- kn;

ecuacion algebraica para S, dada por un cierto producto fibrado de (n — 1) curvas clasicas de

((n—1)(k—1) —2) > 5. En [9], se observé que S es no-hipereliptica y se construyé una

Fermat de grado k, y cuyos coeficientes son dados por los valores conicos de S/H (Secciéon 3.2). En
[12], se verifico que H es el tnico grupo generalizado de Fermat de tipo (k,n) en S (esta propiedad
de unicidad permite, de cierto modo, mirar a S como un simil al caso de superficies hiperelipticas,
donde H suple el rol del grupo generado por la involucion hipereliptica). De hecho, en [11], se
verifico que S no puede tener otro grupo generalizado de Fermat de tipo (k',n') si k' #k on’ #n.
El grupo generalizado de Fermat H tiene un conjunto de generadores {ay,...,an+1} C H que

satisface lo siguiente:

(l) ag - Qpy1 = 1,
(ii) todo elemento no-trivial de H que tiene puntos fijos es potencia de alguno de los a;, y

(iii) el angulo de rotacion de cada a; en cada uno de sus puntos fijos es 27i/k.
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Cada elemento a;, donde j = 1,...,n+ 1, es llamado un generador estandar de H, y tiene exacta-
mente k"~ puntos fijos. El conjunto {ay,...,a,11} se llama un conjunto estandar de generadores
de H.

Notemos que la superficie generalizada de Fermat S es el cubriente homolégico del orbifold de
Riemann Oy, = S/H (la esfera de Riemann con exactamente n + 1 puntos conicos, cada uno de
orden k). La unicidad del grupo generalizado de Fermat es equivalente a decir que dos orbifolds
Ok,n ¥ Ok ns son biholomoérficamente equivalentes si y sélo si sus correspondientes cubrientes ho-
mologicos son biholomérficamente equivalentes (una especie de teorema de Torelli para orbifolds).
Equivalentemente, si I'; y I'y son dos grupos Fuchsianos, digamos que I'; tiene firma (0; k;, ..., k;)

para j = 1,2, entonces I'y = I' si y solo si I'} = I'y, donde I'; denota el subgrupo derivado de T';.

Uno de los resultados de este trabajo permite notar que las ideas usadas en los casos de cubrimientos
abelianos antes considerados (por ejemplo, los ciclicos y los abelianos que satisfacen las propiedades
en [14]) no pueden ser usadas en el caso de los grupos de Fermat generalizados. En efecto, sea D
un divisor efectivo de grado g, en S. En la Proposicién 3.9, observamos que D no puede ser
invariante bajo ningun subgrupo de H que contenga un elemento de orden d > 2, que no sea la

potencia de algin generador estandar, en ninguna de las siguientes situaciones:

1. d>3.
2. d =2y k es un multiplo de 4.

3.d=2yn>3.

En particular, lo anterior nos indica que D no puede ser H-invariante. Por lo que el resultado en
[14, Theorem 4.4] en este caso no puede aplicarse y la busqueda de Formulas tipo Thomae para los
pares generalizados de Fermat no es facil. Es importante notar en este punto, que la intencién de
este trabajo no es el obtener tales férmulas para pares generalizados de Fermat. Nuestro propdsito
es notar que este tipo de cubrientes abelianos no es considerado, respecto a la busqueda de formulas
tipo Thomae, en los trabajos que hay en la literatura. Esperamos poder hacer tal estudio en un

trabajo posterior.

En el Teorema 3.10, damos condiciones algebraicas necesarias y suficientes para que un divisor
efectivo de grado g, cuyo soporte esté contenido en el conjunto de los puntos fijos de los gene-
radores estandar, sea no-especial. Es posible encontrar tales divisores D que son invariantes por
alguno de los generadores estandar (ver Ejemplos 2.1 y 3.11). En este caso, en el Teorema 3.13,

indicamos condiciones necesarias y suficientes analiticas para que D sea no-especial.

Nuestra siguiente observaciéon corresponde a los vectores de constantes de Riemann de los puntos
fijos de un generador estandar. Asociado a la curva generalizada de Fermat S, de tipo (k,n),

tenemos su espacio de diferenciales holomorfas H%(S), que es un C-espacio vectorial complejo de
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dimension g ,,. Si H-?(S)* denota el espacio dual de H>?(S), entonces S tiene asociada su variedad
jacobiana J.S = HY0(S)* /H;(S;Z), el cual es un toro complejo g ,-dimensional (que admite una
polarizacion principal proveniente de la forma de interseccion en homologia). Cada punto ¢ € S
define una incrustacion holomorfa ¢, : S — JS : p — [ / ;’ ] . Esta incrustacion tiene la propiedad de
que, si 61 and 6, son diferenciales meromorfas de S, entonces ¢q((61)) = ¢q((62)), donde (6;) denota
el divisor asociado a ¢;. Este valor es denotado por —2K, y es llamado el vector de constantes
e Js

es un punto de torsiéon de orden dos, donde ¢qi,...,qun—1 son los puntos fijos de un generador

de Riemann asociado al punto ¢. En el Teorema 3.8, observamos que g, + -+ + Kq .,

estandar. Esto generaliza la situacion conocida para el caso de puntos fijos de automorfismos 7
de una superficie de Riemann S tal que S/(7) es de género cero y donde cada punto fijo de una
potencia no-trivial de 7 también es punto fijo de 7 (ver [18, Lema 2.2.]). Este tipo de resultados
es de mucho interés en la teoria respecto a formulas de Thomae (ver, por ejemplo, [6, 18] para

mayores detalles).

Notaciones

1. S denotara una superficie de Riemann compacta de género g > 2 y Aut(S) su grupo de

automorfismos conformes (holomorfos).

2. Si S es una curva generalizada de Fermat de tipo (k,n), entonces H = Z7 denotara su grupo

generalizado de Fermat de tipo (k,n).
3. Div(S) denota el grupo abeliano de los divisores sobre S.
4. El grado del divisor D € Div(S) es denotado por deg(D).
5. Divd(S ) denota al conjunto de divisores efectivos de grado d.

6. Si f: S5 — C es una funciéon meromorfa no cero, entonces denotamos su divisor de ceros y

polos por (f).

7. Si 6 es una diferencial meromorfa diferente de cero, entonces denotamos su divisor de ceros

y polos por (6).

8. L(—D) denota el espacio vectorial complejo que consiste, aparte de cero, de todas las fun-

ciones meromorfas f tal que (f) + D es efectivo. Su dimension es denotado por r(—D).

9. (D) denota el espacio vectorial complejo que consiste, aparte de la difencial cero, de todas
las diferenciales meromorfas w tal que (w) — D es efectivo. Su dimension es denotado por
i(D).

10. JS denota la variedad jacobiana de S.



214 R. A. Hidalgo

11. Si g € S, entonces —2KC, € JS denota su vector de constantes de Riemann.

12. Cf,

puntos 00,0,1,A1,..., A2,y Hyo = Z}} su grupo generalizado de Fermat. Sus generadores

A, , denota una curva generalizada de Fermat de tipo (k,n) determinada por los

yeeey

estandar serdn denotados por ay, ..., Gn4+1-

13. Para cada generador estandar a;, denotaremos por Fix(a;) tanto a su conjunto de puntos

fijos como al correspondiente divisor.

14. 0,4, .
por (97’§C¥3,~~’O¢n+1) — (a3 _|_ . —I— Ozn+1 — 2 — T)Fix(al) + ’I“FiX(CLQ) + Z;lig}(k’ — 1 — OéJ)FlX(aJ)

denota la diferencial meromorfa de C§ | cuyo divisor es dado

seeeyQn41

15. I ={(r;as3,...,0n41);0; €{0,1,...,k =1}, 0<r <as+-- + any1 — 2}

2. Preliminares

En el resto de esta seccion, S denotara una superficie de Riemann cerrada de género g > 1.

2.1. Divisores

Denotaremos por Div(S) el grupo abeliano de los divisores de S, es decir, el grupo abeliano libre
generado por los puntos de S.Si D € Div(S), entonces v4(D) € Z es el valor tal
que D = Dy + v4(D)gq, donde Dy esta soportado en S — {q}. El grado de D es definido como
deg(D) = 3", c5vq(D). En el caso de que, para cada g € S, se cumpla que v4(D) > 0, diremos que
el divisor es efectivo, denotado por D > 0. Denotaremos por Divd(S) al conjunto de los divisores
efectivos de grado d > 1; el cual resulta ser una variedad compleja compacta de dimensiéon d. Si
f:98— C es una funcién meromorfa y diferente de cero (respectivamente, si 6 es una forma
diferencial meromorfa y diferente de cero en S), entonces denotaremos por (f) (respectivamente,

(#)) a su divisor que codifica sus ceros y polos contando sus respectivas multiplicidades.

2.2. Divisores no-especiales
2.2.1.

Cada divisor D € Div(S) tiene asociado un C-espacio vectorial L(—D) (respectivamente (D))
de dimensién r(—D) (respectivamente, i(D)) que consiste, aparte del cero, de todas las funciones
meromorfas f : S — C tales que (f) + D > 0 (respectivamente, formas meromorfas 6 tales que

(w) > D). El Teorema de Riemann-Roch nos dice que r(—D) = deg(D) — g+ 1 + (D).
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2.2.2,

Supongamos, en lo que sigue, que D > 0. Lo anterior nos dice que r(—D) > 1 (ya que en L(—D)

estan las funciones constantes), en otras palabras, i(D) > g — deg(D).

Cuando (D) = 0 se dice que D es un divisor no-especial (en caso contrario, un divisor especial).
Luego, (i) si deg(D) < g, entonces D es especial, y (ii) si deg(D) = g, entonces D es no-especial si
y solo si r(—D) = 1.

2.3. Divisores invariantes por accién de grupos

Supongamos que tenemos un grupo finito G de automorfismos conformes de S. En este caso,
R = S/G resulta ser un orbifold de Riemann (una superficie de Riemann junto a una coleccion
finita de puntos con pesos enteros positivos). Sea 7 : S — R un cubrimiento ramificado holomorfo
cuyo grupo de transformaciones cobertoras es G, es decir, w(z) = 7(y) si y solo si existe 7 € G tal
que 7(x) = y.

Sea v > 0 el género de Ry sean q1,...,q, € R los valores de ramificacion de 7, es decir, la proyec-
ci6n de los puntos de S con G-estabilizador no-trivial. Sip € m~!(g;), entonces el G-estabilizador de
p es un grupo ciclico de un orden k; > 2 que divide al orden |G| de G. Dos puntos cualesquiera en la
m-preimagen de ¢; tienen G-estabilizadores que son G-conjugados. La formula de Riemann-Hurwitz

dice que

1 |G
=146 -0+ 23 g .
j=1 "

Sea D > 0 un divisor que sea G-invariante (es decir, G permuta los puntos del soporte de D y deja

invariantes los pesos correspondientes). En tal caso, D debe tener la siguiente forma:
-D - llﬂ-il(pl) + M + lsﬂ-il(ps) + mlﬂ—il(ql) + t + mnﬂ_il(QH)a

donde p1,...,ps € R\{q1,- - aqn}, l1,-- -, ls,m1,...,m, €{0,1,2,...}, y 7~ 1(y) denota el divisor
cuyo soporte son los puntos en la m-preimagen de y € R (cada uno con peso igual a 1). De esta

manera,

Gl

deg(D) = (Iy + -+ - + 15)|G] +;mjk7j.
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La condicién
deg(D) =g
es entonces equivalente a la siguiente igualdad
2k = [ 2kl + -+ 1, +1—9)+ > (2m; —k; + Dk, | |G, (2.1)

Jj=1

donde
k=mem(ky,... kn), k;=k/k;.

Notemos que, si |G| es impar, entonces la igualdad (2.1) asegura que |G| divide a k.

Ejemplo 2.1. Supongamos que ki = --- =k, = k > 2. En este caso, Ej =1 y la igualdad (2.1)

es en este caso

2k = | 2k(lh + -+l +1—y) —nk—1)+2) m; | |Gl

=1

Como k divide a |G|, tenemos dos posibilidades:

1. |G| =k, en cuyo caso G = Zy, y 2k(li + -+ 1 +1—7) —n(k = 1) + 2377 m; = 2.

2. |Gl =2k y2k(h+ -+l +1—7) —n(k—1)+23"  m; =1

Este ejemplo nos dice, por ejemplo, que si |G| ¢ {k,2k}, entonces no existen divisores efectivos de

grado g que sean G-invariantes.

2.4. Vectores de constantes de Riemann

2.4.1.

El primer grupo de homologia H;(S;Z) se puede incrustar como un reticulado en H*%(S)* por
medio del proceso de integracién de formas diferenciales o — fa. El toro complejo g-dimensional
JS = HY0(S)* /H1(S; Z) se llama la variedad jacobiana de S. La forma de interseccién en homologia

determina una polarizacion principal en J.S.

2.4.2.

Para cada punto ¢ € S, tenemos su funciéon de Abel-Jacobi

P
<pq:S—>JS:p»—>{/},
q
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la cual produce una incrustacion holomorfa de S en J.S. Esta funcién se extiende de manera natural
a una funcion holomorfa sobreyectiva ¢, : Div(S) — JS, la cual es un homomorfismo de grupos

abelianos. Su restriccion a la variedad compleja compacta Div?(S) es holomorfa.

Por el teorema de inversién de Abel-Jacobi, ¢y : Div(g)(S) — JS es sobreyectiva, y cualquier par
de divisores diferentes D1, Dy € Div(g)(S) son enviados al mismo punto si y solo si D; — Dy es un

divisor principal (es decir, D; — Do = (f), para alguna funcién meromorfa no-constante f : S — @)

2.4.3.

Consideremos dos formas meromorfas 61,65 # 0 en S. Como 61 /605 es una funcién meromorfa de S,
entonces ¢q((01)) = pq((02)). De esta manera, el valor ¢4((8)) € JS no depende de la diferencial
meromorfa § # 0 usada. Tal valor es denotado por —2K, € JS' y es llamado el vector de constantes

de Riemann associado al punto q.

2.4.4.

Si h € Aut(9), entonces el pull-back de formas holomorfas h* : HY0(S) — HY(S) induce un
automorfismo holomorfo T}, : JS — JS : [L] — [L o h*]. En particular, por el proceso de cambio

de base, para g € S, se cumple que

h(p)

onta) (h())(6) = [ / . e} - [ I h*e} — uD)(h"0) = T 0))(0),

es decir,

Thopg= ©Ph(q) © h.

2.5. Divisores no-especiales y funciones theta

Cada base simpléctica de Hy(S;Z) tiene asociada su matriz de periodos Z € H,, (espacio de Siegel
de las matrices complejas simétricas de tamafo g x g con parte imaginaria positiva definida). Esto
permite obtener un modelo explicito JS = C9/Z9 & Z7Z9.

Cada par €,¢ € Z9 tiene asociada la funcion theta de primer orden con caracteristica

definida por
0 6, (z;10) = Z exp{27ri B (N—i— %)tz (N—i—%) + (N—l—%)t <N+€2/):|}7

€ NezZ9

la cual es una funcion holomorfa definida sobre CY9 (la funciéon theta clasica 6 corresponde a
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e = ¢ = 0). Mas detalles y propiedades sobre funciones theta se pueden encontrar, por ejemplo,

en los libros [5,6].

Como consecuencia del teorema de anulacion de Riemann (Riemann Vanishing theorem [5, pag.

308], [6, pag. 17]), para cada e € JS, la funcion holomorfa multivaluada

fae=0| | (py—e:I) 5 T8

€

€8s

(i) idénticamente cero, o bien

(ii) tiene precisamente g ceros (contados con multiplicidades).

Ya que ¢, : Div9(S) — JS es sobreyectiva, existe algtn divisor efectivo D € Div9(S) tal que
wq(D) =e—Kq.

En [6], se probd que f, . es idénticamente cero si y s6lo si D es especial.

Supongamos que f;. no es cero, esto es, D es no-especial. 5i pq,...,pqy son los g ceros de fq.,
entonces el divisor p; +---+pg € Div(¥)(S) satisface que wg(pr+--+pg) =e—Kqg =q(D) (ver
[5,6]); luego, D = py + - - - 4+ py (modulo divisores principales).

3. Curvas generalizadas de Fermat

En esta seccion, S sera una curva generalizada de Fermat de tipo (k,n), donde k,n > 2 son enteros
tales que (n—1)(k—1) > 2,y H = Z} su grupo (tnico [12]) generalizado de Fermat de tipo (k,n).
Al par (S, H) le llamamos un par generalizado de Fermat de tipo (k,n).

Sea w : S — C un cubrimiento ramificado Galois con grupo cobertor H. Componiendo 7 a la
izquierda por alguna transformaciéon de Md&bius, podemos asumir que los valores de ramificacion

de 7 son dados por los puntos 00, 0, 1, A1,..., Ap—o, donde (1) A; # A; sii # j,y (ii) A; € C—{0,1}.

3.1. Uniformizacion Fuchsiana

Por el teorema de uniformizacion, hay un grupo Fuchsiano (tnico modulo conjugacion en PSLy(R))
I' = <x1,...7xn+1 :x’f = :foH =X1%g Tyl = 1> < PSLy(R),

de manera que S/H = H?/T'. En [9], se observo la existencia de un biholomorfismo ¢ : S — H2/T”,

donde I es el grupo derivado (es decir, el subgrupo generado por los conmutadores) de I'. Por la
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unicidad del grupo generalizado de Fermat, ¢ conjuga H en I'/T".

3.2. Descripcién algebraica

Las condiciones sobre los valores A; aseguran que

ok +ak+a2b = 0
Mt +ak+a2k = 0
k
O)\l,...,kn,g = . . . - PE? (31>
M—oab +ab+ak,, = 0

es una curva algebraica irreducible y suave (es decir, una superficie de Riemann cerrada). Esta

admite al grupo Hy = (a1,...,a,) = Z},

([Tt Tpg]) =[T1 0o X1 T WET I L1t T,

donde wy, = 2™i/k

, como un grupo de automorfismos holomorfos. Mas atn, la funcion w([zy : -« - :
k o . .
xn]) = — (z2/21)" es un cubrimiento ramificado Galois con Hy como grupo cobertor y cuyos valores

de ramificacion son oo, 0, 1, Aq,..., A\,_2. En particular, (Cf Hy) es un par generalizado

1oy An—27

de Fermat de tipo (k,n). En [9], se observo que existe un biholomorfismo ¢ : S — Cfl,...,Anﬁ (que
necesariamente conjuga H en Hy por la unicidad de los grupos generalizados de Fermat). En este

modelo algebraico, los elementos ai,...,a,+1 corresponden a los generadores estandar.

Observacion 3.1. Si T € PSLy(C) y
{T(00),T(0), (1), T(M), ..., T(An—2)} = {00,0,1, pt1, ..., -2},

entonces C3 \  yCpy ., son biholomorfas.

3.3. El cuerpo de las funciones meromorfas

Para cada j = 2,...,n+ 1, la funcién meromorfa

.
e k
yi=—:0X ..

., —C,
T

tiene como sus ceros a los puntos fijos de a; y como sus polos a los puntos fijos de a;. Esta funcién

y; define un cubrimiento ramificado Galois de grado k"', cuyo grupo cobertor es

deck(y;) = (az, .-, aj-1,aj41,. ., an1) = Zp "
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En lo que sigue, denotaremos z := 93 y A\g = 1.

El sistema algebraico (3.1) asegura la igualdad

/\j_g =+ Zk + yf =0. (32)
Se tiene que z,ys,...,Yn+1 generan al cuerpo de las funciones meromorfas de C’/{?hm’/\"iz;
k : n
C(CY, a ) = &y C(z) y52ys* - - ynit"

0<ai,...,ant1<k—1

Observacion 3.2. La accion de H sobre los generadores anteriores es dada por (a;?f = foa;):

-1 .
aiz=wy 2, a3z =wiz, ajz =2z, jE{3,...,n+1}

aly = w,zlyl, ajyL = wky, ajy =y, J€ {2,3,...,n+ 1} — {i}.

En particular, cada factor C(z) ys®ys* - yni1' es H-invariante.

3.4. Divisores de los puntos fijos

Si el conjunto de puntos fijos de a; es {pj 1,...,pjgn-1}, entonces consideramos su correspondiente

divisor de puntos fijos:

kn—l
Fix(a;) = Y pji € Div(CF), j=1,....,n+1L (3.3)

i=1

Observacion 3.3. Algunas veces usaremos la notacion Fix(a;) (por abuso de lenguaje) para de-

notar al divisor anterior o simplemente al conjunto de puntos fijos de a;.
Notemos que, para j =2,...,n+ 1,
(y;) = Fix(a;) — Fix(aq).
En particular, para i # j € {1,...,n+ 1}, el divisor de la funcién meromorfa y;; := y;/y; es

(y5:) = Fix(a;) — Fix(a;).
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3.5. El espacio de las diferenciales meromorfas

Como dz es una diferencial meromorfa de C§ | . por lo visto en la seccion anterior, su espacio

de diferenciales meromorfas es

dz
M(CY, a ) = &y Cle) o —arr

asz, 4
0<ar,manpi<k—1 93 Y4 T Ungd

La funcién meromorfa z es cubrimiento ramificado Galois de grado k"~ !, cuyos puntos criticos son

los puntos fijos de los elementos as, ..., an+1, cada uno de orden k. Los valores de ramificacion de
z estan dados por las k-raices de los puntos —1, —Aq,..., —A,_2. En particular,
n+1 n+1
(dz) =Y (k- DFix(a;) — 2Fix(a1), (dy;) = Y _ (k — 1)Fix(a,) — 2Fix(a;).
j=3 s#i,j
SireZy (az,...,any1) €{0,1,...,k—1}""1 entonces podemos formar la diferencial meromorfa
2"dz
07‘;043,...,0(”4_1 = Ta3. az  Ontio (34)

Ys Ys Ul
cuyo divisor es
n+1
(Brics...anss) = (@3 4 -+ + any1 — 2 = r)Fix(ar) + rFix(az) + » (k=1 — o;)Fix(a;).  (3.5)

Jj=3

Observacion 3.4. De la Observacion 3.2, podemos ver que la accion por pull-back por elementos

de H en las diferenciales anteriores es dada por:

—(r+1)+(az++ant1) .
w 97“;0437---,&714-17 J= 1,

k
* — r+1 .
a’j (0T§C¥37~--,C¥n,+1) - wk GT;ag,...,O(7L+17 J= 27
— .
Wi J07';a3,.4.,an,+17 VS {3,,7’1,4—1}

Teorema 3.5 ([10]). La coleccion

B = {9T§a37~":an+l}(7‘§a:§a»~~¢an+1)elk,n7
donde I = {(r;as,...,ant1);05 €{0,1,..., k—1}, 0<r <ag+- -+ apt1 — 2}, define una
base para Hl’()(C’fl,.w&Hz), llamada la base estdndar.

Observacion 3.6 (Conexion con la incrustacion canoénica). Consideremos la base estdndar del

Teorema 3.5. Esta base induce una incrustacion candnica (incrustacion candnica estindar)

.k Jk,n—1
LBC“’” : C>\1,“,7A"72 — PC :
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En [10], se verificé la existencia de una sub-coleccion {61, ...,0,41} de B™, de manera que
~ k
LBcan : C)\l _____ An_a — ]P)g : [ZCl Dl l’n+1] — [91 Dl 0n+1]

es la funcion identidad.

Observacion 3.7. Usando la Observacion 3.4, junto al Teorema 3.5, es posible describir explici-

tamente la accion de Hy en el espacio Hq’O(C’f\“h_N’/\niz) de las g-diferenciales holomorfas [13].

3.6. Sobre el vector de constantes de Riemann
Nuestra primera observacién, es dada en el siguiente.

Teorema 3.8. Sea (S, H) un par generalizado de Fermat de tipo (k,n), (k—1)(n —1) > 2. Sean
Q1. -, qrn—1 los puntos fijos de un generador estandar. Entonces, Kq, + -+ Ky ,,, €s un punto

de torsion de orden 2 de JS.

Demostracion. Podemos asumir que S = Cf := C§ 'y H = Hy = (a1,...,a,), donde

ai,...,a,+1 son los generadores estandar.

Recordemos que, si ¢ € CF, entonces ¢,((dz)) = —2K,. Como

n+1

(dz) = (k- 1)Fix(a;) — 2Fix(a1),

Jj=3

y, para i # j, cada divisor de la forma Fix(a;) — Fix(a;) es principal, se tiene la igualdad

2K = ((n—1)(k — 1) = 2) g4(Fix(a;)), j=1,...,n+1. (3.6)

Sea o = (n — 1)(k — 1) — 2. Tenemos las siguientes igualdades (obtenidas de (3.6))

—2Kq, = apg (g1 + - 4 @n-1) = apg, (1) + -+ + apg, (qn-1)
—2Kg, = g, (q1 4+ qn—1) = g, (q1) + -+ - 4 pg, (qn—1)

_QIqunfl = 0Pq, 1 (14 +qgn-1) = APg, 1 (1) +---+ APLqn1 (qrn—1)-
Sumando todas ellas (y usando la identidad ¢4, (q;) = —@g,(¢:)), obtenemos

_Q(Km +ooet ’qun—l) =0. O
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3.7. Divisores efectivos de grado gy,

Como hemos visto en el Ejemplo 2.1, no es posible encontrar divisores efectivos de grado g
que sean H-invariantes. De hecho, como veremos mas abajo, tampoco hay tales divisores que sean
K-invariantes para la mayoria de los subgrupos K de H. Luego, no es posible usar el [14, Theorem
4.4] y, en particular, la busqueda de generalizaciones de férmulas tipo Thomae para los pares de

Fermat generalizados no es facil.

Proposicion 3.9. Sea D € Div(S) un divisor efectivo de grado gi . Sea K un subgrupo no-trivial
de H conteniendo un elemento de orden d > 2 que no es una potencia de un generador estandar.

Entonces D no puede ser K-invariante en ninguna de las siguientes tres situaciones:

(i) d>3.
(i) d =2y k es maultiplo de 4.

(iti) d=2 yn > 3.

Demostracion. Sea a € K de orden d > 2, el cual no es una potencia de un generador estandar
(luego, ningan elemento diferente de la identidad de (a) acttia con puntos fijos). Como d es un
divisor de k, podemos escribir k = dky. Si D es K-invariante, entonces también es (a)-invariante.
Ya que los elementos no-triviales de (a) no tienen puntos fijos en S, debemos tener que el grado
gr.n de D debe ser un miltiplo de d, esto es, existe un entero a > 1 tal que 2da = 2+ k"1 ((n —
D(k—1)—2)=2+d" 'k ((n—1)(k — 1) — 2). Como n > 2, esto no es posible para d > 3. Si
d =2, entonces 22a = 2+ 2" k7" ((n — 1)(k — 1) — 2). En caso que k; sea par o bien que n > 3,

tendremos que 4 divide a 2, una contradiccién. O

3.8. Divisores efectivos no-especiales soportados en los puntos fijos

En esta seccion, estamos interesados en determinar condiciones algebraicas (necesarias y suficientes)
para que un divisor efectivo de grado gi, en Cfi := C¥ | . cuyo soporte esté contenido en el

conjunto de los puntos fijos de los generadores estandar de H, sea no-especial.

Los divisores anteriores son de la forma

n+1km 1t n+1k™1
D= Z Z mjiPjis  Mji 20, Z Z My = Gkn- (3.7
j=1 i=1 j=1 i=1

Asumiremos que los enteros m;; estan ordenados

M](D) = mjykn—l Z s Z mj1 Z 0.
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Para cada subconjunto A # @) de I, definimos:

B1(A) :==min{ag + - +apnt1 —7—2:(r;a3,...,0n41) € A} >0
B2(A) :=min{r: (r;as,...,an4+1) € A} >0
Bi(A) ==min{k —1—a;: (ras,...,an41) € A} >0, j>3.

Observemos que, si § # B C A, entonces 3;(A) < 3,;(B) para todo j > 1.

Si € (C —{0})*, entonces el divisor de la diferencial holomorfa

9;1,,14 = Z M(T; a3z, ..., an+1)0r;)\3,...,0n+1
(T‘;Ozg,...,(!n+1)€A
es
n+1
(O,4) = Y 6;(Fix(a) + Do,
j=1

donde d;(p) > B;(A) y Do es un divisor efectivo cuyo soporte es disjunto con Fix(H) (el conjunto
formado por todos los puntos fijos de todos los generadores estandar de H). Notemos que, para p

genérico, se tiene que 0;(u) = 3;(A).

El siguiente resultado da condiciones algebraicas necesarias y suficientes para que un divisor como

en (3.7) sea no-especial.

Teorema 3.10. Sea D € Div(C}) un divisor efectivo de grado gy, como en (3.7). Entonces D

es no-especial si y solo si las siguientes condiciones se cumplen.

ara cada 5 € {1,...,n+ 1}, se cumple que que m;1 = 0 (es decir, existe un punto fijo de
S1) P da j 1 1 l jl 0 deci ) jo d

a; que no pertenece al soporte de D).

(S2) Para todo subconjunto ) # A C Iy ,,, 3j € {1,...,n+ 1} tal que M;(D) > 3;(A).

Demostracion. Supongamos que la condiciéon (S1) no es valida, es decir, existe j € {1,...,n+ 1}
tal que m;; > 1, equivalentemente, D > Fix(a;). Si¢ € {1,...,n+ 1} — {j}, entonces y;; es una
funcién meromorfa cuyo divisor es Fix(a;) — Fix(a;), en particular, (y;;) + D > 0. Esto nos dice

que r(—D) > 2y, por el Teorema de Riemann-Roch, que i(D) > 0, es decir, D es especial.

Ahora, supongamos que la condicion (S2) no se cumple, es decir, existe § # A C I, tal que

M;(D) < Bj(A), para todo j = 1,...,n+ 1. Si u € (C — {0})*, entonces

n+1 n+1 n+1
(0p,4) > Z d;(p)Fix(az) > Zﬁj(A)FiX(aj) > ZMj(D)FiX(aj) > D,

es decir, i(D) > 0, luego D es especial. O
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Ejemplo 3.11 (Caso (k,n) = (4,2)). En este caso, S corresponde a la curva de Fermat de grado
4:
S={lr:y:2]eP?’: 2t +y* + 2 =0}

que es una superficie de Riemann de género gs 2 = 3. Los generadores estindar de H = 73 estdn

dados por
arfz:y:2)) =liw:y:z], ao(r:y:z])=zriy:z], as(fe:y:2]) =[r:y:iz.
El conjunto de puntos fijos de ai es (tomando q = ¢'™/*):
{pr1,p12,p13, P14} ={[0:1:¢],[0:1:ig],[0:1:—q],[0:1:—iq]},
el conjunto de puntos fijos de as es:

{P2,17p2,2ap2,3»172,4} = {[1 :0: (I]» [1 :0: iQL [1 :0: —(ﬂ» [1 :0: —iQ]}a

el conjunto de puntos fijos de az es:
{P3,1,p3,2, 33, P34} ={[1:q:0],[1:ig:0[[1:—g:0],[1:—ig:0]}.

Un divisor D como en (3.7), en esta situacion, es de la forma

4 4 4
D=2 mipi;+ Y mogpaj+ Y mapaj,
i=1 i=1 =1
donde
Mi(D) =my4>mi3>my2>my; >0,
My(D) =may4 > Moz > Mmoo > maq >0,

Ms(D) =mg34 > mg3 >mgo >mzq >0,

(m17j +ma; + m37]~) =3.
1

3
j=

La condicion (S1) del Teorema 3.10 es equivalente a tener
mi1 =mMma1 =MmM31 = 0,

lo cual supondremos en lo que sigue de este ejemplo.



226 R. A. Hidalgo

Como 1.5 = {(0;2),(0;3), (1;3)}, sus subconjuntos no vacios son
Ar={(0;2)}, A ={(0;3)}, As={(1;3)}, As={(0;2),(0;3)},
A5 ={(0;2),(1;3)},  Ag = {(0:3),(1;3)}, A7 = IL4s.
Se puede verificar que:
Br(A1) = P1(As) = B1(As) = B1(As) = B1(Ae) = B1(A7) =0, B1(A2) =1,

Ba(A1) = B2(A2) = P2(As) = B2(As5) = B2(As) = P2(A7) =0, [B2(A3) =1,
B3(Az) = B3(A3) = B3(As) = B3(As) = B3(Ae) = B3(A7) =0, B3(A1) = 1.

La condicion (S2) del Teorema 3.10 es equivalente a tener las siguientes condiciones:

(a) algun M;(D) > 1 (para satisfacer la condicion con A4, As, Ag, A7);

(b) Ms(D) =3 o bien M1(D) > 1 o bien M2(D) > 1 (para tener tal condicion para A;);
(¢) My(D) =3 o bien Ma(D) > 1 o bien M3(D) > 1 (para tener tal condicion para As);
(d) M3(D) =3 o bien My(D) > 1 o bien M5(D) > 1 (para tener tal condicion para As).

Si (i) M1(D) > 1 y My(D) > 1, o bien (i) M1(D) > 1 y Ms(D) > 1, o bien (iii) M2(D) > 1y
Ms(D) > 1, entonces D es no-especial.

Por otro lado, si tenemos (por ejemplo) Mi(D) = My(D) = 0, entonces necesitamos tener
M3(D) = 3 para que D sea no-especial. En este caso, D = 3p, donde p € Fix(az). Notemos

que este divisor es invariante por as.

3.9. Divisores no-especiales invariantes por un generador estandar

La Proposicion 3.9 nos dice que un divisor D como en (3.7) no puede ser invariante por varios
subgrupos no-triviales K de H. Los tnicos subgrupos K < H que admitan un divisor (como en

(3.7)) que sea K-invariante son:

(i) n=2y k = 2k;, donde k; > 3 es impar (luego S es una curva clasica de Fermat de grado k)

y K es un grupo ciclico generado por una involucién sin puntos fijos en .S, o bien

(ii) K es un grupo ciclico generado por un generador estandar.

Supongamos que D es invariante por un generador estandar, el cual podemos asumir (sin pérdida de

generalidad) sea a,1. La invariancia de D por a,11 es equivalente a tener, para cada j =1,...,n,
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que en el divisor D tenemos
knfl k}n72

E mj,ipj,iZE myiDji
=1 1=1

donde Dj ; son las 6rbitas disjuntas a pares de los puntos fijos a; bajo la accion de an41.

Ejemplo 3.12. Sip € Fix(a,11), entonces el divisor D = gi ,p es invariante por an41. Mds ain,
como B;(A) < gi.n para todo subconjunto no vacio A de Iy, ,,, tenemos (por el Teorema 3.10) que D

es no-especial. Este ejemplo generaliza el dado al final del Ejemplo 3.11, para el caso (k,n) = (4,2).

En el ejemplo anterior, hemos descrito algunos divisores no-especiales de C¥, estos divisores estan
soportados en un punto fijo de a,1. Las condiciones algebraicas necesarias y suficientes del Teo-
rema 3.10, en el caso de divisores invariantes por a,1, se pueden escribir de manera equivalente

como sigue.

Teorema 3.13. Sea D un divisor efectivo de grado gy, como en (3.7), que es any1-invariante.
Entonces D es no-especial si y solo si no existe una funcion meromorfa no-constante ¢ € L(—D)

de la forma
¢="h(z) ys®-yniit, h(z) €C(2), as,...,0n41 €{0,1... k—1}.
Demostracion. Como ya hemos visto,

C(CY, . as) = B C(2) y§oygt - yonit.

0<ai,...;any1<k—1

De la Observacion 3.2, los espacios propios del automorfismo lineal aj,,, en C(C’;h_” A,_,) estan

dados por

Eom+1 = @ (C(Z) y?3y24 "'yg” ysz{la Qp41 S {0717'~'7k_ 1}7
0<ai,...,an<k—1

—Qn41

cuyo valor propio asociado es w), . Como D es invariante por a,1, el espacio L(—D) es a}; -

invariante. Luego,

L(-D)= P (L(-D)NE,,,)=

0<an41<k-1

. P EED)NCE) w0 O (38)

0<an4+1<k—1 0<ai,...,an,<k—1
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Observacion 3.14. Notemos, de lo anterior, que C(CY,  \ )/{ant1) =C(CY, 5. ) v

C(CY,, ans) = P C(z) y5*ys™* - ypm

0<au,...,an<k—1

Corolario 3.15. Sea D un divisor efectivo de grado g, como en (3.7), que es any1-invariante.
Entonces D es no-especial si y solo si para cada eleccion de L > 0 y cada eleccion de r;,s € Z,
donde j =1,...,n, yl =1,...,L, y as,...,any1 € {0,1...,k — 1}, alguna de las siguientes
propiedades falla:

(1) 0=mig >r+ro+rs+--+r,+s1+--+sp+as+- -+ anyr,

(2) 0=mq o > —r1, es decir, 11 > 0,

(8) sipy; € By_g, entonces My ; + 0y > —Ty_1, V=23,...,n+ 1,

(4) si >0, i = 1,...,L (esta condicion se debe al hecho de que cada Cg, es disjunto de los

puntos fijos de los generadores estindar de H ).

Demostracion. Sea D un divisor efectivo de grado gi.,, como en (3.7), que es a,i-invariante.
;
Por la Proposicion 3.13, para chequear si D es no-especial, necesitamos verificar que las funciones

meromorfas no-constantes

¢ =h(z) ys® - yn it

donde h € C(2) y iz, ..., any1 € {0,1...,k — 1}, no pueden estar en L(—D).

Sea A\g = 1. Para cada j = 0,...,n — 2, fijemos una k-raiz (f)\j)l/k. Sea
n—2 ) ot L
h(Z) — " H H (Z _ e?l‘n’z/k(_)\j)l/k> H(Z _ Bi)5i7
§=01=1 i=1

donde —BF € C\ {0,1,A1,...,A\y—2} y 7j,8; € Z. Notemos que:
(z™) = ry (Fix(az2) — Fix(a1)),

((Z — €2lﬂ-i/k(_>\j)1/k> 2+j> =T24j (BJ - FiX(a’l)) ’ j = 0) s, 2a

donde
B = {[1 ceHmIRCONYE g i)tk = N+ )\j} C Fix(a;+3),
Yy
((z—B)) = s (ng — Fix(al)) , 1=1,...,L,
donde

Co ={[1: Bizws: - wap] sy = =N — B}
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El divisor de h es:

n—2 L
(h) = r1 (Fix(a) — Fix(a1)) + Y ra4;(B; — Fix(a1)) + Y _ 5i(Cp, — Fix(az)).
=0 i=1

Ya que el divisor de y?j, paraj=3,...,n+1, es

(y;7) = o (Fix(a;) — Fix(a1))

On 41

obtenemos que el divisor de ¢ = h(z) - y3* - -y, 11

es

(p)=—-(r1+ro+rs+--+rn+s1+--+sp+as+- -+ apt1)Fix(ar)

n+1 L
+ r1Fix(as) + Z (apFix(ay) + ry—1By—3) + Z $iCg;.
v=3 i=1

En particular (como a; > 0), ¢ ¢ L(—D) si alguna de las propiedades enunciadas en el corolario

falla. O
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1. Introducciéon

Los espacios de Orlicz-Lorentz han surgido como una generalizacién comun de los espacios de
Orlicz y de los espacios de Lorentz, aplicados a problemas de analisis funcional, teoria de ope-
radores y otras areas de las matematicas. Estos espacios se definen mediante el uso de funciones
de Young aplicadas al reordenamiento decreciente de funciones, proporcionando un marco robusto

para estudiar propiedades operatorias en escenarios no lineales y ponderados.

En este articulo, se investigan ciertas propiedades fundamentales de la distribucién, el reordena-
miento decreciente, la funcion maximal y las funciones de Young, lo cual permite definir el espacio
de Orlicz-Lorentz L, .. El enfoque se centra en un subespacio particular, A, ,,. Nos proponemos
realizar un estudio exhaustivo y autocontenido de este subespacio, con el objetivo de proporcionar
una base tedrica s6lida para estudiar las condiciones bajo las cuales el operador de multiplicacién
M,,, definido por M,(f) = u - f, es acotado, inyectivo, invertible, y compacto. Estas condiciones
tienen aplicaciones directas en problemas de teoria de operadores y analisis de Fourier, entre otras

areas. Para este analisis, seguiremos el esquema planteado en [7].

La organizacion de este articulo es la siguiente. En la Seccion 2, describimos y damos propiedades
de los elementos basicos que componen a los espacios de Orlicz-Lorentz, a saber, la distribucién
Dy, el reordenamiento decreciente f*, la funcién maximal f**, y las funciones de Young. Luego,
en la Seccion 3, damos la definicion de los espacios de Orlicz-Lorentz L, ., y de un subespacio
particular A, ., estudiando sus propiedades como espacios de Banach. Finalmente, en la Seccién 4,
estudiamos el operador multiplicacion M, definido sobre A, ,,, caracterizando su acotacién, rango

cerrado, invertibilidad y compacidad.

2. Elementos basicos de los espacios de Orlicz-Lorentz: dis-
tribucién, reordenamiento decreciente, funcién maximal y

funciones de Young

En esta seccion estudiamos los componentes principales de los espacios de Orlicz-Lorentz. Iniciamos

este estudio definiendo la distribucién de una funcion.

2.1. Funcién de distribucion

Definicion 2.1. Sea f una funcion medible de valor complejo definida en un espacio de medida

o-finito (X, A, ). Para X > 0, la funcion distribucion de f, denotada por Ds(X), se define como

Dy(N) = u({z € X : ()] > A}). (2.1)
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Es importante destacar que Dy depende tunicamente del valor absoluto |f| de la funcion y que

puede tomar el valor +oc0.

La funcién distribucion Dy brinda informacién sobre el “tamano” de f, pero no acerca de su
comportamiento en puntos especificos. Por ejemplo, una funcion en R™ y sus traslaciones tienen la
misma funcion distribucion. A partir de (2.1), se deduce que Dy es decreciente en A (aunque no

estrictamente) y es continua por la derecha.

Dado un espacio medible (X, 1), y funciones medibles f y g definidas en dicho espacio, Dy cumple

las siguientes propiedades para todo Ay, Ao > 0:
1. D=0 <= f=0pctp;
2. Si|g| < |f| p-c.t.p., entonces Dy < Dy;
3. Dcf(X) = Dy (ﬁ) para todo ¢ € C\ {0};
4. Dyig(M + A2) < Dy(A1) + Dy(A2);

5. Dyg(AA2) < Dy(A1) 4+ Dg(A2).

Para mas informacion sobre la funcion distribucion, consultar las referencias [5,6,10].

2.2. Reordenamiento decreciente

El reordenamiento decreciente de una funcién f, denotado como f*, se define de la siguiente

manera.

Definicién 2.2. Dada una funcion f de valor complejo definida en X, su reordenamiento decre-

ciente, f*, es la funcion definida en [0,400) como

) =mf{A>0:Dp(\) <t}, t>0.

Adoptamos la convenciéon de que inf() = co. Note que que f* es decreciente y continua por la
derecha. Ademés,

f7(0) = inf{A > 0: Dy(A) <0} = |[f]loo,

ya que
1flloe = if{a > 0: p({z € X : [f(z)] > a}) = 0},

Si Dy es estrictamente decreciente, entonces se cumple que

[ (Dg(t) =mf{A > 0: Dy(A\) < Dy(t)} =t.
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Esto demuestra que f* es la inversa de la funcién distribucién Dy.

Dados dos espacios de medida (X, A, u) y (Y, M, v), denotamos por F(X, A) al conjunto de todas
las funciones A-medibles en X y por §(Y, M) al conjunto de todas las funciones M-medibles en

Y, respectivamente.

Dos funciones f € §(X,A), g € F(Y, M) se llaman equimedibles si tienen la misma funcion

distribucion, es decir,
pHze X |f(x)|>A)=v({yeY:|g(y)| >A}), paratodo A >0.
El siguiente teorema asegura la unicidad del reordenamiento decreciente. Omitimos su demostra-

cién, la cual se puede encontrar en [6, Teorema 1.8].

Teorema 2.3. Existe una unica funcion decreciente continua por la derecha, A > 0, equimedible

con f*. Es decir, el reordenamiento decreciente es tunico.

A continuacion listamos algunas propiedades importantes de f*. Demostraciones de estas propie-

dades pueden encontrarse en [5,6,10].

1. f* es decreciente.

2. f*=0 < f=0 p-ct.p.

3. f*(t) > Asiysolosi Dg(N\) >t.

4. |g| < |f| pc.t.p. implica g* < f*. Ademas, |f|* = f*.
5. (kf)* = [KI*.

6. (f+9)"(tr+1t2) < f*(t1) + g (t2).

7. (fg) (tr +t2) < f*(t1)g" (t2).

8. fy f* son equimedibles, es decir

D¢(X) = Ds«(A) para todo A > 0.

9. [ [fIPdu= [ @®)]Pdtsi0<p< oo
10. Si |f] < lminf,, o |frn], entonces f* < liminf, o f;r.
11. Si E € A, entonces (xg)" (t) = Xjo,u(r)) (t)-

12. Si E € A, entonces (fxg)" (t) < () x0,u(E))(t)-
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2.3. Funcion maximal

Definicion 2.4. Sea f: X — C una funcion medible. Por f** se denotard a la funcion mazximal

de ’ 5 deﬁnlda como
0

A continuacion enumeramos algunas propiedades béasicas de la funcién maximal f**.

Proposicion 2.5. Supongamos que f, g, y fn, (n = 1,2,...), son funciones medibles, y sea A
cualquier escalar. Entonces f** es no negativa, decreciente, y continua en (0,400). Ademds, se

tienen las siguientes propiedades

ff =0 =0 pu—-ctp, (2.3)

Fr< (2.4)

9] < |f] p— c.t.p. implica g** < f*; (2.5)
(AS) = (AL (2.6)

Silf| < h;fgigﬂf”" entonces f** < 11;{1_1>ior01f fax (2.7)
(f+9)" < f™+g™ (2.8)

2.4. Funciones de Young

Los espacios cléasicos de Lebesgue son conformados por las (clases de equivalencia de) funciones

1P dn <o
X

donde el integrando se obtiene al aplicar la funcion ¢(t) =t (p > 1) a la funcion | f|. Esta funcion

Lebesgue integrables tales que

¢ hace parte de una clase mas general de funciones, llamadas funciones de Young, concepto que

precisamos a continuacion.

Definiciéon 2.6. Sea ¢ : [0,00) — [0,00) una funcion conveza tal que

1. p(z) =0 si y solo si x = 0;

2. im0 () = 0.
Tal funcion se conoce como funcion de Young.

Una funcién de Young es estrictamente creciente. En efecto, sean 0 < z < y, entonces 0 < % <1

y asi, podemos escribir
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COmo @ es convexa, tenemos
xT T x x
o(z) = 1—)0+y><(1—)<p0+cpy < p(y).
() (( ; ” , ) $O+ L el) <ely)

Decimos que una funcién de Young satisface la condicion As si existen constantes no negativas xg
v k tales que
o(2z) < kp(x) para x > . (2.9)

Si g = 0, decimos que ¢ satisface globalmente la condicion As. La minima constante k que

satisface (2.9) se denota por ka.

Afirmacion 2.7. Si ¢ es una funcion de Young que satisface la condicion Ao, entonces para cada

r > 0 existe una constante ka(r) tal que

p(re) < ka(r)e(z) (2.10)
para x > 0 suficientemente grande.

Demostracion de la afirmacion. Sir > 0, podemos elegir n € N tal que » < 2". Entonces, aplicando

(2.9) n-veces y usando el hecho de que ¢ es creciente, obtenemos

p(re) < (2"z) < E"p(z),

con lo cual (2.10) queda demostrado. O

Lema 2.8. Una funcion de Young ¢ satisface la condicion As siy soélo si existen constantes A > 1
y to > 0 tales que

o(t)
para todo t > tg, donde p es la derivada lateral derecha de .

Demostracion. Supongamos que ¢ satisface la condicion A, entonces existe una constante k > 0

tal que " 0
k() > o(2t) = / p(s)ds > / p(s) ds

para t suficientemente grande. Como p es creciente, se tiene que

/t p(s) ds > tp(t);
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asi, para t suficientemente grande, obtenemos

~—

(0
o) =7

Reciprocamente, si

para todo t > tg, entonces

2t 2t
/ p(s) ds</\/ & Nog2.
t ‘P(S) t S

Dado que p(s) = ¢'(s), tenemos

log <t(<2tt))> < Aog?2,

lo cual implica que

p(2t) < 2%p(t). 0

A continuacion veremos que las funciones de Young que satisfacen la condicion A, tienen una

razén de crecimiento menor que tP para algin p > 1.

Teorema 2.9. Si ¢ es una funcion de Young que satisface la condicion A, entonces existen
constantes A > 1 y C' > 0 tales que
o(t) < Ct?

para t suficientemente grande.

Demostracion. Por (2.8) podemos escribir

[sgeea] s

e () <2 (3)

donde t > ty. Entonces

por lo tanto

como queriamos demostrar. O

En relacién con la funcién de Young ¢, definimos, para ¢ > 0, la funcidn complementaria de ¢

mediante

P (t) = sup{ts — p(s) : s > 0}.
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Proposicion 2.10. Si ¢ es una funcion de Young, entonces su funcion complementaria 1 también

es una funcion de Young.

Demostracion. Es claro que ¥(0) = 0 si y solo si = 0. Por lo tanto, solo debemos demostrar
que v es una funcion convexa. Para esto, escojamos t1,t2 € [0,400) y A € [0,1]. Entonces, por

definicion de 1), tenemos

V(A + (1 — N)ita) = sup{s(At1 + (1 — N)t2) — ¢(s) : s > 0}.
Por otra parte

Xb(t1) = Asup{st: — @(s) : 5 > 0} > Asty — p(s), V520
y ademas,

(1= N)Jlta) = (1 — N supfsta — 9(s) : 5 > 0} > (1= \)(sta — 9(s)), V5> 0.
De las tltimas dos desigualdades, tenemos
s(At1 + (1= Nt2) — () = Alsts — ¢(s)) + (1 = A)(st2 = @(s)) < Mp(t1) + (1 = A)(t2)
para todo s > 0. Esto significa que A\)(t1) + (1 — A)t(¢2) es una cota superior del conjunto
{s(M1+ (1 = N)t2) = p(s) : 5 > 0},

entonces

YAt + (1= Mt2)) < Mp(tr) + (1 = N(t2),
y asi ¢ es convexa. O

Teorema 2.11 (Desigualdad de Young). Sea v la funcion complementaria de . Entonces

ts < p(s) +1(t)

donde t,s € [0,400).
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Demostracion. Sean t, s € [0,400). Entonces
Y(t) =sup{st —¢(s) : s >0} > st —p(s), Vs>0,
Luego

Y(t) + ¢(s) > st,

y asi se completa la demostracion. O

Para mas detalles sobre funciones de Young, ver [16].

3. Los espacios de Orlicz-Lorentz L, y un subespacio parti-

cular A,

Una vez estudiados los conceptos de distribucion, reordenamiento decreciente, funcién maximal y
funciones de Young, estamos listos para definir los espacios de Orlicz-Lorentz. El lector interesado

puede encontrar informacioén relacionada en [15].

Recordemos que un peso w es una funcién no negativa, localmente integrable sobre R, que toma
valores en (0,00) casi en todas partes. De esta manera, un peso puede tomar los valores cero o

infinito s6lo sobre un conjunto Lebesgue medible de medida cero.

Definicién 3.1. Sean ¢ una funcion de Young y w un peso. Se define el espacio de Orlicz-Lorentz

CON PESO W COMO

Ly = {f : X — C medibles :/@(af*(t))w(t) dt < oo, para algin o > 0} . (3.1)
0

Note que si tomamos ¢(x) = 2P (p > 1) y w = 1, obtenemos
Lyrq1 =1 f:X — C medibles :/(af*(t))p dt < oo, para algiun o > 0}
0
f: X — C medibles : o /[f*(t)]p dt < oo, para algin « > 0}
0

= {f:X—>(C medibles :ap/ |f|P du < 0o, para algin « > 0}
X
{f:X—>(Cmedibles:/ |f|pdu<oo,}
X
L
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Es decir, los espacios de Orlicz-Lorentz generalizan los espacios clasicos de Lebesgue L,,. Para
més informacién sobre espacios de Orlicz-Lorentz, invitamos al lector a consultar las referencias

[9,11,12,14,19).

Estudiaremos un subespacio particular A, ., de Ly ., €l cual se obtiene al reemplazar en (3.1), el

reordenamiento decreciente f* por la funciéon maximal f**. Esto da origen a la siguiente definicion.

Definicién 3.2. Sean ¢ una funcion de Young y w un peso. Se define el espacio A, ., como
Apw = {f : X — C medibles :/(p(ozf**(t))w(t) dt < oo, para algin o > 0} . (3.2)
0

Empezamos por demostrar que A, ., € Ly, En efecto, como f* < f**, para o > 0 tenemos
af*(t) < af**(t). Aplicando ¢ (que es creciente) a cada lado de la desigualdad y multiplicando
por el peso w, obtenemos p(af*(t))w(t) < p(af**(t))w(t). Por ultimo, integramos de 0 a oo, y

obtenemos

/ " plaf* ()w(t)dt < / ol Ol d,
0 0
de donde Ay C Ly w-

Observacion 3.3. La inclusion Ay C Ly, es estricta. En efecto, dado el espacio de medida
(X, A, ), consideremos f : X — C dada por f(x) = xa(x), donde A € A es tal que u(A) < oo.

Dado que x7%(s) = X[o,u(a))(5), tomando ¢(z) =z, w =1y a =1, obtenemos

/0 " o (af (1)) wit) dt = / T oy () dt = p(A) < .

Por lo tanto f € Ly 1. Sin embargo, observe que

1 1

t t
0 =1 [ a6 s =3 [ xoua(s) ds =
0 0

Luego, para o > 0, tenemos

/Oooso(af**(t))w(t)dt:/Oooozf**(t)dt:al/O#(A)dH/:)u(tA)dt] _

Lo anterior implica que f ¢ Ay 1.

El resultado principal de esta seccién consiste en demostrar que A, posee una estructura de
espacio vectorial normado completo. Este resultado es precisamente el contenido del siguiente

teorema.
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Teorema 3.4. A, , equipado con la norma de Luzemburg

s, =int {e >0 [ (F ) uar <1} e p.o0)

€
es un espacio de Banach.

En la demostracion de este teorema usaremos el siguiente lema.

Lema 3.5. Sea {fn}nen una sucesion en A, ... Entonces, las siguientes afirmaciones son equiva-

lentes:
(a) lim,, o ||fn||A<p,w =0;
(b) Para todo o > 0, limsup,,_,. [o~ @(afi*(t))w(t)dt < 1;

(¢) Para todo o> 0, limy, o0 [5° @(afp* (t))w(t) dt = 0.

Demostracion. La equivalencia (a) <= (b) es consecuencia directa de la definicion de |||, - La

implicaciéon (¢) = (b) es inmediata. Como ¢ es convexa y p(0) =0 paratodot >0y 0 <e <1,

tenemos
t t
p(t)=¢ ((1 — )0+ 55) < (1—¢e)p(0) +ep <€> ,
esto es
t
w(ﬂéw(g) t>0, 0<e<l
De donde se sigue facilmente que (b)) = (c). O

Demostracion del Teorema 3.4. Demostremos, en primer lugar, que A, ., es un espacio vectorial.

Para ello, sean f,g € A, .. Entonces existen constantes A1, A2 > 0 tales que

/0 PO (B)w(t) dt < 0oy / o(hag™ (1) )w(t) df < oo,
Dado que (f 4+ g)** < f** 4 ¢**, tenemos

kok *k ok *kk L

(f+9)™ () _ [™(6) + 9™ () e
1 1 — 1 1 1 1 1 1 1
pYEREb v Nt Sl vl Pl vl v
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Dado que ¢ es no decreciente y convexa, de la desigualdad anterior obtenemos

v{“wavéw<ﬁifﬂw+l& ww>

A A2

Multiplicando por el peso w(t) e integrando,

/0 ‘P<H> w(t)dt < AlJFM/O M (0)w(t) dt

M
A1+ A

/O g™ ()w(t) dt < co.

Por lo tanto f+ g € Ay 4.

Ahora veamos que para cualquier escalar o, af € Ay si f € Ay . Existe A > 0 tal que

/0 T O () () dt < .

Para verificar que af € Ay, 4, tome ¢ = ﬁ (el caso a = 0 es trivial). Asi

[ e (ien @) wd= [ "o (Slalr@ ) uti= [ o0 @) e dr <.

|atf 0
Luego af € Ay .

A continuacion demostraremos que || - ||a, ., es, efectivamente, una norma sobre A ..

e,w

Si f =0 p-c.t.p., entonces f*(s) =0 para todo s y asi f**(t) = %fooo 0ds = 0. Por lo tanto

||f|AWUzinf{e>0:/Ooocp<f*;(t)>w(t)dt§1}zl’nf{8>0:/ooo<p(g> w(t)dtgl}
:inf{s>0:/ooo<p(0)w(t)dt§1}:inf{5>0:/0000~w(t)dt§1}

—if{e>0:0<1}=0.

Reciprocamente, supongamos que | f||a, , = 0, entonces fooo %) (@) w(t) dt < 1 para cualquier

o w
€ > 0 y esto seria contradictorio si f # 0 p-c.t.p. Veamoslo.

Si{z € X :|f(x)| > ¢} tiene medida positiva para algin £ > 0, tenemos | f(x)| > € implica f*(s) >
€, integrando de 0 a t en ambos miembros de esta desigualdad, obtenemos f(f f*(s)ds > fg eds = et,

de donde 1 fot f*(s)ds > e. Es decir, f**(t) > e. Aplicando ¢ (la cual es creciente) en ambos lados
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de esta desigualdad multiplicando por el peso w, e integrando, llegamos a fooo ([ ()w(t)dt >
Js" e(e)w(t) dt, entonces

12/0 @(f**(t))w(t)dt>f;(?/o w(t) dt = oo.

Lo cual es contradictorio. Por lo tanto || f[|s, , = 0 implica f = 0 p-c.t.p.

Ahora demostraremos que ||[Af]/a

|Alf**(t), tenemos

= [Mflla,.., para cualquier A € C. Dado que (A\f)*™(t) =

e w

oo A **
||/\f||A%w:1’nf{£>0:/ @( 1) >w }
0
fIlf{€>0:/ (|>\|f )w dt<1}
0
PN N f-
=infde>0: cp - w(t)dt <1,.
0 IAT
Tomando o = ﬁ, obtenemos € = a|\|, luego
oo k3 t
A fllag,. = inf{aI/\I >0: / @ (f a( )) w(t)dt < 1}
0

_ |/\inf{a>0:/ooogp(f*;(t))w(t)dté 1}

= Al llag, .-

Verificaremos ahora la desigualdad triangular. Dado que (f + ¢)**(t) < f**(¢) + ¢**(t), tenemos

(f+9@®) _ [+ @
1A+ 19lap 0~ N lapw + llglla,.
_ 1/l f () 1911 g (t)
[ o o 7P P [ o 17 PP 1] P

Por desigualdad anterior y dado que ¢ es no decreciente y convexa obtenemos

( (f+9) (@) >< < ([ (@) 19114 9**@‘))

[ llag. +19llag (W o 171D [P | O 1] P 7] PO

- 1 11Ap.w f(@) lglla,.. g ()
= () + © .
[ llagw +19lagw ™ \fllAg,w [fllaw + 19llag.w ™ \glla,..
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Multiplicando por el peso w(t) e integrando,
oo 3k k t
[ (0 Y
0 1A + lgllag.

T S (fww)w ] ol . w (fmw)w )
SwAwﬁwwmwﬂ a\rie (ﬂt+thﬁﬁmel ? ol ) w0t

<1 <1
1l lolan.
S PSS 7 RN 3 PSS 7 T

Concluimos que € = || f||a,.,, + llgl[a,., es una constante para la cual

- (f+9)*(t)
/0 7 <||f||A%w + ||g||AM) w(t)dt < 1.

Por lo tanto

If+9glla,. = inf{s >0 :/O © <(f+g)**(t)) w(t)dt < 1} <N llag.o + lgllag..-

€

Y se verifica la desigualdad triangular.

Por ultimo, demostraremos la completitud del espacio. Sea {f,}nen una sucesion de Cauchy en
5 1

€
<+m
£ n
o (%)

||fn - meAcp,w <E.

Ay w. Escojamos € > 0 tal que paran,m € Ny e > 0,kg > 0. Para este € existe

ng € N tal que

Si n,m > ng. Por la definicion de la norma de Luxemburg podemos escoger kg > 0 de manera que

Sea E={zx € X :|fn(x) — fm(z)| > €}, entonces

k0<5y

exe(2) < |[fu(z) = fm(2)]-

Y asi ex}y(s) < (fn — fm)*(s) implica

t t
et [xewas< 3 [ (= s

es decir

exE (t) < (fn — i)™ (1),

de donde
Ex*E*(t) < (frn = fm)™*(t)
ko — ko ’
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Aplicando ¢ que es no decreciente y multiplicando por el peso w que es no negativo, obtenemos
€ ax fn B fm >t
o (Sxim) ) <o (L= dmZ0)
k‘o kO
(e’ [e%e) = fm *% t
N / o (St ) wit)dt < / o (Y= IO oy ar. (3.3)
0 ko 0 ko

Ahora, dado que

Tenemos que

. p(E)
X5 () = X(0,u(m))(t) + TX[M(E),OO)(t)-

Asi que

c\
8
S
N
E )
>0
S
=
S~
g
=
QU
~
I

OO@ ki X(O-,u(E))(t)+@X[u(ff),w)(t) w(t) dt
f G

-/ " (5)wtar+ / :) o (2 ue);)uoa.

Reemplazando esta ultima igualdad en (3.3), obtenemos

/ " () wttyar+ / Z) o (2 oue) 3 uwars [~ (L0 ue 0
— [ (£) s [~ (Ym0 ui ar

Entonces

— 5/0Df"f""(5) w(t)di < —= /Ooo<p (Un_f’")(t)> w(t) dt

Dy fime)
— : / w(t) dt <
0

~ D —fm(e)
= ¢ lim w(t) = 0.
n,m—oco J
Como w > 0, debe tenerse que 1imy, o0 Dy, —,.(€) = 0, es decir {f, }nen es una sucesion de
Cauchy en medida, esto implica que existe una subsucesion {fy, }reny que converge en casi todo

punto a una funcién medible f, esto es, f,, — f p-c.t.p.
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Sea a > 0. Por el Lema 3.5 existe un entero suficientemente grande n(«) tal que

[ et = @y u <1, mnz ate)

Por el lema de Fatou, esto conduce a

/OO e (alfn = f)7 () w(t) dt < h'minf/oo e (a(fn = fm)™ (1)) w(t) dt <1
0 0

V'm > n(a). Asi f, — f pertenece a Ay ,,. Como f,, € Ay ., entonces f € Ay .

Ademas, como limsup,, . [o° ¢ (a(fm — ) () w(t)dt <1 para todo « >0, tenemos

lim,, 00 || frn — flla, ., = 0. Esto demuestra que A, ., es completo. O

4. Operador multiplicacion en el espacio A,

La ultima seccién de este articulo trata sobre el estudio de un tipo especial de operador, llamado
operador multiplicacion, el cual transforma cualquier funcion f € A, 4, en la funcion - f € Ay, 4,

donde (u- f)(x) := u(x) - f(x) representa el producto usual de funciones.

Para una revisiéon maéas detallada del operador de multiplicaciéon en diferentes tipos de espacios, se

pueden consultar, entre otras, las referencias [1,3,4,8,13,17,18].

Definicién 4.1. Sea F(X) un espacio de funciones definidas sobre un conjunto no vacio X. Sea

u: X — C una funcidn tal que u - f € F(X) para cualquier f € F(X).

La transformacion f — w - f definida sobre F' se denota por M,. En el caso en que F(X) sea un

espacio topoldgico y M,, sea continua, lo llamaremos el operador multiplicacion inducido por u.

Los operadores multiplicaciéon generalizan la nocion de operador dado por una matriz diagonal.
Precisamente, uno de los resultados de la teoria de operadores es un teorema espectral, que afirma
que todo operador auto-adjunto definido sobre un espacio de Hilbert es unitariamente equivalente

a un operador multiplicaciéon sobre un espacio Lo.

Para un estudio sistematico de los operadores multiplicaciéon definidos en diferentes espacios véase
[1,3,4,13,17].
4.1. Inyectividad y acotacién de M,

En general, los operadores multiplicacién sobre espacios de medida no son inyectivos. Por ejemplo,

sea (X, A, u) un espacio de medida y

A= X ~supp(u) ={z € X : u(x) = 0}.
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Siu(A) #0y f = xa, entonces para cualquier z € X tenemos f(z)u(z) = 0 lo cual implica que
M., (f) =0, asi ker(M,,) # {0} y por lo tanto M, no es inyectivo.

Por contrapositiva, tenemos que si M, es inyectivo, entonces u(X ~ supp(u)) = 0. Por otro lado,
si u(X ~ supp(u)) = 0y p es una medida completa, entonces M, (f) = 0 implica f(x)u(z) =0
para todo z € X, luego {z € X : f(x) # 0} C X ~ supp(u) y asi f = 0 p-c.t.p. en X. Luego, si

w(X N supp(u)) =0 y u es una medida completa, entonces M, es inyectivo.

A continuacion definimos un conjunto sobre el cual M, es inyectivo.

Definicion 4.2. Se define el conjunto A, ., (supp u) mediante

Aap,w(supp u) = {fXSllppu : f € Ac,a,w}-
Es decir, los elementos de Ay ,(suppu) son funciones de A, ., restringidas al soporte de w.

Proposicion 4.3. M, es inyectivo en Y = A, ,(Supp u).

Demostracion. Sea Y = Ay p(suppu) = {fXeuppu : f € Apw}. Luego, si M,(f) = 0 con f =
Fxsuppu € Y, entonces f(x)xsuppu(®)u(z) = 0 para todo x € X y asi f(z)u(x) = 0 para todo
x € supp(u), de donde f(x) = 0 para todo x € supp(u), con lo cual f()Xsuppu(z)(®) = 0 para

todo z € X. Asi, f = 0, lo cual completa la demostracién. O

A continuacion, se caracteriza la acotacion del operador M, en términos de la acotacion de la

funcion wu.

Teorema 4.4. La transformacion lineal M, : f — w - f definida sobre el subespacio A, . es

acotada si y solo si u es esencialmente acotada. Ademds,
[Mul = fJulloo-

Demostracion. Sea u € Loo(p), note que |(uf)(z)| < ||ulloolf ()|, asi

(o |(wf)(@)| > A} C {z : ullool f(@)] > A} = {x (@) > *},

[l

entonces

Dyuf(X) < Dy <A>

[[floo

y asi

{A>0:Df(A)<5}C{)\>0:Duf(>\)<s}.

[l
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De esto obtenemos

mf{A > 0:D,r(\) <s} < fnf{)\ >0:Dy ()\> < s}

]| oo
< inf{alulsc >0: Dy¢(a) < s}

= ||luljoo mf{a > 0: Dy(cr) < s}.
Luego
(uf)*(s) < llulloo f*(s)-

Integrando desde 0 hasta ¢ y multiplicando por %, obtenemos

¢ [anr@as< g [ s s

Es decir

(uf)™ () < [lufloe f* ().

