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Universidade Federal de Minas Gerais
Av. Antonio Carlos 6627 Caixa Postal 702
CEP 30.123-970, Belo Horizonte, MG – Brazil







U
N

IV

E
R

SID
AD DE LA FRO

N
T

E
R

A

CUBO
A MATHEMATICAL JOURNAL

Universidad de La Frontera
Volume 27/No¯2 – AUGUST 2025
Special Issue – Spanish Edition

SUMMARY

Articles

– Pseudoinverses of morphisms between Abelian varieties . . . . . . . . . . . . . 179
Robert Auffarth

– Some infinite extensions of Q satisfying Bogomolov’s property . . . . 191
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Rub́ı E. Rodŕıguez, Anita M. Rojas and Mat́ıas Saavedra-Lagos
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1. Introducción

Al estudiar los toros complejos, es inevitable darse cuenta que prácticamente todo lo que se trabaja

en ellos es linealizable en algún sentido. En palabras técnicas, al asignar a un toro complejo su es-

pacio tangente en el origen, y al asignar a un homomorfismo entre toros su representación analítica,

obtenemos un funtor fiel de la categoría de toros complejos a la categoría de espacios vectoriales.

Ahora bien, lamentablemente la intuición de álgebra lineal muchas veces no sirve cuando estamos

trabajando con toros complejos en toda su generalidad; sin embargo, cuando nos restringimos a

aquellos toros que son a la vez variedades proyectivas (es decir, variedades abelianas), volvemos a

recuperar esta intuición. Por ejemplo, si fijamos una polarización en un toro complejo, entonces

obtenemos que todo subtoro tiene un subtoro complementario, ortogonal respecto a la polariza-

ción en algún sentido, de la misma forma que dada una forma sesquilineal no degenerada en un

espacio vectorial, todo subespacio vectorial tiene su complemento ortogonal. Ejemplos de este tipo

de buen comportamiento abundan en las variedades abelianas, y por otro lado comportamientos

patológicos también abundan cuando nos extendemos al universo completo de toros complejos.

El propósito de este artículo es presentar un tal fenómeno que es conocido en álgebra lineal, pero

hasta donde sabe el autor, no se ha estudiado para variedades abelianas. Este concepto es el de la

matriz pseudoinversa de una matriz dada. Si M → Mm→n(C) es una matriz compleja de m↑ n, es

conocido que posee una matriz pseudoinversa (a veces conocida como la inversa de Moore-Penrose)

M
+ → Mn→m(C) que se caracteriza por las siguientes propiedades:

1. MM
+
M = M

2. M
+
MM

+
= M

+

3. (MM
+
)
↑
= MM

+

4. (M
+
M)

↑
= M

+
M.

Aquí M↑ denota la matriz conjugada traspuesta de M . Si M es invertible, M+ es claramente la

matriz inversa de M .

En este artículo mostraremos que dadas dos variedades abelianas polarizadas (X,HX) e (Y,HY ),

a cada elemento f → HomQ(X,Y ) := Hom(X,Y )↓Q le podemos asociar un homomorfismo pseu-

doinverso f
+ → HomQ(Y,X) que también se caracteriza por propiedades similares a las descritas

arriba (véase el Teorema 3.2). Mostraremos algunas propiedades de este pseudoinverso, y mostra-

remos, por ejemplo, que no existe en general cuando extendemos a toros complejos que no son

variedades abelianas (véase la Observación 3.3). En otras palabras, siguiendo [3], la categoría de

variedades abelianas es una categoría de daga de Moore-Penrose, pero la categoría de toros com-

plejos no lo es. Finalmente, usaremos este pseudoinverso para calcular el idempotente simétrico de

la suma e (componente conexa que contiene el 0 de la) intersección de dos subvariedades abelianas.
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2. Preliminares

Recordemos y establezcamos algunas notaciones y resultados preliminares. En todo lo que sigue,

un subíndice Q en un grupo abeliano denotará que estamos tensorizando el grupo con Q sobre Z.

2.1. Variedades abelianas

Para nuestros propósitos, una polarización en un toro complejo X = Cg
/! va a ser una forma

hermitiana positiva definida H : Cg ↑ Cg ↔ C tal que Im(H)(! ↑ !) ↗ Z. En un toro complejo,

toda forma diferencial real es cohomóloga a una forma constante, lo cual implica (véase [2, Lemma

1.3.1]) que para todo k → N,

H
k
(X,Z) ↘

k∧
H

1
(X,Z) ↘

k∧
!
↓
.

En particular, si H es una forma hermitiana en Cg tal que Im(H)(!↑ !) ↗ Z, entonces la forma

real alternante Im(H) induce naturalmente un elemento de
∧2

!
↓ y luego de H

2
(X,Z). Es posible

probar que H es una polarización si y sólo si es la primera clase de Chern de un fibrado en líneas

amplio sobre X.

Para todo fibrado en líneas L → Pic(X), tenemos el morfismo

ωL : X ↔ X
↓
:= Pic

0
(X)

x ≃↔ t
↑
x
L↓ L↔1

que resulta ser un homomorfismo de grupos por el Teorema del Cuadrado, y que depende solamente

de la primera clase de Chern de L. Si L es amplio, entonces ωL es una isogenia. Por esta razón, si

H es una polarización en X, induce un morfismo ωH : X ↔ X
↓. Si HX es una polarización en X

y HY es una polarización en un toro Y , entonces inducen una involución de Rosati

† : HomQ(X,Y ) ↔ HomQ(Y,X)

f ≃↔ ω
↔1
HX

f
↓
ωHY .

Si X = Y , usaremos siempre la misma polarización para definir la involución de Rosati. Un

endomorfismo de X es simétrico si es un punto fijo de †, y el grupo de endomorfismos simétricos

de X se denotará por End
s
(X). Es conocido (véase [2, Prop. 5.2.1]) que tenemos un isomorfismo

de espacios vectoriales
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NSQ(X) ↔ End
s

Q(X)

ε ≃↔ ω
↔1
H

ωω,

y en todo el artículo identificaremos estos espacios vectoriales sin mayor explicación.

A cada homomorfismo f : X ↔ Y le podemos asociar su representación analítica ϑa(f) →
HomC(T0(X), T0(Y )), que en la mayoría de las circunstancias la interpretaremos simplemente como

una matriz. Observamos que si fijamos polarizaciones en X e Y , entonces ϑa(f
†
) = ϑa(f)

↑, donde

ϑa(f)
↑ es la matriz adjunta de ϑa(f)

↑ respecto a las formas hermitianas dadas.

2.2. Pseudoinversas de matrices.

Como se describió en la introducción, si M es una matriz compleja de m ↑ n, existe una matriz

M
+, llamada la pseudoinversa de M , que satisface las propiedades descritas. Una descripción

geométrica de M
+ se puede obtener como sigue: Podemos escribir Cn

= (kerM) ⇐ (kerM)
↗ y

Cm
= im(M) ⇐ (im(M))

↗, donde el espacio ortogonal se toma respecto a la forma hermitiana

estándar de ambos espacios (i.e. con matriz identidad). Entonces M+ se puede interpretar como la

transformación lineal que restringida a im(M) es igual a (M |(kerM)→)
↔1, y restringida a im(M)

↗

es 0. Es trivial verificar que efectivamente esta es precisamente la transformación lineal que cumple

las propiedades descritas en la introducción. Usaremos esta descripción geométrica para definir un

homomorfismo pseudoinverso en el contexto de variedades abelianas.

3. Pseudoinversos de homomorfismos entre variedades abelia-

nas

Sean ahora (X,HX) y (Y,HY ) variedades abelianas polarizadas, y sea f → Hom(X,Y ) un ho-

momorfismo. Podemos escribir X = Cg
/!X y Y = Ch

/!Y , y como se dijo en la introducción,

interpretar HX y HY como formas hermitianas positivas definidas en sus espacios vectoriales co-

rrespondientes. Sea ϑa(f) → Mh→g(C) la representación analítica de f ; observemos que posee una

matriz pseudoinversa ϑa(f)
+ → Mg→h(C) (donde ahora ⇒, en vez de ser conjugación y trasposición,

es la matriz adjunta respecto a las dos formas hermitianas).
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Lema 3.1. Existe e → N tal que eϑa(f)
+
(!Y ) ↗ !X ; en otras palabras, ϑa(f)

+ induce un Q-

homomorfismo f
+ → HomQ(Y,X).

Demostración. Usaremos la descripción geométrica de la pseudoinversa descrita en la Subsección

2.2. Podemos descomponer Cg
= ker(ϑa(f)) ⇐ ker(ϑa(f))

↗ y Ch
= im(ϑa(f)) ⇐ im(ϑa(f))

↗, don-

de los complementos ortogonales se toman respecto a las formas hermitianas respectivas. Ahora

tenemos que ϑa(f)
+ restringido a im(ϑa(f)) es exactamente la inversa de la transformación lineal

invertible ϑa(f)|ker(εa(f))→ , y ϑa(f)
+ restringido a im(ϑa(f))

↗ es 0.

Sea A la subvariedad abeliana complementaria de (ker f)
0 con respecto a HX , y sea B la subva-

riedad abeliana complementaria de im(f) con respecto a HY . Entonces f restringido a A es una

isogenia con su imagen, y por lo tanto existe j → Hom(im(f), A) tal que j ⇑ f |A y f ⇑ j son multi-

plicación por un entero t. Sea m → N el exponente del grupo finito im(f)⇓B, y sea p → Hom(Y,X)

donde para x → im(f), p(x) = mj(x), y si x → B, entonces p(x) = 0. Observemos que p está bien

definida pues si x → im(f) ⇓ B, entonces 0 = p(x) = mj(x) = j(mx). Más aún, por construcción,

ϑa(p) = nϑa(f)
+ para algún n → Z, y queda demostrado el lema.

Esencialmente la misma demostración muestra que si f → HomQ(X,Y ), entonces podemos también

definir f
+ en una manera similar. Obtenemos lo siguiente:

Teorema 3.2. Dado f → HomQ(X,Y ), existe un único f
+ → HomQ(Y,X) tal que

1. ff
+
f = f

2. f
+
ff

+
= f

+

3. (ff
+
)
†
= ff

+

4. (f
+
f)

†
= f

+
f .

En otras palabras, siguiendo lo definido en [3], la categoría de variedades abelianas polarizadas (y

donde los morfismos no necesariamente preservan las polarizaciones) es una categoría de daga

de Moore-Penrose.

Demostración. Esto sigue del análisis anterior, ya que dado f → HomQ(X,Y ), podemos definir

f
+ → HomQ(Y,X) tal que las representaciones complejas de f y f

+ satisfacen las condiciones (1),

(2), (3) y (4) de la Introducción. Esto implica entonces que f y f
+ satisfacen las ecuaciones descritas

en el enunciado del teorema. La unicidad sigue de la unicidad de la inversa de Moore-Penrose de

la representación analítica de f , y como la representación analítica es una representación fiel de

HomQ(X,Y ) en HomC(Cg
,Ch

), obtenemos lo buscado.
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Observación 3.3. Esta construcción no se puede realizar en general para toros que no sean varie-

dades abelianas. De hecho, ni siquiera debe existir un homomorfismo que cumpla las dos primeras

propiedades del Teorema 3.2. Por ejemplo, sean T1 y T2 dos toros complejos de dimensión positiva

con T2 simple. Entonces por [1, Prop. 5.7, Cor. 6.3], existe un toro X (de hecho, una cantidad no

numerable de toros) que cabe en una sucesión exacta

0 ↔ T1 ↔ X
f↔ T2 ↔ 0

y tal que T1, visto como subtoro de X, no tiene un subtoro complementario. Si f+ fuese un homo-

morfismo que cumple las primeras propiedades del Teorema 3.2, tendría que ser una Q-isogenia

entre T2 y su imagen, y además por la simplicidad de T2, o bien f
+
(T2) ↗ T1 o f

+
(T2) ⇓ T1 = 0.

En el primer caso, obtendríamos que ff
+
= 0, una contradicción por la propiedad (1) del Teorema

3.2. En el segundo caso, f+
(T2) sería un subtoro complementario para T1, una contradicción.

Volvamos ahora al caso de variedades abelianas, usando la notación anterior. Notamos que cuando

f es una isogenia, entonces f
+ es simplemente f

↔1, el Q-inverso de f .

Teorema 3.4. Tenemos funciones bien definidas

” : HomQ(X,Y ) ↔ End
s

Q(X) ↘ NSQ(X)

f ≃↔ f
+
f

# : HomQ(X,Y ) ↔ End
s

Q(Y ) ↘ NSQ(X)

f ≃↔ ff
+
,

donde resulta que ”(f) es el idempotente simétrico asociado a la subvariedad abeliana comple-

mentaria de (ker f)
0 respecto a HX , y #(f) es el idempotente simétrico asociado a la subvariedad

abeliana im(f). Más aún, si X = Y y f → EndQ(X) es punto fijo de ” o de #, entonces es tam-

bién punto fijo del otro, y esto ocurre si y solamente si f es el idempotente simétrico asociado a

la subvariedad abeliana im(f).

Demostración. Por la Propiedad (3) del Teorema 3.2, tenemos que efectivamente f
+
f y ff

+ son

endomorfismos simétricos respecto a la involución de Rosati. Más aún,

(f
+
f)

2
= f

+
ff

+
f = f

+
f

(ff
+
)
2
= ff

+
ff

+
= ff

+
,

lo cual implica que son idempotentes. Por [2, Theorem 5.3.2], cada una de estas involuciones

corresponde al idempotente simétrico de su imagen. Por la construcción de f
+ en la demostra-

ción del Lema 3.1, es claro que im(f
+
f) es la subvariedad abeliana complementaria de (ker f)

0 e
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im(ff
+
) = im(f).

Ahora si X = Y y f → EndQ(X) es tal que ”(f) = f , entonces f
+
f = f , lo cual implica que

f = ff
+
f = f

2. Además, f entonces es simétrico respecto a la involución de Rosati. Por lo tanto,

f es el idempotente simétrico de im(f), y por lo tanto #(f) = f . Lo mismo ocurre si f es punto

fijo de #.

Notamos que f
+ “casi nunca” es un homomorfismo honesto, en el sentido de que casi nunca perte-

nece a Hom(Y,X) (aunque siempre es un Q-homomorfismo):

Proposición 3.5. Si f → Hom(X,Y ), A es la subvariedad abeliana complementaria de (ker f)
0 y B

es la subvariedad abeliana complementaria de im(f), entonces f
+ es un homomorfismo honesto si

y sólo si A⇓ ker f = {0} e im(f)⇓B = {0}. En particular, si o bien HX o HY es indescomponible

y f no es ni el homomorfismo 0 ni un isomorfismo, entonces f
+ nunca es un homomorfismo

honesto.

Demostración. Por la construcción de f
+ en la demostración del Lema 3.1, tenemos que f

+ es un

homomorfismo honesto solamente cuando f restringido a la subvariedad abeliana complementaria

de (ker f)
0 es un isomorfismo con su imagen (lo cual es equivalente a que esta restricción sea

inyectiva), y la intersección entre la imagen de f y la subvariedad abeliana complementaria de

la imagen de f es 0. Esta última condición inmediatamente implica que si f no es sobreyectivo,

entonces HY es descomponible.

Tenemos entonces que f restringido a la subvariedad abeliana complementaria de (ker f)
0 es in-

yectivo si y solamente si la intersección entre ker f y la subvariedad abeliana complementaria de

(ker f)
0 es trivial.

Terminamos esta sección observando, por el Teorema 3.2, que si f → End
s

Q(X), entonces f
+ →

End
s

Q(X) también, ya que (f
+
)
†
= (f

†
)
+. Esto implica que tenemos una involución (no lineal)

+ : NSQ(X) ↔ NSQ(X).

Ejemplo 3.6. Trabajemos un ejemplo sencillo. Si consideramos X = E
2 con E una curva

elíptica sin multiplicación compleja, entonces vía la representación analítica podemos identificar

End(X) = M2(Z). Ahora bien, en este caso la involución de Rosati es simplemente trasposición, y

entonces podemos identificar NSQ(E2
) con las matrices simétricas de 2↑ 2 con coeficientes en Q,

o equivalentemente, con Q3. Siguiendo los pasos anteriores para calcular + : NSQ(X) ↔ NSQ(X),

obtenemos que si (a, b, c) ⇔= (0, 0, 0), entonces

+(a, b, c) =






(
c

ac↖ b2
,

↖b

ac↖ b2
,

a

ac↖ b2

)
si ac↖ b

2 ⇔= 0

(
a

(a+ c)2
,

b

(a+ c)2
,

c

(a+ c)2

)
si ac↖ b

2
= 0
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Notamos entonces que, en caso que ac↖ b
2
= 0, tenemos

”(a, b, c) = #(a, b, c) =

(
a

a+ c
,

b

a+ c
,

c

a+ c

)
.

Más aún, tenemos que (a, b, c) es un punto fijo de estas funciones si y sólo si a+c = 1. Por lo tanto,

el conjunto de todos los idempotentes simétricos en E
2 que no sean la identidad está parametrizado

por (a, b, 1↖a), donde b
2
= a(1↖a). Ahora, si queremos encontrar idempotentes simétricos que no

sean 0, entonces podemos parametrizar el círculo b
2
= a(1↖ a) usando la proyección estereográfica

desde el origen, y obtener que todas las soluciones son de la forma (a, b) =

(
1

t2+1 ,
t

t2+1

)
. En

conclusión, hay una biyección entre curvas elípticas en E
2 y los elementos del conjunto

{(
1

t2 + 1
,

t

t2 + 1
,

t
2

t2 + 1

)
: t → Q

}
,

donde a cada racional t → Q, le podemos asociar la curva elíptica

Et := {(x, y) → E
2
: tx = y}.

Notamos que no está bien definida la división en una variedad abeliana, pero como los toros son

grupos divisibles, sí está bien definida la ecuación anterior.

4. Intersecciones y sumas de subvariedades abelianas

Si (X,H) es una variedad abeliana polarizada y A,B ↗ X son subvariedades abelianas con idem-

potentes simétricos ϖA, ϖB → EndQ(X), es natural preguntarse cómo obtener los idempotentes

simétricos de A + B y (A ⇓ B)
0. Usando el pseudoinverso y los resultados principales de [4],

podemos encontrarlos:

Proposición 4.1. Si A,B ↗ X son subvariedades abelianas (no necesariamente complementarias)

y ϖ
↗
A
= 1↖ ϖA (y lo mismo para B), tenemos las siguientes identidades:

1. Suma:

ϖA+B = (ϖA + ϖB)(ϖA + ϖB)
+

= (ϖA + ϖB)
+
(ϖA + ϖB)

= ϖB +
[
(ϖAϖ

↗
B
)
+
(ϖAϖ

↗
B
)
]

= ϖA + ϖ
↗
A
(ϖ

↗
A
ϖB)

+
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2. Intersección:

ϖ(A↘B)0 = 2ϖB(ϖA + ϖB)
+
ϖA

= 2(ϖA ↖ ϖA(ϖA + ϖB)
+
ϖA)

= ϖA ↖ (ϖA ↖ ϖBϖA)
+
(ϖA ↖ ϖBϖA)

= ϖA ↖ (ϖ
↗
B
ϖA)

+
(ϖ

↗
B
ϖA)

= ϖA ↖ ϖA(ϖAϖ
↗
B
)
+
.

En las identidades anteriores también se puede intercambiar A y B, claramente, para obtener

nuevas identidades.

Demostración. Para demostrar estas identidades, primero es necesario observar que T0(A+B) =

T0(A) + T0(B) y T0((A ⇓ B)
0
) = T0(A) ⇓ T0(B) en T0(X). Esto implica que sólo es necesario

encontrar las proyecciones ortogonales de T0(A+B) y T0(A)⇓T0(B) respecto a H en términos de

las proyecciones ortogonales de T0(A) y T0(B), ya que entonces estas proyecciones inducirían Q-

endomorfismos de X que serían idempotentes simétricos, y cuyas imágenes serían A+B y (A⇓B)
0,

respectivamente. Esto es precisamente lo que se hace en las demostraciones de los Teoremas 3 y

4 de [4], donde encuentran las identidades expuestas arriba para proyecciones ortogonales. Esto

concluye la demostración.

Sería interesante en el futuro seguir estudiando propiedades de + como función del grupo de

Néron-Severi en sí mismo, y ver si es posible usarla para descomponer variedades abelianas.
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1. Introducción

Sea ω → Q un número algebraico y h(ω) la altura logarítmica absoluta de Weil. Por un teorema

de Kronecker, h(ω) = 0 si y solo si ω es cero o una raíz de la unidad. Fuera de estos casos, D. H.

Lehmer preguntó si [Q(ω) : Q]h(ω) se puede acotar inferiormente de manera uniforme en ω (ver

[12, §13, página 476]). De manera más precisa:

Problema de Lehmer. Existe un número real positivo c tal que para todo ω → Q→
que no sea

raíz de la unidad

h(ω) ↑
c

[Q(ω) : Q]
.

Algunos de los resultados más cercanos al respecto se deben a Dobrowolski en [7] y a Smyth en

[20]. Sin embargo, una posible solución parece estar fuera de alcance en estos momentos, por lo

que se estudian variantes más débiles del problema. Siguiendo [4], decimos que un conjunto A de

números algebraicos tiene la propiedad de Bogomolov (B) si existe un número real positivo T tal

que el conjunto

A(T ) = {ω → A \ {0} : h(ω) < T}

consiste de todas las raíces de la unidad en A. En otras palabras, los conjuntos con la propiedad

(B) cumplen que el cero está aislado de los valores de h(ω) y existe una cota inferior para la altura.

Todo cuerpo de números cumple la propiedad (B), así que para encontrar ejemplos no triviales

debemos ver extensiones algebraicas infinitas de Q. También es fácil encontrar cuerpos que no

tengan la propiedad (B), por ejemplo el cuerpo Q(
↓
2, 3

↓
2, 4

↓
2, . . . ) no tiene (B) pues h(21/n) =

h(2)/n. Al día de hoy se conocen ejemplos y criterios de cuerpos con la propiedad (B). Daremos

un breve resumen de los resultados más generales.

1973: En [17], A. Schinzel demostró que el cuerpo de números algebraicos totalmente reales Qtr

tiene la propiedad (B).

2000: En [2], F. Amoroso y U. Zannier mostraron que la máxima extensión abeliana Kab de un

cuerpo de números K satisface (B). En particular, cada extensión abeliana de K satisface

(B).

2001: En [4, Theorem 2], E. Bombieri y U. Zannier probaron que cada extensión de Galois infinita

L/Q con grado local acotado en algún primo racional (ver definición 2.1) tiene la propiedad

(B).

2011: En [9], P. Habegger introdujo una familia de extensiones de Galois infinitas no abelianas

sobre Q que no tienen grado local acotado sobre algún primo racional y que satisfacen (B).

Más concretamente, sea E una curva elíptica definida sobre Q y Etors el grupo de puntos

de torsión en E definido en alguna clausura algebraica de Q. Habegger consideró el cuerpo
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Q(Etors) generado por el conjunto de coordenadas de los puntos en Etors respecto a un modelo

de Weierstrass de E con coeficientes racionales.

En [1], F. Amoroso, S. David y U. Zannier generalizaron el resultado sobre cuerpos con grado local

acotado ([4, Theorem 2]) y extensiones abelianas ([2]).

Teorema 1.1 (Amoroso, David, Zannier). Sea K un cuerpo de números y L/K una extensión de

Galois infinita con grupo de Galois G. Si E ↔ L es el cuerpo fijo por el centro Z(G) y E/K tiene

grado local acotado en algún lugar no arquimedeano v en K acotado por d0, entonces L tiene la

propiedad (B), con cota inferior uniforme en v, d0 y [K : Q].

Sumado a un resultado de S. Checcoli ([5, Theorem 1]), obtuvieron el siguiente corolario:

Corolario 1.2. Si K es un cuerpo de números y L/K una extensión de Galois infinita con grupo

de Galois G tal que G/Z(G) tiene exponente finito b, entonces L tiene la propiedad (B), de manera

uniforme en b y [K : Q].

En este trabajo exhibiremos una familia de extensiones algebraicas infinitas de Q que satisfacen

(B) como consecuencia del Teorema 1.1. Además, en algunos casos particulares mostraremos que

las extensiones no satisfacen la hipótesis del Corolario 1.2 (lo que se interpreta como estar «lejos

del caso abeliano») y que no pertenecen a la familia expuesta por P. Habegger en [9].

Nuestra construcción es la siguiente. Sea ε un número primo, Kω = Q(ϑω) el cuerpo ciclotómico

donde ϑω es una raíz ε-ésima de la unidad primitiva, y sea p ↔ OKω un ideal primo en el anillo de

enteros algebraicos de Kω. Definimos

Sp,ω = {L/Kω | una extensión de Galois con [L : Kω] = ε y tal que p no se escinde en L} .

Para cada L → Sp,ω, sea HL el cuerpo de clases de Hilbert de L (es decir, la máxima extensión

abeliana no ramificada de L). Finalmente, sea Lp,ω el compositum de todos los HL para L → Sp,ω.

Teorema 1.3. Lp,ω satisface (B).

Si ε = 2 entonces Kω es simplemente Q, así que escribimos p en vez de p y Sp,2 es el conjunto de

cuerpos cuadráticos donde p no se escinde. En este caso obtenemos los siguientes resultados.

Teorema 1.4. Sea p un número primo impar y E un cuerpo de números contenido en Lp,2 tal

que Lp,2/E es una extensión de Galois infinita. Entonces,

Gal(Lp,2/E)/Z(Gal(Lp,2/E))

tiene exponente infinito.
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Teorema 1.5. Sea p un primo impar. Si E es una curva elíptica definida sobre un cuerpo de

números K, entonces Lp,2 ↗↘ K(Etors).

El Teorema 1.3 se sigue de que Lp,ω/Kω es una extensión de Galois que tiene grado local acotado

en el valor absoluto inducido por p. Los Teoremas 1.4 y 1.5 esencialmente extienden lo que ya se

sabía del trabajo de A. Galateau en [8], donde se demuestran resultados similares para un cuerpo

contenido estrictamente en Lp,2 cuya construcción es muy parecida (la diferencia es que Galateau

impone más restricciones al conjunto Sp,2).

La demostración del Teorema 1.4 usa la misma idea de [8, Proposition 3.2], la cual es que el expo-

nente del grupo de clases de cuerpos cuadráticos imaginarios crece a medida que su discriminante

(en valor absoluto) lo hace (ver por ejemplo [16]). Para demostrar el Teorema 1.5 replicaremos exac-

tamente la prueba de [8, Proposition 3.3]; si bien podríamos limitarnos a citarla, probablemente

para el lector será más cómodo leerla aquí.

Para concluir la introducción deberíamos justificar que Lp,ω en la mayoría de los casos es una

extensión interesante, o sea que es una extensión infinita de Q. Basta mostrar que el conjunto Sp,ω

no es finito, lo cual demostramos al final de la sección 4.

2. Grado local acotado

Manteniendo la notación usada en la introducción, en esta sección demostraremos que Lp,ω/Kω es

una extensión de Galois que tiene grado local acotado en el valor absoluto inducido por p, lo que

nos permite mostrar la propiedad (B) para Lp,ω (ver Teorema 1.3). Empecemos con una definición.

Definición 2.1. Sea K un cuerpo de números, v un lugar no arquimedeano en K y L/K una

extensión algebraica. Decimos que L/K tiene grado local acotado en v si existe un entero n tal que

para cada extensión w de v en L se tiene que [Lw : Kv] ≃ n, donde Lw y Kv son las completaciones

correspondientes a w y v.

Lema 2.2. Sea K un cuerpo de números y fijemos un valor absoluto no arquimedeano v en K. Sea

F una familia infinita de extensiones finitas de K. Supongamos que existe un entero d tal que para

todo H en F y para toda extensión l a H de v se tiene que [Hl : Kv] ≃ d. Si L es el compositum

de las extensiones en F , entonces L tiene grado local acotado en v.

Demostración. Básicamente replicamos la demostración de [4, Proposition 1].

Kv tiene una cantidad finita de extensiones de grado m (ver por ejemplo [14, Corollary 2, página

226]), lo cual aplica para todo m → N. Luego, la colección C de extensiones de Kv de grado a lo

más d es finita. En particular, si M es el compositum de los cuerpos en C, entonces la extensión

M/Kv es finita. Por hipótesis, para cada H → F su completación en cualquier valor absoluto l|v
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está contenido en C, entonces, si w es cualquier valor absoluto en L sobre v, podemos incrustar

Lw ϖ⇐ M ya que L es el compositum de las extensiones en F . Así, [Lw : Kv] ≃ [M : Kv] donde el

último sólo depende de v y d. Por lo tanto, L tiene grado local acotado en v.