Dividiendo por ||u|lsol| f]lA, ., S€ tiene que

@, w

(@f)™()  _ ullof™() _ f@)

lullooll Mg, ~ lullsollfllay. — Ifla,."

Dado que ¢ es no decreciente y el peso w es no negativo, de la dltima desigualdad obtenemos

/Om¢<M)w(t)dt§/omw(m)w(t)dtgl.

De esta manera uf € A ademés,

o w»
[Mufllag.. < llullsollfllag..- (4.1)

Reciprocamente, supongamos que M, es un operador acotado. Si v no es una funcién esencialmente
acotada, entonces para todo n € N el conjunto E,, = {x € X : |u(x)| > n} tiene medida positiva.

Ahora, sabemos que

XE, (8) = Xo,u(E,)(5)

y note que

{z :nxg, () > A} C{z: |uxg, (z)| > A},

entonces

DnXEn ()‘) S DuXEn ()‘)a
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de aqui obtenemos

{(A>0: Dy, (A) <5} C{A>0:Dpyp (N) < 5}

Asi
mf{A > 0: Dpyp, (A) < s} <If{A>0: Dy (A) < s}

Es decir,

(uxz,)"(s) = n(xe,)"(s)-

Integrando desde 0 hasta ¢ y multiplicando por %

7/0 (uxg, )*(s)ds > 2/0 n(xg, )" (s)ds.

t

Esto significa que

(uxe, )™ (t) > n(xe, )™ ).

De aqui obtenemos

[ (0 s> [T (00 s

y asi

E>0: OO(p (uxe, )" (1) wt)dt <1y Ck>0: OO(p (e, )™ (1) w(t)dt <1},
oo [Co (Bt )woasf e {eso: [ (SR ) voa <1}

luego

inf{k>0:/000<p<w>w(t)dt§1 <

esto significa que

[Muxz,lap.. = nlXE, o, .
lo cual contradice la acotacion de M,,. Luego u debe ser esencialmente acotada.

Ahora, evidentemente, de (4.1) obtenemos
[ M| < [l (4.2)
Dado e > 0,sea E = {z € X : |u(x)| > ||ulloo — €} (observe que u(FE) > 0), entonces

{r e X: ([lulloc —)xm(z) > A} S {2 € X : Juxe(z)| > A},
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es decir

D(jufjse—2)xe (A) < Duy(N)

y asi

{A>0:Duy,(A) <5} C{A>0:Dy < s},

ulloo =&)X E

de esto obtenemos
fnf{)\ >0: D(HUHoc*E)XE < S} < inf{)\ >0: DUXE ()\) < S}.
Luego
(uxe)"(s) = (lulls —€)(xE)"(s),

integrando desde 0 hasta ¢ y multiplicando por % obtenemos

3 [ ey s = 4 [l = 2)0c) () s

t

es decir
(uxe)™ (t) = ([ulleo —)(xE)™ (1),

entonces

[ (e (o

lo cual implica que

[(lulloe = e)xEllA, W < IMuxpllr, .,

de aqui
(lulloe = ElIxEllA,.. < [Muxslla,..,

asi
[MuxElA,.,

HUHOO —e<
IxEllAg..

lo cual implica que

|My|l > ||ullec —€, para todo e > 0.

De la arbitrariedad de ¢, se deduce

[ Ml = fulloo-

En conclusién

Ml = llulloo- B
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4.2. Rango cerrado de M,

En esta seccion, caracterizaremos los casos en los cuales M, tiene rango cerrado. Iniciamos con un

resultado del analisis funcional.

Teorema 4.5. Sea T : X — Y wun operador acotado, en donde X y Y son espacios de Banach.

Entonces T es acotado inferiormente si y sélo si T es inyectivo y tiene rango cerrado.

Una demostracion del Teorema 4.5 se puede encontrar en [2].

Corolario 4.6. M, : A, ,,(suppu) — Ay (supp u) tiene rango cerrado si y solo si M, es acotado

inferiormente sobre A, . (Supp u).

Este resultado es claro dado que M, es inyectivo en Ay, ., (supp u). Ademas, si u # 0 p-c.t.p. en X,

siendo p una medida completa, entonces se tiene el siguiente resultado.

Corolario 4.7. Si u # 0 p-c.t.p. en X y u es una medida completa, entonces
My Ap (X, A u) = Ay (X, A, u)
tiene rango cerrado si y sdlo si M, es acotado inferiormente sobre Ay (X, A, u).

Teorema 4.8. M, : A, .,(suppu) — Ay (supp u) tiene rango cerrado siy sdlo si existe § > 0 tal

que lu(z)| > & p-c.t.p. sobre supp p.

Demostracion. Si existe 0 > 0 tal que |u(z)| > ¢ p-c.t.p. sobre supp(u), entonces para f € Ay ¥

t > 0 tenemos

{LL’ : |5szupp(u) (117)| > )‘} c {{B : |quSupp(u) (l‘)‘ > )‘}

y asi
Dészupp(u) (A) S Dqusupp(u) ()\)’

entonces

{A >0: Dqusupp(u)(A) S 3} g {A >0: D(Sfxsupp(u)(A) S 3}7

de aqui obtenemos
mf{N > 0: Dsgy, oA <83 <f{A>0: Dypy o (A) < s}y

luego

(qusupp(u))*(s) > 6(szupp(u))*(s)7
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1

integrando desde 0 hasta ¢ y multiplicando por £,

I . I .
E/O (qusupp(u)) (S) ds > 2/0 5(szupp(u)) (S> d87

es decir

(qusupp(u))**(t) > 6(szupp(u))**(t)a

entonces se tiene que

{k >0 /OOOSD ((ufxmz(u))**(t)> w(t) dt < 1} c
{k>0:/OOO@<(5JCXsupI;€(U))**(t))w(t)dt<1}.

Asi
, e (5szupp(u))** (t)> }
f<k>0: dt<1; <
in { > /0 ® ( A w(t)dt <1y <

l,nf{k -y /:"(p <(fosup2(u>)**(t)> w(t) di < 1}7

lo cual significa que

||5szupp(u)||A¢,w < ||MUszupp(u)HAw,wﬂ

luego
||MquSupp(u) ||Ay,,w > 5||szupp(u) ‘|A¢,w .
Por lo tanto M, tiene rango cerrado.

Reciprocamente, supongamos que M, tiene rango cerrado sobre A, ,(supp(u)). Dado que M, :
A w(supp(u)) = Ay w(supp(u)) es inyectivo, entonces M, es acotado inferiormente, luego existe

e > 0 tal que
[Muflla,.. = ellflla,.

para toda f € Ay, (supp(u)). Sea E = {x € supp(u) : |u(z)| < /2}.
Si u(E£) > 0, podemos hallar un conjunto medible F' C E tal que xr € Ay (supp(u)). Entonces

€
{z :Juxr| > A} C {:17: bxp‘ > )\}

y asi

DMXF ()‘) < D%XF (>‘)7
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de esto obtenemos

{A>0:D:y,(A) <8} C{A>0: Dy (V) < 53,

entonces
mf{A > 0: Dyyp(A) < s} <inf{A>0:D¢g,\.(\) < s},

esto es

(wxr)*(s) < (Sxr) (5)

integrando desde 0 hasta ¢ y multiplicando por %, obtenemos

: / (uxe)*(s)ds < : / t (5xr) )5,

es decir

(wxr) () < (5xr) @)

Por lo tanto

Ml =it {e > 05 7o (YD iy ar <)

Sinf{€>0:/0mg0<(§XF€)**(t)> w(t) dt < 1} _ H%XF‘

lo cual es contradictorio. Asi que p(F) = 0. Esto completa la demostracion. O

= S lxel
Apw 2 XF Ay, w

Corolario 4.9. Si yu # 0 p-c.t.p. en X y u es una medida completa, entonces M, tiene rango

cerrado sobre Ay (X, A, ) si y solo si existe 6 > 0 tal que |u(x)| > 6 p-c.t.p. en X.

Demostracion. El resultado se d4 como consecuencia de que

Aso,w (X, A, pn) = Aso,w (suppu). O

4.3. Invertibilidad de M,

En esta seccion, caracterizaremos la invertibilidad de M, en términos de la invertibilidad de u (en

el sentido multiplicativo). Iniciamos con el siguiente resultado.

Teorema 4.10. El conjunto de todos los operadores multiplicacion sobre A, ., es una subdlgebra
mazimal abeliana del conjunto B(Ay ), el dlgebra de todos los operadores lineales acotados sobre

Ap -
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27, 2 (2025)

Demostracion. Sea

H={M,:u€ Ly}

y considere el operador multiplicacién
M, M, = Mu'Ua

donde M, M, € H. Verifiquemos que ésta es un algebra de Banach. Sean u,v € L, entonces
ul < ulleo ¥ [v] < [|0]|oo, Tuego

[uvfloo < ltulloo|[0]]cos

esto implica que el producto es una operacion cerrada, ademés como el producto usual de funciones
es asociativo, conmutativo y distributivo respecto a la suma y al producto por escalar, concluimos
que H es una subélgebra de B(A ). Ahora, vamos a verificar que es una subéalgebra maximal, es
decir, dado N € B(A, ), si N conmuta con H, debemos demostrar que N € H. Consideremos la
funcion unitaria e : X — C definida por e(z) = 1 para todo € X. Sea N € B(A,,,) un operador

que conmuta con H y sea xp la funciéon caracteristica de un conjunto medible E. Entonces
N(xp) = N[My;(e)] = My [N(e)] = xz - N(e) = N(e) - xp = Muw - X,

donde w = N(e). De manera similar

N(s) = M,(s) (4.3)

para cualquier funcién simple.

Ahora, verificaremos que w € Ly,. Por contradicciéon, supongamos que w ¢ Lo, entonces el

conjunto

E,={ze X :|w(x)|>n}
tiene medida positiva para cada n € N. Note que
My (xe,)(z) = wxe, (z) = nxE, (z)

para todo x € X. Por la monotonicidad de la funcién distribucién tenemos que

n

A
DwXEn()‘) Z DXEn <) .

De aqui
{A>0: Dyyy, (A) <s} C {)\>O:DXEn (/\) gs}.

n
Entonces
A
inf{)\>0:DXE <) <s
AN

<If{A > 0: Dy, (A) < s}

—



258 R. E. Castillo & H. C. Chaparro

Tomando o = %, obtenemos

lwxE, Ay = 7lIXE, Mg .0

como x g es una funcién simple, por (4.3) tenemos

My(xE,) = N(xE,)-

Asi que

IN(xe) Ay w = nlixe, la,..-
Entonces N es un operador no acotado. Esto contradice el hecho que N es acotado.
Por lo tanto w € Lo, y por el Teorema 4.4 M,, es acotado.

Ahora, dada f € A existe una sucesion no decreciente {s, }nen de funciones simples medibles

W

tal que lim,, o0 8, = f y por (4.3) tenemos
N(f) = N(lim s, ) = lim N(s,) = lim M, (s,) = M, (lim s,,) = M, (f).

Luego N(f) = M,(f) para toda f € A, ., y asi concluimos que N € H. O

Corolario 4.11. El operador multiplicacion es invertible sobre B(Ay ) sty sdlo siu es invertible

sobre L.

Demostracion. Supongamos que M, es invertible. Entonces existe N € B(A, ) tal que
M, N=N-M,=1 (4.4)

donde I representa el operador identidad. Verifiquemos que N conmuta con H.

Sea M,, € H, entonces
M, - M, = M, - M,. (4.5)

Aplicando N a (4.4) y por (4.5) obtenemos

N-My,-M, - N=N-M,-M,-N,
N-My-I=1-M,-N,
N'Mw:Mw'Na

y asi concluimos que N conmuta con H. Por el Teorema 4.10 N € H, entonces existe g € L, tal
que N = M,, asi
M, -Mg=Mg-M, =1,



Funcién maximal, un subespacio de Orlicz-Lorentz,... 259

esto implica que ug = gu = 1 p-c.t.p., lo cual significa que u es invertible sobre L.

Por otro lado, supongamos que u es invertible sobre L., es decir, % € L, entonces

M, M. =M

1
u

gl

M, =My, =M =1,

lo cual significa que M, es invertible sobre B(Ay ). O

4.4. Compacidad de M,

Para finalizar este articulo, caracterizaremos la compacidad del operador M,,. La siguiente defini-

cion y el lema subsecuente, tendran un papel importante en los resultados posteriores.

Definicion 4.12. Sea T : X — X un operador. Un subespacio V de X se dice invariante bajo T
(o simplemente T-invariante) si

T(V)CV.

Lema 4.13. Sea T : X — X wun operador. Si T es compacto y M es un subespacio cerrado

T-invariante de X, entonces T |p; es compacto.

Demostracion. Sea {x, }nen una subsucesion de M C X. Entonces {z, }nen C X, asi que existe

una subsucesion {z,, }ren de {@, }nen tal que T'(x,, ) converge in X, pero T(z,,) C T(M) pues

{Zn, Yren € M. Entonces T'(z,, ) converge en T(M) C M = M. Asi T(x,,) converge en M, luego

T |p es compacto. O

Teorema 4.14. Sea M, un operador compacto. Para € > 0 defina

Ac(u) ={z € X : |u(z)] > e},

AW’W(AE(U’)) = {fXAE(u) : f € Aga,w}~

Entonces Ay (Az(u)) es un subespacio cerrado invariante de Ay ., bajo M,,. Ademds
Mo [, (ac )
es un operador compacto.

Demostracion. Sean h,s € Ay, (A (u)) y o, € R. Entonces h = fxa_u) ¥ 5 = gXa.(u) donde
fr9 € Ay asi

ah + Bs = a(fxa. ) + B(9xA. ) = (@f + B9)XA. () € Mpw(Ac(u)),
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lo cual significa que Ay, . (A:(u)) es un subespacio A, .

Ahora, para todo h € Ay (A:(u)) tenemos

Myh = uh = u(fxa. ) = Wf)Xxa. (),

donde uf € A, . Por consiguiente M, € A, ,(A:(u)), lo cual significa que Ay ,(Ac(u)) es un

subespacio invariante de A, ,, bajo M,,.

Ahora, verificaremos que Ay (A< (u)) es un conjunto cerrado. En efecto, sea g en la clausura de

Ay (Ae(u)), entonces existe una sucesion {gn fnen en Ay ., (Ac(u)) tal que

gn = gen Ay .

Debemos demostrar que g pertenece a Ay, (A< (u)). Note que

9= gXA.(u) T IXAe(u)-

Demostraremos que gx ac(,) = 0. Para esto, dado ¢; > 0 existe ng € N tal que
IXAg(u)

l9xag(llag.. =119 = gno + gno)xazllag.. =19 = gno)xacwllag. <9 =gnlla,. <er:

Asi, gXac(uy) = 0 lo cual significa que g = gxa, (u), es decir, g € Ay w(Ac(u)). Finalmente por el
Lema 4.13, tenemos que

My | Ay w(Ac(u)) >
es un operador compacto. Con esto termina la demostracion. O

Teorema 4.15. Sea M, € B(A,.). Entonces M, es compacto si y solo si Ay .(Az(u)) es de

dimension finita para todo € > 0.

Demostracion. Si |u(x)| > €, observe que

lufxa. (@) = efxa. (@)

y asi
{z:efxa. (@) > A} C{z: |ufxa.w(@)] > A}
luego
DsfoE(u> ()\) < DufoE«u)()\)v
entonces

A>0: Dupyn A <8} C{A>0: Depyy (o) (A) < s}
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de aqui obtenemos
mf{A>0: Degy, () (A) <8} <If{A>0: Dugy, (A < s},
es decir

(efXA.w)(8) < (ufxa.(w)" (5),

integrando de 0 a ¢t y multiplicando por % obtenemos

t t
t [ ey [

O sea

<€fXAE(u))**(t) < (quAE(u))**(t)a

multiplicando la anterior desigualdad por % > 0,

(efxac )™ (@) - (wfxa. ) ™)
k - k '

Dado que ¢ es no decreciente y el peso w es una funcién no negativa, esto conduce a

¢ ((efxa.w)™ @) wt) < ¢ (wfxa.w)™ @) w(t).

Integrando la anterior desigualdad de 0 a oo,

| e (Chnwr @) wwis [ (@h,w)™©) w
0 0

Entonces

{k>0:/ooogo<w>w(t)dt<l}c

Por lo tanto

inf{k>0:/ooo<p<w>w(t)dt§1}g
fnf{k>0:/oooap(w>w(t)dt§1}.

IMufxa.wllag.. = ellfxallag .- (4.6)

Y asi
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Ahora, si M, es un operador compacto, entonces Ay, ,(A-(u)) es un subespacio cerrado invariante

de A, bajo M, y por el Lema 4.13

My | Ay (Au(u))

es un operador compacto. Entonces por (4.6) M, |A%w(,45(u)) tiene rango cerrado en Ay, (Ac(u))

y ademas es invertible, siendo compacto A ., (As(w)) tiene dimension finita.

Reciprocamente, supongamos que Ay (A< (u)) es de dimension finita para cada € > 0. En particu-
lar, para cada n, Ay . (A; (u)) es de dimension finita, entonces para cada n, definamos u,, : X — C

como

u(x) if |lu(x)| >
oy ) )] 2

3= 3=

0 if lu(z)| <

Entonces tenemos que

(= ) - ) () < llun = ulloc (), V5> 0.

1

7, obtenemos

Integrando desde 0 hasta ¢ y multiplicando por

1

7 /Ot((un —u)- f)*(s)ds < 1/(: [l — ulloo f*(s)ds, ¥V s>0,

es decir

((un —w) - £ (1) < Jlun — ufloo f7(2)-

Multiplicando por % con € > 0 tenemos

((up —u) - )™ (@) _ [lun —ulloof (1)

9 9

Como @ es no decreciente y el peso w es no negativo, lo anterior conduce a

/O°° . <((un - uz f>**(f)) w(t) dt < /OOO ¢ ('“” - u!‘x’f**(t)> w(t) dt.

Entonces

{€>O:/Ooogo(”u"_USOOf**(t)>w(t)dt§ 1} c
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Por lo tanto

nf {s >0: /OOO ¢ <((“" —w) f)**(t)) w(t) dt

IN

<

|
/O"@ (Iun —ullocf**(t)> w(t) dt < 1}.

0 &

1
€

inf {5 >0
Consecuentemente
1
1Mo f = Mufllag.. < llun = ullooll fllag. < ~lFla,..,

lo cual implica que M, converge a M, uniformemente. Como A, ., (A:(u)) es de dimension finita,
entonces M, es un operador de rango finito. Luego, M,,, es un operador compacto y asi M, es

un operador compacto. O
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1. Introduction

El diseno de modelos matematicos de biorreactores y el anéalisis de su dinamica es actualmente
una herramienta casi indispensable a nivel de investigacién industrial avanzada. El desarrollo de
la biotecnologia asi lo requiere. Disponer de la dualidad biorreactor - modelo puede facilitar las

labores, por ejemplo, relacionadas con la optimizacion y el control de los fenémenos

En la operacionalizacién de quimiostatos y biorreactores pueden surgir discrepancias notables entre
las abundancias observadas (poblacion o sustratos), asi como su variabilidad, y las predicciones

estables de estos tamanos que se deducen de los modelos deterministas.

En este sentido, la literatura ha respondido con explicaciones que se justifican incorporando elemen-
tos de estocasticidad a estos modelos. La comprension de diversos sistemas biologicos (pesquerias,
comunidades ecoldgicas, etc.) ha mejorado, en términos de realismo, al considerar efectos estocésti-
cos en sus modelos. Se sabe que incorporar estocasticidad puede cambiar radicalmente la dindmica
de un sistema y, por ejemplo, donde un modelo determinista predice solo la persistencia de una
poblacion microbiana, a partir de su analogo estocéstico, se puede inferir una alta probabilidad de

extincion. Ver Imhof & Walcher [11].

Para explicar las fluctuaciones observadas en los experimentos, en torno a los equilibrios estables
no triviales predichos por los modelos, los modeladores dentro de las estrategias deterministas han
incorporado efectos como retardo, entradas periodicas de nutrientes, control por retroalimentacién,
aunque también ha surgido la alternativa de perturbaciones estocésticas, ver Crump & O’Young
[6]. En Xuehui & Yuan [12], se menciona que en el caso de reactores para el tratamiento de aguas
residuales, las fluctuaciones en la concentracion de sustrato y microbios pueden explicarse a partir
de perturbaciones estocéasticas en fuentes externas (luz, temperatura u otras). Sin embargo, también

en algunas perturbaciones internas, propias de los procesos fisicoquimicos o biolégicos subyacentes.

Otra posibilidad que se menciona como causal de la estocasticidad es el incumplimiento de la ley de
los grandes nimeros. Este es el caso cuando las poblaciones microbianas no son lo suficientemente
abundantes. Asi, tenemos modelos que consideran fluctuaciones aleatorias en el tamano de la
poblacion, mas precisamente en los procesos de nacimiento o muerte bacteriana individual, por
ejemplo, la inexistencia de replicaciones celulares o no regularidad en los tiempos de biparticion,

ver Collet et al. [4].

Un biorreactor discontinuo es un biorreactor cerrado, es decir, sin entrada ni salida de agua.
Ademas, en el que debe haber un homogeneizador de la mezcla. En este trabajo nos interesa un
reactor que funcione casi todo el tiempo como uno cerrado, salvo en una secuencia de instantes
en los que se produce un proceso instantaneo de vaciado y llenado de una porcién constante
del volumen del tanque. En estos instantes se produce un salto en las concentraciones tanto del

nutriente como del microorganismo, lo que técnicamente se denomina pulso o impulso.
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En la literatura se ha considerado la incorporacion de pulsos por diferentes motivos y vias. Un
ejemplo es cuando estos instantes de impulso son conocidos de antemano (es decir, predetermina-
dos) y, sin vaciar, se introducen en el sistema cierta cantidad de nutrientes en dichos instantes.
Por ejemplo, en Song & Zhao [17], si el intervalo de tiempo entre la introduccion de nutrientes es
mayor que un cierto umbral (relacionado con la funcién de consumo), se demuestra la extincion

del microorganismo.

En Meng & Gao [14] hay otro ejemplo con uso de tiempos de impulso fijos, en ese modelo se
mezcla un efecto de retardo y una secuencia de instantes de alimentacion. Alli, el sistema considera
un nutriente, una poblaciéon y una funcién de consumo de tipo Monod. En este trabajo se dan
condiciones de umbral para separar, en el espacio de parametros, zona de extinciéon y zona de

persistencia de la poblacion.

En el caso que analizaremos, los tiempos de pulso (de vaciado y llenado) no estan predefinidos y se
determinan en funcién del valor de la variable de estado, més precisamente cuando la concentracién
poblacional alcanza un limite superior, un méximo permitido. Un caso particular, ya que se trabaja
con una funcion de conversion especifica, lo podemos encontrar en Su & Tian [18], donde se prueba

en un contexto determinista la posibilidad de soluciones periodicas estables.

En este articulo, presentamos y estudiamos un modelo de biorreactor de una sola poblacién y
una recurso tnico. Esto parece muy sencillo, pero es novedoso en cuanto considera, por un lado,
una secuencia de lotes (es decir, con impulsos) y por otro, incorpora el efecto estocéstico como

perturbaciéon en la funcién de consumo, lo que no es habitual.

De hecho, si consideramos que la poblacion esta compuesta por organismos unicelulares (p. ej.,
bacterias), destacamos que durante el metabolismo celular ocurren en el interior de las células
diversas series de reacciones quimicas (catalizadas por enzimas especificas) que transforman el
nutriente. Como existen factores, como la temperatura y/o el pH, que afectan a las enzimas y su
especificidad, es natural suponer que se crea una fuente de aleatoriedad en la accién enzimética,

va que esté relacionada con los encuentros enzima-producto.

Dado que en el modelo la determinaciéon de los instantes de vaciado-llenado depende del valor de
la variable aleatoria de estado (microorganismo-sustrato), el objetivo principal y los resultados del
articulo estan asociados a la posibilidad de que el biorreactor desarrolle efectivamente, ocupando
un tiempo finito, la secuenciacion del decaimiento de la concentracion del sustrato y su reposicién

(vaciado-llenado).

El articulo se encuentra estructurado para facilitar diferentes niveles de lectura. Para una evalua-
cion expedita del proceso de modelado y sus propiedades dinamicas, basta con consultar la Seccién
2 (donde se presenta el marco tedrico-analitico) y la Seccién 3 (que sintetiza los principales ha-
llazgos sobre el comportamiento del sistema). Por otro lado, quienes requieran profundizar en los

fundamentos matemaéticos de los resultados expuestos, encontraran en la Seccion 4 las demostra-
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ciones de cada teorema y proposiciéon. La Secciéon 5 incluye algunas conclusiones y observaciones
del trabajo y los aspectos técnicos y herramientas matemaéticas auxiliares requeridas para replicar

el analisis se han compilado en el apéndice.

2. El modelo

Como minimo, un modelo de biorreactor considera una tnica especie de microorganismo que con-
sume un Unico tipo de sustrato, este es nuestro caso. Denotaremos por z(-) y s(-), las funciones
que representan respectivamente medidas (no negativas) de la abundancia de microorganismo y
sustrato a lo largo del tiempo. En la literatura técnica de base biolégica existen diversos modelos
matematicos que explican, en términos cuantitativos, el proceso metabolico en un biorreactor, es
decir, relacionan cuantitativamente estas variables. Los modelos diferenciales temporales continuos,
que se limitan a representar el crecimiento poblacional a partir de una biomasa inicial zg como
efecto del consumo gradual de un tnico aporte de sustrato sy, pueden resumirse en la siguiente

ecuacion diferencial:

S = ~Luls(la(t),

(2.1)
() = pls@®)]xt), s(0)=so, z(0) = o,

donde la funciéon p[-] representa la tasa de crecimiento en funciéon del sustrato disponible y la

constante y es el factor de conversion del sustrato en biomasa por unidad de tiempo.

El sustrato presente en el bioreactor se mide como masa por unidad de volumen. La biomasa de
microorganismos se mide segtin su tipo y modelo concreto a utilizar. La unidad utilizada no afecta

el modelo, lo que es inmediato de la forma de la ecuacion (2.1).

2.1. Funciéon de conversion de nutrientes en biomasa

La literatura muestra varias formas especificas para la funcion p[-] dependiendo de los atributos
geométricos de su grafico que desee incorporar, ver ver Rene & Sveto [2]. La forma que se considera
mas estandar es u[s] = p*s/(k + s), del tipo Monod [15], que tiene una forma creciente y concava
que se aproxima a un valor maximo p* para valores altos del sustrato y que, para s = k toma el

valor medio de este maximo.

Existen otras posibilidades, pero éstas se definen a tres parametros. Tenemos la de Haldane [§] y

la de Andrews [3], definidas respectivamente.

1 1

el = Y el = e e
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que son equivalentes por transformacion de parametros. Su forma gréafica cuando s crece es concava,
unimodal y luego decae asintéticamente a cero. Con una forma completamente similar, pero no

racional, €s fiqsn[s] = fm[s] € 7%/%, usada en Aiba, Shode & Nogatani [1].

Con cuatro parametros, tenemos la forma introducida por Webb [19], cuya forma es una alteracion
de ug[], en efecto, pu,[s] = pa[s](1 + Bs/k;). Esta funcion en su forma es como pg[-], pero con

decaimiento asintético al valor 3.

Una muy singular, ya que tiene un dominio [0, sps], pues la concentracion es Han & Leveenspiel

[9], dado por pnis] = pm[s](1 — s8/sar), que es cero en los extremos.

En Shukor & Shukor [16] es posible encontrar una lista de otras formas de la funcion de conversion
de nutrientes en nueva biomasa. Nombres como Teissier [7], Yano & Koga [20], Han & Levenspiel

generalizados [9], Luong [13] y Hinshelwood [10], se mencionan asociados con funciones pu[-].

Todas las funciones de conversiéon de nutrientes-biomasa presentes en este trabajo, comparten la
propiedad de ser funciones continuas y pasar por el origen. Con el fin de cubrir un amplio espectro
de posibilidades se consideran solo estas hipotesis minimas sobre la funcién conversion, es decir;

i [0,00) — [0,00) es una funcion continua tal que 1(0) = 0.

2.2. Ecuacién de llenado y vaciado del biorreactor

La dinadmica del proceso se desarrolla en un biorreactor que contiene una disoluciéon acuosa en
la que hay un sustrato a una concentracion inicial igual a sg (concentracién méaxima) y una
poblaciéon de microorganismos, al principio de tamano xg, que metabolizan dicho sustrato. El
proceso se interrumpe cuando la concentracion de sustrato, decreciente por consumo, alcanza un
nivel predeterminado que denotamos por sg (concentraciéon minima, sg < sg), es decir, en un
instante ¢ > 0 tal que s(t) = sg. En este instante ¢, se extrae una fraccion p del volumen de
la disolucién y se rellena con una nueva disolucién con una concentraciéon de sustrato igual a la
inicial, es decir sg. Al mezclar instantaneamente con la parte residual que queda en el biorreactor,

se genera una nueva concentracion ¢ s(t) + p sg.

Nétese que con este vaciado el nimero de microorganismos se redujo a qx(t), ¢ = 1 —p y en
el proceso de llenado inmediato no cambia esta cantidad. Es esta poblacién la que reiniciaré el

siguiente ciclo del proceso metabdlico.

En Cordova-Lepe et al. [5], se propone un modelo que utiliza un sistema diferencial impulsivo que
representa, como variable de estado continua, la parte metabélica y los procesos de vaciado-llenado

del biorreactor como pulsos que interrumpen esa continuidad. Este modelo es el siguiente
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5() = ——pls@®)]z(t)
) ) S(t) 7é So,
Bt) = uls(t)](t) 22
s(tt) = qs(t) +pse
’ S(t) = So,
z(tT) = qu(t)

con $(0) = sg and x(0) = z¢ > 0.

2.3. El modelo de perturbaciéon estocastica

La funcién metabolizadora puede verse afectada por perturbaciones de variado origen, como las
inevitables variaciones de temperatura y las vibraciones propias del funcionamiento del biorreactor.
En estas circunstancias, la opcién de considerar una perturbacién normalizada se presenta como la
més natural, es decir fi(s) = u(s) + oW (t), donde W (t) es un Ruido Blanco y o es una constante

positiva que modula la intensidad del ruido.

Esta opcion, siendo la méas natural presenta el inconveniente que para valores cercanos a cero de
i o de ruido muy intenso ji podria, eventualmente, tomar valores negativos lo que equivale a la
introduccién de sustrato en el biorreactor, lo que no tiene sentido en el contexto del problema
presentado. Este inconveniente, es propio de la modelacién por ruido blanco, el cual puede tomar
cualquier valor real. En la practica, esta limitacion no afecta el modelamiento para valores pequemios
de o y si existe un valor minimo, estrictamente positivo, para u. Estas condiciones son fijadas con

precision en la ecuacion (3.1).

Asi, sustituyendo fi(s) en la ecuacion (2.1), integrando (en el intervalo [0,¢]) y utilizando las letras

maytusculas para diferenciar el enfoque estocastico, obtenemos:

1/t o [t
St) = S@f;/o u[S(u)]X(u)du—;/o X (u)W (u)du
(2.3)
X)) = Xo +/O ,u(S(u))X(u)du—l—a/O X (w)W (u)du.

Ahora bien, teniendo en cuenta que, heuristicamente dB(t) = W (t)dt, la propuesta de modelo

estocéastico impulsivo, escrito en su forma diferencial, queda:
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1
ds *§{u[5}dt+0d3(t)}X S() 4 5.
dX = {u[S]dt + odB(t)} X (2.4)
S(t*t) = ¢S(t) +pSs S(t) =8
X)) = eX() h

con S(0) = S¢ and X (0) = Xy > 0.

3.

Declaracion de los resultados principales

Es posible decir que para el sistema dado en (2.4), bajo la hipotesis de un ruido de amplitud no

demasiado grande, como para aniquilar la dindmica, es decir

o= IZIIEI‘I}{,LL[Z]} >02/2, con J:=[Se,Sal, (3.1)

Se cumplen las siguientes proposiciones:

T,

T,

Ty

Ts

Existencia y unicidad: El proceso tiene solucién tinica en sentido estocéstico y estas existen
en todo el tiempo futuro. Ademés, este proceso limita a los tiempos de vaciado-llenado,

definido por una ley determinista y unidimensional para la dinamica

Finitud de tiempos de espera: La secuencia definida por los tiempos de espera entre

vaciados y llenados consecutivos, es una variable estocastica de esperanza finita.

Cota para los tiempos de espera: El periodo de espera entre la n-ésima y la (n+1)-ésima

accion de vaciado-llenado tiene una esperanza en [k, (8), k, ()], donde

1 ASE
(V) = ——=Ind 1+ —1225 4 (3.2)
v—o02/2 q"Xo + qvASS

con ASE = S — S y B =méxzes{u[Z]}.

Comportamiento asintético: Los tiempos de espera de los procesos de vaciado-llenado
se estabilizan como una variable aleatoria cuya esperanza se encuentra en el

intervalo [Keo (), Koo ()], donde koo (v) = In(1 + 1/q)/[v — 02/2], con v € {a, 3}

Estabilidad: Las desviaciones AXy y ASg en términos de los organismos iniciales y del
sustrato de entrada respectivamente, implican una variacién en la abundancia del microor-
ganismo, después del momento de n-ésimo vaciado-llenado ¢"A Xy + ¢yASg. A largo plazo,

este limite se estabilia en ¢yASg, de modo que a medida que transcurre el tiempo no habra
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diferencia entre las abundancias poblacionales si no hay diferencia en las concentraciones

iniciales del sustrato de entrada

En el caso Monod para u, debido a que es una funcion creciente, se tiene que o = p;,[So] vy
B = pm[Se]-
En casos unimodales, como pp,, fiq O flasn, S€ tiene un méximo en algun valor de S = S*. De modo

que, si S* € J, entonces a = pu[Sg] v 8 = u[S*], pero en caso de S* ¢ 7, el valor de a y 8 son

valores de u en los bordes de J, segun el tipo de monotonia p en 7.

Notese que lo observado en este apartado, en principio, no implica que la espera de un siguiente
momento de vaciado-llenado sea acotada, es decir de probabilidad positiva para tiempos de espera

arbitrariamente grandes, pero su probabilidad debe tender a cero al crecer el tiempo de espera.

4. Demostraciéon de los resultados principales

4.1. Demostracion de T,

Como se dijo, cuando el nivel de sustrato en el biorreactor disminuye hasta alcanzar el nivel Sg,
se lleva acabo el proceso de emptying-filling. Notese que a partir del tiempo cero, los momentos de
interseccion con la condicion S(t) = Sg, los llamados tiempos de impulso, forman una secuencia
creciente de instantes que denotaremos por {7, }n,en. De modo que el proceso determinado por
(2.4) induce una dindmica discreta bidimensional {(X,,S,)}nen definida por X, = X(7,7) v
Sn = S(1,1).

De hecho, a partir de la ecuacion (2.3), tomando la suma X(-) + vS5(-), es posible obtener la

siguiente relacion lineal entre S y X:
X(t) — X =7(Sn — S(t), t€|n,Tat1], n >0, (4.1)

donde se considera 79 = 0, Sy = Sg.

Dado que S,, = S(7,7), considerando la tercera ecuacion del sistema (2.4), se tiene que S, =

qS(tn) +pSg, de modo que
Sn=qSg +pSg, paratodo n>1. (4.2)

Por tanto, S, es siempre el promedio ponderado entre el valor de concentracion de entrada Sg y

la tolerancia reducida (valor de salida) Sg, ambos parametros fijos.

Asi también se tiene que X,, = X(7;7) = ¢X(7,). Por lo tanto, por (4.1) se obtiene X, 1 =
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a{Xn +7(Sn — S(Tnt1))}. Luego por (4.2) se sigue la recurrencia escalar lineal:
Xn+1 =qX, + quASg, para todo n > 0. (4.3)

Teorema 4.1. Una solucién (X (-),S(+)) de (2.4) es tal que {X (7,7) }nen, satisface (4.4). Entonces
se tiene

X(rH) =q"Xo+vqASE(1 —q¢"), paratodo n>1. (4.4)

Por lo tanto

X(r7) = vqASE, cuando n — oco. (4.5)

Demostracion. Se obtiene por sustituciéon directa de (4.4) sobre si misma, para luego plantear la

conjetura de la soluciéon general y demostrar por induccion. O

Observacion: Puede resultar sorprendente que el resultado asintotico (4.5) del teorema anterior
sea independiente de la funcion u[-] y del factor estocéstico o del modelo. Sin embargo, como se
ver4d mas adelante, la funcion p[] influye en la determinacion de los tiempos de impulso {7, }nen,

donde tiene lugar el proceso de vaciado-llenado.

4.2. Demostracion de T,

En la seccion anterior, mostramos la dindmica de los puntos iniciales de los procesos de vaciado-
llenado del biorreactor, pero esta dinamica presupone que los microorganismos metabolizadores
son capaces de llevar la concentracion de sustrato desde el estado S(7,7) = ¢So + pSg al estado
S(Tnt+1) = S en un tiempo finito (lo que en términos deterministas seria A7, 1= T,41 — T, < 00) y
para todos los valores de n. Por lo tanto, ahora el objetivo principal sera (a) demostrar la existencia
y unicidad del proceso estocastico (microorganismo-sustrato (2.4)), entre tiempos consecutivos de
vaciado-llenado del biorreactor y (b) la finitud de la expectativa de los tiempos de espera de estos

procesos (esto es E[AT,] < 00).

Notese que la relacion (4.1) dada por (2.4), para t € [0,6], 6 > 0 suficientemente pequeno, el

sistema se puede desacoplar y reducir a la ecuacion estocastica unidimensional:
dX(t) = p[Se — {X (@) — Xo}/v] X(t)dt + e X (¢)dB(t), X(0)= Xo. (4.6)
Notese que la ecuacion (4.6) tiene la forma dada por (5.3), pero con funcién f[-] definida por:
flu] = p[Se — {u—Xo}/7lu, u=0, (4.7)

una funcién continua, ya que es producto y composiciéon de funciones continuas.
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Ademas, dado que flu]/u = p[S]y S € J := [, Sa), al elegir

a=min{ulZ]} vy B=mix{u2]}, (4.8)

la funcion f[-] satisface la relacion (5.4) con L = oo.

En la Seccion 2.1, se consideraron varias posibilidades (tomadas de la literatura bioldgica) para la

funcién p[-], donde todas ellas cumplen con ser funciones positivas, diferenciables y nulas en cero.
Lema 4.2. Consideremos el proceso definido por (4.6) y la condicion a > 02 /2. Entonces, se tiene
que el tiempo de parada definido por

7 =f{t > 0] X(t) > Xo +vASE}, (4.9)

que representa el primer tiempo de vaciado-llenado del biorreactor, es una variable aleatoria de

esperanza finita.

Demostracion. Segin lo planteado para la funcion u[], se tiene que f[-] defnida por (4.7) cumple

con las hipédtesis de la Proposiciéon 5.3. Por lo tanto, se concluye la demostracion. O

Con el Lema 4.2, acabamos de concluir que el tiempo de espera hasta el primer vaciado-llenado
tiene expectativa finita. Ahora, necesitamos analizar la existencia de sucesivos tiempos de espera

para el proceso de vaciado-llenado del biorreactor.

Recordar que {(X, Sn)}nen esta dado por
Xn=¢"Xo+vASE(1—¢") ¥ S =0Se +pSe.

Procediendo por induccién, supongamos que existe un tiempo de parada n-ésimo. Por lo tanto, el

problema de Cauchy estocastico después del n-ésimo tiempo de vaciado-llenado es:
dX(t) = p[S, —{X(t) = Xp} /7] X(@)dt + o X (¢)dB(t), t> Tn. (4.10)

Entonces, al cambiar la variable de tiempo 7 = ¢ — 7, con t > 7,, transformara la ecuaciéon (4.10)
en

dY (1) = p[So — {Y (1) — X0}/ Y (7)d7 + oY (7)dB(7), (4.11)

con Y(01) = ¢" Xy + ¢qy(Xo — X) y donde B(7) es un movimiento Browniano estandar B(7) :=
B(T + 1) — B(mn)-
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Teorema 4.3. Considérese el proceso definido por (4.11). Luego, la secuencia definida por los
tiempos de espera entre instantes consecutivos de vaciado-llenado, dada por ATy, := Tp — Tp_1, CON

{mn} definidos recursivamente por
Tog1 = mf{t > 7, | X(t) > ¢X (1) + ypASE}, n>1,
es una variable estocdstica de esperanza finita.

Demostracion. Es analoga a la realizada en el Lema (4.2), siguiendo un argumento recursivo. [

4.3. Demostracion de T

Teorema 4.4. Considérese el proceso definido por (4.11). Entonces,

Rn

- <E[Ar,] < S (4.12)
-5 a— %

Demostracion. Usando el Teorema 4.3 y (5.7), podemos establecer el siguiente control sobre los

tiempos de espera

In (X ()X () _ g < K i)/ X () 13)

Dado que X (7,41) = X (1,7) +7ASE vy X(1,7) = ¢"Xo+ ¢7ASE (1 —¢"), entonces definiendo
kn = In (X (7,41)/X(7,])), se tiene

ASE
Kpn=In|1+ 2 6@ = Kn. (4.14)
q"Xo +qyASE(1—g")

con lo que se obtiene directamente (4.12). O

4.4. Demostracion de Ty

Teorema 4.5. Los tiempos de espera de los procesos de vaciado-llenado se estabilizan como una

variable aleatoria cuyo valor esperado se encuentra en el intervalo [A(a), A(B)], con A(v) =In(1+

1/q)/lv - 0?/2].

Demostracion. Considerando la formula (4.12), se tiene que el limite de E[A7,], cuando n — oo,
depende de la sucesion {k,} dada por (4.14). De donde es claro que £, — In(1 + 1/g) cuando

n — oo, concluyendo la demostracion. O
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4.5. Demostracion de Tj

Una cuestiéon que siempre es interesante en el estudio de la dindmica es el comportamiento asint6-

tico. Sobre esto se tiene que:
Teorema 4.6. La evolucion de los valores iniciales representa una dindmica estable.
Demostracion. Sea (X, Sq)y (Xo,Se) ) dos valores iniciales para la abundancia inicial de microor-

ganismos y la cantidad de nutrientes respectivamente. Entonces, V,, := (X, S,) y Y, 1= (Xn, S’n),

n > 0, representan las respectivas dinamicas discretas, tenemos segtin la ecuacion (4.1) que:

Vi = Vall = [1(¢™(Xo — Xo) + ¢¥(Se — Sa),0)|| < max{g™, gv}||Vo — Vol|. (4.15)

Por lo tanto, las dos dindmicas son tan cercanas como sus puntos iniciales. O]

Lema 4.7. La dindmica de los valores de (X,,, Sp), es decir, inmediatamente después de los tiempos
de vaciado-llenado, tiende a un par (Xso,Soo) que depende exclusivamente de los valores de la

concentracion inicial y final de sustrato y, ademds, de la fraccion de volumen extraido.

Demostracion. Segtn las ecuaciones (4.2) y (4.4), se tiene limy, o0 (Xn, Sn) = (¢7ASS, pSa+4qSs).
Este es un par independiente de los valores iniciales de concentracién de microorganismos, pero
dependiente del valor inicial y final de los valores de concntracién inicial y final de sustrato y de

la fraccién de volumen extraido. O

5. Observaciones finales

Proceso solucién: Hasta ahora se ha usado una construccién por intervalos, desde 7, a Ty41,

entonces si denominamos X (™ (t) a la solucion de la ecuacion (4.10) para t €]7,, Tni1], €l proceso
oo

X(t):= Z xm (t)]l]Tnfl;T‘n] (5.1)
n=1

es solucion de la ecuacion (4.10) para todo n y ademés cumple que la condicion del proceso de
vaciado-llenado. Ademas, S (t) = S, — % (X™(t) — X,,) soluciona la evolucién del sustrato en

el intervalo de tiempo estocastico |7, 7, +1]. Por lo tanto el proceso bidimensional

(X0, 50) = 3 (X", 5" 0) Uy, 7, (52)

n=1

es una solucion global de la ecuacion (2.3).
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El Teorema 4.5 muestra que si la fraccion de volumen que se extrae del biorreactor es muy grande
(p cercano a 1), entonces la cantidad de microorganismos que quedan en el biorreactor serd muy
pequena (g cercano a 0), lo que implica un valor de K, muy grande, lo que significa un largo

tiempo de espera para el metabolizado.

El tiempo de espera asintético obtenido en el Teorema 4.5 da la impresion que es independiente
del modelo en particular que se esté utilizando, pero no es cierto debido a que los valores de a y

[ dependen de la funcién p de crecimiento de microrganismos.

Apéndice: Antecedentes matematicos

En esta seccién se expondran dos resultados mateméticos necesarios para la demostraciones de los

resultados principales.

Dada una funcion continua f : [0,00) — [0,00) y un ntimero positivo o, consideremos la ecuacion

diferencial estocéastica unidimensional
dU(t) = flU(t)]dt + cU(t)dB(t), U(0) = Xo, (5.3)

con el grafico de f[-] encerrado por un cono, esto significa que, existen constantes positivas a, 8y
L que satisfacen

ou < flu] < fu, paratodo u€|0,L]. (5.4)
Proposicion 5.1. Dada la ecuacion (5.3) bajo (5.4), entonces

(a) Existe una inica solucion del proceso U(+) definido en el intervalo temporal [0, 7*], con tiempo
de parada:
7% := inf {t >0, U(t) > L}. (5.5)

(b) La solucion U(-) del proceso estocdstico satisface
02 02
Ua(t) := Xo e~ 2)H78 < U (1) < Up(t) := Xgel/~ 7B, (5.6)
para cada t € [0, 7*].

Demostracion. Para cada v € {a, [}, se consideran las funciones f,[u] = vu + Loy (v)flu], u €
[0,L], y el sistema dU(t) = f,[U(t)]dt + cU(t)dB;. Si U,(-) es solucion, tal que U,(0) = X,
con Xg € [0, L], entonces por (5.4) y una simple comparacion de las soluciones del sistema, se
tiene Uy(-) < Up() < Ug(+) en el intervalo [0,7*], con 7 = inf{t > 0;0 < U(t) > L}. Notese
que como un movimiento Browniano geométrico tiene una solucion explicita, es claro que U, (t) =

Xo e(”_§f’)+‘73‘, para v € {«, }. De (5.6) sigue el resultado. O



Biorreactor de fermentaciéon con tasa estocastica de consumo 281

Observacion 5.2. La desigualdad (5.6) implica la positividad de las soluciones. Mds ain, si

B <0?/2 yL=oc0, se tiene que 0 < U(t) < Ug(t) y Us(t) = 0 cuando t — oo.

Proposicién 5.3. Consideremos la ecuacion (5.3) bajo las condiciones (5.4) y o > 02 /2, entonces
la variable aleatoria 7 = inf{t > 0, U(t) > L} tiene una esperanza acotada tal que

_ In(L/X)

E(rs) <E(r) <E(ra), donde E(1,)= m, (5.7)

donde v € {a, B}.

Demostracion. Por la proposicion anterior se tiene que U, (t) < X(t), Vi > 0, luego 7 < 7, donde
T=mf{t >0; U()=L}y7e =mf{t >0; X*() = L}. Ahora, de la ecuacion U, (t) = L se
obtiene que (a — (02/2)) ¢t + B, = In(L/Xo). De donde se sigue que E(7,) en el lado derecho de
(5.7). Por hipétesis Xo < L'y a > ¢2/2, de modo que 0 < E(7,) < 00, concluyendo el teorema. []
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1. Introducciéon

La teoria de representaciones lineales de grupos finitos tiene diferentes aplicaciones a las mas
diversas areas de la Matemaética. Alli donde se estudien objetos con simetrias, alli esta teoria

puede dar luz para describir més en profundidad dichos objetos.

Un ejemplo concreto de ello son los fructiferos resultados sobre variedades abelianas que han surgido

de llevar la teoria de representaciones a ese campo. Vea por ejemplo [2—4,7-9].

Recordemos algunas definiciones que usaremos en esta nota. Sea G un grupo finito y K un sub-
cuerpo del cuerpo de los niimeros complejos C. Una K-representacion de G es un homomorfismo
de grupos p : G — GL(V), donde V un espacio vectorial finito dimensional sobre el cuerpo K.
Dos tales representaciones p; : G — GL(V1) y p2 : G — GL(V2) se dicen equivalentes si existe un

K-isomorfismo T": Vi — V5 que conmuta con las acciones inducidas por p; en V;.

Usando la terminologia de modulos, vea [6, §29] para detalles, se tiene que V es un K G-modulo
(a izquierda), y se dice que V sustenta a p. Una K-representacion, o el médulo que la sustenta,
se dice K-irreducible si no tiene G-submodulos (sobre K) aparte de los triviales y descomponi-
ble si todo G-submoédulo (no trivial) tiene un G-submoédulo complementario; esto es, si W es un
G-submodulo de V, existe un G-submodulo W€ tal que V.= W @ W€, Irreducible e indescom-
ponible (no descomponible) no son equivalentes sobre cuerpos arbitrarios. En esta nota estamos

considerando representaciones sobre subcuerpos de C, y en este caso, estas propiedades si lo son.

Dada K C L una extension (finita) de cuerpos, por extension de escalares se define el L-modulo
V=V ek L.

Se tiene que V¥ contiene (una copia isomorfa) de V, dimy VF = dimg V y V¥ es un LG-moédulo
de forma natural. Se tiene entonces una representacion, que denotaremos por la misma letra p, de

G sustentada ahora por VL.

Emmy Noether [6, Theorem 29.7] respondié afirmativamente a la pregunta natural: ;Si V; y V5
son K G-modulos que son L equivalentes, entonces también lo son sobre K ? Esta observaciéon
abre la puerta a estudiar las representaciones irreducibles de un grupo G en cuerpos entre los
racionales y los complejos. Se necesita fijar lenguaje para esto [6, Def. 29.12]: Sea p: G — GL(V)

una K-representacion irreducible (sobre K), se dice que

= V (0 p) es absolutamente irreducible si VL es L-irreducible para toda extension K C L de K.

= Un cuerpo L se llama cuerpo de descomposicion para el grupo (finito) G si y solo si toda

L-representacion L-irreducible es absolutamente irreducible.
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Por [6, Theorem 29.16], dado un grupo finito G, existe un cuerpo de ntimeros que es cuerpo de
descomposicion de G. Mas ain, [6, §41] Maschke conjetur6 alrededor del 1900 y Brauer probé en
1945, que un cuerpo de descomposicion para G es Ly := Q(&;:), donde t es el exponente de G y
& es una raiz t-ésima primitiva de la unidad. Este cuerpo de descomposicién muchas veces no es
el preciso, en el sentido de minima extension de Q. Por ejemplo, para el grupo simétrico Ss, que
tiene exponente 6, el cuerpo de los racionales es un cuerpo de descomposicion y esta estrictamente

contenido en Lg.

1.1. Teoria de caracteres

A cada K-representacion p : G — GL(V), le corresponde un K-caracter x, : G — K definido por
Xp(9) = tr(p(g)) en alguna base de V, tr(A) siendo la traza de la matriz A. Paralelo a la teorfa de
representaciones, se desarrolla la teoria de caracteres. Esta tiene varias ventajas; cuando se trata de
C-representaciones se tienen las siguientes: representaciones equivalentes tienen el mismo caracter,
se define un producto interno entre caracteres que captura la equivalencia e irreducibilidad de las

representaciones asociadas [10, §2.3].

Aprovechando la correspondencia entre K-representaciones irreducibles y K-caracteres irreduci-
bles, se encuentran los K-caracteres irreducibles de G a partir de los L-caracteres irreducibles de
G, donde L es un cuerpo de descomposicion de GG. La técnica descansa en Teoria de Galois para
la extension de cuerpos

K CK({x(g): g€ G}) CL,

vea [6, §70] para detalles.

Si bien para muchas de esas aplicaciones, basta conocer los caracteres de un grupo finito G en
un cuerpo K, por ejemplo en [4] usan K = Q o K = C para descomponer variedades abelianas,
para otras aplicaciones se necesita la expresiéon matricial de la representacion. Vea por ejemplo
[10, §2.7], donde se construyen proyectores usando los coeficientes de las matrices correspondientes
a una representacion para descomponer explicitamente un G-modulo. O el trabajo [1, pag. 270],
donde para demostrar el Lema de Selberg; a saber, todo grupo finitamente generado de matrices
en un cuerpo de caracteristica cero tiene un subgrupo de indice finito libre de torsion, usa que
hay un homomorfismo inyectivo de GL(n, F) a GL(nk,K) donde F es una extension algebraica
finita de grado k sobre K. Sin embargo, hasta donde alcanza nuestro conocimiento, no hay en la

literatura métodos explicitos y programables para construir tales representaciones matriciales.
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2. Preliminaries

En esta seccion repasamos algunos de los resultados de [6, §42] que seran ttiles en nuestra cons-

truccion.

Sea m un entero positivo, &, una raiz m-ésima primitiva de la unidad, y K un subcuerpo de C.
Entonces K (&,,) es una extension normal y finita de K, y cada automorfismo de K (&,,) que fija

los elementos de K esta dado por una funcién
Pm, r
gm — mo

donde r es algin entero relativamente primo a m. Se define I,,(K) como el grupo multiplicativo

de enteros r (moédulo m) para los cuales @, es un automorfismo de K(&,,).

Entonces el grupo de Galois Gal(K (&,,)/K) se identifica naturalmente con I,,,(K). Se verifica que,
por ejemplo, In(C) = {1} e In(Q) = (Z/mZ)".

Definicion 2.1. Con las definiciones de arriba. Sea G un grupo finito de exponente t, dos elementos
a,b € G se dicen K-conjugados si

b =a",
para algin x € G y algin r € I(K).

Existe una notable relaciéon que permite contar las representaciones de un grupo G sobre un cuerpo

K CC.

Teorema 2.2 ([6, Theorem 42.8]). El nimero de KG-mddulos irreducibles no isomorfos es el

mismo que el numero de K-clases de conjugacion en G.

Observe que para el caso en que K = Q(&), t el exponente de G, se tiene que la K-conjugacion
es la conjugacion usual. Por otro lado, si K = Q dos elementos son K-conjugados si y so6lo si
generan grupos conjugados. Se recuperan asi los teoremas de conteo de representaciones irreducibles

conocidos para C y Q, [6, Theorem 27.22, Theorem 39.5] respectivamente.

Con este teorema podemos contar todos los KG-modulos irreducibles de un grupo G, pero no
construirlos. Sin embargo, es ya un resultado clasico que los K-caracteres irreducibles de G en los
diferentes subcuerpos K de un cuerpo de descomposiciéon L para G, el cual es una extension finita
normal de Q, se construyen a partir de los L-caracteres irreducibles. Esto est4d desarrollado, por

ejemplo, en [6, §70], particularmente en los teoremas (70.12) y (70.15), junto al Ejercicio 70.2.

El propdsito de esta nota breve es entregar un método que permite encontrar explicitamente las
representaciones irreducibles de GG, en una forma matricial, en los cuerpos intermedios K con
Q C K C L;. Esto es, realizar matricialmente la construcciéon a nivel de caracteres, por ejemplo

en [6, §70], que es lo que se realiza usualmente.
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3. Construyendo K-representaciones irreducibles

En esta seccion G es un grupo finito de exponente t, & es una raiz t-ésima primitiva de la unidad

y todos los cuerpos que consideraremos son cuerpos de ntmeros contenidos en L; := Q(&;).

Recordemos que,

= Dos elementos a,b € G son Q(&;)-conjugados si y solo si son conjugados en el sentido usual.
= Dos elementos a,b € G son Q-conjugados si y solo si g{a)g~* = (b).

Definiciéon 3.1. Sean [L: K] =m y 8 = {e1,...,em} una K-base de L. Todo | € L determina
una transformacion lineal m; : L — L, dada por m(x) = lz. Denotamos por II; = [m;]g la matriz de
m x m correspondiente a m en la base . Para una matriz A = (a;;) € M(s x s,L) definimos su
transformada a K, denotada K (A), reemplazando cada coeficiente a;; por la matriz correspondiente

M,,, .
K(4) = ([7a,] )

En otras palabras, definimos la funcion K : M(s x s,L) — M(sm x sm,K) dada por
1<i,j,<s
Tlustramos esta definicién con un ejemplo sencillo.

Ejemplo 3.2. Sean K = Q, L = Qi) y 8 = {1,i}. Entonces la transformada a K de la matriz
A=(i)e M(1x1,L) es

La Definicién 3.1 nos permite obtener una K representacion de un grupo G a partir de una L

representacion de él. Lo explicamos en el siguiente lema.

Lema 3.3. Considere la notacion de la Definicion 3.1. Sea p : G — GL(r, L) una L-representacion
matricial de G, entonces ¢ : G — GL(mr, K) dada por ¢¥(g) = K(p(g)) es una K-representacion
de G.

Demostracion. Esto es inmediato de la contencién
M, (L) 2 M, (K) @k L CM,(K) @k M,,(K) = M,,.(K),
donde M,.(K) es el anillo de matrices cuadradas de r-por-r. O

Hablamos de que la K-representacion ¢ es la transformada a K de la L-representacion p. Note
que cada matriz 1(g) tiene sus coeficientes en el cuerpo K. El caracter de % esta relacionado con

el de p de la siguiente forma.
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Lema 3.4. Bajo las condiciones del Lema 3.3, si x es el caracter asociado a la representacion p,

X' es el caracter asociado a v y si oq,..., o[L:k] son todas las incrustaciones de L en K, entonces
L:K
X =Y i),

Demostracion. Siempre que una matriz cuadrada se descompone en bloques cuadrados del mismo
tamario, la traza de la matriz es igual a la suma de las trazas de los bloques diagonales. Se sigue que
X’ es igual a la suma de las trazas de los coeficientes diagonales [ de p interpretado como matrices
IT;. Por definicion, la traza try g (1) es la traza de la matriz II;. Se sigue que x' = trz, /5 (x), v el

resultado sigue de la férmula usual de la traza. O

Finalmente, presentamos el resultado que permite construir las K-representaciones irreducibles de

G a partir de las L-representaciones irreducibles de él.

Teorema 3.5. Bajo las condiciones del Lema 8.4 anterior, si L/K es una extension abeliana
de grado primo, y si p es una representacion irreducible sobre L que no estd definida sobre K,

entonces 1 es una representacion irreducible de K.

Demostracion. Sean G = Gal(L/K) = (o) el grupo de Galois de la extension K C L, p = [L :
K] = #G (primo). Ademas, como antes, denote por x al caracter asociado a la representacion p y
X’ al caracter asociado a 1. Entonces las érbitas de Galois de x tienen p elementos o un elemento.
En el primer caso y' = f;ol o(x), y entonces es irreducible por ser la suma de una érbita de
Galois. En el segundo caso se tiene que X’ = px, entonces si m es el indice de Schur de y sobre K,

este debe dividir a p. Como m > 1, pues p no esta definido sobre K, se concluye que m =p. [

4. Aplicaciéon 1: Grupos de orden pequeno.

Sea G un grupo finito de exponente t y, como antes, L; := Q(&;) con & raiz t-ésima primitiva de 1.
En esta seccién encontraremos todas las representaciones irreducibles en los cuerpos K entre Q y
L; para todos los grupos hasta orden 8. Llegamos hasta ese orden pues es el orden donde aparece
el primer elemento de la familia de grupos que estudiaremos en la seccién siguiente. Usaremos la

notacion Cy para el grupo ciclico de orden s.

Los grupos Cy y Cy x C5 tiene todas sus representaciones racionales absolutamente irreducibles.

Para C3 = (z : 2% = 1) la situacion es distinta. Tiene 3 representaciones irreducibles complejas,

todas realizables sobre L3 = Q(&3). La representacion trivial xo es realizable sobre Q. Las otras
dos representaciones, Y1 y x2 dadas por x1(x) = (&) y x2(z) = (£2) respectivamente, no estan
definidas sobre Q. De hecho, corresponden a una tnica representacion de grado 2 irreducible sobre

Q: La transformada a Q de x1 (0 x2), que esta definida por
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0 -1 -1 1
T o T+
1 -1 -1 0

Ella se obtiene a partir de la Q-base {1,£3} de Q(&3).

El grupo Cy = (z : 2 = 1) tiene 4 representaciones irreducibles todas realizables en Ly = Q(i).

Dos de ellas realizables en Q y las otras dos sumadas son equivalentes a la representacion del

Ejemplo 3.2.

La situacion para Cs comienza a ser mas interesante. Tiene cinco representaciones irreducibles
complejas, todas realizables sobre el cuerpo L5 = Q(&5). Note que en este caso tenemos al cuerpo
intermedio, Q C Q(v/5) C Q(&5). La representacion trivial esta definida sobre Q. Como Q(+/5) esté
contenida en R, ninguna de las otras representaciones esta definida sobre este cuerpo. Las represen-
taciones que envian el generador a (&) y (£2) son conjugados complejos, por lo que corresponden

a una tnica representacién sobre Q(1/5). Usando la base 8 = {1,£5} obtenemos la representacion

0 -1 0 -1
ow) Tl S
donde u = & + &3 = %\/57 pues &5 satisface la ecuacion x? = uz — 1. Similarmente, las repre-

sentaciones que mandan el generador a (£2) y (£2) son conjugados complejos, y corresponden a la

representacion de dimension dos,

2

0 -1 -1 —u -1 —u -1 55
X +— = = —
2 —1+v5  1-5
1 u u u —1 U —u — 3

Como la traza de cada matriz en las ultimas dos representaciones es irracional, hay solo dos

representaciones irreducibles sobre Q, la representacion trivial y la que es dada por

00 -1 0
o0 0 -1
T ,
1 0 0 1
o1 1 -1

en donde usamos la Q-base {1,u} de Q(v/5) = Q(u). Note que u? = —u + 1, entonces esta tltima
1
-1

representaciéon corresponde a la matriz
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En orden 6 tenemos el grupo ciclico Cg que tiene sus representaciones irreducibles complejas
realizables en Lg = Q(&s). Dos de ellas con cuerpo de descomposicion Q y las otras cuatro se
combinan de a dos para determinar dos Q-representaciones irreducibles de grado 2. Para el estudio

del grupo dihedral referimos a [4].

4.1. El grupo de orden 7

Llegamos a C7 = (x : 27 = 1) que tiene siete representaciones complejas irreducibles, todas

realizables sobre Ly = Q(&7). Este caso ya tiene méas ingredientes. El reticulado de los cuerpos

intermedios es el siguiente:

en donde los dos subcuerpos intermedios corresponden a los subgrupos de orden 3 y 2 del grupo

Gz = Gal(Q(&7)/Q), que es el ciclico de orden 6.

Analogo a lo anterior, tenemos siete representaciones complejas x; dadas por x,(z) = ({%) con
0<j<6.

Primero consideremos las representaciones irreducibles sobre el cuerpo Q(COS(QTW)). Para eso note

que 008(27”) = %(574-5?). Concluimos que L = Q ( cos(%)) es el cuerpo invariante del automorfismo
dado por o(&7) = 57_1. Hay cuatro L-clases de conjugacion (Definicion 2.1), estas son {1}, {x, 2%},
{2?%,2°%} and {23, 2%}. Asi que debemos encontrar cuatro representaciones. La representacion trivial
esta definida sobre Q, para las restantes, escogemos una representacion en cada clase de Galois y

aplicamos el método de la Definicion 3.1 y Lema 3.3. Tenemos las siguientes matrices:

0 -1 -1 —2cos(3F)
[757],3 = oy | {Wﬁg}ﬁ - o 22xy |’
1 2cos(%) 2cos(%) —1+4cos?(%F)
2 2
[ﬂga} _ —2cos(%F) 1 —4cos?(3F)
g —1+4cos?(2F) 1—4cos?(%)

Para el coeficiente de la esquina de abajo y derecha de la tltima matriz usamos el hecho de que

u = 2cos(%) satisface u? + u? — 2u — 1 =0, y por lo tanto u® — 2u =1 — u?.

Ahora consideramos las representaciones irreducibles sobre el cuerpo E = Q(zxﬁ ). Note que VT =

2(&7 + €2 4+ €2) + 1, por lo tanto E es el cuerpo fijo del automorfismo dado por o(£7) = £2. Note
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que & y & estan en diferentes orbitas de Galois. De nuevo, podemos escribir las representaciones
sobre E de dimension tres enviando el generador a las matrices [, ] 50 [Wﬁé} 5 en una base dada.
Para poder calcular estas matrices nececitamos encontrar el polinomio irreducible de &7 sobre E.
Sea b =& + &2+ &4 = %ﬁ Entonces &7 es una raiz de 2* + 22 + 2 — b = 0. También se
tiene que &2 + €2 4+ £8 = —1 — b. Multiplicando por £ obtenemos (1 + b)&3 + 1+ &2 + &2 = 0. En
particular &7 es una rafz de (1+b)a* +23 422 +1 = 0. Multiplicando la primera ecuacién por b+ 1
y restandola con la segunda ecuacién obtenemos, x3 — bz? — (1 + b)x + (b2 + b+ 1) = 0. Como es
una ecuaciéon cubica, esta deber ser el polinomio irreducible de &7. Note que ademéas b = d%ﬁ es
una raiz de z? 4+ x + 2 = 0, entonces podemos reescribir el polinomio minimal de &; sobre E como

23 — ba? — (14 b)z — 1. Esto nos entrega la matriz

0 0 1 0 0 1
e lg=|1 0 b+1|=|1 0 T
01 b 0 1 =7
y también
3 .
00 1 1 b -1 R |
{”g;} =1 0 b+1| =]b+1 -1 1 | =] ST -1 -1
B ) .
0 1 b b -1 —-1-0% *l%ﬁ 1 A—Tnﬁ
En donde para computar la tltima matriz, la identidad b2 + b+ 1 = —1 fue usada varias veces.

Finalmente, encontraremos las representaciones irreducibles sobre Q a partir de las representacio-
nes irreducibles de la extension cibica L/Q. Primero note que las Q-clases de conjugacion son
{1} y {x, 22,23, 2%, 25,25}, entonces hay precisamente dos representaciones irreducibles sobre Q.

Considere la Q-base de L dada por 8 = {1, (305(27”)7 0082(27”)}. Entonces se tiene que

+£1 0 O 0 0 1/4
rals=|0 +1 o0 |, [wms(%ﬂ)h —l2 0 1],
0o 0 =1 0 2 -1
en donde para la tdltima matriz, usamos que u = 2cos (27”) satisface u? = —u? + 2u + 1, y por

lo tanto u cos? ( 27”) = — cos? (27”) + cos (27“) + 1/4. Ahora la representacion irreducible no trivial



CUBO

o7 3 2028, Representaciones en cuerpos de ntmeros 295
sobre QQ esta dada por

0 00 -1 0

000 0 -1

0 0 0 O 0o -1

T —

1 0 0 O 0 1/4

01 0 2 0 1

001 0 2 -1

4.2. Grupos de orden 8

Para los dos grupos abelianos Cy x Cy y Co x Cy x Cy construimos sus representaciones como
producto directo de las representaciones de sus factores, las que fueron descritas arriba. Para D,

referimos a [4]. Queda entonces por analizar las representaciones de Cs y Qg. Vamos por casos.

» Sea G = Cg = (z: 2% = 1). Todas sus representaciones complejas irreducibles estan definidas

sobre Lg = Q(&s). El reticulado de este cuerpo es

Q&)

PN
) QWD QWD)
\Q /

Hay ocho representaciones irreducibles sobre el cuerpo Q(&s), cada una de la forma y,. (z) = £§
con 0 < r < 7. Para r = 0,4 la representacion esta definida sobre Q. Misma situaciéon para

Q(4) y representaciones correspondientes a r = 2, 6.

Las otras cuatro se separan en dos pares de orbitas de Galois y por lo tanto se obtienen a
partir de las representaciones que envian el generador a & y &5, esto pues Q(4) es el cuerpo

invariante del automorfismo &g — —&g = £3.

Concluimos que las representaciones irreducibles restantes sobre Q(7), se obtienen mandando

el generador a las matrices

3

El cuerpo (@(\/5) es el cuerpo invariante del automorfismo que envia & a &f, pues es la

interseccion de Q(&g) con el cuerpo de nimeros reales. En este caso, las orbitas de Galois
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de las raices de la unidad son {i,—i}, {&s,&8} v {€3, €3} Mas atin, &g satisface la ecuacion
2 —xV/241= 0, mientras que i satisface la ecuaciéon 22 + 1 = 0. Obtenemos, entonces, tres
representaciones irreducibles de dimension dos sobre este cuerpo, donde las imagenes de = es

alguna de las matrices

3
0 -1 0 -1 0 -1 -2 -1

; y
1 0 1 V2 1 2 1 0

Finalmente, el cuerpo Q(1/—2) es el cuerpo invariante del automorfismo que envia &g a £3. En
este caso, las érbitas de Galois de las raices de la unidad son {i, —i}, {&s, &3} v {€5, &8 ). Mas
aln, & satisface la ecuaciéon 22 — z4/—2 — 1 = 0, mientras 7 satisface la ecuacién 22 +1 =0,
como antes. Obtenemos, nuevamente, tres representaciones irreducibles de dimensiéon dos

sobre este cuerpo, donde la imagen de x es una de las matrices

3
0 -1 0 1 0 1 -2 -1

1 0/ \1 v=2 1 V=2 1 0

Las representaciones irreducibles racionales se pueden obtener a partir de las de Q(i), y

obtenemos las representaciones que envian z a:

000 -1
0 -1 001 0
1 0o/ |1 00 o0

010 0

lyy = 271, el grupo cuaternio Qg. Todas las

Sea G = (z,yla* = y' = 1,2® = »*,y”
representaciones irreducibles complejas [6, Ex. §70.13] estan definidas sobre Q(¢). Hay cuatro
representaciones irreducibles de dimension uno que envian los generadores a (1) o (=1) y

estan definidas sobre Q y una representacion de dimension 2 dada por:

Usando el Lema 3.3 y Ejemplo 3.2, vemos que esta tltima corresponde a una representacién

irreducible sobre Q dada por
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0 -1 0 O 00 -1 0

1 0 0 O 00 0 -1
ps(x) = . ps(y) =

0 O 0 1 1 0 0 0

0O 0 -1 0 01 0 0

5. Aplicaciéon 2: Cuaterniones generalizados

Estudiaremos ahora las representaciones irreducibles, en los distintos cuerpos de ntmeros entre
Q y el cuerpo de descomposicion Leyp (), para G en la familia de cuaterniones generalizados. Su

presentaciéon es la siguiente:

2n—1

Q2" ={(z,y:z =1,y = x2n_2,y:vy*1 =271, withn > 3.

Este grupo tiene orden 2". Cada elemento se puede escribir como z®y” con a € {0,...,2""1 — 1}
y B € {0,1}, el exponente de este grupo es t = 2"~! asf que las representaciones irreducibles
complejas de este grupo son realizables en Q(£3--1). Como ademas se conocen sus representaciones
irreducibles sobre C, o lo mismo sobre Q(&3-1), s6lo tenemos que aplicar los resultados de la

seccion anterior, Lema 3.3 y Teorema 3.5, para obtener lo deseado.

De [5, §4.1], y las referencias alli citadas, se obtiene que el grupo Q(2") tiene 3 + 2”2 represen-
taciones irreducibles sobre C, cuatro de ellas son racionales pues mandan los generadores a (1) o

(—1), y las otras estan dadas por
w
05 :x— , Yy ,
O S E

donde w = exp(27i/2"7 1) y s € {1,...,2"72 — 1}. Note que 0 tiene, en su diagonal, una érbita

de la accion natural de -1 sobre las raices 2"~ '-ésimas de la unidad, excepto 1y —1.

Recuerde que si U, es el conjunto de raices n-ésimas de la unidad y PU,, es el conjunto de raices

n-ésimas primitivas de la unidad, entonces

Ugn—1 = uk‘gn—lpuk.
Definiciéon 5.1. Considerando la notacion anterior, se define
Irr(2%) = {0, € Irrc(Q(2M)) @ w® € Py},

con2<k<n-—1.
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2k72

Note que Irr(2*) tiene elementos, una representacion por cada (—1)-6rbita sobre Plox.

En esta seccion tenemos tres objetivos. El primero es contar, vea la Seccion 5.1. Es decir, determinar
la cantidad de representaciones irreducibles (salvo equivalencia) sobre los distintos subcuerpos de
Q(&an-1). Recordemos que K es un subcuerpo de Q(€zn-1) entonces Gal=Gal(Q(&zn-1)/K) actia
sobre cada representaciéon por la accién sobre cada entrada de las matrices correspondientes. El

namero de orbitas de esta accion es el namero de representaciones irreducibles sobre K [6, §70].

El segundo objetivo (Seccion 5.2) es describir explicitamente las representaciones matriciales so-
bre Q del grupo Q(2™). Si bien en [5, §3.1] las describen como representaciones complejas, aqui

queremos exhibir las matrices con sus entradas efectivamente en Q.

El tercer objetivo es entregar un procedimiento algoritmico que permite construir todas las re-
presentaciones irreducibles del grupo Q(2™) en los cuerpos intermedios entre Q y su cuerpo de

descoposicion Q(&yn-1). El cual es facilmente generalizable a cualquier grupo (finito) G.

5.1. Cantidad de representaciones irreducibles del grupo cuaternio ge-

neralizado

Aplicando los resultados expuestos en la seccion anterior, primero comenzamos por determinar la

cantidad de representaciones irreducibles en los distintos cuerpos de interés del grupo Q(2").

Primero, recuperamos, por completitud y a nuestro contexto, un resultado obtenido en [5, §4].

Proposicion 5.2 ([5, §4.1]). Considere el grupo Q(2"), con n > 3. El numero de representaciones

irreducibles sobre Q es n + 2.

Demostracion. Considere ¢ € Irr(2F), entonces si 7 € Gal = (Z/2"1Z)* acttia sobre ¢, como
para todo w € PlUyk, w™ € PUsyk, tenemos que 7.¢p € Irr(2k). Mas atn, la accion del grupo
de Galois correspondiente en Pl,r es transitiva, entonces para todo w € PlUyr tenemos que
Gal(w) = PUsxk, asi que concluimos que la acciéon de Gal sobre Irr(2¥) es transitiva. Por otro lado,
como las representaciones irreducibles de dimension uno estan definidas sobre Q, estas estan fijas
por cada elemento del grupo de Galois. Luego concluimos que hay n+ 2 orbitas, cuatro de ellas son
singletons que consisten en las representaciones de dimensiéon uno y las otras n — 2 corresponden

a los conjuntos Irr(2F). O

Ahora calcularemos la cantidad de representaciones irreducibles, salvo equivalencia, sobre los otros

subcuerpos de Q(&an-1).
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Proposicion 5.3. Considere el grupo Q(2™), conn > 3, el nimero de representaciones irreducibles

sobre Q(éor), con2<k<n—1es(n—k+1)2F"24+3

Demostracion. Para este resultado recordemos que la notacion ordy(a) se refiere al orden multi-

plicativo del elemento a visto en (Z/bZ)*.

Si Gal= Gal(Q(&3n-1)/Q(&x)) entonces |Gal| = 2772 /2F~1 = 2n=k=1_ Ahora, como las representa-
ciones irreducibles en los conjuntos Irr(27), con 2 < ¢ < k estan definidas sobre Q(&,x ) los estabili-

zadores de la representacion en estos conjuntos son todos los elementos de Gal(Q(&an-1)/Q(&2x)).

Para calcular los estabilizadores de las otras representaciones note que Gal(Q(&3n-1)/Q(&ax)) es
un subgrupo de Gal(Q(£5n-1)/Q) y este tltimo es isomorfo a (Z/2"~17Z)*. De hecho, usando el
resultado de que para todo k > 2 ordyr(5) = 2872, se puede ver que la accién de 52° fija el
elemento &,x, es decir que si 7 € Gal(Q(&2n-1)/Q) es tal que 7(€gn—1) = fgil:z entonces 7(&or) =
& y por lo tanto 7 € Gal(Q(&gn-1)/Q(&x)), més atin, se tiene que |7| = 2" %=1 y por lo
tanto podemos concluir que Gal(Q(£9n-1)/Q(&xx)) es isomorfo a (52" °) C (Z/2"1Z)*. Asi que
considere ¢ € Irr(29), con k 4+ 1 < g < n — 1. Esta representacion tiene asociada una raiz 29-ésima
primitiva de la unidad w. Entonces si identificamos a los elementos de Gal(Q(&an-1)/Q(&2x)) con
sus respectivas imégenes en (Z/2"1Z)* se cumple que 7' € Stabgai(¢) si y solo si w™ = w o
w™T" = w, y esto pasa si y solo si 7 = 1(mod(29)) o 7 = —1(mod(29)), recuerde que 7 = 52
para algtin 1 < i < 27"7%~1 Esta tltima condicién no pasa ya que 5 = 1(mod(4)) y entonces se
tendria que 1 = —1(mod(4)), lo que es una contradiccién. Asi es que queremos conocer cuando
52°7% = 1(mod(29)), esto pasa si y solo si 2872j = 2972y para algiin r € Z, entonces se tiene
que i = 297Fr y como 1 < i < 2"7F~1 existen 2"~97! posibilidades para 7. Concluimos que

|Stabgai(¢)| = 2n—971.

Usando el lema de conteo de Burnside, se tiene que

" 1
|Gal\Irre (Q(2"))[ = [Gall > |Stabca|
¢pelrr
n—1

k
:L(4|Ga1\+Z|1rr(QQ)||Ga1|+ > [mr(29))2n 70

‘Ga” q=2 q=k+1

k n—1
1
_ —1 —20on—q—1
=4+ E 24 +W E 24—<9n—4
q=2 q=k+1

=4+25 1 14 (n—k-1)2"2=(n-k+1)2"2 43

Y con esto se concluye el resultado. O
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5.2. Representaciones irreducibles matriciales racionales para el cuater-

nio generalizado

Una vez que conocemos la cantidad de representaciones irreducibles racionales de un grupo G
y su descomposicion en irreducibles complejas, nos interesa describir explicitamente las matrices

correspondientes en cada una de ellas. Para eso usamos el método del Teorema 3.5.

Para el caso de G = Q(2™) sabemos obtener explicitamente las n + 2 representaciones irreducibles
racionales sobre Q(2") como representaciones complejas, ver [5, §3.1]. Ahora queremos exhibir como
se ven matricialmente con coeficientes efectivamente en el cuerpo Q. Recordemos que, técnicamente,
el resultado en [6] escribe como construir cada irreducible racional como suma directa de complejas,
luego estas no se veran necesariamente como matrices con coeficientes en Q. Lo que se sabe, en ese

punto, es que es realizable sobre Q; es decir, es C-equivalente a una representacion racional.

Vamos entonces a la construccion explicita de las representaciones irreducibles racionales de Q(2")
(salvo isomorfismo). Primero, sabemos que las cuatro representaciones (de grado 1) son realizables
sobre Q. Para obtener las otras n — 2 representaciones irreducibles racionales de forma efectiva en
los racionales, escogeremos un elemento del conjunto Irr(2%) para cada 2 < k < n — 1. Luego, con
el procedimiento descrito en el Lema 3.3 y Teorema 3.5, obtenemos explicitamente una represen-
tacion racional irreducible . Esta, al tensorizarla con C, se descompone en suma de algunas de
las irreducibles que tenemos. Repetimos el proceso con otra de las representaciones irreducibles
complejas de Q(2") que no es componente de ¢. Con este procedimiento encontramos todas las

representaciones irreducibles racionales del grupo.
52’“ O

&l

Eor una raiz 2F-ésima primitiva de la unidad. Entonces, la transformada Q de Oy (z) corresponde

Proposiciéon 5.4. Sea Oox la representacion en Irr(2F) que envia x a la matriz , con

a la matriz

[€ar]ls 0 ) _ 0
0 [&s 0
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y la transformada Q de Oyx(y) corresponde a la matriz

En ambos casos I, denota la matriz identidad de tamano .

Demostracion. Considere la Q-base de Q(&3x), 8 = {1, &, ... ,55:_171}. Como se cumple que
55:71 =—-ly 52_,3 = —53:71_1, la representacion resultante de aplicar la transformada K = Q a
Oyr es tal que g — Q(6yx(g)) para todo g € Q(2"). Recuerde que esta transformada consiste en

aplicar la Definicién 3.1 a cada entrada de cada matriz correspondiente a 0yx(g).
Para ver que esta representacion es irreducible calculamos su caracter.

Note que los elementos de Gal(Q({2+)/Q) acttian enviando &or a €5 con o« un nimero impar.
Entonces si x es el caracter de la representacion fyr € Irr(2F) escogida y X’ es el caracter de la
representacion Q(6qyx) después de aplicar la transformada a Q (Definicién 3.1), por el Lema 3.4

fe—
sabemos que para todo g € Q(2"™) se cumple que x'(g) = Z?zll oi(x(g)) con o; los elementos

[
& 0 2kl a(2i—1

de Gal(Q(&2+)/Q). Entonces como p(z%) = ¢ se tiene que x'(z%) = > 7 &y )+
0 &

621&(27;71).

Hay distintos casos,

» si a no es congruente a 0 ni a 28~ modulo 2 entonces siempre que aparezca un sumando,

estara su inverso aditivo, luego en este caso tenemos que x'(z%) = 0.

= Si a es congruente a 2°~1 modulo 2% entonces todos los sumandos son —1, por lo tanto,

X (x) = =2,

= Por iltimo si a es congruente a 0 médulo 2* entonces x/(z) = 2*. Calculando explicitamente
las matrices asociadas a los elementos y y xy vemos que X’'(y) = x'(zy) = 0, y con esto
sabemos los caracteres de un representante en cada clase de conjugacion de Q(2"), y por lo

tanto, conocemos toda la tabla de caracteres.

Luego comparamos este caracter con el obtenido de aplicar transformadas a K, ver la Definicién
3.1, de forma inductiva. Esto es, se toma 6, y, para obtener la representacion racional irreducible
asociada iremos bajando de cuerpo uno a uno a partir de Q(2"~!). Asi, en un paso, de la represen-
tacion p que esté definida en Q(2%), obtenemos una representacion en Q(2%71) y asf sucesivamente,
bajando en la cadena de cuerpos hasta llegar a la representaciéon racional. Este proceso nos asegura

obtener una representacion irreducible en cada paso, por el Teorema 3.5.
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Note que el grupo de Galois de la extension Q(&ax)/Q(€ax-1) es un grupo de orden 2 generado por
el automorfismo &or + —&or. Luego si  es el caracter de la reprentacion p del conjunto Irr(2¥) y
X" es el caracter de la representacion transformada a Q(&yr-1), se tendra que si a no es congruente

a 0 ni a 2"~ modulo 2% entonces X" (z*) = 5% + £5:° + (—&ar)® + (—&ar) ™.

Si a es impar entonces x” () = 0. Si no lo fuera, entonces x” () = 2(&5, + &54°) con 8 impar
y 2 < q. Entonces, para los a que son impares, el caracter de la representacion racional obtenida

evaluado en =z es 0, pues al ir bajando de cuerpo los caracteres seran sumas de 0.

Para el caso en donde « no es impar, la imagen del caracter se ir4 duplicando cada vez que bajemos
a otro cuerpo hasta llegar a la representacion sobre Q(£24). Entonces, en este cuerpo el caracter

asociado evaluado en z es 27 (€5, + £,.°).

Para la siguiente etapa el grupo de Galois actuara enviando &3¢ — —&2q. Por lo tanto, como [ es

impar, el caracter asociado evaluado en z¢ es 0.

Luego, de todas formas cuando lleguemos en este proceso inductivo a la representacion sobre los
racionales, se tendra que el caracter de ® es 0. Luego para z® con a no congruente a 0 ni a 2571
moédulo 2%, la imagen del caracter racional es igual a la del caracter racional de la representacion

obtenida en la Proposicién, calculado mas arriba.

Si a es congruente a 2~ modulo 2F es facil ver que el caracter de la representaciéon racional
obtenida evaluado en z® es —2F. Similarmente, si o es congruente a 0 moédulo 2, entonces el

caracter evaluado en z® es 2F.

Por ultimo como x(y) = x(xy) = 0, el caracter racional obtenido también es 0 al evaluarlo en y y
zy. Concluimos que esta representacion racional, obtenida inductivamente haciendo el proceso de
K-transfomada con K desde Q(&3n-1) a Q, que sabemos que es irreducible, tiene el mismo caracter
que la representacion racional que calculamos directamente y por lo tanto son equivalentes. Eso
implica que la representaciéon que calculamos es irreducible. De esta forma, tenemos de forma

efectiva las n + 2 representaciones irreducibles racionales del grupo Q(2"). [

5.3. Algoritmo constructivo y explicito

El siguiente procedimiento es claramente generalizable a un grupo finito G y permite encontrar sus
K-representaciones irreducibles salvo K-equivalencia. Donde, al igual que antes, K es un cuerpo
de niimeros contenido en un cuerpo de descomposicién de G que es una extension algebraica finita
de Q. Por ejemplo, el cuerpo de descomposicion L; = Q(&;) con ¢ el exponente de G y & una raiz
t-ésima primitiva de 1. Sin embargo, lo redactamos para el grupo G = Q(2") cuaternio generalizado

con el propésito de simplificar la ilustracién.
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Sea Q C K C L una extension finita algebraica de cuerpos, considere que si p es una L-
representacion, llamamos al conjunto {p? : 0 € Gal(L/K)} la clase de Galois de L sobre K
de p. El conjunto de L-representaciones irreducibles de G se particiona en estas clases de Galois,
hablamos de un representante de las clases de Galois cuando se considera un representante por

cada una de estas clases.

Para el procedimiento que sigue, consideramos L = Q(&yx-1) y K = Q(&yr—2), con k bajando desde

k = n hasta k = 2 en cada paso.

Algoritmo 5.5. Procedimiento para la construccion explicita de K -representaciones irreducibles
a partir de las L-representaciones irreducibles de G, con L extension finita algebraica de K.
Entrada: El conjunto U constituido por un representante 6 por cada Jrbita de Galois, para
Gal(L/K), de representaciones irreducibles.

Salida: Las representaciones irreducibles sobre K.

Procedimiento:
1. Tome 0 € U, luego es irreducible y definida sobre Q(&an-1).

2. Si 0 estd definida sobre Q(€yx—2), 0 un cuerpo K de grado menor sobre Q, no hace nada

pues 0 ya estd definida por matrices con coeficientes en el cuerpo buscado.
3. Si no, entonces

= Realice la transformada a K para K = Q(&x-2) a 0 usando la base B = {1,&x-1}.

= Obtenga la representacion K(0) con coeficientes en K, para K = Q(Eqr—2).

4. Repita el procedimiento con cada 6 € U.

Demostracion. El algoritmo comienza seleccionando entre las representaciones irreducibles sobre
L := Q(&3%-1), cada una en una orbita de Galois distinta, considerando el grupo de Galois
Gal(Q(&26-1)/Q(&ar-2)), para obtener todas las representaciones irreducibles sobre Q(&3:-2) no

equivalentes entre si.

Como el grupo de Galois de la extension Q(&yr-1)/Q(&ax-2) es el grupo de orden 2 que contiene
al automorfismo que envia k-1 a —&yk—1, una base apropiada para realizar la transformada es la
base 8 = {1,&x-1}. El Teorema 3.5 nos asegura que las representaciones obtenidas en cada paso

son irreducibles. O

Observe que el algoritmo comienza seleccionando una de las 3-2" %43 representaciones irreducibles
sobre L = Q(&3n-1), cada una en una orbita de Galois distinta, considerando el grupo de Galois
Gal(Q(&37-1)/Q(&3n-2)), para obtener representaciones irreducibles sobre Q(&,n-2) no equivalentes

entre si.
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Una vez que tenemos este conjunto de representaciones, cambiamos los cuerpos, por lo tanto el
grupo de Galois, al paso inferior. Es decir, L = Q(&3n-2) , K = Q(&n-3) v el grupo de Galois
ahora es Gal(Q(&an—2)/Q(&n-3)) y encuentra las representaciones irreducibles sobre Q(&5n-3) y asi

sucesivamente hasta Q.

Para ilustrar como funciona el Algoritmo 5.5, obtenemos las representaciones irreducibles en los

distintos cuerpos intermedios para Q(2%).

Ejemplo 5.6. Sea G = Q(2%) el grupo cuaternio de orden 16. En este caso n = 4 y G tiene
3 + 2772 = 7 representaciones irreducibles complejas, todas realizables en Ly = Q(&) Como
antes, G tiene cuatro representaciones irreducibles de grado 1 definidas sobre Q que mandan los

generadores a (1) y (—1). Las otras representaciones irreducibles estin dadas por

§ 0 0 1
Os:x— & I R s
0 & (=1 0
con s € {1,2,3}.

Para encontrar las representaciones irreducibles sobre Q(i), ya tenemos las cuatro definidas sobre

i

Q y la representacion que envia x a , falta una mds, para eso escogemos la representacion
—1i
. s 0 ‘
ue envia T a ocuparemos el Algoritmo 5.5 con la base 8 = {1,&s} entonces con esto
1 )
€s

la representacion estd dada por

0« 0 O 0 0 1 0

1 0 0 O 0 0 0 1
x> , Y

0 0 0 1 -1 0 0 O

0 0 — O 0 -1 0 O

y las representaciones de Q ya las calculamos anteriormente. Y serdn las cuatro representaciones

de dimension uno y dos representaciones mds que estan dadas por

0 -1 0 O 0 010

1 0 0 0 0 0 01
pP1L T — y Y=

0 0 1 1 0 0 O

0 -1 0 01 00
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0 00 -1 0 0O00O0 0 0 0 0 1.0 0 O
1 0 0 0 0 0 0 O 0 0 0 0 01 0 O
01 0 O 0 0 0 O 0 0 0 0O 0 0 1 0
0 01 O 0 0 0 0 0 0 0 0 0 0 0 1
P2 X y Y
0 0 0 O 0 1 00 -1 0 0 0 00 0 O
0 0 0 O 0 0 1 0 0 -1 0 0O 0 0 0 O
0 0 0 O 0 0 0 1 0 0O -1 0 0 0 0 O
000 0 -1 000 0 0 0 -1 0 0 0 O
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1. Introducciéon

De la periodicidad de las funciones elipticas, sabemos que el conjunto de valores singulares es un
conjunto finito, en otras palabras, toda funcién eliptica pertenece a la llamada clase de Speiser
o clase S. De los resultados de Eremenko y Lyubich [5] se sigue que tales funciones exhiben un
comportamiento dinamico similar al de las funciones racionales: no existen dominios errantes ni

dominios de Baker.

La iteracion de funciones elipticas ha sido objeto de estudio en las ultimas décadas. Los trabajos
[7] v [16] son considerados pioneros en el estudio y ahora existe una vasta literatura sobre el tema,

mencionamos los trabajos [6-10,13-17,19] como referencias.

La mayoria de los trabajos se enfocan en estudiar funciones elipticas que estan directamente re-
lacionadas con la funcién p de Weierstrass asociada a ciertas reticulas particulares. Este estudio

estd orientado en la misma direccion.

En el presente trabajo se estudia la familia paramétrica de funciones elipticas definidas por Fj .(z) =
(pa(2))? + ¢, para ¢ € C, donde p, denota la funcion eliptica de Weierstrass (véanse las secciones
2.2y 2.3). En [13], la familia mas general f,, o (z) = (pa(2))™ =+ ¢ es estudiada, obteniendo valores
particulares de parametros para los cuales el conjunto de Fatou de la funciéon correspondiente es un
conjunto vacio. Y en [11] el caso n = 1 ha sido estudiado obteniendo resultados similares. Ahora
buscamos extender algunos de los resultados obtenidos en [11] de la familia fi 4 .(2) = pa(z)+ca
nuestra familia. Ademas, utilizando algunos de los resultados en [8] podemos obtener parametros

para los cuales la funcién correspondiente presenta una dindmica prescrita.

La organizacién del escrito es la siguiente. En la Seccién 2 presentamos los preliminares de la teoria
de iteracion de funciones meromorfas, los fundamentos de las funciones elipticas y en particular
algunas propiedades de la funcién g,. La familia Fi . es definida en la Seccién 3 y los primeros
resultados son presentados. En la Seccién 4 construimos algunos pardmetros con dinamica prescrita.
Finalmente, en la Secciéon 5 consideramos deformaciones quasi-conformes simples de funciones

elipticas.

2. Teoria preliminar

2.1. Teoria de Fatou y Julia para funciones meromorfas

Denotemos por C = C U {oo} a la esfera de Riemann y sea f : C — C una funcién meromorfa
trascendente. La iteracion de la funciéon f genera una dicotomia en la esfera de Riemann. El
conjunto de Fatou, denotado por F(f), esta compuesto por los puntos z € C para los cuales existe

una vecindad en la que la sucesion de iteradas { f™},>¢ esta bien definida y es normal en el sentido
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de Montel. El conjunto de Julia, denotado por J(f), consiste en el complemento del conjunto de
Fatou en la esfera de Riemann. Si f posee al menos un polo que no es un valor omitido, el conjunto

de Julia esté determinado por la siguiente relacion

T = r(e0).

n>0

Un punto zy € C es llamado periddico si existe un p > 1 tal que fP(z9) = zo. Al minimo p con
esta propiedad, se le llama periodo de zy y el conjunto {zq, f(20),---, fP*(20)} es llamado el p-
ciclo de zg. Si p = 1, zg es un punto fijo. El multiplicador de un punto p-periédico estd dado
por la derivada (f7)'(2¢). El multiplicador proporciona informacién dindmica local de los ciclos
periddicos. Decimos asi que un punto p-periodico es atractor, repulsor o neutro si |(fP) (zq)| es
menor, mayor o igual a 1, respectivamente. Si (f?)'(z9) = 0, 2o es llamado super-atractor y si el
multiplicador es una raiz de la unidad, el ciclo es llamado parabdlico. Es un hecho conocido que el

conjunto de puntos peridédicos repulsores es denso en el conjunto de Julia.

De la definicion, el conjunto de Fatou es abierto en C. Ademaés, tanto F(f) como J(f) son com-
pletamente invariantes. Sea U C F(f) una componente conexa. Decimos que U es pre-periddica si
existen m > n > 0 tales que f™(U) = f™(U). Sin =0, U es una componente periddica de periodo
p=m—mn,ysim =1, U es llamada una componente invariante. Una componente que no es
pre-periodica, es llamada un dominio errante. Analogo al caso racional, existe una clasificacion de
las componentes periddicas de una funcién meromorfa trascendente, aunque en el contexto tras-
cendente aparece un nuevo tipo de componente periddica de Fatou que no existe para funciones
racionales, los llamados dominios de Baker. U C F(f) es un dominio de Baker de periodo p, si
existe un punto zg € 9U tal que f™P(z) — 2p cuando n — o0, pero fP(zp) no esta definido. En

particular, si p = 1 tenemos que zgp = 00 € C.

Denotemos por Crit(f) al conjunto de puntos criticos de la funcion f. Ademas de los valores
criticos, en el contexto meromorfo existen otros puntos en C, en los cuales la rama inversa f—!
puede no estar bien definida. Un punto w se denomina un wvalor asintdtico para f si existe una
trayectoria « : [0,00) — C tal que lim; oo a(t) = 00 y limy 0o f(a(t)) = w. Definimos asi el
conjunto singular de f, denotado por sing(f~!), como el conjunto de valores criticos y valores
asintoticos de f. Existe una fuerte relacion entre cuencas atractoras o parabodlicas y el conjunto
singular de f. Si C = {Uy, Ui, ...,Up—1} es un p-ciclo de componentes atractoras o parabolicas,
entonces U;j Nsing(f~') # () para algin 0 < j < p. Si C es un ciclo de discos de Siegel o anillos de
Herman, entonces 0U; C P(f) para todo 0 < j < p, donde P(f) denota el conjunto post-singular

el cual esta dado por

P(f) = | fr(sing(f~1)).

n>0
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Una descripcion mas detallada de los resultados en iteracion de funciones meromorfas se puede

encontrar en [1,2] para funciones meromorfas en general y en [7,8,10] para funciones elipticas.

2.2. Funciones elipticas

Existen varias formas de definir una funcién eliptica. En el presente trabajo, consideramos la
definicién mas simple que se basa en una propiedad de periodicidad. Siendo el conjunto de periodos,

una reticula en el plano complejo.

Definicion 2.1. Una reticula A de numeros complejos, es un subconjunto de C con dos propieda-
des:

1. A es un grupo aditivo.

1. Las mormas de los elementos distintos de cero, estin acotadas por abajo, es decir, existe

kEeR, k>0, tal que |\| > k para todo A € A\ {0}.
Existen tres tipos de reticulas:

i. Trivial: consiste solo del cero.

ii. Simple: consiste de todos los miltiplos enteros de un solo elemento generador, que es tnico

salvo el signo.

iii. Doble: consiste de todas las combinaciones lineales con coeficientes enteros de dos elementos
generadores A1 y Ao, cuya razon es no real. Estos generadores no son dnicos; si A1 y Ag

generan A, también lo hacen
1=pM A2, Ay =7TA+s)
donde p, ¢, r, s son enteros con pr — qs = 1.

Es usual elegir el orden de A1 y A2 de tal manera que Im(A2/A1) > 0. En lo sucesivo, consideraremos
reticulas de tipo doble con esta propiedad. Asi, si A es una reticula doble, generado por A\ y Ao,
entonces

A=A, 2] ={mA +nXy: m, n€Z}.

Definicion 2.2. Un subconjunto P C C cerrado y conexo es una region fundamental para A si
para cada z € C, P contiene al menos un punto en la misma A-orbita de z y no existen dos puntos
en el interior de P en una misma A-drbita. Si P es un paralelogramo, es llamado un paralelogramo

periodo para A.
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Los puntos reticula, son los vértices de un patrén de paralelogramos que llenan todo el plano y

cuyos lados pueden ser tomados como cualquier par de generadores.

2.2.1. Formas

Dada una reticula A = [A1, \2], su apariencia en el plano complejo, estd determinada por la razon
T = A2/A1 (por convencion, elegimos los generadores de tal manera que Im(7) > 0). Es usual
referirse al tipo de reticula por la forma del paralelogramo periodo correspondiente. Si A es una
reticula y k£ # 0 es un ntimero complejo, kA denota el subconjunto de valores kX, A € A. Esta
también es una reticula, que es llamada similar a A; la similitud es una relacion de equivalencia
entre reticulas y a una clase de equivalencias se le llama la forma de la reticula. Como ejemplo,

dado que A; # 0, la reticula A, = [1, 7] es similar a la reticula A = A\ A,

Sin embargo, si los generadores de una reticula arbitraria A no son especificados, el valor 7 no
estd determinado de manera tnica. La acciéon del grupo modular cldsico I' actuando en el semi-
plano superior brinda la relacion entre las posibles elecciones de 7 para una sola forma de reticula.
Entonces cada forma de reticula esta representada por un solo punto en una regién fundamental
del grupo I'. La region fundamental primitiva del grupo modular I" se muestra en la Figura 1 y

esta definida por

B= {Im(T) >0, f% < Re(r) < %, |7] > 1, con |7| > 1si Re(r) > 0}. (2.1)

-1 -0.5 0.5 1

Figura 1: La region fundamental B.
Definicién 2.3. Sea A = [\, A2] una reticula.

(1) A es rectangular real si los generadores pueden ser elegidos (bajo similitud) como A1 € R y

Ao € iR,

(2) A es rombica real si los generadores pueden ser elegidos (bajo similitud) como complejos

conjugados, i.e. Ay = \i.
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(3) A es cuadrada si A = iA.

(4) A es triangular si e2™/3A = A. En este caso el paralelogramo periodo consta de dos tridngulos

equildteros.

En cada caso (1)—(3), el paralelogramo periodo con vértices en 0, A1, A2 ¥ A1 + Ao puede ser elegido

como un paralelogramo rectangular, rombico o cuadrado respectivamente.

Lema 2.4 ([7]). A es una reticula triangular si y solo si A = [Ae™/3, X\e™™/3], para algin \ € C,
A0,

Toda reticula satisface A = —A, los tnicos casos donde A = kA, con k # +1, son las reticulas

cuadradas (A = iA) y las reticulas tridngulares (A = wA, donde w?® = 1).

Definicion 2.5. Sea f: C — C una funcién meromorfa. Decimos que f es una funcion eliptica
si f es periddica con respecto a una reticula A. Equivalentemente, [ es periddica de periodo A si

f(z+X) = f(2), para todo z € C y todo A € A.

2.3. La funcién p de Weierstrass

Nos referimos a [4,7, 8] para mayor informacion sobre resultados y propiedades de la funciéon p de

Weierstrass.

Dada una reticula A arbitraria, el ejemplo tipico de una funcién eliptica con respecto a A es la

funcién p de Weierstrass, definida por

1 1 1
we=5+ 2 (wmarw)
weA\{0}
¢ es una funcion eliptica par con polos de orden 2. Ademas, la derivada @’ es una funcion eliptica

impar de orden 3, periodica con respecto a A. Ambas funciones estan relacionadas por la ecuacion

diferencial

(94 (2))% = 4(pa(2))® — g2pa(2) — g3, (2.2)

donde g2(A) = 60 Z,\eA\{O} Aty g3(A) = 140 Z,\EA\{O} A0S g2(A) = g2(A') ¥ g3(A) = ga(A)
para reticulas A y A, entonces A = A’. Por lo que g2(A) y gs(A) son llamados invariantes de la
reticula A. Ademés, si go, g3 € C son tales que g5 — 27g3 # 0, entonces existe una reticula A con
g2 = g2(A) vy g3 = g3(A) como sus invariantes. Para A, = [1,7], las funciones g;(7) = ¢;(A,) son

funciones de 7 analiticas en el semi-plano superior Im(7) > 0.

Los invariantes go y g3 cumplen la siguiente propiedad de homogeneidad con respecto a reticulas

similares.
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Lema 2.6 ([8]). Para reticulas A y A’, tenemos que A’ = kA, para algin k € C\ {0} si y solo si
g2(A") =k "g2(0) y o g3(A) =k Cgs(A).

Una reticula A es llamada real si A = A := {\: A € A}. Aqui, Zz denota el conjugado complejo de

z € C. Tenemos la siguiente caracterizacion para reticulas reales.

Proposicion 2.7 ([12]). Las siguientes afirmaciones son equivalentes:

1. A es un reticula real;

2. pa(2) = pa(2);

3. 92,93 € R.

Sean A y k € C\ {0}, al sustituir & en la definicién correspondiente de las funciones pp y ora se

obtiene la siguiente propiedad de homogeneidad
1
e (kz) = ﬁpl\(z), Vz e C. (2.3)

Observacion 2.8. Mencionamos un par de propiedades adicionales que relacionan los puntos

criticos, los valores criticos y los invariantes de una funcion de Weierstrass para una reticula A

figa.

1. Para toda reticula A = [A1, Aa], pa tiene una infinidad de puntos criticos simples, uno en
cada punto medio de la reticula. Denotamos este conjunto por Crit(pa) = {w1,we,ws} + A,

donde

2
w1 =7, We=—7 Y W3=wi+ws.

2. Sabemos que pp mo contiene valores asintdticos finitos, por lo que el conjunto singular de la
funcion pp estd dado por los valores criticos w = pp(c), ¢ € Crit(pa). De la periodicidad de

pA, el conjunto singular es finito y consta de los valores:
er1=pa(w1), e2=pn(wz) y e3=pa(ws). (2.4)

3. Dado que los e; son soluciones distintas a la ecuacion (2.2), al factorizar e igualar, obtenemos

las siguientes relaciones:

ey + e + €3 = 0, ei1€3 + e1e2 + ege3 = — €1€2€3 = % (25)

92
4 )
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2.4. p(z) y reticulas triangulares

Los siguientes resultados relacionan las formas de las reticulas con los valores criticos de pj, véase
[4,7]. Sea p(x) = 423 — gz — g3 el polinomio asociado a A por (2.2) y definase A = g3 —27g% como

su discriminante.

Proposicion 2.9 ([4]). Sea A una reticula real.

» Si A es cuadrada, g3 = 0 y las raices de p son 0, £,/g2/2. Asi e1 = \/92/2 y ea = —e7.

w Si A es triangular, go = 0 y las raices de p son las raices cibicas de gs /4 siendo todas distintas
de cero. Entonces ey, es, e3 tienen el mismo mddulo y e; € R para algin i = 1,2,3 si y solo

st g3 € R.

La simetria de las reticulas esta reflejada en el comportamiento del conjunto post-critico.

Proposicion 2.10 ([7]). Sea A una reticula real.

» Si A es cuadrada, P(pp) incluye al punto al infinito y e3 € J(pa). De hecho, P(pp) =

Unso 93 (€1) U{ez2,0,00}. Por lo que dicho conjunto estd determinado por la drbita de e;.

» P(pa) estd contenido en tres conjuntos positivamente invariantes: el conjunto o = |J o’ (e1),

2mi/3 4mi/3

y los conjuntos e aye a. (Estos conjuntos no son necesariamente disjuntos.)

2.5. El conjunto de Fatou

Los siguientes resultados clasifican todas las posibilidades del conjunto de Fatou para la funcion

de Weierstrass con reticulas triangulares y cuadradas, respectivamente.

Proposicion 2.11 ([8]). Para toda reticula triangular A = [\, e2™/3 )], uno de los siguientes casos

debe ocurrir:

1. J(pa) =C.

2. Para algin periodo p y algun multiplicador p, 0 < p < 1 existen exactamente tres ciclos

periddicos (super)atractores o parabdlicos en el conjunto de Fatou de periodo p y multiplicador

L

3. Euiste exactamente un ciclo periddico (super)atractor o parabdlico en el conjunto de Fatou

que contiene los tres valores criticos.

4. Los unicos ciclos de Fatou son discos de Siegel.
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Proposicion 2.12. Para una reticula cuadrada A, uno de los siguientes casos ocurre:

~

1. j(pA) =C.
2. Euxiste exactamente un ciclo periddico (super)atractor o parabdlico del conjunto de Fatou.

3. Los 1nicos ciclos periddicos de Fatou son discos de Siegel.

La siguiente definicién sera utilizada al estudiar las familias paramétricas p3 + ¢, ¢ € C y A una

reticula.

Definicién 2.13. Dos funciones elipticas f = fa y g = gas sobre reticulas A y A’ respectivamente,

son conformemente conjugadas si existe una aplicacion ¢(z) = az+, a # 0 tal que fop = dog.

3. La familia F) .(2) = (pa(2))* + ¢

En este trabajo buscamos extender algunos de los resultados obtenidos en [8] y [11] para la familia
Fj ¢, definida por
Fe(2) = (pa(2)* +c, (3.1)

donde ¢ € C y A es una reticula real. Dado que F} . = 2p, - @y, se cumple
Crit(F ) = Crit(pa) U {p;"(0)}.

y los valores criticos estan dados por v; = €3 +c¢, vg = €3 +c¢, v3 = €3+ ¢y v4 = c. De las relaciones

en (2.5), tenemos la siguiente relacion

A
V1 +1)2+1}3+U4:4C+%. (32)

Para cada reticula fija A, decimos que la familia holomorfa de aplicaciones meromorfas F}j ., para-
metrizada sobre ¢ € A C C es reducida si para todo ¢ # ¢’ en A, Fa . y Fa  no son conformemente
conjugadas. Siguiendo las ideas en [11], probamos que es suficiente restringirse a un paralelogramo

periodo P como una familia reducida.

Proposicién 3.1. Dada una reticula A si Fj .(2) = (pa(2))? + ¢, entonces para todo X\ € A, Fi .

es conformemente conjugada a Fy cyx.

Demostracion. Un calculo directo muestra que p(z) = 2z — A es una conjugacion conforme entre

Frey Faeqn. O

La siguiente identidad, probada en [7], seré ttil en el resto de esta seccion.
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Teorema 3.2. Sea A una reticula arbitraria y uw € C. Para cada i = 1,2,3, tenemos

pa(utw;) = : gAe(jZ)(e_i ;61@) +es (3:3)

A continuacién mostramos algunos resultados analogos a [11, Seccion 3|. Nos restringimos a un

paralelogramo periodo P.

Teorema 3.3. Sea A una reticula. Si c y ¢’ pertenecen al interior de un paralelogramo periodo P

para A, entonces Fp . y Fa,oo no pueden ser conformemente conjugados.

Demostracion. Para simplificar la demostracion, omitiremos A de la notacién. Supongamos que
(F.op)(2) = (po Fu)(z) para todo z € C. Dado que la conjugacion debe fijar el punto al infinito,
tenemos que p(z) = Az + B, para algunos A, B € C con A # 0. Por otro lado, dado que 0 es
un polo de ambas funciones elipticas, ©(0) = B debe ser un polo de F,, por lo que B = )¢ € A.
Ademas, ¢ debe enviar polos en polos de manera inyectiva, asi que A = p(A) = AA + Ao, lo que
implica que AA = A — Ao = A. Anilogamente, para ¢!, tenemos que A~'A = A. Por lo que
AFA = A para todo k € Z, lo que implica que |A| = 1 y A = ¢2™/P para algtn p € N. Entonces

e?™/P A = A. De los resultados en [18], tenemos que si e2™/P = A # 1 entonces p = 2,3,4 o 6.

Ahora bien, dado que ¢ envia los valores criticos de F,s en los valores criticos de F,, tenemos
c=(d)=Acd + Xo. (3.4)
Calculando las composiciones en la conjugaciéon, tenemos por un lado

Fac(p(2)) = (pa(Az + B))? + ¢ = (pa(A2))* + A + Ao

o(Fae(2) = A(pa(2))® + Ad + o,
para todo z € C. Igualando ambas composiciones y usando la homogeneidad tenemos

Apa()? = (9a(42))” = 5 (pa ()"

Lo que implica que A% = 1, i.e., A = ¢*™/? con p = 5, lo que contradice las opciones de p. Se
sigue que A = 1. Finalmente, B = A\g = 0 ya que ¢ y ¢’ estan en el interior de un paralelogramo
periodo. Por lo que ¢ = Id, contradiciendo la conjugacion. Con esto concluimos la demostraciéon

del resultado. O
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Proposicion 3.4. Dada una reticula arbitraria A, z € C y cualquier punto w € Crit(pya ), entonces

tenemos que w +z € J(Fa) si y solo siw—z € J(Fp ).
Demostracion. Del Teorema 3.2 y Crit(Fy .) = Crit(pa) U {p, ' (0)}, se sigue que
Fre(w+2) = (palw+2)2 +c= (pa(w — 2))* + ¢ = Fp o(w — 2). O

Lema 3.5. Si A es una reticula real y ¢ € C es algun pardmetro fijo, entonces Fy . es anti-

conformemente conjugado a F .

Demostracion. Un calculo directo muestra que n(z) = Z es una conjugacion. O

4. Parametros con dinAmicas predeterminadas

En la presente seccién, mostraremos valores de pardmetros especificos en la familia F . para los

cuales se cumplen algunos de los casos en las proposiciones 2.11 y 2.12.

Proposicion 4.1. Sea A’ una reticula real tal que X' /2 es el punto critico real positivo mds pequerio
y e, es el valor critico real mds grande. Sim es cualquier entero impar y k = </2e,./(mN') (tomando

la raiz real), entonces para

!/ !
A= kA g C:mk)\ (1_mk)\>7
2 2

g ‘ o mkN
la funcion Fy . tiene un punto fijo super-atractor zp = 5

Demostracion. Del Lema 7.2 en [8], sabemos que zg es un punto fijo stiper-atractor para g, . Luego,

mk\ mkN mkN
Fae(20) = (pa(20))* + <1 — ) = .

2 2 2

Dado que Fy . = 2p, - @}, se sigue que F,y .(20) = 0, lo que demuestra la proposicion. O

Consideramos la siguiente normalizaciéon para reticulas triangulares.

Definicién 4.2. Denotamos por A = [, 62”/3)\], con A > 0, a la reticula con invariantes go = 0

y g3 = 4. A es llamada la reticula triangular estandar.

Teorema 4.3 ([8, Teorema 8.3]). Sea A la reticula triangular estindar. Para todo m,n € Z, si

) 1/3
k= .
((/\/2) +mA + n)\ezm/3> ’
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entonces ) = kA tiene exactamente tres puntos fijos super-atractores. Estos pardmetros se localizan

en gs(Q) = 4(A/2 + mX + nXe2™/3)2,

Denotamos por ¢y a uno de los puntos fijos siper-atractores del teorema anterior.

Proposicion 4.4. Sean A, k y Q como en el Teorema 4.3 y sea ¢y uno de los puntos fijos super-

atractores de la funcion de pq. Entonces la funcion

Fo e (2) = (pa(2))? + co(1 = co),
tiene un punto fijo super-atractor en z = cy.

Demostracion. Por el Teorema 4.3, tenemos que pq(co) = ¢o con pg(co) = 0. Asi, sustituyendo en

la forma de Fo ., tenemos
Fo co(co) = cg +¢o(1 = ¢o) = co, y F@CO (co) = 0.
O

Finalmente, mostramos parametros en el caso de reticulas cuadradas con puntos stuper-atractores.

Definiciéon 4.5. Denotamos por A = [A\,i)\], con A > 0, a la reticula con invariantes go = 4 y

g3 = 0. A es llamada la reticula cuadrada estandar.

Teorema 4.6 ([8], Teorema 9.3). Sea A la reticula cuadrada estindar. Si

1 1/3
k= (()\/2)+m)\+n)\i) ’

(tomando cualquier raiz compleja), si Q = kA entonces pq tiene un punto fijo siper atractor. Estos

pardmetros estdn localizados en g2(Q) = 4(\/2 + mX + niX)*/3.

Proposicion 4.7. Sean A, k y Q como en el Teorema 4.6. Denotemos por ¢y al punto fijo siuper-

atractor de pq. Entonces la funcion
Fo,co(2) = (pa(2))® + co(1 = co),
tiene un punto fijo super-atractor en cy.

Demostracion. El resultado se sigue al sustituir ¢y en Fo ., y su derivada. O
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5. Deformaciones lineales

Finalmente, en esta seccién mostramos que es posible obtener funciones elipticas de orden 4 con
dindmica prescrita analogas a aquellas descritas en la seccién anterior, por medio de deformaciones

quasi-conformes lineales.

5.1. Campo de funciones elipticas para una reticula dada

Fijemos una reticula A arbitraria. Es conocido que el conjunto de funciones meromorfas constituye

un campo (anillo con division conmutativo).

Por un lado, un célculo directo muestra que la suma, la resta y el producto de cualesquiera dos
funciones elipticas con periodos A, asi como el reciproco de cualquier funcién eliptica no cero,
son de nuevo funciones elipticas con respecto a A. Por otro lado, como subconjunto del campo de
funciones meromorfas, la suma y la multiplicacion estan sujetas a las leyes usuales (conmutatividad,
asociatividad y distributividad). En consecuencia, el subconjunto de funciones elipticas con respecto

a A constituye un (sub)campo, el cual se denota por:

EN)={f:C— C : f es eliptica de periodo A}

5.2. Aplicaciones quasiconformes
Dado que nos interesa solo el caso en que las transformaciones a conjugar sean de tipo lineal,
daremos una descripcion de las aplicaciones quasi-conformes solo de este tipo. Véase [3].

Consideremos a Cg como el plano cartesiano visto como R-espacio vectorial. Toda aplicacién R-

lineal L : Cg — Cg puede ser escrita usando coordenadas (z, z), en la forma
L(z) = az + bz, a, b,z € C.

Nos restringimos a aplicaciones R-lineales que son invertibles y preservan orientacion, i.e., |a| > |b].

b
Definimos el coeficiente de Beltrami de L como u(L) = — y denotamos por § € R/(7Z) el argu-
a

mento medio de (L), tenemos asi

Notese que u(L) € D cuando L preserva orientacion y que L es holomorfa si y solosi b =0siy

solo si u(L) = 0.
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Definimos la dilatacion K (L) de L por

Lt lul  la]+
K(L) = =
L= T = o= o

y la dilatacion compleja de L como el coeficiente de Beltrami p(L).

Siguiendo las definiciones en [3], tenemos entonces que L es una aplicacion (lineal) quasi-conforme
sobre el plano complejo. Ademés, es un hecho conocido en la literatura de aplicaciones quasi-

conformes que si ¢ es quasi-conforme y f es una funcién holomorfa, entonces
=¢ofo -1
g - d) d) 9

es una funcion holomorfa en los dominios de definicién correspondientes.

5.3. Conjugaciéon

A lo largo de esta dltima seccion, para A en el semi-plano superior H, denotamos por A := [1, A].

Ahora bien, sea f € E(A), y para p € D tomamos ¢ € QC((@), dado por

z+ pz

o) = L

Tenemos asi que ¢ fija 0,1 e co. Estamos interesados en estudiar el conjunto de funciones

g(2) = (o fop )(2),  feE(A).
En particular, nos interesa dar respuesta a las siguientes preguntas:
= ;Es ¢(A) = A’ una reticula?
= En caso afirmativo, ;g € E(A)?

= ;Qué propiedades tiene g con respecto a f como funcion eliptica?

Lema 5.1. Sea A = [1,7], con 7 € H, una reticula. Entonces ¢p(A) = A’ es una reticula con

AN =[1,7] = o(r).

Demostracion. Para verificar que A’ es efectivamente una reticula, debemos probar que las dos

propiedades se cumplen.

i. A’ es un grupo aditivo.

ii. 3k € R, k> 0 tal que |\| > k para todo A € A’ — {0}.
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Dado A = [1, 7], definimos A; = ¢(1) = 1y Ao = ¢(7) = TEET . Asi, dada la linealidad de ¢, vemos
1+p
que

N=[17={n+mr" :nmelZ, " =¢(r)}
Lo que prueba que A’ es de hecho un grupo aditivo.

Sea h(n,m) = [A]*> = (n — 7,m)? + m?72, donde 7" = 7, + ir,. Calculando los puntos criticos,
vemos que (ng,mg) es punto critico, si y solo si ng = mg = 0, lo que implica que A = 0, o bien,
ng = mo7,. Permitiendo solo que n,m € Z, vemos que h(n,m) tiene un minimo con respecto a
Z, lo que implica que A’ tiene un minimo distinto de cero. Se sigue que A’ es efectivamente una

reticula.

Veamos ahora que ¢(A) es de hecho una reticula doble. Para ello, no es dificil ver que, para que

A’ sea una reticula simple, basta que 7 € R. Si este fuera el caso, tendriamos que:

T+ puT
= a , o(r)=reR,
1+p
despejando p tenemos
T—7T
= —
r—T
lo que implica que
T—7
|u| = — | = 1’
r—T

lo que contradice la elecciéon de p. Luego A’ es una reticula doble.

Veamos que ¢(7) = 7/ € H. Sabemos que Im(7') = - (7' — 7’), entonces

= <T+m> _ O+ +7) - F+pr)(1 +p)

T —7 =
1+p 1+ p 11+ p)?
_ TR AT A pPT = F A Tp A AT A ) (1= [uP) (- 7)
1+ pf? 1+ pf?
1— 2
2im(r') = ‘“'221‘ Im(7)
11+ pl
1 — _ 1—1u?
Luego, Im(7/) = — (7' — 7/) = > 0. O
uego, Im(7") 2Z_(T 7' e m(7)

Lema 5.2. Sean A =[1,7] y f € E(A). Si

g(z) = (9o fop h)(2),

entonces g € E(N'), con 7" = ¢(7).
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Demostracion. Tenemos que ¢ es una aplicacion lineal, por lo que su inverso, ¢!, debe también

ser una aplicacién lineal. Asi, calculando la composicion:

glz+1) = (o fop ) (z+1) = (¢o /)@ (2) +¢7 (1)) = (o /)& (2) +1)
=(f(671(2)) = (9o foo™!)(2) = g(2).

De igual forma

gz + 1) = (90 fod ™)z + )= (b0 f)¢7 (2) + ¢~ (7)) = (60 )97 (2) +7)
= (60 f)(&7'(2) = &(f(¢7(2))) = g(2).

Por lo que g es periodica con respecto a A'. O

5.4. Propiedades de la reticula ¢(A) = A’ via ¢

Antes de considerar las propiedades que tiene g como funcion eliptica, analizaremos qué propiedades
tiene A’ como imagen bajo ¢ de la reticula A. Dado que A’ = [1,7'], basta analizar las propiedades

de 7/, con
7_,_7'+u7
1+p

Tenemos asi la aplicacion

¢: DxB — H
T+ Ut
1+p

(1, 7) =

De esta manera, tenemos en principio, una aplicaciéon de dos variables complejas, dificil de visualizar
geométricamente. Una forma de reducir el problema, es analizar la manera en que cambia una
reticula dada bajo una pequena perturbacién con respecto al origen del disco unitario . Por lo

que, fijando una reticula Ay = [1, 7], restringimos nuestra aplicacion

¢o: Dx{rn} — H

To + 4To
_ .
(:u77—0) 1+ L
Analogamente, despejando p de nuestra aplicacion original 7/ = Tl':_‘;’? podemos obtener el pard-

metro de la deformacidn entre dos reticulas, representadas por 7 y 7/, dado por

-

n= ;=
T -7
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De nuevo, tenemos una aplicacion de dos variables complejas. Considerando la misma restriccion

anterior, podemos fijar un punto base 7y, obteniendo asi

T0— T

Hry = MTO(T/) = 7

Notese que pr, (77) € Aut(@) v que esta aplicacion lleva el eje real en el circulo unitario, ya que si

r € R, entonces
T0o — T

|tz ()| = =1

r—T0
y como i, (70) = 0, entonces la aplicacion es un isomorfismo conforme entre el semi-plano superior

H y el disco unitario D.

De esta manera, dados dos puntos 79,7’ € H, es posible encontrar una trayectoria en D (que parte

del origen) que genera una trayectoria que conecta a 7y con 7’.

Si traducimos esto a nuestro objeto de estudio, las funciones elipticas, dada f € £(Ag) y una

trayectoria t — y(t) € D con v(0) = 0, entonces, para cada pu; = v(t), la expresion

z+ Uz
L+ pue

9e(2) = (b, 0 f o d,)(2), con ¢y, (2) =

)

representa una familia de funciones elipticas, que son deformaciones quasi-conformes de la funcion

f, v ademas cada g; € E(Ay).

5.5. Elcaso f=p

Sean A = [1,7] una reticula y f = pa la funcion de Weierstrass asociada. Queremos analizar el

conjunto
Go={9=00pro0™": 6 € QUk(T) de tipo lineal
donde cada ¢ es normalizada de tal forma que fija 0,1 e co.

Dado que ¢ es un homeomorfismo que fija 0 e 0o, es claro que los ceros y polos de g son las imagenes
de los ceros y polos (respectivamente) de pa bajo ¢. Y ademaés, el orden se preserva. Por lo que g

es también de orden 2. También, se puede probar que g es una funciéon par:

g(=2) = (¢po food™")(=2) = (o f)(~¢7"())
= (60 f)(&7'(2) = &(f(¢7"(2))) = g(2).
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Figura 2: Se muestran los planos dindmicos con base en los parametros de la Proposicion 4.1.
IZQUIERDA: El plano dinamico de la funciéon p,. CENTRO: El plano dinamico de la funcién
o3 + c. DERECHA: Plano dinamico de la conjugacion g = ¢ o pp 0 ¢!, con ¢ quasi-conforme.

Por otro lado, sabemos que los polos de pa son justamente los puntos de la reticula A. Por lo
que, los polos de g son los puntos de la reticula A’ = ¢(A). Ahora bien, sea wy un cero de p, y
20 = ¢(wp), tenemos

(o pr0d™")(20) = (¢ pa)(wo) = ¢(0) =0,

es decir, si TI(pa) = {p;'(0)} denota el conjunto de ceros de la funcion p,, entonces ¢(II(A)) es

el conjunto de ceros de la funcion g. No es dificil ver que la implicacién es en las dos direcciones.

De esta manera, dada una reticula arbitraria A’ (no necesariamente real, ni rectangular, ni cua-
drada), podemos encontrar una funcion eliptica g € £(A’) con la dindmica prescrita en cada uno

de los resultados de la seccion anterior.

La Figura 2 muestra los tres casos asociados a la Proposicién 4.1.
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Introduccion

Mucho del progreso del estudio de la continuidad automéatica en algebras de Banach ha ocurrido en
relacién con el estudio de las algebras de grupo, ambito predilecto del analisis armoénico abstracto.

Ejemplos de este fenomeno se pueden encontrar en el famoso libro de Dales [3] o en el estudio [2].

En esta nota estudiaremos la continuidad de operadores de entrelazamiento, un objetivo que ya
ha sido llevado a cabo en el contexto de dlgebras de grupo por Willis [12], Dales y Willis [4] y
Runde [11], entre otros. Versiones particulares de este problema también han suscitado interés. Por
ejemplo, podemos mencionar los trabajos de Jewell [8] y Willis [13] sobre continuidad automatica

para derivaciones, o el trabajo de Runde [10] sobre continuidad automatica para homomorfismos.

El propoésito de esta nota es extender resultados anteriores sobre el problema de continuidad
automaética para *-algebras de Banach dadas por convolucion (generalizada, torcida) de funciones
de tipo L! sobre grupos. De hecho, buscamos mejorar los resultados de [5] de dos formas diferentes,
pero relacionadas. Una de estas formas involucra relajar la condicién de generaciéon compacta,
fundamental para los resultados de ese articulo, mientras que la otra se basa en hacer el algebra
de coeficientes finito-dimensional. Esto permite, por supuesto, grandes generalizaciones y nuevos

ejemplos de fendémenos de continuidad automética.

Nuestro enfoque se basa en el estudio de la semisimplicidad para los cocientes mediante ideales
finito-codimensionales (también llamados cofinitos), cerrados y bilaterales. Esta propiedad esta
sorprendentemente conectada con la teoria de la continuidad automética, como lo ejemplifican los
resultados en [11], y especialmente en [4]. De hecho, nuestro enfoque hara uso explicito de algunos
de los teoremas en estos articulos, atribuidos a Willis (Teorema 2.4) y Dales-Willis (Teorema
2.7). Estos teoremas, combinados con los resultados de [5] y el resultado que obtendremos sobre

semisimplicidad, producen los nuevos ejemplos de continuidad automética.

A continuacion describimos la organizacion del articulo: En la Seccion 1 introducimos lo que lla-
mamos algebras de convolucion torcida y demostramos que sus cocientes de dimension finita son
semisimples. Esto concluye con el Teorema 1.5 y su demostracion. En la Seccién 2 recordamos con-
ceptos basicos de continuidad automética y luego procedemos a combinar los resultados mencio-
nados anteriormente con los teoremas de Willis y de Dales-Willis para obtener nuestros resultados

en continuidad automatica, concluyendo el articulo.

1. Semisimplicidad de los cocientes finito-dimensionales

Una accidn torcida es una 4-tupla (G, ,w,2), donde G es un grupo localmente compacto, 2 un
C*-algebra y tenemos las aplicaciones continuas o : G — Aut(2), w: G x G — UM (), tales que

wy G3z— a,(a) €A satisfacen
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(1) am(w(yv z))w(w,yz) = (JJ(iL’,y)CU(Zy,Z),
(ii) o (ay(a))w(@,y) = w(@, y)owy(a),

(iil) w(z,e) = w(e,y) = 1, ae = idy,

para todos los x,y,z € Gy a € 2. Aqui e denota la identidad en G.

Dada una tupla de este tipo, se puede formar el algebra de convolucion torcida L}XM(G,QL), que
consta de todas las funciones Bochner-integrables ® : G — % y estd dotada del producto de

convolucion:

® < 0(a) = [ B, W Dy 2y,

mientras que la involucién estd dada por
% (z) = Ar™ Hw(z, o™ 1) ag[@(a™1)"].

Con estas operaciones, L}M}(G, 2() es una *-algebra de Banach bajo la norma

1]y o = [ [[®(2)]a da.
G

En estas integrales dz denota la medida de Haar en G, mientras que A denota la funciéon modular
asociada a dz. En el caso en que w = 1, denotamos al 4lgebra resultante como L. (G,2l). Por
otra parte, en el caso en que A = C y a = idc, el dlgebra resultante se denotara por L. (G) y la

llamaremos algebra de grupo torcida.

El objetivo de este capitulo es demostrar que los ideales cofinitos y cerrados de Liw(G7 20) producen
cocientes semisimples y, para ello, necesitamos introducir una clase especial de multiplicadores. Es

conveniente entonces recordar la definicién del algebra de multiplicadores de un algebra de Banach.

En lo que sigue, si X es un espacio de Banach, entonces B(X') denotara el conjunto de operadores
acotados T': X — X, mientras que GL(X) C B(X) denotara el grupo de operadores acotados que

son invertibles.

Definicién 1.1. Sea B un dlgebra de Banach. Un multiplicador de B es un par m = (A, ), donde
A, 1 € B(B) son tales que

aA(b) = p(a)b, Alab) = Ma)b y p(ab) = au(b),

para todo a,b € B.

El conjunto de todos los multiplicadores de B se llama el algebra de multiplicadores de B y la

denotamos por M(®B).
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Recordemos que el producto de multiplicadores viene dado por la siguiente férmula:

AN p') = (Ao N, i o p).

Ademaés, la norma natural en M(B) esta dada por [|(A, p) || am(w) = max{[|Al], [|p]|}. Si B es una
*-algebra de Banach, entonces el algebra de multiplicadores también tiene una involucién natural,

(A, p)* = (A", "), que verifica
A(a) =p(a™)* vy p(a) =Aa")*, paratodo a € B.

Si 9B es involutiva, entonces utilizamos UM ($B) para denotar al grupo unitario de M(‘B).

Notese que M (B) siempre es unital y ademas contiene una copia de 98B, dada por los multiplicadores

(Lp, Rp), b € B. Estos multiplicadores vienen, naturalmente, definidos por
Ry(a) =ab y Ly(a) =ba, paratodo a € B.

Lo interesante de esta inclusién es que, asumiendo la existencia de identidades aproximadas con-
tractivas, toda representacion no-degenerada de B se extiende naturalmente a una representacion
de M(B). Es un hecho bien conocido que L, ,(G,2) siempre tiene una identidad aproximada

contractiva, por lo que el siguiente lema serda de importancia para nosotros.

Lema 1.2. Sea B un dlgebra de Banach, X un espacio de Banach y sea 7w : B — B(X) una

representacion contractiva. Asuma ademds que las siguientes son ciertas:

(i) B tiene una identidad aproximada contractiva.

(#i) La representacion m es no-degenerada, es decir, span{m(b){ |be B, € X} = X.

Entonces existe una unica representacion unital y contractiva 7 : M(B) — B(B), tal que Toiy =

.

Dada una accion torcida (G, a,w,2), y para a € M(2), y € G, consideramos el multiplicador

Ma,y = (Nay, tay) de L, ,(G,2A) que viene dado por

Aay(P)(x) = acy (R(y~'a))wly,y~ w),
fay (@) (@) = Aly™H)@(ay ™) ogy-1 (a)w(zy™",y).

También fijamos la siguiente notacion

FG7Q[ = {m%y | u e UM(Q[), (VRS G}
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En el siguiente lema, recopilaremos algunos hechos bien conocidos y faciles de probar, pero tutiles

para el desarrollo de nuestro resultado.

Lema 1.3. Las siguientes aseveraciones son verdaderas.

(i) T es un grupo.
(1t) Todo myy € I'g o es unitario y tiene norma 1.

(tii) Todo multiplicador de la forma mq, puede ser escrito como una combinacion lineal de 4

elementos en I'g o

(iv) El adjunto de mg, satisface la formula

para todo a € M),y € G.

A continuacion, procedemos a demostrar el resultado principal de la seccién. Nuestra demostra-
cion estd basada en el hecho de que las representaciones de grupos compactos son similares a

representaciones unitarias. El hecho relevante es el siguiente (véase [9, Theorem 0.1]).

Lema 1.4. Sea X un espacio de Hilbert de dimension finita y V. C GL(X) un subgrupo tal que
sup, v ||lvllBn) < oo. Entonces existe una transformacion lineal positiva e invertible T € GL(X)

tal que TvT ! € U(X), para todo v € V.

Teorema 1.5. Sea (G, o, w,2A) una accion torcida. Si I € B = L}, (G, 2A) es un ideal bilateral,
cerrado y de codimension finita, entonces I es automdticamente auto-adjunto y el dlgebra cociente

B/I es semisimple.

Demostracion. Dado que I es cerrado y de codimension finita, X = B /I es un espacio de Banach
de dimension finita. Sea (-,-) cualquier producto interno, por ser de dimension finita, X es un

espacio de Hilbert con respecto a este producto interno.

Denotamos por 7 : 8 — B(X), la representacion inducida en el cociente, es decir,
(@)U +I)=D+xV+1,

para todo ®, ¥ € 8. Esta representacion es contractiva y no degenerada, por lo que, debido al Lema
1.2 y abusando de la notacion, 7 se extiende a M(B) y, por ende, los operadores m(mq ) € B(X)
estan bien definidos y son uniformemente acotados. De hecho, no es dificil notar que cumplen la
identidad

T(May) (¥ + 1) =mqy (V) + 1, para todo ¥ € B.
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Por este motivo, uno observa que

() (U + ) = /Gw(mq)(y),y)(xp + D)y = /qu>(y)7y(\ll)dy 41 (1.2)

Ahora bien, notamos que V' = {m(m)}mer; , satisface todas las condiciones del Lema 1.4 y, por
ende, debe existir un operador positivo e invertible 7' € GL(X) tal que Tw(m)T ! € U(X), para

todo m € FQQ;.

Definimos entonces la representacion 7’ : 8 — B(X) dada por 7/(®) = T'r(®)T~! y probaremos
ahora que es una *-representacion y que Ker 7/ = I, con lo cual se seguird que 9B/ es *-isomorfa

a 7' (B), que es una C*-algebra, y por lo tanto habremos demostrado que 2B/I es semisimple.

En efecto, notese que Ker ' = Kern. Ahora bien, sea ® € Kerm y sea ¥; € B alguna identidad

aproximada acotada de 8. Notamos que

I=lmn(®)(V,;,+1I)=lim®*V,+ 1=+ 1,
J j

por lo cual ® € I. Esto prueba que Kern’ = I.

/

Veamos ahora que 7’ es una *-representaciéon. En efecto, si m € I'g o ¥ £, € X, entonces uno

tiene

(' (m)€,m) = (&, 7' (m)"n) = (&' (m)""n) = (&, 7' (m™ ")) = (€, 7' (m")n).