Ahora mostremos que podemos aplicar este lema a nuestra construcción.

Proposición 2.3. Sea L → Sp,ω y H su cuerpo de clases de Hilbert. Si l es un valor absoluto en

H sobre p, entonces

[Hl : (Kω)p] ≃ ε2 · (orden de p en el grupo de clases de Kω)

donde (Kω)p es la completación de Kω respecto a p.

Demostración. Por definición de Sp,ω se tiene que p no se escinde en L y L/Kω es una extensión de

Galois de grado ε, así, w denotará a un representante del único lugar en L bajo l; además, P ↔ OH

y g ↔ OL denotarán a los primos correspondientes a cada valor absoluto.

Primero es claro que [Lw : (Kω)p] = ε. Por otro lado, sabemos que [Hl : Lw] = eH/L(P)fH/L(P),

donde eH/L y fH/L son el índice de ramificación y grado de inercia de P, así que basta calcular estos

invariantes. H/L es una extensión abeliana no ramificada, por lo que eH/L(P) = 1 y fH/L(P) =

ord(ϱg) = ord([g]), donde ϱg es el elemento de Frobenius. La última igualdad viene del isomorfismo

de Reciprocidad de Artin C(OL) ⇒ Gal(H/L) dado por [g] ⇑⇐ ϱg, donde C(OL) es el grupo de

clases de OL (ver [11, Chapter V, Theorem 5.7] para una demostración).

Si p es inerte en L entonces g = pOL. En el otro caso, si p se ramifica en L entonces gω = pOL.

Luego, si n es el orden de p en el grupo de clases de Kω tenemos que

[Hl : Lw] = ord([g]) ≃






ε · n si p se ramifica en L

n si p es inerte en L

con lo cual el resultado sigue de la ley de las torres.

El último ingrediente que falta para probar que Lp,ω/Kω satisface (B) es mostrar que Lp,ω/Kω es

una extensión de Galois. Para esto es suficiente la siguiente buena propiedad que tienen los cuerpos

de clases de Hilbert.

Lema 2.4. Sea k un cuerpo de números, F/k una extensión de Galois finita y HF el cuerpo de

clases de Hilbert de F . La extensión HF /k es de Galois.

Demostración. Sea L/HF una extensión de cuerpos y ϱ : HF ⇐ L un morfismo de k-álgebras.

Notemos que ϱ(HF ) es una extensión abeliana no ramificada de ϱ(F ) = F , con lo cual ϱ(HF ) ↔ HF

y por tanto ϱ(HF ) = HF . Luego, la extensión HF /k es de Galois.
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Ahora demostrar que Lp,ω tiene la propiedad (B) es sencillo.

Demostración del Teorema 1.3. Primero la extensión Lp,ω/Kω es de Galois por el Lema 2.4.

Por la Proposición 2.3 tenemos que Lp,ω es el compositum de cuerpos de números tal que, para

cada valor absoluto en ellos sobre p, el grado de su completación sobre (Kω)p está acotado por

ε2 · ord([p]), donde [p] es la clase de p en el grupo de clases de Kω. Luego, Lp,ω tiene grado local

acotado en p por el Lema 2.2. Por lo tanto, Lp,ω satisface (B) por el Teorema 1.1.

3. El caso ω = 2

En esta sección realizaremos un análisis más explícito de qué cuerpo aparece al completar Lp,2,

obteniendo la extensión bi-cuadrática de Qp, en el sentido de que es la extensión de Qp de grado 4

cuyo índice de ramificación y grado residual es 2. Esto nos va permitir dar una cota inferior para

el límite inferior de la altura en Lp,2 gracias a [4, Theorem 2].

Recordemos que en el caso ε = 2 se tiene que Kω = Q, por lo que simplificaremos la notación

cambiando p por p un número primo impar (en lo que sigue es relevante que el primo p sea impar),

Sp,2 por Sp y Lp,2 por Lp. En resumen, nuestro cuerpo base es Q, Sp son los cuerpos cuadráticos

donde p no se escinde y Lp es el compositum de los cuerpos de clases de Hilbert HK para K → Sp.

Fijando notación, dado K en Sp sea HK su cuerpo de clases de Hilbert, p ↔ OK el ideal primo

sobre p, P ↔ OHK cualquier ideal primo sobre p y Kp, HP los cuerpos completados de K y HK

respecto a estos primos. El siguiente resultado es claro.

Lema 3.1. Para Kp tenemos las siguientes posibilidades:

Si p es inerte en K: Kp es la extensión cuadrática no ramificada de Qp.

Si p se ramifica en K: Kp es una extensión cuadrática ramificada de Qp.

Por otro lado, siguiendo la demostración de la Proposición 2.3 obtenemos lo siguiente.

Proposición 3.2. Para HP tenemos las siguientes posibilidades:

Si p es inerte en K: HP es la extensión cuadrática no ramificada de Qp .

Si p se ramifica en K y p es principal: HP es una extensión cuadrática ramificada de Qp.

Si p se ramifica en K y p no es principal: HP es una extensión de Qp de grado 4 moderada-

mente ramificada, es decir, e(HP/Qp) = f(HP/Qp) = 2.

Demostración. Ver la demostración de la Proposición 2.3 y tener en mente que “g” y “p” en esa

proposición son, en este caso, p y p respectivamente.
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Ahora somos capaces de especificar quienes son los cuerpos HP.

Proposición 3.3. Sea p un primo impar y K → Sp. Los cuerpos p-ádicos que pueden aparecer al

completar HK respecto a un valor absoluto sobre p son Qp(
↓
ϑ), Qp(

↓
ϑς), Qp(

↓
ς) y Qp(

↓
ς,

↓
ϑ),

donde ς es un primo fijo en Zp y ϑ es una raíz primitiva de la unidad de orden p⇓ 1.

En particular, el compositum de todos ellos es Qp(
↓
ς,

↓
ϑ).

Demostración. La herramienta clave de la demostración es [14, Proposition 5.31].

El primer y segundo punto de la Proposición 3.2 recaen en las opciones Qp(
↓
ϑ), Qp(

↓
ϑς), Qp(

↓
ς),

donde ς es un primo fijo en Zp y ϑ es una raíz primitiva de la unidad de orden p⇓ 1.

Para el tercer punto de la Proposición 3.2, notemos que HP es la extensión cuadrática no ramificada

de Kp (ver Proposición 2.3), así que por [14, Proposition 5.31]

HP = Kp(
√
ϑ),

donde ϑ se puede escoger igual que antes pues estamos en el caso en que p se ramifica en K. Por

el Lema 3.1 tenemos que Kp = Qp(
↓
ς) ó Kp = Qp(

↓
ϑς). En cualquier caso,

HP = Qp(
↓
ς,

√
ϑ)

que es la extensión bi-cuadrática de Qp por [14, Proposition 5.32].

Proposición 3.4. Lp satisface que

ĺım inf
ε↑Lp

h(ω) ↑
log p

4(p2 + 1)
.

Demostración. Sea M = Qp(
↓
ς,

↓
ϑ) la extensión bi-cuadrática de Qp donde ς es un primo fijo

en Zp y ϑ una raíz de la unidad de orden p⇓ 1. En particular, e(M/Qp) = f(M/Qp) = 2.

Si v|p es un valor absoluto en Lp, por la Proposición 3.2 podemos tomar un HK tal que (HK)v ⇒

Qp(
↓
ς,

↓
ϑ). Luego, por la Proposición 3.3 tenemos la incrustación

HK ϖ⇐ Lp ϖ⇐ Qp(
↓
ς,

√
ϑ)

con lo cual (Lp)v ⇒ Qp(
↓
ς,

↓
ϑ).

Con esto, p → S(Lp) donde S(Lp) es el conjunto de números primos q tal que Lp se puede incrustar

en una extensión finita L de Qq. Como Lp/Q es una extensión normal (ver Lema 2.4) podemos

usar la cota inferior de [4, Theorem 2], la cual es
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ĺım inf
ε↑Lp

h(ω) ↑
1

2

∑

q↑S(Lp)

log q

eq(qfq + 1)
↑

log p

4(p2 + 1)
.

4. Resultados auxiliares

En esta sección demostraremos los resultados necesarios para la demostración del Teorema 1.4.

Esta sección se inspira en precisar la idea utilizada en [8, Proposition 3.2]. Como la demostración

del Teorema 1.4 es sencilla, para el lector probablemente sea más eficiente pasar directamente a

la siguiente sección y volver en caso de querer verificar los detalles. Al final también mostraremos

que Sp,ω no es finito. Empecemos con la noción de grupo dihedral generalizado.

Definición 4.1. Sea N un grupo abeliano no trivial. El grupo dihedral generalizado de N es el

producto semidirecto

N ⊋ Z/2Z

donde Z/2Z actúa en N invirtiendo elementos, así que la operación de grupo viene dada por

(n1, 0) · (n2, a) = (n1n2, a)

(n1, 1) · (n2, a) = (n1n
↓1
2 , 1 + a)

Lo denotamos por Dih(N).

El siguiente resultado elemental nos será bastante útil.

Lema 4.2. Si N es un grupo abeliano no trivial entonces Z(Dih(N)) es un grupo de exponente 2.

Demostración. Sea n → N . Si (n, 0) → Z(Dih(N)), operando (n, 0) con (n, 1) vemos que

(n, 0) · (n, 1) = (n2, 1) = (eN , 1) = (n, 1) · (n, 0)

con lo cual n2 = eN y (n, 0) tiene orden 2.

Por otro lado, es claro que todo elemento en Dih(N) de la forma (n, 1) tiene orden 2.

Lema 4.3. Si K es un cuerpo cuadrático imaginario y HK su cuerpo de clases de Hilbert, el grupo

de Galois de HK/Q es un grupo dihedral generalizado

Gal(HK/Q) ⇒ C(OK)⊋ Z/2Z.

Demostración. La extensión HK/Q es de Galois por el Lema 2.4. Fijemos una incrustación HK ↘ C
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y sea φ : C ⇐ C la conjugación compleja. Notemos que tenemos la secuencia exacta

0 ⇐ Gal(HK/K) ⇐ Gal(HK/Q) ⇐ Gal(K/Q) ⇐ 0

la cual se escinde pues φ → Gal(HK/Q) (ver Lema 2.4) y tenemos la sección φ|K ⇑⇐ φ|HK
. Entonces,

Gal(HK/Q) ⇒ Gal(HK/K)⊋ Gal(K/Q)

donde φ actúa en Gal(HK/K) conjugando elementos.

Si p es un ideal primo de OK y ϱp el elemento de Frobenius, es sabido que ϱϑ(p) = φ ⇔ ϱp ⇔ φ↓1,

así que en vista del isomorfismo de Reciprocidad de Artin C(OK) ⇒ Gal(H/K) dado por [p] ⇑⇐ ϱp

(ver [11, Chapter V, Theorem 5.7] para una demostración), Gal(K/Q) actúa en el grupo de clases

C(OK) mandando a un primo a su conjugado, que es su inverso pues estamos en una extensión

cuadrática. Por lo tanto,

Gal(HK/Q) ⇒ C(OK)⊋ Z/2Z

donde Z/2Z actúa en C(OK) invirtiendo elementos.

El lema anterior es lo que nos va a permitir hablar sobre el exponente del grupo de clases C(OK)

de un cuerpo cuadrático imaginario K (recordamos que el exponente de un grupo es el mínimo

común múltiplo de los ordenes de los elementos del grupo). Ahora precisaremos la idea de que

este exponente va creciendo a medida que el discriminante de K lo hace. Primero necesitamos un

resultado de densidad.

Lema 4.4. Sea p un número primo impar. Si A es el conjunto de primos que son residuos cua-

dráticos módulo p y que además son congruentes a 3 módulo 4, entonces d(A) = 1/4 donde d(A)

es la densidad de Dirichlet.

Demostración. Sean a,m → Z con (a,m) = 1, sea P(a;m) el conjunto de primos q tal que q ↖ a

mód m.

Si r es un residuo cuadrático módulo p y r ↖ 3 mód 4, por el teorema chino del resto existe

una única clase s en Z/4pZ tal que r ↖ s mód 4p. Por el teorema de Dirichlet sobre primos en

progresión aritmética d(P(s; 4p)) = 1/(2(p ⇓ 1)) (ver [10, Theorem 1, página 251]). Además, es

sabido que la cantidad de residuos cuadráticos módulo p es (p⇓ 1)/2, así que por la aditividad de

la densidad d(A) = 1/4.
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El siguiente teorema se debe a F. Pappalardi.

Teorema 4.5. Si d es un entero positivo y m(d) es el exponente del grupo de clases de Q(
↓
⇓d),

para todos los d < x tales que ⇓d es un discriminante se tiene que

m(d) >
log d/4

log log d
,

salvo a lo más O
(
x1↓A(log log x)→1

)
excepciones. Más precisamente, para cada A ≃

1
2 log 2 se tiene

que

#

{
d ≃ x : m(d) ≃

log d/4

log log d

}
↙A x1↓A(log log x)→1

.

Demostración. Ver [16, Theorem 1.2].

Observación 4.6. En particular, el conjunto de excepciones tiene densidad natural cero y por

ende también tiene densidad de Dirichlet cero.

Nos interesa que el exponente vaya creciendo en un grupo específico de cuerpos cuadráticos ima-

ginarios.

Proposición 4.7. Sea p un número primo impar. Si C es la colección de cuerpos cuadráticos

Q(
↓
⇓q) donde q es un primo congruente a 3 módulo 4 que es residuo cuadrático módulo p, enton-

ces, para todo n → N existe Q(
↓
⇓qn) → C tal que

m(qn) > n

donde m(qn) es el exponente del grupo de clases de Q(
↓
⇓qn).

Demostración. La condición q ↖ 3 mód 4 ciertamente hace que ⇓q sea un discriminante. Notemos

que si A es un número real positivo, se tiene que

ĺım
x↔+↗

xA(log log x)→1

log x
= +∝.

Por el teorema de los números primos, ς(x) ′
x

log x
, luego, el cálculo anterior nos muestra que

la cantidad de primos menores o iguales a x sobrepasa al conjunto de excepciones del Teorema

4.5 a medida que x crece, y por ende podemos encontrar un primo q suficientemente grande tal

que m(q) > n. Como esta condición depende del tamaño de q, podemos tomar un qn tal que

Q(
↓
⇓qn) → C y m(qn) > n. Notemos que si esto último no fuera posible, quiere decir que los

números mayores que q del conjunto A del Lema 4.4 están todos contenidos en el conjunto de

excepciones del Teorema 4.5. Sin embargo, esto implicaría que A tiene densidad de Dirichlet cero,

lo cual no es cierto.
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Observación 4.8. Lo mismo aplica si consideramos q que no es residuo cuadrático módulo p, lo

cual será necesario en la demostración del Teorema 1.4.

Los siguientes resultados son para justificar que Lp,ω en general es una extensión infinita de Q.

Recordemos que la notación utilizada se encuentra en la introducción.

Lema 4.9. Para cada clase ω → OKω/p, existen infinitos ↼ ↖ ω mód p tal que xω
⇓↼ es irreducible

en Kω.

Demostración. Sea ω representante de alguna clase en OKω/p y supongamos que ω es una potencia

ε-ésima en Kω, es decir, existe a → Kω tal que ω = aω. En particular, a → OKω .

Si p → p tenemos que ω ↖ ω+(pω)n mód p para todo n → N. Si ω+(pω)n es una potencia ε-ésima,

digamos, ω + (pω)n = cω
n

con cn → OKω , entonces aω + (pn)ω = cω
n

y (a, pn, cn) → (OKω)
3 serían

soluciones de la ecuación

xω + yω = zω

en OKω = Z[ϑω].

Si ε > 3, el Teorema de Faltings (cf. [3, página 352]) asegura que la curva Xω + Y ω = 1 tiene una

cantidad finita de puntos racionales en Kω. Si ε = 3, la ecuación no tiene soluciones por el teorema

de Kummer sobre la ecuación de Fermat para primos regulares (cf. [15, pp. 37-38]). Luego, en

ambos casos existen infinitos ↼n = ω+ (pω)n tal que xω
⇓ ↼n es irreducible.

Si ε = 2, el argumento anterior no funciona. Sin embargo, en ese caso OKω = Z por lo que el

resultado es claro.

Proposición 4.10. Sp,ω no es finito cuando p ⫅̸ ε.

Demostración. Si L es una extensión de Galois de Kω de grado ε podemos asumir que L = Kω( ω
↓
ω)

para algún ω → OKω , i.e., cuyo generador tiene polinomio minimal xω
⇓ω → OKω [x]. Nos limitaremos

a analizar bajo que condiciones p es inerte en L.

Si ω ↗↖ 0 mód p entonces xω
⇓ω es separable módulo p y por ende p no se ramifica en L. Además,

p se escinde en L si y solo si xω
↖ ω mód p tiene solución en OKω (ver por ejemplo [6, Proposition

5.11]). Tomando un generador de (OKω/p)
→ es un simple ejercicio ver que esto último es equivalente

a que

ω
N(p)→1

(ω,N(p)→1) ↖ 1 mód p.
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Sea s la característica de OKω/p. Notemos que N(p)⇓1 = sfp ⇓1 donde fp es el grado de inercia de

p. Por otro lado, recordemos que Kω = Q(ϑω) es un cuerpo ciclotómico, con lo cual fp = ordF↑
ω
(s)

y por ende (ε, N(p)⇓ 1) = ε. En resumen,

p se escinde en L ∞∈ ω
N(p)→1

ω ↖ 1 mód p.

Luego, en el caso de que ω no sea raíz del polinomio x · (x
N(p)→1

ω ⇓ 1) módulo p se tendrá que p es

inerte en L. El lema anterior muestra que podemos encontrar una cantidad infinita de extensiones

L/Kω de este tipo, lo cual concluye la demostración.

5. Relación de Lp,2 con otras familias

En esta última sección vamos a probar el Teorema 1.4 y Teorema 1.5. También recordamos que

la demostración del Teorema 1.5 se puede encontrar en [8, Proposition 3.3] y aquí simplemente la

vamos a reescribir.

Al igual que en la sección 3, simplificamos la notación cambiando p por p un número primo impar,

Sp,2 por Sp y Lp,2 por Lp. En resumen, nuestro cuerpo base es Q, Sp son los cuerpos cuadráticos

donde p no se escinde y Lp es el compositum de los cuerpos de clases de Hilbert HK para K → Sp.

Consideremos la colección

Rp =

{
Q(

↓
⇓q) : q es primo, q ↖ 3 mód 4 y

(
⇓q

p

)
= ⇓1

}

donde
( )

es el símbolo de Legendre (de hecho, esta es la colección utilizada por A. Galateau en

[8]). Con estas condiciones ⇓q es un discriminante y p es inerte en Q(
↓
⇓q), por lo que Rp ↘ Sp.

La ventaja de trabajar con los cuerpos de clases de Hilbert de estos cuerpos cuadráticos es que su

intersección a pares es trivial.

Lema 5.1. Sean K y K ↘
cuerpos cuadráticos distintos contenidos en Rp y HK , HK↓ los cuerpos

de clases de Hilbert respectivos. Se tiene que HK ∋HK↓ = Q.

Demostración. Sea q un número primo. Notemos que HQ(
≃
↓q)/Q se ramifica solo en q, ya que

Q(
↓
⇓q)/Q se ramifica solo en q y HQ(

≃
↓q)/Q(

↓
⇓q) no se ramifica.

Si q y s son primos distintos, la intersección de HQ(
≃
↓q) y HQ(

≃
↓s) es trivial, pues en caso contrario

tendría ramificación por el teorema de Minkowski (cf. [15, Chapter III, (2.17)]) la cual se extendería

sobre estos dos cuerpos.
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Ahora estamos listos para probar el Teorema 1.4.

Demostración del Teorema 1.4. La demostración será por contradicción, asumamos que este

exponente es finito y llamémoslo I.

Al existir una cantidad finita de cuerpos intermedios E/M/Q solo puede haber una cantidad finita

de K → Rp tal que HK ∋ E ↗= Q, ya que por el Lema 5.1 estos cuerpos no pueden repetirse

cuando variamos K. Entonces, por la Proposición 4.7 podemos fijar un K → Rp tal que C(OK)

tiene exponente mayor que 2I y HK ∋ E = Q. Con esto, siendo HKE el compositum de HK y E,

tenemos que

Gal(HKE/E) ⇒ Gal(HK/Q)

y por el Lema 4.3

Gal(HKE/E) ⇒ C(OK)⊋ Z/2Z. (5.1)

Tenemos las extensiones Lp/HKE/E y además la extensión HKE/E es de Galois, por lo que

Gal(HKE/E) es isomorfo a un cociente de Gal(Lp/E) que llamaremos C. Notemos que la proyec-

ción ς : Gal(Lp/E) ↭ C induce un homomorfismo sobreyectivo

Gal(Lp/E)/Z(Gal(Lp/E)) ↭ C/Z(C),

con lo cual Gal(HKE/E)/Z(Gal(HKE/E)) tiene exponente menor o igual que I. Luego, el iso-

morfismo (5.1) y Lema 4.2 nos dice que C(OK) tiene exponente menor o igual que 2I, lo cual es

una contradicción. Por lo tanto, I no puede ser finito.

Por último, veamos que Lp no pertenece a la familia establecida por Habegger ([9]).

Demostración del Teorema 1.5. Por contradicción supongamos que Lp ↘ K(Etors).

Si E tiene multiplicación compleja, K(Etors) ↘ Kab (ver por ejemplo [19, página 428]) con lo cual

Gal(Lp/Lp ∋K) ⇒ Gal(LpK/K) sería abeliano, lo que contradice el Teorema 1.4.

Si E no tiene multiplicación compleja, sea q un número primo que satisface las condiciones de Rp

y es suficientemente grande de tal forma que q no ramifica en K, la curva elíptica E tiene buena

reducción en todos los primos de K sobre q y es posible ocupar el teorema de imagen abierta de

Serre ([18]):

Gal(K(E[q])/K) ⇒ GL2(Fq)

donde E[q] son los puntos de q-torsión de E.
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Si Mq = Q(
↓
⇓q) y HMq su cuerpo de clases de Hilbert, la extensión HMq/Q ramifica moderada-

mente en q y no ramifica en otros primos por lo que HMq ↔ K(E[q]). Además, podemos escoger q

tal que

Gal(HMq/Q) ⇒ C(OMq )⊋ Z/2Z

(donde Z/2Z actúa invirtiendo elementos) no sea abeliano, para esto basta que C(OMq ) no tenga

exponente 2 (ver Lema 4.2 y Lema 4.3).

Es posible incrustar este grupo de Galois como un subgrupo normal de GL2(Fq) que no está

contenido en su centro. Al ser PSL2(Fq) un grupo simple, se tiene que |Gal(HMq/Q)| ↑ q(q2 ⇓ 1)

y por ende

|C(OMq )| ↑
q(q2 ⇓ 1)

2
.

Siguiendo [13], por la fórmula analítica del número de clases tenemos que

|C(OMq )| =
↽(Mq)

↓
q

2ς
L(1,⇀),

donde ↽(Mq) es el número de raíces de la unidad en Mq y ⇀ el caracter asociado a Mq. Sabemos

que ↽(Mq) ≃ 6 y L(1,⇀) ≃ log(
↓
q) + 1, como se observa en [13, página 214]. Luego,

|C(OMq )| ≃
3

ς

↓
q(log(

↓
q) + 1)

llegando a una contradicción.
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RESUMEN

Una superficie de Riemann cerrada S es llamada una curva

generalizada de Fermat de tipo (k, n), donde k, n → 2 son

enteros tales que (k↑1)(n↑1) > 2, si admite un grupo H ↓=
Z
n
k de automorfismos conformes de manera que el orbifold

cociente S/H sea de género cero y tenga exactamente n+ 1

puntos cónicos, cada uno de ellos de orden k.

Si un elemento de H, de orden k, tiene puntos fijos, entonces

tiene exactamente k
n→1

puntos fijos, digamos q1, . . . , qkn→1 ↔
S. Por cada qj tenemos asociado su vector de constantes de

Riemann ↑2Kqj ↔ JS, donde JS es la variedad jacobiana de

S. Nuestra primera observación es que Kq1 + · · ·+Kq
kn→1 es

un punto de torsión de orden dos en JS.

Sea D un divisor efectivo de grado gk,n, el género de S. Ober-

vamos que D no puede ser H-invariante. En el caso que D

tenga soporte en los puntos fijos de los elementos no-triviales

de H, entonces obtenemos condiciones algebraicas, necesa-

rias y suficientes, para que D sea no-especial.
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ABSTRACT

A closed Riemann surface S is called a generalized Fermat

curve of type (k, n), where k, n → 2 are integers such that

(k↑ 1)(n↑ 1) > 2, if it admits a group H ↓= Z
n
k of conformal

automorphisms such that the quotient orbifold S/H has ge-

nus zero and has exactly n+ 1 conical points, each of them

of order k.

If an element of H, of order k, has fixed points, then it has

exactly k
n→1

fixed points, say q1, . . . , qkn→1 ↔ S. To each qj

we associate its vector of Riemann constants ↑2Kqj ↔ JS,

where JS is the jacobian variety of S. Our first observation

is that Kq1 + · · · + Kq
kn→1 is an order two torsion point in

JS.

Let D be an e!ective divisor of degree gk,n, the genus of S.

We observe that D cannot be H-invariant. In the case that D

is supported on the fixed points of the non-trivial elements

of H, then we obtain algebraic conditions, necessary and

su"cient, for D to be not-special.
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1. Introducción

Sea S una superficie de Riemann compacta de género g → 2 y Aut(S) su grupo (finito) de auto-

morfismos conformes (holomorfos). En la teoría general de superficies de Riemann, hay un interés

en encontrar fórmulas tipo Thomae [16, 17] para cubrimientos (ramificados) Galois ω : S ↑ Ĉ,

cuyo grupo de transformaciones de cubrimiento A ↓ Aut(S) es abeliano (decimos que ω es un

cubrimiento abeliano). Con tal propósito, es importante encontrar divisores efectivos de grado g

no-especiales que sean A-invariantes y cuyo soporte está contenido en el conjunto de los puntos

fijos de los elementos no-triviales de A.

En el caso que S es hiperelíptica y A ↔= Z2 es generado por la involución hiperelíptica, esto ha sido

resuelto por Thomae [16,17] y Frobenius [7]. Una generalización se ha obtenido para algunos casos

de superficies cíclicas n-gonales (n → 2) es decir, cuando A ↔= Zn y S/A tiene género cero (ver [8]

en el caso n primo, y [1–4,6,15,18] para el caso totalmente ramificado). En el caso general, en [14],

se ha observado que, en caso de existir, un divisor efectivo en S que es A-invariante y de grado g

es no-especial si y sólo si cierta relación algebraica se cumple. Además, tales divisores deben estar

necesariamente soportados en los puntos fijos de los elementos no-triviales de A ([14, Theorem

4.4]). Desafortunadamente, no siempre pueden existir tales tipos de divisores. En este artículo,

veremos pares (S,A) donde esta situación de no existencia ocurre.

Un par (S,H) es llamado un par generalizado de Fermat de tipo (k, n), donde k, n → 2 son

enteros tales (n ↗ 1)(k ↗ 1) > 2, si H ↔= Z
n
k , y el orbifold cociente S/H es de género cero y con

exactamemte n+1 puntos cónicos, cada uno de ellos de orden k. La superficie S (respectivamente,

el grupo H) es llamada una curva generalizada de Fermat (respectivamente, un grupo generalizado

de Fermat) de tipo (k, n). La fórmula de Riemann-Hurwitz asegura que S tiene género gk,n =

1 +
kn→1

2 ((n ↗ 1)(k ↗ 1) ↗ 2) → 5. En [9], se observó que S es no-hiperelíptica y se construyó una

ecuación algebraica para S, dada por un cierto producto fibrado de (n ↗ 1) curvas clásicas de

Fermat de grado k, y cuyos coeficientes son dados por los valores cónicos de S/H (Sección 3.2). En

[12], se verificó que H es el único grupo generalizado de Fermat de tipo (k, n) en S (esta propiedad

de unicidad permite, de cierto modo, mirar a S como un símil al caso de superficies hiperelípticas,

donde H suple el rol del grupo generado por la involución hiperelíptica). De hecho, en [11], se

verificó que S no puede tener otro grupo generalizado de Fermat de tipo (k
→
, n

→
) si k→ ↘= k o n

→ ↘= n.