Pero, recordando que todo m,,, se puede escribir como una combinacién lineal de 4 elementos en

I'g o (punto (éii) del Lema 1.3), vemos que

*

7 (May)* = w'(m:’y), para todo a € M(2),y € G.

Y, en consecuencia, para ® € B,£ € X, y utilizando la igualdad (1.2), uno observa que
' (®*)¢ = Tm(®*)T ¢ = T/Gw(mq)*(y),y)T—lgdy
= T/G A=) (Mutyy=1) o, @19 0) T €AY
=T 7T(m —1 )% * 71)T_1fd
. wly=hy)a,—1(2(y)*)y Y
(1.1) . _
= /GTr/(mCD(y),y)*gdy = 77/((1))*57

con lo que se termina la demostracion. [
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2. Aplicaciones al problema de continuidad automatica

Sea B un algebra de Banach. Un espacio de Banach X que también es un B-bimoédulo se llama

B-bimodulo de Banach si las funciones
BxXDB,E—bleX vy XxB3(b)—EbeX

son continuas conjuntamente.

Definicion 2.1. Sea B un dlgebra de Banach y sean Xy, Xy B-bimddulos de Banach. Una funcion

lineal 6 : X1 — X5 se denomina operador de B-entrelazamiento si para cada b € B, las funciones
X132 00 —b0() eXo y X1 3L 0(Eb) —0(§b € Xp

son continuas.

Ejemplo 2.2. (i) Todo homomorfismo de B-bimddulos entre B-bimddulos de Banach es un

operador de B-entrelazamiento.

(ii) Sea X un B-bimddulo de Banach. Una derivacion es una funcion lineal D : B — X que
satisface

D(ab) = D(a)b+ aD(b).

Toda derivacion es un operador de B-entrelazamiento.

El problema de continuidad automéatica consiste en entender qué tipo de condiciones garantizan
que todo operador de B-entrelazamiento sobre el dlgebra de Banach B es necesariamente continuo.
Una herramienta fundamental para atacar este problema es el llamado ideal de continuidad, que

introducimos a continuacion.

Definicion 2.3. Sea B un dlgebra de Banach y 0 : X1 — Xo un operador de B-entrelazamiento

entre B-bimodulos de Banach. Entonces
FO0)={beB|X12E—0(b) € Xy y Xy 3E— 0(Eb) € Xy son funciones continuas}
es el ideal de continuidad de 6.

Noétese que #(0) es cerrado, ya que X3 es un B-bimoddulo de Banach. El siguiente teorema se debe

a Willis [12, Lemma 4.3.5]. Véase también [11, pag. 498].
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Teorema 2.4 (Willis). Sea B un dlgebra de Banach, X1, Xy B-bimddulos de Banach y 6 : Xy — X
un operador de B-entrelazamiento. Suponga que existe una familia dirigida {B;}; de subdlgebras

de Banach de B tales que

(i) B=U,B; y

(ii) para cada indice i, el dlgebra B;/B; N F(0) es semisimple y finito-dimensional.
Entonces 7 (0) es de codimension finita en B.

La principal aplicacion de este resultado es levantar la hipotesis de generacion compacta de G
de algunos de los resultados obtenidos en [5]. Nos gustaria destacar que dicha restriccion fue de
importancia fundamental en ese trabajo, ya que permitié garantizar la existencia de funciones de

peso con propiedades notables (ver [5, Lemma 3.4]).

Proposicion 2.5. Sea (G, o, w,2) una accidn torcida, denotemos por B = L(lyﬁw(G,Ql) Y suponga-
mos que 0 : X1 — Xy es un operador de B-entrelazamiento entre los B-bimddulos de Banach Xy, X
con la propiedad de que para todos los subgrupos abiertos y compactamente generados H C G, el
ideal F(0) N Ly, ,(H,2) tiene codimension finita en L}, ,(H,2). Entonces .7 (0) tiene codimension
finita en B.

Demostracion. Observamos que .5 (0)N LY, ,(H,2) coincide con el ideal de continuidad de 6 cuando
este se considera como un operador de L}M)(H7Ql)—entrelazamiento y, por lo tanto, es cerrado.
Ahora, consideramos la familia {H;}; de subgrupos abiertos, generados de manera compacta de G,
ordenados por inclusién y observamos que la familia B; = L}%w(Hi, 2A) es una familia dirigida de
subalgebras de B tales que B = m Esto ultimo se sigue, por ejemplo, del hecho de que | J; B;

contiene todas las funciones continuas de soporte compacto.
Notese que B;/B; N F(0) es finito-dimensional por suposicion y semisimple por el Teorema 1.5.

Entonces, el resultado se sigue de aplicar el Teorema 2.4. O

En particular, ahora podemos proporcionar los siguientes ejemplos de continuidad automética, ya

para grupos que no precisan ser compactamente generados.

Corolario 2.6. Sea G un grupo localmente compacto y nilpotente. Sea X un B-bimddulo de Banach
y 0 :B — X un operador de B-entrelazamiento. Entonces 0 es automdticamente continuo cuando

B es una de las siguientes:

(i) Algebras de grupos torcidas LL(G), asociadas con un 2-cociclo w: G x G — C.

(ii) Algebras de convolucion (%(G,21), donde (G,2,a) es un sistema C*-dindmico con A una

C*-dlgebra unital y promediable (=nuclear).
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Demostracion. Combinando la Proposicion 2.5 con [5, Corollary 4.21], sabemos que #(0) C ‘B
es un ideal cofinito y cerrado. Ademaés, en ambos casos el algebra 8 tiene la siguiente propiedad:
todo ideal bilateral cerrado y cofinito I C 25 tiene una identidad aproximada izquierda de norma

acotada.

Esta propiedad que acabamos de mencionar es probada directamente en el primer caso [5, Theorem
A.3] y se sigue de la combinacion de [6, Proposition VIL.2.31] con el hecho de que £L(G,%A) es
promediable |7, Proposition IV.4.2] en el segundo.

Dicho esto, podemos repetir parte del argumento en [5, Theorem 3.6] para concluir la demostracion.
En efecto, debido al teorema de factorizacion de Cohen-Hewitt [1, Corollary 11.12], para cada

secuencia {b,} C F () que converge a cero, existen c,d,, € 7 () que factorizan a b,
b, =cd, y limd, =0.
Como la funcion B 3 d — 6(cd) es continua por la definicion de #(6), tenemos

lim 6(b,,) = lim #(cd,) =0

n

y, por lo tanto, la restriccion de 6 a #(6) es continua. Dado que .7 () tiene codimension finita, 6

es de hecho continua en todo B. O

Ahora nos limitaremos al estudio de (algunos) operadores de entrelazamiento con imégenes de
dimension finita, lo que nos daré mas flexibilidad en las hip6tesis impuestas sobre la acciéon torcida.
Dales y Willis demostraron el siguiente teorema en [4, Theorem 2.5] y sera nuestra principal

motivaciéon para lo que sigue.

Teorema 2.7 (Dales-Willis). Sea B un dlgebra de Banach tal que B/1 es semisimple para cada

ideal bilateral cerrado y cofinito I C B. Entonces las siguientes condiciones son equivalentes:

(i) Cada homomorfismo de B con imagen finito-dimensional es continuo.
(ii) Cada derivacion en un B-bimddulo de Banach de dimension finita es continua.
(#i) Cada ideal bilateral cofinito de B es cerrado.

(iv) I% es cerrado y cofinito, para cada ideal bilateral cerrado y cofinito I C B.

Por lo tanto, una aplicacién del Teorema 1.5 produce la siguiente proposicion.

Proposicion 2.8. Sea (G, a,w,A) una accion torcida. Entonces, todas las condiciones en el Teo-

rema 2.7 son equivalentes para L, ,(G,2A).
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En particular, obtenemos muchas clases de ejemplos para este fenémeno de dimension finita. Los
recopilamos en el siguiente corolario. Como veremos, en este contexto se pueden extender en gran

medida los resultados del articulo [5] (¢f. [5, Corollary 4.21]).

Corolario 2.9. Sea B una de las siguientes dlgebras:

(i) LL(G), para un grupo promediable G y un 2-cociclo w : G x G — C.

(ii) €L (G, ), para una accion (no torcida) (G,«,2) donde G es discreto y promediable y A es

una C*-dlgebra promediable (=nuclear).
Entonces B satisface todas las condiciones del Teorema 2.7.

Demostracion. Verificamos la condicion (iv) del Teorema 2.7. Tal como en la demostracion del Co-
rolario 2.6, vemos que todo ideal bilateral cerrado y cofinito I C B tiene una identidad aproximada
izquierda de norma acotada. En este caso, I = I? también se deduce del teorema de factorizacién

de Cohen-Hewitt. O
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RESUMEN
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1. Introducciéon

El objetivo del presente articulo es demostrar la existencia del moduli local de variedades abelianas
polarizadas que admiten un grupo de automorfismos distinto a {+1}. Es bien sabido que estas
variedades coinciden con el locus singular del espacio de moduli Ay, que parametriza variedades

abelianas con un tipo de polarizacion fija (véase, por ejemplo, [20]).

En [8,10] los autores trataron este problema en el caso particular en que el grupo de automorfismo
considerado es Z,, con p un nimero primo. Esto era suficiente para su objetivo principal: el
estudio de las componentes irreducibles del lugar singular de .4, y las posibles inclusiones entre

estas componentes. Ahora tratamos el problema para un grupo arbitrario G.

Hemos intentado mantener la discusién en un contexto tan general como sea posible. De este modo,
trabajamos sobre un campo k algebraicamente cerrado, pero hasta donde sea posible evitamos
cualquier hipotesis sobre la caracteristica. Del mismo modo, no suponemos que la polarizacion de las
variedades abelianas X consideradas sea principal y de hecho el teorema de pro-representabilidad es
demostrado para casi-polarizaciones (el divisor asociado al morfismo X — X* no es necesariamente

amplio).

El método utilizado es la teoria formal de deformaciones locales. La teoria de deformaciones fue
creada en el contexto analitico por Kodaira y Spencer ([13]) y adaptada al caso algebraico por
Grothendieck y su escuela (véase, por ejemplo, [11, exposicion VI|). Esta teorfa, altamente abs-
tracta, requeria algunas simplificaciones para aplicaciones practicas. Una de estas simplificaciones
fundamentales fue desarrollada por Schlessinger ([22]) quien demostré su famoso criterio de pro-

representabilidad (véase Teorema 2.6 en la seccion 2).

Afortunadamente, en la actualidad existen tratamientos sisteméticos sobre la teoria algebraica de
deformaciones, como [6,12] o [23]. Este articulo estd fuertemente basado en [8,10] y los trabajos

pioneros de Frans Oort ([19,20]).

Los resultados de [8] y [10] han sido utilizados para estudiar algunas propiedades del lugar sin-
gular de A,. Por ejemplo, en [9] para dar una reinterpretacion de los resultados de [3] y en [2]
para el estudio del niimero de polarizaciones principales de una variedad abeliana con grupo de

automorfismos no trivial.

Fundamentar de un modo preciso y tan general como sea posible la existencia del moduli local de
variedades abelianas polarizadas con automorfismos ayudara a obtener resultados més profundos
sobre los puntos singulares del moduli de variedades abelianas polarizadas. Este estudio debe ser

continuado con la comprobaciéon de que este moduli formal es algebrizable.

La combinaciéon de estos resultados permitira seguramente arrojar una nueva luz sobre los ejemplos

y problemas tratados en estudios mas recientes como los presentados en [5,14,15,21] y [24].
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La motivacién principal de los autores es atn la determinaciéon completa de las componentes

irreducibles del lugar singular de A,.

En la seccién 2 introducimos los conceptos bésicos de la teoria local de deformaciones y los funtores
de deformacién asociados a variedades abelianas y variedades abelianas polarizadas. En la seccién
3 demostramos el teorema de pro-representabilidad y damos una férmula explicita para calcular
la dimensién del moduli local. El articulo termina con los célculos de dimension en el ejemplo del
producto de curvas elipticas ' x E x E, donde el grupo simétrico S3 actia por permutaciéon de los

factores.
Las referencias basicas para los fundamentos de la teoria de variedades abelianas son [4] y [18].

Queremos agradecer a los arbitros anénimos que ayudaron, con sus comentarios, a mejorar la

presentacion de este articulo.

2. Preliminares

2.1. Funtores de deformacién local

Sea k un campo algebraicamente cerrado; denotamos por Art/k la categoria de k-algebras artinia-

nas locales R, con campo residual k.

Definicién 2.1 (Funtor de deformacion, [6, Definicion 6.1.4]). Sea D : Art/k — Sets un funtor.

Decimos que D es de deformacion si D es covariante y D(k) es un conjunto con un solo elemento.

Recordemos que dada cualquier categoria C y X € C, podemos definir un funtor covariante:

hx : C — Sets,

mediante:
(i) paracada Y € C, hx(Y) = Mor(X,Y)
(ii) a cada morfismo g :Y — Z en C, asociamos el morfismo

hx(po): Mor(X,Y) = Mor(X, Z)
¢ oo
Un funtor F' : C — Sets, F' se dice representable si existe un objeto X € C tal que para todo

Y eC:
F(Y) = hx(Y).
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Sea CLoc/k la categoria de k-algebras noetherianas locales completas R con campo residual k,

notemos que R/mf; € Art/k para cada n > 1.
Definicién 2.2 ([19, pagina 227]). Un funtor de deformacién D se dice pro-representable si existe

R € CLoc/k tal que D es isomorfo a hr. Diremos entonces que R pro-representa a D.

Demostrar que un funtor de deformaciones es pro-representable puede parecer a primera vista una
tarea dificil. La idea para atacar este problema es comenzar con D(k) y a partir de ahi tratar de
“levantar” el funtor a D(R), donde R € Art/k tiene un ideal maximo m%, # 0, con n cada vez méas

grande.

Para esto son fundamentales los siguientes conceptos.

Definiciéon 2.3 ([19, pagina 229]). Un epimorfismo m : R — R’ en Art/k se dice pequeio, si

I := Ker(m) satisface I -mp = 0.

Definicién 2.4 (|19, pagina 228|). Sea C una categoria con objeto final O y productos fibrados. Un

funtor covariante F : C — Sets es llamado exacto por la izquierda si

(i) F(0) = {pt},

(i) F conmuta con productos fibrados, esto es, el morfismo natural
F(X Xy Z) :> F(X) XFE(Y) F(Z)

es biyectivo.
Definicién 2.5 ([19, pagina 229|). Un funtor F' : Art/k — Sets se dice formalmente suave si para

todo epimorfismo m: R — R' — 0 en Art/k, F(w): F(R) — F(R') es sobreyectivo.

La teoria de funtores pro-representables fue desarrollada inicialmente por A. Grothendieck en [11].
En 1968 Schlessinger ([22]) estableci6 un criterio que permite verificar efectivamente que un funtor

es pro-representable (véase también [19, Theorem 2.1.1]).

Teorema 2.6 (Criterio de Schlessinger). Un funtor covariante F : Art/k — Sets es pro-representable

sty sdlo si F' es exacto por la izquierda y
dimyg (F(k[e])) < oo.

Ademds, es suficiente verificar la exactitud por la izquierda para morfismos Ry — Ro <+ Rs
en Art/k, cuando la primera flecha es un epimorfismo pequerio. Si F es pro-representable por

O € CLoc/k, es formalmente suave, y dimy(F (k[e])) = m, entonces existe un isomorfismo

(= k[[tl,...,tm”.
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2.2. Funtores de deformacién asociados a variedades abelianas

En esta seccion presentamos un breve resumen del articulo [19]. Todas las definiciones y enunciados

pueden ser encontrados en esta fuente.

Definicion 2.7. Sea Xy una variedad abeliana sobre k. El funtor de moduli local de X :
M : Art/k — Sets,
se define como:

X es un esquema abeliano /R,

M(R) := { clases de equivalencia (X, @) N
p: XRrk — Xo

mddulo la relacion de equivalencia (X, ) ~ (X', ¢') si existe un morfismo

o

d: X X'

~

Spec R

tal que ® Rr k = id.

Si R — R’ es un morfismo en Art/k, M(R) — M(R') se define por cambio de base.

Oort, siguiendo argumentos de Grothendieck, mostrd que M es un funtor pro-representable.

Teorema 2.8 ([19, Teorema 2.2.1|). El funtor M es pro-representable por O = k[[t; j]l1<i j<g;
donde g = dim(Xj).

El siguiente paso es estudiar variedades abelianas polarizadas (o casi-polarizadas).

Sea L un haz lineal sobre un esquema abeliano 7 : X — 5, y sea pu : X xg X — X la multiplicacion

de grupo. Como Pic(X/S) es un moduli fino, el haz
(L) @ pi(L) @ p3(L)
sobre X x¢ X define un homomorfismo

A(L) : X — Pic’(X/8) = X',
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Definiciéon 2.9. Sea R € Art/k y m : X — SpecR un esquema abeliano. Un homomorfismo
A: X — X' es llamado casi polarizacion si existe un haz lineal L € Pic(X) tal que A(L) = \.
Si ademds L es relativamente amplio con respecto a w, decimos que A es una polarizacion. A una

pareja (X, X) con A una (casi)polarizacion se le llama variedad abeliana (casi)polarizada.

También escribimos (X, L) en lugar de (X, A) si A es la (casi)polarizacion definida por L o incluso
si L = Ox(0), escribimos (X, ©) en lugar de (X, ). En el caso R = k decimos que la pareja (X, \)
es una variedad abeliana (casi)polarizada. Abreviamos diciendo que la pareja (X, A) es un e.a.c.p.
(esquema abeliano casi polarizado) o e.a.p. (esquema abeliano polarizado) y del mismo modo para
variedades abelianas (v.a.c.p. o v.a.p.)

Definicion 2.10. Sea (Xo,0¢) una v.a.c.p. y A(©) = Xo, € Hom(Xo, X{) la casi polarizacion
asociada. Fl funtor de moduli local de (X, ©g)

P: Art/k — Sets

se define como:

X es un e.a.c.p. /R,
P(R) := 1 clases de equivalencia (X,9,0) | ¢: X @p k = Xg, ¢
Ao ®prk = )\90

donde (X,p,0) ~ (X', ¢",0") si (X,p) ~ (X', ¢') como elementos de M(R) (vea Definicion 2.7)
y el diagrama:

x_® . x/

/\@i \L)\(_,/

t
Xt~ X'
pr

conmuta. Si R — R’ es un morfismo en Art/k, P(R) — P(R’) se define por cambio de base y

levantamiento (“pull-back”) del divisor asociado a la casi-polarizacion.

Claramente existe un morfismo de olvido:
P — M.

Sin embargo, no es claro que sea inyectivo, esto es, que P sea un subfuntor de M. Esta propiedad

es importante, pues tenemos:

Lema 2.11. Sean P C M funtores pro-representables, M pro-representado por O, entonces existe

un ideal a C O tal que P es pro-representado por O/a.

El mecanismo apropiado para demostrar que P es un subfuntor de M es el lema de rigidez.



350 U. Guerrero-Valadez, H. Torres-Lopez & A. G. Zamora

Lema 2.12 (Lema de rigidez, [17, Corolario 6.2]). Sea S un esquema, X un S—esquema y G un

grupo esquema sobre S. Dado un diagrama:

f
X—=G
g
pl /

q
S,

supongamos que p es plano y propio, y que Vs € S, H°(X,,Ox,) = k(s). Si existe s € S, tal que

fs = gs, entonces existe una seccion n: .S — G tal que
f=op)-(9).
Utilizando el lema de rigidez y el criterio de Schlessinger (Teorema 2.6), Oort demostré en [19,

Teorema 2.3.3, pagina 242] que P es un subfuntor pro-representable de M.

Teorema 2.13. Si (X, \g) es una v.a.c.p. de dimension g, entonces

(i) el funtor P es un subfuntor de M,

(i) P es pro-representable; y si Ao es una polarizacion separable y principal entonces P es pro-
representado por:

Op = k[[tilli<i<j<g

Observacion 2.14. 1) Recordemos que una polarizacion se llama principal si el morfismo Ag :

Xo — Xt es un isomorfismo.

2) Si Ao es separable y principal tenemos, en concordancia con el Lema 2.11:
Op = O/(tij — tji),

donde O = E[[ti;]]1<i j<q €s la k-dlgebra completa que pro-representa a M.

3. El funtor Fg

En esta seccion adaptamos las definiciones y construcciones de la seccion anterior al caso en que la

variedad abeliana X, admite un grupo de automorfismo no trivial como variedad (casi)polarizada.
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Definicién 3.1. Sea (Xo, ©p) una variedad abeliana casi-polarizada y Gy un subgrupo de Aut(Xo, Op).

Definimos el funtor de deformaciéon
Pg, : Art/k — Sets

de la siguiente manera:

X esune.a.cp. /R,

0: X®rk = X

do ®r k = Ao, G < Aut(X,0)
Gork=Gp

Pg,(R) := [ clases de equivalencia (X, ¢, 0,G)

donde GRrk :={a®rk|ac G}y (X, ¢,0G ~ (X', ¢ 0 ,G) si (X,0,0)~ (X, ¢,0)
como elementos de P(R) (vea Definicion 2.10) y ® oo ®~! € G’, para todo o € G.

Si @ : R— R’ es un morfismo en Art/k, entonces Pg,(p) : Pg,(R) = Pg,(R’) envia (X,¢,0,G)

a(X@r R, ¢, 00r R,Gor R), donde G @p R :={a®@r R' | a € G} y ¢ es la composicion
©

(X@rR)®p k=X ®4k= X,

Con esta definiciéon Pg, resulta ser un funtor de deformacion y tenemos:

Lema 3.2. Pg, es un subfuntor del funtor P introducido en la Definicion 2.10.

Demostracion. Debemos ver que si
(X,9,0) ~ (X', ¢, 0",

entonces (X, p,0,G) ~ (X', ¢, 0’,G’). Sabemos que existe un isomorfismo

o

d:X X'

~

Spec R

que satisface las condiciones mencionadas en la definicion de P (Definicion 2.10). Asi, basta com-

probar que ® o a0 @1 € G/, para todo a € G.

De la definicion de Pg, (R), se sigue que G g k = Gy = G’ @ k. Sea o € G, tenemos:
(@oao@fl) Qrk=®Qrkoa®pko® ' @prk=idoagoid=do Qrk,

donde ag € Gy, y o’ es algn elemento en G’. Finalmente, por el lema de rigidez (vea Lema 2.12)
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tenemos que

Poaod =4 O

El objetivo principal de este articulo es demostrar que Pg, es un funtor pro-representable; para

esto necesitamos utilizar varios resultados bésicos de la teoria de deformaciones.

La idea principal de la teoria de deformaciones es, dado un epimorfismo pequeino
0—-I—+R—-R =0
en la categoria Art/k y un diagrama:

X/

|

Spec R —— Spec R

determinar bajo qué condiciones existe X — Spec R tal que X ® g R’ ~ X’. Tal X se denomina,

indistintamente, deformacion o levantamiento.

De este modo, definimos:

X es suave/S,

~

L(X';R— R') := { clases de equivalencia (X, ¢')
¢ X®sS — X'

el conjunto de clases de equivalencia de levantamientos de X’ — S’ a S, donde S = Spec R y

S’ = Spec R'.

En el caso afin, es decir, cuando X = Spec B y X’ = Spec B’, el problema de existencia de otro

levantamiento By — B’ se traduce en completar el diagrama de k—algebras:

B——= DB

e

By

Si la variedad afin X es no singular, siempre es posible encontrar tales levantamientos. Ain mas,
la diferencia de dos levantamientos es un elemento de Dery(B’, B') ® I (véase, por ejemplo, [16,
capitulo 9], [12, capitulo 1.4], y [23, capitulo 1.1]). Esta es la razén por la cual en teoria de

deformaciones el haz tangente Ty juega un papel esencial.

Al pasar al caso no afin debemos amalgamar (“gluing” en inglés) las diferentes deformaciones afines

y es asf como aparece, de manera natural, H!(Xy, Tx,) ® I.

Al formalizar estas ideas obtenemos:
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Proposiciéon 3.3. i) SilL # (), entonces existe una biyeccion

L(X",R— R~ H' (X0, Tx,) ®1I.

it) Un S"-automorfismo p’ : X' — X', satisface que po := p' @ k se levanta a un S-automorfismo
p: X — X siy sdlo si al considerar la clase n € H'(Xo,Tx,) ® I determinada por (X —
S) e L(X',R' — R) y el diagrama:

HY (X0, Tx,) @1

l dpo

HY(Xo, p§Tx,) ® 1 Lo HY (X0, Tx,) @1

se verifica que:

dpo(n) = po(n)-

i11) Sin tomar en cuenta la estructura de grupo de las variedades abelianas, existe una biyeccion:
M(m) " (X' p) S LX,R— R),

para todo (X', ) € M(R'), donde M es el funtor de la Definicion 2.7.

Observacion 3.4. 1) En el inciso ii) de la Proposicion 3.3, abusamos ligeramente de la nota-
cion al escribir, por ejemplo, dpy en lugar de dpg ®id. Esta notacion se mantendrd en lo que

resta del articulo.

2) La biyeccion del inciso i) de la Proposicion 3.3 es mucho mds natural. Simplemente hay

que recordar las definiciones involucradas.

3) En la prdctica la condicion en el inciso i) se verifica de la siguiente manera: si denotamos
por po la representacion analitica del automorfismo, entonces la condicion de levantamiento

se traduce en:

TpO = (pé)ilTa
con T = (tij)1<i<j (véase la discusion que sigue a [20, Proposicion 3.1]).
La Proposiciéon 3.3 es un paso previo para comprobar que el funtor Pg, satisface las condiciones de

Schlessinger. La demostracion se puede encontrar en [19, Lema 2.2.3, Proposiciones 2.2.5 y 2.2.6],

y la del inciso ii) en [20, Proposicion 3.1], .
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Lema 3.5. Sea
Q—=R (3.1)
.,
——
un diagrama cartesiano en la categoria Art/k, con w un epimorfismo pequerio. Sea
((Y,400), (X,90)) € M(T)X pr(rryM(R), con (X', pp) = m(X, @o). Sea ay un Spec T-automorfismo
deY y ax un Spec R-automorfismo de X, tal que ay @7 R' = ax ®r R'. Sea (Z, () un levanta-

miento (Y, o) de T a Q, entonces existe az, un Spec Q-automorfismo de Z tal que az QT = ay .

Demostracion. Definimos I := Ker(nw), J := Ker(p) y oo := oy @ k. Notemos que
oo = (Ozy [ R/) Rr k= (OéX [29) 3 R/) Rr k=ax Qg k.

Como 7 es un epimorfismo pequeiio y el diagrama (3.1) es cartesiano, concluimos que p es un
epimorfismo pequeno y que x induce un isomorfismo y : J — I. Tenemos el siguiente diagrama

conmutativo (vea [19, pagina 237]):

HY (X, Tx,) ®k J —= H'(Xo, Tx,) @k I (3.2)

Zi[z llx(z)

LY;Q—T)—L(X;R— R)

M(Q) M(R),

donde la flecha horizontal del medio est4 dada por cambio de base; x es Mx vy (Z,4) es un
levantamiento (Y,¢g) de T a @Q (tal levantamiento existe, en virtud de [19], altimo parrafo de la

péagina 236). De [19] sabemos que x(Z,¢}) = (X, ¢o).

Si denotamos la clase de levantamiento correspondiente a

X ——=X

L

Spec R —— Spec R

como n € HY(Xo, Tx,) ®k I y la correspondiente a

Y A

.

SpecT —— Spec @




Deformaciones de variedades abelianas con automorfismos 355

como & € H'(Xo, Tx,) ®k J (Proposicion 3.3 i)), entonces por el diagrama (3.2) se deduce que
Xx(&) = n. Notemos que ax es un levantamiento de ax ®g R’ y por Proposicion 3.3 ii), sabemos

que esto sucede si y solo si

dao(n) = ag(n).

Consideremos ahora el diagrama:

dao

HY(X,0x,) ® J —=% HY (X0, 040 x,) ® J ~—— H'(Xo,0x,) ® J (3.3)

<|x «x * «|x

H'(X0,0x,) ® I —2% H'(Xo,050x,) @ 1 << H'(Xo,0x,) @ 1
De aqui se sigue que dag(€) = af(€), y asi obtenemos un levantamiento oz de oy . O
Teorema 3.6. El funtor Pg, introducido en la Definicion 3.1 es pro-representable.

Demostracion. Usaremos la notacion del Lema 3.5. Por el criterio de Schlessinger (Teorema 2.6) y
el hecho de que Pg, es un subfuntor de P (Lema 3.2), se sigue que Pg, es pro-representable si la
funcion

Pg,y(Q) = Py (T) X pg, (r1) Pao (1)

es sobreyectiva. Esta funcion es la que se obtiene de aplicar Pg, al diagrama cartesiano (3.1) y

considerando la propiedad universal del producto cartesiano. Sea

((Y7 1/}07@Y7GY)7 (X7 $05 ®X7GX)) € PGO(T) XP(;O(R/) PG[)(R>

(X/aQD/O:@X'aGX') = PGo(Tr)(Xa ©o, ®X7GX)'

Notemos que, en particular

((Ya 1/107@3’)7 (X7 900,@X)) € P(T) XP(R’) P(R)'

Por Teorema 2.13 y el criterio de Schlessinger, Teorema 2.6, existe una pre-imagen (Z,v(,0z) €

P(Q) de ((Y,%0,0y), (X, ¢9,O0x)) bajo la aplicacién
P(Q) = P(T) xpry P(R).

En particular, tenemos que Mx(Z,¢{) = (X, ¢o).
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Sea ay € Gy como Gy @1 R' =Gy = Gx ®r R/, existe un ax € Gx tal que
ay QT R = ax Qr R

Notemos que ax es tnico por el lema de rigidez.

Por el Lema 3.5 existe ay : Z — Z que es levantamiento de ary. Ademés, por el lema de rigidez
y [19, Lema 2.2.2, pagina 231] este resulta ser un automorfismo de Z como variedad abeliana

casi-polarizada (una vez mas este az es tnico por el lema de rigidez).

Concluimos que para todo ay € Gy existe un tnico az tal que
az Qg T=ay.

Definamos Gz como el conjunto formado por los az. Veamos que Gz es un grupo. Sean g, h € Gz,

como el cambio de base es un funtor,
gh™' @ T = (9@ T)(h®qT)™" € Gy,

entonces existe 3 € Gz tal que gh™! @g T = B ®¢ T, asi por el lema de rigidez gh™' = € Gz.
Concluimos que Gz es un subgrupo de Aut(Z) y Gz ®q T = Gy, lo que significa que

Peop(Z,4,02,Gz) = (Y,¢0, Oy, Gy).
Tenemos que
(Gz®gR)®r R =(Gz00T)®r R =Gy @1 R =Gx'=Gx ®r R'.
Entonces, por el lema de rigidez, Gz ®g R = G x, lo que demuestra que

Peox(Z,14,02,Gz) = (X,¢0,0x,Gx). O

Recordemos que un funtor F' : Art/k — Sets se dice formalmente suave si para cualquier epimor-

fismo 7w : R — R en Art/k la funcién
F(m): F(R) = F(R)

es sobreyectiva (Definicion 2.5).
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Teorema 3.7. Sea (Xo,00) una variedad abeliana polarizada, tal que el morfismo asociado a la

polarizacion O, \o : Xo — X es separable, y sea Gy < Aut(Xo,Op), entonces
Pg, : Art/k — Sets
es formalmente suave.

Demostracion. Sea R =+ R’ un epimorfismo en Art/ky (X', ¢',0',G") € Pg,(R'). Este epimorfis-

mo puede descomponerse en una sucesion finita de epimorfismos pequenos de la siguiente forma:
R=Ry ™S5 R = - ™ R,=R.
Si aplicamos Pg, obtenemos:
Pg,(R = Ro) = Pgy(R1) = - = Pg,(Rn = R'),

donde abusamos de la notacion y entendemos que Pg, (7;) = 7;. Definimos &, = (X', ¢/, 0',G’) €

Pg,(R'). Supongamos que para todo i existe §;_1 € Pg,(R;—1) tal que m;(&—1) = &. Entonces

(o) =mpo0---omi(&o) = &n.

Asi, es suficiente demostrar que todo epimorfismo pequeno I — R =5 R’ — 0 en Art/k,

(X', ¢',0',G") tiene un levantamiento.

Sea N : X’ — X', el morfismo inducido por ©’. Sabemos que Pg, es un subfuntor de Py por tanto
de M,y que (X',¢') € M(R'). Como Ag, : Xo — X} es separable, P es formalmente suave por
[19, Teorema 2.4.1]. Por lo tanto, existe (X, ¢, ©) € P(R) que levanta a (X', ¢, ©"). En particular:

(X, p) = (X',¢') € M(R)).
Por la Proposicién 3.3 iii) tenemos las siguiente biyeccion
(X', ¢) S LX',R— R).

Definamos (X,v) := (X, ¢) € L(X',R — R'). Como L(X',R — R') # @, por Proposicion 3.3

ii), (X, %) induce la siguiente biyeccion

HY(Xo, TXo) @ I 25 L(X',R — R)).
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Definamos (X1,1) := £x(0). Por [19, pagina 245]|, tenemos:
0x,(0") = 6x(0') + f @idr ({5 (X1,¢1)) =0,

sea L el levantamiento de ©’, definamos (X1,¢1) = & 1(X1,1). Concluimos que (X', ¢, 0")
levanta a (X1, 91, L1).

Notemos que para todo a € Gy,

asi, existe G; < Aut(X1, L1) (automorfismos de variedad abeliana polarizada), tal que G; g R’ =
G’. Se concluye que

Py (m) (X1, 91, L1,G1) = (X', ¢, €, G"). 0

Recordemos que una variedad abeliana polarizada (X, ©0g) es principalmente polarizada si
h°(Xo,00) = 1, o equivalentemente el morfismo )¢ inducido por ©g es un isomorfismo (a partir
de ahora se denotara como v.a.p.p.). Sea Gy < Aut(Xy, Op) y denotemos por V =Ty X el espacio
tangente de X en el 0.

Teorema 3.8. Sea (Xo,Oq) una variedad abeliana polarizada, tal que N : Xo — X{ es separable

y sea Gy < Aut(Xo,Op), entonces:

i) Pg, es pro-representado por k[[t1,...,tm]], donde m := dimy Pg, (kle]).

it) St ademds (Xo,Oq) es principalmente polarizada, entonces
m = dimk(Sym2 TOX)GO,
donde Gy actia sobre Sym® Ty X con la accion inducida por la representacion analitica.

Demostracion. La parte i) es consecuencia inmediata de los Teoremas 3.7 y 2.6.

Para la parte ii) comenzamos con la siguiente observacion: como por hipétesis (Xg, ©g) es princi-
almente polarizada, tenemos un isomorfismo de espacios vectoriales d\g : V — V*. De este modo
9 0
obtenemos:

VeV ~VeV~EndV,V).

Asi, podemos definir ¥ C V ® V*, como:
¥ = (id ® d)o)(Sym?V).

Si fijamos una base e; de V, la correspondiente base d\g(e;) de V! y su base dual en V, entonces

los elementos de ¥ se corresponden en End(V, V') con matrices simétricas.
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Oort demostré en [19, pagina 237] que
M (kle]) 2 H' (X0, Tx,) 2V & Vi,

y que P(kle]) =X C V ® V! De este modo, 1 € X satisface que 1 € Pg, (k[e]) si y s6lo si podemos

levantar G a k[e]. Por la Proposicion 3.3 ii) esto sucede si y sélo si:
Vp e Go, ndp=(dp")"'n

Es decir,
n = dp'ndp,

o equivalentemente, n € (X)%°. Asi concluimos que:

Pg, (k[e]) = (Sym?V)%°. O

Una vez establecido el Teorema 3.8, podemos calcular formulas explicitas para la dimension del

algebra que pro-representa a Pg,.

Corolario 3.9. Si char(k) = 0, entonces Pg, es pro-representado por k[[t1,...,tm]], con
xi (g +><v 9%)
Z XSym g | GO | Z )
qEG g9€Go

donde Xv Y Xsym2v S0m, respectivamente, los caracteres de las representaciones V' y Sym?V.

Demostracion. Consideremos una representacion Go — GL(V).

Utilizando la Proposicién 2.8 de [7] y que char(k) = 0 obtenemos

ZXV

9€Go

dim(VE) =

V) = 551
Como char(k) = 0 y k es algebraicamente cerrado, g : V' — V admite una forma canoénica de
Jordan y todo g : V' — V es diagonalizable. Por esta razén podemos replicar la demostraciéon de

la Proposicion 2.1 de [7] para deducir que

(g9) = M 0

XSym?2V 9

Ejemplo 3.10. Sea E una curva eliptica suave. Consideremos la variedad abeliana X = EXEXE.

Consideremos la accion del grupo simétrico Ss sobre X que permuta los factores. Denotemos 3 =
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(123) y a = (12). La representacion analitica de [ es:

0 01
1 00
0 10

y la de « es:
0 1 0
a=|[1 0 0
0 0 1

El polinomio caracteristico de 3 es Pg(\) = det(8 — \id) = 1 — A3, sus valores principales son 1,
y €2, donde ¢ es una 3-raiz primitiva de la unidad; y sus vectores principales son v1 = (1,1,1),
vg 1= (1,€%€), y vz := (1,£,€%). Como aB? = Ba, tenemos que a(vy) = v1, a(vy) = 23 y

a(vs) = Evs.

Ast, si fijamos en ToX la base que diagonaliza a 3, tenemos que en esta base, 3 = diag(1,&,£2) y

Mmoo o
o m o

Sea T = (tij)1<i<;. Las condiciones de levantamiento de la Proposicion 3.3 ii) (Observacion 3.4
iii) se traducen en:

T =BT, Ta=ao'T,

donde usamos que ¢ = ya~! = a.

FEstas dos ecuaciones dan como resultado:

tiz O 0
T = 0 0 t23
0 taz3 O

Ast obtenemos que dimy Ps, (k[e]) = 2. Por supuesto, esta dimension también puede ser calculada

usando el Corolario 3.9.

De este modo, en el moduli local para esta accion existen mds variedades que las inducidas por la

deformacion de la curva E.

Un arbitro anénimo ha sugerido una posible conexién entre este ejemplo y el concepto de trialidad

(vease por ejemplo, [1]). Trataremos de explorar esta sugerencia en el futuro.
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RESUMEN

En este articulo centramos nuestro interés en el estudio de
un problema inverso que surge en el modelamiento matema-
tico de la transmisién de enfermedades infectocontagiosas. El
modelo matematico viene dado por un problema con condi-
ciones iniciales y en la frontera para un sistema de difusién-
reaccién. Mientras tanto, el problema inverso consiste en la
determinacion de las tasas de transmisién y de recuperacion
de la enfermedad, a partir de la mediciéon observada de la so-
lucién del problema directo en un tiempo fijo. Las incognitas
del problema inverso aparecen en el modelo como coeficien-
tes del término de reacciéon. Formulamos el problema inverso
como un problema de optimizacién para un funcional de cos-
to adecuado. Luego, se deduce la existencia de soluciones del
problema inverso probando la existencia de un minimizador
para el funcional de costo. Establecemos la unicidad del pro-
blema de identificaciéon. La unicidad es una consecuencia de
la condicién necesaria de optimalidad de primer orden y una
estabilidad de las incognitas del problema inverso con respec-
to a las observaciones. Ademas se se realiza una aproximacion

numérica y simulaciones para el problema inverso.
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ABSTRACT

In this article we focus our interest on the study of an in-
verse problem arising in the mathematical modeling of di-
sease transmission. The mathematical model is given by an
initial boundary value problem for a reaction diffusion sys-
tem. Meanwhile, the inverse problem consists in the deter-
mination of the disease and recovery transmission rates from
observed measurement of the direct problem solution at some
fixed time. The unknowns of the inverse problem are coeffi-
cients of the reaction term. We formulate the inverse problem
as an optimization problem for an appropriate cost functio-
nal. Then, the existence of solutions of the inverse problem
is deduced by proving the existence of a minimizer for the
cost functional. We establish the uniqueness of identification
problem. The uniqueness is a consequence of the first order
necessary optimality condition and a stability of the inverse
problem unknowns with respect to the observations. Moreo-
ver, we develop a numerical approximation and simulations

of the inverse problem.

Keywords and Phrases: Identification problem, control problem, SIS, inverse problem.
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1. Introducciéon

El modelamiento matematico de la transmision de enfermedades infectocontagiosas es un area de
investigacion activa de la biologia matematica [1,2,4,5,16, 18,19, 22, 26, 29, 31, 34, 35]. Particu-
larmente para la aplicacién de sistemas de reaccion-difusion a sistemas originados en ecologia y
epidemiologia senalamos los siguientes trabajos [6,7,17,37]. En la actualidad, se utilizan varios
enfoques para construir los modelos mateméaticos en epidemiologia matematica. A pesar de los
diferentes tipos de tales modelos, y de manera analoga a los sistemas bioquimicos, podemos dis-
tinguir cinco pasos comunes en los procesos de modelamiento [9]: recopilacion y analisis de datos e
informacién experimentales sobre la enfermedad especifica; selecciéon de la teoria mateméatica que
se utilizara en la formulacion del modelo; el analisis matemaético del buen planteamiento del mo-
delo; la calibracion o identificacién de pardmetros del modelo; y la validacion y el refinamiento del
modelo. Ademés, observamos que el modelamiento es un proceso ciclico en lugar de lineal: todas
las suposiciones hechas en los pasos anteriores se reconsideran y refinan una vez finalizado el pro-
ceso de modelamiento. Podemos mejorar el modelo introduciendo nuevas hipotesis, disenar nuevos
experimentos, realizar predicciones y profundizar el analisis de cada paso. Asi, en particular, nos
interesa el analisis de calibracién o identificaciéon de parametros del modelo. Para ser mas precisos,
el objetivo de este articulo es proporcionar un marco para resolver el problema inverso que surge
en el paso de la calibracion del modelo asumiendo que el modelo matematico es un problema con

condiciones iniciales y en la frontera para un sistema de reacciéon-difusion.

Precisemos el modelo matematico o problema directo. Consideramos que el proceso de la enfer-
medad infecciosa se desarrolla en un dominio acotado Q C R? (d = 1,2,3) y que su dindmica se
describe mediante un modelo de reaccion-difusion SIS, donde la densidad de poblacion de indi-
viduos susceptibles e infectados en el momento ¢ y la ubicacién x estan dados por S(x,t) y por
1(x,t), respectivamente. Se considera que la matriz de difusion es igual a la identidad. Suponemos
que el proceso de infeccién se da por la interaccion de individuos susceptibles e infectados el cual es
modelado en el punto x y tiempo ¢ por la “ley potencial” 8(x)S™(x,t)I"™(x,t), donde § es la tasa
de transmision de enfermedades y m,n €]0,1[ son algunos parametros dados (fijos). El proceso
de recuperacion esté representado por v(x)I(x,t) con v la tasa de recuperacion de la enfermedad.
Por lo tanto, el problema directo se define de la siguiente manera: Dado el conjunto de funciones
{B,7, S0, Io} encuentre las funciones S y I que satisfagan el siguiente problema con condiciones
iniciales y valores en la frontera

Sy —AS = —B(x)S™I" + v(x)1, en Qr :=Q x [0,7T],

I, — A = B(x)S™I™ — y(x)1, en Qr,

(1.1)

(1.2)

VS-n=VI-n=0, sobre T := 09 x [0, T, (1.3)
5(x,0) = So(x), en Q, (1.4)
(1.5)

I(x,0) = Ip(x), en €,
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donde Of) es el la frontera de 2 y n es el vector unitario exterior a 0€). Las condiciones de
contorno (1.3) y las funciones Sy y Iy modelan las condiciones iniciales. La suposicion que 8y 7
son funciones que dependen de la posicién espacial es utilizada en diversos trabajos, por ejemplo en
[7,36,37]. Desde el punto de vista biologico es méas natural asumir que estos coeficientes dependen de
la variable temporal, tal como es considerado para el modelo de ecuaciones diferenciales ordinarias
estocasticas originado en la dinamica de la influeza en [28]. Sin embargo, en el mejor de nuestro

conocimiento no es aun utilizado en los modelos de reaccion-diffusion.

El problema inverso consiste en la determinaciéon de las funciones de tasa 8y v en el modelo SIS
(1.1)-(1.5), a partir de medidas observadas tanto de S como de I en tiempo ¢ = T'; las cuales estan
dadas por las funciones S5 e I°%%_ definidas sobre §, respectivamente. Entonces, podemos definir el
problema inverso de la siguiente manera: Dado el conjunto de funciones {Sy, Iy, S°*¢, I°**} definidas
en €, encontrar las funciones g y 7, tales que las funciones S e I sean solucion del problema (1.1)-
(1.5) y satisfacen la condicién final de sobreespecificacion S(x,T) = S°%%(x), I(x,T) = I1°%(x)
para x € . Se observa que la igualdad se satisface solo en el caso que (S°°%, I°%*) sean alcan-
zables para algtn (f,7), siendo méas esperable el caso en el cual (S,I)(-,T) es lo méas cercano
posible a (5%, 1°%%). De hecho, para precisar el analisis del problema inverso, consideramos una

reformulacion operativa, como el siguiente problema de optimizacion
inf J(8,7) sujeto a (Sg,y,I5,) solucion de (1.1)-(1.5), (1.6)

donde
1 1)
J(B,7) = (S, (- T) — (8%, 1)1 2202 + §Hv(ﬂ,’¥)lliz(g)z, 6 >0, (1.7)

es una funciéon definida en el conjunto admisible

Uaa(Q) = AQ) N HI/2+1(0)2, (1.8)
A() = {(ﬂw) € C*(Q)* : Ran(B) x Ran(y) C [b,0] x [r,7] C (0, 00) } (1.9)

Aqui, H™(Q) y C*(Q) denotan los espacios estandar de Sobolev y Holder W™2(Q) y C%%(Q), res-
pectivamente; L?(9)? = L?(Q) x L?(Q), definiendo similarmente los otros espacios como H [4/21+1(())?
y C%(Q)%; y Ran(f) denotan el rango de la funciéon f. La construccion de U,q(Q2) se desarrolld
recientemente en [12] y también notamos que U,q(R2) = A(Q) cuando d = 1 coincidiendo con el
conjunto admisible considerado por Xiang y Liu en [36], consulte tambien [11] para un caso maés

general.

El resultado principal de este trabajo son las condiciones para la teoria del buen planteamiento del

problema inverso. Més precisamente, probamos el siguiente teorema:
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Teorema 1.1. Consideremos ¢ = (c1,¢2) € Rf_ (fgo) y definamos el subconjunto del conjunto

admisible
Ue() = {(8.7) € Uaa(®) + 1Bllr0y =1 y Il ey = e2 - (1.10)

Considere que el conjunto abierto acotado y convezo € es tal que ON) es de clase C' y las condiciones

iniciales Sy y Iy son funciones que pertenecen a C*%(Q) y satisfacen las desigualdades
So(x) >0, Io(x) >0, / Lx)dx >0,  So(x)+ Io(x) > do > 0, (1.11)
Q

sobre Q, para alguna constante positiva ¢o. Ademds, suponga que las funciones de observacion S°
y I°% son funciones que pertenecen a L*(Q). Entonces, existe al menos una solucion de (1.6) y
existen © € RT tal que la solucion de (1.6) es tnica (salvo una constante aditiva) en U(S) para

cualquier pardametro de reqularizacion § > ©.

En términos generales para obtener la unicidad del problema de optimizaciéon juega un rol muy
relevante, desde el punto de vista analitico y numérico, el término de regularizacion en la funcion de
costo definida en (1.7). En otras palabras, sin este término es esperable que se pierda la unicidad,
tal como se muestra en el Ejemplo 1 presentado en la Seccion 4.1. En este punto se debe observar
que una regularizacion natural es considerar ||(8, 7)||2L2(Q)2 en vez de [|V(3,7) H%z(g)z. Sin embargo
esto se descarta, debido a dos dificultades: no es claro como utilizarlo para el analisis matemaético
y debido a que en la préactica y en presencia de casos extremos puede converger a los coeficientes
de norma L? minima y que no necesariamente resuelve el problema inverso. Sin embargo, tal como
se presenta en el Ejemplo 2 (Ver Seccion 4.2) se puede definir un término de regularizacion que
incorpore la condicion que (8, v) € U, con c fijo, tal como lo establece el Teorema 1.1. Una discusion

general sobre otras formas de regularizacién se puede consultar en [21].

Por otro lado, recordamos que los problemas inversos en las ecuaciones de reaccion-difusion y los
sistemas se han abordado en la literatura de las ltimas décadas, por ejemplo [8,14,15,27,30,32,36].
En [8] los autores estudian la identificacion de g(z) en la ecuacion uy = Au + ¢(x)u con condicion
de frontera de Dirichlet y a partir de los datos de medicion finales w(z,T’). Ellos prueban la
existencia de soluciones y desarrollan una soluciéon del problema inverso utilizando un problema
de optimizacion. Los autores de [15] consideran la reaccion-difusion no lineal ecuacion vy = Au +
p(z) f(u) con f una funcion no lineal y estudian la identificacion de p, obteniendo algunos resultados
para la existencia y la unicidad local. Ahora, en [32] los autores estudian el problema inverso
para un sistema de reaccidén-difusiéon con un término de reaccion lineal y obtienen la existencia y
unicidad local del problema inverso. Mas recientemente, en [36] los autores han estudiado el caso
unidimensional del problema inverso considerado en este trabajo. Obtienen un resultado para la
existencia y unicidad local de la solucién asumiendo que el proceso de infeccién estd modelado por

un funcion de transmision dependiente de la frecuencia en lugar de la funcién de ley de potencia.
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Ahora, los articulos [14,27,30] se centran en problemas inversos en sistemas epidémicos, pero son
de un tipo diferente al considerado en este trabajo. Por tanto, el Teorema 1.1 es una extension al

caso multidimensional de los resultados unidimensional obtenidos en [36].

Desde otra perspectiva, se observa que el estudio de los problemas de control 6ptimo similares a los
estudiados en este trabajo, y suponiendo que las condiciones iniciales y los coeficientes se encuentran
en espacios de funciones con menor regularidad ha sido recientemente estudiado utilizando el
formalismo de Dubovitskii-Milyutin [10,13]. En consecuencia, es esperable que los resultados de

este trabajo se puedan extender a espacios de Sobolev.

El resto del articulo esta organizado en tres secciones. En la seccién 2 presentamos algunos resul-
tados para la solucion directa del problema, introducimos el estado adjunto y las condiciones de
optimalidad necesarias, y demostramos un resultado de estabilidad. En la secciéon 3 presentamos
la demostracion del Teorema 1.1. En la seccién 4 se discute la aproximacién numérica y se realizan

simulaciones numéricas.

2. Preliminares

2.1. Solucién del problema directo

El buen planteamiento del problema directo (1.1)-(1.5) viene dado por el siguiente resultado.

Teorema 2.1. Considere que Q,Sy y Iy satisfacen las hipdtesis del Teorema 1.1. Si (B8,7) €
C*(Q) x C*(Q), el problema con condiciones iniciales y en la frontera (1.1)-(1.5) admite una
solucion cldsica positiva tinica (S, 1), tal que S y I pertenecen a C*T1+2/2(Q) y también S y I

son acotadas uniformemente sobre Qr, para cualquier T € RT,

La existencia y la unicidad puede ser desarrollado por la teoria de Sch auder para ecuaciones
parabdlicas [23-25]. Hay que aclarar que la nocién de solucion para ecuaciones parabdlicas con
coeficientes y condiciones iniciales en espacios de Holder se entiende en un sentido generalizado.
En tal sentido no se necesita las condiciones de compatibilidad de las condiciones iniciales y en la
frontera que son necesarias para las soluciones en un contexto de espacios de funciones regulares,
para mayores detalles consultar [23]. Mientras tanto, el comportamiento positivo de la solucion es
una consecuencia del principio maximo. En efecto, si denotamos por N la poblacion total, es decir,
N(x,t) = S(x,t) + I(x,t). Entonces, del sistema (1.1)-(1.5), podemos deducir que N satisface el

siguiente problema con condiciones iniciales y en la frontera

N, — AN =0, en Qr,
VN -n=0, sobre T,
N(x,0) = Sp(x) + Ip(x), en €.
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Por el principio méaximo de ecuaciones parabolicas y la hipotesis (1.11) tenemos que N(x,t) >

So(x) + Io(x) > ¢ > 0 sobre Q.

Corolario 2.2. Considere que Q, Sy e Iy satisfacen las hipdtesis del Teorema 2.1. Si (B,a) €
C*(Q) x C*(Q) y (S,I) es la solucion del problema con condiciones iniciales y en la frontera
(1.1)-(1.5), entonces las estimaciones 0 < S,, < S(x,t) < Spr, y 0 < I, < I(x,t) < Ty, son

vdlidos en Q, para algunas constantes estrictamente positivas Sy, Sar, L, € Ins.

2.2. Sistema adjunto

Consideremos que (f3,%) es una solucién del problema de control 6ptimo (1.6) y (S, ) es la corres-
pondiente solucién de (1.1)-(1.5) con (3,7) en lugar de (3,7). Luego introducimos las variables
adjuntas (p1,p2), es decir, la solucién del sistema adjunto que viene dada por el siguiente problema

retrogrado con valores en la frontera

(p1)s + Ap1 = mB(x)S™ " (p1 — pa), en Qr, (2.1)
(p2): + Aps = nB(x)S™ " (p1 — p2) — H(x)(p1 — p2), en Qr, (22)
Vp;-n=Vpy-n=0, sobre T, (2.3)
p1(x,T) = 8(x,T) — 5 (x), en Q, (2.4)
po(x,T) = I(x,T) — I°*(x), en ). (2.5)

La existencia de soluciones generalizadas (notar que (S°°¢, I°0%) € L?(Q)?) para el sistema (2.1)-
(2.5) puede ser desarrollado por argumentos similares a un resultado similar presentados en [3].
Ahora, para nuestro proposito, necesitamos algunas estimaciones a priori dadas en el siguiente

resultado.

Lema 2.3. Considere que Q, Sy, I, S y I°%, satisfacen las hipétesis del Teorema 1.1. Ademds,
considere que (B3,7) € Uaq es una solucion de (1.6), y (S, I) es una solucion de (1.1)-(1.5) con (B,7)
en lugar de (8,7). Entonces, la solucion del sistema adjunto (2.1)-(2.5) satisface las siguientes

estimaciones

[(p1,02) (5 ) |72y < C, [(p1,2) ()| 2 )2 < € (2.6)
||A(p1ap2)('7t)”[/2(ﬂ)2 < Oa ||(p17p2)('at)”L°°(Q)2 < Ca (27)

para t € [0,T] y una constante positiva genérica C.

Demostracion. En términos generales, la demostraciéon de este teorema se realiza en dos pasos
principales: primero se transforma el sistema adjunto (2.1)-(2.5) en un problema de valores iniciales

y en la frontera y luego aplicando estimaciones de energia. En efecto, consideremos el cambio de
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variable 7 =T — t para ¢ € [0,T] y también considera la notacion
wi(x,7) =pi(x,T—7), i=1,2, S*x,7)=98(xT-7), I'(x,7)=1I(x,T—7).
Entonces, el sistema adjunto (2.1)-(2.5) se puede reescribir de la siguiente manera

(w1); — Awy = —mB(x)(S*)™H(I*)" (w1 — wa), en Qr, (2.
(wa)7 — Awy = —nf(x)(S*)™(I*)"wy — wsy) + F(x) (w1 — ws), en Qr, (2.
Vw; -n=Vwy -n=0, sobre T, (2.10

8
9

)
)
)
w(x,0) = S(x,T) — S°(x), wy(x,0) = I(x,T) — I°(x), en Q. (2.11)

Ahora, aplicando aplicando estimaciones de energia obtenemos para w; las cuales conducen a las

desigualdades (2.6) y (2.7).

Para probar (2.6) procedemos como sigue. Multiplicamos (2.8) por w; y (2.9) por we, integramos

sobre 2 y usamos las formulas de Green, para obtener

w1 ),wy dx wy)?dx=—m [ B(x)(S*)™ ! *"w%x

[ wnewax+ [ (Funza [ sy yata
+m/QB(x)(S*)m_l(I*)"wlwg dx,

/Q(wg)ng dx—&—/Q(ng)de:—/Q [nB(x)(S*)™(I*)" ! = 3(x)] wiws dx
+ [ Ay (! = 360] ufx

respectivamente. Luego, sumando las igualdades, aplicando la desigualdad de Cauchy, reordenando

algunos términos y aplicando el Corolario 2.2, podemos deducir la siguiente estimaciéon

1d

57 (Iwn, wa) (D aggy2 ) + 1V w) ()2 < Ol w) ()] (212)

con

5 3¢, +Cy €y +3C A .
C:méx{ 1; 2, 12 2}, Cr=bmS"Y, Co=bnSpIt4+7 (2.13)

La notacién b y 7 es definida en (1.9). Entonces, de (2.12) y la desigualdad de Gronwall, obtenemos
(w1, w2) ()1 F2gye < 1w, w2) (-5 0)[[ 22 (267, (2.14)
lo que implica la primera estimacion en (2.6). Ahora, de (2.12) y (2.14), tenemos que

IV (w1, w2) (-, Tl 22 < € €T [(wr,w02) (-, 0) [ F2(gye-
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Asi, por la definicién de la norma de HJ(2) deducimos la segunda estimacion en (2.6).

La demostracion de (2.7) se realiza como sigue. Por otro lado, usando el hecho de que

1d

[ wortwsdx = [ Viwd) Vusdxt [ (w)eViw) ndS = =3 4wl g0
Q Q o

para i = 1,2. Observamos que, al multiplicar (2.8) por Aw;, multiplicando (2.9) por Aws, inte-

grando en 2, y sumando los resultados, deducimos que

&‘Q‘

— (Il or w) ) g e ) + 1A wo) (7l

R 1
< Clell(wr, w2) (. lEaqye + 1A G w2) )z

1
2

con C' definido sobre (2.13) y € > 0 arbitrario. Entonces, tenemos que

C N
= (lws,w2) (7)) + (1 - 4> A, we) (7 [2agqye < €Cll(wr, we) (-, 7) 22y

Q“&

1
2
Ahora, seleccionando € > C /4 y usando la estimacion (2.14) obtenemos

4e2C eQéT
4e —

1A wr, w2) (-, 7722 < 1wy, w2) (-, 0) 172 (@2

lo que implica la primera desigualdad en (2.7). Ahora, de (2.6) y la primera estimacion en (2.7),
tenemos que p; y p2 estan acotados en la norma de H?(Q). Asi, segtin el teorema de inclusién
continua H?(Q)) C L*>(Q), deducimos la segunda desigualdad de (2.7). O

2.3. Condiciéon necesaria de optimalidad de primer orden.

Lema 2.4. Sean (3,7) la solucion del problema de control 6ptimo (1.6) y (S, 1) la solucion de (1.1)-
(1.5) con (B,7) en lugar de (B,7) y (p1,p2) la solucion del sistema adjunto (2.1)-(2.5). Entonces,
la desigualdad

[ [1(-3)5"7~ -1 2 - pyaxa
+ 5/9 [va (B - B) LYV (5 — 7)} dx >0, (2.15)
es vdlida para todo (B,ﬁ) € Ugg-

Demostracion. La demostracion se realiza utilizando los conceptos de diferenciabilidad en espacios

de Banach y la ecuacion de sensibilidad. Consideremos un par arbitrario ( B ,7) € Uyq e introducimos
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la notacion

(8°,7°) = (1 —&)(B,7) +(B,4) € Uaa,
J. = J(pF / ( — 590 (x)|” + | (x, 1) —IObS(x)|2> dx
“5/,

VB ) + V37 (%)) dx,

donde (5%, I¢) es la solucion de (1.1)-(1.5) con (8%, %) en lugar de (3, ). Ahora, usando la hipotesis

de que (B,%) es una solucién 6ptima de (1.6) y tomando la derivada de Frechet de .J., tenemos que

05° oI
s obs
» / (’S x,t) — S (x)| 9% ) 620) dx

dJ.
| Oe
5/0 [VBV (B - B) + VIV (5 — "y)} dx >0, (2.16)

de

+ |Is (X, t) _ Iobs (X

e=0

donde 0.5° y 0.I¢ para ¢ = 0 se calculan analizando las sensibilidades de las soluciones para

(1.1)-(1.5) con respecto a las perturbaciones de (3, 7).

De la definicién de (S¢,1¢) y (S, ) tenemos

(5%)e = AS® = =7 (x)(5°)" (I7)" + " (x) I, en Qr, (2.17)
(If); — AI° = B5(x)(S®)™(I°)" — % (x)I°¢, en Qr, (2.18)
VS -n=VI* - n=0, sobre T, (2.19)
S¢(x,0) = Sp(x), I°(x,0) = Iy(x), en €, (2.20)
y
(S)e = AS = —B(x)(S)™(1)" +¥(x)1, en Qr, (2.21)
(D¢ = AL = B(x)(S)™ ()" = ()1, en Qr, (2.22)
VS n=VI-n=0, sobre T, (2.23)
S(x,0) = So(x), 1I(x,0) = Iy(x), en . (2.24)

Restando el sistema (2.21)-(2.24) del sistema (2.17)-(2.20), dividiendo por ¢ y usando la notacién
(25,25) =1 (55 — S, I — I_), deducimos el siguiente sistema

(5" = (9)"]

(21)r — Azf = =f°(x) (I%)"25 = BE()(S) " =——4

Se -8 Ie -1
—(B=BES™D)" + ()25 + (Y =N, en Qr,  (2.25)
€ € _ 3¢ [(SE)m ( ) } € € q\m [(Ia)n — (I_)n] £
(23)e — Azz = B°(x) e _ g (I%)"21 + B°(x)(5) T~
+(B=B)S)™I)" = (x)z5 — (5 = NI, en Qr,  (2.26)
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Vzi-n=Vz; -n=0, sobre I',  (2.27)
21(x,0) = 23(x,0) =0, en Q. (2.28)

Entonces, denotando por (z1, z2) el limite de (2§, z5) cuando € — 0, de (2.25)-(2.28), deducimos

(21)e — Az = —mB(x)(S)" (1) " 21 — nB(x)(S)™(I)" " 22

— (B =B)S)™D)" +7(x)z5 + (4 = I, en Qr, (2.29)
(22)t = Azo = mBx)(S)™(I)" 21 +n(x)(S)™ (1)" " 22
+ (B =B)S)" ()" = A(x)z5 — (7 =, en Qr, (2.30)
Vz1-n=Vz-n=0, sobre T, (2.31)
z1(x,0) = z2(x,0) = 0, en ). (2.32)
Asi, en (2.16) se tiene
(155l -t )

n J/Q {va (B - B) L VAV (5 — a)} dx >0, (2.33)

cuando (z1, z2) es la solucion de (2.29)-(2.32).

Por otro lado, de (2.1)-(2.2) y (2.29)-(2.30), deducimos
0 Q 2\ am n N =\T
%(plzl + p2za) = p1lAzy + palAzy — 21Ap1 — 22Apy + (B — B)S™ 1" (p2 — p1) — (¥ — )L (p2 — 1),
lo cual implica
a min 2
i pem)dxdt= [ [(B=BS"I = (G =DI| b2 —pdxdt,  (234)
QT T
mediante integracion sobre Q7. Ademas, notamos que
0
J[ o+ paeixat = [ (o1 T)z06T) + palx T)zalx, 7)) dx
= / (‘S(X, T) - S"bs(x)| 21(x,T) + [I(x,T) — I"bs(x)| zo(x, T)> dx. (2.35)
Q
Luego, de (2.34) y (2.35) deducimos que

//T BT (’3’_’7)1_] (p2 — p1)dxdt

_ /Q (1566T) = ()] 210, T) + [106,T) = I (x) | 22(x,T) ) dx.~ (2.36)
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Podemos concluir la demostracion de (2.15) reemplazando (2.36) en el primer término de (2.33). O

2.4. Algunos resultados de estabilidad

Lema 2.5. Considere que los conjuntos de funciones {S,1,p1,p2} y {S’, f,ﬁl,ﬁg} son soluciones
a los sistemas (1.1)-(1.5) y (2.1)-(2.5) con los coeficientes, condiciones iniciales y observaciones
dada por {83,7, So, Io, S°%, I°%} y {ﬁA,’Ay,SO,IO,SAObS,IAObS}, respectivamente. Entonces, existen las

constantes positivas V;, 1 = 1,2,3 tales que las estimaciones

(S = S, T = D), )20 < Cll(B = B,7 = DTz (02 (2.37)
1(P1 = p1, B2 = p2) (5 B)l[72(0p2 < P2l (B = B4 = Vl[72 (02
+ \IJSH(SObS _ Sobs7jobs _ Iobs)H%Q(Q)2 (238)

son wvdlidas para cualquier t € [0,T].

Demostracion. Por razones de simplicidad de la presentacion, introducimos las siguientes notacio-

nes

55 =5 -5, SpL = pr — o, 88 =0~

61 =1-1, Sp2 = P2 — P2, oy =4-7.

Entonces, del sistema (1.1)-(1.5) para (S, 1) y (S, 5) tenemos que (85, 1) satisfacen el sistema

(68): = A(S) = =BE)[(S)™ (D) = ()™ (1)"]

= 6B(x)(S)™ ()" +A(x)I +y(x)1, en Qr, (2.39)

(61) = AGI) = B(x) ()" (1) = (S)™(1)"]
+8Bx)(8)" (1) = A(x)3T = y(x)1, en Qr, (2.40)
V(5S) -n=V(5I)-n=0, sobre T, (2.41)
(3S)(x,0) = (5I)(x,0) = 0, en Q. (2.42)

Del mismo modo, del sistema adjunto (2.1)-(2.5), deducimos que (dp1, dp2) es la solucion del sistema

)"
—mB)(S)™ ()" (1 — p2), en Qr, (2.43)
(6p2)e + A(dp2) = nB(x)S™ " (p1 — p2) — 4(x)(p1 — o)
—nB(x)S™ I (py — pa) + Y(X)(p1 — p2), en Qr, (2.44)
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V(dp1) -n=V(0ps) - n=0, sobre T', (2.45)
(6p1)(x,T) = 68(x,T) — (gobS(x) _ gobs (x)) , en Q, (2.46)
(0p2) (%, T) = 61 (x,T) — (fobs (x) — I° (x)) , en Q. (2.47)

Luego, las pruebas de (2.37) y (2.38) se reducen a obtener estimaciones para los sistemas (2.39)-

(2.42) y (2.43)-(2.47), respectivamente.

Para demostrar (2.37), testeamos las ecuaciones (2.39) y (2.40) por 6S y 01, respectivamente.

Luego, sumando los resultados obtenemos

1d

535 (18500 + 11, D22y ) + I9GS)C, )20y + IV ED DI

< [1BGol[smin = smrr|jos|ax-+ [ 1886alIS S ax -+ [ Foln)os] dx
Q Q Q

+/9\67(x)||]|\65|dx+/ﬂ\B(x)|’§mf”meI”

|61] dx + / 168(x)||S)™ 1™ |61| dx
Q

+ [ Realorax+ [ ool ax
Q Q
8
=> 1 (2.48)
j=1
donde I; estdn definidos por cada término. Ahora, usando el Corolario 2.2 para conseguir que

|Svmjn _ Smln| — |5«mjn _ Svmln + SfmIrL _ SmI"‘

R I s
Smn/ u”fldu—l—I"m/ u™ du
I s

i s
§n|5|m/I Hf,;ldu+m|1|"/s Sm=Ldu,

<nSPITHT — I +m S™HR,|S — S, (2.49)

procedemos a obtener las cotas apropiados para I;. En efecto, por la desigualdad de Cauchy y

(2.49), tenemos que I se puede acotar de la siguiente manera

I < "—bsm’gl (/ \6[\2dx+/ |5S|2dx> +mBsm*111’;u/ 165|? dx.
2 Q Q Q

En caso de I, I3 y 14, se tiene

1
no< gty [ 1060 axs [ asPax). nas
2 Q Q

I < 1]11\/[ (/ |(5’}/|2 dX+/ |(5S2dX) .
2 Q Q

(/ |6I|2dx+/ |652dx),
Q Q

N 3



376 A. Coronel, F. Huancas, E. Lozada & J. Torres

Del mismo modo, deducimos que
mn—1 2 mB m—1mn 2 2
Is < nbSTI™ |6I| dx—i—TSm Iy Q|(SI| dx + Q\(55| dx |,

I < ! (/ |6B|2dx+/ |512dx),
2 Q Q
I §?/ 16112 dx, Ig < EHM (/ |5’y|2dx+/ |5I|2dx).
Q 2 Q Q

Asi, a partir de las estimaciones de I y (2.48) tenemos

d
= (195C, )20 + 161C, D320y ) +2(IVECDIF (@) + IVEDE DIy
< D1 (108 ()22 + 101C, )32 ) + D (1081320 + 1971132(ey )

donde Dy = 2C +1 con C definido en (2.13) y Dy =S¥/ 1%, 4+ 1. Luego, aplicando la desigualdad

de Gronwall, deducimos que

185C, D172y + 161C, )22y
< 27 (1168032 + 16Tz sy ) + D2T (188132 + 17132 ey )
que implica (2.37) al utilizar (2.42).

La prueba de (2.38) se desarrolla de la siguiente manera. Podemos probar facilmente que la iden-

tidad algebraica
(AL —P2) = CA(pr —pa) = (Qﬁ - C)Alfl +¢ <A - A)Ifl + ¢ Adpy
—(C=¢)hp—¢ (A-n)p—Casp (250)

es valida. Ahora, si ((,¢, A, A) = (&ﬁ,m(é‘)m*l(f)",m(S)m’l(I)”), tenemos que (2.50) implica
que el lado derecho de la ecuacion (2.43) se puede reescribir de la siguiente manera
mp (S)" )" (B —p2) —mp (S)" L) (p1 — p2)
= mdp ()" 1 (D)"pr +mB (S ()" = ()" (D) |
+mf ()" HID)"dpy = mdB (8)" (1) pa

—mp (S D" — ()" D) s~ mB ()™ (1)"p. (251)

Luego, testeando (2.43) por dp; y usando (2.51), obtenemos

1d
5371501 C 0 ) = VGOl + [ mdB (5)" (1) o
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+ [ m (S = 1 i
m m—1 n L 2 < — m dym—1/7\n 55 0p1 dx
4 /Q B (S)™L(1)" (6p1)2d /Q 56 (8)™ (1) prdprd

- /Q mB [(S)m—l(f)"—(S)m—l(f)”};fzapldx— /Q mB (S)™ 1 (I)"5p1 dpadx.

Del Lema 2.3, Corolario 2.2, usando argumentos similares a (2.49), y la desigualdad de Cauchy

tenemos

1d ‘ m—1yn
—5 2101 (D20 + 190p1 (D20 < mix { Pa, s} {03 (1091, )12 ) + 19812y

S (103 + TG0 30))
ol = 158521 (1991 Dl 30y + 165 ¢, D320y )}

mg m—1mn
+ 28 s (310p (5 O3z + 1902, D2y (2.52)

Ahora, de (2.50), seleccionando (¢, ¢, A, A) = (B,B,n(.SA')m(f)”*l,n(S)m(I)”*l) y (6, ¢ A A) =
('?77, 1, 1), podemos reescribir el lado derecho de la ecuacion (2.44). Entonces, testeando (2.43)

por dps y usando argumentos similares obtenemos una estimacion similar a (2.52). Asi, tenemos

que existen las constantes positivas E;, i = 1,2, 3, tales que

d
— = (19p1 DI @) + 192 DlF 20y ) +2(IV0p1 (D) + 1V0p2( DlF (o))

< B (J10p1 ( DlF (0 + 0P Dl F (o))
+ By (105, ) 320y + 10TC, D32y ) + Bs (1981320 + 1073200y )

Aplicando la estimacion (2.37) y reordenando algunos términos deducimos que

d / = - -
— = (P [19p (O e gy + 18P, 2y | ) < (B + Bo) (1081130 + 19732y )

e integrando en [t,T] tenemos que

B 101, )2 ) + 1692 DIFz(ey | < €7 [10p1( T2y + P2 Dl z(ey

+ T(Ey ¥ + Ba)e®” (10811320 + 197 132(ey )

Por tanto, podemos deducir (2.38) mediante la aplicacion de la condicién final (2.47). O
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3. Prueba del teorema

Existencia. Podemos probar la existencia considerando la estrategia estandar de una sucesién
minimizadora y utilizando las inclusiones de compacidad adecuadas. En efecto, notamos claramente
que Uyq(Q) # 0y J(B,7) estan acotadas para cualquier (8,7) € U,q(2). Entonces podemos
considerar que {(,,7n)} C U es una sucesion minimizadora de J. Entonces la inclusién compacta
HI4/21+1(Q) ¢ C*(Q) para a €]0,1/2], implica que la sucesion de minimizacion {(B,,7n)} esta

acotada en la topologia fuerte de C*(Q) x C*(Q) para todos a €]0,1/2], desde existe una constante
positiva C' (independiente de 8,7 y n) tal que

1Brllce@) + Imllca@) < C( |Bnll zriaszi+1(a) + ||7nHH\[d/21|+1(Q))a Va €]0,1/2].

Observe que el lado derecho esta acotado por el hecho de que 8,,, v, € HI4/2I+1 (Q), ver la definicion
de U,q(92) dada en (1.8). Ahora, denotemos por (S, I) la solucion del problema del valor inicial
y en la frontera (1.1)-(1.5) correspondiente a (f8,,7n). Entonces, considerando el hecho de que
{(Bn,n)} pertenece a C(Q) x C*(Q) para todo a €]0,1/2], por el Teorema 2.1, tenemos que
S, y I, pertenecen al espacio de Holder C***1+3(Q;) y también {(S,,I,)} es una sucesion
acotada en la topologia fuerte de C?**1¥3(Q1) x C?+*1+5(Q,) para todo a €]0,1/2]. Asi, del
acotamiento de la sucesion de minimizacion y la correspondiente secuencia {(Sy, I5,)}, implica que

existe
(B.7) € |CY2(Q) x CYAQ)| NUa(®),  (8.T) € CP213(Qr) x O34 (@Qy),
y la subsucesion nuevamente etiquetada por {(Bn,vn)} v {(Sn,In)} tal que

Bn — B, Yn—7 uniformemente sobre C*(12), (3.1)

S, =S, I,—1 uniformemente sobre C*%(Qp)NC* *1+%(Q,). (3.2)

Ademés, podemos deducir que (S, I) es la solucién de el problema del valor limite inicial (1.1)-(1.5)
correspondiente a los coeficientes (3,7%). Por tanto, segiin el teorema de convergencia dominado de
Lebesgue, la semicontinuidad inferior de la norma L?, y la definicién de la secuencia minimizadora,

tenemos que

J(B,7) < m J(Bn,va)=  inf  J(B,7). 3.3
(B7) < M J(Bn,ym) = fof o T(B7) (3-3)

Entonces, (3,7) es una soluciéon de (1.6) y la prueba de existencia esta concluida.

Unicidad. Demostramos la unicidad usando adecuadamente el resultado de estabilidad del Le-
ma 2.5 y la condicién de optimalidad necesaria del Lema 2.15. Para ser méas precisos, consideremos

los conjuntos de funciones {S,I,p1,p2} vy {S,f,ﬁl,ﬁg} son soluciones a los sistemas (1.1)-(1.5) y
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(2.1)-(2.5) con los datos {3,~, S, I} y {B,’y, Gobs fObS}, respectivamente. Del Lema 2.15 y la

hipotesis que (8,7) y (B, %) son soluciones de (1.6) tenemos que las siguientes desigualdades

// KE—'B) s = (7 =1) I}(m—pl)dxdt

+5/Q [wav (Efﬁ) £ VAV (577)} dx>0, VY(B,5) € Uwu, (3.4)

[ Te-)smin - (x-3) -

+6/Q[VBV(£—B)+V&V(1—@} dx >0

son validas, respectivamente. En particular, seleccionando (E, ) = (

(8,7) € Uaa, (3.5)

B.4) en (3.4) y (8.9)

en (3.5), y sumando ambas desigualdades, obtenemos

6nv@ﬁmém)+vw7>;@}§[4\édﬁmﬁmzpnywqmm>wdt

+//|ﬁ—wﬂm—m%4@rﬁMWMt=h+b- (3.6)
Qr

Ahora, de (2.49), (2.50), Corolario 2.2, Lema 2.3, y la desigualdad de Cauchy, observamos que

B [[ - slismin - smrlaxdes [[ 15 BlISmI - S7 ] dxa
Qr Qr

+[/\B—mwmﬁmafmmXﬁ+// 1B~ BIIS™I"||2 — pal dxdt
T Qr
n . T
< 5571\72117{1 max {P47P5} <T||5 — Bl720) +/0 11(-t) — I('at)||%2(9)dt>
m

T
+2Mﬁmlmw{an<NW—ﬂﬁmn+Awuw—ﬂwm%@ﬁ>

T T
M o - . .
+ 5 Sl <2T||ﬂ — Bl72q) +/o 1(B1 — p1) (s 1) |72yt +/0 ([ (P2 p2)('7t)||2L2(Q)dt>

T
I < max{P4,P5} (Tll‘yvlliz(m +/0 11(-t) I(~,t)lliz(mdt>

T
+ Iy (TW — 720 +/0 (P pl)('vt)”%Z(Q)dt) :

De Lema 2.5 y las estimaciones de I; y I3 en (3.6) tenemos que

0 ||V(/3) - 5)”%2(9) + V(5 = 7)”%2(9)] <T [HB - 5”%2(9) + 1% - '7”%2(9)}

+ T (187 = 8| aqy + 11 = I [Faqy|, (37)
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donde
Ty = [(FSHL + TSI +1) U+ w)max { Py, B} + (TSHL + L) 24 )| T,

m
T, = (5 m ’1\‘4+HM> U,T.

Ahora, considerando que (3,79), (8,7) € Ue(), por la desigualdad generalizada de Poincaré, tene-

mos que

18 = BllZ2() + 14 = 72
< Cpoi (IV (5 = BB + IV G = M2y + 18 = B30y + 157 = Y1y

= Cpoi (IV(B = B) 220y + V(3 = 1) 32y )
Entonces, en (3.7) tenemos

(6= T2Crot) [IV(B = B) 220y + IV = DliTacy] < T2 [I18 = 8 [Fa(ay + 1™ = I |2y

Por lo tanto, seleccionando © = T2C},,; deducimos la unicidad hasta una constante aditiva.

4. Simulaciones numeéricas

En esta seccion, consideramos la aproximaciéon numérica del problema de control 6ptimo siguiendo
las ideas detalladas en [33] (véase también [20]). La construccion de la aproximacion numérica es
un procedimiento que consta de los siguientes tres pasos: se desarrolla una aproximacién numérica
mediante un esquema IMEX de la ecuacion de estado (1.1)-(1.5); se construye una aproximacion
numérica de la funcion objetivo (1.7); y, asumiendo que las funciones a identificar tienen formas
especificas en términos de un numero finito de parametros desconocidos, se aproxima el problema
de optimizacioén infinito dimensional (1.6) por un problema de optimizacién numeérica en dimension
finita, donde las incognitas son los parametros. Luego, se aplica un algoritmo de optimizaciéon nu-
mérica para resolver el problema de optimizacién en dimension finita o forma discreta del problema

de optimizacion. En efecto, en lo que sigue se especifica cada uno de estos pasos.

En primer lugar especificamos la discretizacion de (1.1)-(1.5). Consideremos que 2 =|0, 1],
00 =1{0,1}, Qr = (0,1) x [0,T] y T' = {0,1} x [0,T]. La discretizacion del problema de valores
iniciales y en la frontera (1.1)-(1.5) se realiza mediante un esquema semi-implicito de diferencias
finitas. Comenzamos introduciendo la discretizaciéon estandar de Qr. Seleccionamos M, N € N de
modo que la discretizacion de €2 esté dada por z; = jAx para j =0,...,M con Az = L/(M +1),
y la discretizacion de [0, 7] esté dada por t, = kAt para k = 0,..., N con At = 1/N. Ademas,
consideramos que la aproximacién de una funcién dada ¥ : Q, en (xj,tr) se denota por \IléC De
forma similar, la aproximaciéon de las funciones ¥ : Q — Ry ¥ :[0,1] — R en x; y ti se denotan

por ¥ y por ¥¥, respectivamente. El sistema (1.1)-(1.5) se aproxima mediante el siguiente esquema
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de diferencias finitas.

k+1 k k41 k+1 k+1
Sj — Sj S — 2Sj + ijl

Jj+1 _ kym ( 1k k -
Al — (AZL‘)2 ——ﬁj(Sj) L(Ij >n+’7j]j, ]—17...,M—1, (41)
IEFL gk phtl _opk+l y pkel
J J Jj+1 J j—1 _ k\m ( 7k\n k -
Gkl _ ght+l gkl pktl
J Jj—1 J Jj—1 .
= =0 0,M 4.3
s s ; j €{0,M}, (4.3)
S9 = So(x;), I =Io(x;), i=0,...,M, (4.4)
donde k = 0,..., N — 1. Utilizamos la notacion (Sa,Ia, Ra) para la aproximaciéon numérica de

(1.1)-(1.5) obtenida por el esquema (4.1)—(4.4) con coeficientes numeéricos (Ba,va)-

La aproximacion de la funcion costo (1.7) es denotada por Ja y es definida por
Az & SAT
Ja(SaIasBarva) = 5 D0 (S8 = 8992 4 (1 — 12| + S5 30 [(8)2 + ())?]. (45)

Se observa que (595, 19%%) corresponde a una aproximacion de las observaciones, las cuales en la
it )
practica son interpolaciones de los datos observados que son obtenidos en un conjunto discreto de

puntos del dominio y que no considera la discretizacion de €.

La discretizacion del problema de optimizacion (1.6) cuando (8,7) son formas funcionales de-
pendientes de los parametros se realiza como sigue. Asumimos que las funciones 8 y = estan
parametrizadas por un namero finito de parametros denotados por e = (e1,ea,...,¢e7) y que el
problema de control 6ptimo (1.6) se aproxima mediante el problema de optimizacion de dimension

finita.

Encontrar e € R’ minimizando la funcién costo Ja(e) = Ja(Sa, Ia, Ba,VA)
restringida a (Sa, Ia, Ba,va) solucion de (4.1)-(4.4) con Sy «y parametriza- (4.6)
das por e, i.e. Ba = Ba(-,€) y ya =7a(-€),

En esta definicién del problema de la discretizacién del problema de optimizacién observamos que
(Sa, In) depende de e aunque tal notaciéon no esté incluida explicitamente a fin de no recargar la

notacion.

En los ejemplos numéricos que se muestran en lo que sigue de la seccién, la solucién del problema
de optimizacion (4.6) se realizo utilizando la funciéon optimiset de Matlab. Adicionalmente, en los
ejemplos numéricos se considerd el pardmetro de regularizacion 6 = 1, y los exponentes (m,n) =

(1/2,1/10) es decir, la fuerza de infeccion es B(x)S/211/10,
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Figura 1: Simulaciones con los datos del Ejemplo 1 presentado en el subseccién 4.1.

4.1. Ejemplo 1: Funciones constantes J y v

En este ejemplo, consideramos que los coeficientes de los términos de reaccion 8,7 : @ — (0,1) son
funciones constantes por determinar. Mas precisamente, asumimos que los pardmetros a determinar
por el problema de control 6ptimo son e = (e, ez), tales que B(z;e) = e; y y(x;e) = es. Cons-
truimos los perfiles de observacion desarrollando una simulaciéon numérica del problema directo
(1.1)-(1.5) con condicion inicial

(1 —4x)(4x —3), x€[1/4,3/4],

Solx) = (4.7)
0, en otro caso,

Io(z) =1 - So(z), (4.8)

mediante aplicacion del esquema de diferencias finitas (4.1)—(4.4); utilizando At = 1,0E -7, Az =
2,0F — 4 y e = (0,7,0,2), ver Figura (1). Se observa que en este caso en la definicion de Ja
en 4.5 el termino de regularizacion se anula dado que 8'(z) = +/(z) = 0. La identificacién numeérica
se desarrolla considerando M = 100 y N = 500 y utilizando varios puntos de inicializacién para
el método de optimizacion numérica. Por ejemplo, si suponemos que la aproximacion inicial es
e’ = (1.E — 06,1) obtenemos que las funciones identificadas estédn definidas por los parametros
e>* = (0,77964, 0,25706). Otras simulaciones se realizaron, segiun lo documentado en la Tabla 1.
En la Tabla 1 se muestra que la funcién Ja tiene varios puntos donde la funcién costo toma el

valor 2,752908, para una representacion grafica consultar la Figura 2. En la segunda columna se
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muestran los parametros iniciales para la solucién numeérica del problema de optimizacion (4.6). En
la tercera columna los resultados de la convergencia y en la cuarta columna el valor de la funcién
de costo en el punto de convergencia. La comparacion de los perfiles observados, identificados y de
aproximacion inicial para dos casos de la Tabla 1 se muestran en la Figura 3. En los otros casos,

las representaciones graficas son similares.

Tabla 1: Resultados que muestran la no-unicidad del problema de identificacién para el caso de /3
y 7 no constantes (ver Figura 2).

Caso | €° e> Ja(e™>)

1 (1.E — 06,1) | (0,77964,0,25706) | 2,752908
2 (1.LE —06,2) | (1,34835,0,63480) | 2,752908
3 (1.E — 06,3) | (1,92203,1,01875) | 2,752908
4 (1.LE —06,4) | (2,36179,1,31490) | 2,752908
5 (1.E — 06,5) | (3,52866,2,10784) | 2,752908
6 (1.LE—06,6) | (2,5164,1,41940) | 2,752908

En términos generales, en el caso de funciones constantes 8 y -y no se tiene la unicidad debido a

que en la funcion de costo el término de regularizaciéon se anula.

Figura 2: Grafica de la funcién costo para el Ejemplo 1 presentado en el subseccion 4.1 considerando
e € (0,8]%. (a) Superficie mostrando varios minimos para Ja dada en (4.5). (b) curvas de nivel de
la funcion costo Ja. Para los valores numeéricos consultar la Tabla 1.

Tabla 2: Parametros observados y resultados de la identification en el caso del Ejemplo 2 y que
definen las funciones dadas en (4.9).

e Ja(e™) 18allri | lvallzie
" | (0,000, 80,0000, 50,0000, 0,0800, 80,0000, 50,0000) 0,0031 0,1109
e (0,0200, 71,0000, 41,0000, 0,0200, 71,0000, 41,000)
e (0,0763,79,7212,49,7254, 0,0925, 80,6862, 48,2397) | 1,8207E — 08 | 0,0030 0,1101
e'd (0,0200, 73,0000, 43,0000, 0,0200, 73,0000, 43,000)
e (0,0710, 73,0037, 43,0037, 0,0942, 73,0037, 43,0038) | 7,3171FE — 09 | 0,0031 0,1101
™ | (0,0200, 85,0000, 55,0000, 0,0200, 85,0000, 55,000)
e (0,0763,79,7212,49,7254,0,0925, 80,6862, 48,2397) | 1,8208E — 08 | 0,0030 0,1101
| (0,0200, 88,0000, 55,0000, 0,0200, 83,0000, 53,000)
e | (0,0789,79,7340, 49,7355, 0,004, 80,2810, 48,9074) | 1,1057E — 09 | 0,0031 0,1101
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Figura 3: Comparacion de los perfiles en tiempo 1" de la soluciones para Ejemplo 1 presentado en
el subseccion 4.1. (a)-(b) y (¢)-(d) son los perfiles para los casos 1 y 6 presentados en la Tabla 1.

Figura 4: Simulaciones con los datos del Ejemplo 2 presentado en la subseccion 4.2.
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4.2. Ejemplo 2: Funciones no constantes § y v

En este ejemplo, asumimos que las funciones 3,7 : © — (0,1) estan parametrizadas en términos

de e = (ey,...,e5) como sigue
B(x;e) = egsech(eqr —e3), y(x;e) = 0,09 — ey tanh(esz — ep). (4.9)

Los perfiles de observacién considerados son sintéticos y son construidos resolviendo las ecuaciones
de estado (1.1)-(1.5) con la condicion inicial para los susceptibles la funcion Sy definida en (4.7) y

la condicién inicial para los infectados dada por

Io(2) 0,4 — 0,3tanh(10z — 2,5), = € [0,1/4], (4.10)
olx) = .
0, en otro caso.

La solucion numérica es obtenida mediante aplicacion del esquema de diferencias finitas (4.1)—
(4.4); utilizando At = 1,0E — 7, Ax = 2,0F — 4 y los parametros dados en e°*® en la Tabla 2 (ver

Figura 4). Observamos que ||3(-;€°"%)||1(q) = 0,0031 y [y(:; €°")

|1 (@) = 0,1109. Luego, con el fin
de utilizar la hipotesis del Teorema 1.1 que permite lograr la unicidad, fijamos ¢ = (0,0031,0,1109)

y redefinimos la funcién costo como sigue

2 2

M M
Ia(Sas1a, Ba,va) = Ja(Sa, Ia, Ba,va) + | Az 1851 —0,0031 | + | Az |y —0,1109 | |
i=0 =0

donde JA(Sa,Ia,Ba,va) es la funcion definida en (4.5). El problema de optimizacion se resolvid
considerando M = 100 y N = 1000 y la funcién costo Ja. Se seleccionaron distintos valores e,
como estimacion inicial de los pardmetros, y se obtuvo que el algoritmo de optimizacién convergid
a distintos valores > para los parametros identificados, los cuales son reportados en la Tabla 2. En
esta tabla se reporta el valor de la funciéon costo en el punto de convergencia, de donde se observa que
el menor valor para la funcion de costo es el de la fila inferior, para el cual Ja(e>) = 1,1057E — 09.
Adicionalmente en las dos ultimas columnas de la derecha se reporta el valor de |[3(-;€%%)| 11 (q)
v v (s eObS)”Ll(Q), los cuales son aproximados a los valores fijados para c. La comparacion de los

perfiles observados e identificados y asi como los coeficientes § y v se muestran en la Figura 5.



386 A. Coronel, F. Huancas, E. Lozada & J. Torres CUBO

27, 2 (2025)

-— ™ - -e™
s o o ] | o o
08 08
=06 I’y 506
+ - < !
& @ ¢ Z ¢
@ 7, ~ = S0
N
04 ,O' \o\ 04 N
O e AN 9 ~
02 ’ S 02 AN
L - s 4 S
Soe
0 L L L L 0 L L ~O- 4 40
02 04 0.6 0.8 1 0 02 04 0.6 08
x x
(a) (b)

0.08

0.2

007+ 0.18

i 0.16
0.06 - | 4

0.14

| 1 0.12

\
1
1
1
1
—_ )
ON Vi
= v
1
1
1
0.06 |
'
!
!

0.2 0.4 0.8 1 0 0.2 04 0.6 0.8 1

Figura 5: Comparacion de los perfiles en tiempo T de la soluciones para Ejemplo 2 presentado en
el subseccion 4.2. Estas graficas son construidas con los valores de la Tabla 2.

En sintesis, en el caso de funciones no constantes 5 y v es esperable obtener la unicidad bajo las
consideraciones del Teorema 1.1. Asi mismo se observa que es esperable que se los resultados sigan
siendo validos bajo condiciones de menor regularidad de las condiciones iniciales. En efecto, para
las simulaciones numeéricas de este ejemplo se consideré una funcién discontinua como condicion

inicial para la poblacién de individuos infectados.
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1. Introducciéon

Consideremos un sistema diferencial polinomial auténomo en el plano real, esto es, un sistema de

ecuaciones diferenciales de la forma

dx d

o =P@w). T =Qy). ()

donde P(z,y) y Q(z,y) son polinomios en dos variables reales con coeficientes en R y donde ¢
es una variable independiente real, considerada usualmente como el tiempo. Recordemos que una

solucion del sistema diferencial (1) es una funcion
¢:(a,b) CR— R t+— ¢(t) = (2(1),y(t)),

que satisface (1) en todo (a,b), esto es,

G 000) = (G0, 50) = (P0). Q). vi< @b

En tal caso, a medida que ¢ varfa, ¢(t) = (2(t),y(t)) describe una curva en R? llamada drbita del
sistema diferencial (1). Esta 6rbita depende de la condicidn inicial ¢(0) = (z(0),y(0)) = (2o, o),
y al considerar todas las condiciones iniciales posibles se obtiene una coleccién de orbitas llamada

retrato fase del sistema diferencial.

Dentro de las posibles soluciones que un sistema diferencial puede tener, hay dos tipos especiales:
las soluciones constantes y las soluciones peridédicas. La érbita definida por una solucién constante
es una singularidad del sistema diferencial y la érbita definida por una solucién periddica es un
ciclo u orbita periddica del sistema diferencial, la cual es homeomorfa a la circunferencia unitaria
St == {22 + y* = 1} C R? Cualquier sistema diferencial (1) tiene solo tres tipos de érbitas:
singularidades, orbitas periodicas y orbitas homeomorfas al intervalo unitario (0,1) C R. Por
lo cual, la configuraciéon de todas las o6rbitas de un sistema diferencial determina una foliacién
(singular) de dimension uno en R? y el retrato fase del sistema diferencial es una descripcion

geométrico-topologica de tal foliacion.

Fue Henri Poincaré, en su trabajo seminal sobre la teoria cualitativa de ecuaciones diferenciales
[34-37], quien descubri6 la existencia de ciclos limite, un tipo especial de 6rbitas periodicas; ver §2
para mas detalles. Este tipo de 6rbitas llamaron poderosamente la atencion de Poincaré, por lo cual
desarrolld varias herramientas para su estudio, como la ahora llamada aplicacién de primer retorno
de Poincaré, el teorema de la region anular, el método de parametros pequenos, etc. Ademaés,
demostré que existen sistemas diferenciales (1) que pueden tener ciclos limite y que éstos tienen

un papel esencial en la determinacion del retrato fase del sistema diferencial.
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Después del trabajo de Poincaré, David Hilbert presento, en el Segundo Congreso Internacional de
Matematicos de 1900, una lista de 23 problemas que consideraba fundamentales para la investiga-
cion matematica del siglo XX; ver [18]. La segunda parte del problema 16 de la lista de problemas

de Hilbert plantea la siguiente pregunta:

(,Cual es el ntimero maximo y la posicién relativa de los ciclos limite que puede presentar un

sistema diferencial polinomial (1) de grado fijo?

De este modo, Hilbert anticipé que el estudio de los ciclos limite en sistemas diferenciales polino-
miales en el plano seria uno de los problemas mas trascendentales del siglo XX. No se equivocé:
aunque este problema sigue siendo uno de los méas desafiantes de su célebre lista y permanece
abierto incluso para sistemas diferenciales polinomiales de grado dos, su investigacion ha impulsa-
do el desarrollo de diversas areas fundamentales de la teoria moderna de ecuaciones diferenciales
y sistemas dindmicos, como la teoria de bifurcaciones, la teoria de formas normales y la teoria de

foliaciones, entre otras; ver [20].

El interés y la relevancia de la investigacion sobre los ciclos limite en sistemas diferenciales han
sido tan significativos que, en 1998, Steve Smale destacd este mismo problema, pero restringido
a los sistemas diferenciales polinomiales de Liénard, como uno de los problemas més desafiantes

para el siglo XXI; ver [45].

Por otra parte, muchos fenémenos de las ciencias aplicadas que son modelados por sistemas di-
ferenciales tienen movimientos periodicos, por lo cual la investigacion de las orbitas periddicas,
en general, y los ciclos limite, en particular, es esencial también desde el punto de vista aplicado.
Por ejemplo, en biologia, los ciclos limite pueden representar las fluctuaciones periédicas en po-
blaciones de animales, mientras que en ingenieria y fisica, describen comportamientos ciclicos en
sistemas mecanicos o eléctricos. Resolver la segunda parte del problema 16 de Hilbert proporcio-
narfa no solo una respuesta tedrica, sino también herramientas practicas para entender y predecir

el comportamiento de sistemas dinamicos en miultiples contextos cientificos.

En este trabajo, queremos destacar algunas contribuciones relevantes de matemaéticos que desa-
rrollan su investigacion en Chile a la teoria de ciclos limite y su relacion con la segunda parte del

problema 16 de Hilbert.

2. El concepto de ciclo limite

El primer ejemplo concreto de un sistema diferencial exhibiendo un ciclo limite fue dado por

Poincaré en [35, p. 278]. Usando nuestra notacion, tal sistema es

dx d
=@y’ = 1)~y +y* + 1), d—i’zy(w2+y2—1)+x(x2+y2+l)~
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Poincaré demostré que la circunferencia unitaria S' es un ciclo limite del sistema diferencial mos-
trando que todas las circunferencias centradas en el origen con radio positivo y diferente de 1 son
curvas sin contacto para el sistema diferencial, es decir, son curvas que son atravesadas transver-
salmente por las orbitas del sistema diferencial. Ademaés, el sistema tiene una tnica singularidad
en el origen. Con esto, Poincaré construyo el retrato fase del sistema diferencial mostrado en la
Figura 1 a). Notar que el retrato fase estd dado en lo que hoy llamamos disco de Poincaré, una
compactificacion de R? a través de la proyeccion central sobre la esfera de Poincaré; ver [32, §3.10].
Esto permite describir y entender el comportamiento de las 6rbitas del sistema diferencial cuando
las orbitas son no acotadas y “tienden a infinito". De esta manera, el interior del disco de Poincaré

se corresponde con el plano R? y su frontera representa los llamados “puntos al infinito".

a) b)

Figura 1: En a) primer ciclo limite de Poincaré [35, p. 279]. En b) comportamiento tipico de las
orbitas cercanas a un ciclo limite (en negrita); los puntos son condiciones iniciales.

De acuerdo con lo descrito por Poincaré, un ciclo limite es un ciclo del sistema diferencial que
es asintoticamente abordado, en tiempo pasado (¢ — —o0) o tiempo futuro (¢ — +00), por otras
orbitas del mismo sistema diferencial pero sin llegar a él; ver Figura 1 b). De forma més precisa, un
ciclo limite de un sistema diferencial es una orbita periddica del sistema que es topoldgicamente

aislada en el conjunto de todas las érbitas periddicas del sistema.

3. Segunda parte del problema 16 de Hilbert

El objetivo principal de la teoria cualitativa de ecuaciones diferenciales, introducida y desarrollada
por Poincaré, es describir los retratos fase de sistemas diferenciales auténomos. Para lograr este
objetivo en el caso planar, resulta fundamental determinar la configuracion de sus ciclos limite,
es decir, el nimero y la posicién relativa de los ciclos limite en cada sistema diferencial planar
autonomo. En [35], Poincaré demostré que un sistema diferencial (1) sin conexiones de silla tiene
solo un numero finito de ciclos limite. El problema més famoso relacionado con el estudio de
ciclos limite es la segunda parte del problema 16 de Hilbert, que se ha fragmentado en diferentes

subproblemas y actualmente se plantea de la siguiente manera.
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Segunda parte del problema 16 de Hilbert. Considere un sistema diferencial polinomial

arbitrario

dx dy

E:Pn(x’y)a E:Qn(xay% (2)

de grado n = méx{grado P,, grado @, }.

Parte A. Para cada n € N, jcada sistema diferencial (2) tiene un ntimero finito, H(P,, @), de

ciclos limite?
Parte B. Para cadan € N, jexiste H(n) € N, que dependa solo de n, tal que H(P,, @n) < H(n)?
Parte C. Para cada n € N, hallar el valor de H(n) (si existe).

Parte D. Para cada n € N, obtener todas las configuraciones posibles (topologicamente distintas)

de ciclos limite, al variar P, y @, en (2).

Si n =1, cualquier sistema diferencial de la forma (2) es lineal y no posee ciclos limite (resultado
elemental, ver [32, §1.5]). Asi, H(1) = 0. Paran > 2, la situacion se complica considerablemente. De
hecho, podemos afirmar que la investigacion sobre este problema ha tenido una historia dramética,

casi digna de una novela. A continuacién mencionaremos algunos de los eventos mas relevantes.

3.1. Hitos clave hasta 1980

En 1923, Henri Dulac afirm6 que la respuesta a la Parte A era afirmativa [11]. En 1952, Nicolai
Bautin demostroé la existencia de sistemas diferenciales cuadraticos (sistemas (2) de grado n = 2)
con tres ciclos limite [2] y a finales de la década de 1950, Ivan Petrovskil y Yevgueni Landis
afirmaron que H(2) = 3 [33]. Sin embargo, en la década de 1960 su afirmacion fue refutada [24], y en
1979 se construyeron ejemplos de sistemas diferenciales cuadraticos con cuatro ciclos limite [9,44].

Bajo este escenario, el avance en la soluciéon del problema sufrié un retroceso significativo.

3.2. Hitos clave entre 1980 y 1999

A principios de la década de 1980, Yulij Ilyashenko descubrié una falla en la prueba de Dulac
[19], ¥ en 1984 demostro que los sistemas diferenciales (2) con solo singularidades no degeneradas
tienen un namero finito de ciclos limite [22]. A principios de la década de 1990, tanto Ilyashenko
[23] como Jean Ecalle [14] afirmaron, de manera independiente, haber encontrado una prueba de
la afirmacién de Dulac para la Parte A. Pocos anos después de la publicacién de estos trabajos,
Smale escribia: “estos dos articulos atin no han sido completamente asimilados por la comunidad

matematica”. Hasta donde sabemos, esta afirmacion sigue siendo valida hasta el dia de hoy.

Con el fin de profundizar en la comprension de la dificultad del problema, en 1994, Fredy Dumortier,

Robert Roussarie y Christiane Rousseau plantearon un programa [12,13] para resolver la Parte B
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en el caso cuadratico. Sin embargo, a pesar de los esfuerzos realizados por investigadores tan
destacados como los mencionados arriba, la Parte B y la Parte C del problema permanecen abiertas,

incluso en el caso n = 2.

Debido a la complejidad inherente a la investigacion sobre ciclos limite, se han planteado varios
subproblemas. Un ejemplo de esto es la restricciéon de la segunda parte del problema 16 de Hilbert a
la familia de sistemas de Liénard, propuesta por Smale. Otro subproblema de gran relevancia es la
version “tangencial” o “infinitesimal” de la segunda parte del problema 16 de Hilbert, que se refiere
al estudio de la bifurcacion de ciclos limite bajo perturbaciones de un sistema integrable que tiene
un conjunto foliado por érbitas periddicas. Ademas, en las dltimas décadas, se ha desarrollado el
estudio de ciclos limite en diversas familias especiales de sistemas diferenciales polinomiales, como

las de Kukles, Kolmogoérov y otras; ver siguiente secciéon para mas detalles.

4. Versiones de la segunda parte del problema 16 de Hilbert

4.1. Sistemas Hamiltonianos perturbados

Supongamos que H: R?> — R es un polinomio real de grado m + 1. Consideremos el sistema

Hamiltoniano planar

I:Hy(l'7y), yszm(xay)v (30)

donde H,(z,y) := %H(m, y)y Hy(z,y) := 8%H(:c, y), el cual es un sistema diferencial polinomial
de grado m. Una idea clasica, debida a Poincaré y que fue continuada por L. Pontryagin, A.

Andronov, Ilyashenko, V. Melnikov, etc., es estudiar el sistema Hamiltoniano perturbado:
&= Hy(z,y) +eB(x,y;6),  §=—Halz,y) — Az, y;¢), (3¢)

donde A(zx,y;€) y B(x,y;¢€) son polinomios de grado n en las variables x e y, cuyos coeficientes son
funciones analiticas en €, un parametro real que pertenece a una vecindad del 0 suficientemente
pequena: € € (R,0). Aqui el problema central es saber qué tan diferente es el retrato de fase del
sistema perturbado (3.), para € # 0, en comparacion con el retrato fase del sistema no perturbado
(30), el cual se entiende completamente pues de la teoria clasica de Ecuaciones Diferenciales Or-
dinarias sabemos que las orbitas de este sistema Hamiltoniano estan contenidas en las curvas de

nivel, H=1(c), de la funcion H, la cual recibe el nombre de Hamiltoniano asociado al sistema.
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El interés en estos sistemas dentro del contexto de ciclos limite radica en la siguiente idea: suponga-
mos que la foliacién definida en R? por las érbitas de (3) posee una familia de ciclos 7. C H~!(c),
que depende continuamente del parametro ¢ variando en algan intervalo (a,b). Entonces bajo la
perturbacion, a veces, algunos de estos ciclos no se rompen mientras que todos sus ciclos vecinos
si lo hacen. Este tipo de ciclos que persisten bajo la perturbaciéon dan origen a ciclos limite del
sistema perturbado (3.), con € # 0, y representan una clase de las 6rbitas que méas interesan en
el estudio de sistemas Hamiltonianos perturbados. Esta propiedad establece una conexiéon entre la
segunda parte del problema 16 de Hilbert y el estudio de los ciclos limite de (3;). De esta manera,

obtenemos el siguiente problema

Version infinitesimal de la segunda parte del problema 16 de Hilbert. Hallar la cota
superior H(m,n), que dependa tnicamente de m y n, para el nimero de ciclos limite del sistema

perturbado (3;), con € # 0, que pueden generarse a partir de ciclos de (3p) bajo la perturbacion.

De hecho, esta conexion es muy importante ya que los sistemas diferenciales (3.) son mas mane-
jables y han dado excelente informacién sobre el problema general. Por ejemplo, han permitido

obtener cotas inferiores para H(n) y posibles configuraciones de ciclos limite; ver 10, 21].

4.2. Sistemas de Liénard
Un sistema de Liénard polinomial (generalizado) es un sistema diferencial planar de la forma
&=y — Fy(z), y=—2— gn(z), (4)

donde F,,(z) y gm(x) son polinomios de grados n y m, respectivamente, tal que n > 2y F,(0) = 0.
Si g (z) = 0, entonces (4) es un sistema de Liénard polinomial cldsico. La pregunta principal sobre
estos sistemas es:

jcuél es el ntimero maximo, Hric(n, m), de ciclos limite de (4)?

La version de la segunda parte del problema 16 de Hilbert que plante6 Smale respecto de los

sistemas de Liénard, en su lista de problemas para el siglo XXI, consiste en hallar Hp.(n,0).

4.3. Sistemas de Kukles

Un sistema de Kukles es un sistema diferencial polinomial planar de la forma

T = -y, y= Qn(xay)a (5)

donde @, (z,y) es un polinomio real de grado n > 2 y tal que y no lo divide.
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El estudio de los ciclos limite en esta familia ha sido abordado por varios autores en las tltimas tres
décadas, convirtiéndola en una familia relevante dentro de los sistemas diferenciales polinomiales

planares. La principal pregunta sobre estos sistemas es:

jcual es el nimero maximo, Hguk(n), de ciclos limite de (5)?

4.4. Sistemas de Kolmogoérov

Un sistema de Kolmogdrov polinomial planar es un sistema diferencial de la forma

j):$Pn—1(~ray)7 y:an—1($7y), (6)

donde P,_1(z,y) vy Qn—1(x,y) son polinomios reales de grado n — 1, con n > 2.

Al igual que en las familias anteriores, la pregunta principal es:

icuél es el niimero maximo, Hkoi(n), de ciclos limite de (6)?

5. Contribuciones desde Chile

A pesar de los desafios que presenta la resolucion de la segunda parte del problema 16 de Hilbert,
investigadores de universidades chilenas han realizado contribuciones valiosas que han enriquecido
el estudio de este complejo problema. Estos avances, fruto de un esfuerzo colectivo y continuo,
han permitido ampliar la comprensiéon de los ciclos limite en sistemas diferenciales polinomiales.

A continuacion, se destacan algunos de los logros mas relevantes en este ambito.

5.1. Aportes entre 1980 y 1999

Con la aparicién, en 1979-80, de ejemplos de sistemas cuadraticos con cuatro ciclos limite, se reforzo
aun maés la sospecha de que la demostracion de Dulac de 1923, que afirmaba la finitud del nimero

de ciclos limite, era incorrecta.

Por esas fechas, Rodrigo Bamoén partié de la Universidad de Chile para continuar su doctorado en el
Instituto de Mateméatica Pura e Aplicada (IMPA) en Brasil, bajo la direccién de Jorge Sotomayor,

I consideraba errénea la prueba de Dulac. Bamén se sintio

quien, segtn las palabras de Bamoén
atraido (nunca mejor dicho) por los ciclos limite y, hacia su tercer ano de doctorado, decidid
intentar ofrecer una nueva demostracion de la finitud de los ciclos limite en sistemas diferenciales

cuadraticos. Cabe destacar que, para entonces, ya se reconocia ampliamente que la prueba de Dulac

1Un especial agradecimiento a Rodrigo Bamén por la enriquecedora conversacién en la que compartié su valiosa
experiencia y perspectiva del problema en esa época.
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no estaba completa, aunque el error evidente en su demostracion, identificado por Ilyashenko, no

fue publicado hasta 1985.

El problema de la finitud del ntimero de ciclos limite en sistemas diferenciales en el plano real se
reduce a probar la no acumulacion de ciclos limite en los llamados ciclos singulares (acotados y no

acotados). A esto se le paso a llamar el Problema de Dulac.

Bamoén cuenta que clasificé todos los ciclos singulares de sistemas diferenciales cuadraticos en el
plano y prob6 que todos ellos, salvo dos, no podian ser acumulados por ciclos limite. Esto fue su tesis
doctoral (1983). Para uno de estos ciclos singulares sabfa como probar que no era acumulado por
ciclos limite, sin embargo, no lo incluyo en su tesis. Para el otro ciclo singular (hiperbolico acotado)
no tenia idea de como probar que no era acumulado por ciclos limite, hasta que en el verano de
1985, en el IMPA, escuch6 una charla de Robert Moussu sobre un reciente trabajo de Ilyashenko
donde mostraba que todo ciclo singular hiperboélico, de cualquier sistema diferencial polinomial
en el plano, no podia ser acumulado por ciclos limite [22]. Bamoén se dio cuenta que usando este
resultado de Ilyashenko y su propia tesis resolvia el Problema de Dulac para sistemas diferenciales
cuadraticos, en otras palabras, completaba la prueba de la finitud del nimero de ciclos limite para
sistemas diferenciales cuadraticos. Bamoén conté con el apoyo del IMPA para que concluyera su
trabajo y para publicarlo en 1986 en la prestigiosa revista Publications Mathématiques de I'THES.

Rodrigo Bamén mostraba al mundo su aporte a la segunda parte del problema 16 de Hilbert:

Teorema 5.1 (Bamén [1]). Cada sistema diferencial cuadrdtico en R? tiene un nimero finito de

ciclos limite.

Moussu conoci6 el resultado de Bamoén durante su estancia en el IMPA y cuando regreso6 a Francia
expuso en el prestigioso Seminaire Bourbaki sobre “Le Probléme de la finitude du nombre de cycles
limites [d’aprés R. Bamoén et Yu. S. Il’yasenko|”. Este hecho reflejé el considerable interés que el

resultado de Bamoén suscité en su momento.

Con sus resultados, Bamoén gener6 un creciente interés por los ciclos limite entre diversos inves-
tigadores en sistemas dinamicos, tanto en Santiago como en otras regiones. Asi, a finales de la
década de 1980 y a principios de la década de 1990, se publicaron varios trabajos sobre ciclos li-
mite de sistemas diferenciales polinomiales planares. Sin pretender ser exhaustivos, a continuaciéon

se mencionaran algunos de estos estudios.

Myrna Wallace, de la Universidad de Concepcién, Jorge Billeke, de la Universidad de Santiago de
Chile, y Hernan Burgos, de la Universidad de la Frontera, realizaron una serie de trabajos sobre
sistemas de Liénard polinomiales, tanto clasicos como generalizados [3-6]. Uno de esos trabajos
trata sobre sistemas de Liénard clasicos perturbados, es decir, sistemas de la forma (3.) que son

de Liénard. Concretamente, en [5] (1992), consideran el sistema de Liénard perturbado:

=y —elmz + az® + azx® + asx* + asz®), Y= —ux. (7¢)
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Aqui, el Hamiltoniano asociado al sistema no perturbado es H(z,y) = (22 +y?)/2 y al sistema no

perturbado (7p), se le conoce como el centro lineal o el oscilador armdénico.

Sistemas de Liénard polinomiales de grado arbitrario, provenientes de perturbaciones del centro
lineal, ya habian sido estudiados en 1977 por Alcides Lins-Neto, Welington de Melo y Charles C.
Pugh [25]. Sus resultados prueban que existen sistemas (7.) con dos ciclos limite. Wallace, Billeke
y Burgos realizaron un estudio detallado en el disco de Poincaré de (7:) y uno de sus resultados

principales en [5] se puede enunciar como:

Teorema 5.2. Cada sistema de Liénard (7.) tiene a lo mds dos ciclos limite.

Con este resultado se completaba el estudio del nimero maximo de ciclos limite para sistemas de

Liénard polinomiales perturbados de grado cinco.

Por aquella misma época, Ana Maria Urbina, Mario y Guillermo Leon de la Barra asi como Moisés
Canas, todos ellos de la Universidad Técnica Federico Santa Maria de Valparaiso, realizaron varios
trabajos en sistemas diferenciales polinomiales planares. En particular, entre 1991 y 1992 estudiaron

los sistemas de Liénard generalizados

b=y — (ama™ + - +anz™), g = -zt (8)
donde m > 2 y N > m, y también el sistema de Liénard perturbado

i =2y —e(agx® + - +ayz?), g = —4a3, (9¢)

cuyo Hamiltoniano asociado al sistema no perturbado es H(z,y) = y? + x*.

El sistema (8) fue estudiado en [47] y represent6 una generalizacion del trabajo de Lins-Neto, de
Melo y Pugh, de 1977. El sistema (9.) se estudio en [46], usando el enfoque de integrales Abelianas,
ver siguiente subseccion y [10]. Los resultados principales de cada uno de estos trabajos los podemos

enunciar de la siguiente forma:

Teorema 5.3. Supongamos s € N.

» Sin=2s, y N>2s+3, entonces Hpie(N,2s) > [%] — 5.

» Sin=2s—1yN >2s+1, entonces Hre(N,2s — 1) > [%} — 8.

N—-1

5 } — 1 ciclos limite.

Teorema 5.4. Euisten sistemas (9:) con al menos |

Victor Guinez, de la Universidad de Chile, Eduardo Saez e Ivan Széntd, de la Universidad Técnica
Federico Santa Maria de Valparaiso, trabajaron sobre bifurcacion de ciclos limite de sistemas
diferenciales polinomiales. En particular, en 1990 estudiaron el nimero méaximo, S(n), de puntos

singulares aislados contenidos en la region acotada determinada por un ciclo limite de un sistema
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diferencial polinomial planar de grado n. Uno de sus resultados principales en [17] se puede enunciar

Ccomao:

Teorema 5.5. Eziste un sistema diferencial polinomial planar de grado 2k+1, tal que S(2k+1) =
(2k +1)2.

La prueba de este resultado se basa en la construccion de un sistema Hamiltoniano perturbado que
es polinomial. Siguiendo la misma idea, en 1993 estudian posibles configuraciones de ciclos limite

del sistema diferencial cibico perturbado
i=—y—2cy® +ax’y +y’ fexyly —4), =2+ 2dz® — 2> — bay® + exy(x — 4), (10.)

y uno de sus principales resultados en [16] lo podemos enunciar de la siguiente manera:

Teorema 5.6. Existena >b > 1, ¢, d,e € (R,0) tal que el sistema (10.) tiene una de las siguientes

configuraciones de ciclos limite en el disco de Poincaré.

©_0O O O

OQOO O
© O©O O O

Este resultado es una contribucién a la Parte D de la segunda parte del problema 16 de Hilbert.
El primer resultado general relativo a esta parte aparecié en [27], donde proporcionan una cota
sobre el grado del sistema diferencial polinomial que puede realizar una configuracion de ciclos
limite. De acuerdo con [27] las tres configuraciones del teorema anterior pueden ser realizadas
por un sistema diferencial polinomial de grado a lo méas 15, 23 y 19, respectivamente. El teorema
anterior proporciona sistemas diferenciales polinomiales del grado minimo posible que realizan esas

configuraciones, por ello es un resultado relevante, sin embargo, no fue citado en [27].

En la segunda parte de la década de 1990, Saez y Szanto, realizaron algunos estudios sobre siste-
mas de Kolmogorov polinomiales planares [28,41]. En particular, uno de sus resultados en [28] lo

podemos enunciar como sigue.

Teorema 5.7. Hgo1(3) > 4.

5.2. Aportes entre 2000 y 2009

Con la publicaciéon de los resultados de Ecalle e Ilyashenko sobre la finitud del ntmero de ciclos

limite de cualquier sistema diferencial polinomial de grado n, surgié una gran efervescencia mundial
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en torno al estudio de los ciclos limite. El interés de Saez y Szanté por estos objetos no solo
se mantuvo, sino que también se ampli6 con la incorporaciéon de colaboradores internacionales.
En la década de 2000, publicaron més de quince trabajos sobre ciclos limite y curvas algebraicas
invariantes de sistemas diferenciales. Recordamos que una curva algebraica invariante de un sistema
diferencial es una curva en R? definida por los ceros de un polinomio real f(z,y) que esta formada
por orbitas del sistema diferencial. Aqui recordamos solo algunos resultados destacados de cuatro

de esos trabajos. En 2002 publicaron [29], cuyo resultado principal lo podemos enunciar como:

Teorema 5.8. Hkq(3) > 6.

Este fue su dltimo resultado sobre sistemas de Kolmogoérov. Después, trabajaron en sistemas pro-
venientes de modelos de caracter aplicado y en sistemas de Kukles. En este tltimo tema publicaron

varios articulos [7,8,26]. En 2008, consideraron el sistema de Kukles de grado cinco:

T = —-Y, y: —a—l—bx—l—qg(x,y)f(x,y), (11)

donde b = 1+ 2a, f(x,y) = a — 2ax + bx? + y?, cuyos ceros definen una elipse invariante, y
@3(2,y) = 1+ y+b3ox>® +b112y +bo1 2%y +b1a2y® +bos3y>. El resultado principal de su investigacion,

publicado en [42], lo podemos enunciar de la siguiente manera:

Teorema 5.9. En el espacio de pardmetros del sistema diferencial existe un conjunto abierto
tal que (11) tiene al menos seis ciclos limite, uno de ellos es un ciclo limite (algebraico), que

corresponde a la elipse invariante.

Guinez, Wallace y Billeke, por otro lado, practicamente abandonaron el estudio de ciclos limite a
partir del 2000. No obstante, su trabajo inspiré a varios estudiantes a continuar sus estudios de
doctorado en temas relacionados con la segunda parte del problema 16 de Hilbert. Marco Uribe
Santibanez fue uno de estos estudiantes. Realiz6 su doctorado en la Université de Bourgogne,
Francia, el cual concluyd en 2006 bajo la direccion de Pavao Mardesi¢. A su regreso a Chile,
desde la Universidad de Catolica de la Santisima Concepcion, ha centrado su trabajo en temas
relacionados con los ciclos limite. Sus principales contribuciones han sido en el d&mbito de los
sistemas Hamiltonianos perturbados. Para poder expresarlas de manera adecuada, es necesario

introducir algunos conceptos adicionales.

Recordemos que, en un sistema Hamiltoniano perturbado, el objetivo es estudiar los ciclos limite
que se originan a partir de los ciclos del sistema no perturbado. Una herramienta comin para
controlar estos ciclos limite es la funcion de desplazamiento asociada a (3:) y la familia {7.}: una

funciéon analitica que tiene la forma

L(g,c) = eLi(c) + €2 La(c) +e®La(c) +--- .
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El coeficiente L;(c) es la funcion de Poincaré—Pontryagin—Melnikov (PPM) de i-ésimo orden. Los
ciclos limite de (3.), € # 0, que bifurcan de los ciclos de (3p) se estudian a través de la ceros de la
primera funcion de PPM que no se anula Lg(c), con k > 1. De hecho, el ntimero méaximo de ceros
aislados, contando multiplicidades, de L (c) es una cota superior para el nimero de ciclos limite
de (3;), € # 0, que bifurcan de los ciclos {7.} de (3¢); ademas, el nimero de ceros distintos de

Ly (c) puede proporcionar una cota inferior para el ntimero de estos ciclos limite.

Por conveniencia, el sistema diferencial (3.) lo escribimos en su version Pffafiana, esto es, como la
ecuacion diferencial perturbada

dH + cw =0,

con w = A(x,y;¢e)dx + B(x,y;¢) dy (una 1-forma diferencial polinomial). Se sabe que L;(c) esta

dada siempre por una integral Abeliana, i.e., la integral de una 1-forma racional sobre una curva

Li(c) = _/ w.

c

algebraica, mas precisamente

Si se calcula Ly (c) y no es idénticamente cero, entonces se conocera el nimero maximo de ciclos
limite que bifurcan de los ciclos {v.}. Si Li(c) = 0, entonces las funciones de PPM de orden
2,3, ... deben estudiarse hasta encontrar la primera que no se anula o concluir que el sistema no
tiene ciclos limite. Si H(z,y) = (z2 + y?)/2, entonces Ly (c) siempre se puede calcular por una

integral Abeliana, esto fue demostrado en 1996 por Frangoise [15].

En 2006, Uribe estudi6 la ecuacion Hamiltoniana perturbada
dH +ew =0, (12,)

donde H(z,y) = z(y*> — (x — 3)?), € € (R,0) y w una 1-forma diferencial polinomial. Este sistema
Hamiltoniano tiene tres rectas invariantes, H~'(0), que forman un triangulo, cuyo interior esta

foliado por ciclos. Uribe probé en [48] el siguiente resultado.

Teorema 5.10. La primera funcidn de PPM no nula asociada al sistema (12¢) y a la familia

de ciclos {7.}, que folian el interior del tridngulo, pertenece al mdédulo C[t,1/t] generado por las

. —xz+3
I(c) ;:/ ydr, Ir(c) ::/ *ydw, I*(c) ::/ lnfﬂd<1ngy/+w_3>~

c c c

integrales

Este fue uno de los primeros ejemplos de sistemas diferenciales cuadraticos perturbados, para los
cuales sera dificil resolver la version infinitesimal del problema 16 de Hilbert, debido a que I*(c)
no es una integral Abeliana. En 2009, Uribe generaliz6 este resultado para sistemas de la forma

(12.), con H(z,y) el producto de d + 1 rectas [49].
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5.3. Aportes entre 2010 y 2019

Dado lo reciente de este periodo y la facilidad con la que se pueden acceder a las publicaciones, no
detallaremos resultados especificos como en los casos anteriores. Nos limitaremos a proporcionar
una descripcion general del contenido de dichas publicaciones y su relacion con los temas discutidos

en las secciones previas.

Saez y Szanto continuaron su interés por los ciclos limite de sistemas de Kukles. En 2012, conside-
raron sistemas de Kukles perturbados y obtuvieron cotas inferiores para el numero de ciclos limite

de tales sistemas [43].

Por otro lado, Mariana Saavedra fue otra de las personas inspiradas por el grupo chileno de
sistemas dindmicos. Estudié su doctorado en la Université de Bourgogne, Francia, el cual concluy6
en 1995 bajo la direccién de Moussu. A su regreso a la Universidad de Concepcion orientd su
investigacion principalmente en las propiedades del desarrollo asintético de la aplicaciéon de primer
tiempo de retorno y de la funcion de periodo para ciclos singulares. Estos temas, aunque analogos
y relacionados con el problema de Dulac, se desarrollaron sin considerar explicitamente las posibles

implicancias sobre los ciclos limite. Sus resultados fueron publicados en [38-40].

En 2012, Saavedra, Wallace y Uribe, en colaboracion con Mardesi¢, estudiaron las perturbaciones
cuadraticas del tridngulo Hamiltoniano [30] y determinaron el desarrollo de la funcion desplaza-
miento del sistema perturbado, lo cual es util para establecer cotas superiores para el nimero
de ciclos limite de estos sistemas. Posteriormente, Saavedra, Uribe y MardeSi¢ extendieron estos

resultados para perturbaciones de sistemas Hamiltonianos méas generales [31].

6. Desafios en la segunda parte del problema 16 de Hilbert

Como mencionamos en la introduccion, el objetivo principal de este trabajo es destacar algunos de
los aportes relevantes realizados desde Chile a la segunda parte del problema 16 de Hilbert, tarea
que hemos llevado a cabo en la seccion anterior. Sin embargo, un segundo objetivo, que también
constituye la motivacién inicial para la elaboracion de este articulo, es reflexionar sobre uno de los
progresos mas recientes en torno a la cuestion de la finitud del namero de ciclos limite en sistemas

diferenciales polinomiales. La noticia en cuestion es la siguiente.

Recientemente, Melvin Yeung ha encontrado un contraejemplo [50] a uno de los
argumentos utilizados por Ilyashenko para demostrar que todo sistema diferencial

polinomial posee un ntmero finito de ciclos limite.

Yeung presentd su construccion en diversos centros especializados en el tema, sin que se haya iden-
tificado error alguno en sus argumentos. Esto significa que la prueba de Ilyashenko esta incompleta.

Esta hallazgo abre una amplia gama de desafios y nuevas perspectivas en el estudio de ciclos limite.
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Recordemos que, a inicios de la década de 1990, se publicaron dos pruebas distintas sobre la finitud
del naimero de ciclos limite. La prueba propuesta por Ecalle podria ser correcta; sin embargo, como
senal6 Smale, esta no ha sido comprendida completamente en més de treinta anos. En este contexto,

parece natural plantear los siguientes desafios:

= Obtener una nueva prueba de la finitud del nimero maximo de ciclos limite en sistemas

diferenciales polinomiales en el plano.

s Desarrollar una demostracion de dicha finitud utilizando métodos o herramientas suficiente-
mente generales y adaptables para abordar también las tres primeras partes del problema 16

de Hilbert.

= Determinar el sistema diferencial polinomial de grado mas pequeno que realice como ciclos

limite una configuracion dada de curvas cerradas aisladas en el plano (salvo homeomorfismos).

7. Conclusion

A lo largo de este trabajo hemos revisado algunos de los aportes significativos realizados desde
Chile al estudio de los ciclos limite, con especial énfasis en su relacién con la segunda parte del pro-
blema 16 de Hilbert. Estos avances han sido posibles gracias a la labor de destacados matematicos
chilenos, quienes, a través de sus investigaciones y de los vinculos establecidos con investigadores

internacionales, han dejado un legado que continiia inspirando a nuevas generaciones.

Ademaés, hemos discutido los principales desafios actuales en torno a la segunda parte del problema
16 de Hilbert, destacando como la reciente identificacién de posibles debilidades en la prueba de
Ilyashenko reaviva el interés en este problema clasico, abriendo nuevas lineas de investigaciéon y

renovando la relevancia de métodos més generales que puedan abordar otras partes del problema.

El estudio de ciclos limite sigue siendo un campo fértil y desafiante, cuya resoluciéon no solo enrique-
ceré la teoria matemaética, sino que también impulsara avances en areas relacionadas. El panorama
actual, aunque complejo, invita a las nuevas generaciones de mateméaticos a seguir explorando,

construyendo sobre los logros previos y enfrentando con creatividad los retos atn abiertos.
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1. Introduccién

El concepto moderno de homeomorfismo hace referencia a una funcién entre dos espacios topologi-
cos X — Y que es continua, invertible y cuya inversa es continua. Dicho concepto fue reformulado
a lo largo de la historia para representar lo que significa hoy en dia. Después de los avances de
M. Fréchet y F. Hausdorff, finalmente W. Sierpinski en 1928 y K. Kuratowski en 1934 realizaron
importantes escritos de topologia donde el término homeomorfismo ya tenia el significado moderno.
La palabra “homeomorfismo” la introdujo H. Poincaré en 1895 y originalmente hacia referencia a
un difeomorfismo entre variedades diferenciables. Pronto H. Poincaré observo que los difeomorfis-
mos forman un grupo interesante por si mismo; con visiéon de gran alcance, se atrevié a afirmar
que la ciencia cuyo objetivo es el estudio de este grupo, asi como otros grupos anélogos, recibi-
ria el nombre de analysis situs, hoy topologia. El desarrollo de las matematicas ha confirmado el
sentimiento de H. Poincaré; el estudio de objetos como el grupo de homeomorfismos, el grupo de
difeomorfismos y el grupo modular de superficies, asi como todas sus variantes, forman parte de
la columna vertebral de las mateméticas. Para una revisiéon histérica de la evolucién del concepto

de homeomorfismo, recomendamos ampliamente la lectura de G. H. Moore [27].

Una de las motivaciones para estudiar el grupo de homeomorfismos o difeomorfismos de una varie-
dad proviene de los sistemas dinamicos, en donde clasicamente se estudian las transformaciones de
un conjunto de puntos en una variedad bajo iteraciones de un difeomorfismo, es decir, se estudia el
comportamiento de un subgrupo ciclico del grupo de difeomorfismos de la variedad. En los tltimos
cincuenta anos se ha adoptado el objetivo de no s6lo estudiar subgrupos ciclicos de difeomorfismos
u homeomorfismos, sino de subgrupos finitamente generados de ellos. Lo que se busca con esto es
explicar la influencia algebraica en la dinamica que realiza la accién del grupo sobre la variedad
y de ser posible construir relaciones entre propiedades algebraicas como nilpotencia, torsion, etc.,
con propiedades dindmicas como la entropia, puntos fijos, etc. Sin embargo, el estudio del grupo
de homeomorfismos o difeomorfismos de una variedad no se limita a sistemas din&dmicos; estos
grupos forman parte importante en la clasificacion de haces fibrados en Topologia Algebraica [35].
Asi mismo, el tema de estudiar la continuidad automdtica (tema propio de la Teoria Descriptiva
de Conjuntos) de estos grupos ha derivado en importantes resultados de rigidez. Mas motivacio-
nes para estudiar el grupo de homeomorfismos de variedades se puede consultar en el interesante

articulo de K. Mann [24].

En general, estudiar el grupo de homeomorfismos no es sencillo, sobre todo porque a pesar de ser
un grupo topolégico con buenas propiedades topologicas y algebraicas, es un grupo no numerable
y 1no es localmente compacto. Surge asi la necesidad de estudiar al Grupo Modular (conocido por
mapping class group en la literatura inglesa), Mod(M), de una variedad M, el cual se define como
el cociente Homeo(M)/Homeog (M ), donde Homeog (M) denota a la componente arcoconexa de la

identidad. El estudio del Grupo Modular de variedades esta motivada por su profunda conexion
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con la clasificacion de clases de haces fibrados, véase [29]. En otras situaciones resulta que el Grupo
Modular es mas sencillo de estudiar que el grupo de homeomorfismos en si. El ejemplo tipico de esto
son los grupos modulares de superficies de tipo finito!, los cuales son grupos finitamente generados.
La historia de los grupos modulares de superficies se remonta a comienzos del siglo XX y su conexion
con diversas areas de las matematicas (en la clasificacion de 3-variedades, en Teorfa de Teichmiiller,
en Geometria Algebraica, en la Teoria Geométrica de Grupos, por mencionar algunas), ha quedado

confirmada en toda una vasta literatura; por ejemplo, el lector puede consultar las referencias [9,17].

Recientemente se ha iniciado el desarrollo sistemético de los grupos modulares de superficies de
tipo infinito. A diferencia del caso de superficies de tipo finito, estos son grupos que ya no son
finitamente generados. Recomendamos revisar [1| para una exposicion amplia del desarrollo de la
teoria de grupos modulares en superficies de tipo infinito. El rapido desarrollo de la teoria de estos
grupos en los tltimos 15 anos justifica la necesidad de tener escritos accesibles a toda la comunidad

hispanohablante que trate el tema de grupos modulares de superficies.

Con el objetivo de producir un texto autocontenido en la medida de lo posible, en este escrito
recopilamos algunas de las propiedades topologicas y/o geométricas mas basicas del grupo de
homeomorfismos de una superficie topologica, asi como del respectivo grupo modular. De ese
modo, esperamos que un lector que no haya tenido un acercamiento a dichos grupos encuentre en
nuestro escrito una introducciéon amena. La novedad de este trabajo es su enfoque unificado, ya
que nuestro tratamiento de los temas incluye a todas las superficies topologicas; compactas o no
compactas, orientables o no orientables, con frontera compacta o con frontera no compacta. Los
autores esperan que ésta sea una lectura agradable, y que en el mejor de los casos, sea de alguna

utilidad para el lector.

1.1. Estructura del texto

En la Seccién 2 presentamos a las superficies, definimos la frontera de una superficie y la nocién
de orientabilidad. A pesar de ser fundamental en el estudio de superficies, no detallaremos en la
clasificacién de superficies. Sin embargo, en esta misma seccién comentamos la bibliografia a la

que se puede acudir.

En la Seccion 3 introducimos la nocién de homeomorfismo de una superficie ¥ en si misma. Exhi-
biremos ejemplos de las estructuras de la superficie que son transformadas por la accién de un
homeomorfismo. Probaremos que con la operacién composiciéon y la topologia compacto-abierta,
el grupo de homeomorfismos Homeo(X) es un grupo topologico Hausdorff y segundo numerable.
Utilizaremos herramientas de Teoria Descriptiva de Conjuntos para probar que Homeo(X) tiene

una meétrica compatible invariante por la operacion del grupo. Definiremos de manera explicita una

1Una superficie es de tipo finito si tiene grupo fundamental finitamente generado. En otro caso se dice que la
superficie es de tipo infinito.
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métrica (una para superficies compactas y otra para superficies no compactas) completa y compa-
tible con la topologia compacto-abierta. La existencia de dicha métrica concluye que Homeo(X) es

un grupo polaco.

En la Seccion 4 definimos una relacion de equivalencia en Homeo(X), llamada isotopia. Veremos
que dicha relacion esté estrechamente relacionada con la componente arcoconexa de la identidad (el
cual es un subgrupo normal del grupo de homeomorfismos): dos homeomorfismos f, g € Homeo(X)
son isotdpicos si, y solo si estan en la misma componente conexa por trayectorias. El grupo cociente
es conocido como Grupo Modular Extendido y sera denotado por Modi(Z). Demostraremos que
Modi(E) hereda propiedades topoldgicas de Homeo(X), como el hecho de ser Hausdorff y segundo
numerable, y que por lo tanto, es también metrizable. Explicaremos un panorama que utiliza
resultados importantes de Teoria Descriptiva de Conjuntos para demostrar que la metrizabilidad
en Modi(E) es suficiente para que sea un grupo polaco. Al final de la Secciéon 4 introducimos el
grafo de curvas de una superficie orientable de tipo infinito con frontera vacia, y discutimos una
forma alternativa de demostrar que el Grupo Modular Extendido es polaco; esto se obtiene como
consecuencia de ver a Modi(E) como el grupo de automorfismos del grafo de curvas. A pesar
de que nuestra intencién es producir un texto autocontenido, en esta secciéon es deseado que el
lector tenga una comprension basica del concepto de homotopia y principios basicos del grupo
fundamental. Dichos conceptos son utilizados en la Secciéon 4.5. Sin embargo, el resto de la Seccion

4 no pide dichos prerrequisitos de manera imperativa.