El grupo generalizado de Fermat H tiene un conjunto de generadores {a1, . . . , an+1} ≃ H que

satisface lo siguiente:

(i) a1 · · · an+1 = 1,

(ii) todo elemento no-trivial de H que tiene puntos fijos es potencia de alguno de los aj , y

(iii) el ángulo de rotación de cada aj en cada uno de sus puntos fijos es 2ωi/k.
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Cada elemento aj , donde j = 1, . . . , n+1, es llamado un generador estándar de H, y tiene exacta-

mente k
n↑1 puntos fijos. El conjunto {a1, . . . , an+1} se llama un conjunto estándar de generadores

de H.

Notemos que la superficie generalizada de Fermat S es el cubriente homológico del orbifold de

Riemann Ok,n = S/H (la esfera de Riemann con exactamente n + 1 puntos cónicos, cada uno de

orden k). La unicidad del grupo generalizado de Fermat es equivalente a decir que dos orbifolds

Ok,n y Ok↑,n↑ son biholomórficamente equivalentes si y sólo si sus correspondientes cubrientes ho-

mológicos son biholomórficamente equivalentes (una especie de teorema de Torelli para orbifolds).

Equivalentemente, si !1 y !2 son dos grupos Fuchsianos, digamos que !j tiene firma (0; kj , . . . , kj)

para j = 1, 2, entonces !1 = !2 si y sólo si !→
1 = !

→
2, donde !

→
j denota el subgrupo derivado de !j .

Uno de los resultados de este trabajo permite notar que las ideas usadas en los casos de cubrimientos

abelianos antes considerados (por ejemplo, los cíclicos y los abelianos que satisfacen las propiedades

en [14]) no pueden ser usadas en el caso de los grupos de Fermat generalizados. En efecto, sea D

un divisor efectivo de grado gk,n en S. En la Proposición 3.9, observamos que D no puede ser

invariante bajo ningún subgrupo de H que contenga un elemento de orden d → 2, que no sea la

potencia de algún generador estándar, en ninguna de las siguientes situaciones:

1. d → 3.

2. d = 2 y k es un múltiplo de 4.

3. d = 2 y n → 3.

En particular, lo anterior nos indica que D no puede ser H-invariante. Por lo que el resultado en

[14, Theorem 4.4] en este caso no puede aplicarse y la búsqueda de Fórmulas tipo Thomae para los

pares generalizados de Fermat no es fácil. Es importante notar en este punto, que la intención de

este trabajo no es el obtener tales fórmulas para pares generalizados de Fermat. Nuestro propósito

es notar que este tipo de cubrientes abelianos no es considerado, respecto a la búsqueda de fórmulas

tipo Thomae, en los trabajos que hay en la literatura. Esperamos poder hacer tal estudio en un

trabajo posterior.

En el Teorema 3.10, damos condiciones algebraicas necesarias y suficientes para que un divisor

efectivo de grado gk,n, cuyo soporte esté contenido en el conjunto de los puntos fijos de los gene-

radores estándar, sea no-especial. Es posible encontrar tales divisores D que son invariantes por

alguno de los generadores estándar (ver Ejemplos 2.1 y 3.11). En este caso, en el Teorema 3.13,

indicamos condiciones necesarias y suficientes analíticas para que D sea no-especial.

Nuestra siguiente observación corresponde a los vectores de constantes de Riemann de los puntos

fijos de un generador estándar. Asociado a la curva generalizada de Fermat S, de tipo (k, n),

tenemos su espacio de diferenciales holomorfas H1,0
(S), que es un C-espacio vectorial complejo de



CUBO
27, 2 (2025)

Una observación sencilla sobre vectores de constantes de Riemann ... 213

dimensión gk,n. Si H1,0
(S)

ω denota el espacio dual de H1,0
(S), entonces S tiene asociada su variedad

jacobiana JS = H
1,0

(S)
ω
/H1(S;Z), el cual es un toro complejo gk,n-dimensional (que admite una

polarización principal proveniente de la forma de intersección en homología). Cada punto q ⇐ S

define una incrustación holomorfa εq : S ↑ JS : p ⇒↑
[∫ p

q

]
. Esta incrustación tiene la propiedad de

que, si ϑ1 and ϑ2 son diferenciales meromorfas de S, entonces εq((ϑ1)) = εq((ϑ2)), donde (ϑj) denota

el divisor asociado a ϑj . Este valor es denotado por ↗2Kq y es llamado el vector de constantes

de Riemann asociado al punto q. En el Teorema 3.8, observamos que Kq1 + · · · + Kqkn→1 ⇐ JS

es un punto de torsión de orden dos, donde q1, . . . , qkn→1 son los puntos fijos de un generador

estándar. Esto generaliza la situación conocida para el caso de puntos fijos de automorfismos ϖ

de una superficie de Riemann S tal que S/⇑ϖ⇓ es de género cero y donde cada punto fijo de una

potencia no-trivial de ϖ también es punto fijo de ϖ (ver [18, Lema 2.2.]). Este tipo de resultados

es de mucho interés en la teoría respecto a fórmulas de Thomae (ver, por ejemplo, [6, 18] para

mayores detalles).

Notaciones

1. S denotará una superficie de Riemann compacta de género g → 2 y Aut(S) su grupo de

automorfismos conformes (holomorfos).

2. Si S es una curva generalizada de Fermat de tipo (k, n), entonces H ↔= Z
n
k denotará su grupo

generalizado de Fermat de tipo (k, n).

3. Div(S) denota el grupo abeliano de los divisores sobre S.

4. El grado del divisor D ⇐ Div(S) es denotado por deg(D).

5. Div
d
(S) denota al conjunto de divisores efectivos de grado d.

6. Si f : S ↑ Ĉ es una función meromorfa no cero, entonces denotamos su divisor de ceros y

polos por (f).

7. Si ϑ es una diferencial meromorfa diferente de cero, entonces denotamos su divisor de ceros

y polos por (ϑ).

8. L(↗D) denota el espacio vectorial complejo que consiste, aparte de cero, de todas las fun-

ciones meromorfas f tal que (f) +D es efectivo. Su dimensión es denotado por r(↗D).

9. ”(D) denota el espacio vectorial complejo que consiste, aparte de la difencial cero, de todas

las diferenciales meromorfas ϱ tal que (ϱ) ↗ D es efectivo. Su dimensión es denotado por

i(D).

10. JS denota la variedad jacobiana de S.
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11. Si q ⇐ S, entonces ↗2Kq ⇐ JS denota su vector de constantes de Riemann.

12. C
k
ε1,...,εn→2

denota una curva generalizada de Fermat de tipo (k, n) determinada por los

puntos ⇔, 0, 1,ς1, . . . ,ςn↑2 ,y H0
↔= Z

n
k su grupo generalizado de Fermat. Sus generadores

estándar serán denotados por a1, . . . , an+1.

13. Para cada generador estándar aj , denotaremos por Fix(aj) tanto a su conjunto de puntos

fijos como al correspondiente divisor.

14. ϑr;ϑ3,...,ϑn+1 denota la diferencial meromorfa de C
k
ε1,...,εn→2

cuyo divisor es dado

por
(
ϑr;ϑ3,...,ϑn+1

)
= (φ3 + · · ·+φn+1 ↗ 2↗ r)Fix(a1)+ rFix(a2)+

∑n+1
j=3 (k↗ 1↗φj)Fix(aj).

15. Ik,n = {(r;φ3, . . . ,φn+1);φj ⇐ {0, 1, . . . , k ↗ 1}, 0 ↓ r ↓ φ3 + · · ·+ φn+1 ↗ 2}.

2. Preliminares

En el resto de esta sección, S denotará una superficie de Riemann cerrada de género g → 1.

2.1. Divisores

Denotaremos por Div(S) el grupo abeliano de los divisores de S, es decir, el grupo abeliano libre

generado por los puntos de S. Si D ⇐ Div(S), entonces ↼q(D) ⇐ Z es el valor tal

que D = D0 + ↼q(D)q, donde D0 está soportado en S ↗ {q}. El grado de D es definido como

deg(D) =
∑

q↓S ↼q(D). En el caso de que, para cada q ⇐ S, se cumpla que ↼q(D) → 0, diremos que

el divisor es efectivo, denotado por D → 0. Denotaremos por Div
d
(S) al conjunto de los divisores

efectivos de grado d → 1; el cual resulta ser una variedad compleja compacta de dimensión d. Si

f : S ↑ Ĉ es una función meromorfa y diferente de cero (respectivamente, si ϑ es una forma

diferencial meromorfa y diferente de cero en S), entonces denotaremos por (f) (respectivamente,

(ϑ)) a su divisor que codifica sus ceros y polos contando sus respectivas multiplicidades.

2.2. Divisores no-especiales

2.2.1.

Cada divisor D ⇐ Div(S) tiene asociado un C-espacio vectorial L(↗D) (respectivamente ”(D))

de dimensión r(↗D) (respectivamente, i(D)) que consiste, aparte del cero, de todas las funciones

meromorfas f : S ↑ Ĉ tales que (f) + D → 0 (respectivamente, formas meromorfas ϑ tales que

(ϱ) → D). El Teorema de Riemann-Roch nos dice que r(↗D) = deg(D)↗ g + 1 + i(D).
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2.2.2.

Supongamos, en lo que sigue, que D → 0. Lo anterior nos dice que r(↗D) → 1 (ya que en L(↗D)

están las funciones constantes), en otras palabras, i(D) → g ↗ deg(D).

Cuando i(D) = 0 se dice que D es un divisor no-especial (en caso contrario, un divisor especial).

Luego, (i) si deg(D) < g, entonces D es especial, y (ii) si deg(D) = g, entonces D es no-especial si

y sólo si r(↗D) = 1.

2.3. Divisores invariantes por acción de grupos

Supongamos que tenemos un grupo finito G de automorfismos conformes de S. En este caso,

R = S/G resulta ser un orbifold de Riemann (una superficie de Riemann junto a una colección

finita de puntos con pesos enteros positivos). Sea ω : S ↑ R un cubrimiento ramificado holomorfo

cuyo grupo de transformaciones cobertoras es G, es decir, ω(x) = ω(y) si y sólo si existe ϖ ⇐ G tal

que ϖ(x) = y.

Sea ↽ → 0 el género de R y sean q1, . . . , qn ⇐ R los valores de ramificación de ω, es decir, la proyec-

ción de los puntos de S con G-estabilizador no-trivial. Si p ⇐ ω
↑1

(qj), entonces el G-estabilizador de

p es un grupo cíclico de un orden kj → 2 que divide al orden |G| de G. Dos puntos cualesquiera en la

ω-preimagen de qj tienen G-estabilizadores que son G-conjugados. La fórmula de Riemann-Hurwitz

dice que

g = 1 + |G|(↽ ↗ 1) +
1

2

n∑

j=1

|G|
kj

(kj ↗ 1).

Sea D → 0 un divisor que sea G-invariante (es decir, G permuta los puntos del soporte de D y deja

invariantes los pesos correspondientes). En tal caso, D debe tener la siguiente forma:

D = l1ω
↑1

(p1) + · · ·+ lsω
↑1

(ps) +m1ω
↑1

(q1) + · · ·+mnω
↑1

(qn),

donde p1, . . . , ps ⇐ R \{q1, . . . , qn}, l1, . . . , ls,m1, . . . ,mn ⇐ {0, 1, 2, . . .}, y ω
↑1

(y) denota el divisor

cuyo soporte son los puntos en la ω-preimagen de y ⇐ R (cada uno con peso igual a 1). De esta

manera,

deg(D) = (l1 + · · ·+ ls)|G|+
∑

j=1

mj
|G|
kj

.
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La condición

deg(D) = g

es entonces equivalente a la siguiente igualdad

2k =



2k(l1 + · · ·+ ls + 1↗ ↽) +

n∑

j=1

(2mj ↗ kj + 1)k̂j



 |G|, (2.1)

donde

k = mcm(k1, . . . , kn), k̂j = k/kj .

Notemos que, si |G| es impar, entonces la igualdad (2.1) asegura que |G| divide a k.

Ejemplo 2.1. Supongamos que k1 = · · · = kn = k → 2. En este caso, k̂j = 1 y la igualdad (2.1)

es en este caso

2k =



2k(l1 + · · ·+ ls + 1↗ ↽)↗ n(k ↗ 1) + 2

n∑

j=1

mj



 |G|.

Como k divide a |G|, tenemos dos posibilidades:

1. |G| = k, en cuyo caso G ↔= Zk y 2k(l1 + · · ·+ ls + 1↗ ↽)↗ n(k ↗ 1) + 2
∑n

j=1 mj = 2.

2. |G| = 2k y 2k(l1 + · · ·+ ls + 1↗ ↽)↗ n(k ↗ 1) + 2
∑n

j=1 mj = 1.

Este ejemplo nos dice, por ejemplo, que si |G| /⇐ {k, 2k}, entonces no existen divisores efectivos de

grado g que sean G-invariantes.

2.4. Vectores de constantes de Riemann

2.4.1.

El primer grupo de homología H1(S;Z) se puede incrustar como un reticulado en H
1,0

(S)
ω por

medio del proceso de integración de formas diferenciales φ ⇒↑
∫
ϑ. El toro complejo g-dimensional

JS = H
1,0

(S)
ω
/H1(S;Z) se llama la variedad jacobiana de S. La forma de intersección en homología

determina una polarización principal en JS.

2.4.2.

Para cada punto q ⇐ S, tenemos su función de Abel-Jacobi

εq : S ↑ JS : p ⇒↑
[∫ p

q

]
,
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la cual produce una incrustación holomorfa de S en JS. Esta función se extiende de manera natural

a una función holomorfa sobreyectiva εq : Div(S) ↑ JS, la cual es un homomorfismo de grupos

abelianos. Su restricción a la variedad compleja compacta Div
d
(S) es holomorfa.

Por el teorema de inversión de Abel-Jacobi, εq : Div
(g)

(S) ↑ JS es sobreyectiva, y cualquier par

de divisores diferentes D1, D2 ⇐ Div
(g)

(S) son enviados al mismo punto si y sólo si D1 ↗D2 es un

divisor principal (es decir, D1↗D2 = (f), para alguna función meromorfa no-constante f : S ↑ Ĉ).

2.4.3.

Consideremos dos formas meromorfas ϑ1, ϑ2 ↘= 0 en S. Como ϑ1/ϑ2 es una función meromorfa de S,

entonces εq((ϑ1)) = εq((ϑ2)). De esta manera, el valor εq((ϑ)) ⇐ JS no depende de la diferencial

meromorfa ϑ ↘= 0 usada. Tal valor es denotado por ↗2Kq ⇐ JS y es llamado el vector de constantes

de Riemann associado al punto q.

2.4.4.

Si h ⇐ Aut(S), entonces el pull-back de formas holomorfas h
↔
: H

1,0
(S) ↑ H

1,0
(S) induce un

automorfismo holomorfo Th : JS ↑ JS : [L] ⇒↑ [L ↖ h↔
]. En particular, por el proceso de cambio

de base, para q ⇐ S, se cumple que

εh(q)(h(p))(ϑ) =

∫ h(p)

h(q)
ϑ


=

[∫ p

q
h
↔
ϑ

]
= εq(p)(h

↔
ϑ) = Th(εq(p))(ϑ),

es decir,

Th ↖ εq = εh(q) ↖ h.

2.5. Divisores no-especiales y funciones theta

Cada base simpléctica de H1(S;Z) tiene asociada su matriz de periodos Z ⇐ Hg (espacio de Siegel

de las matrices complejas simétricas de tamaño g↙ g con parte imaginaria positiva definida). Esto

permite obtener un modelo explícito JS = C
g
/Z

g ∝ ZZ
g.

Cada par ⇀, ⇀
→ ⇐ Z

g tiene asociada la función theta de primer orden con característica



 ⇀

⇀
→





definida por

ϑ



 ⇀

⇀
→



 (z;#) =

∑

N↓Zg

exp


2ωi

[
1

2


N +

⇀

2

t
z


N +

⇀

2


+


N +

⇀

2

t

N +

⇀
→

2

]
,

la cual es una función holomorfa definida sobre C
g (la función theta clásica ϑ corresponde a
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⇀ = ⇀
→
= 0). Más detalles y propiedades sobre funciones theta se pueden encontrar, por ejemplo,

en los libros [5, 6].

Como consecuencia del teorema de anulación de Riemann (Riemann Vanishing theorem [5, pág.

308], [6, pág. 17]), para cada e ⇐ JS, la función holomorfa multivaluada

fq,e := ϑ



 ⇀

⇀
→



 (εq ↗ e;#) : S ↑ JS

es:

(i) idénticamente cero, o bien

(ii) tiene precisamente g ceros (contados con multiplicidades).

Ya que εq : Div
(g)

(S) ↑ JS es sobreyectiva, existe algún divisor efectivo D ⇐ Div
(g)

(S) tal que

εq(D) = e↗Kq.

En [6], se probó que fq,e es idénticamente cero si y sólo si D es especial.

Supongamos que fq,e no es cero, esto es, D es no-especial. Si p1, . . . , pg son los g ceros de fq,e,

entonces el divisor p1 + · · ·+ pg ⇐ Div
(g)

(S) satisface que εq(p1 + · · ·+ pg) = e↗Kq = εq(D) (ver

[5, 6]); luego, D = p1 + · · ·+ pg (módulo divisores principales).

3. Curvas generalizadas de Fermat

En esta sección, S será una curva generalizada de Fermat de tipo (k, n), donde k, n → 2 son enteros

tales que (n↗1)(k↗1) > 2, y H ↔= Z
n
k su grupo (único [12]) generalizado de Fermat de tipo (k, n).

Al par (S,H) le llamamos un par generalizado de Fermat de tipo (k, n).

Sea ω : S ↑ Ĉ un cubrimiento ramificado Galois con grupo cobertor H. Componiendo ω a la

izquierda por alguna transformación de Möbius, podemos asumir que los valores de ramificación

de ω son dados por los puntos ⇔, 0, 1, ς1,. . . , ςn↑2, donde (i) ςi ↘= ςj si i ↘= j, y (ii) ςj ⇐ C↗{0, 1}.

3.1. Uniformización Fuchsiana

Por el teorema de uniformización, hay un grupo Fuchsiano (único módulo conjugación en PSL2(R))

! =

x1, . . . , xn+1 : x

k
1 = · · · = x

k
n+1 = x1x2 · · ·xn+1 = 1


< PSL2(R),

de manera que S/H = H
2
/!. En [9], se observó la existencia de un biholomorfismo ε : S ↑ H

2
/!

→,

donde !
→ es el grupo derivado (es decir, el subgrupo generado por los conmutadores) de !. Por la
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unicidad del grupo generalizado de Fermat, ε conjuga H en !/!
→.

3.2. Descripción algebraica

Las condiciones sobre los valores ςj aseguran que

C
k
ε1,...,εn→2

=






x
k
1 + x

k
2 + x

k
3 = 0

ς1x
k
1 + x

k
2 + x

k
4 = 0

...
...

...

ςn↑2x
k
1 + x

k
2 + x

k
n+1 = 0






≃ P
n
C, (3.1)

es una curva algebraica irreducible y suave (es decir, una superficie de Riemann cerrada). Esta

admite al grupo H0 = ⇑a1, . . . , an⇓ ↔= Z
n
k ,

aj([x1 : · · · : xn+1]) = [x1 : · · · : xj↑1 : ϱkxj : xj+1 : · · · : xn+1],

donde ϱk = e
2ϖi/k, como un grupo de automorfismos holomorfos. Más aún, la función ω([x1 : · · · :

xn]) = ↗ (x2/x1)
k es un cubrimiento ramificado Galois con H0 como grupo cobertor y cuyos valores

de ramificación son ⇔, 0, 1, ς1,. . . , ςn↑2. En particular, (Ck
ε1,...,εn→2

, H0) es un par generalizado

de Fermat de tipo (k, n). En [9], se observó que existe un biholomorfismo ⇁ : S ↑ C
k
ε1,...,εn→2

(que

necesariamente conjuga H en H0 por la unicidad de los grupos generalizados de Fermat). En este

modelo algebraico, los elementos a1, . . . , an+1 corresponden a los generadores estándar.

Observación 3.1. Si T ⇐ PSL2(C) y

{T (⇔), T (0), T (1), T (ς1), . . . , T (ςn↑2)} = {⇔, 0, 1, µ1, . . . , µn↑2},

entonces C
k
ε1,...,εn→2

y C
k
µ1,...,µn→2

son biholomorfas.

3.3. El cuerpo de las funciones meromorfas

Para cada j = 2, . . . , n+ 1, la función meromorfa

yj =
xj

x1
: C

k
ε1,...,εn→2

↑ Ĉ,

tiene como sus ceros a los puntos fijos de aj y como sus polos a los puntos fijos de a1. Esta función

yj define un cubrimiento ramificado Galois de grado k
n↑1, cuyo grupo cobertor es

deck(yj) = ⇑a2, . . . , aj↑1, aj+1, . . . , an+1⇓ ↔= Z
n↑1
k .
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En lo que sigue, denotaremos z := y2 y ς0 = 1.

El sistema algebraico (3.1) asegura la igualdad

ςj↑3 + z
k
+ y

k
j = 0. (3.2)

Se tiene que z, y3, . . . , yn+1 generan al cuerpo de las funciones meromorfas de C
k
ε1,...,εn→2

;

C(C
k
ε1,...,εn→2

) =

⊕

0↗ϑ1,...,ϑn+1↗k↑1

C(z) y
ϑ3
3 y

ϑ4
4 · · · yϑn+1

n+1 .

Observación 3.2. La acción de H sobre los generadores anteriores es dada por (a↔jf := f ↖ aj):





a
↔
1z = ϱ

↑1
k z, a

↔
2z = ϱkz, a

↔
jz = z, j ⇐ {3, . . . , n+ 1};

a
↔
1yl = ϱ

↑1
k yl, a

↔
l yl = ϱkyl, a

↔
jyl = yl, j ⇐ {2, 3, . . . , n+ 1}↗ {l}.






En particular, cada factor C(z) y
ϑ3
3 y

ϑ4
4 · · · yϑn+1

n+1 es H-invariante.

3.4. Divisores de los puntos fijos

Si el conjunto de puntos fijos de aj es {pj,1, . . . , pj,kn→1}, entonces consideramos su correspondiente

divisor de puntos fijos:

Fix(aj) =

kn→1∑

i=1

pj,i ⇐ Div(C
k
n), j = 1, . . . , n+ 1. (3.3)

Observación 3.3. Algunas veces usaremos la notación Fix(aj) (por abuso de lenguaje) para de-

notar al divisor anterior o simplemente al conjunto de puntos fijos de aj.

Notemos que, para j = 2, . . . , n+ 1,

(yj) = Fix(aj)↗ Fix(a1).

En particular, para i ↘= j ⇐ {1, . . . , n+ 1}, el divisor de la función meromorfa yji := yj/yi es

(yji) = Fix(aj)↗ Fix(ai).
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3.5. El espacio de las diferenciales meromorfas

Como dz es una diferencial meromorfa de C
k
ε1,...,εn→2

, por lo visto en la sección anterior, su espacio

de diferenciales meromorfas es

M(C
k
ε1,...,εn→2

) =

⊕

0↗ϑ1,...,ϑn+1↗k↑1

C(z)
dz

y
ϑ3
3 y

ϑ4
4 · · · yϑn+1

n+1

.

La función meromorfa z es cubrimiento ramificado Galois de grado k
n↑1, cuyos puntos críticos son

los puntos fijos de los elementos a3, . . . , an+1, cada uno de orden k. Los valores de ramificación de

z están dados por las k-raíces de los puntos ↗1,↗ς1, . . . ,↗ςn↑2. En particular,

(dz) =

n+1∑

j=3

(k ↗ 1)Fix(aj)↗ 2Fix(a1), (dyji) =

n+1∑

s ↘=i,j

(k ↗ 1)Fix(as)↗ 2Fix(ai).

Si r ⇐ Z y (φ3, . . . ,φn+1) ⇐ {0, 1, . . . , k↗1}n↑1, entonces podemos formar la diferencial meromorfa

ϑr;ϑ3,...,ϑn+1 =
z
r
dz

y
ϑ3
3 y

ϑ4
4 · · · yϑn+1

n+1

, (3.4)

cuyo divisor es

(
ϑr;ϑ3,...,ϑn+1

)
= (φ3 + · · ·+ φn+1 ↗ 2↗ r)Fix(a1) + rFix(a2) +

n+1∑

j=3

(k ↗ 1↗ φj)Fix(aj). (3.5)

Observación 3.4. De la Observación 3.2, podemos ver que la acción por pull-back por elementos

de H en las diferenciales anteriores es dada por:

a
↔
j (ϑr;ϑ3,...,ϑn+1) =






ϱ
↑(r+1)+(ϑ3+···+ϑn+1)
k ϑr;ϑ3,...,ϑn+1 , j = 1,

ϱ
r+1
k ϑr;ϑ3,...,ϑn+1 , j = 2,

ϱ
↑ϑj

k ϑr;ϑ3,...,ϑn+1 , j ⇐ {3, . . . , n+ 1}.

Teorema 3.5 ([10]). La colección

Bcan
:= {ϑr;ϑ3,...,ϑn+1}(r;ϑ3,...,ϑn+1)↓Ik,n

,

donde Ik,n = {(r;φ3, . . . ,φn+1);φj ⇐ {0, 1, . . . , k ↗ 1}, 0 ↓ r ↓ φ3 + · · ·+ φn+1 ↗ 2} , define una

base para H
1,0

(C
k
ε1,...,εn→2

), llamada la base estándar.

Observación 3.6 (Conexión con la incrustación canónica). Consideremos la base estándar del

Teorema 3.5. Esta base induce una incrustación canónica (incrustación canónica estándar)

ιBcan : C
k
ε1,...,εn→2

↪↑ P
gk,n↑1
C .
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En [10], se verificó la existencia de una sub-colección {ϑ1, . . . , ϑn+1} de Bcan, de manera que

ι̂Bcan : C
k
ε1,...,εn→2

↪↑ P
n
C : [x1 : · · · : xn+1] ⇒↑ [ϑ1 : · · · : ϑn+1]

es la función identidad.

Observación 3.7. Usando la Observación 3.4, junto al Teorema 3.5, es posible describir explíci-

tamente la acción de H0 en el espacio H
q,0

(C
k
ε1,...,εn→2

) de las q-diferenciales holomorfas [13].

3.6. Sobre el vector de constantes de Riemann

Nuestra primera observación, es dada en el siguiente.

Teorema 3.8. Sea (S,H) un par generalizado de Fermat de tipo (k, n), (k ↗ 1)(n↗ 1) > 2. Sean

q1, . . . , qkn→1 los puntos fijos de un generador estándar. Entonces, Kq1 + · · ·+Kqkn→1 es un punto

de torsión de orden 2 de JS.

Demostración. Podemos asumir que S = C
k
n := C

k
ε1,...,εn→2

y H = H0 = ⇑a1, . . . , an⇓, donde

a1, . . . , an+1 son los generadores estándar.

Recordemos que, si q ⇐ C
k
n, entonces εq((dz)) = ↗2Kq. Como

(dz) =

n+1∑

j=3

(k ↗ 1)Fix(aj)↗ 2Fix(a1),

y, para i ↘= j, cada divisor de la forma Fix(ai)↗ Fix(aj) es principal, se tiene la igualdad

↗2Kq = ((n↗ 1)(k ↗ 1)↗ 2) εq(Fix(aj)), j = 1, . . . , n+ 1. (3.6)

Sea φ = (n↗ 1)(k ↗ 1)↗ 2. Tenemos las siguientes igualdades (obtenidas de (3.6))

↗2Kq1 = φεq1(q1 + · · ·+ qkn→1) = φεq1(q1) + · · ·+ φεq1(qkn→1)

↗2Kq2 = φεq2(q1 + · · ·+ qkn→1) = φεq2(q1) + · · ·+ φεq2(qkn→1)

...

↗2Kqkn→1 = φεqkn→1 (q1 + · · ·+ qkn→1) = φεqkn→1 (q1) + · · ·+ φεqkn→1 (qkn→1).

Sumando todas ellas (y usando la identidad εqi(qj) = ↗εqj (qi)), obtenemos

↗2(Kq1 + · · ·+Kqkn→1 ) = 0.
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3.7. Divisores efectivos de grado gk,n

Como hemos visto en el Ejemplo 2.1, no es posible encontrar divisores efectivos de grado gk,n

que sean H-invariantes. De hecho, como veremos más abajo, tampoco hay tales divisores que sean

K-invariantes para la mayoría de los subgrupos K de H. Luego, no es posible usar el [14, Theorem

4.4] y, en particular, la búsqueda de generalizaciones de fórmulas tipo Thomae para los pares de

Fermat generalizados no es fácil.

Proposición 3.9. Sea D ⇐ Div(S) un divisor efectivo de grado gk,n. Sea K un subgrupo no-trivial

de H conteniendo un elemento de orden d → 2 que no es una potencia de un generador estándar.