1.2. Recomendaciones bibliograficas

Ponemos a disposicion del lector referencias clasicas para el estudio de los grupos de transfor-
maciones en superficies. A primer on Mapping Class Groups [9] es una guia autocontenida de
teoremas, ejemplos y técnicas utilizadas en el estudio del Grupo Modular de una superficie de tipo
finito. Office hours with a geometric group theorist [5] es una muy buena guia que puede servir a
estudiantes de licenciatura en un primer acercamiento a Grupos Modulares de superficies de tipo
finito asi como a la Teoria Geométrica de Grupos. Presentando al toro y sus simetrias [18] es un
escrito en donde se detalla el calculo del Grupo Modular del toro. Big Mapping Class Groups: An
Overview [1] es un sumario de resultados topologicos asociados al grupo modular de superficies de
tipo infinito. Notes on the Topology of Mapping Class Groups [37] es una referencia para localizar
resultados relevantes relacionando las técnicas de Teoria Descriptiva de Conjuntos con el grupo
modular, particularmente de superficies de tipo infinito. La lectura Superficies Topoldgicas y sus
simetrias: una introduccion a grupos modulares de superficies de tipo finito e infinito [6] es una
introduccién accesible a grupos modulares de superficies de tipo finito e infinito, incluidas las su-
perficies no orientables; en particular, en este texto el lector puede comenzar a informarse sobre los

invariantes que clasifican a las superficies topologicas, incluidas las no compactas. Para consultas
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de propiedades de grupos topologicos recomendamos Beginner’s Course in Topology [10]. Una guia
de la Teoria Descriptiva de Conjuntos que recomendamos es Classical Descriptive Set Theory [19].
Por ultimo, un texto introductorio al estudio de haces fibrados es Fiber bundles and homotopy

[36].

2. Superficies

Probablemente el ejemplo principal de una superficie es la grafica de una funciéon continua f :
U — R definida en un subconjunto abierto conexo U C R?; recordemos que la grafica de f es el

subespacio de R? dado por

L(f) = {(z,y, f(,y)) €R®: (x,y) €U}

Las superficies son espacios topolégicos especiales, que modelan “mundos posibles”. Por ejemplo la
grafica de la funcion f(z,y) = 22 —y? (Figura 2.1), se puede imaginar como la hoja de una planta

en la que caminan las hormigas.

Figura 2.1: Porcién de la grafica de f(x,y) = 22 — y%.

Para cualquier funcién continua f : U C R? — R existe un homeomorfismo entre U y la grafica I'(f)
dado por la proyeccion m(x,y,z) = (x,y). En otras palabras, la grafica de f se puede aplanar. Sin
embargo, existen mundos posibles que interpretamos como superficies que no se pueden aplanar,
como la superficie de un planeta o el chocolate que recubre una dona glaseada. Por eso la definicién
de superficie topologica es mas general. Partiremos primero de la definicion de superficies sin

frontera (o bien, con frontera vacia), la cual definiremos maés tarde.

Definiciéon 2.1 (Superficie topologica). Un espacio topoldgico conexro ¥ es una superficie (con
frontera vacia) si es Hausdorff, sequndo numerable? y cada punto p € ¥ tiene un entorno V C %

homeomorfo a algin abierto de R2.

Notese que la definiciéon no considera que una superficie ¥ esté incluida como un subespacio de

2Un espacio topolégico es segundo numerable si tiene una base numerable de abiertos.
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R™, sino que es un espacio topoldgico abstracto que cumple las restricciones de la definicion. Por

ejemplo el plano proyectivo en el siguiente ejemplo es un espacio dado por clases de equivalencia.

Ejemplo 2.2. Los siguientes espacios topoldgicos son superficies. En las imdgenes colocamos las
representaciones poligonales de las superficies, que consisten en realizar el pegado de los lados con

la misma etiqueta en el sentido que indican las flechas.

= Bl plano R? es una superficie, asi como cualquier subconjunto U C R? abierto y conexo.

= La esfera S? := {(z, y,2) ER3 1 a? + 92 + 22 = 1} es una superficie compacta. Consideremos

N =(0,0,1), el polo norte y, S = (0,0,—1), el polo sur. Definimos los homeomorfismos

p: SPN{N} — R? v SN {S} — R?

(wow) — (25,25 (wow) — (25, 25),

14w’ 14w

que prueban que S? es una superficie. Estos homeomorfismos son conocidos como la proyec-

cion estereogrdfica de la esfera (Figura 2.3).

Figura 2.2: La esfera y su representaciéon poligonal.

2u
el v,w) = (1 —w'l- u'>

Figura 2.3: Obtencion de proyeccion estereografica mediante la recta que pasa por el polo norte

N = (0,0,1), intersecta a la esfera tinicamente en (u,v,w) y después intersecta el plano R? x {—1}
en o(u,v,w).

s Bl toro T? :=S! x S! es una superficie compacta. Podemos presentar al toro, también como
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el espacio cociente

R*/Z :=R?/ ~,
donde la relacion de equivalencia ~ estd dada por: x ~y siy sélo six —y € Z2.

a
b
(=)

Figura 2.4: El toro y su representacioén poligonal.
= Fl plano proyectivo se define como el espacio cociente
RP? := R® \ {0} / ~,
donde la relacion de equivalencia ~ en R® \ {0} estd dada por: x ~ y si existe A € R tal

que x = \y. Este espacio no se puede visualizar encajado en R3, pero si podemos dar su

representacion poligonal.

Figura 2.5: Representacion poligonal de RP?.

= La escalera de Jacob es una superficie con género infinito, que se extiende de manera infinita

hacia dos direcciones.

Y e @A e

Figura 2.6: Escalera de Jacob.

» Basados en la nomenclatura de la clasificacion de superficies no compactas (Subseccion 2.2),
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la siguiente superficie se conoce como la superficie con tres fines acumulados por género.

Pero por simplicidad, nosotros la llamaremos tripode.

000

& L=/

S

Figura 2.7: Tripode.

» El conjunto R?2 \ N x {0} es abierto en R?, por lo que es una superficie.

Figura 2.8: R? \ N x {0}.

» Del mismo modo R? \.C x {0}, donde C es el conjunto de Cantor, es un abierto de R* y por

ende, es una superficie.

Figura 2.9: RZ < C x {0}.

s FExisten superficies con ramificaciones infinitas, como el arbol de Cantor y el arbol florido
de Cantor.

(a) (b)

Figura 2.10: (a) Arbol de Cantor; (b) Arbol florido de Cantor.

h—g
Vs
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Ejemplo 2.3 (Espacios que no son superficies). Contrario a la intuicion, existen espacios que
cumplen ser localmente homeomorfos a R? pero no ser Hausdorff. En este ejemplo también ejem-

plificamos con el cono espacios que no son localmente homeomorfos a R2.

» El cono estd definido como el conjunto de puntos (x,y,2) € R® que satisfacen la ecuacion
22 +y? = 22. El origen (0,0,0) es un punto del cono que no tiene una vecindad homeomorfa

a algin abierto de R2.

Figura 2.11: Punto singular en el cono.

= Fl plano con dos origenes es el espacio cociente

R? x {0,1}
(x,y,()) ~ (mvya 1) st (l'vy) # (0’0)

Todo punto de X tiene una vecindad homeomorfa a R?, pero falla en ser Hausdor(f para las

imdgenes de los puntos (0,0,0) y (0,0,1).

Figura 2.12: Plano con dos origenes.

Hacemos énfasis en que la Definicion 2.1 es exclusiva de superficies sin frontera pues en el estudio de
homeomorfismos es importante distinguirlas de las superficies con frontera no vacia. Incluso veremos
més adelante que el concepto de frontera en una superficie permite extender a toda la superficie
ciertos homeomorfismos definidos en subsuperficies con frontera (como los que mencionaremos en

el Ejemplo 3.3). jPero a qué nos referimos con una superficie con frontera?

Dado que una superficie ¥ es un espacio topologico abstracto que no esté encajado necesariamente
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dentro de algin otro espacio topolégico X, no podemos especificar cuél es la frontera topologica
de ¥ dentro de X. Més bien, a lo que nos referimos es a una frontera geométrica, que captura la
informacion del semiplano superior cerrado H2 = {(ac7 y) ER?:y > 0} como subespacio de R?. En
la Figura 2.13 se puede notar que en H2 hay abiertos como el subconjunto V' C H2 que también
es un abierto de R2. Por otro lado hay abiertos como U C H2 que son abiertos solo del semiplano.
Los puntos en la interseccion de U N{(x,0) : z € R} describen a lo que nos referimos como puntos

frontera.

Figura 2.13: V un abierto de R? y U abierto exclusivamente de H?2

Definiciéon 2.4 (Superficie topologica con frontera). Un espacio topoldgico conexo ¥ es una su-
perficie, con frontera posiblemente vacia, si es Hausdorff, sequndo numerable y cada punto p € &

tiene un entorno V. homeomorfo a algin abierto de H2.

La frontera geométrica de una superficie 3, o simplemente frontera, es el conjunto denotado
por 9%, que consta de todos los puntos p € ¥ que no tienen una vecindad homeomorfa a algin
abierto de R2. Entonces, una caracterizacion de los puntos frontera es la siguiente. Si p € ¥ es
un punto frontera y V es una vecindad de p con un homeomorfismo ¢ : V.— W (W C H2
abierto), entonces debe tenerse p(p) € R x {0}. Reciprocamente, si p € ¥ cumple que exista tal
homeomorfismo ¢ : V. — W (V abierto de ¥ y W abierto de H2) con ¢(p) € R x {0}, entonces
p debe ser punto frontera. De lo contrario, ¢(p) tendria una vecindad en H2 homeomorfa a una
vecindad de R2. Eso contradice que los abiertos de H2 que tocan el borde no son homeomorfos a

abiertos de R?, por el Teorema de Invarianza del Dominio® [12, Teorema 2.B3].

Los puntos en 0% se conocen como puntos frontera y los puntos en ¥\ 90X como puntos interiores.
Al conjunto de puntos interiores lo denotamos por int(%). Claramente int(X) es un abierto de X,
por lo que 9% es cerrado. Ademés, se puede observar que cada punto p € 0¥ tiene una vecindad
relativa a 0% que es homeomorfa a un intervalo abierto de R; es decir, la frontera es una 1-variedad.

Siendo consistentes con la Definicion 2.1, diremos que X es una superficie sin frontera si 0¥ = @.

3El Teorema de Invarianza del Dominio afirma que una funcién continua e inyectiva f : U — R™, donde U C R™
es abierto, debe ser un mapeo abierto. La demostracién de este teorema requiere el uso homologia.
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Un homeomorfismo entre superficies f : ¥ — ¥’ cumple que f(0X) = 9%'. Por lo tanto, tener o

no frontera es un invariante topolégico.

Ejemplo 2.5. Algunos ejemplos de superficies con frontera y sus representaciones poligonales son

los siguientes.

= El semiplano superior cerrado H2, con frontera OH2 = {(z,0) : z € R}.
» El disco cerrado D? = {(z,y) € R? : 22 + y*> < 1}, cuya frontera es OD* = S*.

» Elanillo A% = {(a:, y) ER?:1<a?2+9y2 < 2} es una superficie compacta con frontera 0A% =
{(z,y) eR*: 2 +y*> =1} U {(=,y) € R? : 2? + y? = 2}, que es homeomorfa a S* LS.

Figura 2.14: El anillo.

s La banda de Mdbius, BM, es la superficie parametrizada por

BM := {((1 tsin9> cosf, (1 tsine) sin 6, t cos 0> :(t,0) € {1,1} X [O,27r]}.
2 2 2 2°2

La frontera de BM es homeomorfa a S'.

Figura 2.15: Banda de Mdbius y su representacion poligonal.

» La escalera de Jacob recortada por la mitad es una superficie con frontera no compacta. Sin

embargo, toda componente conexa de la frontera es compacta homeomorfa al circulo.

T @ @ @

Figura 2.16: Escalera de Jacob recortada.
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= D2\.C, donde C C OD? es homeomorfo al conjunto de Cantor, es otra superficie con frontera
no compacta. En este caso, toda componente conexa de la frontera es no compacta homeo-

morfa a la linea real.

Conjuntode Cantor

/

Figura 2.17: Disco menos un Cantor en la frontera

Ejemplo 2.6 (Suma conexa). Para construir mds ejemplos de superficies suele utilizarse la suma
conexa. La suma conexa de dos superficies 31, %s, denotada por X1#3,, se define como la super-
ficie que se obtiene al restar un disco abierto en cada una de las superficies e identificarlos por la

frontera mediante la topologia cociente.

OO0 ©-c2

Figura 2.18: Suma conexa de dos toros.

2.1. Orientabilidad

En los ejemplos anteriores, la banda de Mobius y el plano proyectivo son ejemplos de superficies no
orientables. En cambio, el resto fueron ejemplos de superficies orientables. La definicién formal de
orientabilidad requiere mayor profundidad y sugerimos al lector revisar [11] para una introduccion
formal mediante el grupo fundamental. También recomendamos revisar [22] para el caso de super-
ficies con una estructura diferenciable. Nosotros expondremos el concepto de orientabilidad con un
enfoque informal. Esperamos que a pesar de eso, esta seccion le sirva a los lectores (en especial los

que estan iniciandose en el tema) para continuar la lectura de este articulo.

Dada una superficie ¥ y un punto p € ¥ \ 9%, se puede definir el sentido en el que una curva da

vueltas al rededor de p. En la Figura 2.19 se muestra que hay dos posibles sentidos.
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Figura 2.19: Eleccién de sentidos alrededor de p.

Una orientaciéon en la superficie ¥ consiste en una elecciéon de sentidos en cada punto, de tal
forma que en cada vecindad V C ¥ (homeomorfa a un abierto de R?), todos los puntos tienen
asignados sentidos “compatibles”. Diremos que una superficie es orientable si se le puede asignar
una orientaciéon compatible; en caso contrario diremos que es no orientable. Por ejemplo, en la
Figura 2.20 (a) el toro tiene una eleccion de sentidos que efectivamente conforma una orientacion
en el toro. Sin embargo, en la Figura 2.20 (b) en la banda de Mobius se muestra una vecindad,

donde los sentidos asignados a los puntos fueron incompatibles.

Figura 2.20: (a) orientacion en el toro; (b) sentidos incompatibles en la banda de Mébius.

Teorema 2.7. Una superficie X es no orientable si y solo si BM estd encajada en 3.

Demostracion. (<) Si pudiera asignarsele una eleccion de sentidos a cada punto de X, dicha
eleccion definiria una eleccién de sentidos en BM. Esta eleccion no puede ser compatible en BM,
pues BM es no orientable. Por lo tanto, tampoco es compatible en ¥, implicando que esta tltima

es no orientable.

(=) Por el Teorema de Clasificacion de Superficies compactas (ver [11]), cualquier superficie com-
pacta no orientable tiene un encaje de la banda de Mo6bius. Por otro lado, para cualquier su-
perficie no compacta ¥ podemos encontrar una coleccion de superficies compactas {,} tal que
Y, Cint (B,41) € ¥y que |JX,, = X. Si cada subsuperficie 3,, es orientable, entonces se puede
definir una orientacién global en Y. De esta manera, si ¥ es no orientable, alguna de las ¥,, tendria

que ser no orientable. En dicho caso se tiene que ¥ tendria un encaje de la banda de Mobius. [
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Ejemplo 2.8. RP? tiene un encaje de BM, por lo que no es orientable.

Nos bastara poder interpretar la no orientabilidad de una superficie como el hecho de tener sbélo
una cara, como es el caso de la banda de Mobius BM. Asi, si decidiéramos pintar una superficie
no orientable, s6lo podriamos usar un color. En superficies orientables como la esfera o el toro

podemos usar dos colores: uno para la parte externa y otro para la parte interna.

Notaciéon 2.9. Usualmente utilizamos la letra S para representar superficies orientables. Para

superficies no orientables reservamos la letra N.

2.2. Comentarios sobre la clasificaciéon de superficies

La clasificacion de superficies comprende una serie de teoremas que proveen una lista de todas
las superficies que cumplen ciertas caracteristicas. En dichos teoremas también se describe un
procedimiento para determinar si dos superficies no son homeomorfas, usualmente comparando

una coleccion de invariantes?.

No enunciaremos los teoremas de clasificacion, pero sugerimos al lector revisar nuestras recomenda-
ciones bibliograficas. Para la clasificacion de superficies compactas véase [11]. Para la clasificacion
de superficies no compactas puede revisarse [31]. Para una revision de los teoremas de clasificacion
de superficies (compactas o no compactas, orientables o no orientables) asi como los invariantes que
determinan por completo a una superficie recomendamos ver el Capitulo 1 del escrito Superficies
Topoldgicas y sus simetrias: una introduccion a grupos modulares de superficies de tipo finito e

infinito [6].

3. El grupo de homeomorfismos de una superficie

En esta seccion estudiaremos la estructura algebraica del grupo (con la operacion composicion de
funciones) de todos los homeomorfismos f : ¥ — ¥ de una superficie ¥ (posiblemente con frontera
no vacia), el cual denotamos por Homeo(X). Dotaremos al grupo Homeo(X) de una estructura
topologica, la cual se conoce como topologia compacto-abierta. Veremos que ambas estructu-
ras (la estructura de grupo y la estructura topologica) en Homeo(X) son compatibles. En otras

palabras, Homeo(X) es un grupo topologico.

4Un invariante asociado a una superficie ¥ es un objeto »(X), tal que si ¥ es homeomorfa a ', entonces
©(2) = p(X’). Ejemplos: la orientabilidad, la frontera, caracteristica de Euler, género, espacio de fines, espacio de
fines acumulados por género, espacio de fines acumulados por género no orientable.
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Definicion 3.1. Un grupo G con una topologia T es un grupo topologico si las operaciones

GxG — G G — G

(a,b) +— a-b a +— at!

son continuas.

Nuestra meta principal serda demostrar que el grupo de homeomorfismos de una superficie ¥ es un
grupo polaco, que significa que es separable® y tiene una métrica completa compatible® con la

topologia compacto-abierta.

Los grupos polacos son objetos de estudio en el &mbito de la Teoria Descriptiva de Conjuntos, la
cual desarrolla herramientas para deducir propiedades topologicas de los morfismos o acciones de
dichos grupos. Un tema recurrente es este ambito es el de determinar si un grupo Polaco G tiene
la propiedad de Continuidad Automdtica (propiedad AC); este se refiere a que para H un grupo
topologico separable arbitrario, todo homomorfismo algebraico de grupos G — H es continuo.
Recomendamos ver el capitulo 9 en [19] para una introduccién a este tema. Una gran variedad
de grupos topologicos tiene la propiedad AC: por ejemplo, el grupo de automorfismos de Q que
preservan el orden, el grupo Homeo(R) de homeomorfismos de R [33], el grupo Homeo(X) de
homeomorfismos de una superficie compacta 3 [32], y mas generalmente, el grupo Homeo(M) de

homeomorfismos de una variedad compacta M [25].

3.1. Ejemplos de homeomorfismos

El hecho de pensar en un homeomorfismo f : ¥ — X parece trivial, pues ya sabiamos que %
era homeomorfa a si misma. Sin embargo, hay propiedades de la superficie > que pueden verse
alteradas mediante la acciéon de dicho homeomorfismo; puede alterarse el anudamiento de curvas
cerradas simples” (Ejemplo 3.3) o puede alterarse la orientacion de la superficie (Ejemplo 3.7).

Como ejemplo de la primera clase de transformaciones introducimos el giro de Dehn.

Ejemplo 3.2 (Giro de Dehn en el anillo). Recordemos que el anillo A es una superficie orientable

con frontera no vacia dada por A = {z € C:1 < |z| <2}. Definamos la funcion

T: A — A
teie — t6i0+27'ri(t71)'

Podemos ver que la funcion T es un homeomorfismo cuya restriccion a la frontera de A es la funcion

5Un espacio topolégico X se dice separable si contiene un subconjunto denso numerable.

6Una métrica d : X x X — R en un espacio topologico (X, 7) es compatible con la topologia T si la topologia
inducida por la métrica d coincide con 7.

"Una curva cerrada simple en X es un encaje topolégico del circulo S! en X, es decir, es una funcién inyectiva
St < ¥ que es homeomorfismo sobre su imagen.
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identidad y su accion en el interior del anillo realiza una rotacion mientras rodea la superficie como

puede verse en la Figura 3.1.

Figura 3.1: Accién del giro de Dehn T sobre el arco que conecta las dos componentes de frontera
del anillo.

El hecho de que el giro de Dehn fija puntualmente la frontera es de especial utilidad para definir
giros de Dehn en otras superficies. Esto se debe a que cada punto interior de la superficie tiene una

vecindad homeomorfa a un disco de R?, el cual tendra encajado al anillo como un cerrado de X.

Ejemplo 3.3 (Giros de Dehn en cualquier superficie). Sea ¥ una superficie y ¢ : A — 3 un
encaje del anillo. Recordemos que T : A — A denota el giro de Dehn en el anillo. Podemos definir
T :% — Y mediante
~ D sipe XN p(A)
T(p) = . ‘
poTop™ (p) sipeyp(A).

Si encontramos el encaje apropiado del anillo en el toro (Figura 3.2), obtenemos un giro de Dehn

que altera el anudamiento de la curva naranja.

TN

Figura 3.2: Giro de Dehn en el toro.

El giro de Dehn en un anillo que esta encajado en un disco en realidad no afecta el anudamiento
del mismo. Es decir, podemos realizar un proceso de deformacién continua para restaurar el arco
rojo a su posicion original (Figura 3.3). Este proceso de deformacion es conocido como isotopia y
lo abordaremos formalmente en la Seccion 4 (Definicion 4.1). El problema consiste en encontrar
un encaje apropiado del anillo en la superficie ¥, de modo que defina giros de Dehn que alteren
efectivamente el anudamiento de curvas, como lo es en el caso del giro de Dehn en el Toro ilustrado
en la Figura 3.2. Incluso habra superficies como R? o la esfera, para los cuales no podran encontrarse

homeomorfismos que alteren el anudamiento de curvas. Por ejemplo, cada giro de Dehn en R?
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proviene de una transformacion continua que puede deshacerse del mismo modo (Figura 3.3).

Figura 3.3: Deformacién continua del giro de Dehn en R2.

Ejemplo 3.4 (Homeomorfismos en la esfera). Sea p € S? un punto fijo. Recordando la proyeccion
estereogrdfica, podemos definir un homeomorfismo ¢ : S*> \ {p} — R2. Cualquier homeomorfismo
f:R? = R? define un homeomorfismo f : S~ {p} = S? < {p} dado por f = p~' o f o . Dicho

homeomorfismo se puede extender a un homeomorfismo en toda la esfera que fija al punto p.

Con la construccion del homeomorfismo f podemos manipular la esfera asi como si lo hiciéramos

con R2. Una aplicacion de este hecho aparece en el Ejemplo 3.27.

En algunas superficies podemos exhibir algunos ejemplos de homeomorfismos que modifican o

permutan las estructuras de una superficie, sin provenir de giros de Dehn.

Ejemplo 3.5 (Traslacion de Género). La escalera de Jacob puede encajarse en R® de manera
simétrica a lo largo del eje x, y del plano xy. En dicho caso, la traslacion T : R® — R3 : (x,y,2) —

(x —1,y,2) se restringe a un homeomorfismo dentro de la escalera de Jacob.

TN TN N

Figura 3.4: Traslacion del género en la Escalera de Jacob.

Ejemplo 3.6 (Permutacion de fines acumulados por género). Asi como en el Ejemplo 8.5, algunas
rotaciones de R? también se pueden restringir a homeomorfismos de superficies encajadas. Tal es
el caso de la superficie tripode en la que se realiza una rotacion por un dngulo de 2?” Notese que

este homeomorfismo tiene orden 3.
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Figura 3.5: Rotacion de fines.

Homeomorfismos que invierten la orientacion. Un homeomorfismo f : S — S en una su-
perficie orientable S tiene la cualidad de preservar o invertir la orientacion de la superficie. En
la literatura que concierne a los grupos modulares de superficies es relevante la distincién entre

homeomorfismos que preservan o invierten la orientacion.

La diferencia entre dichos homeomorfismos se ejemplifica con la Figura 3.6. Los homeomorfismos
que preservan la orientacion, preservan el sentido en que las curvas rodean un punto y su imagen.
Por ejemplo, la funcién identidad idg : S — S es un homeomorfismo que preserva la orientacion.
Una definicion precisa de lo que significa preservar o invertir orientacién puede revisarse en [22]

para el caso diferenciable.

P

p1

Figura 3.6: El homeomorfismo f preserva la orientacion; el homeomorfismo h invierte la orientacion.

Ejemplo 3.7. A continuacion presentamos homeomorfismos que invierten la orientacion en al-

gunas superficies orientables.

» En R? la conjugacion compleja (x,y) = z — Z = (x, —y) invierte la orientacion.

» En la esfera, f:S* — S? dado por f(x,y,z) = (x,y,—2) invierte la orientacion.
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» La suma conexa de tres toros S := T2#T?#T? (ver Ejemplo 2.6), puede encajarse en R3 de
manera simétrica a lo largo del plano xy, de tal forma que f : R3 — R3 f(x,y,2) = (x,y, —2)
cumple que f(Ss) = Ss. En dicho caso, la reflexion f se restringe a un homeomorfismo de

S3 — S3 que invierte la orientacion.

Figura 3.7: Construccion del encaje simétrico de S a lo largo del plano xy.

Cualquier superficie orientable (posiblemente de tipo infinito y posiblemente con frontera no vacia)
puede encajarse en R? de manera simétrica a lo largo del plano xy. La forma de lograr tal encaje
se describe en [28, Seccion 4.2.1], mediante el inflamiento de una vecindad regular de una gréfica
plana que describe la estructura de la superficie. Por lo tanto, la reflexién siempre define un

homeomorfismo que invierta la orientacion.

3.2. Topologia compacto-abierta

Como mencionamos previamente, el grupo de homeomorfismos también tiene estructura topologica.

Dado un compacto K C ¥ y un abierto U C X de una superficie 3, definimos
(K,U) :={f € Homeo(X) : f(K)CU}.

Dichos conjuntos conforman una prebase® para la topologia en Homeo(X) que se conoce como la
topologia compacto-abierta. Con dicha topologia, tenemos el siguiente teorema, cuya demos-

tracion se divide en las Proposiciones 3.10 y 3.11.

Teorema 3.8. El grupo de homeomorfismos de una superficie ¥, Homeo(X), es un grupo topoldgico

con la topologia compacto-abierta.

El teorema anterior es general en el sentido de que es independiente de si la superficie 3 es orien-
table, compacta o con frontera no vacia. Para proceder con la demostracion de las Proposiciones
3.10 y 3.11 debemos simplificar la prebase para la topologia compacto-abierta. Esto lo haremos

mediante el siguiente resultado.

Lema 3.9. La coleccion de abiertos (en la topologia compacto-abierta) {(K,U)} donde K C %
es abierto y conexo con K compacto y U C X abierto, conforma una prebase de la topologia

compacto-abierta.

8Una prebase P para una topologia de X es una coleccion de subconjuntos de X cuya unién es X. La topologia
generada por una prebase P es aquella definida por la colecciéon de todas las uniones de intersecciones finitas de
elementos de P.
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Demostracion. Sea (C,U) un prebasico en la topologia compacto-abierta y tomemos f € (C,U).
Entonces C C f~}(U). Dado que X es Hausdorff, localmente conexo y localmente compacto, para
cada p € C, existe un abierto Up, conexo y relativamente compacto® tal que p € U, C 7]0 -
f~1(U). Por la compacidad de C, podemos tomar una cantidad finita pq,...,pr € C tales que
CcUr, U, CUL, T, C fHU). Se sigue que f € N, (T,,,U) C (C,U). O

Proposicion 3.10. La operacion composicion

i Homeo(X) x Homeo(X) — Homeo(X)
(f.9) —  foy,

es continua.

Demostracion. Sea (K,U) un abierto prebasico cualquiera y sean f,g € Homeo(X) tales que
w(f,g) = fog € (K,U). Se cumple entonces que g(K) C f~1(U). Dado que ¥ es localmente
compacta y que g(K) es compacto, existe un abierto V' C Homeo(X) relativamente compacto
tal que g(K) C V C V C f~1(U). Se tiene asi que g(K) C V y f(V) C U, lo que implica
(f,9) € (V,U) x (K,V) C u~'(K,U). Esto prueba que la operaciéon composiciéon es continua. [

Proposicion 3.11. La involucion

v: Homeo(X¥) — Homeo(X)

f — i

es un homeomorfismo.

Demostracion. Tomemos un abierto prebasico (K,U) como los definidos en el Lema 3.9, y sea
h € Homeo(X) tal que v(h) = h=! € (K,U). Del mismo modo que se demostré en el Lema 3.9,

existen entornos Vi, Vo C 3 abiertos, tales que
WY (K)Ch (K)CVCVCWh Tl

Se sigue que Vo \ Vi C U ~ h~}(K). Aplicando h se obtiene que h(Va ~ V1) = h(V2) ~ h(V1) C
h(U) \ K. De esta manera, dado p € h™1(K) C V, el conjunto

M = ({p},K)N(Va~Vi,h(U)\ K),

define una vecindad de h.

Veamos que v(M) C (K,U). En efecto, tomemos f € M. Por un lado, tenemos que . = f(V;) U
F(Va V1)U f(X N\ V2) es una unién disjunta y por otro lado sabemos que f(Va~V;) C h(U)\ K.

9Un subconjunto A C X de un espacio topolégico X es relativamente compacto si su cerradura en X es compacta.
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De este modo concluimos que K C f(V;) U f(X \ V2). Sin embargo, K es conexo, por lo que debe
tenerse K C f(V}) o bien K C f(¥ \ V5). Dado que f(p) € K, tenemos que K N f(V1) # @. Asi,
K C f(V1), y por lo tanto v(f) = f~! € (K,U). O

Una de las propiedades mas interesantes de la topologia compacto-abierta es que la accion de grupo

de homeomorfismos sobre la superficie 3 es continua; en otras palabras, la funcidn evaluacion

Homeo(X) x ¥ — %
(f.p) —  f(p)

es continua; abajo en la Proposicién 3.12 damos una prueba de este resultado.

En general, R. Arens decide llamar topologia admisible de Homeo(X) a toda aquella que hace
continua a la accion del grupo de homeomorfismos sobre el espacio topolégico X. Una consecuencia
importante del estudio de Arens es que para toda superficie 3, la topologia compacto-abierta en
Homeo(X) es, de hecho, la topologia méas gruesa entre todas aquellas que cumplen la propiedad de

admisibilidad. Recomendamos revisar el interesante articulo [2, Teorema 2| para méas detalles.

Proposicion 3.12. Sea X una superficie topoldgica y Homeo(X) el grupo de homeomorfismo de X

con la topologia compacto-abierta. Entonces la funcion evaluacion

Homeo(X) x ¥ — %
(f.p) — f(p)

es continua.

Demostracion. Sean f € Homeo(X) y p € . Sea U C ¥ una vecindad de f(p). Entonces f~1(U)
es una vecindad de p. Sabemos que X es localmente compacta, por lo que existe un abierto V' con
Vv compacto y

peVCVvVcfiHu.

Podemos deducir que f(V) C U y con ello f € (V,U). Nétese que (f,p) € (V,U) x V y que cada
(h,q) € (V,U)xV cumple h(q) € h(V) C U, por lo que (V,U) x V esta contenido en la preimagen

de U bajo la funcién evaluacion. O

Observacion 3.13. La continuidad de la funcion evaluacion implica que: si {f,} es una sucesion
de homeomorfismos que converge a f € Homeo(X) con la topologia compacto-abierta, entonces fy,

converge a f puntualmente.

El grupo de homeomorfismos hereda propiedades topolégicas de ¥, como las enunciadas a conti-

nuacion.
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Proposicion 3.14. Para toda superficie ¥, Homeo(X) es Hausdorff.

Demostracion. Dados f,g € Homeo(X) distintos, en algtin punto p € ¥ tendremos f(p) # g(p).
Ya que ¥ es Hausdorfl, podemos encontrar U,V C ¥ vecindades de f(p) y g(p) respectivamente
que son disjuntas. Notese que f € ({p},U), g € {p}.V)y ({p}.U)Nn{p},V) =2. O

Proposicion 3.15. Para toda superficie 3, Homeo(X) es sequndo numerable.

Demostracion. Escogemos una base numerable {B,}, .y de abiertos de ¥, relativamente com-
pactos, homeomorfos al disco D? (o al semidisco D? N H? para puntos frontera). La colecciéon

numerable de abiertos I' = {(E, Bm)} es una prebase para Homeo(X) con la topologia

n,meN
compacto-abierta. Notemos que para cualquier homeomorfismo f € Homeo(X), y cualquier abierto

B, existe m tal que B,, C f~1(B,). Asi que f € (B, B,).

Ahora, basta ver que B(T'), la base generada por I', genera la topologia compacto-abierta. Esto,
porque B(T) consiste en las intersecciones finitas de los elementos de T', por lo tanto sigue siendo
numerable. Sea (K,U) cualquier abierto prebasico de Homeo(X) y tomemos f € (K,U). Dado
z € K, existe j, tal que f(x) € B;, C B;, C U. Similarmente, existe i, tal que

x€B;, CB;, Cf'(B;,) Cf (B, < fHU),

de modo que f(B;,) C B;, C U. Por la compacidad de K, existen z1,...,z; € K tales que

KcUr, B;,,. Nétese que f € N, (B

. k
in,» Bj., ). Perosi g € (N, (B,,, Bj,, ), entonces

k k
g(K) < Ja(Bi,,) € |UB., cU.
=1

Por lo tanto f € ﬂle(B Bj, ) € (K,U), probando lo deseado. O

izlv

Observacion 3.16. Una consecuencia de que Homeo(X) sea segundo numerable es que es separa-
ble. De cada abierto de la base numerable se puede escoger un punto, para formar un subconjunto

D C Homeo(X), que serd denso y numerable.

Observacion 3.17. Las demostraciones expuestas en esta seccion son vdlidas, en general, para
Homeo(X), cuando X es un espacio topoldgico Hausdorff, locamente compacto y locamente conezo.
Tales propiedades son satisfechas por superficies. FEspecificamente la Proposicion 3.14 sélo utiliza
que X sea Hausdorff; las Proposiciones 3.10 y 3.12 requieren adicionalmente que 3 sea localmente
compacta; mientras que para el Lema 3.9, la Proposicion 3.11 y el Teorema 3.8 también se utilizo

que X fuera localmente conezxa.
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3.3. Metrizabilidad invariante del grupo de homeomorfismos

El grupo (R?,+) con la métrica euclidiana es un grupo topoldgico, donde las traslaciones p +— p+c
son isometrias. Esta propiedad de la métrica se conoce como invarianza de la operacion del grupo.
Como R? es conmutativo, no hace falta distinguir si la invarianza es mediante sumar por la izquierda
o por la derecha. En general este no es el caso, como veremos en la Seccion 3.4 con el grupo
Homeo(X). De momento, consideremos una cualidad de metrizabilidad en grupos descrita en la

siguiente definicion.

Definiciéon 3.18. Sea G un grupo con una métrica d : G x G — R. Diremos que d es una métrica
invariante izquierda si

d(f.g) = d(hf,hg), para cada f,g,h € G.

La métrica d es invariante derecha si

d(f,g) = d(fh,gh), para cada f,g,h € G.

Si G es un grupo con una métrica d invariante tanto por la izquierda como por la derecha, entonces
G es grupo topologico con la topologia inducida por d. Para esto basta ver que la funcion (g, h) —

g 1h es continua (por el Lema 3.30). Esto sigue directamente de la desigualdad
(g~ h,g=h) < d(g, 9) + d(h, h).

En general una métrica arbitraria en un grupo, no suele ser invariante izquierda y derecha al mismo

tiempo. Ademas, hay ocasiones en las que no habré invarianza izquierda ni derecha (Ejemplo 3.27).

Observacion 3.19. Sea G un grupo topoldgico, con una métrica d invariante por la izquierda,
compatible con la topologia. Dado que G x G — G x G : (f,g) — (f~1,g7 %) es un homeomorfismo,
la métrica d'(f,g) = d(f~t,971) es invariante por la derecha y es compatible con la topologia.

Andlogamente si d es invariante derecha, entonces d' es invariante izquierda.

Una forma de comprobar que Homeo(X) tiene una métrica compatible que es invariante por la
izquierda (o por la derecha) es aplicando el siguiente teorema, cuyas hipdtesis son claramente
satisfechas por el grupo de homeomorfismos de una superficie. Una demostracién se puede encontrar

en |7, Teorema 2.B.2].

Teorema 3.20 (Birkhoff-Kakutani). Sea G un grupo topoldgico. Entonces, G es Hausdorff y el
neutro 1 € G tiene una base numerable de abiertos si, y sdlo si, G es metrizable. Mds aun, la

métrica compatible d : G x G — R se puede escoger de forma que sea invariante izquierda.
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Corolario 3.21. El grupo Homeo(X) admite una métrica invariante izquierda.

El teorema anterior es muy fuerte porque logra sincronizar la topologia de un grupo topolégico con
una métrica invariante izquierda (o derecha). Sin embargo, la existencia de una métrica invariante
izquierda no significa que sea completa. Un claro ejemplo es Q C R. Aun asi, hay situaciones
en las que si se puede afirmar que una métrica invariante izquierda es una métrica completa. Por
ejemplo, si G es un grupo topolédgico localmente compacto con una métrica compatible d invariante

izquierda, entonces G es completo con dicha métrica [7, Observacion 2.B.1].

Queremos encontrar una métrica completa para Homeo(X). La razon por la que no acudimos
al planteamiento anterior es porque para superficies cuyo grupo fundamental no es finitamente
generado, el grupo de homeomorfismos no es localmente compacto (Observacion 4.10 de la Seccion

4). Es por ello que tenemos que buscar una alternativa méas elemental.

3.4. El grupo de homeomorfismos es un grupo polaco

Se dice que un grupo topolégico G es un grupo polaco si es separable y es completamente metrizable.
Es decir, existe una métrica d : G x G — R completa y compatible con la topologia de GG. En esta
seccion nos dedicaremos a probar que el grupo de homeomorfismos de toda superficie, con la

topologia compacto-abierta, es un grupo polaco.

Teorema 3.22. Para toda superficie &, el grupo de homeomorfismos Homeo(X) es un grupo polaco.

De la Observacion 3.16 sabemos que Homeo(X) es separable, por lo que para demostrar que es

polaco bastara con exhibir una métrica completa compatible con la topologia compacto-abierta.

Dado que las superficies son espacios completamente metrizables (consecuencia del Teorema 4.5 y
4.6 de [20]), podemos suponer que en una superficie ¥ existe una métrica d : ¥ x ¥ — R completa.

Dado f € Homeo(X), un compacto K C ¥ y un namero € > 0, definimos

[f, K,¢e] := {g € Homeo(X) : sup d(f(x),g(x)) < 6} .

rzeK

Estos conjuntos conforman una base para la topologia conocida como topologia de convergencia

compacta.

Resulta que en Homeo(X), la topologia compacto-abierta coincide con la de convergencia compacta
[30, Teorema 46.8]. Asi que podemos aprovechar esta nueva descripcion y definir, de manera expli-
cita, métricas compatibles y completas en Homeo(X). Las métricas que definiremos a continuacion

dependeréan de si la superficie ¥ es compacta o no.

435



436 J. A. Parra & 1. Morales

Definicion 3.23. Sea X una superficie compacta con una métrica completa d. Definimos la métrica

p : Homeo(X) x Homeo(X) — R dada por

p(f,9) = maxd(f(z),g(z)).

TEY

Con la métrica p considérese en Homeo(X) la métrica D : Homeo(X) x Homeo(X) — R definida
por

D(f.g) =p(f.9)+p(f g7 ")

Para el caso no compacto tenemos la métrica que describimos a continuacién. En esencia son
similares, salvo el hecho de que se requiere el uso de una saturacién por compactos. Diremos que

una coleccion {K,} de subconjuntos de ¥ es una saturacion por compactos si cada K, es

neN
compacto, K, Cint K1y U,en Kn = 2.

Definicién 3.24. Sea ¥ una superficie no compacta y { Ky}, cn una saturacion por compactos de

3. Dados f,g € Homeo(X) definimos

) = min { g a2, g2}

reK,

Se define en Homeo(X) la métrica p : Homeo(X) x Homeo(X) — R dada por

p(f,9) = palfr9) <1,
n=1
y mediante p se define la métrica D : Homeo(X) x Homeo(X) — R por

D(f,9) ==p(f,9)+p(f"" g7 ").

Mostraremos que las métricas p y D en la Definicién 3.24 son compatibles con la topologia de
convergencia compacta (Proposicion 3.25). Para verificar la compatibilidad de las métricas p y D

de la Definicién 3.23 se puede emular la misma demostracién.

Proposicion 3.25. La métrica p de la Definicion 3.24 es compatible con la topologia de conver-

gencia compacta.

Demostracion. Veamos que p es compatible con la topologia de convergencia compacta. Tomemos

un abierto bésico de la topologia de convergencia compacta
[h, K, e] = {g’ € Homeo(X) : sup d(h(z),d'(z)) < E} ,
zeK
con K C ¥ compacto, h € Homeo(X) y € > 0. Sea n € N con K C K,. Definamos &' :=
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min {e,27""'} y tomemos
g € B,(h,&') :={¢ € Homeo(X) : p(h,g") <&'}.

Tenemos que maxgzex d(h(z),g(z)) < pn(h,g) < p(h,g) < €. Por lo tanto g € [h, K,¢]. De este
modo B,(h,e’) C [h, K, ¢].

Ahora, si tomamos una bola arbitraria
By(h,e) == {g’ € Homeo(X) : p(h,g') < e},

definida con algin h € Homeo(X) y € > 0, entonces para algin natural n > 2 se tiene Z;o:n 27k <

5. Definimos &’ = min {%, 2_”} y tomamos cualquier

n—1
g€ () [h KT,
k=1
donde estamos intersectando abiertos prebésicos de la topologia de convergencia compacta. Se

verifica que pi(h,g) < & < £ para toda k < n. De este modo

= 2n
e e
h < =
plhig) <5 +> o <e
k=1
y por lo tanto, g € B,(h,¢). Esto prueba que

:Oi [h7Kk,m1'n{%72_”H C B,(h,e). 0

La métrica p de la Definiciéon 3.24, no asegura completitud métrica, porque si una sucesion de
homeomorfismos { f,,} es de Cauchy, poco sabemos de la sucesion { it } De ahi nuestra necesidad
de considerar la métrica D. Tanto la métrica D de la Definicién 3.23 como la métrica D de la
Definicion 3.24 son completas. En la siguiente proposicion so6lo demostraremos el caso de la métrica

D de la Definicién 3.24, pues el caso de la Definicién 3.23 es atn més sencillo.

Proposicion 3.26. Sea X una superficie no compacta. La métrica D de la Definicion 3.24, es una

métrica completa en Homeo(X).

Demostracion. Sea {f,} una sucesion de Cauchy de elementos de Homeo(X) respecto a la métrica
D. Tomemos p € 3 y sea M € N tal que el compacto Kj; contenga al punto p. Dado € > 0, con
2=M > ¢ existe N € N tal que si n,m > N entonces ¢ > D(f,, fn). De la siguiente cadena de
desigualdades
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2~ M >e> D(fnafm) > p(.fnafm) > PM(fnvfm) > d(fn(p)afm(p))

concluimos que para m,n > N se tiene d(f,(p), fm(p)) < €, lo cual implica que la sucesion { f,(p)}

es de Cauchy en X, y debe converger a algiun punto f(p) := lim, e fn(p)-

El hecho de que p € K); haya sido arbitrario, implica que la sucesiéon f,, es uniformemente de
Cauchy en Ky, y por lo tanto, converge de manera uniforme a f en Kj;. Asi que f es continua
tanto en Kj; como en int(Kjs). Nuevamente, M € N fue arbitrario, y f se puede definir en

Unren int(Kar) = X. Por lo tanto f es continua en 3.

De manera analoga podemos demostrar que la sucesion f,,! converge de manera puntual a una

funcion continua h : X — X.

Probaremos ahora que f es un homeomorfismo cuya inversa coincide con h. Tomemos p € ¥ y
definamos ¢,, := f,,}(p) para cada m € N. La sucesion {g,,} converge a h(p) con h(p) € int(Kpr)
para algin natural M. Por lo tanto, existe un L € N tal que para toda m > L, se tiene q,, €

iIlt(KM) C K.

Por otro lado, sabemos que la sucesion {f,} es de Cauchy, por lo que para todo 0 < & < o—M

existe un natural L’ tal que para todo m,n > L’ se satisface

oM >e> D(fnvfm) > pM(f”’fM)'

Dado que pas(fn, fm) < 27M se tiene que

PM(fnafm) = max (fn(Q)vfm(Q))

q€EK M

Por lo tanto, si m,n > max {L, L'}, se tiene por un lado que g,, € Kjs, y por otro lado
d(fn(frzl(p)),p) = d(fn(Qm)afm(Qm)) < qréllé();/[ d(fn(Q)>fm(Q)) = pAI(fnafm) < D(fna fm) <E.

Tomar los limites m — co y n — co para ver que
e> tim 1im d(fu(f, (0),p) =d (1im fo (1im f210)) . p) = d(f(h(D)). p).

Dado que ¢ fue arbitrario, se tiene que d(f(h(p)),p) = 0, por lo que f(h(p)) = p. De manera

anéloga se cumple que h(f(p)) = p. Terminamos concluyendo asi que h es la funcion inversa de f.

Finalmente, veamos que f,, converge a f respecto a la métrica D. Sea € > 0. Por un lado podemos
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encontrar M € N tal que

=1
Z;zﬁ

k=M+1

1o

Por otro lado, como las sucesiones {f,} vy {f,,}} convergen uniformemente en cada compacto K;

a fy f!, respectivamente, existe N € N tal que para toda n > N, y toda k < M se tenga

11y o €
pk(fnaf)7pk(fn af )< AM
De este modo se concluye que si n > N, entonces
D(fn, f) <e. O

Por el hecho de que un homeomorfismo no es necesariamente una isometria, la métrica p de la
Definiciéon 3.23 en general no es invariante izquierda (Ejemplo 3.27), aunque un célculo sencillo

verifica que p si es invariante derecha (Proposicion 3.28).

Ejemplo 3.27 (La métrica p en Homeo(S?) no es invariante izquierda). Recordemos que el didme-
tro de la esfera S?, diam(S?), estd dado por la distancia entre el polo norte N = (0,0,1) y el polo
sur S = (0,0,—1). En la esfera, podemos tomar un homeomorfismo f cuya distancia a la identidad

ids> cumpla que para alguna py € S?,

diam (Sz) > p(fa idS2) = d(f(pO)vp()) > Oa

por ejemplo, tomar f una rotacion por un dngulo diminuto.

También podemos construir un homeomorfismo h de la esfera tal que h(f(po)) = N, y h(po) = S
(Figura 3.8). Para una construccidn del homeomorfismo h recordar el Ejemplo 3.4. Esto implica
que

p(hf,h) = diam (X) > p(f,id).

Proposicion 3.28. Sea ¥ una superficie compacta y p la métrica en Homeo(X) de la Definicion

3.23. Entonces p es invariante derecha.

Demostracion. Sean h, f,g € Homeo(X). Dado z € 3, definimos y = h~!(z), y notemos que

d(fh(z), gh(z)) = d(f(y),9(y)) < p(f,9)-
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S = h(po)

Figura 3.8: Homeomorfismo h que no es isometria.

De este modo p(fh,gh) < p(f,g). Lo anterior funciona para cualesquiera f,g,h € Homeo(X). Asi

que podemos definir los homeomorfismos f = fh,§ = gh,h = h™!, y seguir teniendo

p(f.9) = p(fh,gh) < p(f,9) = p(fh,gh).
Por lo tanto, p(fh,gh) = p(f,g). O

La métrica p de la Definicion 3.24 no va a ser invariante derecha y tampoco invariante izquierda,

como lo muestra el siguiente ejemplo.

Ejemplo 3.29 (La métrica p en Homeo(R?) no es invariante izquierda ni invariante derecha). En
el plano R?, consideremos para cada n > 1 el conjunto K, := Bgn-4(0) = {p € R?: |p| < 2"7*}.
Si hacemos f :=1id, g := —id y h := 2id, tendremos

d(f(p),g9(p)) =2Ip| y d(fh(p),gh(p)) =4Ip| =d(hf(p), hg(p))

Con ello se observa que p1(f,g) = min {2’2, 2*1} = 272 y similarmente p1 (hf, hg) = p1(fh,gh) =

271, Pero para n > 2 sucede que
pn(f,9) = 27" = pu(fh,gh) = pn(9f, hg).

Por lo tanto p(f, g) # p(fh,gh) = p(hf, hg).

3.5. Subgrupos especiales

Incluidos en Homeo(X) existen algunos subgrupos que son muy importantes en la literatura. Por
ejemplo, Homeog (%), que denota a la componente arcoconexa de la identidad idy, es un subgrupo

normal, como demostraremos en la Proposiciéon 3.31.
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Lema 3.30. Sea G un grupo con topologia 7. Entonces G es grupo topoldgico si y sélo si la funcion

Af,9) = f~t-g es continua.

Demostracion. Si G es un grupo topoldgico, la continuidad de A se sigue de ver a esta funciéon

como la siguiente composiciéon de funciones continuas

vXid
—

A GxG GxG G
(fr9) — (g — [fltg

Reciprocamente, supongamos que la funcién A es continua. Entonces la involucién se compone de

las siguientes funciones continuas
v: G — Gx{1} 2, G
fo— (L) = fhl=fh

En consecuencia, la operacion del grupo se compone de funciones continuas
vXid A
w: GxG@ — GxG — G
(f,9) — (L — (FHtg=fg

Proposicion 3.31. Sea G un grupo topoldgico y Go la componente arcoconexa del elemento neutro

1 € G. Se cumple que Gg es un subgrupo normal de G.

Demostracion. Por el Lema 3.30 tenemos funcion A : G x G — G dada por \(g,h) = g~ 'h es
continua. Si g, h € Gg, entonces existen dos caminos £,C : [0,1] — G de tal forma que £(0) =1 =

C(0), L(1) =g y C(1) = h. Con esto podemos construir el camino

0,1] — GxG — G
t — (L(1),C(t) — L))

define un camino que conecta a 1 con g~ 'h. Esto prueba que g~'h € Gy. Concluimos asi que

Go <G.

Veamos que Gg es normal en G. Nuevamente por el Lema 3.30 tenemos que la conjugacion h —
g thg es una funcién continua. Dado h € Gy y cualquier g € G, existe un camino £ : [0,1] — G

tal que £(0) =1y L(1) = h. Por lo tanto, tenemos la composicion de funciones continuas

0,1 — G — G
t —  L(t) — g L(t)g

que conecta a 1 con g~'hg, y se concluye que g~ 'hg € Gy. O
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Si 0¥ # &, podemos definir
Homeo(X;0%) := {f € Homeo(X) : flox = idos } ,
v si 0¥ = @ conviene establecer
Homeo(%; 0%) := Homeo(X).

Proposicion 3.32. Para toda superficie ¥, Homeo(X;0%) es un subgrupo normal cerrado de

Homeo(X).

Demostracion. Sean f € Homeo(3;9Y) y h € Homeo(X). Entonces para cualquier p € 9%, se debe
tener que h(p) € 9X. Por lo tanto f(h(p)) = h(p), concluyendo que h=1o foh(p) = h=1(f(h(p))) =
h=1(h(p)) = p. De este modo h~! fh € Homeo(X; 9%).

El hecho de ser cerrado se argumenta usando que si {f,} € Homeo(X;0X) converge a algin
f € Homeo(X) en la topologia compacto-abierta, entonces {f,} converge puntualmente a f (Ob-
servacion 3.13). En ese sentido, para toda p € 9%, se tiene que p = lim,, o fn(p) = f(p). Por lo
tanto, f € Homeo(X; 9Y). O

En caso de que la superficie S sea orientable, para los homeomorfismos que preservan la orientacién

reservamos la notacién siguiente
Homeo™ (S) := {f € Homeo(S) : f preserva la orientacion} .

Recordemos que toda superficie orientable admite homeomorfismos que invierten la orientaciéon

(véase el Ejemplo 3.7). Si la superficie N es no orientable, por convenciéon ponemos
Homeot (N) := Homeo(N).

Proposicién 3.33. Para toda superficie orientable S, Homeo™ (S) es un subgrupo normal abierto

y cerrado de Homeo(S) que tiene indice 2.

Demostracion. Si f preserva la orientacion y g la invierte, entonces f o g y g o f invierten la
orientacién. Si h también invierte la orientacién, entonces g o h preserva la orientaciéon, pues sélo
hay dos orientaciones posibles. De este modo go f o g~! € Homeo™ (S) para todo g € Homeo(S) y
todo f € Homeo™ (S).

Si f y g invierten la orientacién, entonces f ! og preserva la orientaciéon implicando que f y g son de
la misma clase de equivalencia en Homeo(S)/Homeo™ (S). De ello que [Homeo(S) /Homeo™ ()| =

2.
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Las métricas de las definiciones 3.23 y 3.24 permiten concluir que si dos homeomorfismos f,g €
Homeo(.S) son suficientemente cercanos, entonces ambos preservan la orientacion de la superficie o

ambos la invierten (Figura 3.9). Esto significa que la asignacion orientacion O : Homeo(S) — {0,1}

1 si h preserva orientacién
h—

0 sila invierte

es localmente constante. En otras palabras, O es continua, donde {0, 1} tiene la topologia discre-
ta. Notese que esto implica que Homeo™ (S) = O~! {1} es un subconjunto abierto y cerrado de

Homeo(S5). O

Figura 3.9: Accion de f y g en una triangulacion orientada de S.

Por ultimo, podemos definir
Homeo™ (¥;9%) := Homeo ™ (X) N Homeo(X; 9%).

Notese que si S es una superficie orientable con 0S # &, entonces todo homeomorfismo f €
Homeo(S;0S) también estd en Homeo™ (S). Al ser una interseccion de subgrupos normales y

cerrados, Homeo™ (2; 9%) es un subgrupo normal y cerrado del grupo de homeomorfismos.

Proposicion 3.34. Si S es una superficie orientable entonces todo elemento de Homeog(S) pre-

serva la orientacion de S, es decir,
Homeo(S) < Homeo™ (S).

Demostracion. Recordemos que en la demostracion de la Proposicion 3.33 utilizamos la continuidad
de la asignacion orientacion

O : Homeo(S) — {0,1}

para ver que Homeo™ (S) es cerrado en Homeo(S). En este caso, notemos ademés que la imagen

de Homeoy(S) bajo O es conexo y contiene a {1}. Concluimos que O(Homeog(S)) = {1}. O
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Observacion 3.35. Ndtese que si G es un grupo polaco y H < G es un subgrupo cerrado, entonces
H también es un grupo polaco. Esto porque cualquier métrica completa compatible con la topologia

de G induce una métrica completa compatible con la topologia de H .

4. El grupo modular de una superficie

En la Secciéon 3 discutimos la metrizabilidad de Homeo(X). Esto introduce una forma de medir
cuanto de diferentes son dos homeomorfismos. Si la distancia entre dos homeomorfismos es sufi-

cientemente pequena, esperariamos que ambos transformaran de manera similar la superficie.

En esta seccion definiremos el concepto isotopia, el cual describe a qué nos referimos cuando deci-
mos que dos homeomorfismos transforman de manera similar la superficie. También, exploraremos
la relacién de este concepto con la conexidad por trayectorias en Homeo(X). De este modo, podre-
mos definir el Grupo Modular Mod(X) (Mapping Class Group, MCG(X), en inglés), y revisaremos
como Mod(X) hereda propiedades topologicas de Homeo(X): como el hecho de ser un grupo to-
pologico, Hausdorff y segundo numerable. Al final haremos una breve revision de las alternativas

para demostrar que también es un grupo polaco.

4.1. La relaciéon entre isotopia y arcoconexidad

Una isotopia describe como un homeomorfismo se convierte en otro pasando continuamente por

homeomorfismos intermedios indexados por tiempos t € [0, 1].

Definicién 4.1. Sea ¥ una superficie. Una isotopia es una funcion H : ¥ x [0,1] = X continua,

tal que para todo t € [0,1] la funcidn

H: ¥ — )

es un homeomorfismo.

Podemos establecer la siguiente relacion en Homeo(X): diremos que dos homeomorfismos f,g €

Homeo(X) son isotopicos si existe una isotopia H : 3 x [0,1] — X tal que Hy = f y Hy = g.

La relacion de isotopia es una relaciéon de equivalencia. Méas atn, f es isotopica a g si y s6lo si
f~t o g es isotépica a la identidad. Es importante notar que una isotopia es en particular una
homotopia. Por lo tanto, si un homeomorfismo f es isotopico a idy, entonces debe fijar la clase
de homotopia de toda curva. Por ejemplo en la Figura 4.1, se observa que el giro de Dehn T ha
cambiado la clase de homotopia de la curva naranja, y por ello no es isotépico a idy. Para el

converso, basta encontrar una colecciéon particular de curvas cerradas simples, tal que si f fija la
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clase de isotopia de cada una de ellas, entonces f es isotopico a idy, este criterio se conoce como

el Método de Alexander (ver detalles en [9, Proposicion 2.8]).
%_* @
&» @

Figura 4.1: f fija la clase de isotopia de la curva naranja; el giro de Dehn T no es isotépico a la
identidad.

Es de nuestro interés detallar las propiedades topologicas de Homeo(X) que son consecuencia de la
relacion de isotopia. Por ejemplo, la proposiciéon siguiente describe la relacién que tiene el concepto

de isotopia con la conexidad por trayectorias de Homeo(X).

Proposicion 4.2. Sea F : ¥ x [0,1] = X una funcion (no necesariamente continua) tal que para

todo t € [0,1], se tenga Fy € Homeo(X). Defina la funcion L por

L: [0,1] — Homeo(X)

t — Ft-

Entonces F es continua si y sélo si L es continua.

Demostracion. Supongamos que F' es continua. Basta ver que £71(K,U) es un abierto, para K

compacto y U abierto de X. Notar que
LYK, U)={te0,1]: K x {t} CF'(U)}.

Tomando ty € L7H(K,U) se tiene que K x {tq} C F~1(U). Por el Lema del Tubo [30, Lema 26.8],
existe una vecindad W de tg con K x W C F~Y(U). Por lo tanto to € W C L™K, U).
Ahora, supongamos que L es continua. Notemos que la funciéon F' se puede factorizar como la

siguiente composiciéon

F: ¥x][0,1]] — X xHomeo(X) — b))
(p,t) +— (p, Ft) —  Fi(p) = F(p1).
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La continuidad de la funcién evaluacion (Proposicion 3.12)

Homeo(¥) x ¥ — X
(f.p) —  f(p)

implica la continuidad de F'. O

Del mismo modo que las proposiciones de la Seccion 3.2, el resultado anterior puede generalizarse
cuando X es sustituida por un espacio topologico X localmente compacto y Hausdorff, ya que son

las hipétesis requeridas en la demostraciéon de la Proposicion 3.12.

Recordemos que Homeog(X) denota a la componente arcoconexa de Homeo(X) que contiene al
homeomorfismo identidad. Por la Proposicion 4.2 podemos caracterizar la relacion de isotopia

como sigue:

f v g son isotopicos < f~' o g es isotépico a idy < f~' o g € Homeoy(X)
< f y g estan en la misma clase lateral

de Homeo(X)/Homeoy(X).

La relevancia de esta condicion cobra sentido por el hecho de que Homeog(X) es subgrupo normal
de Homeo(X) (Proposicion 3.31), por lo que el cociente Homeo(X) /Homeog (X)) tiene estructura de

grupo. Del mismo modo, podemos restringir la definicion de isotopia

Definicién 4.3. (Isotopia relativa a la frontera) Sea ¥ una superficie con 0% # &. Una isotopia

relativa a la frontera es una isotopia H : ¥ x I — X tal que para todo t € [0, 1], H; € Homeo(X; 9Y).

Denotamos por Homeoy(2; 0%) a la componente arcoconexa de Homeo(X; 93) que contiene a idy.
Nuevamente Homeog (X; 9%) es un subgrupo normal de Homeo(X; 9%). Notemos que la Proposicion
4.2 también aplica para isotopias relativas a 9% respecto a la arcoconexidad de Homeo(3; 9%). En

ese sentido, también podemos caracterizar la relaciéon de isotopia relativa a la frontera como

f v g son isotopicos relativo a 9% < f~! o g € Homeoy(X; 0%)
< f y g estan en la misma clase lateral
de Homeo(X; 0%) /Homeog (3; 9Y).

4.2. Definicion del grupo modular

Recordemos que Homeog(X;0%) es un subgrupo normal de Homeo(X;0Y) y también de

Homeo™ (¥; 9%). Dado que la relaciéon de isotopia “f isotépico a g” es equivalente a que f~'og €
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Homeog (X; 0%). Entonces, las clases de isotopia coinciden con el grupo cociente
Homeo™ (3; %) /isotopia = Homeo™ (£; 9%) /Homeog (X; 9%).
Definicién 4.4. Dada una superficie 3, definimos el Grupo Modular de ¥ como el grupo cociente
Mod(X) := Homeo™ (%; 9%) /Homeog (X; 9X).
Si S es una superficie orientable, entonces podemos definir el Grupo Modular Extendido como
Mod*(S) := Homeo(S; dS) /Homeoy (S; DS).

Observacion 4.5. Ndétese que para una superficie orientable S, existe distincion entre Mod(S) y
Mod®(S) sdlo si S = @. Esto es porque si dS # &, entonces todo elemento f € Homeo(S;S)

preserva la orientacion.

Recordemos que, por convencion, si N es una superficie no orientable entonces Homeo+(N; ON) =
Homeo(N;ON). Por lo tanto, el Grupo Modular y el Grupo Modular Extendido de una superficie

no orientable coinciden.
Naturalmente tenemos las funciones proyeccion

p: Homeo™(%;0%) — Mod(%) pE: Homeo(¥;0Y) — Mod* (D)
y
f — [l f — [£1;
las cuales son homomorfismos de grupos sobreyectivos. Notese que Mod(X) < Modi(E), ya que
los elementos de ambos son clases laterales g - Homeog(X; 9), para algin g € Homeo™ (£;9%) 6

g € Homeo(X; 0%).

Podemos dotar a Mod(X) y a Mod* (S) de la topologia cociente proveniente de la funcién proyeccion
respectiva. En ese caso, deducimos que Mod(X) es un subgrupo cerrado de Modi(E). Recordemos
que la topologia cociente es la mas pequea que hace que cada proyecciéon p y p* sea una funcion

cociente!®. Veremos que con esta nueva topologia, el grupo modular es un grupo topolégico.

Proposiciéon 4.6. Si G es un grupo topoldgico y H es un subgrupo de G, entonces la proyeccion

p: G — G/H es una funcidn abierta.

Demostracion. Soélo hay que notar que si B C G es un abierto, entonces

p'p(B)=B-H=|J Bh
heH

10Una funcién sobreyectiva entre espacios topologicos Q : X — Z es funcioén cociente si, U C Z es abierto si y
sélo si Q71(U) C X es abierto. En particular, una funcién cociente es continua.
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es union de abiertos. Por ser p una funcion cociente, tenemos que p(B) es abierto. O

Procedemos ahora a demostrar que el Grupo Modular es un grupo topolégico. Para ello nos apo-

yaremos en el siguiente resultado.

Lema 4.7. Sean X,Y,Z espacios topoldgicos y suponga que X : Z — 'Y es una funcion, p : X —Y
es una funcion continua tal que p = Ao @, donde Q : X — Z es una funcion que cumple alguna

de las siguientes posibilidades

= () es una funcion cociente,
s @ es abierta sobreyectiva,

s @ es cerrada sobreyectiva.
Entonces \ es una funcion continua.

Demostracion. Dado U C Y abierto, la continuidad de ¢ implica que ¢~ 1(U) = (Ao Q)" 1(U) =
QY (A\"Y(U)) es abierto. Si Q es cociente o abierto, trivialmente A~!(U) es abierto. Esto prueba

que A es continuo en dichos casos.

El caso en que @ sea una funciéon cerrada es anélogo. Notar que la hipdtesis de sobreyectividad se

usé para argumentar que Q(Q71(A)) = A. O

Proposicion 4.8. Dado un grupo topoldgico G y un subgrupo normal H < G, el cociente G/H

con la topologia cociente es un grupo topoldgico.

Demostracion. Por el Lema 3.30 basta ver que la funcion A([f], [g]) = [f]7'lg] = [f'g] es continua

en G/H. Si ¢ denota la composicion de funciones siguiente

p: GxG — G — G/H
(f,9) +— f g — [f'-4g]

entonces ¢ es una composiciéon de funciones continuas, porque G es grupo topologico.

Por otro lado, la funcién ) definida por

Q: GxG@ — GxG
(fr9)  — (/1,19

es sobreyectiva y abierta, pues @ = p x p. El resultado se sigue de que ¢ = Ao @ y del Lema
4.7. O
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Corolario 4.9. Para toda superficie 2, Mod(X) y Mod®(2) son grupos topoldgicos.

Si G es un grupo topoldgico localmente compacto y H < G cualquier subgrupo, entonces G/H es

localmente compacto. Por lo tanto hacemos la siguiente observacion.

Observacion 4.10. En general, el grupo de homeomorfismos, Homeo(X), no es localmente com-

pacto, pues si ¥ es de tipo infinito entonces Mod(X) no es localmente compacto ([1, Teorema 4.2]).

Proposicion 4.11. Para toda superficie 3, el Grupo Modular Ezxtendido Modi(E) es segundo

numerable. En particular, el Grupo Modular, Mod(X), es segundo numerable.

Demostracion. Recordemos que Homeo(X) es segundo numerable. Dado que la funcién cociente
p : Homeo(X;9%) — Mod*(X) es abierto, dada una base numerable {B,,} de Homeo(X; 8%), la
coleccion {p(B,)} conforma una coleccion numerable de abiertos en Mod® (%). De hecho {p(B,)}
es base para Mod® (). Si U es abierto de Mod® (%) y y € U, entonces existe z € Homeo(X; §%)
tal que y = p(z) € U. Pero z € p~}(U), y este tltimo es abierto. Dado que {B,} es base, existe
n € Ncon x € B, C p~1(U). Se sigue que y = p(z) € p(B,) C p(p~*(U)) = U, porque p es
sobreyectiva. Se sigue que {p(B,)} es una base numerable de Mod® (). O

Observacion 4.12. Dado que Mod(X) < Mod®(X) son ambos seqgundo numerables, tenemos en

consecuencia que ambos son separables (Observacion 3.16).

4.3. Conexidad y conexidad por trayectorias en Homeo(X, 0Y)

En nuestra discusién que resta de este escrito tengamos en cuenta la siguiente

Definicion 4.13. Una superficie es de tipo finito si su grupo fundamental es finitamente generado.

En caso contrario, se dice que la superficie es de tipo infinito.

El siguiente teorema tiene consecuencias muy importantes para lo que resta del escrito. Una de-

mostracion general se puede encontrar en [38, Teorema 6.11].

Teorema 4.14. Para toda superficie 3, la componente Homeog(3; 0%) es un subgrupo cerrado de

Homeo(X; 0%).

Para superficies de tipo finito el resultado es méas fuerte ([38, Teorema 6.11]), pues en este contexto
resulta que Homeog (3; 9X) es abierto (y por lo tanto, es cerrado). En consecuencia, Homeog (X; 0%)
coincide con la componente conexa que la contiene. Nétese que esto implica que si 3 es una
superficie de tipo finito, entonces Mod(X) es discreto, esto sera relevante el la Seccion 4.5 en donde

damos una prueba alternativa de que Mod(X) es grupo polaco.
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Se puede dar una demostraciéon elemental del Teorema 4.14 usando el llamado Método de Alexander
[9, Proposicién 2.8] el cual merece unas palabras, pues puede resultar muy ilustrativo para los
interesados en estudiar grupos modulares de superficies (revisar también [37]). Este método describe
un criterio para decidir si un homeomorfismo es isotépico a idx. Una versiéon simplificada, aunque
débil, se puede interpretar de la siguiente manera: si f € Homeo(X;0Y) fija la clase de isotopia de

toda curva cerrada simple de X, entonces f es isotopico a la identidad.

El método de Alexander tiene validez para todas las superficies, salvo una lista pequena de ellas.
Para superficies de tipo infinito, esta garantizada su validez (ver [13,15]). Mientras tanto, si X es
una superficie de tipo finito, la superficie debe satisfacer 3¢ — 3 +n + b > 4 si ¥ es orientable, 6
g+n+0b2>5si X esno orientable, donde g denota el género, n el nimero de ponchaduras y b el

namero de componentes frontera de la superficie (ver [13, Teorema 2.1]).

Una consecuencia directa de la siguiente proposicion y de que Homeog(X; 9%) es cerrado es que
Modi(E) es Hausdorff. Recordar que por el Teorema 3.20, una consecuencia adicional sera que el

Grupo Modular tiene una métrica invariante izquierda compatible con la topologia.

Proposicion 4.15. Sea G un grupo topoldgico y suponga que H es un subgrupo normal G. Entonces

H es cerrado en G si y sdlo si G/H es Hausdorff.

Demostracion. = Supongamos que H es cerrado. Para ver que G/H es Hausdorff basta probar

que la diagonal

Ag/u = {9l [h]) € G/H x G/H : [g] = [h]}

es cerrado en G/H. Si p: G — G/H denota la proyeccion a las clases laterales, entonces

p e} =H
es cerrado. Como p es funcion cociente, se tiene que {[e]} es cerrado. Luego, dado que G/H

es un grupo topologico, la funcién

At G/HxG/H — G/H
(lgl, [n]) — [g7'h]

es continua. Asf, A\~ {[e]} = Ag/n es cerrado.

<= Supongamos ahora que G/H es Hausdorff. En todo espacio que es Hausdorff, todo subespa-
cio unipuntual es cerrado. De esta manera, {[e]} es cerrado en G/H. Como p es continua,

inmediatamente obtenemos que
p e} = H

es cerrado en G. O
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4.4. El grupo modular es un grupo polaco

Hasta este momento hemos visto que Modi(E) hereda de Homeo(X; 9%) las propiedades de ser
grupo topologico, Hausdorff, segundo numerable y separable. En gran medida estas propiedades
fueron heredadas directamente porque Modi(E) es un cociente de Homeo(3; 9%) por un subgrupo.
Adicionalmente Modi(E) también hereda de Homeo(X;9X) la propiedad de ser grupo polaco.
Aunque contrario a las propiedades mencionadas, la demostracién de ser polaco recae sobre el
Teorema de Sierpinski ([19, Teorema 8.19]), que es un resultado importante de la Teoria Descriptiva
de Conjuntos. Nos enfocaremos en explicar sélo un breve panorama para quien busque el camino

a la demostracion.

En la seccién 4.5 explicamos una manera alternativa a esta para probar que el Grupo Modular
Extendido (de una superficie orientable con frontera vacia) es un grupo polaco. Lo esencial de este
enfoque reside en ver a Modi(E) como el grupo de automorfismos del grafo de curvas, un objeto

que ha sido piedra angular en el estudio de grupos modulares.

Teorema 4.16 (Sierpinski). Sean X un espacio polaco y'Y un espacio separable y metrizable.
Suponga que existe una funcion f : X — Y continua, abierta y sobreyectiva. Entonces Y es un

espacio polaco.

Recordemos que la proyeccion p : Homeo(3; 0¥) — Modi(Z) es continua, abierta y sobreyectiva,
donde Homeo(X; 9%) es un grupo polaco. Por otro lado, sabemos que Modi(Z) es separable, por

lo que basta demostrar que es metrizable.

Proposicion 4.17. Para toda superficie 33, el grupo modular extendido, Modi(E), es metrizable.

Demostracion. Recordemos que Homeog(X;0%) denota a la componente arcoconexa de
Homeo (X;03) que contiene a ids. Por el Teorema 4.14, la componente conexa de la identidad
de Homeo(X;9Y) es subgrupo cerrado de Homeo(X;0%). Por la Proposicion 4.15, el cociente
Mod*(X) = Homeo(%; 9%)/Homeoy(X; d¥) es Hausdorff. Por otro lado, Mod*(X) es segundo
numerable (Proposicion 4.11). Por el Teorema 3.20, existe una métrica invariante izquierda com-

patible con la topologia de Modi(Z). O

Por el Teorema de Sierpinski (Teorema 4.16) y la Proposicion 4.17 obtenemos que el Grupo Modular
Extendido de una superficie es un grupo polaco. Al ser Mod(X) un subgrupo cerrado de Modi(E),
la propiedad de grupo polaco es heredada también a Mod(X). Esto justifica el resultado principal

de esta seccion.

Teorema 4.18. Para toda superficie 3, el Grupo Modular Ezrtendido, Modi(Z), €s un grupo

polaco. Asi mismo, el Grupo Modular, Mod(X), es un grupo polaco.
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4.5. Prueba alternativa usando el grafo de curvas

Una de las herramientas més usadas para estudiar al Grupo Modular de una superficie ha sido
a través del paradigma del grafo de curvas (Definicion 4.22). En esta seccion final usaremos una
fuerte relacion del Grupo Modular con el grafo de curvas (se puede ver al grupo modular extendido
de casi toda superficie como el grupo de automorfismos del grafo de curvas, Teorema 4.24), para
deducir de esto que el Grupo Modular es polaco. En nuestra argumentacion so6lo nos ocuparemos
de superficies orientables de tipo infinito, pues para superficies de tipo finito, el argumento es més
sencillo sin necesidad de utilizar el grafo de curvas (vea los comentarios al final de esta seccion).
En lo que resta de este apartado supondremos que ¥ es una superficie orientable de tipo infinito
y con frontera vacia. El grafo de curvas seré tal que sus vértices son representados por clases de

isotopia de curvas cerradas simples en la superficie. Recapitulamos estos conceptos brevemente.

Definicién 4.19 (Curvas cerradas simples). Una curva cerrada simple en una superficie X es un

encaje v : St — %,

Asi como podemos decir que dos homeomorfismos son isotopicos cuando podemos deformar uno en
el otro realizando una trayectoria continua de homeomorfismos, asimismo podemos deformar una
curva cerrada simple en otra por medio de una trayectoria continua de curvas cerradas simples,
conocida como isotopia de curvas cerradas simples. La principal diferencia con la isotopia de ho-
meomorfismos, es que esta toma en cuenta una transiciéon de funciones, mientras que una isotopia
de curvas cerradas simples serd una isotopia entre conjuntos: precisamente sobre sus imagenes. Lo

que se gana al identificar una curva con su imagen es que se ignora por completo su orientacion.

Definicién 4.20 (Isotopfa de curvas cerradas simples). Dos curvas cerradas simples o, 3 : St — %
son isotopicas si existe una funcion continua H : S' x [0,1] — ¥ tal que Ho(S') = o(S?), H (S?) =

B(SY) y para cada tiempo t € [0,1], la curva Hy : S' — ¥ es una curva cerrada simple.

Para definir el grafo de curvas, tomaremos en cuenta sélo un tipo de curvas cerradas simples que

conocemos como curvas esenciales, y pueden ser definidas incluso si 9% # &.

Definicién 4.21 (Curva esencial). Una curva cerrada simple o : S* — ¥ se dice esencial si no es

homotdpicamente trivial ni homotdpica a la frontera de un disco menos un punto.

La relacién de isotopia de curvas también es una relacion de equivalencia. Dado que ignora el hecho
de que im(«) = im(@), donde @ es el camino recorrido en el sentido inverso, la isotopia de curvas
conforma clases de equivalencia de curvas esenciales isotopicas sin orientacion. A dicho conjunto
de clases de curvas lo denotamos por C(O)(Z)7 y conformaré el conjunto de vértices del grafo de

curvas en X.
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Definicién 4.22 (Grafo de curvas). El grafo de curvas de la superficie 33, denotado por C(X), es
el grafo cuyo conjunto de vértices es C(O)(E), el conjunto de todas las clases de isotopia de curvas
cerradas simples esenciales y no orientadas. Dos vértices del grafo de curvas a,b € C(O)(Z) estan

conectados por una arista si existen representantes a € a,3 € b conaNp = .

El grafo de curvas de X es conexo, mas atn, C(X) tiene didmetro 2. Esto se puede ver de la siguiente
manera: como ¥ es una superficie de tipo infinito, si a y  son dos curvas esenciales en ¥ arbitrarias

entonces existe una tercera curva -y que no intersecta ni a « ni a 3, todo esto incluso hasta isotopia.

En el contexto de superficies de tipo finito, el grafo de curvas tiene propiedades geométricas més
ricas, es Gromov hiperbolico y tiene didmetro infinito, las cuales lo hacen idéneo para estudiar la
geometria a larga escala del grupo modular y del espacio de Teichmiiller asociado a la superficie.

En esta direccion, recomendamos las lecturas [26,34].

Topologia de permutacion en el grupo de automorfismos de C(X). Cualquier grafo tiene
asociado su grupo de automorfismos, en nuestro caso, recordamos que el grupo de automorfismos
del grafo de curvas C(X), denotado por Aut(C(X)), consiste en todas las biyecciones ¢ : C(*) (%) —
c (X) que preservan la incidencia, es decir, dos vértices a y b estan conectadas por una arista si,

y solo si p(a) y ¢(b) estan conectadas.

Ahora imponemos una topologia sobre el grafo de curvas. Dado un subconjunto de vértices A C

CO(2), el estabilizador puntual de A se define como

U(A) = {y € Aut(C(%)) : ¢([a]) = [a], V[a] € A}.

La coleccion de todas las traslaciones {p-U(A)}, con A C C(O)(X) finito y ¢ € Aut(C(X)) constituye

una base para una topologia de Aut(C(? (X)), la cual se conoce como la topologia permutacion.

Mas adelante demostraremos que el Grupo Modular Extendido, Modj:(E)7 es isomorfo, como grupo
topologico, a Aut(C(X)) (Teorema 4.24). De este hecho y junto al resultado siguiente se podra

deducir facilmente que el Grupo Modular Extendido de ¥ es un grupo Polaco.

Teorema 4.23. Para toda superficie 3, el grupo de automorfismos del grafo de curvas de 3,

Aut(C(X)), es un grupo polaco.

Esbozamos brevemente la demostracion del Teorema 4.23. El grupo simétrico infinito, denotado por
Sym(N), esta definido como el grupo de todas las biyecciones N — N con la operacion composicion
de funciones. Por otro lado, el espacio NV de todas las funciones N — N con la topologia producto,
donde a los naturales N se les asigna la topologfa discreta, es un espacio polaco. Claramente, el

grupo simétrico infinito es un subespacio de NV. Resulta que con esta topologia el grupo simétrico
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infinito Sym(N) es un grupo polaco; esto es consecuencia de ver a Sym(N) como subconjunto*! G
de NN, Para consultar los detalles de todos estos hechos recomendamos al lector consultar la tesis
de maestria de L. Elliott [8]. Ahora, el conjunto de vértices del grafo de curvas es numerable, de
esta manera podemos ver al grupo Aut(C(X)) como subgrupo del grupo simétrico infinito Sym(N).
Un teorema de P. J. Cameron ([4, Theorem 5.8]) permite concluir que Aut(C(X)) es cerrado en el

grupo simétrico infinito y, por lo tanto, es un grupo polaco.

El grupo modular extendido como el grupo de automorfismos del grafo de curvas. El
grupo modular extendido Modi(Z) actia de manera natural sobre el grafo de curvas C(X): en el

conjunto de vértices esta accidon se ve de la siguiente manera,

Mod® () x cO(x) — ¢cO(D)
([f1; [a]) — [foal.

Esta accion esta bien definida, pues todo homeomorfismo de ¥ transforma curvas esenciales en
curvas esenciales. Méas todavia, la accién es por automorfismos, pues si denotamos por ¢ :
CO(%) = cO(%), [a] — [f o al, a la funcion inducida por el homeomorfismo f € Homeo(X; 0%)
entonces @[y es un automorfismo con inversa go[}]l = ¢[y-1]. En resumen tenemos un homomorfismo

de grupos

T Mod®(¥) —  Aut(C(%))
[f] — eLf-

En la teoria de grupos modulares, una de las conexiones mas importantes y bellas, nos dice que
el homomorfismo de grupos 7 es un isomorfismo de grupos topolégicos. La importancia de esta

conexion queda manifiesta en la diversidad de resultados que de ésta se derivan, véase [17].

Teorema 4.24. Sea ¥ una superficie orientable de tipo infinito con frontera vacia. Entonces

7 : Mod®(2) — Aut(C(X)) es un isomorfismo de grupos topoldgicos.

Demostracion. El Método de Alexander para superficies de tipo infinito [15] verifica que el mor-
fismo 7 es inyectivo. La prueba de la sobreyectividad de m que esbozamos a continuacion es una
adaptacion del argumento en el articulo [14]; la sobreyectividad de 7 fue establecida de forma in-
dependiente en [3]. Suponga que ¢ : C(X) — C(X) es un isomorfismo simplicial del grafo de curvas
de ¥. Sea S; C Sy C --- una saturacion principal'? de ¥ por subsuperficies de tipo finito y denote

por B al conjunto de todas las curvas frontera de las superficies .S;. El primer paso clave en la

1Un subconjunto de un espacio topolégico X es Gy si es igual a la interseccién numerable de abiertos en X.

12Dada una superficie de tipo infinito 3, se dice que una sucesiéon {S;};cn de subsuperficies de ¥ de tipo finito
es una saturacion principal de ¥ si ¥ = U%-EN S; v para cada ¢ € N se satisfacen las siguientes condiciones: (i) el
interior de S; est4 contenido en el interior de S;41, (ii) 9S; \ 0% es una unién disjunta finita de curvas esenciales
separadoras en ¥ y, (iii) el interior de cada componente conexa de S; 11\ S; tiene suficiente complejidad topolégica,
para detalles véase [14, Definicién 2.8].
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prueba es demostrar que existe un homeomorfismo f : ¥ — X tal que ¢ coincide con 7([f]) en
B, es decir, ¢([B]) = ¢[([]) para todo € B. La herramienta principal para establecer esto es
el uso del grafo de adyacencia (|14, Definicion 2.7]) asociada a una descomposiciéon en pantalones
de S, véase también [14, Proposcion 3.1]. El siguiente paso es demostrar que la restriccion de ¢
a C(5;) define una funcion simplicial inyectiva ¢; : C(S;) — C(f(S;)). Aplicando el trabajo de K.
Shackleton sobre la rigidez combinatoria del grafo de curvas de superficies de tipo finito se obtie-
nen homeomorfismos g; : S; — f(S;) que coinciden con ;. La prueba finaliza mostrando que esta
coleccion de homeomorfismos induce un homeomorfismo global h : ¥ — ¥ tal que 7([h]) coincide

con ¢ en todo C(X).

Hasta este punto, el morfismo de grupos m es un isomorfismo de grupos. Podemos observar que 7
es continua; en efecto, si A := {[a1],...,[an]} es un conjunto finito de vértices del grafo de curvas,
entonces 7 (U(A)) consiste de todas las clases de isotopia de homeomorfismos [f] € Mod® (%)
tales que foq; es isotopica a «; para todo i = 1,2,...,n. Consideremos, para cada i =1,2,...,n,
una vecindad regular de «;, N(«;) (la cual es homeomorfa a un anillo encajada en ¥), y definamos
el abierto [ov;, N(a;)] == {[g] € Mod®(2) | g(ci) € N(a)}. La continuidad de 7 se deduce de

observar que (), [a;, N(;)] forma una vecindad de [Ids] que coincide con 7~ (U(A)).

Para ver la continuidad de 7=, tomemos ahora [K,U] = {[g] € Mod* (%) | g(K) C U} vecindad
de [Idg] con K C ¥ compacto y U C ¥ abierto. Sin pérdida de generalidad se puede asumir
que K C U. El Método de Alexander ([9, Proposicion 2.8]) para superficies de tipo finito permite
asegurar la existencia de una coleccion finita {1, . .., a,, } de curvas esenciales contenidas en K tales
que [Ids] € N[, N(ew)] C [K, U] donde N(c;) es una vecindad regular de «; completamente
contenida en K. Haciendo A igual al conjunto de clases de isotopia de las curvas a; podemos ver

que U(A) C (m=1)7Y([K,U]). De esto se puede concluir que la inversa de 7, 7!, es continua. [J

Superficies de tipo finito. Convencernos de que el Grupo Modular Extendido es un grupo
polaco es mas directo en el caso de superficies de tipo finito. Si ¥ es una superficie orientable
de tipo finito con frontera vacia, podemos usar nuevamente el Método de Alexander para ob-
tener que Modi(E) es discreto'. La razén es que la componente arcoconexa de la identidad,
Homeo(X; 0%), es abierto en el grupo de homeomorfismos. En efecto, por la Proposicion 2.8 en [9]
existe una coleccion finita {a, ..., o, } de curvas esenciales en ¥ tales que Ids; € (i, (a;, N(;)) C
Homeog (2; d%) donde N (o) es una vecindad regular de ;. Ahora, el hecho de que Mod® (%) sea
discreto implica que éste sea numerable pues hemos visto que, en general, Modi(Z) es segundo
numerable. Esto a su vez implica que Mod® (%) es localmente compacto. Por [7, Observacion 2.B.1]

se concluye que el grupo Modular Extendido es un grupo polaco.

13El Método de Alexander es aplicable para todas las superficies de tipo finito, excepto una cantidad finita de
ellas. Para ver que el grupo modular extendido es discreto en los casos restantes, recomendamos al lector consultar

[9].
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Cabe destacar que la conexion del grupo modular extendido con el grafo de curvas, es decir, el
Teorema 4.24, es cierto para casi todas las superficies de tipo finito. Al ser un resultado clasico en

la teorfa de grupos modulares, este teorema lleva por nombre “Teorema de Ivanov’([16,21,23]).

Superficies no orientables. El paradigma de ver al grupo modular extendido como el grupo de
automorfismos del grafo de curvas también es vélido para superficies no orientables; recomendamos
consultar [13] y las referencias contenidas alli. Una vez establecido este resultado, la demostracion
de que el grupo modular extendido es grupo polaco es exactamente igual a la que hemos descrito

aqui para superficies orientables.
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RESUMEN

Los esquemas de subdivisiéon son una herramienta muy uti-
lizada en graficos por computadora y modelado geométrico,
permitiendo la generacién de curvas y superficies suaves a
partir de datos discretos. Aunque los esquemas de subdi-
vision lineales son muy utilizados, los esquemas no lineales
ofrecen mayor flexibilidad, permitiendo el manejo de datos
con irregularidades y facilitando la preservaciéon de formas.
Ademas, estos esquemas son tutiles para abordar subdivision
en variedades, corregir las oscilaciones de Gibbs alrededor de
singularidades y en general intentar abordar problemas don-
de los enfoques lineales no aportan resultados satisfactorios.
Este articulo revisa 25 anos de contribuciones relacionadas
con la construccion, el analisis y el uso, en diversas aplica-

ciones, de esquemas de subdivisién no lineales.
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1. Introducciéon

Los esquemas de subdivisién son procesos iterativos que permiten construir curvas o superficies
suaves a partir de un conjunto discreto de puntos. En aplicaciones graficas por computadora y mo-
delado geométrico, estos esquemas se han convertido en una herramienta esencial. Los esquemas de
subdivisiéon tradicionales son lineales, lo que implica que los nuevos puntos generados son combina-
ciones lineales de puntos vecinos, facilitando el analisis matemético mediante teorias clasicas como
las matriciales o la teoria de Fourier. Sin embargo, existen muchas aplicaciones que exigen mayor
flexibilidad para considerar datos mas complejos e irregulares, lo que ha motivado el desarrollo de
esquemas de subdivision no lineales. A diferencia de los esquemas lineales, los esquemas no lineales
pueden: adaptarse a la geometria local de los datos, ajustarse mejor a situaciones donde los datos
contienen ruido, cambios pronunciados o incluso irregularidades, permiten trabajar directamente
en variedades, preservan propiedades geométricas intrinsecas y pueden adaptarse la presencia de

discontinuidades no generando oscilaciones tipo Gibbs, [31], 2002.

Estos esquemas se enmarcan dentro de las areas de analisis numérico, teoria de la aproximacion y
modelado geométrico computacional, con conexiones estrechas a las ondiculas y a la representaciéon

multirresolucion.

Mas concretamente, los esquemas de subdivision son procesos iterativos disenados para generar
curvas o superficies suaves a partir de un conjunto discreto de puntos de control p(®. En cada
paso, una regla de refinamiento S reemplaza los puntos {p(k)} en el nivel k£ por una secuencia mas

densa {p* TV} en el nivel k + 1, es decir:
p*D = S(p).

En los esquemas lineales, las nuevas posiciones se obtienen mediante un operador lineal S. Sin
embargo, estos métodos presentan limitaciones cuando los datos contienen irregularidades, rui-
do o discontinuidades, ya que pueden introducir oscilaciones no deseadas o distorsionar formas

geométricas basicas (circulos, esferas).

Por el contrario, los esquemas de subdivisiéon no lineales introducen reglas de refinamiento adap-

tativas que dependen de la geometria local de los datos. De este modo, permiten:

» Trabajar directamente sobre variedades o espacios no euclidianos.
» Preservar formas geométricas intrinsecas (circulos, esferas, cilindros).
= Reducir efectos no deseados como las oscilaciones de Gibbs en presencia de discontinuidades.

= Mejorar la flexibilidad en aplicaciones donde los enfoques lineales no son satisfactorios.
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Estos esquemas tienen relevancia practica en areas como el modelado geométrico, la animacién
por computadora, el disefio asistido por ordenador (CAD), el procesado de imégenes y el analisis

numérico de ecuaciones en derivadas parciales.

Figura 1: A partir de los puntos de control se itera un algoritmo de subdivisién no lineal en la
izquierda y uno lineal en la derecha. Observamos como el algoritmo lineal produce oscilaciones tipo
Gibbs debajo de la cabeza.
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Figura 2: En esta figura se muestran las reconstrucciones de unos datos discontinuos con algoritmos
de subdivisién lineales (izquierda) y no lineales (derecha). Observamos como los algoritmos lineales
producen oscilaciones tipo Gibbs en presencia de discontinuidades.
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Esta revision la hemos estructurado en cinco secciones monotematicas y una tltima de conclu-
siones. La segunda seccion aborda algunos trabajos relacionados con esquemas de subdivisién en
variedades. La preservacion de formas geométricas sera estudiada en la secciéon tercera. La si-
guiente seccién estd dedicada a la adaptacion de los esquemas de subdivisién a la presencia de
discontinuidades. La seccién cinco aborda los esquemas de multirresolucién no lineales que son
una generalizacion de las ondiculas (wavelets) y que son altemente usadas en procesamiento de
imégenes. Finalmente, en la sexta seccion se repasan algunas de las nuevas teorias desarrolladas
para el anélisis de la convergencia, la regularidad y la estabilidad de los esquemas de subdivisién

no lineales en distintos contextos.

2. Esquemas de subdivision para variedades

Los esquemas de subdivision lineales tradicionales estan formulados para datos que residen en
espacios euclidianos. Sin embargo, muchas aplicaciones requieren trabajar con datos que residen
en variedades. En este contexto, los esquemas de subdivisiéon no lineales son particularmente tutiles
ya que permiten definir las reglas de subdivisiéon directamente sobre la geometria de la variedad,
respetando las propiedades intrinsecas de la superficie o espacio subyacente. Esto es crucial, por
ejemplo, en el modelado de superficies en geometrias no planas, en la interpolacién de datos en
espacios curvados, en graficos por computadora cuando se modelan superficies curvas o en la

reconstruccion de formas tridimensionales complejas, [54], 1998.

El principal desafio en estos esquemas radica en definir reglas de interpolacién y refinamiento
que preserven las propiedades topologicas y métricas de la variedad. Técnicas como el uso de
proyecciones locales, interpolacién geodésica o métodos basados en paralelismo de transporte han
sido exploradas para garantizar que los nuevos puntos generados por el esquema sigan respetando

la estructura geométrica subyacente.

A continuacion, revisaremos algunas aportaciones interesantes:

= Ajuste de Clotoides y Subdivisiéon Hermitica Geométrica: Ulrich Reif y Andreas Weinmann

[60], 2021.

Este articulo trata sobre la subdivision hermitica geométrica para curvas planas, donde se
refina iterativamente un poligono inicial usando informacion adicional de tangentes o vectores
normales en los vértices. El componente clave para los esquemas de subdivisiéon propuestos
estd basado en el promedio de clotoides. Se propone una nueva estrategia para aproximar
clotoides interpoladoras hermiticas, la cual se utiliza para definir los anélogos geométricos

hermiticos de los conocidos esquemas de Lane-Riesenfeld y el esquema de cuatro puntos.

Concretamente, el objetivo principal es generar curvas planas mediante pares de puntos y
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vectores tangentes o normales asociados. En lugar de promediar puntos y vectores tangentes
de manera lineal, como en los esquemas tradicionales, se propone un promedio basado en
clotoides. Las clotoides son curvas con curvatura lineal, y su uso permite obtener una mejor

representacion geométrica de las formas naturales de las curvas.

Se introduce el problema de interpolacion Hermitica entre dos puntos py y p1, con angulos

tangentes ag v a1. El esquema propuesto emplea clotoides, cuyas ecuaciones dependen de la

’
curvatura x de la curva, definida como x = <-, donde v = [p| es la velocidad de la curva y

o' la derivada del dngulo tangente.
Para aproximar la interpolacién hermitica con clotoides, se utiliza la funciéon de angulo tan-

gente ((t), que puede escribirse como:

B(t) = Bodo(t) + Biy2¢1/2(t) + Bio(t)

donde las funciones de Lagrange ¢o(t), ¢1/2(t) y ¢1(t) son polinomios cuadraticos.

La féormula aproximada para resolver este problema se describe mediante una funciéon F,
que aproxima el dngulo intermedio 3,5 y la velocidad v. Esta aproximacion es eficiente en

términos de computacion y produce un error pequeno en la interpolacion.

Se presentan ejemplos numeéricos que ilustran la eficiencia de los esquemas de subdivision
propuestos. En particular, los esquemas basados en clotoides generan curvas suaves que pre-
servan las caracteristicas geométricas deseadas, como la continuidad de la tangente y una
distribucién de curvatura méas uniforme en comparacién con otros métodos basados en circu-

los.

Hermite multi-ondiculas para datos en variedades: Mariantonia Cotronei, Caroline Moosmii-

ller, Tomas Sauer, Nada Sissouno, [22], 2023.

Este articulo presenta una construcciéon de multiwavelets interpolatorios de Hermite para
funciones que toman valores en geometrias no lineales, como variedades Riemannianas o
grupos de Lie. Los wavelets adaptados a datos con valores en variedades tienen aplicaciones

importantes en la compresion y el procesamiento de senales.

La clave es la conexion entre esquemas de subdivision y wavelets, usando un enfoque de
prediccién-correccion basado en esquemas de subdivision de Hermite. Se demuestra que los

coeficientes de los wavelets decaen de manera similar al caso lineal.

Un esquema de subdivision de Hermite lineal se define por:

Pt = Sapp™,

donde p{™ es una secuencia de datos y S A[n] € un operador asociado con la méscara A[n]. Este
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esquema reproduce funciones como polinomios o exponenciales, asegurando la convergencia

de las secuencias generadas.

El sistema de multiwavelets se construye usando la transformacion:
SA[n]an(n) = Dn+1p(n+l)»

donde D,, es una matriz de escalado. El objetivo es preservar las propiedades de los wavelets

lineales en el contexto de datos sobre variedades.

En el esquema de prediccién-correccion, la reconstruccion se basa en:

Cnt1,2i = SAM)Cnyis  Ant1,2i41 = Cnt1,2i41 — SAn]Cnyi-

Este esquema garantiza que la correcciéon mediante d, anule los elementos no deseados en

los datos originales.

Para extender estos conceptos a datos con valores en variedades M, se utilizan el transporte

paralelo y el mapa exponencial:

—1
by = expmj Z aj—2k eXpmj (pk) ’
kez

donde exp es el mapa exponencial, y el transporte paralelo PP asegura que los calculos se
realicen en el marco adecuado de la variedad.

El mapa exponencial en un punto m € M:
exp,, : ImM — M

lleva un vector tangente v € T,,, M al punto alcanzado al caminar en M siguiendo la geodésica

con velocidad inicial v.

El decaimiento de los coeficientes de wavelets en el caso de datos sobre variedades sigue una

propiedad similar al caso lineal:
ldn]fle < C272"

Esto asegura que los wavelets pueden representar eficientemente los datos manteniendo una

tasa de compresion adecuada.

Este trabajo extiende los wavelets tipo Hermite a datos con valores en variedades, mante-
niendo propiedades fundamentales como el decaimiento de los coeficientes. Esta técnica tiene

aplicaciones en el procesamiento de senales geométricas y la compresion de datos.
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= Esquemas de subdivision para datos valorados en variedades con simetria temporal: Du-

champ, Xie y Yu, [27], 2016.

Este trabajo investiga la suavidad de esquemas de subdivision no lineales para datos valorados
en variedades, conocidos como esquemas de subdivisién con un tnico punto base. Estos
esquemas surgen en la construccion de transformaciones tipo wavelet para datos definidos
sobre una variedad M, como las matrices simétricas positivas. Se estudian las condiciones
de suavidad C* y como los esquemas de subdivision garantizan simetria temporal pero no
espacial. Se estudian las condiciones de suavidad C* y como los esquemas de subdivision

garantizan simetria temporal pero no espacial.

Se define un esquema de subdivisién sobre una variedad M como:

(ST)2nto = €xp,, (Z a2y o108, (zh,_g)> , 0=0,1, heZ,
¢
donde exp,, es el mapa exponencial en el punto zp, log,, es su inverso local, y ay es la

mascara de un esquema de subdivision lineal subyacente Siiy,.

Se explora la equivalencia de suavidad entre el esquema no lineal S y su version lineal Sy,.
Se sabe que la equivalencia C? se logra si un cierto tensor asociado al mapa de retraccion f,

llamado Py, se anula:

1 1
Py(u) = Fo 2 (u, Fo2(u,u)) + §F1,2(U7u,u) ~5 0,3(u, u,u),

donde F, g representa derivadas parciales del mapa f y Py = 0 garantiza la equivalencia C3.

El trabajo analiza como el mapa de retraccion f define una conexiéon afin sin torsion en M,

con coeficientes de conexién dados por:

92k (2,0)

Tk —
K 8X18Xj ’

y como la simetria temporal (invariancia ante ¢ — —t) influye en la equivalencia C*. Si el
esquema lineal Sy, tiene simetria temporal dual, esto implica que Py = 0 y se mantiene la
suavidad C* sin restricciones adicionales sobre el comportamiento de cuarto orden del mapa

de retraccion f.

El articulo muestra que los esquemas de subdivisién con un tinico punto base pueden alcan-
zar una suavidad hasta C* bajo ciertas condiciones. Sin embargo, para grados mayores de
suavidad, la curvatura juega un rol esencial, limitando la aplicabilidad de estos esquemas a

ciertos tipos de variedades con curvatura cero.

En conjunto, los trabajos de Reif y Weinmann [60], Cotronei et al. [22], y Duchamp et al.

[27] muestran la evolucion de los esquemas de subdivision desde curvas planas basadas en
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clotoides, pasando por extensiones a variedades Riemannianas, hasta alcanzar anélisis de
suavidad en contextos mas generales. Una diferencia clave es que mientras los dos primeros
se enfocan en la construccién geomeétrica, el tercero pone énfasis en condiciones de regularidad

C*. Asi, puede verse una progresion natural desde lo constructivo hacia lo analitico.

Finalizamos, con cuatro aportaciones independientes de gran interés y seguimiento:

= Esquemas de subdivision con dilatacion general en el contexto geométrico y no lineal: Andreas

Weinmann, [65], 2012.

Este articulo investiga esquemas de subdivision con dilataciéon general en entornos geomé-
tricos y no lineales. Los esquemas de subdivision tradicionales suelen utilizar un factor de
dilatacion fijo, pero el autor amplia este enfoque permitiendo dilataciones generales, lo que
resulta en un mayor control sobre el refinamiento. El trabajo analiza la convergencia y la
regularidad de estos esquemas en espacios métricos y geométricos, haciendo hincapié en su

aplicabilidad en la interpolacién de datos y en el diseno de curvas y superficies no lineales.

= Sobre el esquema de subdivision log-exp de Donoho: eleccion de retraccion y simetria tem-

poral: Esfandiar Nava-Yazdani y Thomas P. Y. Yu, [57], 2006.

Este articulo examina el esquema de subdivision log-exp de Donoho, enfocado en la eleccién
de la retraccién y la simetria temporal. El esquema log-exp es un método no lineal que
utiliza funciones logaritmicas y exponenciales para suavizar y refinar curvas y superficies.
Los autores investigan diferentes opciones de retracciéon para optimizar el comportamiento
del esquema y analizan su simetria temporal, lo que es clave para garantizar la estabilidad

en aplicaciones de procesamiento de seniales y modelado geométrico.

» Ondiculas interpolatorias en variedades: Philipp Grohs y Johannes Wallner, [42], 2009.

Este articulo introduce una nueva clase de wavelets interpolatorios disenados para trabajar
con datos valorados en variedades. Los wavelets tradicionales son herramientas poderosas
para representar funciones y senales en el dominio euclidiano, pero los autores extienden este
concepto al caso de datos ubicados en espacios més generales, como las variedades. El articulo
presenta un analisis teérico de la construccion y aplicacion de estos wavelets, con especial
énfasis en la interpolacion de datos geométricos, con aplicaciones potenciales en graficos por

computadora y procesamiento de datos cientificos.

= Analogos logaritmico-exponenciales de esquemas de subdivision univariados en grupos de Lie

y sus propiedades de suavidad: Philipp Grohs y Johannes Wallner, [41], 2007.

Este articulo explora los analogos log-exponenciales de los esquemas de subdivisiéon univa-
riados dentro del contexto de los grupos de Lie. Los autores investigan cémo los esquemas
de subdivisién pueden adaptarse para operar en grupos de Lie, manteniendo propiedades

de suavidad similares a los esquemas tradicionales. Este enfoque es ttil en areas donde las
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simetrias continuas, descritas por los grupos de Lie, juegan un papel importante, como en

fisica tedrica y simulaciones geométricas.

Tabla 1: Comparaciéon de esquemas de subdivision en variedades.

Autores Tipo de variedad Aporte distintivo
Reif y Weinmann Planas Preservacion de tangentes y curvatura
Cotronei et al. Riemannianas, Lie Extension de wavelets a datos geométricos
Duchamp et al. Positivas simétricas Equivalencia con esquemas lineales
Weinmann Geométricas generales Control de refinamiento en espacios métricos

3. Preservacion de formas geométricas

En este contexto, “preservacion de formas geométricas” significa que, bajo la iteracion del esquema
de subdivision, ciertas figuras béasicas permanecen invariantes. Es decir, si los puntos de control
iniciales pertenecen a una de estas formas, entonces la curva o superficie limite también lo hara,
incluso tras infinitas iteraciones. Una de las ventajas méas importantes de los esquemas de subdivi-
si6n no lineales es su capacidad para preservar formas geométricas particulares, como circulos en
2D o esferas en 3D, entre otras formas interesantes. Esto es especialmente relevante en el contexto
de modelado geométrico y graficos por computadora, donde la precisiéon en la representacion de
estas formas es critica. En los esquemas lineales, las formas geométricas suaves como los circulos y
esferas a menudo se distorsionan a medida que se refinan los puntos debido a la naturaleza rigida
y global de las reglas de subdivisién. Por ejemplo, en un esquema lineal, un circulo podria volverse

ligeramente ovalado o distorsionado debido a errores acumulativos.

Los esquemas no lineales abordan este problema ajustando las reglas de subdivisiéon localmente, de
modo que los puntos generados respeten las propiedades geométricas de las formas originales. En el
caso de un circulo, por ejemplo, los esquemas no lineales pueden mantener la curvatura constante
a lo largo de toda la forma, lo que asegura que el refinamiento sucesivo no altere su estructura

global [50], 1996.

Para esferas en 3D, se pueden aplicar técnicas similares, garantizando que las nuevas subdivisio-
nes mantengan las propiedades de simetria y curvatura de la esfera original. Algunos esquemas
no lineales utilizan operadores geométricos especificos que se ajustan al radio local de la esfera,
permitiendo que los nuevos puntos permanezcan sobre la superficie esférica en lugar de desviarse
hacia fuera o hacia dentro. Esto es fundamental en aplicaciones como la animacion de personajes,
simulaciones fisicas y disefio de objetos tridimensionales, donde la precisién en la representacion

de esferas y otras formas geométricas basicas es esencial [23], 1997.
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A continuacion, revisaremos algunas aportaciones en este contexto:

s Esquema de Subdivisién Interpolatoria Hermitica basado en Splines de Bernstein Bézier:

Mahendra Kumar Jena, [49], 2021.

Este articulo introduce un nuevo esquema de subdivisiéon interpolatoria Hermitica no lineal
para la interpolacién de curvas, construido a partir de un spline racional de Bernstein Bézier.
El esquema permite interpolar tanto los valores de la funcién como sus derivadas. Se presenta
un analisis de convergencia, reproduccion de polinomios y propiedades de preservacion de la
forma. Se demuestra que las funciones limite generadas por el esquema son globalmente C*
vy que el esquema también reproduce polinomios cuadréaticos, preservando la monotonia y la

convexidad.

El esquema Hermitico es una técnica recursiva para calcular una funcion ¢(z) y sus derivadas.
Se parte de una funcién inicial fy : Z — R, donde el primer componente corresponde a
los valores de ¢, el segundo a su derivada ¢, y asi sucesivamente. La regla de subdivision

tiene la forma:

Fasa (D) = Al = 2) fu(d)

jEL
donde A(%) es una matriz de méscara y f, () es la secuencia refinada en el paso n.

El esquema se construye a partir de los polinomios de Bernstein Bézier racionales de grado

2. Para un intervalo [a,b], las coordenadas baricéntricas de un punto z se definen como

bo(x) = lg:—‘z y bi(z) = §==. Los polinomios de Bernstein Bézier son:

Bo(z) = (bo(2))?,  Bi(z) = 2bo(x)bs(2), Ba(w) = (bi(2))

Con esto, los polinomios de Bernstein Bézier racionales se escriben como:

donde wy, w1, w2 son los pesos.

El esquema es C'-convergente y reproduce polinomios cuadraticos cuando se eligen adecua-
damente los pesos wy y ws. Para la convergencia, se utiliza una técnica basada en diferencias
divididas, que permite garantizar que las funciones limite sean suaves y continuas en todo el

dominio.

Se demuestra que el esquema preserva la monotonia y convexidad de los datos iniciales. Si los
datos de entrada son monotonos crecientes o convexos, el esquema garantizara que la curva

interpolada mantenga estas propiedades a lo largo de todas las iteraciones.

Este nuevo esquema de subdivisiéon interpolatoria Hermitica basado en splines de Bernstein

Bézier es adecuado para la generaciéon de curvas suaves que reproducen polinomios de grado 2,
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preservan la forma y garantizan la convergencia C'. Su aplicacién puede ser ftil en problemas

donde se requiera una interpolacion precisa que mantenga la geometria de los datos originales.

Un esquema de subdivision generalizado no lineal de grado arbitrario con un pardmetro de

tension: Zeze Zhang, Hongchan Zheng, Jie Zhou y Lulu Pan, [73], 2020.

Este articulo presenta un esquema de subdivisién no lineal de grado arbitrario con un pa-
rametro de tension. Este esquema refina pares punto-normal en 2D, y se construye sobre el
esquema de subdivision lineal generalizada con un pardmetro de tensiéon, reemplazando el

promedio aritmético ponderado en el esquema lineal con un promedio circular:

Dado dos pares punto-normal Py = (po,n0) v Pr = (p1,n1), el promedio circular se define

como el par P, = (pt, ny), donde:

ng S ny

Pt € arco(po, p1), ng = ————,
(o, p1) o & ma]

siendo & el promedio geodésico de las normales unitarias. De esta forma, p; se mantiene

sobre el circulo determinado por pg y p;.

Se demuestra que este esquema alcanza suavidad C'!' con una eleccién adecuada del parametro

de tensiéon cuando el grado es m > 3.

El esquema de subdivisién generalizada lineal con un pardmetro de tensiéon para un grado
m > 2 se define por la siguiente iteracion:

(m) _ 1/ (m-1) (m-1)
p; _i(pi + D )

donde p; son los puntos del poligono de control inicial y u es el pardmetro de tension. Este

esquema es una generalizacion del algoritmo de Lane Riesenfeld.

El promedio circular se aplica a pares punto-normal. Dados dos pares punto-normal P, =
(po,n0) y P1 = (p1,n1), con pg, p1 puntos y ng,ny vectores normales unitarios, el promedio
circular produce un nuevo par P, = (p;,n:), donde p; esta sobre el arco entre pg y p1, v ny

es el promedio geodésico de los vectores normales.

El esquema no lineal se construye reemplazando el promedio aritmético en el esquema lineal

por el circular. La regla de refinamiento es:

pu)

2i+1 — Pi(]) © Pi(er)l

donde ® denota el promedio circular. Este esquema permite reconstruir curvas suaves y

controlar la forma de la curva limite a través del pardmetro de tensiéon w.

La convergencia del esquema se asegura bajo ciertas condiciones. Definimos la diferencia
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entre puntos consecutivos como:
€ = Sup pj,i+1 — pjil
y mostramos que la secuencia e; es contractiva, es decir:
ej+1<me; con 0<n<l1

lo que implica la convergencia del esquema para cualquier conjunto de datos de entrada.

El esquema, alcanza suavidad C' para m > 3 si el parametro de tension u satisface:
V2—-l<u<V2+1

Esto asegura que las curvas generadas sean suaves sin perder la capacidad de reconstruir

curvas como el circulo.

Este esquema es ttil para controlar la suavidad y la forma de las curvas limite, alcanzando
suavidad C' con la eleccién adecuada de parametros. Futuras investigaciones se centraran

en demostrar 6rdenes de suavidad superiores.

Esquemas de subdivisién no lineales para funciones hiperbdlicas y trigonométricas: Donat y

Lopez Urena, [25], 2017.

Este trabajo introduce una nueva familia de esquemas de subdivisién interpolatorios no
lineales, con capacidad para reproducir funciones hiperbolicas y trigonométricas, asi como
polinomios de hasta segundo grado. Los esquemas tradicionales de subdivision lineales y no
estacionarios pueden lograr esta reproduccion, pero requieren la determinacién practica de
pardmetros dependientes del nivel, lo cual complica la implementaciéon en aplicaciones de

modelado geométrico.

Este trabajo se enfoca en esquemas binarios estacionarios donde la regla de refinamiento estéa
dada por:
(Sf)Q’H-j:¢j(fi—q7"'7fi+q)’ j:0717 i €Z.
Si las funciones ¢; son lineales, el esquema se puede representar como:
q
¢i(ficgr-- Fiva) = Y ajfits
l=—q

donde (a;);ez es la mascara del operador lineal S.

Uno de los principales resultados es que los esquemas no lineales estacionarios propuestos
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pueden reproducir espacios de polinomios exponenciales de la forma:

Wo,y = span{l,exp(yt),exp(—t)}, 7 €ER.

Por ejemplo, el esquema puede generar con precision formas conicas (circulos, elipses) me-
diante la interpolacién de funciones trigonométricas. La reproducciéon se garantiza cuando

los datos iniciales pertenecen a este espacio de funciones.

El trabajo también analiza las condiciones para obtener funciones limite con derivadas con-

tinuas, lo que se relaciona con la preservacién de la monotonia de los datos iniciales.

Los esquemas de subdivisiéon no lineales propuestos ofrecen una herramienta eficiente para
la reproduccién exacta de secciones conicas y formas hiperbdlicas sin necesidad de un pre-
procesamiento de los datos. Estos esquemas son una extension de los métodos tradicionales,

permitiendo la generacion de formas complejas con alta precision.

Curvas y superficies de subdivision punto-normal: X. Yang, [71], 2006.

Este trabajo propone esquemas de subdivision no lineales punto-normal (PN) para el mode-
lado de curvas y superficies. Los esquemas refinan tanto las posiciones de los vértices como
las normales en los puntos de control, lo que permite reproducir primitivas geométricas como

circulos, cilindros y esferas.

El esquema de subdivision PN refina los vértices y normales de la siguiente forma:

k

S Ai_oin”

k+1 _ k k+1 _ Z] T4 k+1 _  k+1 k. k+1

q; = E Qi—25P;, Ty = Ak D; =4q; + § ai—thijni s
3 sz 25105 J

donde hfj es la altura en la direcciéon de la normal nf“ y qf“ es el vértice subdividido

linealmente.

Los esquemas de subdivision PN preservan ciertas propiedades geométricas, como:

e Invarianza geométrica: Las curvas y superficies PN son invariantes bajo traslaciones,

escalas y rotaciones del sistema de coordenadas.

e Preservacién de circulos y esferas: Si los puntos de control y las normales iniciales estan

sobre un circulo o esfera, los puntos subdivididos también lo estaran.

Se demuestra que los esquemas de subdivision PN tienen la misma convergencia y ordenes

de suavidad que los esquemas lineales subyacentes.

Los esquemas de subdivision PN propuestos generalizan los esquemas de subdivision lineales
tradicionales al permitir el control mediante puntos y normales. Estos esquemas son eficientes
para modelar superficies suaves con alta precision, preservando formas geométricas simples

como circulos y esferas, y manteniendo el mismo grado de suavidad que los esquemas lineales.
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Figura 3: Superficies generadas con algoritmos de subdivision punto-normal introducidos por Yang,
[71].

= Un nuevo esquema de subdivisién de corte de esquinas invariante circular de cuatro puntos

para disefio de curvas: Jian-ao Lian, [52], 2012.

Este articulo introduce un nuevo esquema de subdivision de corte de esquinas de cuatro
puntos, invariante bajo transformaciones circulares, para el diseno de curvas. El método
presentado permite generar curvas suaves y estéticamente agradables a partir de un conjunto
inicial de puntos de control, manteniendo la propiedad de invariancia circular, lo que lo hace
especialmente til en aplicaciones graficas. El autor proporciona un analisis detallado de la
convergencia y suavidad del esquema, destacando sus ventajas en comparaciéon con otros

métodos de subdivisiéon existentes.

= Subdivisién con control exacto de bordes y geometria sin variedad: Fehmi Cirak y Quan
Long, 18], 2011.

Este articulo propone un enfoque novedoso para el control exacto de bordes y geometrias sin
variedad utilizando esquemas de subdivisién. Las capas de subdivision permiten la creaciéon
de superficies suaves que se ajustan con precision a los bordes definidos por el usuario.
El enfoque también aborda geometrias complejas no manifold, que son estructuras que no
pueden ser descritas completamente por métodos de subdivision tradicionales. Este trabajo

tiene importantes aplicaciones en simulaciones de ingenieria y modelado geométrico avanzado.

= Subdivisiéon de curvas con control de longitud de arco: Victoria Hernandez Mederos, Jorge

C. Estrada-Sarlabous, Silvio R. Morales y Toannis Ivrissimtzis, [47], 2009.

Este articulo propone un esquema de subdivisién de curvas que controla la longitud de arco.

En lugar de refinar las curvas de manera uniforme, los autores presentan un método que



476

S. Amat, S. Busquier, D. Levin & J. C. Trillo CUBO

27, 2 (2025)

ajusta dindAmicamente los puntos de control para mantener una distribucién controlada de la
longitud de arco. Este enfoque es util en aplicaciones donde la precision en la longitud de las
curvas es crucial, como en el modelado geométrico, el diseno de caminos y trayectorias, y la

animacién por computadora.

Esquemas de subdivisién no lineales circulares para el disenio de curvas: Jian-ao Lian, Yonghui

Wang y Yonggao Yang, [53], 2009.

Este articulo introduce esquemas de subdivisiéon no lineales disenados para generar curvas
circulares en aplicaciones de diseno geométrico. Los autores desarrollan un método basado en
la subdivisién que se adapta a la naturaleza geométrica de las curvas circulares, permitiendo
la creacion de curvas suaves y precisas a partir de puntos de control discretos. Este enfoque
es 1til en el disefio asistido por computadora (CAD) y en graficos por computadora para

representar con precision formas circulares y curvas cerradas.

Un esquema de subdivision no lineal que preserva circulos: Pavel Chalmoviansky y Bert

Jiittler, [17], 2007.

Este articulo presenta un esquema de subdivisiéon no lineal que preserva las propiedades
geométricas de las curvas circulares. Los autores desarrollan un algoritmo que permite la
generacion y refinamiento de curvas manteniendo su naturaleza circular durante el proceso
de subdivision. El esquema es 1til en el disefio geométrico y en aplicaciones donde la precision

en la representacion de curvas circulares es crucial.

Esquemas de subdivisiéon basados en las normales para el diseno de curvas: Xunnian Yang,

[70], 2006.

Este articulo introduce un esquema de subdivision basado en normales para el diseno de
curvas. El método se basa en la utilizacion de las normales de las curvas en puntos de control
para mejorar la suavidad y precision de las curvas generadas. Este enfoque es til en el disenio
asistido por computadora (CAD) y en graficos por computadora, donde se requiere un control

preciso sobre la forma y suavidad de las curvas.

En esta linea de trabajo se observa una evolucién desde métodos orientados a propiedades locales,

como el esquema de Jena [49] que garantiza monotonia y convexidad, hasta propuestas méas globales

como la de Yang [70,71] que asegura invariancia de circulos y esferas bajo refinamiento iterativo.

Mientras los enfoques basados en promedio circular (Zhang et al. [73]) introducen un parametro

de tension que permite cierto control del refinamiento, los métodos geométricos de Lian [52, 53]

y Chalmoviansky-Jiittler [17] se centran en mantener formas circulares exactas en el limite. En

conjunto, estos trabajos muestran un balance entre flexibilidad algoritmica y preservacion estricta

de la geometria.
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Tabla 2: Esquemas no lineales orientados a preservacion de formas geométricas.

Autores Forma preservada Ventaja principal
Jena Curvas convexas Monotonia y convexidad
Zhang et al. Circulos Control por parametro de tension
Yang Circulos y esferas Invariante bajo isometrias
Lian Curvas circulares Suavidad con invariancia
Chalmoviansky y Jiittler Circulos Mantiene circularidad exacta

4. Adaptacion a las presencia de discontinuidades

Uno de los problemas comunes en esquemas de subdivision lineales, especialmente cuando se aplican
a sefiales o datos con discontinuidades (por ejemplo, bordes afilados en imagenes), es la aparicion
de oscilaciones de Gibbs. Estas oscilaciones son artefactos no deseados que surgen en las cercanias
de discontinuidades cuando los esquemas suavizan excesivamente la senal o la superficie. Las dis-
continuidades también pueden haber aparecido por falta de datos cerca de regiones con gradientes

altos (variaciones muy rapidas).

Los esquemas de subdivisién no lineales son efectivos para mitigar este fenémeno, ya que pueden
adaptarse mejor a la presencia de bordes o discontinuidades. A diferencia de los métodos lineales,
que aplican las mismas reglas de refinamiento en toda la senal, los esquemas no lineales pueden
ajustar las reglas de subdivision localmente para evitar sobre-suavizacion en areas con caracteris-

ticas importantes, como bordes [50], 1996.

Algunas estrategias no lineales para eliminar las oscilaciones de Gibbs incluyen el uso de operadores
adaptativos, donde los coeficientes de subdivisiéon varian en funcién de la pendiente local o la
curvatura, lo que permite preservar mejor las caracteristicas significativas de la senal. Otra técnica
es incorporar regularizacién basada en variaciéon total o métodos relacionados, que son adecuados

para manejar discontinuidades.

Veamos algunas de las aportaciones en este contexto:

= Sobre una familia de esquemas de subdivisiéon no oscilatorios teniendo una regularidad C",

r > 1: Sergio Amat, Juan Ruiz, Juan C. Trillo y Dionisio F. Yanez, [11], 2020.

Este articulo presenta una familia de esquemas de subdivision no oscilatorios con regularidad
C" para r > 1. Los autores desarrollan esquemas que permiten obtener suavidad en los
resultados interpolados, evitando fenémenos de oscilacién que pueden ocurrir en los procesos
de subdivisiéon. El enfoque esta en garantizar un equilibrio entre la suavidad y la precisiéon
del esquema, explorando cémo estos esquemas pueden ser aplicados en contextos numéricos

y graficos.
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= Sobre una familia estable de esquemas de subdivisién no lineales eliminando el fenémeno de

Gibbs: Sergio Amat, Juan Ruiz, J. Carlos Trillo y Dionisio F. Yanez, [10] 2019.

Los autores introducen una familia de esquemas de subdivisién no lineales de cuatro puntos
que eliminan el fenémeno de Gibbs, un problema comun en el procesamiento de sefales y
graficos que genera oscilaciones no deseadas en los bordes de las senales. El articulo aborda la
estabilidad y la convergencia de estos esquemas, proponiendo métodos efectivos para suavizar
las transiciones sin perder precisiéon en la interpolacién, lo cual es especialmente tutil en

aplicaciones como el tratamiento de iméagenes y graficos digitales.

Una familia de esquemas interpolatorios ternarios de 5-puntos con regularidad C?: Muham-

mad Aslam, [15], 2018.

Este articulo presenta una familia de esquemas de subdivision ternarios no lineales de in-
terpolacién con suavidad C?. El trabajo se centra en desarrollar métodos que aseguren una
suavidad considerable en las curvas y superficies generadas, lo que es crucial para aplica-
ciones graficas y de modelado geométrico. La investigacién analiza tanto las propiedades
geométricas como las cualidades numéricas de estos esquemas, enfatizando su aplicabilidad

en interpolacion y graficos computacionales, logrando transiciones suaves y sin distorsiones.

Esquemas de subdivision no lineales ternarios de (2n — 1) puntos: Muhammad Aslam, [14],

2018.

Este trabajo presenta una familia de esquemas de subdivisién ternarios no lineales con in-
terpolacion, basada en (2n — 1) puntos. Los esquemas propuestos permiten generar curvas
suaves a partir de un conjunto de puntos de control, mejorando la precision y la suavidad
de las curvas en comparacion con los métodos lineales tradicionales. Se realiza un analisis
detallado de la regularidad y convergencia de estos esquemas, enfocdndose en su aplicabilidad

en la geometria computacional y el procesamiento de graficos.

Sobre un esquema de subdivisién ternario no lineal y no interplatorio eliminando el fenémeno

de Gibbs: Sergio Amat, Abdelaziz Choutri, Juan Ruiz y Sofiane Zouaoui, [1], 2018.

Este articulo introduce un esquema de subdivision no lineal de 4 puntos, ternario y no
interpolatorio, diseniado para eliminar el fenémeno de Gibbs, que se manifiesta en oscilaciones
no deseadas cerca de las discontinuidades. Los autores presentan un método que suprime
estas oscilaciones, garantizando transiciones suaves entre las partes de la senal o imagen
procesada. Ademaés, se analiza la convergencia y la estabilidad del esquema, haciéndolo apto

para aplicaciones en procesamiento de imagenes, graficos computacionales y sefiales digitales.
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= Analisis de un nuevo esquema de subdivisiéon no lineal. Aplicaciones en el procesamiento de

imagenes. Sergio Amat, Rosa Donat, Jacques Liandrat y J. Carlos Trillo (8], 2006.

Este trabajo presenta un anélisis y desarrollo de un nuevo esquema de subdivisiéon no lineal,
disennado para mejorar la precision y la calidad en la representacion de datos en graficos
y procesamiento de imégenes. En el contexto del procesamiento digital de iméagenes, los
métodos de subdivision son tutiles para generar imagenes de alta resolucién a partir de datos
de baja resolucion. Sin embargo, los métodos de subdivision lineales tradicionales suelen tener
limitaciones cuando se trata de preservar detalles importantes en zonas con discontinuidades

o bordes marcados, lo cual es crucial en la calidad visual de una imagen.

El esquema no lineal propuesto en el articulo se enfoca en conservar los detalles y bordes
dentro de la imagen, evitando los efectos de suavizado excesivo que suelen presentarse en los
métodos tradicionales. Los autores presentan un anélisis detallado del comportamiento del
esquema en términos de convergencia, estabilidad y preservacién de caracteristicas esenciales
de la imagen. La metodologia incorpora técnicas matematicas avanzadas que permiten que

el esquema responda de forma adaptativa a las variaciones en la estructura de la imagen.

Ademas de la teoria detréas del nuevo esquema, los autores realizan una serie de experimentos
numéricos que demuestran su eficacia y utilidad préctica en el procesamiento de imégenes.
Estos experimentos muestran como el esquema no lineal propuesto puede aplicarse a diversas
tareas de mejora de imagenes, incluyendo la preservacién de bordes y la reducciéon de arte-
factos en iméagenes ampliadas. Los resultados obtenidos son prometedores y sugieren que el
esquema puede ser una alternativa valiosa en aplicaciones que requieren alta fidelidad en la

representacion de detalles visuales.

En conclusion, el articulo presenta un avance significativo en el campo del procesamiento
de imégenes mediante la introducciéon de un esquema de subdivision que mejora la calidad

visual al tiempo que reduce los efectos negativos de los métodos lineales convencionales.

= Sobre un esquema de subdivisién no lineal cuaternario de 4 puntos elimnando el fenémeno

de Gibbs: Sergio Amat y Jacques Liandrat [4], 2013.

Este articulo aborda un esquema de subdivisién no lineal de 4 puntos cuaternario, disenado
para aproximacion en lugar de interpolacion, que elimina el fenémeno de Gibbs. Este feno-
meno, caracterizado por oscilaciones no deseadas en los bordes de senales o imégenes, es un
problema comun en el procesamiento de datos digitales. Los autores presentan un esquema
que logra una transiciéon suave y precisa, reduciendo estas oscilaciones sin comprometer la
calidad de la aproximacion. El trabajo incluye un anélisis de la estabilidad y convergencia

del esquema propuesto, con aplicaciones en procesamiento de imagenes, senales y graficos.
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= Una clase de esquemas de subdivision no lineales de 4 puntos: Allal Guessab, Maria Moncayo

y Gerhard Schmeisser, [43], 2012.

Este articulo propone una clase de esquemas de subdivision no lineales de cuatro puntos. Estos
esquemas son disenados para generar curvas suaves a partir de un conjunto inicial de puntos
de control, y son aplicables en graficos computacionales y modelado geométrico. A diferencia
de los esquemas lineales tradicionales, los métodos no lineales presentados permiten un mayor
control sobre la suavidad y precision de las curvas generadas, reduciendo oscilaciones no
deseadas. El articulo incluye un anélisis tedrico de la convergencia y la regularidad de los

esquemas, junto con aplicaciones practicas en geometria computacional.

Esquemas de subdivision no lineales ponderados Weighted-Power-p: Francesc Arandiga, Rosa

Donat, Maria Santagueda [13], 2012.

Este trabajo introduce y analiza esquemas de subdivision no lineales ponderados, conocidos
como “Weighted-Power-p”. Estos esquemas permiten el refinamiento de curvas o superficies
mediante un proceso iterativo, en el que los pesos asignados a los puntos de control dependen
de una funcién de potencia p. Se estudia el comportamiento de los esquemas en términos
de suavidad, convergencia y estabilidad. El articulo también aborda aplicaciones en graficos
computacionales y modelado geométrico, mostrando como los esquemas ponderados ofrecen

flexibilidad en la manipulacion de formas geométricas.

Las propuestas analizadas para el tratamiento de discontinuidades muestran diferentes estrategias:

los trabajos de Amat et al. y Moncayo et al. [43] se centran en eliminar oscilaciones de Gibbs

mediante modificaciones no lineales de esquemas clasicos, mientras que Aslam [14, 15] opta por

un enfoque interpolatorio que mantiene suavidad C? incluso en curvas complejas. Por su parte,

Arandiga et al. [13] introducen pesos adaptativos con base en funciones de potencia, lo que aporta

flexibilidad para distintos tipos de datos. En conjunto, los distintos esquemas tienen como objetivo

preservar la suavidad global incorporando adaptacion local en presencia de irregularidades.

Tabla 3: Esquemas de subdivisién no lineales para manejo de discontinuidades.

Autores Tipo Enfoque Beneficio
Amat et al. Variado Fenoémeno Gibbs Estabilidad y convergencia
Aslam Ternario Interpolatorio C?  Suavidad en curvas complejas

Arandiga et al. Weighted-Power-p Pesos adaptativos
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5. Esquemas de Multirresolucién

Los esquemas de multirresoluciéon son fundamentales en el anélisis de senales e imégenes, pro-
porcionando representaciones compactas en varias escalas. En particular, los esquemas no lineales
propuestos por Harten [45,46], 1989, 1995, mejoran la adaptabilidad de la multirresolucién al pre-
servar caracteristicas locales mediante técnicas de umbralizacion y aproximacion adaptativa, lo cual
es especialmente 1til en contextos donde las estructuras de las senales no siguen un comportamiento

lineal.

La multirresolucion implica la descomposicion de una sefial f(x) en varias escalas. En un esquema
clasico de multirresolucion, se busca representar f(x) en términos de una serie de funciones de
base, generadas a través de funciones escalares y de detalles. Matematicamente, esto se expresa

Ccomo:

F@) = cibi(@) + > djrsn(x), (5.1)
J Jik
donde ¢;(z) representa una funcion de baja frecuencia o escala y v, 1 (x) representan funciones de

detalle en diferentes niveles de resolucion.

En los esquemas lineales, como las ondas Haar o Daubechies, los coeficientes c; y d; i se obtienen
mediante convoluciones lineales. Sin embargo, en los esquemas no lineales, el céalculo de estos

coeficientes depende de técnicas adaptativas que no requieren necesariamente una estructura lineal.

Harten desarroll un esquema de multirresolucién no lineal que introduce operaciones adaptativas
en el célculo de los coeficientes d; ;. En lugar de emplear convoluciones, se aplican operadores no

lineales que filtran selectivamente los detalles de la senal de acuerdo con su importancia local.

La técnica de umbralizacion permite eliminar componentes de la senial que se consideran irrelevan-

tes. Sea f(z) una senal continua, su version umbralizada, T'(f(z)), puede representarse como:

x) si|f(x A,
Py 4T Sl 5
0 si|f(z)] <A,

donde A es el umbral. Este valor puede ajustarse dinAmicamente segtin las caracteristicas de la
senal. En el contexto de la multirresoluciéon no lineal, esta umbralizaciéon permite preservar soélo los

detalles mas significativos, reduciendo la complejidad computacional y mejorando la compresion.

En las técnicas de interpolacion adaptativa, se ajusta el grado de resolucion en funcion de las
caracteristicas locales de la senal. Para una senal f(z), la interpolacion adaptativa I(f(x)) podria

definirse a través de una funciéon de ponderacion w(x) que varia localmente:

I(f(2)) = w(z) - f(x) + (1 —w(=)) - f'(x), (5:3)
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donde f'(z) es una versién suavizada de f(x), y w(z) € [0, 1] se ajusta para resaltar regiones de alta
variabilidad en f(z). En zonas de alta frecuencia, w(z) se aproxima a 1, manteniendo el detalle,

mientras que en zonas suaves, w(z) se aproxima a 0, reduciendo la resolucion.

Los esquemas de multirresolucién no lineales encuentran aplicaciones en varias areas:

s Compresion de Imagenes: Los métodos de umbralizacién adaptativa permiten comprimir
iméagenes eliminando detalles irrelevantes, mientras que la interpolacién adaptativa mantiene

la calidad visual en las areas de interés.

= Procesamiento de Senales Médicas: En imégenes médicas, estos esquemas mejoran la claridad

de caracteristicas importantes, como estructuras anatémicas pequenas o anomalias.

Figura 4: Reconstrucciones de algoritmos de multirresolucién en un proceso de compresion de
imégenes. En la izquierda se observa la buena adaptacion a las discontinuidades del algoritmo no
lineal, mientras que en la derecha aparecen las oscilaciones tipo Gibbs clasicas de multirresoluciones
lineales.

Podriamos destacar estas dos aportaciones pioneras de Ami Harten:

= Harten, A. (1989). Discrete Multiresolution Analysis and Generalized Wavelets. Applied Nu-
merical Mathematics, 12(1-3), 153-192.

En este trabajo, Harten presenta una forma discreta de analisis de multirresolucion y su
aplicacion a las wavelets generalizadas, lo que es relevante para el desarrollo de esquemas

multirresolucién no lineales.
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» Harten, A. (1995). Multiresolution Representation of Data: A General Framework. STAM
Journal on Numerical Analysis, 33(3), 1205-1256.

Este articulo proporciona un marco general para la representacién de datos en multiples

resoluciones, abarcando tanto métodos lineales como no lineales.

A continuacién, repasaremos algunas otras aportaciones en este campo:

= Sobre el acople de operadores de decimaciéon con esquemas de subdivision para anélisis multi-

escala: Zhiging Kui, Jean Baccou, Jacques Liandrat, [51], 2017.

Este trabajo explora el acoplamiento del operador de decimacién con esquemas de subdivision
para el anéalisis a multiples escalas. El estudio aborda la interaccion entre los operadores de
decimacion, que reducen la resoluciéon de una senal, y los esquemas de subdivisién, que
permiten su refinamiento y reconstruccién. Los autores presentan un enfoque sistemético
para integrar ambos métodos, destacando su relevancia en aplicaciones como la compresion
de datos y la representacion de senales en diferentes escalas de detalle. El analisis incluye
tanto consideraciones teédricas como resultados numéricos que demuestran la efectividad de

la técnica.