Entonces D no puede ser K-invariante en ninguna de las siguientes tres situaciones:

(i) d → 3.

(ii) d = 2 y k es múltiplo de 4.

(iii) d = 2 y n → 3.

Demostración. Sea a ⇐ K de orden d → 2, el cual no es una potencia de un generador estándar

(luego, ningún elemento diferente de la identidad de ⇑a⇓ actúa con puntos fijos). Como d es un

divisor de k, podemos escribir k = dk1. Si D es K-invariante, entonces también es ⇑a⇓-invariante.

Ya que los elementos no-triviales de ⇑a⇓ no tienen puntos fijos en S, debemos tener que el grado

gk,n de D debe ser un múltiplo de d, esto es, existe un entero φ → 1 tal que 2dφ = 2 + k
n↑1

((n↗
1)(k ↗ 1)↗ 2) = 2 + d

n↑1
k
n↑1
1 ((n↗ 1)(k ↗ 1)↗ 2). Como n → 2, esto no es posible para d → 3. Si

d = 2, entonces 2
2
φ = 2+ 2

n↑1
k
n↑1
1 ((n↗ 1)(k↗ 1)↗ 2). En caso que k1 sea par o bien que n → 3,

tendremos que 4 divide a 2, una contradicción.

3.8. Divisores efectivos no-especiales soportados en los puntos fijos

En esta sección, estamos interesados en determinar condiciones algebraicas (necesarias y suficientes)

para que un divisor efectivo de grado gk,n en C
k
n := C

k
ε1,...,εn→2

, cuyo soporte esté contenido en el

conjunto de los puntos fijos de los generadores estándar de H, sea no-especial.

Los divisores anteriores son de la forma

D =

n+1∑

j=1

kn→1∑

i=1

mj,ipj,i, mj,i → 0,

n+1∑

j=1

kn→1∑

i=1

mj,i = gk,n. (3.7)

Asumiremos que los enteros mj,i están ordenados

Mj(D) := mj,kn→1 → · · · → mj,1 → 0.
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Para cada subconjunto A ↘= ′ de Ik,n definimos:

▷1(A) := mı́n{φ3 + · · ·+ φn+1 ↗ r ↗ 2 : (r;φ3, . . . ,φn+1) ⇐ A} → 0

▷2(A) := mı́n{r : (r;φ3, . . . ,φn+1) ⇐ A} → 0

▷j(A) := mı́n{k ↗ 1↗ φj : (r;φ3, . . . ,φn+1) ⇐ A} → 0, j → 3.

Observemos que, si ′ ↘= B ≃ A, entonces ▷j(A) ↓ ▷j(B) para todo j → 1.

Si µ ⇐ (C↗ {0})A, entonces el divisor de la diferencial holomorfa

ϑµ,A =

∑

(r;ϑ3,...,ϑn+1)↓A

µ(r;φ3, . . . ,φn+1)ϑr;ε3,...,ϱn+1

es

(ϑµ,A) =

n+1∑

j=1

◁j(µ)Fix(aj) +D0,

donde ◁j(µ) → ▷j(A) y D0 es un divisor efectivo cuyo soporte es disjunto con Fix(H) (el conjunto

formado por todos los puntos fijos de todos los generadores estándar de H). Notemos que, para µ

genérico, se tiene que ◁j(µ) = ▷j(A).

El siguiente resultado da condiciones algebraicas necesarias y suficientes para que un divisor como

en (3.7) sea no-especial.

Teorema 3.10. Sea D ⇐ Div(C
n
k ) un divisor efectivo de grado gk,n como en (3.7). Entonces D

es no-especial si y sólo si las siguientes condiciones se cumplen.

(S1) Para cada j ⇐ {1, . . . , n + 1}, se cumple que que mj,1 = 0 (es decir, existe un punto fijo de

aj que no pertenece al soporte de D).

(S2) Para todo subconjunto ′ ↘= A ≃ Ik,n, ∞j ⇐ {1, . . . , n+ 1} tal que Mj(D) > ▷j(A).

Demostración. Supongamos que la condición (S1) no es válida, es decir, existe j ⇐ {1, . . . , n + 1}
tal que mj,1 → 1, equivalentemente, D → Fix(aj). Si i ⇐ {1, . . . , n + 1} ↗ {j}, entonces yij es una

función meromorfa cuyo divisor es Fix(ai) ↗ Fix(aj), en particular, (yij) + D → 0. Esto nos dice

que r(↗D) → 2 y, por el Teorema de Riemann-Roch, que i(D) > 0, es decir, D es especial.

Ahora, supongamos que la condición (S2) no se cumple, es decir, existe ′ ↘= A ≃ Ik,n, tal que

Mj(D) ↓ ▷j(A), para todo j = 1, . . . , n+ 1. Si µ ⇐ (C↗ {0})A, entonces

(ϑµ,A) →
n+1∑

j=1

◁j(µ)Fix(aj) →
n+1∑

j=1

▷j(A)Fix(aj) →
n+1∑

j=1

Mj(D)Fix(aj) → D,

es decir, i(D) > 0, luego D es especial.
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Ejemplo 3.11 (Caso (k, n) = (4, 2)). En este caso, S corresponde a la curva de Fermat de grado

4:

S = {[x : y : z] ⇐ P
2
: x

4
+ y

4
+ z

4
= 0}

que es una superficie de Riemann de género g4,2 = 3. Los generadores estándar de H ↔= Z
2
4 están

dados por

a1([x : y : z]) = [ix : y : z], a2([x : y : z]) = [x : iy : z], a3([x : y : z]) = [x : y : iz].

El conjunto de puntos fijos de a1 es (tomando q = e
iϖ/4):

{p1,1, p1,2, p1,3, p1,4} = {[0 : 1 : q], [0 : 1 : iq], [0 : 1 : ↗q], [0 : 1 : ↗iq]},

el conjunto de puntos fijos de a2 es:

{p2,1, p2,2, p2,3, p2,4} = {[1 : 0 : q], [1 : 0 : iq], [1 : 0 : ↗q], [1 : 0 : ↗iq]},

el conjunto de puntos fijos de a3 es:

{p3,1, p3,2, p3,3, p3,4} = {[1 : q : 0], [1 : iq : 0], [1 : ↗q : 0], [1 : ↗iq : 0]}.

Un divisor D como en (3.7), en esta situación, es de la forma

D =

4∑

j=1

m1,jp1,j +

4∑

j=1

m2,jp2,j +

4∑

j=1

m3,jp3,j ,

donde

M1(D) = m1,4 → m1,3 → m1,2 → m1,1 → 0,

M2(D) = m2,4 → m2,3 → m2,2 → m2,1 → 0,

M3(D) = m3,4 → m3,3 → m3,2 → m3,1 → 0,

3∑

j=1

(m1,j +m2,j +m3,j) = 3.

La condición (S1) del Teorema 3.10 es equivalente a tener

m1,1 = m2,1 = m3,1 = 0,

lo cual supondremos en lo que sigue de este ejemplo.
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Como I4,2 = {(0; 2), (0; 3), (1; 3)}, sus subconjuntos no vacíos son

A1 = {(0; 2)}, A2 = {(0; 3)}, A3 = {(1; 3)}, A4 = {(0; 2), (0; 3)},

A5 = {(0; 2), (1; 3)}, A6 = {(0; 3), (1; 3)}, A7 = I4,2.

Se puede verificar que:

▷1(A1) = ▷1(A3) = ▷1(A4) = ▷1(A5) = ▷1(A6) = ▷1(A7) = 0, ▷1(A2) = 1,

▷2(A1) = ▷2(A2) = ▷2(A4) = ▷2(A5) = ▷2(A6) = ▷2(A7) = 0, ▷2(A3) = 1,

▷3(A2) = ▷3(A3) = ▷3(A4) = ▷3(A5) = ▷3(A6) = ▷3(A7) = 0, ▷3(A1) = 1.

La condición (S2) del Teorema 3.10 es equivalente a tener las siguientes condiciones:

(a) algún Mj(D) → 1 (para satisfacer la condición con A4, A5, A6, A7);

(b) M3(D) = 3 o bien M1(D) → 1 o bien M2(D) → 1 (para tener tal condición para A1);

(c) M1(D) = 3 o bien M2(D) → 1 o bien M3(D) → 1 (para tener tal condición para A2);

(d) M2(D) = 3 o bien M1(D) → 1 o bien M3(D) → 1 (para tener tal condición para A3).

Si (i) M1(D) → 1 y M2(D) → 1, o bien (ii) M1(D) → 1 y M3(D) → 1, o bien (iii) M2(D) → 1 y

M3(D) → 1, entonces D es no-especial.

Por otro lado, si tenemos (por ejemplo) M1(D) = M2(D) = 0, entonces necesitamos tener

M3(D) = 3 para que D sea no-especial. En este caso, D = 3p, donde p ⇐ Fix(a3). Notemos

que este divisor es invariante por a3.

3.9. Divisores no-especiales invariantes por un generador estándar

La Proposición 3.9 nos dice que un divisor D como en (3.7) no puede ser invariante por varios

subgrupos no-triviales K de H. Los únicos subgrupos K < H que admitan un divisor (como en

(3.7)) que sea K-invariante son:

(i) n = 2 y k = 2k1, donde k1 → 3 es impar (luego S es una curva clásica de Fermat de grado k)

y K es un grupo cíclico generado por una involución sin puntos fijos en S, o bien

(ii) K es un grupo cíclico generado por un generador estándar.

Supongamos que D es invariante por un generador estándar, el cual podemos asumir (sin pérdida de

generalidad) sea an+1. La invariancia de D por an+1 es equivalente a tener, para cada j = 1, . . . , n,
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que en el divisor D tenemos
kn→1∑

i=1

mj,ipj,i =

kn→2∑

i=1

mj,iDj,i

donde Dj,i son las órbitas disjuntas a pares de los puntos fijos aj bajo la acción de an+1.

Ejemplo 3.12. Si p ⇐ Fix(an+1), entonces el divisor D = gk,np es invariante por an+1. Más aún,

como ▷j(A) < gk,n para todo subconjunto no vacío A de Ik,n, tenemos (por el Teorema 3.10) que D

es no-especial. Este ejemplo generaliza el dado al final del Ejemplo 3.11, para el caso (k, n) = (4, 2).

En el ejemplo anterior, hemos descrito algunos divisores no-especiales de C
k
n, estos divisores están

soportados en un punto fijo de an+1. Las condiciones algebraicas necesarias y suficientes del Teo-

rema 3.10, en el caso de divisores invariantes por an+1, se pueden escribir de manera equivalente

como sigue.

Teorema 3.13. Sea D un divisor efectivo de grado gk,n como en (3.7), que es an+1-invariante.

Entonces D es no-especial si y sólo si no existe una función meromorfa no-constante ⇁ ⇐ L(↗D)

de la forma

⇁ = h(z) · yϑ3
3 · · · yϑn+1

n+1 , h(z) ⇐ C(z), φ3, . . . ,φn+1 ⇐ {0, 1 . . . , k ↗ 1}.

Demostración. Como ya hemos visto,

C(C
k
ε1,...,εn→2

) =

⊕

0↗ϑ1,...,ϑn+1↗k↑1

C(z) y
ϑ3
3 y

ϑ4
4 · · · yϑn+1

n+1 .

De la Observación 3.2, los espacios propios del automorfismo lineal a↔n+1 en C(C
k
ε1,...,εn→2

) están

dados por

Eϑn+1 :=




⊕

0↗ϑ1,...,ϑn↗k↑1

C(z) y
ϑ3
3 y

ϑ4
4 · · · yϑn

n



 y
ϑn+1

n+1 , φn+1 ⇐ {0, 1, . . . , k ↗ 1},

cuyo valor propio asociado es ϱ
↑ϑn+1

k . Como D es invariante por an+1, el espacio L(↗D) es a
↔
n+1-

invariante. Luego,

L(↗D) =

⊕

0↗ϑn+1↗k↑1

(
L(↗D) ∈ Eϑn+1

)
=

⊕

0↗ϑn+1↗k↑1




⊕

0↗ϑ1,...,ϑn↗k↑1

(
L(↗D) ∈ C(z) y

ϑ3
3 y

ϑ4
4 · · · yϑn+1

n+1

)


 . (3.8)
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Observación 3.14. Notemos, de lo anterior, que C(C
k
ε1,...,εn→2

)/⇑an+1⇓ = C(C
k
ε1,...,εn→3

) y

C(C
k
ε1,...,εn→3

) =

⊕

0↗ϑ1,...,ϑn↗k↑1

C(z) y
ϑ3
3 y

ϑ4
4 · · · yϑn

n

Corolario 3.15. Sea D un divisor efectivo de grado gk,n como en (3.7), que es an+1-invariante.

Entonces D es no-especial si y sólo si para cada elección de L → 0 y cada elección de rj , sl ⇐ Z,

donde j = 1, . . . , n, y l = 1, . . . , L, y φ3, . . . ,φn+1 ⇐ {0, 1 . . . , k ↗ 1}, alguna de las siguientes

propiedades falla:

(1) 0 = m1,1 → r1 + r2 + r3 + · · ·+ rn + s1 + · · ·+ sL + φ3 + · · ·+ φn+1,

(2) 0 = m1,2 → ↗r1, es decir, r1 → 0,

(3) si pv,i ⇐ Bv↑3, entonces mv,i + φv → ↗rv↑1, v = 3, . . . , n+ 1,

(4) si → 0, i = 1, . . . , L (esta condición se debe al hecho de que cada Cςi es disjunto de los

puntos fijos de los generadores estándar de H).

Demostración. Sea D un divisor efectivo de grado gk,n, como en (3.7), que es an+1-invariante.

Por la Proposición 3.13, para chequear si D es no-especial, necesitamos verificar que las funciones

meromorfas no-constantes

⇁ = h(z) · yϑ3
3 · · · yϑn+1

n+1 ,

donde h ⇐ C(z) y φ3, . . . ,φn+1 ⇐ {0, 1 . . . , k ↗ 1}, no pueden estar en L(↗D).

Sea ς0 = 1. Para cada j = 0, . . . , n↗ 2, fijemos una k-raíz (↗ςj)
1/k. Sea

h(z) = z
r1

n↑2∏

j=0

k∏

l=1


z ↗ e

2lϖi/k
(↗ςj)

1/k
r2+j

L∏

i=1

(z ↗ ▷i)
si ,

donde ↗▷
k
i ⇐ C \ {0, 1,ς1, . . . ,ςn↑2} y rj , si ⇐ Z. Notemos que:

(z
r1) = r1 (Fix(a2)↗ Fix(a1)) ,


z ↗ e

2lϖi/k
(↗ςj)

1/k
r2+j


= r2+j (Bj ↗ Fix(a1)) , j = 0, . . . , n↗ 2,

donde

Bj =

{
[1 : e

2lϖi/k
(↗ςj)

1/k
: x3 : · · · : xn+1] : x

k
i+3 = ↗ςi + ςj

}
≃ Fix(aj+3),

y

((z ↗ ▷i)
si
) = si

(
Cςj ↗ Fix(a1)

)
, i = 1, . . . , L,

donde

Cςi = {[1 : ▷i : x3 : · · · : xn+1] : x
k
t+3 = ↗ςt ↗ ▷

k
i }.
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El divisor de h es:

(h) = r1 (Fix(a2)↗ Fix(a1)) +

n↑2∑

j=0

r2+j(Bj ↗ Fix(a1)) +

L∑

i=1

si(Cςi ↗ Fix(a1)).

Ya que el divisor de y
ϑj

j , para j = 3, . . . , n+ 1, es

(
y
ϑj

j

)
= φj(Fix(aj)↗ Fix(a1))

obtenemos que el divisor de ⇁ = h(z) · yϑ3
3 · · · yϑn+1

n+1 es

(⇁) = ↗(r1 + r2 + r3 + · · ·+ rn + s1 + · · ·+ sL + φ3 + · · ·+ φn+1)Fix(a1)

+ r1Fix(a2) +

n+1∑

v=3

(φvFix(av) + rv↑1Bv↑3) +

L∑

i=1

siCςi .

En particular (como φj → 0), ⇁ /⇐ L(↗D) si alguna de las propiedades enunciadas en el corolario

falla.
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1. Introducción

Los espacios de Orlicz-Lorentz han surgido como una generalización común de los espacios de

Orlicz y de los espacios de Lorentz, aplicados a problemas de análisis funcional, teoría de ope-

radores y otras áreas de las matemáticas. Estos espacios se definen mediante el uso de funciones

de Young aplicadas al reordenamiento decreciente de funciones, proporcionando un marco robusto

para estudiar propiedades operatorias en escenarios no lineales y ponderados.

En este artículo, se investigan ciertas propiedades fundamentales de la distribución, el reordena-

miento decreciente, la función maximal y las funciones de Young, lo cual permite definir el espacio

de Orlicz-Lorentz Lω,w. El enfoque se centra en un subespacio particular, !ω,w. Nos proponemos

realizar un estudio exhaustivo y autocontenido de este subespacio, con el objetivo de proporcionar

una base teórica sólida para estudiar las condiciones bajo las cuales el operador de multiplicación

Mu, definido por Mu(f) = u · f , es acotado, inyectivo, invertible, y compacto. Estas condiciones

tienen aplicaciones directas en problemas de teoría de operadores y análisis de Fourier, entre otras

áreas. Para este análisis, seguiremos el esquema planteado en [7].

La organización de este artículo es la siguiente. En la Sección 2, describimos y damos propiedades

de los elementos básicos que componen a los espacios de Orlicz-Lorentz, a saber, la distribución

Df , el reordenamiento decreciente f→, la función maximal f→→, y las funciones de Young. Luego,

en la Sección 3, damos la definición de los espacios de Orlicz-Lorentz Lω,w, y de un subespacio

particular !ω,w, estudiando sus propiedades como espacios de Banach. Finalmente, en la Sección 4,

estudiamos el operador multiplicación Mu definido sobre !ω,w, caracterizando su acotación, rango

cerrado, invertibilidad y compacidad.

2. Elementos básicos de los espacios de Orlicz-Lorentz: dis-

tribución, reordenamiento decreciente, función maximal y

funciones de Young

En esta sección estudiamos los componentes principales de los espacios de Orlicz-Lorentz. Iniciamos

este estudio definiendo la distribución de una función.

2.1. Función de distribución

Definición 2.1. Sea f una función medible de valor complejo definida en un espacio de medida

ω-finito (X,A, µ). Para ε → 0, la función distribución de f , denotada por Df (ε), se define como

Df (ε) = µ ({x ↑ X : |f(x)| > ε}) . (2.1)



236 R. E. Castillo & H. C. Chaparro CUBO
27, 2 (2025)

Es importante destacar que Df depende únicamente del valor absoluto |f | de la función y que

puede tomar el valor +↓.

La función distribución Df brinda información sobre el “tamaño” de f , pero no acerca de su

comportamiento en puntos específicos. Por ejemplo, una función en Rn y sus traslaciones tienen la

misma función distribución. A partir de (2.1), se deduce que Df es decreciente en ε (aunque no

estrictamente) y es continua por la derecha.

Dado un espacio medible (X,µ), y funciones medibles f y g definidas en dicho espacio, Df cumple

las siguientes propiedades para todo ε1,ε2 → 0:

1. Df ↔ 0 ↗↘ f = 0 µ-c.t.p.;

2. Si |g| ≃ |f | µ-c.t.p., entonces Dg ≃ Df ;

3. Dcf (ε) = Df

(
ε
|c|

)
para todo c ↑ C \ {0};

4. Df+g(ε1 + ε2) ≃ Df (ε1) +Dg(ε2);

5. Dfg(ε1ε2) ≃ Df (ε1) +Dg(ε2).

Para más información sobre la función distribución, consultar las referencias [5, 6, 10].

2.2. Reordenamiento decreciente

El reordenamiento decreciente de una función f , denotado como f→, se define de la siguiente

manera.

Definición 2.2. Dada una función f de valor complejo definida en X, su reordenamiento decre-

ciente, f→, es la función definida en [0,+↓) como

f→(t) = ı́nf{ε > 0 : Df (ε) ≃ t}, t → 0.

Adoptamos la convención de que ı́nf ⇐ = ↓. Note que que f→ es decreciente y continua por la

derecha. Además,

f→(0) = ı́nf{ε > 0 : Df (ε) ≃ 0} = ⇒f⇒↑,

ya que

⇒f⇒↑ = ı́nf{ϑ → 0 : µ({x ↑ X : |f(x)| > ϑ}) = 0}.

Si Df es estrictamente decreciente, entonces se cumple que

f→(Df (t)) = ı́nf{ε > 0 : Df (ε) ≃ Df (t)} = t.
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Esto demuestra que f→ es la inversa de la función distribución Df .

Dados dos espacios de medida (X,A, µ) y (Y,M, ϖ), denotamos por F(X,A) al conjunto de todas

las funciones A-medibles en X y por F(Y,M) al conjunto de todas las funciones M-medibles en

Y , respectivamente.

Dos funciones f ↑ F(X,A), g ↑ F(Y,M) se llaman equimedibles si tienen la misma función

distribución, es decir,

µ ({x ↑ X : |f(x)| > ε}) = ϖ ({y ↑ Y : |g(y)| > ε}) , para todo ε → 0.

El siguiente teorema asegura la unicidad del reordenamiento decreciente. Omitimos su demostra-

ción, la cual se puede encontrar en [6, Teorema 1.8].

Teorema 2.3. Existe una única función decreciente continua por la derecha, ε → 0, equimedible

con f→. Es decir, el reordenamiento decreciente es único.

A continuación listamos algunas propiedades importantes de f→. Demostraciones de estas propie-

dades pueden encontrarse en [5, 6, 10].

1. f→ es decreciente.

2. f→
↔ 0 ↗↘ f = 0 µ-c.t.p.

3. f→(t) > ε si y sólo si Df (ε) > t.

4. |g| ≃ |f | µ-c.t.p. implica g→ ≃ f→. Además, |f |→ = f→.

5. (kf)→ = |k|f→.

6. (f + g)→(t1 + t2) ≃ f→(t1) + g→(t2).

7. (fg)→(t1 + t2) ≃ f→(t1)g→(t2).

8. f y f→ son equimedibles, es decir

Df (ε) = Df→(ε) para todo ε → 0.

9.
∫
X |f |p dµ =

∫↑
0 [f→(t)]p dt si 0 < p < ↓.

10. Si |f | ≃ ĺım infn↓↑ |fn|, entonces f→
≃ ĺım infn↓↑ f→

n.

11. Si E ↑ A, entonces (ϱE)
→ (t) = ϱ[0,µ(E))(t).

12. Si E ↑ A, entonces (fϱE)
→ (t) ≃ f→(t)ϱ[0,µ(E))(t).
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2.3. Función maximal

Definición 2.4. Sea f : X ⇑ C una función medible. Por f→→ se denotará a la función maximal

de f→, definida como

f→→(t) =
1

t

∫ t

0
f→(s) ds, t > 0. (2.2)

A continuación enumeramos algunas propiedades básicas de la función maximal f→→.

Proposición 2.5. Supongamos que f , g, y fn, (n = 1, 2, . . .), son funciones medibles, y sea ε

cualquier escalar. Entonces f→→ es no negativa, decreciente, y continua en (0,+↓). Además, se

tienen las siguientes propiedades

f→→
↔ 0 ⇓ f = 0 µ⇔ c.t.p.; (2.3)

f→
≃ f→→; (2.4)

|g| ≃ |f | µ⇔ c.t.p. implica g→→ ≃ f→→; (2.5)

(εf)→→ = |ε|f→→; (2.6)

Si |f | ≃ ĺım inf
n↓↑

|fn|, entonces f→→
≃ ĺım inf

n↓↑
f→→
n (2.7)

(f + g)→→ ≃ f→→ + g→→ (2.8)

2.4. Funciones de Young

Los espacios clásicos de Lebesgue son conformados por las (clases de equivalencia de) funciones

Lebesgue integrables tales que ∫

X
|f |p dµ < ↓,

donde el integrando se obtiene al aplicar la función ς(t) = tp (p → 1) a la función |f |. Esta función

ς hace parte de una clase más general de funciones, llamadas funciones de Young, concepto que

precisamos a continuación.

Definición 2.6. Sea ς : [0,↓) ⇑ [0,↓) una función convexa tal que

1. ς(x) = 0 si y sólo si x = 0;

2. ĺımx↓↑ ς(x) = ↓.

Tal función se conoce como función de Young.

Una función de Young es estrictamente creciente. En efecto, sean 0 < x < y, entonces 0 < x
y < 1

y así, podemos escribir

x =

(
1⇔

x

y

)
0 +

x

y
y.
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como ς es convexa, tenemos

ς(x) = ς

((
1⇔

x

y

)
0 +

x

y
y

)
≃

(
1⇔

x

y

)
ς(0) +

x

y
ς(y) < ς(y).

Decimos que una función de Young satisface la condición ”2 si existen constantes no negativas x0

y k tales que

ς(2x) ≃ kς(x) para x → x0. (2.9)

Si x0 = 0, decimos que ς satisface globalmente la condición ”2. La mínima constante k que

satisface (2.9) se denota por k!.

Afirmación 2.7. Si ς es una función de Young que satisface la condición ”2, entonces para cada

r → 0 existe una constante k!(r) tal que

ς(rx) ≃ k!(r)ς(x) (2.10)

para x > 0 suficientemente grande.

Demostración de la afirmación. Si r > 0, podemos elegir n ↑ N tal que r ≃ 2n. Entonces, aplicando

(2.9) n-veces y usando el hecho de que ς es creciente, obtenemos

ς(rx) ≃ ς(2nx) ≃ knς(x),

con lo cual (2.10) queda demostrado.

Lema 2.8. Una función de Young ς satisface la condición ”2 si y sólo si existen constantes ε > 1

y t0 > 0 tales que
tp(t)

ς(t)
< ε

para todo t → t0, donde p es la derivada lateral derecha de ς.

Demostración. Supongamos que ς satisface la condición ”2, entonces existe una constante k > 0

tal que

kς(t) → ς(2t) =

∫ 2t

0
p(s) ds >

∫ 2t

t
p(s) ds

para t suficientemente grande. Como p es creciente, se tiene que

∫ 2t

t
p(s) ds > tp(t);
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así, para t suficientemente grande, obtenemos

tp(t)

ς(t)
≃ k.

Recíprocamente, si
tp(t)

ς(t)
< ε

para todo t → t0, entonces ∫ 2t

t

p(s)

ς(s)
ds < ε

∫ 2t

t

ds

s
= ε log 2.

Dado que p(s) = ς↔(s), tenemos

log

(
ς(2t)

ς(t)

)
< ε log 2,

lo cual implica que

ς(2t) < 2ες(t).

A continuación veremos que las funciones de Young que satisfacen la condición ”2 tienen una

razón de crecimiento menor que tp para algún p > 1.

Teorema 2.9. Si ς es una función de Young que satisface la condición ”2, entonces existen

constantes ε > 1 y C > 0 tales que

ς(t) ≃ Ctε

para t suficientemente grande.

Demostración. Por (2.8) podemos escribir

∫ t

t0

p(s)

ς(s)
ds < ε

∫ t

t0

ds

s

donde t → t0. Entonces

log

(
ς(t)

ς(t0)

)
< ε log

(
t

t0

)
,

por lo tanto

ς(t) <
ς(t0)

tε0
tε,

como queríamos demostrar.

En relación con la función de Young ς, definimos, para t → 0, la función complementaria de ς

mediante

φ(t) = sup{ts⇔ ς(s) : s → 0}.



CUBO
27, 2 (2025)

Función maximal, un subespacio de Orlicz-Lorentz,... 241

Proposición 2.10. Si ς es una función de Young, entonces su función complementaria φ también

es una función de Young.

Demostración. Es claro que φ(0) = 0 si y sólo si x = 0. Por lo tanto, sólo debemos demostrar

que φ es una función convexa. Para esto, escojamos t1, t2 ↑ [0,+↓) y ε ↑ [0, 1]. Entonces, por

definición de φ, tenemos

φ(εt1 + (1⇔ ε)t2) = sup{s(εt1 + (1⇔ ε)t2)⇔ ς(s) : s → 0}.

Por otra parte

εφ(t1) = ε sup{st1 ⇔ ς(s) : s → 0} → ε(st1 ⇔ ς(s)), ↖ s → 0

y además,

(1⇔ ε)φ(t2) = (1⇔ ε) sup{st2 ⇔ ς(s) : s → 0} → (1⇔ ε)(st2 ⇔ ς(s)), ↖ s → 0.