= Sobre un esquema de multirresolucién en medias en celda para la compresion de imégenes:

Sergio Amat, Jacques Liandrat, Juan Ruiz, J. Carlos Trillo, [9], 2012.

Este articulo presenta un esquema no lineal de multirresolucién basado en promedios celulares
para la compresion de iméagenes. Los esquemas de multirresoluciéon permiten representar
imégenes en diferentes niveles de detalle, facilitando la compresiéon sin perder informaciéon
relevante. El enfoque no lineal propuesto por los autores reduce las oscilaciones y mejora la
precision en las representaciones comprimidas, en comparaciéon con los métodos lineales. Se
incluyen resultados numéricos que muestran la efectividad del esquema en la compresion de

imégenes, destacando su capacidad para reducir el tamano de los datos sin sacrificar calidad.

» Transformaciones multiescala no lineales: teoria L”: Peter Oswald, [59], 2012.

Este articulo presenta un analisis teorico de las transformaciones multiescala no lineales den-
tro del marco de la teoria LP. Las transformaciones multiescala son herramientas importantes
para el procesamiento de senales y la compresion de datos, y el enfoque no lineal ofrece me-
joras significativas en la preservacion de caracteristicas esenciales en diferentes escalas. El
autor desarrolla un marco matematico para estudiar la estabilidad y el comportamiento de
estas transformaciones en espacios LP, proporcionando nuevas perspectivas sobre cémo apli-
car estas técnicas en diversas aplicaciones, como la compresiéon de imagenes y la resolucion

de problemas numéricos.
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s Una familia de esquemas de multirresolucion no lineales no separables en 2D: Sergio Amat,

K. Dadourian, Jacques Liandrat, Juan Ruiz, Juan C. Trillo, (3], 2010.

Este articulo presenta una familia de esquemas de multirresoluciéon no lineales, no separables
y estables en dos dimensiones (2D). Los autores analizan c6mo estos esquemas permiten
descomponer y representar datos bidimensionales en varios niveles de resolucién, mantenien-
do estabilidad y precision. El enfoque no separable es clave para tratar imagenes y datos
geométricos que no pueden descomponerse en direcciones independientes. El articulo incluye

aplicaciones en compresion de imagenes y anélisis de datos bidimensionales complejos.

Aproximacion multiescala, no lineal y adaptativa, [24], 2009.

Este extenso volumen de mas de 650 paginas explora diversos enfoques de aproximacion
multiescala, no lineales y adaptativos, con aplicaciones en areas como el anélisis numérico, el
procesamiento de senales y el modelado geométrico. Se aborda como las técnicas de aproxi-
macioén multiescala permiten representar datos en diferentes niveles de detalle, y se analiza
c6mo los métodos no lineales y adaptativos pueden mejorar la precision en situaciones donde
los enfoques lineales tradicionales no son suficientes. El libro incluye contribuciones de varios

expertos y abarca tanto los aspectos tedricos como las aplicaciones practicas.

Sobre esquemas de multirresoluciéon utilizando una seleccién del esténcil y su aplicaciéon en

esquemas ENO: Sergio Amat, Sonia Busquier, J. Carlos Trillo, [7], 2007.

Este articulo introduce un esquema de multiresoluciéon basado en la seleccién de un esténcil
para mejorar la precisién y evitar oscilaciones no deseadas en esquemas ENO (Essentially
Non-Oscillatory). Los autores proponen un enfoque para seleccionar automaticamente el
esténcil adecuado, lo que reduce los errores en aplicaciones como la simulacion de flujos y
ecuaciones en derivadas parciales. Este esquema es particularmente relevante en el anélisis

numeérico de fendmenos fisicos que requieren alta precision y estabilidad.

Compresion de datos con esquemas tipo ENO: Un caso de estudio: Sergio Amat, Francesc

Arandiga, Albert Cohen, Rosa Donat, Gregori Garcia y Markus von Oehsen, [5], 2001.

Se estudian las propiedades de compresion de transformaciones multiresolucién no lineales
de tipo ENO en imégenes digitales. Se utilizan algoritmos de control de errores especificos
para garantizar una precisiéon prescrita. Los resultados numeéricos revelan que estos métodos
superan con creces las descomposiciones de wavelets mas clasicas en el caso de iméagenes

geométricas suaves por partes.
Esquemas de multirresoluciéon con control del error para la representacion de imagenes com-
pactas: Sergio Amat, Francesc Arandiga, Albert Cohen y Rosa Donat, [6], 2002.

Se estudia una clase de representaciones multiresolucion basadas en prediccion no lineal en

el contexto multivariado basado en estrategias de productos tensoriales. A diferencia de las
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transformadas wavelet lineales estandar, estas representaciones no pueden considerarse como
un cambio de base, y el error inducido al establecer un umbral o cuantificar los coeficientes
requiere un analisis diferente. Proponemos algoritmos de control de errores especificos que
garantizan una precisiéon prescrita en varias normas al realizar dichas operaciones con los
coeficientes. Estos algoritmos se comparan con umbrales estandar, para imagenes sintéticas

y reales.

En el ambito de la multirresoluciiin, los trabajos revisados parten de la construcciéon pionera de
Harten [45,46], centrada en compresion adaptativa de senales, y se diversifican hacia contextos como
el procesamiento de imégenes (Amat et al.) o la teoria funcional (Oswald [59]). La aproximacion
de Kui et al. [51] ofrece un marco sistematico que integra decimaciéon y subdivision, mientras
que Amat et al. priorizan la estabilidad mediante algoritmos de error-control. Comparando estas
contribuciones, se aprecia un progreso desde esquemas fundamentalmente unidimensionales hacia
extensiones en dos dimensiones y aplicaciones mas generales, siempre con el hilo conductor de

combinar eficiencia computacional con estabilidad analitica.

Tabla 4: Esquemas de multirresoluciéon no lineales.

Trabajo Técnica Aplicacion Aporte

Harten Multiescala adaptativa Senales, compresion Prediccion adaptativa
Amat et al. Separables y no separables Tratamiento imagenes Precision con estabilidad
Kui et al.  Decimacién + subdivision Multi-escala Integracion sisteméatica

Oswald Teoria LP Procesamiento sefiales  Anaélisis de estabilidad

Quisiéramos terminar esta seccion enfatizando la existencia de trabajos donde se utilizan esque-
mas de multirresoluciéon para mejorar la eficiencia computacional de aproximaciones numéricas de
EDPs. Si bien es cierto que la no linealidad esté en el uso de umbrales no de esquemas no lineales,
pudiendo ser esto ultimo una nueva linea de investigacion. En este contexto, los esquemas no linea-
les podrian ser beneficiosos en ejemplos fisicos donde aparezcan discontinuidades que se preserven,

basicamente fenémenos con ausencia total de difusion.

Biirger et al. [16], 2008: este trabajo presenta un esquema multirresoluciéon completamente adap-
tativo para ecuaciones parabdlicas fuertemente degeneradas en una dimension espacial. Se basa en
volimenes finitos y emplea una representaciéon multirresoluciéon almacenada en un arbol graduado.
El método mejora drasticamente el rendimiento computacional (CPU y memoria), manteniendo

convergencia hacia soluciones de entropia.

Coquel et al. [20], 2006: en el contexto de flujos multicomponentes con ondas de dispar velocidad,
proponen una estrategia hibrida (explicito e implicito) combinada con un esquema multirresolucion
completamente adaptativo. Esto permite una malla adaptativa basada en la suavidad del fend6meno,

reduciendo asi el coste computacional sin sacrificar la precision.
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6. Teorias desarrolladas para el analisis tedrico de esquemas

de subdivisién no lineales

El anélisis de los esquemas de subdivision lineales esta bien establecido mediante herramientas
como la transformada de Fourier, el analisis matricial y los métodos basados en los simbolos. Estas
técnicas permiten caracterizar con precision la convergencia, el orden de aproximacion y la regula-
ridad C* en términos espectrales. Sin embargo, los esquemas no lineales rompen la superposicion

y, con ella, gran parte del andamiaje clasico:

= Ausencia de superposiciéon. La respuesta a una combinacién lineal de datos no es la

combinacion lineal de las respuestas, lo que invalida argumentos espectrales directos.

= Dependencia del contexto. Las reglas locales pueden depender de la geometria o del estado
de los datos (selecciones ENO, medias no lineales, normalizaciones), generando dindmicas no

uniformes.

= Datos con valores no euclidianos. Muchas aplicaciones requieren datos en variedades,

esferas o grupos de Lie, donde los calculos dependen de la geometria subyacente.

» Propiedades de forma. Positividad, monotonia o convexidad (y sus andlogos en variedades)
pasan a ser restricciones esenciales que los polinomios lineales no siempre preservan; los

esquemas no lineales se disenan, a menudo, para respetarlas.

Se han desarrollado distintas aproximaciones teoéricas para el estudio de esquemas de subdivision
no lineales. Una primera linea la constituyen los esquemas geométricos, en los que las reglas de
refinamiento conmutan con similitudes y permiten descomponer la dindmica en componentes inva-
riantes, de modo que el control de la distorsion relativa durante las iteraciones conduce a resultados
de rectificaciéon y a garantias de regularidad de tipo Hoélder. Otra aproximacion se basa en la pro-
ximidad diferencial frente a un esquema lineal de referencia, lo que permite transferir suavidad,
orden de aproximacién y estabilidad del modelo lineal al no lineal siempre que se cumplan ciertas
condiciones de compatibilidad en derivadas discretas. En contextos més generales, como variedades,
esferas, grupos de Lie o espacios métricos, el analisis recurre a herramientas geométricas intrin-
secas como contracciones, comparaciones de curvatura y desarrollos geodésicos, que proporcionan
criterios de convergencia y regularidad en entornos no euclidianos. Finalmente, en esquemas cuasi
lineales o aquellos basados en medias no lineales, la seleccién dependiente de los datos requiere
técnicas especificas que combinan estabilidad, proximidad y control de variacién total, incluyendo
ademas condiciones estructurales para garantizar el buen comportamiento en mallas irregulares.
En conjunto, todas estas teorfas persiguen como objetivos centrales la convergencia, la regularidad
y el orden de aproximacién en un marco no lineal y no necesariamente euclidiano, constituyendo

un area de investigacion activa.
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A continuacion, repasaremos algunas de estas teorias:

s Regularidad holderiana para esquemas de subdivision geométrica, T. Ewald, U. Reif, M.

Sabin, [34], 2015.

Este articulo presenta un marco tebrico para analizar esquemas de subdivisiéon no lineales
con valores en R, donde los esquemas son geométricos en el sentido de que conmutan con
las similitudes en R?. El objetivo principal es establecer la regularidad C1® para esquemas
arbitrarios de este tipo y C*® para un subconjunto importante de ellos, incluyendo todos los
esquemas con valores reales. La clave esta en determinar el rango de ciertas funciones reales

para garantizar la convergencia del esquema y la regularidad de Hélder de las curvas limite.

Los esquemas de subdivisién univariados definen una curva como el limite de un proceso de re-
finamiento a partir de un poligono de control inicial. En este trabajo, se consideran esquemas

geométricos que conmutan con transformaciones de similitud, es decir, la transformacion:

S(p) = Ap@ + s

donde X es un factor de escala, @) una matriz ortogonal y s un vector de traslaciéon. Este tipo

de esquemas se clasifican como GLUE-schemes (Geometric, Local, Uniform, Equilinear).

Para medir la desviacion de un conjunto de puntos respecto a un comportamiento lineal, se

introduce el concepto de distorsion relativa, definida como:

_Ipl2
K’(p) - |Hp|1’

donde II es la proyeccién ortogonal y | - |; es norma euclidiana ¢/ en R Un esquema de

subdivisién esta rectificado si la distorsion relativa de la sucesién de puntos converge a cero.

La regularidad C'™® se alcanza si las curvas limite generadas por el esquema son diferencia-
bles con derivada localmente Holder continua. Esto se puede verificar garantizando que la

distorsion relativa decae con un factor 27 en cada iteraciéon del esquema:
A(pas1) < C27°.

Si esta condicién se cumple, el esquema se considera fuertemente rectificado.

Este trabajo proporciona un marco general para analizar la regularidad de esquemas de
subdivisiéon geométricos y garantiza la regularidad C*® y C?“ bajo ciertas condiciones. Los

resultados son aplicables a una amplia gama de algoritmos geométricos.



488

S. Amat, S. Busquier, D. Levin & J. C. Trillo CUBO

27, 2 (2025)

s Condiciéon de proximidad para la suavidad en esquemas de subdivision no lineales: Tom

Duchamp, Gang Xie, Thomas Yu, [26], 2013.

Este articulo presenta una condicién necesaria y suficiente para la equivalencia en la suavidad
de esquemas de subdivision no lineales respecto a esquemas de subdivisiéon lineales. El anélisis
se basa en la introducciéon de una nueva condicién de proximidad diferencial. El problema
abordado es determinar cuando un esquema de subdivisién no lineal hereda la regularidad

de su contraparte lineal.

Un esquema de subdivision S es una transformacion que actiia sobre secuencias © = (x;) con
valores en una variedad suave M. Si S es un esquema de subdivision C*, existe una funcion

C* que interpola los datos de control definidos por .

Para comparar la suavidad entre un esquema de subdivisién no lineal S y su version lineal
Slin, se introduce la condicién de proximidad diferencial, que se expresa mediante derivadas

parciales de la siguiente forma:

K
D" ®ol30...00 =0 si =2 vy D v <k,

j=1
donde v es un multiindice que determina el orden de las diferencias finitas, y k es el grado de
suavidad del esquema. La condicién de proximidad diferencial garantiza que, hasta el orden

de suavidad k, el comportamiento local del esquema no lineal es indistinguible del lineal.

El articulo también presenta la condicién de compatibilidad suave, que asegura que el esquema

no lineal S y el esquema lineal S};;, comparten ciertos factores locales y de fase.

Finalmente, se demuestra que la condiciéon de proximidad diferencial es tanto necesaria como
suficiente para que el esquema de subdivision S sea C*-suave si el esquema lineal corres-
pondiente Sy, es C*-suave. Los resultados son probados utilizando expansiones de Taylor y

analisis de resonancia en sistemas dinamicos discretos.

Analisis de convergencia de esquemas de subdivision sobre la esfera: Svenja Hiining, Johannes

Wallner, [48], 2022.

Este articulo analiza la convergencia de procesos de subdivision en la esfera, un campo
relevante en geometria computacional y procesamiento de graficos 3D. Los autores investigan
esquemas de subdivisiéon que operan sobre superficies esféricas en lugar de superficies planas,
centrandose en su convergencia y propiedades numéricas. El anélisis incluye la introduccion
de herramientas que permiten la estabilidad de los algoritmos, asi como un estudio detallado

de las caracteristicas geométricas y la regularidad de las superficies generadas.
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» Analisis C! de esquemas de subdivisién tipo Hermite sobre variedades: Caroline Moosmiiller,

[56], 2016.

Este trabajo presenta un analisis detallado de la suavidad C' de los esquemas de subdivisién
de Hermite en variedades. Los esquemas de subdivision de Hermite son utilizados para generar
curvas y superficies suaves a partir de datos vectoriales y escalares. En este contexto, se
exploran las propiedades de suavidad de las curvas generadas cuando los puntos de control
residen en una variedad geométrica. El articulo proporciona un marco teérico para entender
como los esquemas de subdivisién pueden aplicarse a estructuras geométricas mas generales

que los espacios euclidianos, y estudia su convergencia y regularidad en este contexto.

» Convergencia de esquemas de refinamiento sobre espacios métricos: Oliver Ebner, [33], 2013.

Este trabajo investiga la convergencia de esquemas de refinamiento en espacios métricos.
Los esquemas de refinamiento son algoritmos iterativos utilizados para mejorar la resolucion
de una senal o conjunto de datos. El autor estudia cémo estos esquemas convergen en el
marco general de espacios métricos, lo que extiende el analisis de esquemas de subdivision a
contextos mas abstractos que los tradicionales espacios euclidianos. El articulo proporciona
condiciones bajo las cuales los esquemas garantizan convergencia y analiza su comportamiento

en diversos tipos de espacios métricos.

= Propiedad de invarianza de las condiciones de proximidad en subdivisiéon no lineal: Gang Xie,

Thomas P. Y. Yu, [69], 2012.

Este trabajo explora la propiedad de invariancia en condiciones de proximidad dentro de
los esquemas de subdivisién no lineales. Los autores analizan cémo los esquemas no lineales
preservan la proximidad entre puntos en cada nivel de refinamiento, lo que es crucial para
garantizar la estabilidad y precision en la generacion de curvas o superficies suaves. El articulo
desarrolla condiciones especificas bajo las cuales esta propiedad se mantiene, proporcionando
una base teorica solida para el uso de esquemas no lineales en aplicaciones practicas como el

modelado geométrico y el procesamiento de imégenes.

= Propiedades de equivalencia en el order de aproximacién de esquemas de subdivisién sobre
variedades: Gang Xie, Thomas P.-Y. Yu, [68], 2012.

Este articulo investiga las propiedades de equivalencia del orden de aproximacién en esquemas
de subdivision de datos valorados en variedades. Los esquemas de subdivision tradicionales
operan en el espacio euclidiano, pero este trabajo extiende su aplicabilidad a datos en va-
riedades geométricas. Los autores demuestran que, bajo ciertas condiciones, los 6rdenes de
aproximacion de los esquemas de subdivision para datos en variedades pueden ser equiva-
lentes a los de datos en espacios euclidianos, lo que tiene implicaciones importantes para la

interpolacion y el procesamiento de datos geométricos.
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= Regularidad de esquemas de subdivisién no lineales y no separables: Basarab Matei, Sylvain

Meignen, Anastasia Zakharova, [55] 2011.

Este trabajo analiza la suavidad de esquemas de subdivision no lineales y no separables.
Los autores estudian como estos esquemas generan curvas y superficies suaves, incluso en
configuraciones donde las propiedades de separacion no se cumplen, lo que ocurre en muchos
problemas geométricos complejos. Se proporciona un analisis tedrico de la convergencia y
suavidad de estos esquemas, y se destacan aplicaciones en graficos por computadora y proce-

samiento de imagenes, donde es esencial el control de la suavidad en miltiples dimensiones.

Analisis de una clase de esquemas de subdivision no lineales y transformaciones de multirre-

solucion asociadas: Sergio Amat, K. Dadourian, Jacques Liandrat, [2], 2011.

Este articulo presenta un analisis detallado de una clase de esquemas de subdivision no
lineales y sus transformaciones multirresoluciéon asociadas. Los autores estudian como estos
esquemas pueden utilizarse para representar y comprimir senales e imagenes, proporcionando
un marco para realizar transformaciones multirresolucion que preserven la estructura de los
datos originales. Se ofrece un analisis teérico y numeérico de la convergencia y estabilidad de

los esquemas, mostrando su aplicabilidad en compresion de imégenes y modelado geométrico.

Orden de aproximacion derivado de la estabilidad de esquemas de subdivisiéon no lineales:

Philipp Grohs, [39], 2010.

Este articulo explora el orden de aproximacion que se deriva de la estabilidad en esquemas
de subdivisién no lineales. El autor establece condiciones bajo las cuales los esquemas de
subdivisién no lineales preservan la estabilidad, lo que resulta en un alto orden de aproxima-
cion. Este analisis es crucial para aplicaciones donde se requiere una representaciéon precisa
de curvas y superficies, como en graficos computacionales y simulaciones geométricas. El
trabajo también ofrece una comparacién con esquemas de subdivisiéon lineales tradicionales,

mostrando las ventajas de los enfoques no lineales.

Esquemas de subdivision no lineales en mallas irregulares: Andreas Weinmann, [64], 2010.

Este trabajo analiza los esquemas de subdivision no lineales en mallas irregulares. A diferen-
cia de los esquemas tradicionales que requieren mallas regulares, este estudio aborda cémo
los métodos no lineales pueden aplicarse a mallas con geometrias irregulares, comunes en
simulaciones numéricas y graficos computacionales. El autor investiga la convergencia y la
estabilidad de estos esquemas, presentando condiciones que garantizan la generacion de su-
perficies suaves en mallas irregulares. Este enfoque es particularmente ttil en aplicaciones de

disenio geométrico y modelado en mallas complejas.
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= Estabilidad de subdivisién no lineal y transformaciones multiescala: S. Harizanov, Peter

Oswald, [44], 2010.

Este articulo estudia la estabilidad de los esquemas de subdivisién no lineales y las trans-
formaciones multiescala. La estabilidad es un factor clave para garantizar que las soluciones
generadas por estos esquemas sean utiles en aplicaciones précticas, como la compresion de
datos o el procesamiento de senales. Los autores analizan diferentes clases de transformacio-
nes y esquemas, proporcionando resultados teoéricos sobre cudndo estos métodos mantienen
su estabilidad, lo cual es crucial para el refinamiento progresivo de datos o la representacion

de funciones.

= Un anélisis general de la proximidad de esquemas de subdivisién no lineales: Philipp Grohs,

[40], 2010.

Este trabajo realiza un analisis general de proximidad en esquemas de subdivisién no lineales.
El enfoque de proximidad se refiere a como los puntos generados por el esquema de subdivisién
se mantienen cercanos a los puntos originales, lo que afecta directamente la precision y la
calidad de las soluciones generadas. El articulo presenta un marco teérico para estudiar
esta propiedad, derivando condiciones bajo las cuales los esquemas no lineales garantizan la
proximidad en iteraciones sucesivas, lo cual es importante para la interpolaciéon geométrica

y la generacién de curvas suaves.

= Orden de aproximacion de esquemas de subdivision no lineales: Nira Dyn, Philipp Grohs,

Johannes Wallner, [30], 2010.

Este articulo investiga el orden de aproximaciéon de los esquemas de subdivisién no lineales
interpolatorios. El orden de aproximacién es una medida de la precisiéon con la que los es-
quemas de subdivisiéon pueden aproximar funciones o curvas a medida que se refinan. Los
autores desarrollan una teoria que extiende el anéalisis del orden de aproximacién a esque-
mas no lineales, destacando cémo estos métodos pueden ofrecer mejores resultados que los

esquemas lineales tradicionales en aplicaciones de interpolaciéon y modelado geométrico.

= Subdivisién y transformaciones multiescala univariadas, el caso no lineal: Nira Dyn, Peter

Oswald, [32], 2009.

Este capitulo explora los esquemas de subdivisién univariados y las transformaciones mul-
tiescala en el contexto no lineal. Se estudian los métodos univariados, que trabajan en una
sola variable, y cémo las transformaciones multiescala pueden aplicarse de manera no lineal
para mejorar la representacion de senales y funciones en diferentes niveles de detalle. Los
autores analizan la estabilidad y el comportamiento de estos esquemas en el caso no lineal,

mostrando aplicaciones en procesamiento de imagenes y compresion de datos.
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» Esquemas de subdivision lineales y no lineales en modelado geométrico: Nira Dyn, [29], 2008.

Este trabajo proporciona una revision de los esquemas de subdivision lineales y no lineales en
el contexto del modelado geométrico. Nira Dyn describe como los esquemas de subdivision
se utilizan para generar curvas y superficies suaves a partir de datos discretos, y compara los
enfoques lineales tradicionales con los no lineales, destacando las ventajas de estos tultimos
en la representacion de formas geométricas complejas. El articulo también discute la con-
vergencia y la regularidad de los esquemas de subdivisién, con aplicaciones en graficos por

computadora y disefio asistido por computadora (CAD).

Dos preguntas abiertas sobre subdivision: Malcom Sabin, [61], 2009.

Este breve articulo plantea dos preguntas abiertas en el campo de los esquemas de subdi-
vision. Malcolm Sabin analiza problemas no resueltos relacionados con la convergencia y la
regularidad de ciertos esquemas de subdivision, que son fundamentales para el refinamiento
iterativo de curvas y superficies. Estas preguntas son importantes tanto desde un punto de
vista tedrico como préctico, ya que afectan la eficacia de los esquemas de subdivision en

aplicaciones de graficos por computadora, diseno de superficies y simulaciones numeéricas.

Regularidad de subdivision multivariada interpolatoria en grupos de Lie: Philipp Grohs, [38],
20009.

Este articulo aborda la suavidad de los esquemas de subdivisién interpolatorios en grupos de
Lie. Los grupos de Lie, que son estructuras algebraicas que describen simetrias continuas, se
utilizan en muchas dreas de la matemaética y la fisica. Grohs analiza como los esquemas de
subdivisién pueden aplicarse a datos en estos grupos, preservando la suavidad y garantizando
la convergencia. Este enfoque tiene aplicaciones potenciales en graficos por computadora,
robotica y simulaciones fisicas donde se requiere trabajar con datos que residen en grupos de

Lie.

Sobre la regularidad de funciones reales generadas por esquemas de subdivisién usando medias

binarias no lineales: Ron Goldman, Etienne Vouga, Scott Schaefer, [36], 2009.

Este trabajo investiga la suavidad de las funciones reales generadas mediante esquemas de
subdivisiéon que emplean promedios binarios no lineales. Los autores analizan cémo la sua-
vidad de las funciones generadas se ve afectada por el tipo de promedio no lineal utilizado
en el esquema de subdivisiéon, proporcionando condiciones matematicas que garantizan la
suavidad. Este estudio es relevante para la creacién de curvas y superficies suaves en graficos

por computadora y disenio geométrico.
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= Sobre esquemas de subdivision de Hermite con restricciones: Paolo Costantini, Carla Manni,

[21], 2008.

Este articulo aborda los esquemas de subdivisiéon no lineales de Hermite bajo restricciones.
Los esquemas de Hermite permiten el refinamiento de funciones mediante la interpolacién
de valores y derivadas en puntos de control. Los autores presentan un enfoque no lineal para
estos esquemas, garantizando que se respeten ciertas restricciones geométricas o de suavidad.
Este trabajo tiene aplicaciones en el disefio de curvas y superficies que requieren precision en

la forma y suavidad, como en graficos por computadora y CAD.

= Propiedades de equivalencia de suavidad de esquemas generales de subdivision para datos

con valores en variedades: Gang Xie, Thomas P.-Y. Yu, [67], 2009.

Este trabajo examina las propiedades de suavidad de los esquemas de subdivisiéon aplicados
a datos con valores en variedades (manifolds). Los autores investigan cémo los esquemas
de subdivisiéon pueden generar funciones suaves cuando los datos residen en espacios no
Euclidianos, como las variedades. Este enfoque es ttil en aplicaciones como la robotica,
graficos por computadora y anéalisis de datos geométricos, donde los datos pueden estar

restringidos a variedades especificas.

= Subdivisién no lineal a través de medias no lineales: Scott Schaefer, Etienne Vouga, Ron

Goldman, [62], 2008.

Este articulo introduce un esquema de subdivisién no lineal basado en el uso de promedios
no lineales. En lugar de utilizar métodos de interpolaciéon lineal tradicionales, los autores
desarrollan un enfoque en el que los puntos de control se actualizan mediante una técnica de
promediado no lineal, lo que permite obtener subdivisiones mas precisas y adaptativas en el
diseno de curvas y superficies. Este método tiene aplicaciones en el modelado geométrico y

el diseno de formas complejas.

= Analisis de suavidad de esquemas de subdivision en reticulas regulares mediante proximidad:

Philipp Grohs, [37], 2008.

Este articulo analiza la suavidad de los esquemas de subdivisién aplicados a datos en redes
regulares utilizando una técnica basada en la proximidad. Grohs presenta un enfoque teoérico
que garantiza que los esquemas de subdivision conserven la suavidad al aplicarse iterativa-
mente sobre mallas regulares, lo que es crucial para el refinamiento de curvas y superficies

en graficos por computadora y simulaciones numéricas.
= Propiedades de equivalencia de suavidad de esquemas de subdivision para datos con valores
en variedades basados en el enfoque de proyeccion: Gang Xie, Thomas P.-Y. Yu, [66], 2007.

Este trabajo investiga las propiedades de suavidad de los esquemas de subdivisiéon aplica-

dos a datos con valores en variedades (manifolds) utilizando el enfoque de proyeccion. Los
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autores demuestran que ciertos esquemas de subdivisiéon mantienen la suavidad cuando se
aplican a datos en espacios geométricos no euclidianos, como las variedades. Este estudio tie-
ne aplicaciones en gréaficos por computadora y simulaciones que involucran datos geométricos

complejos.

Tres familias de esquemas de subdivision no lineales: Nira Dyn, [28], 2006.

Este articulo analiza tres familias de esquemas de subdivisién no lineales. Estos esquemas
permiten la generacién de curvas y superficies suaves a partir de puntos de control de manera
adaptativa. La investigacion se centra en como las diferentes configuraciones de los esque-
mas pueden influir en la suavidad y estabilidad de las funciones generadas, proporcionando
herramientas utiles para el diseno geométrico y las aplicaciones de simulaciéon que requieren

precision en la forma.

(Cuan dependiente de los datos es un esquema de subdivisién no lineal? Un estudio de caso

basado en la preservacion de convexidad: Thomas Pok-Yin Yu, [72], 2006.

Este articulo examina la dependencia de los esquemas de subdivisién no lineales en los datos
iniciales, utilizando como caso de estudio un esquema que preserva la convexidad. El autor
analiza como las propiedades de los datos iniciales pueden afectar la convergencia y suavidad
del esquema, ofreciendo una comprension profunda de la influencia de las condiciones iniciales

en la calidad de los resultados obtenidos mediante subdivisiéon no lineal.

Analisis de suavidad de esquemas de subdivisién mediante proximidad: Johannes Wallner,

[63], 2006.

Este trabajo proporciona un anélisis detallado de la suavidad de los esquemas de subdivision
mediante el concepto de proximidad. Wallner desarrolla una metodologia matematica para
medir la suavidad de las funciones generadas por esquemas de subdivision en relaciéon con su
proximidad a funciones suaves conocidas, lo que es relevante para garantizar la calidad de

las curvas y superficies generadas en graficos por computadora y simulaciones geométricas.

Suavidad de la subdivisién no lineal por interpolacion de la mediana: Peter Oswald, [58],

2004.

Se presenta un anélisis refinado de la regularidad de Holder para las funciones limite que
surgen de un algoritmo piramidal no lineal para la eliminacién robusta del ruido no gaussiano
propuesto por Donoho y Yu [6,7,17]. La parte de sintesis de este algoritmo se puede interpretar
como un esquema de subdivision triada no lineal donde se insertan nuevos puntos basdndose
en la interpolacién e imputacion de la mediana polinémica cuadratica local. Introducimos la

analogia del esquema Donoho-Yu para el refinamiento diadico.
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s Esquemas de subdivision quasi lineales con aplicacion a la interpolacion ENO: Albert Cohen,

Nira Dyn, Basarab Matei, [19], 2003.

Se analiza la convergencia y suavidad de cierta clase de esquemas de subdivisién no lineales.
Se estudia las propiedades de estabilidad de estos esquemas y aplicamos este andlisis a la
clase especifica basada en técnicas de interpolaciéon ENO y ENO ponderada. Nuestro interés

en estas técnicas estd motivado por su aplicacién al procesamiento de senales e imagenes.

Los trabajos [26, 30, 37,40,63,69] articulan el puente entre no lineal y lineal mediante proximidad
diferencial; [34] proporciona una via independiente basada en invariancia geométrica y rectificacion.
En dominios no euclidianos ([33,38,48,56,66,67]) la convergencia se asienta en contracciones y en
el control de la geometria; [64] extiende a mallas irregulares. Las familias con medias no lineales
o selecciones del esténcil tipo ENO ([19, 32,36, 44,58,62]) se basan en contracciones de esquemas
para las diferencias; [39] conecta estabilidad con orden de aproximacion. Las revisiones [29, 61|

identifican huecos y preguntas abiertas sobre optimalidad y robustez.
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Tabla 5: Comparativa cruzada de referencias: 4&mbito, objetivo principal y herramienta analitica

dominante.

Referencia

Ambito de datos

Objetivo principal

Herramienta analitica do-
minante

Ewald—Reif-Sabin [34]
Duchamp—Xie—Yu [26]
Hiining—Wallner [48]
Moosmiiller [56]

Ebner [33]
Xie-Yu [69]
Xie Yu [68]

Matei-Meignen—
Zakharova [55]

Amat-Dadourian—
Liandrat [2]

Grohs [39]
Weinmann [64]

Harizanov—Oswald [44]
Grohs [40]

Dyn-Grohs—Wallner
(30]

Dyn—Oswald [32]
Dyn [29]
Sabin [61]

Grohs [38]

Goldman—Vouga—
Schaefer [36]

Costantini-Manni [21]

Xie-Yu [67]

Schaefer—Vouga—
Goldman [62]

Grohs [37]
Xie-Yu [66]

Dyn [28]
Yu [72]

Wallner [63]
Oswald [58]

Cohen-Dyn-Matei [19]

R?  (geométrico,
GLUE)

No lineal vs. lineal

Esfera

Variedades
mite)

(Her-

Espacios métricos
No lineal vs. lineal
Variedades

No separable
Sefial /imagen

General

Malla irregular

Multiescala

General
General

Univar., no lineal
Revision

Revision breve

Grupos de Lie

Medias no lineales

Hermite con
tricciones

Variedades

Medias no lineales

res-

Reticulas regulares
Variedades
yeccion)

Tres familias NL

Dependencia  de
datos

(pro-

General

Mediana no lineal

Quasi lineal / ENO

O /C?%2 y rectificacion

Equivalencia de suavidad
Ok

Convergencia/estabilidad
Cl

Convergencia
Invariancia de proximidad

Orden de
(equivalencia)

aproximacion
Regularidad

Convergencia,/estabilidad
multirresolucién

Orden desde estabilidad

Convergencia,/estabilidad

Estabilidad

Proximidad (marco gene-
ral)

Orden de aproximacion

Multiescala y estabilidad
Estado del arte

Preguntas abiertas

Suavidad interpolatoria

Suavidad  de
reales

funciones
Suavidad bajo restricciones

Equivalencia de suavidad

Subdivision no lineal

Suavidad via proximidad

Suavidad por proyeccion

Clasificacion

Preservacion de convexidad

Suavidad via proximidad
Regularidad Holder

Conv. /suavidad
ENO/WENO

Distorsion relativa, invariancia
a similitudes
Proximidad diferencial al es-
quema lineal

Geometria esférica, contraccio-
nes

Analisis Hermite en variedades

Contracciones en métricas
Proximidad e invariancias

Transferencia de orden a varie-
dades

Estimaciones multivariadas no
separables

Analisis de transformaciones
asociadas

Estabilidad = orden

Condiciones
mallas

estructurales en

Analisis multiescala no lineal

Proximidad/transferencia  de
suavidad

Proximidad y estimaciones de
error

Marco multiescala no lineal
Sintesis critica

Problemas  de
cia/regularidad

convergen-

Geometria de grupos de Lie

Promedios no lineales y suavi-

dad

Analisis con restricciones

Proximidad en variedades

Estructuras de promedio no li-
neal

Proximidad en mallas regulares

Enfoques de proyeccion

Taxonomia de familias NL

Sensibilidad a datos iniciales

Marco de proximidad

Analisis del esquema Donoho—
Yu

Estabilidad + proximidad en
ENO
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7. Conclusiones

Los esquemas de subdivisiéon no lineales representan una extension poderosa de los métodos lineales
tradicionales, ofreciendo flexibilidad y capacidad de adaptacion en una amplia gama de aplicaciones,
especialmente en el manejo de datos irregulares y la preservacién de caracteristicas geométricas.
Su aplicacion en variedades, la mitigacion de oscilaciones de Gibbs y la preservacion de formas
geométricas como circulos y esferas demuestra su versatilidad y eficacia en situaciones donde los

enfoques lineales no son suficientes.

Del anélisis comparado se desprende una clasificacion natural de los trabajos:

1. Geomeétricos: centrados en la preservacion de formas e invariancias (circulos, esferas).
2. Adaptativos: disenados para manejar irregularidades o discontinuidades.
3. Multiescala: conectados a ondiculas y compresion en miltiples resoluciones.

4. Tedricos: orientados al estudio de convergencia, estabilidad y regularidad.

Esta taxonomia permite visualizar la evolucion del campo y resaltar vacios actuales.

La seleccion bibliografica responde a dos criterios principales: (i) representatividad de los métodos
més influyentes en cada linea de investigacion que cubren las diferentes areas de interés en el
contexto de esquemas de subdivision, y (ii) diversidad en cuanto a las aplicaciones que se consideran

(modelado geomeétrico, procesamiento de imégenes, aproximacion).

Existen trabajos de revisiéon de esquemas no lineales previos pero no hemos encontrado ninguno
que sea tan global como la presente revision. Introducimos las cuatro aportaciones que hemos
encontrado y que pueden considerarse revisiones parciales. En [29], Dyn nos presenta una panoréa-
mica sobre los esquemas de subdivisién en modelado geométrico, distinguiendo entre los enfoques
lineales y no lineales, revisando la teoria clasica (convergencia, suavidad y orden de aproximacion)
y destacando cémo los esquemas no lineales permiten preservar propiedades geométricas como po-
sitividad, monotonia o convexidad. Por su parte, Dyn y Oswald [32] estudian el caso univariante en
relacion con las transformaciones multiescala, extendiendo herramientas lineales al marco no lineal
y analizando estabilidad, contraccion y orden de aproximacion en contextos adaptativos. Micchelli
[35] investiga los esquemas estacionarios no lineales, estableciendo un marco matematico para su
convergencia y regularidad, con aplicaciones a problemas de interpolaciéon y aproximaciéon geomé-
trica. Finalmente, Arandiga y Donat [12] desarrollan el enfoque de Harten para descomposiciones
multiescala no lineales, mostrando como éstas permiten representaciones estables y adaptativas en

el analisis numérico de ecuaciones hiperbélicas y en el procesamiento de senales.

Aunque se han hecho avances importantes en el desarrollo y aplicacion de estos esquemas, el

analisis de los esquemas no lineales sigue siendo un desafio debido a su complejidad matemética.
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Aun queda mucho por explorar en términos de eficiencia computacional y aplicaciones en datos de

mayor dimension.

Entre las lineas abiertas de investigacion podriamos destacar:

s Extender los esquemas a contextos de datos no euclidianos méas complejos (grafos, redes

neuronales geométricas).
= Integrar preservacién geométrica y adaptacion a discontinuidades en un marco tinico.

» Explorar implementaciones paralelas y en GPU para aplicaciones en tiempo real en graficos

por computadora.

= Profundizar en aplicaciones de multirresolucién no lineal en la resoluciéon numérica de EDPs

de interés fisico.

» Desarrollar criterios autométicos de seleccion de parametros (ej. tension, pesos adaptativos)

guiados por aprendizaje automaético.
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Ademas se incluye una discusion de acerca de varios proble-
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SURVEY

Spectral stability and resonances for finite rank and
singular perturbations

. 1
M. ANGELICA ASTABURUAGA ABSTRACT

Victor H. CORTES!™

CLAUDIO FERNANDEZL In these notes, we summarize a series of papers devoted to
perturbations of operators of several classes, among them

N2

RAFAEL DEL Rio differential operators. The articles mentioned before, study

spectral properties, with special emphasis on the stability of
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the eigenvalues and the absence of a certain singular spec-
trum. These perturbations are of a different nature, including

finite rank and the singular case.
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We also characterize and prove the resonance phenomenon
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I from a dynamical point of view, that is, the existence of

states with long life and for which the survival amplitude
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has an almost exponential behavior.

In addition, we include a discussion about several open pro-
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1. Introducciéon

Como un reconocimiento a su contribucioén, y en el marco del 40° aniversario de la revista Cubo,

presentamos este articulo compendio de varios trabajos, principalmente de la tltima década.

La teoria espectral de operadores autoadjuntos es una parte esencial de la Fisica Matemética,
particularmente de la Mecanica Cuantica. Muchas veces estos operadores surgen como pertur-
baciones pequetias de un operador dado (el Hamiltoniano libre). En general, aqui consideramos

perturbaciones de rango finito e incluimos casos regulares y casos singulares.

La naturaleza y estabilidad del espectro, en especial de sus componentes puntual, absolutamente
continuo y singular, bajo pequenas perturbaciones, ha sido objeto de intensas investigaciones, tanto
por su conexion con la estabilidad de sistemas fisicos cuanticos como por sus implicaciones en el

analisis de fenomenos de resonancia cuéntica.

En este articulo, revisamos diversos resultados obtenidos en trabajos previos que analizan las
propiedades espectrales de operadores de este tipo. Estos estudios han demostrado que, aunque la
perturbaciéon de un operador con espectro exento de parte singular genera cambios en el espectro,
los efectos de estas perturbaciones suelen estar relacionados con la aparicion de resonancias y
variaciones en las frecuencias de los modos espectrales del sistema. En particular, se han identificado
condiciones bajo las cuales las perturbaciones de rango finito modifican el espectro del operador

base, pero sin introducir nuevas singularidades en el espectro resultante.

Ademaés, discutimos la conexién entre estas propiedades espectrales y una formulacién dinamica
del fenémeno de resonancia cuantica, en la cual se exploran las interacciones entre los operadores
perturbados y los estados del sistema cuéntico, y como estas interacciones pueden llevar a la apa-
ricién de picos resonantes en el espectro, los que se traducen en un comportamiento exponencial
aproximado de la llamada amplitud de probabilidad. Las resonancias cuanticas juegan un papel
fundamental en la descripcion de procesos de transicion entre estados cuénticos, lo que tiene apli-
caciones en el estudio de sistemas dindmicos y en la predicciéon del comportamiento del sistema a

largo plazo.

En el transcurso de este compendio, abordaremos tanto los resultados tedricos mas relevantes como
los métodos matematicos empleados para el anélisis espectral de estos operadores, con el objetivo
de ofrecer una vision integral de como las perturbaciones de rango finito influyen en la estructura
espectral y, a su vez, como esta influencia se relaciona con el comportamiento dindmico de sistemas

cuénticos en resonancia.
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1.1. Valores propios inmersos

Este articulo se sitiia dentro del marco de la teoria espectral, parte central del analisis funcional.
El espectro de un operador describe los valores asociados con el comportamiento de este operador

y tiene una influencia importante en muchas areas de las matemaéticas y la fisica.

La “perturbacion” en este contexto se refiere a una pequena modificaciéon del operador, es decir,
un cambio que se puede considerar de “tamano pequeno”. La idea general consiste en determinar
como los valores propios (o el espectro en general) de un operador cambian cuando el operador
es alterado de esta manera. Esto involucra conceptos como la variaciéon de los valores propios, los
efectos en la estructura espectral, y las condiciones bajo las cuales un espectro se desplaza o se

distorsiona de manera controlable.

Algunos de los resultados que siguen estan motivados por el articulo [10] donde se desarrolla una
serie de ideas acerca de como un pequeno cambio en un operador afecta su espectro puntual y
su espectro continuo, ademas de demostrar la existencia de subespacios en los cuales el operador
no tiene componente singular. Dicho articulo est4 relacionado con la teoria de Weyl acerca de

perturbaciones de espectros.

Ademaés del estudio de la estabilidad de las componentes del espectro, también se consideran
situaciones en las que una pequena perturbacién hace desaparecer un autovalor del operador no
perturbado. Especificamente cuando dicho autovalor esté inmerso en espectro continuo, atin cuando

también es interesante la situacién en que sea aislado.

Al desaparecer, el valor propio se transforma en realidad en una resonancia, que es una especie
de valor propio generalizado. Este tema ha sido objeto de muchas investigaciones en las tltimas

décadas, mencionamos por ejemplo [11] y la referencias que alli aparecen.

1.2. Introduccion al fenémeno de resonancia

El fenémeno de resonancia aparece en varias areas de la fisica y las matemaéticas como la Mecéanica
Clasica, Cuéantica y Ondulatoria. Se han hecho varios intentos para darle una descripcion matemati-
ca precisa. Nos remitimos a [17] para una discusion sobre las dificultades que surgen al caracterizar

rigurosamente el concepto de resonancia para sistemas auténomos en Mecanica Cuantica.

Uno de los enfoques més fructiferos consiste en definir las resonancias cuanticas como polos de una
continuaciéon meromorfa adecuada de la resolvente del hamiltoniano, desde el semiplano complejo
superior hasta el semiplano inferior. Cada polo aparece como un “valor propio” con parte imaginaria
negativa, correspondiente a funciones propias generalizadas fuera del espacio de Hilbert. Existe una
gran cantidad de literatura sobre este tema y remitimos al lector al texto [11] y las referencias que

alli aparecen.
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Las resonancias también se pueden caracterizar en términos de un decaimiento exponencial de
la evolucion temporal del sistema gobernado por el hamiltoniano (definido como un operador
autoadjunto en algin espacio de Hilbert ). Este comportamiento se puede rastrear mediante la

probabilidad de supervivencia P, para algunos estados adecuados ¢. Esta cantidad, definida por

P,(t) = [(p, e )2,

mide la probabilidad de encontrar en el instante t el sistema gobernado por el hamiltoniano H
en su estado inicial ¢. Por un lado, sabemos que el decrecimiento exponencial exacto es imposible
para muchos modelos de interés fisico; ver [17]. Por otro lado, si z = A —iI" (con I" > 0) es un
polo de la resolvente del hamiltoniano H con “funcién propia resonante” ¢ (es decir, Hp = zp),
formalmente esperariamos que,

Py(t) = e 2 o]?,

lo cual es incorrecto puesto que la funcién propia resonante ¢ no pertenece al espacio de Hilbert.
Por lo tanto, en presencia de una resonancia z, lo mejor que se puede esperar es la existencia de un
estado 1 € H tal que la cantidad (¢, e=Ht1)) se comporta aproximadamente como e~%*!. Ambas
cantidades son iguales a 1 en ¢ = 0 y en la mayoria de los casos de interés, ambas se acercan a cero

cuando t tiende a co. El objetivo principal es entonces estimar la diferencia,
<w7 67th1/’> - eiiZta

para t no cerca de 0 ni de co.

Para operadores diferenciales, sobre el semieje real, esta diferencia se puede estimar uniformemente
en tiempo (|15]) o en norma L? (|6]), mediante técnicas EDO. En estos casos, la funcion 1 es una
funcién propia resonante truncada. Se han exhibido estimaciones puntuales cuando la resonancia
aparece con la perturbaciéon de un valor propio simple inestable incrustado en algin espectro
continuo, ver [8] y [13] para una revisién. Los ingredientes principales son en este caso la reduccién
de Feshbach-Livsic y la regla de oro de Fermi. En [8], este enfoque en realidad se combina con
algunas técnicas de conmutador positivo (teoria de Mourre) y las estimaciones se obtienen una vez

que la funcién propia se localiza en energia.

La aplicaciéon de Feshbach-Livsic para estudiar resonancias se remonta al menos a [12] y ha sido

fuente de varios resultados en las ultimas décadas en diferentes areas.

Para la relacion entre la evoluciéon del tiempo (la perspectiva que abordamos en este articulo) y
los polos de la resolvente en el contexto de la teoria analitica de la perturbacién, mencionamos el

trabajo [11] y las referencias contenidas en este ultimo.
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2. Perturbaciones de rango uno

En el articulo [7] se abordan resonancias generadas por perturbaciones de rango uno de operadores
autoadjuntos con valores propios inmersos en el espectro continuo. La inestabilidad de estos valores

propios se analiza y se exhibe una caida casi exponencial de los estados resonantes asociados.
Ademas mostramos como estos resultados pueden ser aplicados a los operadores de Sturm-Liouville.

Las herramientas principales son la teoria de Aronszajn-Donoghue para perturbaciones de rango
uno, un proceso de reduccion del operador resolvente basado en la féormula de Feshbach-Livsic,
la regla de oro de Fermi y un anélisis cuidadoso de la transformada de Fourier de funciones
cuasi-Lorentzianas. Estos resultados se pueden aplicar también para estimar explicitamente el

correspondiente tiempo de estadia y los fenomenos de concentracion espectral.

La reducciéon de Feshbach-Livsic se desarrolla en el contexto de operadores diferenciales en la
semirecta, lo que permite obtener estimaciones puntuales cuando la resonancia aparece con la
perturbacion de un valor propio simple e inmerso en el espectro absolutamente continuo. Aunque
varias de estas herramientas pueden adaptarse facilmente a una clase bastante amplia de pertur-
baciones, en [7] se limita la discusion al caso de rango uno y se relacionan estos resultados con

resultados clésicos en este campo [10,18].

En la Seccién 2 de dicho trabajo se establecen condiciones que aseguren que la transformada de
Fourier de una funcién tipo Lorentz exhiba una caida de tiempo exponencial aproximada. La
demostracion de este hecho se basa en técnicas de analisis clasico, que siguen principalmente las
ideas de [8]. Este resultado es de interés en si mismo y establece que si una funcién real esta cerca

de
1 a

71' ()\ - )\())2 + b2
entonces su Transformada de Fourier tiene un comportamiento casi exponencial.

Se consideran en particular, perturbaciones de rango uno de la forma
H, = Ho + s[p)(¥],

donde Hj tiene un valor propio simple incrustado en algin espectro absolutamente continuo.
Mostramos cémo la inestabilidad del valor propio inmerso y las propiedades espectrales de los
operadores H,, estan relacionadas con los valores limite de la resolvente reducida de Hj y la regla

de oro de Fermi.
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Lo anterior permite formalizar la existencia de una resonancia en términos de decaimiento casi
exponencial, bajo hipotesis adecuadas sobre la resolvente reducida del operador Hy. La prueba
combina el proceso de reduccién de Feshbach-Livsic y la formula de Krein con el teorema que

estima la Transformada de Fourier de una funcién cuasi-Lorentziana.

Como corolario, se deduce la concentracion espectral de Kato y el comportamiento asintético
para el tiempo de estadia del estado propio correspondiente, en funcién del pardametro x, bajo
la evolucion gobernada por H, y para valores pequenos de k. Finalmente, las propiedades de los
valores limites de la resolvente reducida de Hy en el eje real, se deducen de las propiedades de la
medida espectral de Hy, cuando ésta tiene multiplicidad finita. Esta reformulacion se resume en la
estimacién del comportamiento casi exponencial. Todos estos resultados se ilustran mediante un
modelo de Sturm-Liouville. En contraste con [8], el punto de vista adoptado no requiere ninguna

técnica de conmutador positivo.

3. Estimaciones para el tiempo de vida

En el articulo [1] se aborda el estudio de perturbaciones de rango uno aplicadas a operadores
autoadjuntos. Se estima como estas perturbaciones afectan el tiempo de permanencia de un estado
cuéantico, especialmente cuando el operador perturbado tiene un valor propio simple incrustado en

su espectro absolutamente continuo.

En ese trabajo se analiza como una perturbaciéon de rango uno puede alterar significativamente
el espectro de un operador autoadjunto, lo que incluye el cambio en la naturaleza de los valores
propios incrustados en el espectro continuo. Se utiliza principalmente el Modelo de Friedrichs, en
el que se perturba un operador absolutamente continuo en L?(R), por un operador de rango uno
|1} (1)]. Para este modelo se estiman las propiedades del tiempo de permanencia bajo perturbaciones

pequenas.

Primero se revisa un resultado que caracteriza las pertubaciones de rango uno para las cuales el
operador,

Ho = M + clp) (4|

tiene exactamente un valor propio (simple) inmerso en el espectro continuo, con vector propio

correspondiente . Aqui, M es un operador absolutamente continuo y ¢ una constante adecuada.

Luego se perturba este operador nuevamente por un operador de rango uno y se proporciona una
estimacién explicita del tiempo de permanencia utilizando la teoria de perturbaciones y técnicas

de deformacion analitica.
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Asi, consideramos el operador
He = Ho + €[) (4]
que para € pequeno no tiene valores propios.

Se demuestra que en este caso el tiempo de permanencia en un vector ¢ para pequenias pertur-
baciones, es finito y que, bajo ciertas condiciones, es proporcional a ¢~2, donde € representa la

magnitud de la perturbacion.

En el caso en que M sea el operador de multiplicacion por x en L?(R) y ¢ sea analitica en un

sentido adecuado, podemos usar la técnica de traslacion analitica para demostrar que el tiempo de

T(¢)21F+0<1).

La cantidad % coincide con el término correspondiente de la regla de oro de Fermi,

vida,

2¢ 2 Im{p, Re(Ep)p)

donde FEj es el valor propio y R, la resolvente reducida del operador H.

Existen numerosos trabajos (ver por ejemplo las referencias mencionadas en [1]) que describen
resonancias mediante el analisis del comportamiento de la amplitud de supervivencia, es decir, la
iHt

funcion R(t) = (@, e “**¢) que, en muchos casos, incluye leyes explicitas de decaimiento exponen-

cial para esta cantidad.

4. Perturbaciones de rango finito

Los resultados contenidos en las dos secciones anteriores pueden ser extendidos al caso de pertur-
baciones de rango finito. Esta generalizacion no es inmediata, de hecho ya en el uso de la formula
de Krein para expresar la resolvente perturbada en términos de la resolvente libre, aparece un
término matricial, que obliga al uso de descomposiciones matriciales, lo que para rango uno se

reduce a una funcion real.

Este tipo de resultados ha sido desarrollado ampliamente en el articulo [4]. Alli, se estudia el

comportamiento del espectro del operador perturbado

N
Hg = Hy + Z@:WQWH,

i=1

donde {¢1,...,¥nN} es un conjunto de vectores ortonormales en H'y 8 = (51,...,08n), Bi € R,
parai=1,...,N.
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Aqui, Hy es un operador autoadjunto en un espacio de Hilbert .

Como en el caso de rango uno, para demostrar que una parte del operador es absolutamente
continua es necesario imponer una especie de regla de oro, que se traduce en la positividad de una

cantidad que involucra a la resolvente reducida.

El estudio se centra en dos aspectos principales: la identificaciéon de subespacios en los que el
operador perturbado Hpg tiene un espectro absolutamente continuo, y su comportamiento resonante

cuando el operador libre Hy tiene un valor propio inmerso en el espectro absolutamente continuo.

Para ambos resultados se requiere ademés una serie de relaciones entre la resolvente del operador

Hpg y los subespacios,

Mg =span{Rg(z)y; : j=1,...,N, z¢R}.

Aqui, Rg = (Hpg— 2)~1 es la resolvente del operador H, 8, definida para z un ntmero complejo fuera

de su espectro.

En el caso de una perturbacion de rango uno, M es simplemente el subespacio ciclico asociado al

operador Hg y al vector 9.

Los resultados respectivos aparecen en [7] para el caso de rango uno y en [5] para el caso de rango

finito y se basan en un estudio espectral detallado que se encuentra en [10].

La estrategia empleada depende también de una versiéon extendida de la férmula de Krein. Para

formular este principio, notamos que la perturbacion de rango finito puede ser factorizada,
N
Ve =137 = Zﬁi|¢i><¢z‘|
i=1

donde 75 : H — C¥ esta definido por

VB, b)
VB2 (2, ¢)

T8O =

VBN (YN, &)

donde (-,-) denota el producto interior en el espacio de Hilbert.

La formula de Krein ahora establece: sean Ro(z) y Rg las resolventes de los operadores Hy and

Hpg respectivamente. Entonces, para 3z > 0,

Rg(z) = Ro(2) — Ro(2) 5(1 + 78 Ro(2)75) ™' 7 Ro(2)
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Notamos que (1 + 73Ro(2)73) es una matriz compleja invertible, a diferencia del caso de rango

uno, en que esta cantidad es un escalar.

En relacién con el comportamiento resonante, en este articulo se establece que, en caso que el
operador no perturbado Hy tenga un autovalor inmerso en el espectro absolutamente continuo, el
operador perturbado Hg exhibe un comportamiento resonante. Especificamente, la cantidad

—iHgt

[ {0, ™% p0) |

se comporta casi exponencialmente. Las herramientas utilizadas en la demostraciéon de estos resul-
tados son nuevamente una regla de oro y formulas adecuadas de Krein y Feshbach-Livsic. Ademas,

se estima el correspondiente tiempo de permanencia.

5. Perturbaciones singulares

Las interacciones tipo delta en Mecanica Cuéntica presentan una serie de dificultades técnicas y
conceptuales debido a la naturaleza singular de la delta de Dirac ¢. La principal dificultad es que el
Hamiltoniano con una interacciéon delta no es un operador autoadjunto en el sentido convencional,

lo que complica el tratamiento riguroso del sistema.

Para un operador autoadjunto H, que actta en el espacio de Hilbert L?(R"), estamos hablando
de

que opera como

Hptp = Hotp + o

Este tipo de interaccién puede ser tratado mediante regularizaciéon, y es util para modelar inte-
racciones locales. De hecho, la interaccion esté localizada en el origen, de modo que no influye para

elementos del espacio de Hilbert que se anulen en una vecindad de cero.

Ademés, se establece que esta interaccion puede ser considerada una perturbacion de rango uno,
lo que permite un tratamiento simplificado en muchos casos de interés. Este hecho se explota
en [4], donde, aparte de discutir las estrategias para caracterizar el Hamiltoniano como operador

autoadjunto, se demuestra una correspondiente féormula de Krein.

En dicho trabajo se extienden estas ideas a perturbaciones singulares més generales, incluyendo

por ejemplo potenciales localizados en una superficie en el espacio n-dimensional.
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Se explicitan los dominios donde el operador singular Hg es autoadjunto. Ademads, se establecen
formulas para las correpondientes funciones de Green, para el caso Hy = —A+V (z) como operador

actuando en L?(R").

En particular, se demuestra en este caso el conocido teorema de Weyl, sobre la invariancia del es-
pectro esencial bajo perturbaciones compactas autoadjuntas. Para estas perturbaciones singulares

damos un resultado sobre la existencia de un espectro puntual puro (valores propios) de Hg.

La idea principal es aplicar una tipo de formula de Krein en este marco singular, junto con la

correspondiente relacion entre las funciones de Green asociadas a los operadores Hy y Hg.

Como ejemplo explicito, se considera una clase especial de perturbaciones singulares del operador
autoadjunto Hy = —A+ V(z) en el espacio de Hilbert L*(R"), donde V (z) es una funcién acotada

de valor real.

Especificamente, consideraremos el operador perturbado Hg de Hy dado por el operador singular
|0s)(ds]| del tipo
Hg = Ho + B65){ds],

donde S es la frontera de un dominio de Lipschitz acotado €2 en R™, 5 es un parametro real y

55(80):/S<Pd0

donde do es el elemento de area de la superficie S.

Hay varios trabajos de perturbaciones singulares en una dimension, es decir, perturbaciones del tipo
Funcién delta en un punto. En ellos se caracteriza el dominio de estos operadores en términos de
una condicién de frontera. Seguimos este enfoque y somos capaces de relacionarlo con un operador

acotado en un espacio de Sobolev adecuado.

Por ltimo, en dicho articulo se estudia la posible estabilidad de autovalores del operador libre

Hy = —A + V(z), sujeto a una perturbacion singular.

Ya que en estos espacios el operador se comporta como un verdadero operador de rango uno, es
posible establecer una féormula de Krein en este contexto, la que se usa para demostrar una versiéon

del teorema de Weyl.
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6. Herramientas técnicas

Hemos incluido esta seccién a sugerencia de uno de los evaluadores de este articulo, sugerencia que
por cierto agradecemos. El propdsito es explicar con més detalle algunas herramientas ttiles en

teoria espectral y que son ampliamente conocidas en el adrea de teoria de perturbaciones.

6.1. La formula de Feshbach-Livsic

Dado un operador autoadjunto H en un espacio de Hilbert /. La idea es estudiar la resolvente del

operador H reducido a un subespacio M.

Sea P la proyeccion ortonormal asociada al subespacio M y sea P+ = I — P, donde I es el operador

identidad en #H. Consideremos el operador (el operador de Feshbach),
F(z) = PHP — PHP+(H* — 2)"'P*HP,
donde H* es el operador H reducido al complemento ortogonal de M. Entonces,
PH—z)7'P=(F(z) —2)""

Esta formula permite estudiar la resolvente de un operador autoadjunto general, reducido a un
subespacio dado M y muestra como éste depende de la accién de vectores en el complemento

ortogonal de M, ver [12].

6.2. La formula de Krein

Esta es una formula explicita para la diferencia de las resolventes de dos operadores autoadjuntos
H y Hy. Establece,
R(z) — Ro(z) = —Ro(2)Lv (2)Ro(2),

donde z es un namero complejo no real y Ly (z) es un operador que depende de la perturbacion

V = H — Hy. Por ejemplo, cuando V = A*B, la féormula expresa,
Ly(z) = A*(I — BRy(2)A*)™'B

Hay muchos ejemplos para los cuales es posible factorizar la perturbaciéon V' de modo de obtener una
expresion muy simple para el operador Ly (z). Por ejemplo, en el caso de rango uno, V = k{p, )¢,

resulta,
K

L+ k(p, Ro(2)p)

LV(Z) = <30’ >
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Esta formula puede es muy til en Teoria Espectral puesto que en ella es facil identificar posibles

ceros y polos (como funcion de z) de la resolvente.

Para el caso de perturbaciones de rango finito, es posible obtener una expresiéon matricial para la

formula de Krein que se muestra en la Seccion 4.

El caso singular, vale decir, perturbaciones que incluyan funciones de tipo delta, también puede

ser tratado con esta técnica.

6.3. La regla dorada de Fermi

Esta regla es un resultado fundamental en Mecanica Cuéntica pero que, en realidad, no usamos en
los trabajos aqui mencionados. Solamente, hacemos notar que el parametro I' que rige el compor-

tamiento casi exponencial de la probabilidad

P(t) = [(p,e )

aparece también en la regla dorada.

La regla de Fermi entrega la probabilidad de transicion entre dos estados adecuados y, en nuestro
caso, P(t) es precisamente la probabilidad de transicion entre el estado en tiempo t, es decir e ~#H ¢

y el estado inicial .

Para el caso en que

H:H0+€‘/,

la regla indica que para e pequeio, la probabilidad de transicién debe ser proporcional a €2.

En la Seccién 3, presentamos estimaciones para el tiempo de vida

En el caso resonante, se espera que la probabilidad P(t) tenga, para tiempo ¢ grande, un compor-

tamiento aproximado de la forma e~'*, de modo que el tiempo de vida 7 se debe comportar como
1
or"
De hecho, en el caso de rango uno, el término que mas influye en el tamano de 7 tiene la forma

ce~2, con c positivo. Esto es consistente con lo que indica la regla dorada.
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6.4. La estimacion de Mourre

La estimacion de Mourre (o conmutadores positivos) es una herramienta fundamental en Teoria
Espectral, particularmente para descartar la existencia de valores propios y de espectro singular

continuo.

Decimos que un operador autoadjunto H satisface una estimacion de Mourre en un intervalo real

J si existe un operador autoadjunto A tal que.
Eji[H,AlE; > cE;+ KE;.
Aqui, ¢ es una constante positiva y K es un operador compacto. Ademés,
[H,Al]=HA—- AH

es el conmutador entre los operadores H y A.

Bajo hipotesis adecuadas que aseguren entre otras cosas, que el conmutador ¢[H, A] es un operador
autoadjunto, la existencia de la estimacion de Mourre, ver [16], tiene consecuencias muy relevantes,
tales como la ausencia de espectro singular continuo en J, la estabilidad del espectro absolutamente
continuo, un control de posibles valores propios y la existencia del limite de la resolvente R(z),

cuando z se acerca al eje real.

7. Algunos problemas abiertos

1. Estudio de perturbaciones fuera del espectro absolutamente continuo: aunque el trabajo se
centra en operadores con valores propios inmersos en el espectro absolutamente continuo, es
posible considerar perturbaciones de operadores con valores propios aislados. Es el caso por
ejemplo, de las “shape resonances”, ver por ejemplo [2] y [15]. En estos trabajos un operador
H, con un potencial de soporte compacto se considera una perturbacién del operador Hy que
tiene una barrera de potencial infinita. La perturbacion es grande pero puede ser pequena en
la region donde los vectores propios de Hy son exponencialmente pequenos. En estos casos,

se podria obtener decaimiento casi exponencial ademés de la concentracion espectral.

2. Aplicaciones a sistemas mas generales de Sturm-Liouville: la teoria podria extenderse a siste-
mas mas generales que no sean estrictamente de Sturm-Liouville, como operadores no lineales

o sistemas que incluyan interacciones de largo alcance.
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3. La concentracion espectral en presencia de una resonancia, podria ser explorada con més

detalle. Por ejemplo, para el caso de una perturbaciéon de rango uno,
Hm = HO + "f|1/1><¢| )

donde Hj es un operador autoadjunto con un valor propio A, con Hyp = Ap. Como mostramos
en la Seccién 2, puede ocurrir que para k pequeno, H, sea absolutamente continuo (o tenga

espectro absolutamente continuo en una vecindad de ). Ciertamente, debemos tener que
lim Ep =
ey JP '

donde E’ es la proyeccion espectral asociada al operador H,;, en un intervalo J que contenga
a A. Seria interesante estudiar el orden de la concentracion del espectro en torno a A, o sea
encontrar 'k, que tienda a 0 cuando « tienda a 0, optimal, tal que que si J, es el intervalo

centrado en \ y de radio I'k, entonces todavia se tenga,
lim B p =
K% J.P 2

La concentracién espectral es un fenémeno mucho mas general introducido en [14]. Men-
cionamos también [9] para una relacién con resonancias. También se podria estudiar esta

propiedad para perturbaciones de rango finito y perturbaciones singulares.

4. Regla de oro de Fermi en sistemas: la regla de oro de Fermi es una herramienta central en
este trabajo. Seria interesante investigar su aplicabilidad y ajustes por ejemplo cuando se

consideran perturbaciones dependientes del tiempo, incluso para rango finito o singular.

5. Analisis del comportamiento de la funcién de supervivencia en sistemas dindmicos: el com-
portamiento de la amplitud de supervivencia R(t) = (p,e~tp) se plantea aqui para la
ecuacion de Schrodinger. Un area de investigacion futura podria ser el estudio detallado de

su comportamiento por ejemplo para la ecuacion de Dirac o para el movimiento de ondas.

6. Estudio de la estabilidad espectral y el tiempo de vida en presencia de perturbaciones singu-
lares: la estabilidad de los autovalores bajo perturbaciones singulares es un tema clave en el
articulo. Un area interesante para futuras investigaciones seria el analisis del tiempo de vida
o el tiempo de decaimiento de los estados cuanticos asociados a los autovalores, especialmen-
te en presencia de perturbaciones singulares. Ademéas de la formulacion de un teorema de

estabilidad espectral mas general para sistemas con perturbaciones singulares.

7. Extension de la teoria a perturbaciones dependientes del tiempo: en el articulo, las per-
turbaciones son estaticas, pero se podria investigar el comportamiento de perturbaciones

dependientes del tiempo, de tipo delta. Estudiar como evoluciona el espectro en presencia
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de perturbaciones dindmicas podria proporcionar nuevas perspectivas, particularmente en

sistemas cuanticos fuera de equilibrio.

Extension de los resultados al caso de perturbaciones no autoadjuntas: aunque el enfoque se
limita a operadores autoadjuntos, seria interesante explorar cémo los resultados se generalizan
a operadores no autoadjuntos que podrian surgir en ciertos modelos cuénticos. En particular,
estudiar la estabilidad y la caracterizacién dindmica de las resonancias para estos operadores

podria ser un area de gran interés.

Estudio de la estabilidad espectral, resonancia y concentracion espectral para operadores de

Schrodinger discretos. Mencionamos [3] para resultados en esta area.
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