De las últimas dos desigualdades, tenemos

s(εt1 + (1⇔ ε)t2)⇔ ς(s) = ε(st1 ⇔ ς(s)) + (1⇔ ε)(st2 ⇔ ς(s)) ≃ εφ(t1) + (1⇔ ε)φ(t2)

para todo s → 0. Esto significa que εφ(t1) + (1⇔ ε)φ(t2) es una cota superior del conjunto

{s(εt1 + (1⇔ ε)t2)⇔ ς(s) : s → 0},

entonces

φ(εt1 + (1⇔ ε)t2)) ≃ εφ(t1) + (1⇔ ε)φ(t2),

y así φ es convexa.

Teorema 2.11 (Desigualdad de Young). Sea φ la función complementaria de ς. Entonces

ts ≃ ς(s) + φ(t)

donde t, s ↑ [0,+↓).



242 R. E. Castillo & H. C. Chaparro CUBO
27, 2 (2025)

Demostración. Sean t, s ↑ [0,+↓). Entonces

φ(t) = sup{st⇔ ς(s) : s → 0} → st⇔ ς(s), ↖ s → 0,

Luego

φ(t) + ς(s) → st,

y así se completa la demostración.

Para más detalles sobre funciones de Young, ver [16].

3. Los espacios de Orlicz-Lorentz Lς,w y un subespacio parti-

cular !ς,w

Una vez estudiados los conceptos de distribución, reordenamiento decreciente, función maximal y

funciones de Young, estamos listos para definir los espacios de Orlicz-Lorentz. El lector interesado

puede encontrar información relacionada en [15].

Recordemos que un peso w es una función no negativa, localmente integrable sobre R, que toma

valores en (0,↓) casi en todas partes. De esta manera, un peso puede tomar los valores cero o

infinito sólo sobre un conjunto Lebesgue medible de medida cero.

Definición 3.1. Sean ς una función de Young y w un peso. Se define el espacio de Orlicz-Lorentz

con peso w como

Lω,w =

{
f : X ⇑ C medibles :

∫ ↑

0
ς(ϑf→(t))w(t) dt < ↓, para algún ϑ > 0

}
. (3.1)

Note que si tomamos ς(x) = xp (p → 1) y w ↔ 1, obtenemos

Lxp,1 =

{
f : X ⇑ C medibles :

∫ ↑

0
(ϑf→(t))p dt < ↓, para algún ϑ > 0

}

=

{
f : X ⇑ C medibles :ϑp

∫ ↑

0
[f→(t)]p dt < ↓, para algún ϑ > 0

}

=

{
f : X ⇑ C medibles :ϑp

∫

X
|f |p dµ < ↓, para algún ϑ > 0

}

=

{
f : X ⇑ C medibles :

∫

X
|f |p dµ < ↓,

}

= Lp.
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Es decir, los espacios de Orlicz-Lorentz generalizan los espacios clásicos de Lebesgue Lp. Para

más información sobre espacios de Orlicz-Lorentz, invitamos al lector a consultar las referencias

[9, 11,12,14,19].

Estudiaremos un subespacio particular !ω,w de Lω,w, el cual se obtiene al reemplazar en (3.1), el

reordenamiento decreciente f→ por la función maximal f→→. Esto da origen a la siguiente definición.

Definición 3.2. Sean ς una función de Young y w un peso. Se define el espacio !ω,w como

!ω,w =

{
f : X ⇑ C medibles :

∫ ↑

0
ς(ϑf→→(t))w(t) dt < ↓, para algún ϑ > 0

}
. (3.2)

Empezamos por demostrar que !ω,w ↙ Lω,w. En efecto, como f→
≃ f→→, para ϑ > 0 tenemos

ϑf→(t) ≃ ϑf→→(t). Aplicando ς (que es creciente) a cada lado de la desigualdad y multiplicando

por el peso w, obtenemos ς(ϑf→(t))w(t) ≃ ς(ϑf→→(t))w(t). Por último, integramos de 0 a ↓, y

obtenemos ∫ ↑

0
ς(ϑf→(t))w(t) dt ≃

∫ ↑

0
ς(ϑf→→(t))w(t) dt,

de donde !ω,w ↙ Lω,w.

Observación 3.3. La inclusión !ω,w ↙ Lω,w es estricta. En efecto, dado el espacio de medida

(X,A, µ), consideremos f : X ⇑ C dada por f(x) = ϱA(x), donde A ↑ A es tal que µ(A) < ↓.

Dado que ϱ→
A(s) = ϱ[0,µ(A))(s), tomando ς(x) = x, w = 1 y ϑ = 1, obtenemos

∫ ↑

0
ς (ϑf→(t))w(t) dt =

∫ ↑

0
ϱ[0,µ(A))(t) dt = µ(A) < ↓.

Por lo tanto f ↑ Lx,1. Sin embargo, observe que

ϱ→→
A (t) =

1

t

∫ t

0
ϱ→
A(s) ds =

1

t

∫ t

0
ϱ[0,µ(A))(s) ds =






1, si t < µ(A)

µ(A)
t , si t → µ(A).

Luego, para ϑ > 0, tenemos

∫ ↑

0
ς (ϑf→→(t))w(t) dt =

∫ ↑

0
ϑf→→(t) dt = ϑ

[∫ µ(A)

0
dt+

∫ ↑

µ(A)

µ(A)

t
dt

]
=

ϑ

[∫ µ(A)

0
dt+ µ(A)

∫ ↑

µ(A)

1

t
dt

]
= ↓.

Lo anterior implica que f /↑ !x,1.

El resultado principal de esta sección consiste en demostrar que !ω,w posee una estructura de

espacio vectorial normado completo. Este resultado es precisamente el contenido del siguiente

teorema.
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Teorema 3.4. !ω,w equipado con la norma de Luxemburg

⇒f⇒”ω,w = ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
f→→(t)

↼

)
w(t) dt ≃ 1

}
↑ [0,↓),

es un espacio de Banach.

En la demostración de este teorema usaremos el siguiente lema.

Lema 3.5. Sea {fn}n↗N una sucesión en !ω,w. Entonces, las siguientes afirmaciones son equiva-

lentes:

(a) ĺımn↓↑ ⇒fn⇒”ω,w = 0;

(b) Para todo ϑ > 0, ĺım supn↓↑
∫↑
0 ς(ϑf→→

n (t))w(t) dt ≃ 1;

(c) Para todo ϑ > 0, ĺımn↓↑
∫↑
0 ς(ϑf→→

n (t))w(t) dt = 0.

Demostración. La equivalencia (a) ↗↘ (b) es consecuencia directa de la definición de ⇒ ·⇒”ω,w . La

implicación (c) =↘ (b) es inmediata. Como ς es convexa y ς(0) = 0 para todo t → 0 y 0 < ↼ ≃ 1,

tenemos

ς(t) = ς

(
(1⇔ ↼)0 + ↼

t

↼

)
≃ (1⇔ ↼)ς(0) + ↼ς

(
t

↼

)
,

esto es

ς(t) ≃ ↼ς

(
t

↼

)
, t → 0, 0 < ↼ ≃ 1.

De donde se sigue fácilmente que (b) =↘ (c).

Demostración del Teorema 3.4. Demostremos, en primer lugar, que !ω,w es un espacio vectorial.

Para ello, sean f, g ↑ !ω,w. Entonces existen constantes ε1,ε2 > 0 tales que

∫ ↑

0
ς(ε1f

→→(t))w(t) dt < ↓ y
∫ ↑

0
ς(ε2g

→→(t))w(t) dt < ↓.

Dado que (f + g)→→ ≃ f→→ + g→→, tenemos

(f + g)→→(t)
1
ε1

+ 1
ε2

≃
f→→(t) + g→→(t)

1
ε1

+ 1
ε2

=
1
ε1

1
ε1

+ 1
ε2

f→→(t)
1
ε1

+
1
ε2

1
ε1

+ 1
ε2

g→→(t)
1
ε2

.
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Dado que ς es no decreciente y convexa, de la desigualdad anterior obtenemos

ς

(
(f + g)→→(t)

1
ε1

+ 1
ε2


≃ ς

(
1
ε1

1
ε1

+ 1
ε2

f→→(t)
1
ε1

+
1
ε2

1
ε1

+ 1
ε2

g→→(t)
1
ε2



≃

1
ε1

1
ε1

+ 1
ε2

ς

(
f→→(t)

1
ε1


+

1
ε2

1
ε1

+ 1
ε2

ς

(
g→→(t)

1
ε2



=
ε2

ε1 + ε2
ς(ε1f

→→(t)) +
ε1

ε1 + ε2
ς(ε2g

→→(t)).

Multiplicando por el peso w(t) e integrando,

∫ ↑

0
ς

(
(f + g)→→(t)

1
ε1

+ 1
ε2


w(t) dt ≃

ε2

ε1 + ε2

∫ ↑

0
ς(ε1f

→→(t))w(t) dt

+
ε1

ε1 + ε2

∫ ↑

0
ς(ε2g

→→(t))w(t) dt < ↓.

Por lo tanto f + g ↑ !ω,w.

Ahora veamos que para cualquier escalar ϑ, ϑf ↑ !ω,w si f ↑ !ω,w. Existe ε > 0 tal que

∫ ↑

0
ς(εf→→(t))w(t) dt < ↓.

Para verificar que ϑf ↑ !ω,w, tome c = ε
|ϑ| (el caso ϑ = 0 es trivial). Así

∫ ↑

0
ς

(
ε

|ϑ|
(ϑf)→→(t)

)
w(t) dt =

∫ ↑

0
ς

(
ε

|ϑ|
|ϑ|f→→(t)

)
w(t) dt =

∫ ↑

0
ς (εf→→(t))w(t) dt < ↓.

Luego ϑf ↑ !ω,w.

A continuación demostraremos que ⇒ · ⇒”ω,w es, efectivamente, una norma sobre !ω,w.

Si f = 0 µ-c.t.p., entonces f→(s) = 0 para todo s y así f→→(t) = 1
t

∫↑
0 0 ds = 0. Por lo tanto

⇒f⇒”ω,w = ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
f→→(t)

↼

)
w(t) dt ≃ 1

}
= ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
0

↼

)
w(t) dt ≃ 1

}

= ı́nf

{
↼ > 0 :

∫ ↑

0
ς (0)w(t) dt ≃ 1

}
= ı́nf

{
↼ > 0 :

∫ ↑

0
0 · w(t) dt ≃ 1

}

= ı́nf {↼ > 0 : 0 ≃ 1} = 0.

Recíprocamente, supongamos que ⇒f⇒”ω,w = 0, entonces
∫↑
0 ς

(
f→→(t)

ϖ

)
w(t) dt ≃ 1 para cualquier

↼ > 0 y esto sería contradictorio si f ∝= 0 µ-c.t.p. Veámoslo.

Si {x ↑ X : |f(x)| > ↼} tiene medida positiva para algún ↼ > 0, tenemos |f(x)| > ↼ implica f→(s) >

↼, integrando de 0 a t en ambos miembros de esta desigualdad, obtenemos
∫ t
0 f→(s) ds >

∫ t
0 ↼ ds = ↼t,

de donde 1
t

∫ t
0 f→(s) ds > ↼. Es decir, f→→(t) > ↼. Aplicando ς (la cual es creciente) en ambos lados
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de esta desigualdad, multiplicando por el peso w, e integrando, llegamos a
∫↑
0 ς(f→→(t))w(t) dt >

∫↑
0 ς(↼)w(t) dt, entonces

1 →

∫ ↑

0
ς(f→→(t))w(t) dt > ς(↼)

>0

∫ ↑

0
w(t) dt = ↓.

Lo cual es contradictorio. Por lo tanto ⇒f⇒”ω,w = 0 implica f = 0 µ-c.t.p.

Ahora demostraremos que ⇒εf⇒”ω,w = |ε|⇒f⇒”ω,w para cualquier ε ↑ C. Dado que (εf)→→(t) =

|ε|f→→(t), tenemos

⇒εf⇒”ω,w = ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
(εf)→→(t)

↼

)
w(t) dt ≃ 1

}

= ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
|ε|f→→(t)

↼

)
w(t) dt ≃ 1

}

= ı́nf


↼ > 0 :

∫ ↑

0
ς

(
f→→(t)

ϖ
|ε|


w(t) dt ≃ 1


.

Tomando ϑ = ϖ
|ε| , obtenemos ↼ = ϑ|ε|, luego

⇒εf⇒”ω,w = ı́nf

{
ϑ|ε| > 0 :

∫ ↑

0
ς

(
f→→(t)

ϑ

)
w(t) dt ≃ 1

}

= |ε| ı́nf

{
ϑ > 0 :

∫ ↑

0
ς

(
f→→(t)

ϑ

)
w(t) dt ≃ 1

}

= |ε|⇒f⇒”ω,w .

Verificaremos ahora la desigualdad triangular. Dado que (f + g)→→(t) ≃ f→→(t) + g→→(t), tenemos

(f + g)→→(t)

⇒f⇒”ω,w + ⇒g⇒”ω,w

≃
f→→(t) + g→→(t)

⇒f⇒”ω,w + ⇒g⇒”ω,w

=
⇒f⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

f→→(t)

⇒f⇒”ω,w

+
⇒g⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

g→→(t)

⇒g⇒”ω,w

.

Por desigualdad anterior y dado que ς es no decreciente y convexa obtenemos

ς

(
(f + g)→→(t)

⇒f⇒”ω,w + ⇒g⇒”ω,w

)
≃ ς

(
⇒f⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

f→→(t)

⇒f⇒”ω,w

+
⇒g⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

g→→(t)

⇒g⇒”ω,w

)

≃
⇒f⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

ς

(
f→→(t)

⇒f⇒”ω,w

)
+

⇒g⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

ς

(
g→→(t)

⇒g⇒”ω,w

)
.
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Multiplicando por el peso w(t) e integrando,

∫ ↑

0
ς

(
(f + g)→→(t)

⇒f⇒”ω,w + ⇒g⇒”ω,w

)
w(t) dt

≃
⇒f⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

∫ ↑

0
ς

(
f→→(t)

⇒f⇒”ω,w

)
w(t) dt

  
↘1

+
⇒g⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

∫ ↑

0
ς

(
g→→(t)

⇒g⇒”ω,w

)
w(t) dt

  
↘1

≃
⇒f⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

+
⇒g⇒”ω,w

⇒f⇒”ω,w + ⇒g⇒”ω,w

= 1.

Concluimos que ↼ = ⇒f⇒”ω,w + ⇒g⇒”ω,w es una constante para la cual

∫ ↑

0
ς

(
(f + g)→→(t)

⇒f⇒”ω,w + ⇒g⇒”ω,w

)
w(t) dt ≃ 1.

Por lo tanto

⇒f + g⇒”ω,w = ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
(f + g)→→(t)

↼

)
w(t) dt ≃ 1

}
≃ ⇒f⇒”ω,w + ⇒g⇒”ω,w .

Y se verifica la desigualdad triangular.

Por último, demostraremos la completitud del espacio. Sea {fn}n↗N una sucesión de Cauchy en

!ω,w. Escojamos ↼̃ > 0 tal que
↼̃

ς
(

ϖ
k0

) <
1

n+m
para n,m ↑ N y ↼ > 0, k0 > 0. Para este ↼̃ existe

n0 ↑ N tal que

⇒fn ⇔ fm⇒”ω,w < ↼̃.

Si n,m → n0. Por la definición de la norma de Luxemburg podemos escoger k0 > 0 de manera que

k0 < ↼̃ y ∫ ↑

0
ς

(
(fn ⇔ fm)→→(t)

k0

)
w(t) dt ≃ 1.

Sea E = {x ↑ X : |fn(x)⇔ fm(x)| > ↼}, entonces

↼ϱE(x) ≃ |fn(x)⇔ fm(x)|.

Y así ↼ϱ→
E(s) ≃ (fn ⇔ fm)→(s) implica

↼ ·
1

t

∫ t

0
ϱ→
E(s) ds ≃

1

t

∫ t

0
(fn ⇔ fm)→(s) ds,

es decir

↼ϱ→→
E (t) ≃ (fn ⇔ fm)→→(t),

de donde
↼ϱ→→

E (t)

k0
≃

(fn ⇔ fm)→→(t)

k0
.
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Aplicando ς que es no decreciente y multiplicando por el peso w que es no negativo, obtenemos

ς

(
↼

k0
ϱ→→
E (t)

)
w(t) ≃ ς

(
(fn ⇔ fm)→→(t)

k0

)
w(t)

=↘

∫ ↑

0
ς

(
↼

k0
ϱ→→
E (t)

)
w(t) dt ≃

∫ ↑

0
ς

(
(fn ⇔ fm)→→(t)

k0

)
w(t) dt. (3.3)

Ahora, dado que

ϱ→→
E (t) =

1

t

∫ t

0
ϱ→
E(s) ds =

1

t

∫ t

0
ϱ(0,µ(E))(s) ds =






1, si t < µ(E)

µ(E)
t , si t → µ(E).

Tenemos que

ϱ→→
E (t) = ϱ(0,µ(E))(t) +

µ(E)

t
ϱ[µ(E),↑)(t).

Así que

∫ ↑

0
ς

(
↼

k0
ϱ→→
E (t)

)
w(t) dt =

∫ ↑

0
ς

(
↼

k0

(
ϱ(0,µ(E))(t) +

µ(E)

t
ϱ[µ(E),↑)(t)

))
w(t) dt

=

∫ µ(E)

0
ς

(
↼

k0

)
w(t) dt+

∫ ↑

µ(E)
ς

(
↼

k0
· µ(E) ·

1

t

)
w(t) dt.

Reemplazando esta última igualdad en (3.3), obtenemos

∫ µ(E)

0
ς

(
↼

k0

)
w(t) dt+

∫ ↑

µ(E)
ς

(
↼

k0
· µ(E) ·

1

t

)
w(t) dt ≃

∫ ↑

0
ς

(
(fn ⇔ fm)→→(t)

k0

)
w(t) dt

=↘

∫ µ(E)

0
ς

(
↼

k0

)
w(t) dt ≃

∫ ↑

0
ς

(
(fn ⇔ fm)→→(t)

k0

)
w(t) dt.

Entonces

∫ µ(E)

0
ς

(
↼

k0

)
w(t) dt ≃

∫ ↑

0
ς

(
(fn ⇔ fm)→→(t)

k0

)
w(t) dt

=↘ ↼̃

∫ Dfn↑fm(ε)

0
w(t) dt ≃

↼̃

ς
(

ϖ
k0

)
∫ ↑

0
ς

(
(fn ⇔ fm)→→(t)

k0

)
w(t) dt

=↘ ↼̃

∫ Dfn↑fm(ε)

0
w(t) dt ≃

1

n+m

=↘ ↼̃ ĺım
n,m↓↑

∫ Dfn↑fm(ε)

0
w(t) = 0.

Como w > 0, debe tenerse que ĺımn,m↓↑ Dfn≃fm(↼) = 0, es decir {fn}n↗N es una sucesión de

Cauchy en medida, esto implica que existe una subsucesión {fnk}k↗N que converge en casi todo

punto a una función medible f , esto es, fnk ⇑ f µ-c.t.p.
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Sea ϑ > 0. Por el Lema 3.5 existe un entero suficientemente grande n(ϑ) tal que

∫ ↑

0
ς (ϑ(fn ⇔ fm)→→(t))w(t) dt ≃ 1, ↖ m,n → n(ϑ).

Por el lema de Fatou, esto conduce a

∫ ↑

0
ς (ϑ(fn ⇔ f)→→(t))w(t) dt ≃ ĺım inf

∫ ↑

0
ς (ϑ(fn ⇔ fm)→→(t))w(t) dt ≃ 1

↖ m → n(ϑ). Así fn ⇔ f pertenece a !ω,w. Como fn ↑ !ω,w, entonces f ↑ !ω,w.

Además, como ĺım supm↓↑
∫↑
0 ς (ϑ(fm ⇔ f)→→(t))w(t) dt ≃ 1 para todo ϑ > 0, tenemos

ĺımm↓↑ ⇒fm ⇔ f⇒”ω,w = 0. Esto demuestra que !ω,w es completo.

4. Operador multiplicación en el espacio !ς,w

La última sección de este artículo trata sobre el estudio de un tipo especial de operador, llamado

operador multiplicación, el cual transforma cualquier función f ↑ !ω,w, en la función u · f ↑ !ω,w,

donde (u · f)(x) := u(x) · f(x) representa el producto usual de funciones.

Para una revisión más detallada del operador de multiplicación en diferentes tipos de espacios, se

pueden consultar, entre otras, las referencias [1, 3, 4, 8, 13,17,18].

Definición 4.1. Sea F (X) un espacio de funciones definidas sobre un conjunto no vacío X. Sea

u : X ⇑ C una función tal que u · f ↑ F (X) para cualquier f ↑ F (X).

La transformación f ′⇑ u · f definida sobre F se denota por Mu. En el caso en que F (X) sea un

espacio topológico y Mu sea continua, lo llamaremos el operador multiplicación inducido por u.

Los operadores multiplicación generalizan la noción de operador dado por una matriz diagonal.

Precisamente, uno de los resultados de la teoría de operadores es un teorema espectral, que afirma

que todo operador auto-adjunto definido sobre un espacio de Hilbert es unitariamente equivalente

a un operador multiplicación sobre un espacio L2.

Para un estudio sistemático de los operadores multiplicación definidos en diferentes espacios véase

[1, 3, 4, 13,17].

4.1. Inyectividad y acotación de Mu

En general, los operadores multiplicación sobre espacios de medida no son inyectivos. Por ejemplo,

sea (X,A, µ) un espacio de medida y

A = X ⊋ supp(u) = {x ↑ X : u(x) = 0}.
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Si µ(A) ∝= 0 y f = ϱA, entonces para cualquier x ↑ X tenemos f(x)u(x) = 0 lo cual implica que

Mu(f) = 0, así ker(Mu) ∝= {0} y por lo tanto Mu no es inyectivo.

Por contrapositiva, tenemos que si Mu es inyectivo, entonces µ(X ⊋ supp(u)) = 0. Por otro lado,

si µ(X ⊋ supp(u)) = 0 y µ es una medida completa, entonces Mu(f) = 0 implica f(x)u(x) = 0

para todo x ↑ X, luego {x ↑ X : f(x) ∝= 0} ↙ X ⊋ supp(u) y así f = 0 µ-c.t.p. en X. Luego, si

µ(X ⊋ supp(u)) = 0 y µ es una medida completa, entonces Mu es inyectivo.

A continuación definimos un conjunto sobre el cual Mu es inyectivo.

Definición 4.2. Se define el conjunto !ω,w(suppu) mediante

!ω,w(suppu) = {fϱsuppu : f ↑ !ω,w}.

Es decir, los elementos de !ω,w(suppu) son funciones de !ω,w restringidas al soporte de u.

Proposición 4.3. Mu es inyectivo en Y = !ω,w(suppu).

Demostración. Sea Y = !ω,w(suppu) = {fϱsuppu : f ↑ !ω,w}. Luego, si Mu(f̃) = 0 con f̃ =

fϱsuppu ↑ Y , entonces f(x)ϱsuppu(x)u(x) = 0 para todo x ↑ X y así f(x)u(x) = 0 para todo

x ↑ supp(u), de donde f(x) = 0 para todo x ↑ supp(u), con lo cual f(x)ϱsuppu(x)(x) = 0 para

todo x ↑ X. Así, f̃ = 0, lo cual completa la demostración.

A continuación, se caracteriza la acotación del operador Mu en términos de la acotación de la

función u.

Teorema 4.4. La transformación lineal Mu : f ⇑ u · f definida sobre el subespacio !ω,w es

acotada si y sólo si u es esencialmente acotada. Además,

⇒Mu⇒ = ⇒u⇒↑.

Demostración. Sea u ↑ L↑(µ), note que |(uf)(x)| ≃ ⇒u⇒↑|f(x)|, así

{x : |(uf)(x)| > ε} ↙ {x : ⇒u⇒↑|f(x)| > ε} =

{
x : |f(x)| >

ε

⇒u⇒↑

}
,

entonces

Duf (ε) ≃ Df

(
ε

⇒u⇒↑

)

y así {
ε > 0 : Df

(
ε

⇒u⇒↑

)
≃ s

}
↙ {ε > 0 : Duf (ε) ≃ s}.
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De esto obtenemos

ı́nf{ε > 0 : Duf (ε) ≃ s} ≃ ı́nf

{
ε > 0 : Df

(
ε

⇒u⇒↑

)
≃ s

}

≃ ı́nf{ϑ⇒u⇒↑ > 0 : Df (ϑ) ≃ s}

= ⇒u⇒↑ ı́nf{ϑ > 0 : Df (ϑ) ≃ s}.

Luego

(uf)→(s) ≃ ⇒u⇒↑f→(s).

Integrando desde 0 hasta t y multiplicando por 1
t , obtenemos

1

t

∫ t

0
(uf)→(s) ds ≃

1

t

∫ t

0
⇒u⇒↑f→(s) ds.

Es decir

(uf)→→(t) ≃ ⇒u⇒↑f→→(t).

Dividiendo por ⇒u⇒↑⇒f⇒”ω,w se tiene que

(uf)→→(t)

⇒u⇒↑⇒f⇒”ω,w

≃
⇒u⇒↑f→→(t)

⇒u⇒↑⇒f⇒”ω,w

=
f→→(t)

⇒f⇒”ω,w

.

Dado que ς es no decreciente y el peso w es no negativo, de la última desigualdad obtenemos

∫ ↑

0
ς

(
(uf)→→(t)

⇒u⇒↑⇒f⇒”ω,w

)
w(t) dt ≃

∫ ↑

0
ς

(
f→→(t)

⇒f⇒”ω,w

)
w(t) dt ≃ 1.

De esta manera uf ↑ !ω,w, además,

⇒Muf⇒”ω,w ≃ ⇒u⇒↑⇒f⇒”ω,w . (4.1)

Recíprocamente, supongamos que Mu es un operador acotado. Si u no es una función esencialmente

acotada, entonces para todo n ↑ N el conjunto En = {x ↑ X : |u(x)| > n} tiene medida positiva.

Ahora, sabemos que

ϱ→
En

(s) = ϱ0,µ(En)(s)

y note que

{x : nϱEn(x) > ε} ↙ {x : |uϱEn(x)| > ε},

entonces

DnϱEn
(ε) ≃ DuϱEn

(ε),
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de aquí obtenemos

{ε > 0 : DuϱEn
(ε) ≃ s} ↙ {ε > 0 : DnϱEn

(ε) ≃ s}.

Así

ı́nf{ε > 0 : DnϱEn
(ε) ≃ s} ≃ ı́nf{ε > 0 : DuϱEn

(ε) ≃ s}.

Es decir,

(uϱEn)
→(s) → n(ϱEn)

→(s).

Integrando desde 0 hasta t y multiplicando por 1
t

1

t

∫ t

0
(uϱEn)

→(s) ds →
1

t

∫ t

0
n(ϱEn)

→(s) ds.

Esto significa que

(uϱEn)
→→(t) → n(ϱEn)

→→(t).

De aquí obtenemos

∫ ↑

0
ς

(
(uϱEn)

→→(t)

k

)
w(t) dt →

∫ ↑

0
ς

(
(nϱEn)

→→(t)

k

)
w(t) dt

y así

{
k > 0 :

∫ ↑

0
ς

(
(uϱEn)

→→(t)

k

)
w(t) dt ≃ 1

}
↙

{
k > 0 :

∫ ↑

0
ς

(
(nϱEn)

→→(t)

k

)
w(t) dt ≃ 1

}
,

luego

ı́nf

{
k > 0 :

∫ ↑

0
ς

(
(nϱEn)

→→(t)

k

)
w(t) dt ≃ 1

}
≃

ı́nf

{
k > 0 :

∫ ↑

0
ς

(
(uϱEn)

→→(t)

k

)
w(t) dt ≃ 1

}
,

esto significa que

⇒MuϱEn⇒”ω,w → n⇒ϱEn⇒”ω,w ,

lo cual contradice la acotación de Mu. Luego u debe ser esencialmente acotada.

Ahora, evidentemente, de (4.1) obtenemos

⇒Mu⇒ ≃ ⇒u⇒↑. (4.2)

Dado ↼ > 0, sea E = {x ↑ X : |u(x)| → ⇒u⇒↑ ⇔ ↼} (observe que µ(E) > 0), entonces

{x ↑ X : (⇒u⇒↑ ⇔ ↼)ϱE(x) > ε} ↙ {x ↑ X : |uϱE(x)| > ε},
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es decir

D(⇐u⇐↓≃ϖ)ϱE
(ε) ≃ DuϱE (ε)

y así

{ε > 0 : DuϱE (ε) ≃ s} ↙ {ε > 0 : D(⇐u⇐↓≃ϖ)ϱE
≃ s},

de esto obtenemos

ı́nf{ε > 0 : D(⇐u⇐↓≃ϖ)ϱE
≃ s} ≃ ı́nf{ε > 0 : DuϱE (ε) ≃ s}.

Luego

(uϱE)
→(s) → (⇒u⇒↑ ⇔ ↼)(ϱE)

→(s),

integrando desde 0 hasta t y multiplicando por 1
t obtenemos

1

t

∫ t

0
(uϱE)

→(s) ds →
1

t

∫ t

0
(⇒u⇒↑ ⇔ ↼)(ϱE)

→(s) ds,

es decir

(uϱE)
→→(t) → (⇒u⇒↑ ⇔ ↼)(ϱE)

→→(t),

entonces

∫ ↑

0
ς

(
(⇒u⇒↑ ⇔ ↼)(ϱE)→→(t)

⇒MuϱE⇒”ω,w

)
w(t) dt ≃

∫ ↑

0
ς

(
(uϱE)→→(t)

⇒MuϱE⇒”ω,w

)
w(t) dt ≃ 1,

lo cual implica que

⇒(⇒u⇒↑ ⇔ ↼)ϱE⇒”ω,w ≃ ⇒MuϱE⇒”ω,w ,

de aquí

(⇒u⇒↑ ⇔ ↼)⇒ϱE⇒”ω,w ≃ ⇒MuϱE⇒”ω,w ,

así

⇒u⇒↑ ⇔ ↼ ≃
⇒MuϱE⇒”ω,w

⇒ϱE⇒”ω,w

,

lo cual implica que

⇒Mu⇒ → ⇒u⇒↑ ⇔ ↼, para todo ↼ > 0.

De la arbitrariedad de ↼, se deduce

⇒Mu⇒ → ⇒u⇒↑.

En conclusión

⇒Mu⇒ = ⇒u⇒↑.
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4.2. Rango cerrado de Mu

En esta sección, caracterizaremos los casos en los cuales Mu tiene rango cerrado. Iniciamos con un

resultado del análisis funcional.

Teorema 4.5. Sea T : X ⇑ Y un operador acotado, en donde X y Y son espacios de Banach.

Entonces T es acotado inferiormente si y sólo si T es inyectivo y tiene rango cerrado.

Una demostración del Teorema 4.5 se puede encontrar en [2].

Corolario 4.6. Mu : !ω,w(suppu) ⇑ !ω,w(suppu) tiene rango cerrado si y sólo si Mu es acotado

inferiormente sobre !ω,w(suppu).

Este resultado es claro dado que Mu es inyectivo en !ω,w(suppu). Además, si u ∝= 0 µ-c.t.p. en X,

siendo µ una medida completa, entonces se tiene el siguiente resultado.

Corolario 4.7. Si µ ∝= 0 µ-c.t.p. en X y µ es una medida completa, entonces

Mu : !ω,w(X,A, u) ⇑ !ω,w(X,A, u)

tiene rango cerrado si y sólo si Mu es acotado inferiormente sobre !ω,w(X,A, u).

Teorema 4.8. Mu : !ω,w(suppu) ⇑ !ω,w(suppu) tiene rango cerrado si y sólo si existe ↽ > 0 tal

que |u(x)| > ↽ µ-c.t.p. sobre suppµ.

Demostración. Si existe ↽ > 0 tal que |u(x)| → ↽ µ-c.t.p. sobre supp(u), entonces para f ↑ !ω,w y

t > 0 tenemos

{x : |↽fϱsupp(u)(x)| > ε} ↙ {x : |ufϱsupp(u)(x)| > ε}

y así

Dςfϱsupp(u)
(ε) ≃ Dufϱsupp(u)

(ε),

entonces

{ε > 0 : Dufϱsupp(u)
(ε) ≃ s} ↙ {ε > 0 : Dςfϱsupp(u)

(ε) ≃ s},

de aquí obtenemos

ı́nf{ε > 0 : Dςfϱsupp(u)
(ε) ≃ s} ≃ ı́nf{ε > 0 : Dufϱsupp(u)

(ε) ≃ s},

luego

(ufϱsupp(u))
→(s) → ↽(fϱsupp(u))

→(s),
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integrando desde 0 hasta t y multiplicando por 1
t ,

1

t

∫ t

0
(ufϱsupp(u))

→(s) ds →
1

t

∫ t

0
↽(fϱsupp(u))

→(s) ds,

es decir

(ufϱsupp(u))
→→(t) → ↽(fϱsupp(u))

→→(t),

entonces se tiene que

{
k > 0 :

∫ ↑

0
ς

(
(ufϱsupp(u))

→→(t)

k

)
w(t) dt ≃ 1

}
↙

{
k > 0 :

∫ ↑

0
ς

(
(↽fϱsupp(u))

→→(t)

k

)
w(t) dt ≃ 1

}
.

Así

ı́nf

{
k > 0 :

∫ ↑

0
ς

(
(↽fϱsupp(u))

→→(t)

k

)
w(t) dt ≃ 1

}
≃

ı́nf

{
k > 0 :

∫ ↑

0
ς

(
(ufϱsupp(u))

→→(t)

k

)
w(t) dt ≃ 1

}
,

lo cual significa que

⇒↽fϱsupp(u)⇒”ω,w ≃ ⇒Mufϱsupp(u)⇒”ω,w ,

luego

⇒Mufϱsupp(u)⇒”ω,w → ↽⇒fϱsupp(u)⇒”ω,w .

Por lo tanto Mu tiene rango cerrado.

Recíprocamente, supongamos que Mu tiene rango cerrado sobre !ω,w(supp(u)). Dado que Mu :

!ω,w(supp(u)) ⇑ !ω,w(supp(u)) es inyectivo, entonces Mu es acotado inferiormente, luego existe

↼ > 0 tal que

⇒Muf⇒”ω,w → ↼⇒f⇒”ω,w

para toda f ↑ !ω,w(supp(u)). Sea E = {x ↑ supp(u) : |u(x)| < ↼/2}.

Si µ(E) > 0, podemos hallar un conjunto medible F ↙ E tal que ϱF ↑ !ω,w(supp(u)). Entonces

{x : |uϱF | > ε} ↙


x :


↼

2
ϱF

 > ε


y así

DuϱF (ε) ≃ D ε
2ϱF (ε),
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de esto obtenemos

{ε > 0 : D ε
2ϱF (ε) ≃ s} ↙ {ε > 0 : DuϱF (ε) ≃ s},

entonces

ı́nf{ε > 0 : DuϱF (ε) ≃ s} ≃ ı́nf{ε > 0 : D ε
2ϱF (ε) ≃ s},

esto es

(uϱF )
→(s) ≃

(↼
2
ϱF

)→
(s),

integrando desde 0 hasta t y multiplicando por 1
t , obtenemos

1

t

∫ t

0
(uϱF )

→(s) ds ≃
1

t

∫ t

0

(↼
2
ϱF

)→
(s) ds,

es decir

(uϱF )
→→(t) ≃

(↼
2
ϱF

)→→
(t).

Por lo tanto

⇒MuϱF ⇒”ω,w = ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
(uϱF )→→(t)

↼

)
w(t) dt ≃ 1

}

≃ ı́nf


↼ > 0 :

∫ ↑

0
ς

(
ϖ
2ϱF

→→
(t)

↼


w(t) dt ≃ 1


=


↼

2
ϱF


”ω,w

=
↼

2
· ⇒ϱF ⇒”ω,w

lo cual es contradictorio. Así que µ(E) = 0. Esto completa la demostración.

Corolario 4.9. Si µ ∝= 0 µ-c.t.p. en X y µ es una medida completa, entonces Mu tiene rango

cerrado sobre !ω,w(X,A, µ) si y sólo si existe ↽ > 0 tal que |u(x)| → ↽ µ-c.t.p. en X.

Demostración. El resultado se dá como consecuencia de que

!ω,w(X,A, µ) = !ω,w(suppu).

4.3. Invertibilidad de Mu

En esta sección, caracterizaremos la invertibilidad de Mu en términos de la invertibilidad de u (en

el sentido multiplicativo). Iniciamos con el siguiente resultado.

Teorema 4.10. El conjunto de todos los operadores multiplicación sobre !ω,w es una subálgebra

maximal abeliana del conjunto B(!ω,w), el álgebra de todos los operadores lineales acotados sobre

!ω,w.
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Demostración. Sea

H = {Mu : u ↑ L↑}

y considere el operador multiplicación

Mu ·Mv = Muv,

donde Mu,Mv ↑ H. Verifiquemos que ésta es un álgebra de Banach. Sean u, v ↑ L↑, entonces

|u| ≃ ⇒u⇒↑ y |v| ≃ ⇒v⇒↑, luego

⇒uv⇒↑ ≃ ⇒u⇒↑⇒v⇒↑,

esto implica que el producto es una operación cerrada, además como el producto usual de funciones

es asociativo, conmutativo y distributivo respecto a la suma y al producto por escalar, concluimos

que H es una subálgebra de B(!ω,w). Ahora, vamos a verificar que es una subálgebra maximal, es

decir, dado N ↑ B(!ω,w), si N conmuta con H, debemos demostrar que N ↑ H. Consideremos la

función unitaria e : X ⇑ C definida por e(x) = 1 para todo x ↑ X. Sea N ↑ B(!ω,w) un operador

que conmuta con H y sea ϱE la función característica de un conjunto medible E. Entonces

N(ϱE) = N [MϱE (e)] = MϱE [N(e)] = ϱE ·N(e) = N(e) · ϱE = Mw · ϱE ,

donde w = N(e). De manera similar

N(s) = Mw(s) (4.3)

para cualquier función simple.

Ahora, verificaremos que w ↑ L↑. Por contradicción, supongamos que w /↑ L↑, entonces el

conjunto

En = {x ↑ X : |w(x)| > n}

tiene medida positiva para cada n ↑ N. Note que

Mw(ϱEn)(x) = wϱEn(x) → nϱEn(x)

para todo x ↑ X. Por la monotonicidad de la función distribución tenemos que

DwϱEn
(ε) → DϱEn

(
ε

n

)
.

De aquí

{ε > 0 : DwϱEn
(ε) ≃ s} ↙

{
ε > 0 : DϱEn

(
ε

n

)
≃ s

}
.

Entonces

ı́nf

{
ε > 0 : DϱEn

(
ε

n

)
≃ s

}
≃ ı́nf{ε > 0 : DwϱEn

(ε) ≃ s}.
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Tomando ϑ = ε
n , obtenemos

⇒wϱEn⇒”ω,w → n⇒ϱEn⇒”ω,w ,

como ϱE es una función simple, por (4.3) tenemos

Mw(ϱEn) = N(ϱEn).

Así que

⇒N(ϱEn)⇒”ω,w → n⇒ϱEn⇒”ω,w .

Entonces N es un operador no acotado. Esto contradice el hecho que N es acotado.

Por lo tanto w ↑ L↑ y por el Teorema 4.4 Mw es acotado.

Ahora, dada f ↑ !ω,w, existe una sucesión no decreciente {sn}n↗N de funciones simples medibles

tal que ĺımn↓↑ sn = f y por (4.3) tenemos

N(f) = N(ĺım sn) = ĺımN(sn) = ĺımMw(sn) = Mw(ĺım sn) = Mw(f).

Luego N(f) = Mw(f) para toda f ↑ !ω,w y así concluimos que N ↑ H.

Corolario 4.11. El operador multiplicación es invertible sobre B(!ω,w) si y sólo si u es invertible

sobre L↑.

Demostración. Supongamos que Mu es invertible. Entonces existe N ↑ B(!ω,w) tal que

Mu ·N = N ·Mu = I (4.4)

donde I representa el operador identidad. Verifiquemos que N conmuta con H.

Sea Mw ↑ H, entonces

Mw ·Mu = Mu ·Mw. (4.5)

Aplicando N a (4.4) y por (4.5) obtenemos

N ·Mw ·Mu ·N = N ·Mu ·Mw ·N,

N ·Mw · I = I ·Mw ·N,

N ·Mw = Mw ·N,

y así concluimos que N conmuta con H. Por el Teorema 4.10 N ↑ H, entonces existe g ↑ L↑ tal

que N = Mg, así

Mu ·Mg = Mg ·Mu = I,
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esto implica que ug = gu = 1 µ-c.t.p., lo cual significa que u es invertible sobre L↑.

Por otro lado, supongamos que u es invertible sobre L↑, es decir, 1
u ↑ L↑, entonces

Mu ·M 1
u
= M 1

u
·Mu = M( 1

u )u
= M1 = I,

lo cual significa que Mu es invertible sobre B(!ω,w).

4.4. Compacidad de Mu

Para finalizar este artículo, caracterizaremos la compacidad del operador Mu. La siguiente defini-

ción y el lema subsecuente, tendrán un papel importante en los resultados posteriores.

Definición 4.12. Sea T : X ⇑ X un operador. Un subespacio V de X se dice invariante bajo T

(o simplemente T -invariante) si

T (V ) ↙ V.

Lema 4.13. Sea T : X ⇑ X un operador. Si T es compacto y M es un subespacio cerrado

T -invariante de X, entonces T |M es compacto.

Demostración. Sea {xn}n↗N una subsucesión de M ↙ X. Entonces {xn}n↗N ↙ X, así que existe

una subsucesión {xnk}k↗N de {xn}n↗N tal que T (xnk) converge in X, pero T (xnk) ↙ T (M) pues

{xnk}k↗N ↙ M . Entonces T (xnk) converge en T (M) ↙ M = M . Así T (xnk) converge en M , luego

T |M es compacto.

Teorema 4.14. Sea Mu un operador compacto. Para ↼ > 0 defina

Aϖ(u) = {x ↑ X : |u(x)| → ↼},

y

!ω,w(Aϖ(u)) = {fϱAε(u) : f ↑ !ω,w}.

Entonces !ω,w(Aϖ(u)) es un subespacio cerrado invariante de !ω,w bajo Mu. Además

Mu


”ω,w(Aε(u))

es un operador compacto.

Demostración. Sean h, s ↑ !ω,w(Aϖ(u)) y ϑ,⇀ ↑ R. Entonces h = fϱAε(u) y s = gϱAε(u) donde

f, g ↑ !ω,w así

ϑh+ ⇀s = ϑ(fϱAε(u)) + ⇀(gϱAε(u)) = (ϑf + ⇀g)ϱAε(u) ↑ !ω,w(Aϖ(u)),
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lo cual significa que !ω,w(Aϖ(u)) es un subespacio !ω,w.

Ahora, para todo h ↑ !ω,w(Aϖ(u)) tenemos

Muh = uh = u(fϱAε(u)) = (uf)ϱAε(u),

donde uf ↑ !ω,w. Por consiguiente Mu ↑ !ω,w(Aϖ(u)), lo cual significa que !ω,w(Aϖ(u)) es un

subespacio invariante de !ω,w bajo Mu.

Ahora, verificaremos que !ω,w(Aϖ(u)) es un conjunto cerrado. En efecto, sea g en la clausura de

!ω,w(Aϖ(u)), entonces existe una sucesión {gn}n↗N en !ω,w(Aϖ(u)) tal que

gn ⇑ g en !ω,w.

Debemos demostrar que g pertenece a !ω,w(Aϖ(u)). Note que

g = gϱAε(u) + gϱAc
ε(u)

.

Demostraremos que gϱAc
ε(u)

= 0. Para esto, dado ↼1 > 0 existe n0 ↑ N tal que

⇒gϱAc
ε(u)

⇒”ω,w = ⇒(g ⇔ gn0 + gn0)ϱAc
ε(u)

⇒”ω,w = ⇒(g ⇔ gn0)ϱAc
ε(u)

⇒”ω,w ≃ ⇒g ⇔ gn0⇒”ω,w < ↼1.

Así, gϱAc
ε(u)

= 0 lo cual significa que g = gϱAε(u), es decir, g ↑ !ω,w(Aϖ(u)). Finalmente por el

Lema 4.13, tenemos que

Mu


”ω,w(Aε(u)) ,

es un operador compacto. Con esto termina la demostración.

Teorema 4.15. Sea Mu ↑ B(!ω,w). Entonces Mu es compacto si y sólo si !ω,w(Aϖ(u)) es de

dimensión finita para todo ↼ > 0.

Demostración. Si |u(x)| → ↼, observe que

|ufϱAε(x)| → ↼fϱAε(u)(x)

y así

{x : ↼fϱAε(u)(x) > ε} ↙ {x :
ufϱAε(u)(x)

 > ε},

luego

DϖfϱAε(u)
(ε) ≃ DufϱAε(u)

(ε),

entonces

{ε > 0 : DufϱAε(u)
(ε) ≃ s} ↙ {ε > 0 : DϖfϱAε(u)

(ε) ≃ s}
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de aquí obtenemos

ı́nf{ε > 0 : DϖfϱAε(u)
(ε) ≃ s} ≃ ı́nf{ε > 0 : DufϱAε(u)

(ε) ≃ s},

es decir

(↼fϱAε(u))
→(s) ≃ (ufϱAε(u))

→(s),

integrando de 0 a t y multiplicando por 1
t obtenemos

1

t

∫ t

0
(↼fϱAε(u))

→(s) dt ≃
1

t

∫ t

0
(ufϱAε(u))

→(s) ds,

o sea

(↼fϱAε(u))
→→(t) ≃ (ufϱAε(u))

→→(t),

multiplicando la anterior desigualdad por 1
k > 0,

(↼fϱAε(u))
→→(t)

k
≃

(ufϱAε(u))
→→(t)

k
.

Dado que ς es no decreciente y el peso w es una función no negativa, esto conduce a

ς

(↼fϱAε(u))

→→(t)

w(t) ≃ ς


(ufϱAε(u))

→→(t)

w(t).

Integrando la anterior desigualdad de 0 a ↓,

∫ ↑

0
ς

(↼fϱAε(u))

→→(t)

w(t) dt ≃

∫ ↑

0
ς

(ufϱAε(u))

→→(t)

w(t) dt.

Entonces

{
k > 0 :

∫ ↑

0
ς

(
(ufϱAε(u))

→→(t)

k

)
w(t) dt ≃ 1

}
↙

{
k > 0 :

∫ ↑

0
ς

(
↼(fϱAε(u))

→→(t)

k

)
w(t) dt ≃ 1

}
.

Por lo tanto

ı́nf

{
k > 0 :

∫ ↑

0
ς

(
↼(fϱAε(u))

→→(t)

k

)
w(t) dt ≃ 1

}
≃

ı́nf

{
k > 0 :

∫ ↑

0
ς

(
(ufϱAε(u))

→→(t)

k

)
w(t) dt ≃ 1

}
.

Y así

⇒MufϱAε(u)⇒”ω,w → ↼⇒fϱAε(u)⇒”ω,w . (4.6)
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Ahora, si Mu es un operador compacto, entonces !ω,w(Aϖ(u)) es un subespacio cerrado invariante

de !ω,w bajo Mu y por el Lema 4.13

Mu


”ω,w(Aε(u))

es un operador compacto. Entonces por (4.6) Mu


”ω,w(Aε(u)) tiene rango cerrado en !ω,w(Aϖ(u))

y además es invertible, siendo compacto !ω,w(Aϖ(u)) tiene dimensión finita.

Recíprocamente, supongamos que !ω,w(Aϖ(u)) es de dimensión finita para cada ↼ > 0. En particu-

lar, para cada n, !ω,w

(
A 1

u
(u)

)
es de dimensión finita, entonces para cada n, definamos un : X ⇑ C

como

un(x) =






u(x) if |u(x)| → 1
n

0 if |u(x)| < 1
n .

Entonces tenemos que

((un ⇔ u) · f)→(s) ≃ ⇒un ⇔ u⇒↑f→(s), ↖ s > 0.

Integrando desde 0 hasta t y multiplicando por 1
t , obtenemos

1

t

∫ t

0
((un ⇔ u) · f)→(s) ds ≃

1

t

∫ t

0
⇒un ⇔ u⇒↑f→(s) ds, ↖ s > 0,

es decir

((un ⇔ u) · f)→→(t) ≃ ⇒un ⇔ u⇒↑f→→(t).

Multiplicando por 1
ϖ con ↼ > 0 tenemos

((un ⇔ u) · f)→→(t)

↼
≃

⇒un ⇔ u⇒↑f→→(t)

↼
.

Como ς es no decreciente y el peso w es no negativo, lo anterior conduce a

∫ ↑

0
ς

(
((un ⇔ u) · f)→→(t)

↼

)
w(t) dt ≃

∫ ↑

0
ς

(
⇒un ⇔ u⇒↑f→→(t)

↼

)
w(t) dt.

Entonces

{
↼ > 0 :

∫ ↑

0
ς

(
⇒un ⇔ u⇒↑f→→(t)

↼

)
w(t) dt ≃ 1

}
↙

{
↼ > 0 :

∫ ↑

0
ς

(
((un ⇔ u) · f)→→(t)

↼

)
w(t) dt ≃ 1

}
.
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Por lo tanto

ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
((un ⇔ u) · f)→→(t)

↼

)
w(t) dt ≃ 1

}
≃

ı́nf

{
↼ > 0 :

∫ ↑

0
ς

(
⇒un ⇔ u⇒↑f→→(t)

↼

)
w(t) dt ≃ 1

}
.

Consecuentemente

⇒Munf ⇔Muf⇒”ω,w ≃ ⇒un ⇔ u⇒↑⇒f⇒”ω,w ≃
1

n
⇒f⇒”ω,w ,

lo cual implica que Mun converge a Mu uniformemente. Como !ω,w(Aϖ(u)) es de dimensión finita,

entonces Mun es un operador de rango finito. Luego, Mun es un operador compacto y así Mu es

un operador compacto.
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RESUMEN

Se presenta un modelo matemático para describir el funcio-

namiento de un biorreactor diseñado para reducir la concen-

tración de sustrato en una solución acuosa mediante activi-

dad microbiana. El sistema opera en ciclos: una vez que la

concentración de sustrato alcanza un nivel mínimo preesta-

blecido, el biorreactor se vacía y se recarga con una nueva

solución que restaura la concentración inicial. El estudio se

centra en evaluar la viabilidad operativa del sistema, anali-

zando la duración de los intervalos entre ciclos consecutivos

de vaciado y llenado. Para ello, se establecen cotas mate-

máticas —definidas por los parámetros del modelo— que

garantizan la finitud de estos tiempos de espera. Además,

se proponen condiciones mínimas para la tasa de consumo

microbiano del sustrato, incorporando perturbaciones esto-

cásticas en dicho proceso metabólico.

Palabras claves: Biomatemática climática, ecuación diferencial estocática, biorreactor

2020 AMS Mathematics Subject Classification: 92B05, 60H10.

Publicado: 20 de agosto de 2025

Aceptado: 20 de mayo de 2025

Recibido: 30 de noviembre de 2024

©2025 R. Castro Santis et al. Este artículo de acceso abierto se distribuye bajo la licencia

Creative Commons Attribution-NonCommercial 4.0 International.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2702.267
https://orcid.org/0000-0002-7539-9920
https://orcid.org/0000-0001-6515-6880
https://orcid.org/0000-0002-3358-2719
mailto:rcastro@utem.cl
mailto:fcordova@ucm.cl
mailto:a.venegasramos@unab.cl


CUBO, A Mathematical Journal

Vol. 27, no. 2, pp. 267–283, August 2025

DOI: 10.56754/0719-0646.2702.267

Fermentation bioreactor with stochastic
consumption rate

Ricardo Castro Santis1,!

Fernando Córdova-Lepe2

Ana Belén Venegas3

1 Departamento de Matemática,

Univesridad Tecnológica Metropolitana,

Santiago, Chile.

rcastro@utem.cl!

2 Departamento de Matemática, Física y

Estadística Facultad de Ciencias Básicas,

Universidad Católica del Maule, Talca,

Chile.

fcordova@ucm.cl

3 Departamento de Matemáticas,

Universidad Andrés Bello, Sede

Concepción, Chile.

a.venegasramos@unab.cl

ABSTRACT

We present a mathematical model to describe the operation

of a bioreactor designed to reduce the substrate concentra-

tion in an aqueous solution via microbial activity. The system

works in cycles: once the substrate concentration reaches a

pre-established minimum level, the bioreactor empties and is

reloaded with a new solution that restores the initial concen-

tration. The study evaluates the system’s operational viabi-

lity, analyzing the length of the intervals between consecu-

tive filling and emptying cycles. To achieve this, we esta-

blish mathematical bounds —defined by the model’s para-

meters— guaranteeing the finiteness of these waiting times.

In addition, we propose minimal conditions for the micro-

bial consumption rate of the substrate, including stochastic

perturbations to the metabolic process.
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1. Introduction

El diseño de modelos matemáticos de biorreactores y el análisis de su dinámica es actualmente

una herramienta casi indispensable a nivel de investigación industrial avanzada. El desarrollo de

la biotecnología así lo requiere. Disponer de la dualidad biorreactor - modelo puede facilitar las

labores, por ejemplo, relacionadas con la optimización y el control de los fenómenos

En la operacionalización de quimiostatos y biorreactores pueden surgir discrepancias notables entre

las abundancias observadas (población o sustratos), así como su variabilidad, y las predicciones

estables de estos tamaños que se deducen de los modelos deterministas.

En este sentido, la literatura ha respondido con explicaciones que se justifican incorporando elemen-

tos de estocasticidad a estos modelos. La comprensión de diversos sistemas biológicos (pesquerías,

comunidades ecológicas, etc.) ha mejorado, en términos de realismo, al considerar efectos estocásti-

cos en sus modelos. Se sabe que incorporar estocasticidad puede cambiar radicalmente la dinámica

de un sistema y, por ejemplo, donde un modelo determinista predice solo la persistencia de una

población microbiana, a partir de su análogo estocástico, se puede inferir una alta probabilidad de

extinción. Ver Imhof & Walcher [11].

Para explicar las fluctuaciones observadas en los experimentos, en torno a los equilibrios estables

no triviales predichos por los modelos, los modeladores dentro de las estrategias deterministas han

incorporado efectos como retardo, entradas periódicas de nutrientes, control por retroalimentación,

aunque también ha surgido la alternativa de perturbaciones estocásticas, ver Crump & O’Young

[6]. En Xuehui & Yuan [12], se menciona que en el caso de reactores para el tratamiento de aguas

residuales, las fluctuaciones en la concentración de sustrato y microbios pueden explicarse a partir

de perturbaciones estocásticas en fuentes externas (luz, temperatura u otras). Sin embargo, también

en algunas perturbaciones internas, propias de los procesos fisicoquímicos o biológicos subyacentes.

Otra posibilidad que se menciona como causal de la estocasticidad es el incumplimiento de la ley de

los grandes números. Este es el caso cuando las poblaciones microbianas no son lo suficientemente

abundantes. Así, tenemos modelos que consideran fluctuaciones aleatorias en el tamaño de la

población, más precisamente en los procesos de nacimiento o muerte bacteriana individual, por

ejemplo, la inexistencia de replicaciones celulares o no regularidad en los tiempos de bipartición,

ver Collet et al. [4].

Un biorreactor discontinuo es un biorreactor cerrado, es decir, sin entrada ni salida de agua.

Además, en el que debe haber un homogeneizador de la mezcla. En este trabajo nos interesa un

reactor que funcione casi todo el tiempo como uno cerrado, salvo en una secuencia de instantes

en los que se produce un proceso instantáneo de vaciado y llenado de una porción constante

del volumen del tanque. En estos instantes se produce un salto en las concentraciones tanto del

nutriente como del microorganismo, lo que técnicamente se denomina pulso o impulso.
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En la literatura se ha considerado la incorporación de pulsos por diferentes motivos y vías. Un

ejemplo es cuando estos instantes de impulso son conocidos de antemano (es decir, predetermina-

dos) y, sin vaciar, se introducen en el sistema cierta cantidad de nutrientes en dichos instantes.

Por ejemplo, en Song & Zhao [17], si el intervalo de tiempo entre la introducción de nutrientes es

mayor que un cierto umbral (relacionado con la función de consumo), se demuestra la extinción

del microorganismo.

En Meng & Gao [14] hay otro ejemplo con uso de tiempos de impulso fijos, en ese modelo se

mezcla un efecto de retardo y una secuencia de instantes de alimentación. Allí, el sistema considera

un nutriente, una población y una función de consumo de tipo Monod. En este trabajo se dan

condiciones de umbral para separar, en el espacio de parámetros, zona de extinción y zona de

persistencia de la población.

En el caso que analizaremos, los tiempos de pulso (de vaciado y llenado) no están predefinidos y se

determinan en función del valor de la variable de estado, más precisamente cuando la concentración

poblacional alcanza un límite superior, un máximo permitido. Un caso particular, ya que se trabaja

con una función de conversión específica, lo podemos encontrar en Su & Tian [18], donde se prueba

en un contexto determinista la posibilidad de soluciones periódicas estables.

En este artículo, presentamos y estudiamos un modelo de biorreactor de una sola población y

una recurso único. Esto parece muy sencillo, pero es novedoso en cuanto considera, por un lado,

una secuencia de lotes (es decir, con impulsos) y por otro, incorpora el efecto estocástico como

perturbación en la función de consumo, lo que no es habitual.

De hecho, si consideramos que la población está compuesta por organismos unicelulares (p. ej.,

bacterias), destacamos que durante el metabolismo celular ocurren en el interior de las células

diversas series de reacciones químicas (catalizadas por enzimas específicas) que transforman el

nutriente. Como existen factores, como la temperatura y/o el pH, que afectan a las enzimas y su

especificidad, es natural suponer que se crea una fuente de aleatoriedad en la acción enzimática,

ya que está relacionada con los encuentros enzima-producto.

Dado que en el modelo la determinación de los instantes de vaciado-llenado depende del valor de

la variable aleatoria de estado (microorganismo-sustrato), el objetivo principal y los resultados del

artículo están asociados a la posibilidad de que el biorreactor desarrolle efectivamente, ocupando

un tiempo finito, la secuenciación del decaimiento de la concentración del sustrato y su reposición

(vaciado-llenado).

El artículo se encuentra estructurado para facilitar diferentes niveles de lectura. Para una evalua-

ción expedita del proceso de modelado y sus propiedades dinámicas, basta con consultar la Sección

2 (donde se presenta el marco teórico-analítico) y la Sección 3 (que sintetiza los principales ha-

llazgos sobre el comportamiento del sistema). Por otro lado, quienes requieran profundizar en los

fundamentos matemáticos de los resultados expuestos, encontrarán en la Sección 4 las demostra-
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ciones de cada teorema y proposición. La Sección 5 incluye algunas conclusiones y observaciones

del trabajo y los aspectos técnicos y herramientas matemáticas auxiliares requeridas para replicar

el análisis se han compilado en el apéndice.

2. El modelo

Como mínimo, un modelo de biorreactor considera una única especie de microorganismo que con-

sume un único tipo de sustrato, este es nuestro caso. Denotaremos por x(·) y s(·), las funciones

que representan respectivamente medidas (no negativas) de la abundancia de microorganismo y

sustrato a lo largo del tiempo. En la literatura técnica de base biológica existen diversos modelos

matemáticos que explican, en términos cuantitativos, el proceso metabólico en un biorreactor, es

decir, relacionan cuantitativamente estas variables. Los modelos diferenciales temporales continuos,

que se limitan a representar el crecimiento poblacional a partir de una biomasa inicial x0 como

efecto del consumo gradual de un único aporte de sustrato s0, pueden resumirse en la siguiente

ecuación diferencial:




s→(t) = → 1

ωµ[s(t)]x(t),

x→(t) = µ[s(t)]x(t), s(0) = s0, x(0) = x0,
(2.1)

donde la función µ[ · ] representa la tasa de crecimiento en función del sustrato disponible y la

constante ω es el factor de conversión del sustrato en biomasa por unidad de tiempo.

El sustrato presente en el bioreactor se mide como masa por unidad de volumen. La biomasa de

microorganismos se mide según su tipo y modelo concreto a utilizar. La unidad utilizada no afecta

el modelo, lo que es inmediato de la forma de la ecuación (2.1).

2.1. Función de conversión de nutrientes en biomasa

La literatura muestra varias formas específicas para la función µ[·] dependiendo de los atributos

geométricos de su gráfico que desee incorporar, ver ver Rene & Sveto [2]. La forma que se considera

más estándar es µ[s] = µ↑s/(ε+ s), del tipo Monod [15], que tiene una forma creciente y cóncava

que se aproxima a un valor máximo µ↑ para valores altos del sustrato y que, para s = ε toma el

valor medio de este máximo.

Existen otras posibilidades, pero éstas se definen a tres parámetros. Tenemos la de Haldane [8] y

la de Andrews [3], definidas respectivamente.

µh[s] = µm[s]
1

1 + s/εi
y µa[s] = µm[s]

1

1 + µm[s] s/εi
,
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que son equivalentes por transformación de parámetros. Su forma gráfica cuando s crece es cóncava,

unimodal y luego decae asintóticamente a cero. Con una forma completamente similar, pero no

racional, es µasn[s] = µm[s] e↓s/εi , usada en Aiba, Shode & Nogatani [1].

Con cuatro parámetros, tenemos la forma introducida por Webb [19], cuya forma es una alteración

de µa[·], en efecto, µw[s] = µa[s](1 + ϑs/εi). Esta función en su forma es como µa[·], pero con

decaimiento asintótico al valor ϑ.

Una muy singular, ya que tiene un dominio [0, sM ], pues la concentración es Han & Leveenspiel

[9], dado por µhl[s] = µm[s](1→ s/sM ), que es cero en los extremos.

En Shukor & Shukor [16] es posible encontrar una lista de otras formas de la función de conversión

de nutrientes en nueva biomasa. Nombres como Teissier [7], Yano & Koga [20], Han & Levenspiel

generalizados [9], Luong [13] y Hinshelwood [10], se mencionan asociados con funciones µ[·].

Todas las funciones de conversión de nutrientes-biomasa presentes en este trabajo, comparten la

propiedad de ser funciones continuas y pasar por el origen. Con el fin de cubrir un amplio espectro

de posibilidades se consideran solo estas hipótesis mínimas sobre la función conversión, es decir;

µ : [0,↑) ↓ [0,↑) es una función continua tal que µ(0) = 0.

2.2. Ecuación de llenado y vaciado del biorreactor

La dinámica del proceso se desarrolla en un biorreactor que contiene una disolución acuosa en

la que hay un sustrato a una concentración inicial igual a s↔ (concentración máxima) y una

población de microorganismos, al principio de tamaño x0, que metabolizan dicho sustrato. El

proceso se interrumpe cuando la concentración de sustrato, decreciente por consumo, alcanza un

nivel predeterminado que denotamos por s↗ (concentración mínima, s↗ < s↔), es decir, en un

instante t > 0 tal que s(t) = s↗. En este instante t, se extrae una fracción p del volumen de

la disolución y se rellena con una nueva disolución con una concentración de sustrato igual a la

inicial, es decir s↔. Al mezclar instantáneamente con la parte residual que queda en el biorreactor,

se genera una nueva concentración q s(t) + p s↔.

Nótese que con este vaciado el número de microorganismos se redujo a q x(t), q = 1 → p y en

el proceso de llenado inmediato no cambia esta cantidad. Es esta población la que reiniciará el

siguiente ciclo del proceso metabólico.

En Córdova-Lepe et al. [5], se propone un modelo que utiliza un sistema diferencial impulsivo que

representa, como variable de estado continua, la parte metabólica y los procesos de vaciado-llenado

del biorreactor como pulsos que interrumpen esa continuidad. Este modelo es el siguiente
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




ṡ(t) = → 1

ω
µ[s(t)]x(t)

ẋ(t) = µ[s(t)]x(t)




 , s(t) ↔= s↗,

s(t+) = q s(t) + p s↔

x(t+) = q x(t)




 , s(t) = s↗,

(2.2)

con s(0) = s↔ and x(0) = x0 > 0.

2.3. El modelo de perturbación estocástica

La función metabolizadora puede verse afectada por perturbaciones de variado origen, como las

inevitables variaciones de temperatura y las vibraciones propias del funcionamiento del biorreactor.

En estas circunstancias, la opción de considerar una perturbación normalizada se presenta como la

más natural, es decir µ̃(s) = µ(s) + ϖW (t), donde W (t) es un Ruido Blanco y ϖ es una constante

positiva que modula la intensidad del ruido.

Esta opción, siendo la más natural presenta el inconveniente que para valores cercanos a cero de

µ o de ruido muy intenso µ̃ podría, eventualmente, tomar valores negativos lo que equivale a la

introducción de sustrato en el biorreactor, lo que no tiene sentido en el contexto del problema

presentado. Este inconveniente, es propio de la modelación por ruido blanco, el cual puede tomar

cualquier valor real. En la práctica, esta limitación no afecta el modelamiento para valores pequeños

de ϖ y si existe un valor mínimo, estrictamente positivo, para µ. Estas condiciones son fijadas con

precisión en la ecuación (3.1).

Así, sustituyendo µ̃(s) en la ecuación (2.1), integrando (en el intervalo [0, t]) y utilizando las letras

mayúsculas para diferenciar el enfoque estocástico, obtenemos:






S(t) = S↔ → 1

ω

∫ t

0
µ[S(u)]X(u)du→ ϖ

ω

∫ t

0
X(u)W (u)du

X(t) = X0 +

∫ t

0
µ(S(u))X(u)du + ϖ

∫ t

0
X(u)W (u)du.

(2.3)

Ahora bien, teniendo en cuenta que, heurísticamente dB(t) = W (t)dt, la propuesta de modelo

estocástico impulsivo, escrito en su forma diferencial, queda:
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




dS = → 1

ω
{µ[S]dt+ ϖdB(t)}X

dX = {µ[S]dt+ ϖdB(t)}X




 , S(t) ↔= S↗,

S(t+) = qS(t) + pS↔

X(t+) = qX(t)




 , S(t) = S↗,

(2.4)

con S(0) = S↔ and X(0) = X0 > 0.

3. Declaración de los resultados principales

Es posible decir que para el sistema dado en (2.4), bajo la hipótesis de un ruido de amplitud no

demasiado grande, como para aniquilar la dinámica, es decir

ϱ := mı́n
Z↘J

{µ[Z]} > ϖ2/2, con J := [S↗, S↔], (3.1)

Se cumplen las siguientes proposiciones:

T1 Existencia y unicidad: El proceso tiene solución única en sentido estocástico y estas existen

en todo el tiempo futuro. Además, este proceso limita a los tiempos de vaciado-llenado,

definido por una ley determinista y unidimensional para la dinámica

T2 Finitud de tiempos de espera: La secuencia definida por los tiempos de espera entre

vaciados y llenados consecutivos, es una variable estocástica de esperanza finita.

T3 Cota para los tiempos de espera: El período de espera entre la n-ésima y la (n+1)-ésima

acción de vaciado-llenado tiene una esperanza en [εn(ϑ),εn(ϱ)], donde

εn(ς) =
1

ς → ϖ2/2
ln

{
1 +

ω!S↔
↗

qnX0 + qω!S↔
↗

}
, (3.2)

con !S↔
↗ = S↔ → S↗ y ϑ = máxZ↘J {µ[Z]}.

T4 Comportamiento asintótico: Los tiempos de espera de los procesos de vaciado-llenado

se estabilizan como una variable aleatoria cuya esperanza se encuentra en el

intervalo [ε≃(ϑ),ε≃(ϱ)], donde ε≃(ς) = ln(1 + 1/q)/[ς → ϖ2/2], con ς ↗ {ϱ,ϑ}.

T5 Estabilidad: Las desviaciones !X0 y !S↔ en términos de los organismos iniciales y del

sustrato de entrada respectivamente, implican una variación en la abundancia del microor-

ganismo, después del momento de n-ésimo vaciado-llenado qn!X0 + qω!S↔. A largo plazo,

este límite se estabilia en qω!S↔, de modo que a medida que transcurre el tiempo no habrá
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diferencia entre las abundancias poblacionales si no hay diferencia en las concentraciones

iniciales del sustrato de entrada

En el caso Monod para µ, debido a que es una función creciente, se tiene que ϱ = µm[S↗] y

ϑ = µm[S↔].

En casos unimodales, como µh, µa o µasn, se tiene un máximo en algún valor de S = S↑. De modo

que, si S↑ ↗ J , entonces ϱ = µ[S↗] y ϑ = µ[S↑], pero en caso de S↑ /↗ J , el valor de ϱ y ϑ son

valores de µ en los bordes de J , según el tipo de monotonía µ en J .

Nótese que lo observado en este apartado, en principio, no implica que la espera de un siguiente

momento de vaciado-llenado sea acotada, es decir de probabilidad positiva para tiempos de espera

arbitrariamente grandes, pero su probabilidad debe tender a cero al crecer el tiempo de espera.

4. Demostración de los resultados principales

4.1. Demostración de T1

Como se dijo, cuando el nivel de sustrato en el biorreactor disminuye hasta alcanzar el nivel S↗,

se lleva acabo el proceso de emptying-filling. Nótese que a partir del tiempo cero, los momentos de

intersección con la condición S(t) = S↗, los llamados tiempos de impulso, forman una secuencia

creciente de instantes que denotaremos por {φn}n↘N. De modo que el proceso determinado por

(2.4) induce una dinámica discreta bidimensional {(Xn, Sn)}n↘N definida por Xn = X(φ+n ) y

Sn = S(φ+n ).

De hecho, a partir de la ecuación (2.3), tomando la suma X(·) + ωS(·), es posible obtener la

siguiente relación lineal entre S y X:

X(t)→Xn = ω(Sn → S(t)), t ↗]φn, φn+1], n ↘ 0, (4.1)

donde se considera φ0 = 0, S0 = S↔.

Dado que Sn = S(φ+n ), considerando la tercera ecuación del sistema (2.4), se tiene que Sn =

q S(φn) + pS↔, de modo que

Sn = q S↗ + pS↔, para todo n ↘ 1. (4.2)

Por tanto, Sn es siempre el promedio ponderado entre el valor de concentración de entrada S↔ y

la tolerancia reducida (valor de salida) S↗, ambos parámetros fijos.

Así también se tiene que Xn = X(φ+n ) = qX(φn). Por lo tanto, por (4.1) se obtiene Xn+1 =
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q{Xn + ω(Sn → S(φn+1))}. Luego por (4.2) se sigue la recurrencia escalar lineal:

Xn+1 = qXn + ω p q!S↔
↗ , para todo n ↘ 0. (4.3)

Teorema 4.1. Una solución (X(·), S(·)) de (2.4) es tal que {X(φ+n )}n↘N, satisface (4.4). Entonces

se tiene

X(φ+n ) = qnX0 + ω q!S↔
↗(1→ qn), para todo n ↘ 1. (4.4)

Por lo tanto

X(φ+n ) ↓ ω q!S↔
↗ , cuando n ↓ ↑. (4.5)

Demostración. Se obtiene por sustitución directa de (4.4) sobre sí misma, para luego plantear la

conjetura de la solución general y demostrar por inducción.

Observación: Puede resultar sorprendente que el resultado asintótico (4.5) del teorema anterior

sea independiente de la función µ[·] y del factor estocástico ϖ del modelo. Sin embargo, como se

verá más adelante, la función µ[·] influye en la determinación de los tiempos de impulso {φn}n↘N,

donde tiene lugar el proceso de vaciado-llenado.

4.2. Demostración de T2

En la sección anterior, mostramos la dinámica de los puntos iniciales de los procesos de vaciado-

llenado del biorreactor, pero esta dinámica presupone que los microorganismos metabolizadores

son capaces de llevar la concentración de sustrato desde el estado S(φ+n ) = qS↗ + pS↔ al estado

S(φn+1) = S↗ en un tiempo finito (lo que en términos deterministas sería !φn := φn+1→φn < ↑) y

para todos los valores de n. Por lo tanto, ahora el objetivo principal será (a) demostrar la existencia

y unicidad del proceso estocástico (microorganismo-sustrato (2.4)), entre tiempos consecutivos de

vaciado-llenado del biorreactor y (b) la finitud de la expectativa de los tiempos de espera de estos

procesos (esto es E[!φn] < ↑).

Nótese que la relación (4.1) dada por (2.4), para t ↗ [0, ↼], ↼ > 0 suficientemente pequeño, el

sistema se puede desacoplar y reducir a la ecuación estocástica unidimensional:

dX(t) = µ [S↔ → {X(t)→X0}/ω]X(t)dt+ ϖX(t)dB(t), X(0) = X0. (4.6)

Nótese que la ecuación (4.6) tiene la forma dada por (5.3), pero con función f [·] definida por:

f [u] = µ [S↔ → {u→X0}/ω] u, u ↘ 0, (4.7)

una función continua, ya que es producto y composición de funciones continuas.
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Además, dado que f [u]/u = µ[S] y S ↗ J := [S↗, S↔], al elegir

ϱ = mı́n
Z↘J

{µ[Z]} y ϑ = máx
Z↘J

{µ[Z]}, (4.8)

la función f [·] satisface la relación (5.4) con L = ↑.

En la Sección 2.1, se consideraron varias posibilidades (tomadas de la literatura biológica) para la

función µ[·], donde todas ellas cumplen con ser funciones positivas, diferenciables y nulas en cero.

Lema 4.2. Consideremos el proceso definido por (4.6) y la condición ϱ > ϖ2/2. Entonces, se tiene

que el tiempo de parada definido por

φ1 = ı́nf{t > 0 | X(t) ↘ X0 + ω!S↔
↗}, (4.9)

que representa el primer tiempo de vaciado-llenado del biorreactor, es una variable aleatoria de

esperanza finita.

Demostración. Según lo planteado para la función µ[·], se tiene que f [·] defnida por (4.7) cumple

con las hipótesis de la Proposición 5.3. Por lo tanto, se concluye la demostración.

Con el Lema 4.2, acabamos de concluir que el tiempo de espera hasta el primer vaciado-llenado

tiene expectativa finita. Ahora, necesitamos analizar la existencia de sucesivos tiempos de espera

para el proceso de vaciado-llenado del biorreactor.

Recordar que {(Xn, Sn)}n↘N está dado por

Xn = qnX0 + qω!S↔
↗(1→ qn) y Sn = qS↗ + pS↔.

Procediendo por inducción, supongamos que existe un tiempo de parada n-ésimo. Por lo tanto, el

problema de Cauchy estocástico después del n-ésimo tiempo de vaciado-llenado es:

dX(t) = µ [Sn → {X(t)→Xn}/ω]X(t)dt+ ϖX(t)dB(t), t > φn. (4.10)

Entonces, al cambiar la variable de tiempo φ = t→ φn con t ↘ φn, transformará la ecuación (4.10)

en

dY (φ) = µ [S0 → {Y (φ)→X0}/ω]Y (φ)dφ + ϖY (φ)dB̃(φ), (4.11)

con Y (0+) = qnX0 + qω(X0 → X) y donde B̃(φ) es un movimiento Browniano estándar B̃(φ) :=

B(φ + φn)→B(φn).
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Teorema 4.3. Considérese el proceso definido por (4.11). Luego, la secuencia definida por los

tiempos de espera entre instantes consecutivos de vaciado-llenado, dada por !φn := φn→ φn↓1, con

{φn} definidos recursivamente por

φn+1 = ı́nf{t > φn | X(t) ↘ qX(φn) + ωp!S↔
↗}, n ↘ 1,

es una variable estocástica de esperanza finita.

Demostración. Es análoga a la realizada en el Lema (4.2), siguiendo un argumento recursivo.

4.3. Demostración de T3

Teorema 4.4. Considérese el proceso definido por (4.11). Entonces,

εn

ϑ → ϑ2

2

≃ E[!φn] ≃
εn

ϱ→ ϑ2

2

. (4.12)

Demostración. Usando el Teorema 4.3 y (5.7), podemos establecer el siguiente control sobre los

tiempos de espera

ln (X(φn+1)/X(φ+n ))

ϑ → ϑ2

2

≃ E[!φn] ≃
ln (X(φn+1)/X(φ+n ))

ϱ→ ϑ2

2

. (4.13)

Dado que X(φn+1) = X(φ+n )+ ω!S↔
↗ y X(φ+n ) = qnX0+ qω!S↔

↗(1→ qn), entonces definiendo

εn = ln (X(φn+1)/X(φ+n )), se tiene

εn = ln

(
1 +

ω!S↔
↗

qnX0 + qω!S↔
↗(1→ qn)

)
=: εn. (4.14)

con lo que se obtiene directamente (4.12).

4.4. Demostración de T4

Teorema 4.5. Los tiempos de espera de los procesos de vaciado-llenado se estabilizan como una

variable aleatoria cuyo valor esperado se encuentra en el intervalo [”(ϱ),”(ϑ)], con ”(ς) = ln(1+

1/q)/[ς → ϖ2/2].

Demostración. Considerando la fórmula (4.12), se tiene que el límite de E[!φn], cuando n ↓ ↑,

depende de la sucesión {εn} dada por (4.14). De donde es claro que εn ↓ ln(1 + 1/q) cuando

n ↓ ↑, concluyendo la demostración.
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4.5. Demostración de T5

Una cuestión que siempre es interesante en el estudio de la dinámica es el comportamiento asintó-

tico. Sobre esto se tiene que:

Teorema 4.6. La evolución de los valores iniciales representa una dinámica estable.

Demostración. Sea (X0, S↔) y (X̃0, S̃↔) ) dos valores iniciales para la abundancia inicial de microor-

ganismos y la cantidad de nutrientes respectivamente. Entonces, Vn := (Xn, Sn) y Ṽn := (X̃n, S̃n),

n ↘ 0, representan las respectivas dinámicas discretas, tenemos según la ecuación (4.1) que:

⇐Vn → Ṽn⇐ = ⇐(qn(X0 → X̃0) + qω(S↔ → S̃↔), 0)⇐ ≃ máx{qn, qω}⇐V0 → Ṽ0⇐. (4.15)

Por lo tanto, las dos dinámicas son tan cercanas como sus puntos iniciales.

Lema 4.7. La dinámica de los valores de (Xn, Sn), es decir, inmediatamente después de los tiempos

de vaciado-llenado, tiende a un par (X≃, S≃) que depende exclusivamente de los valores de la

concentración inicial y final de sustrato y, además, de la fracción de volumen extraído.

Demostración. Según las ecuaciones (4.2) y (4.4), se tiene ĺımn⇐≃(Xn, Sn) = (qω!S↔
↗ , pS↔+qS↗).

Este es un par independiente de los valores iniciales de concentración de microorganismos, pero

dependiente del valor inicial y final de los valores de concntración inicial y final de sustrato y de

la fracción de volumen extraído.

5. Observaciones finales

Proceso solución: Hasta ahora se ha usado una construcción por intervalos, desde φn a φn+1,

entonces si denominamos X(n)(t) a la solución de la ecuación (4.10) para t ↗]φn, φn+1], el proceso

X(t) :=
≃∑

n=1

X(n)(t)1]ϖn→1,ϖn] (5.1)

es solución de la ecuación (4.10) para todo n y además cumple que la condición del proceso de

vaciado-llenado. Además, S(n)(t) = Sn → 1
ω

(
X(n)(t)→Xn

)
soluciona la evolución del sustrato en

el intervalo de tiempo estocástico ]φn, φn+1]. Por lo tanto el proceso bidimensional

(
X(t), S(t)

)
=

≃∑

n=1


Xn(t), S(n)(t)


1]ϖn→1,ϖn] (5.2)

es una solución global de la ecuación (2.3).
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El Teorema 4.5 muestra que si la fracción de volumen que se extrae del biorreactor es muy grande

(p cercano a 1), entonces la cantidad de microorganismos que quedan en el biorreactor será muy

pequeña (q cercano a 0), lo que implica un valor de Kn muy grande, lo que significa un largo

tiempo de espera para el metabolizado.

El tiempo de espera asintótico obtenido en el Teorema 4.5 da la impresión que es independiente

del modelo en particular que se esté utilizando, pero no es cierto debido a que los valores de ϱ y

ϑ dependen de la función µ de crecimiento de microrganismos.

Apéndice: Antecedentes matemáticos

En esta sección se expondrán dos resultados matemáticos necesarios para la demostraciones de los

resultados principales.

Dada una función continua f : [0,↑) ↓ [0,↑) y un número positivo ϖ, consideremos la ecuación

diferencial estocástica unidimensional

dU(t) = f [U(t)]dt+ ϖU(t)dB(t), U(0) = X0, (5.3)

con el gráfico de f [·] encerrado por un cono, esto significa que, existen constantes positivas ϱ, ϑ y

L que satisfacen

ϱu ≃ f [u] ≃ ϑu, para todo u ↗ [0, L]. (5.4)

Proposición 5.1. Dada la ecuación (5.3) bajo (5.4), entonces

(a) Existe una única solución del proceso U(·) definido en el intervalo temporal [0, φ↑], con tiempo

de parada:

φ↑ := ı́nf

t > 0; U(t) ↘ L


. (5.5)

(b) La solución U(·) del proceso estocástico satisface

Uϱ(t) := X0 e
(ϱ↓ω2

2 )t+ϑBt ≃ U(t) ≃ Uς(t) := X0 e
(ς↓ω2

2 )t+ϑBt , (5.6)

para cada t ↗ [0, φ↑].

Demostración. Para cada ς ↗ {ϱ,ϑ}, se consideran las funciones fφ [u] = ςu + 1{0}(ς)f [u], u ↗
[0, L], y el sistema dU(t) = fφ [U(t)]dt + ϖU(t)dBt. Si Uφ(·) es solución, tal que Uφ(0) = X0,

con X0 ↗ [0, L], entonces por (5.4) y una simple comparación de las soluciones del sistema, se

tiene Uϱ(·) ≃ U0(·) ≃ Uς(·) en el intervalo [0, φ↑], con φ = ı́nf{t > 0; 0 ≃ U(t) ↘ L}. Nótese

que como un movimiento Browniano geométrico tiene una solución explícita, es claro que Uφ(t) =

X0 e(φ↓
ω2

2 t)+ϑBt , para ς ↗ {ϱ,ϑ}. De (5.6) sigue el resultado.
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Observación 5.2. La desigualdad (5.6) implica la positividad de las soluciones. Más aún, si

ϑ < ϖ2/2 y L = ↑, se tiene que 0 < U(t) ≃ Uς(t) y Uς(t) ↓ 0 cuando t ↓ ↑.

Proposición 5.3. Consideremos la ecuación (5.3) bajo las condiciones (5.4) y ϱ > ϖ2/2, entonces

la variable aleatoria φ = ı́nf{t > 0, U(t) ↘ L} tiene una esperanza acotada tal que

E(φς) ≃ E(φ) ≃ E(φϱ), donde E(φφ) =
ln (L/X0)

ς → (ϖ2/2)
, (5.7)

donde ς ↗ {ϱ, ϑ}.

Demostración. Por la proposición anterior se tiene que Uϱ(t) ≃ X(t), ⇒t ↘ 0, luego φ ≃ φϱ, donde

φ = ı́nf{t > 0; U(t) = L} y φϱ = ı́nf{t > 0; Xϱ(t) = L}. Ahora, de la ecuación Uϱ(t) = L se

obtiene que
(
ϱ→ (ϖ2/2)

)
t + Bt = ln (L/X0). De donde se sigue que E(φϱ) en el lado derecho de

(5.7). Por hipótesis X0 < L y ϱ > ϖ2/2, de modo que 0 < E(φϱ) < ↑, concluyendo el teorema.
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RESUMEN

En esta breve nota, presentamos un método para cons-

truir explícitamente todas las representaciones irreducibles

de grupos finitos sobre un cuerpo de números, salvo equi-

valencia. Como subproducto, describimos cómo encontrar

las representaciones irreducibles del grupo de cuaterniones

generalizado Q(2n), de orden 2n, sobre un cuerpo L, con

Q → L → Q(ω2n→1) y ω2n→1 una raíz 2n→1
-ésima primitiva de

la unidad.
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ABSTRACT

In this brief note, we present a method to construct expli-

citly all irreducible representations of finite groups over a

number field, up to equivalence. As a byproduct, we describe

how to find the irreducible representations of the generalized

quaternion group Q(2n), of order 2n, over a field L, where

Q → L → Q(ω2n→1) and ω2n→1 a primitive 2n→1
-root of unity.
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1. Introducción

La teoría de representaciones lineales de grupos finitos tiene diferentes aplicaciones a las más

diversas áreas de la Matemática. Allí donde se estudien objetos con simetrías, allí esta teoría

puede dar luz para describir más en profundidad dichos objetos.

Un ejemplo concreto de ello son los fructíferos resultados sobre variedades abelianas que han surgido

de llevar la teoría de representaciones a ese campo. Vea por ejemplo [2–4,7–9].

Recordemos algunas definiciones que usaremos en esta nota. Sea G un grupo finito y K un sub-

cuerpo del cuerpo de los números complejos C. Una K-representación de G es un homomorfismo

de grupos ω : G → GL(V ), donde V un espacio vectorial finito dimensional sobre el cuerpo K.

Dos tales representaciones ω1 : G → GL(V1) y ω2 : G → GL(V2) se dicen equivalentes si existe un

K-isomorfismo T : V1 → V2 que conmuta con las acciones inducidas por ωj en Vj .

Usando la terminología de módulos, vea [6, §29] para detalles, se tiene que V es un KG-módulo

(a izquierda), y se dice que V sustenta a ω. Una K-representación, o el módulo que la sustenta,

se dice K-irreducible si no tiene G-submódulos (sobre K) aparte de los triviales y descomponi-

ble si todo G-submódulo (no trivial) tiene un G-submódulo complementario; esto es, si W es un

G-submódulo de V , existe un G-submódulo W c tal que V = W ↑ W c. Irreducible e indescom-

ponible (no descomponible) no son equivalentes sobre cuerpos arbitrarios. En esta nota estamos

considerando representaciones sobre subcuerpos de C, y en este caso, estas propiedades sí lo son.

Dada K ↓ L una extensión (finita) de cuerpos, por extensión de escalares se define el L-módulo

V L := V ↔K L.

Se tiene que V L contiene (una copia isomorfa) de V , dimL V L = dimK V y V L es un LG-módulo

de forma natural. Se tiene entonces una representación, que denotaremos por la misma letra ω, de

G sustentada ahora por V L.

Emmy Noether [6, Theorem 29.7] respondió afirmativamente a la pregunta natural: ¿Si V1 y V2

son KG-módulos que son L equivalentes, entonces también lo son sobre K ? Esta observación

abre la puerta a estudiar las representaciones irreducibles de un grupo G en cuerpos entre los

racionales y los complejos. Se necesita fijar lenguaje para esto [6, Def. 29.12]: Sea ω : G → GL(V )

una K-representación irreducible (sobre K), se dice que

V (o ω) es absolutamente irreducible si V L es L-irreducible para toda extensión K ↓ L de K.

Un cuerpo L se llama cuerpo de descomposición para el grupo (finito) G si y sólo si toda

L-representación L-irreducible es absolutamente irreducible.
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Por [6, Theorem 29.16], dado un grupo finito G, existe un cuerpo de números que es cuerpo de

descomposición de G. Más aún, [6, §41] Maschke conjeturó alrededor del 1900 y Brauer probó en

1945, que un cuerpo de descomposición para G es Lt := Q(εt), donde t es el exponente de G y

εt es una raíz t-ésima primitiva de la unidad. Este cuerpo de descomposición muchas veces no es

el preciso, en el sentido de mínima extensión de Q. Por ejemplo, para el grupo simétrico S3, que

tiene exponente 6, el cuerpo de los racionales es un cuerpo de descomposición y está estrictamente

contenido en L6.

1.1. Teoría de caracteres

A cada K-representación ω : G → GL(V ), le corresponde un K-caracter ϑω : G → K definido por

ϑω(g) = tr(ω(g)) en alguna base de V , tr(A) siendo la traza de la matriz A. Paralelo a la teoría de

representaciones, se desarrolla la teoría de caracteres. Esta tiene varias ventajas; cuando se trata de

C-representaciones se tienen las siguientes: representaciones equivalentes tienen el mismo caracter,

se define un producto interno entre caracteres que captura la equivalencia e irreducibilidad de las

representaciones asociadas [10, §2.3].

Aprovechando la correspondencia entre K-representaciones irreducibles y K-caracteres irreduci-

bles, se encuentran los K-caracteres irreducibles de G a partir de los L-caracteres irreducibles de

G, donde L es un cuerpo de descomposición de G. La técnica descansa en Teoría de Galois para

la extensión de cuerpos

K ↓ K({ϑ(g) : g ↗ G}) ↓ L,

vea [6, §70] para detalles.

Si bien para muchas de esas aplicaciones, basta conocer los caracteres de un grupo finito G en

un cuerpo K, por ejemplo en [4] usan K = Q o K = C para descomponer variedades abelianas,

para otras aplicaciones se necesita la expresión matricial de la representación. Vea por ejemplo

[10, §2.7], donde se construyen proyectores usando los coeficientes de las matrices correspondientes

a una representación para descomponer explícitamente un G-módulo. O el trabajo [1, pág. 270],

donde para demostrar el Lema de Selberg; a saber, todo grupo finitamente generado de matrices

en un cuerpo de característica cero tiene un subgrupo de índice finito libre de torsión, usa que

hay un homomorfismo inyectivo de GL(n, F ) a GL(nk,K) donde F es una extensión algebraica

finita de grado k sobre K. Sin embargo, hasta donde alcanza nuestro conocimiento, no hay en la

literatura métodos explícitos y programables para construir tales representaciones matriciales.
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2. Preliminaries

En esta sección repasamos algunos de los resultados de [6, §42] que serán útiles en nuestra cons-

trucción.

Sea m un entero positivo, εm una raíz m-ésima primitiva de la unidad, y K un subcuerpo de C.

Entonces K(εm) es una extensión normal y finita de K, y cada automorfismo de K(εm) que fija

los elementos de K está dado por una función

εm
εm↘→ εrm,

donde r es algún entero relativamente primo a m. Se define Im(K) como el grupo multiplicativo

de enteros r (módulo m) para los cuales ϖm es un automorfismo de K(εm).

Entonces el grupo de Galois Gal
(
K(εm)/K

)
se identifica naturalmente con Im(K). Se verifica que,

por ejemplo, Im(C) = {1} e Im(Q) = (Z/mZ)→.

Definición 2.1. Con las definiciones de arriba. Sea G un grupo finito de exponente t, dos elementos

a, b ↗ G se dicen K-conjugados si

x↑1bx = ar,

para algún x ↗ G y algún r ↗ It(K).

Existe una notable relación que permite contar las representaciones de un grupo G sobre un cuerpo

K ↓ C.

Teorema 2.2 ([6, Theorem 42.8]). El número de KG-módulos irreducibles no isomorfos es el

mismo que el número de K-clases de conjugación en G.

Observe que para el caso en que K = Q(εt), t el exponente de G, se tiene que la K-conjugación

es la conjugación usual. Por otro lado, si K = Q dos elementos son K-conjugados si y sólo si

generan grupos conjugados. Se recuperan así los teoremas de conteo de representaciones irreducibles

conocidos para C y Q, [6, Theorem 27.22, Theorem 39.5] respectivamente.

Con este teorema podemos contar todos los KG-módulos irreducibles de un grupo G, pero no

construirlos. Sin embargo, es ya un resultado clásico que los K-caracteres irreducibles de G en los

diferentes subcuerpos K de un cuerpo de descomposición L para G, el cual es una extensión finita

normal de Q, se construyen a partir de los L-caracteres irreducibles. Esto está desarrollado, por

ejemplo, en [6, §70], particularmente en los teoremas (70.12) y (70.15), junto al Ejercicio 70.2.

El propósito de esta nota breve es entregar un método que permite encontrar explícitamente las

representaciones irreducibles de G, en una forma matricial, en los cuerpos intermedios K con

Q ↓ K ↓ Lt. Esto es, realizar matricialmente la construcción a nivel de caracteres, por ejemplo

en [6, §70], que es lo que se realiza usualmente.
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3. Construyendo K-representaciones irreducibles

En esta sección G es un grupo finito de exponente t, εt es una raíz t-ésima primitiva de la unidad

y todos los cuerpos que consideraremos son cuerpos de números contenidos en Lt := Q(εt).

Recordemos que,

Dos elementos a, b ↗ G son Q(εt)-conjugados si y solo si son conjugados en el sentido usual.

Dos elementos a, b ↗ G son Q-conjugados si y solo si g≃a⇐g↑1 = ≃b⇐.

Definición 3.1. Sean [L : K] = m y ϱ = {e1, . . . , em} una K-base de L. Todo l ↗ L determina

una transformación lineal ςl : L → L, dada por ςl(x) = lx. Denotamos por !l = [ςl]ϑ la matriz de

m ⇒m correspondiente a ςl en la base ϱ. Para una matriz A = (aij) ↗ M(s ⇒ s, L) definimos su

transformada a K, denotada K(A), reemplazando cada coeficiente aij por la matriz correspondiente

!aij . En otras palabras, definimos la función K : M(s ⇒ s, L) → M(sm ⇒ sm,K) dada por

K(A) =
([

ςaij

]
ϑ

)

1↓i,j,↓s
.

Ilustramos esta definición con un ejemplo sencillo.

Ejemplo 3.2. Sean K = Q, L = Q(i) y ϱ = {1, i}. Entonces la transformada a K de la matriz

A = (i) ↗ M(1⇒ 1, L) es

K(A) =



 0 ↘1

1 0



 .

La Definición 3.1 nos permite obtener una K representación de un grupo G a partir de una L

representación de él. Lo explicamos en el siguiente lema.

Lema 3.3. Considere la notación de la Definición 3.1. Sea ω : G → GL(r, L) una L-representación

matricial de G, entonces φ : G → GL(mr,K) dada por φ(g) = K(ω(g)) es una K-representación

de G.

Demostración. Esto es inmediato de la contención

Mr(L) ⇑= Mr(K)↔K L ↓ Mr(K)↔K Mm(K) ⇑= Mmr(K),

donde Mr(K) es el anillo de matrices cuadradas de r-por-r.

Hablamos de que la K-representación φ es la transformada a K de la L-representación ω. Note

que cada matriz φ(g) tiene sus coeficientes en el cuerpo K. El caracter de φ está relacionado con

el de ω de la siguiente forma.
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Lema 3.4. Bajo las condiciones del Lema 3.3, si ϑ es el caracter asociado a la representación ω,

ϑ↔
es el caracter asociado a φ y si ↼1, . . . ,↼[L:K] son todas las incrustaciones de L en K̄, entonces

ϑ↔ =
∑[L:K]

i=1 ↼i(ϑ).

Demostración. Siempre que una matriz cuadrada se descompone en bloques cuadrados del mismo

tamaño, la traza de la matriz es igual a la suma de las trazas de los bloques diagonales. Se sigue que

ϑ↔ es igual a la suma de las trazas de los coeficientes diagonales l de ω interpretado como matrices

!l. Por definición, la traza trL/K(l) es la traza de la matriz !l. Se sigue que ϑ↔ = trL/K(ϑ), y el

resultado sigue de la fórmula usual de la traza.

Finalmente, presentamos el resultado que permite construir las K-representaciones irreducibles de

G a partir de las L-representaciones irreducibles de él.

Teorema 3.5. Bajo las condiciones del Lema 3.4 anterior, si L/K es una extensión abeliana

de grado primo, y si ω es una representación irreducible sobre L que no está definida sobre K,

entonces φ es una representación irreducible de K.

Demostración. Sean G = Gal(L/K) = ≃↼⇐ el grupo de Galois de la extensión K ⇓ L, p = [L :

K] = ↽G (primo). Además, como antes, denote por ϑ al caracter asociado a la representación ω y

ϑ↔ al caracter asociado a φ. Entonces las órbitas de Galois de ϑ tienen p elementos o un elemento.

En el primer caso ϑ↔ =
∑p↑1

i=0 ↼i(ϑ), y entonces es irreducible por ser la suma de una órbita de

Galois. En el segundo caso se tiene que ϑ↔ = pϑ, entonces si m es el índice de Schur de ϑ sobre K,

este debe dividir a p. Como m > 1, pues ω no está definido sobre K, se concluye que m = p.

4. Aplicación 1: Grupos de orden pequeño.

Sea G un grupo finito de exponente t y, como antes, Lt := Q(εt) con εt raíz t-ésima primitiva de 1.

En esta sección encontraremos todas las representaciones irreducibles en los cuerpos K entre Q y

Lt para todos los grupos hasta orden 8. Llegamos hasta ese orden pues es el orden donde aparece

el primer elemento de la familia de grupos que estudiaremos en la sección siguiente. Usaremos la

notación Cs para el grupo cíclico de orden s.

Los grupos C2 y C2 ⇒ C2 tiene todas sus representaciones racionales absolutamente irreducibles.

Para C3 = ≃x : x3 = 1⇐ la situación es distinta. Tiene 3 representaciones irreducibles complejas,

todas realizables sobre L3 = Q(ε3). La representación trivial ϑ0 es realizable sobre Q. Las otras

dos representaciones, ϑ1 y ϑ2 dadas por ϑ1(x) = (ε3) y ϑ2(x) = (ε23) respectivamente, no están

definidas sobre Q. De hecho, corresponden a una única representación de grado 2 irreducible sobre

Q: La transformada a Q de ϑ1 (o ϑ2), que está definida por
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x ⇔→



0 ↘1

1 ↘1



 o x ⇔→



↘1 1

↘1 0



 .

Ella se obtiene a partir de la Q-base {1, ε3} de Q(ε3).

El grupo C4 = ≃x : x4 = 1⇐ tiene 4 representaciones irreducibles todas realizables en L4 = Q(i).

Dos de ellas realizables en Q y las otras dos sumadas son equivalentes a la representación del

Ejemplo 3.2.

La situación para C5 comienza a ser más interesante. Tiene cinco representaciones irreducibles

complejas, todas realizables sobre el cuerpo L5 = Q(ε5). Note que en este caso tenemos al cuerpo

intermedio, Q ↓ Q(
↖
5) ↓ Q(ε5). La representación trivial está definida sobre Q. Como Q(

↖
5) está

contenida en R, ninguna de las otras representaciones está definida sobre este cuerpo. Las represen-

taciones que envían el generador a (ε5) y (ε45) son conjugados complejos, por lo que corresponden

a una única representación sobre Q(
↖
5). Usando la base ϱ = {1, ε5} obtenemos la representación

x ⇔→



0 ↘1

1 u



 =



0 ↘1

1 ↑1+
↗
5

2



 ,

donde u = ε5 + ε45 = ↑1+
↗
5

2 , pues ε5 satisface la ecuación x2 = ux ↘ 1. Similarmente, las repre-

sentaciones que mandan el generador a (ε25) y (ε35) son conjugados complejos, y corresponden a la

representación de dimensión dos,

x ⇔→



0 ↘1

1 u




2

=



↘1 ↘u

u u2 ↘ 1



 =



↘1 ↘u

u ↘u



 =



 ↘1 1↑
↗
5

2

↑1+
↗
5

2
1↑

↗
5

2



 .

Como la traza de cada matriz en las últimas dos representaciones es irracional, hay solo dos

representaciones irreducibles sobre Q, la representación trivial y la que es dada por

x ⇔→





0 0 ↘1 0

0 0 0 ↘1

1 0 0 1

0 1 1 ↘1




,

en donde usamos la Q-base {1, u} de Q(
↖
5) = Q(u). Note que u2 = ↘u+ 1, entonces está última

representación corresponde a la matriz



0 1

1 ↘1



.
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En orden 6 tenemos el grupo cíclico C6 que tiene sus representaciones irreducibles complejas

realizables en L6 = Q(ε6). Dos de ellas con cuerpo de descomposición Q y las otras cuatro se

combinan de a dos para determinar dos Q-representaciones irreducibles de grado 2. Para el estudio

del grupo dihedral referimos a [4].

4.1. El grupo de orden 7

Llegamos a C7 = ≃x : x7 = 1⇐ que tiene siete representaciones complejas irreducibles, todas

realizables sobre L7 = Q(ε7). Este caso ya tiene más ingredientes. El reticulado de los cuerpos

intermedios es el siguiente:

Q(ε7)

!!!
!!!

!

""
""
""
"

Q
(
i
↖
7
)

###
###

###
Q
(
cos

(
2ϖ
7

) )

$$$
$$$

$$$

Q

en donde los dos subcuerpos intermedios corresponden a los subgrupos de orden 3 y 2 del grupo

G7 = Gal(Q(ε7)/Q), que es el cíclico de orden 6.

Análogo a lo anterior, tenemos siete representaciones complejas ϑj dadas por ϑj(x) = (εj7) con

0 ↙ j ↙ 6.

Primero consideremos las representaciones irreducibles sobre el cuerpo Q
(
cos( 2ϖ7 )

)
. Para eso note

que cos( 2ϖ7 ) = 1
2 (ε7+ε67). Concluimos que L = Q

(
cos( 2ϖ7 )

)
es el cuerpo invariante del automorfismo

dado por ↼(ε7) = ε↑1
7 . Hay cuatro L-clases de conjugación (Definición 2.1), estas son {1}, {x, x6},

{x2, x5} and {x3, x4}. Así que debemos encontrar cuatro representaciones. La representación trivial

está definida sobre Q, para las restantes, escogemos una representación en cada clase de Galois y

aplicamos el método de la Definición 3.1 y Lema 3.3. Tenemos las siguientes matrices:

[ςϱ7 ]ϑ =



0 ↘1

1 2 cos( 2ϖ7 )



 ,
[
ςϱ27

]

ϑ
=



 ↘1 ↘2 cos( 2ϖ7 )

2 cos( 2ϖ7 ) ↘1 + 4 cos2( 2ϖ7 )



 ,

[
ςϱ37

]

ϑ
=



 ↘2 cos( 2ϖ7 ) 1↘ 4 cos2( 2ϖ7 )

↘1 + 4 cos2( 2ϖ7 ) 1↘ 4 cos2( 2ϖ7 )



 .

Para el coeficiente de la esquina de abajo y derecha de la última matriz usamos el hecho de que

u = 2 cos( 2ϖ7 ) satisface u3 + u2 ↘ 2u↘ 1 = 0, y por lo tanto u3 ↘ 2u = 1↘ u2.

Ahora consideramos las representaciones irreducibles sobre el cuerpo E = Q(i
↖
7). Note que i

↖
7 =

2(ε7 + ε27 + ε47) + 1, por lo tanto E es el cuerpo fijo del automorfismo dado por ↼(ε7) = ε27 . Note
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que ε7 y ε37 están en diferentes órbitas de Galois. De nuevo, podemos escribir las representaciones

sobre E de dimensión tres enviando el generador a las matrices [ςϱ7 ]ϑ o
[
ςϱ37

]

ϑ
en una base dada.

Para poder calcular estas matrices nececitamos encontrar el polinomio irreducible de ε7 sobre E.

Sea b = ε7 + ε27 + ε47 = ↑1+i
↗
7

2 . Entonces ε7 es una raíz de x4 + x2 + x ↘ b = 0. También se

tiene que ε37 + ε57 + ε67 = ↘1↘ b. Multiplicando por ε47 obtenemos (1 + b)ε47 + 1 + ε27 + ε37 = 0. En

particular ε7 es una raíz de (1+ b)x4+x3+x2+1 = 0. Multiplicando la primera ecuación por b+1

y restándola con la segunda ecuación obtenemos, x3 ↘ bx2 ↘ (1 + b)x+ (b2 + b+ 1) = 0. Como es

una ecuación cúbica, esta deber ser el polinomio irreducible de ε7. Note que además b = ↑1+i
↗
7

2 es

una raíz de x2 + x+ 2 = 0, entonces podemos reescribir el polinomio minimal de ε7 sobre E como

x3 ↘ bx2 ↘ (1 + b)x↘ 1. Esto nos entrega la matriz

[ςϱ7 ]ϑ =





0 0 1

1 0 b+ 1

0 1 b



 =





0 0 1

1 0 1+i
↗
7

2

0 1 ↑1+i
↗
7

2



 ,

y también

[
ςϱ37

]

ϑ
=





0 0 1

1 0 b+ 1

0 1 b





3

=





1 b ↘1

b+ 1 ↘1 ↘1

b ↘1 ↘1↘ b



 =





1 ↑1+i
↗
7

2 ↘1
1+i

↗
7

2 ↘1 ↘1
↑1+i

↗
7

2 ↘1 ↑1↑i
↗
7

2



 .

En donde para computar la última matriz, la identidad b2 + b+ 1 = ↘1 fue usada varias veces.

Finalmente, encontraremos las representaciones irreducibles sobre Q a partir de las representacio-

nes irreducibles de la extensión cúbica L/Q. Primero note que las Q-clases de conjugación son

{1} y {x, x2, x3, x4, x5, x6}, entonces hay precisamente dos representaciones irreducibles sobre Q.

Considere la Q-base de L dada por ϱ =

1, cos( 2ϖ7 ), cos2( 2ϖ7 )


. Entonces se tiene que

[ς±1]ϑ =





±1 0 0

0 ±1 0

0 0 ±1



 ,
[
ς2 cos( 2ω

7 )

]

ϑ
=





0 0 1/4

2 0 1

0 2 ↘1



 ,

en donde para la última matriz, usamos que u = 2 cos
(
2ϖ
7

)
satisface u3 = ↘u2 + 2u + 1, y por

lo tanto u cos2
(
2ϖ
7

)
= ↘ cos2

(
2ϖ
7

)
+ cos

(
2ϖ
7

)
+ 1/4. Ahora la representación irreducible no trivial
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sobre Q está dada por

x ⇔→





0 0 0 ↘1 0 0

0 0 0 0 ↘1 0

0 0 0 0 0 ↘1

1 0 0 0 0 1/4

0 1 0 2 0 1

0 0 1 0 2 ↘1





.

4.2. Grupos de orden 8

Para los dos grupos abelianos C4 ⇒ C2 y C2 ⇒ C2 ⇒ C2 construimos sus representaciones como

producto directo de las representaciones de sus factores, las que fueron descritas arriba. Para D4

referimos a [4]. Queda entonces por analizar las representaciones de C8 y Q8. Vamos por casos.

Sea G = C8 = ≃x : x8 = 1⇐. Todas sus representaciones complejas irreducibles están definidas

sobre L8 = Q(ε8). El reticulado de este cuerpo es

Q(ε8)

%%
%%

%%
%%

%

&&
&&
&&
&&
&

Q(i)

''
''

''
''

''
Q(

↖
2) Q(

↖
↘2)

((
((
((
((
((
(

Q

.

Hay ocho representaciones irreducibles sobre el cuerpo Q(ε8), cada una de la forma ϑr(x) = εr8

con 0 ↙ r ↙ 7. Para r = 0, 4 la representación está definida sobre Q. Misma situación para

Q(i) y representaciones correspondientes a r = 2, 6.

Las otras cuatro se separan en dos pares de órbitas de Galois y por lo tanto se obtienen a

partir de las representaciones que envían el generador a ε8 y ε38 , esto pues Q(i) es el cuerpo

invariante del automorfismo ε8 ⇔→ ↘ε8 = ε58 .

Concluimos que las representaciones irreducibles restantes sobre Q(i), se obtienen mandando

el generador a las matrices



0 i

1 0



 y



0 i

1 0




3

=



0 ↘1

i 0



 .

El cuerpo Q(
↖
2) es el cuerpo invariante del automorfismo que envía ε8 a ε78 , pues es la

intersección de Q(ε8) con el cuerpo de números reales. En este caso, las órbitas de Galois
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de las raíces de la unidad son {i,↘i}, {ε8, ε78} y {ε38 , ε58}. Más aún, ε8 satisface la ecuación

x2 ↘ x
↖
2+ 1 = 0, mientras que i satisface la ecuación x2 +1 = 0. Obtenemos, entonces, tres

representaciones irreducibles de dimensión dos sobre este cuerpo, donde las imágenes de x es

alguna de las matrices



0 ↘1

1 0



 ,



0 ↘1

1
↖
2



 y



0 ↘1

1
↖
2




3

=



↘
↖
2 ↘1

1 0



 .

Finalmente, el cuerpo Q(
↖
↘2) es el cuerpo invariante del automorfismo que envía ε8 a ε38 . En

este caso, las órbitas de Galois de las raíces de la unidad son {i,↘i}, {ε8, ε38} y {ε58 , ε78}. Más

aún, ε8 satisface la ecuación x2 ↘ x
↖
↘2↘ 1 = 0, mientras i satisface la ecuación x2 + 1 = 0,

como antes. Obtenemos, nuevamente, tres representaciones irreducibles de dimensión dos

sobre este cuerpo, donde la imagen de x es una de las matrices



0 ↘1

1 0



 ,



0 1

1
↖
↘2



 y



0 1

1
↖
↘2




3

=



↘
↖
↘2 ↘1

↘1 0



 .

Las representaciones irreducibles racionales se pueden obtener a partir de las de Q(i), y

obtenemos las representaciones que envían x a:



0 ↘1

1 0



 ,





0 0 0 ↘1

0 0 1 0

1 0 0 0

0 1 0 0




.

Sea G = ≃x, y|x4 = y4 = 1, x2 = y2, y↑1xy = x↑1⇐, el grupo cuaternio Q8. Todas las

representaciones irreducibles complejas [6, Ex. §70.13] están definidas sobre Q(i). Hay cuatro

representaciones irreducibles de dimensión uno que envían los generadores a (1) o (↘1) y

están definidas sobre Q y una representación de dimensión 2 dada por:

ω5(x) =



i 0

0 ↘i



 , ω5(y) =



0 ↘1

1 0



 .

Usando el Lema 3.3 y Ejemplo 3.2, vemos que esta última corresponde a una representación

irreducible sobre Q dada por
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ω5(x) =





0 ↘1 0 0

1 0 0 0

0 0 0 1

0 0 ↘1 0




, ω5(y) =





0 0 ↘1 0

0 0 0 ↘1

1 0 0 0

0 1 0 0




.

5. Aplicación 2: Cuaterniones generalizados

Estudiaremos ahora las representaciones irreducibles, en los distintos cuerpos de números entre

Q y el cuerpo de descomposición Lexp(G), para G en la familia de cuaterniones generalizados. Su

presentación es la siguiente:

Q(2n) = ≃x, y : x2n→1

= 1, y2 = x2n→2

, yxy↑1 = x↑1⇐, with n ∝ 3.

Este grupo tiene orden 2n. Cada elemento se puede escribir como xςyϑ con ⇀ ↗ {0, . . . , 2n↑1 ↘ 1}
y ϱ ↗ {0, 1}, el exponente de este grupo es t = 2n↑1, así que las representaciones irreducibles

complejas de este grupo son realizables en Q(ε2n→1). Como además se conocen sus representaciones

irreducibles sobre C, o lo mismo sobre Q(ε2n→1), sólo tenemos que aplicar los resultados de la

sección anterior, Lema 3.3 y Teorema 3.5, para obtener lo deseado.

De [5, §4.1], y las referencias allí citadas, se obtiene que el grupo Q(2n) tiene 3 + 2n↑2 represen-

taciones irreducibles sobre C, cuatro de ellas son racionales pues mandan los generadores a (1) o

(↘1), y las otras están dadas por

⇁s : x ⇔→



ωs 0

0 ω↑s



 , y ⇔→



 0 1

(↘1)s 0



 ,

donde ω = exp(2ςi/2n↑1) y s ↗ {1, . . . , 2n↑2 ↘ 1}. Note que ⇁s tiene, en su diagonal, una órbita

de la acción natural de -1 sobre las raíces 2n↑1-ésimas de la unidad, excepto 1 y ↘1.

Recuerde que si Un es el conjunto de raíces n-ésimas de la unidad y PUn es el conjunto de raíces

n-ésimas primitivas de la unidad, entonces

U2n→1 = ′k|2n→1PUk.

Definición 5.1. Considerando la notación anterior, se define

Irr(2k) = {⇁s ↗ IrrC(Q(2n)) : ωs ↗ PU2k},

con 2 ↙ k ↙ n↘ 1.
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Note que Irr(2k) tiene 2k↑2 elementos, una representación por cada ≃↘1⇐-órbita sobre PU2k .

En esta sección tenemos tres objetivos. El primero es contar, vea la Sección 5.1. Es decir, determinar

la cantidad de representaciones irreducibles (salvo equivalencia) sobre los distintos subcuerpos de

Q(ε2n→1). Recordemos que K es un subcuerpo de Q(ε2n→1) entonces Gal=Gal(Q(ε2n→1)/K) actúa

sobre cada representación por la acción sobre cada entrada de las matrices correspondientes. El

número de órbitas de esta acción es el número de representaciones irreducibles sobre K [6, §70].

El segundo objetivo (Sección 5.2) es describir explícitamente las representaciones matriciales so-

bre Q del grupo Q(2n). Si bien en [5, §3.1] las describen como representaciones complejas, aquí

queremos exhibir las matrices con sus entradas efectivamente en Q.

El tercer objetivo es entregar un procedimiento algorítmico que permite construir todas las re-

presentaciones irreducibles del grupo Q(2n) en los cuerpos intermedios entre Q y su cuerpo de

descoposición Q(ε2n→1). El cual es fácilmente generalizable a cualquier grupo (finito) G.

5.1. Cantidad de representaciones irreducibles del grupo cuaternio ge-

neralizado

Aplicando los resultados expuestos en la sección anterior, primero comenzamos por determinar la

cantidad de representaciones irreducibles en los distintos cuerpos de interés del grupo Q(2n).

Primero, recuperamos, por completitud y a nuestro contexto, un resultado obtenido en [5, §4].

Proposición 5.2 ([5, §4.1]). Considere el grupo Q(2n), con n ∝ 3. El número de representaciones

irreducibles sobre Q es n+ 2.

Demostración. Considere φ ↗ Irr(2k), entonces si ▷ ↗ Gal ⇑= (Z/2n↑1Z)→ actúa sobre φ, como

para todo ω ↗ PU2k , ωφ ↗ PU2k , tenemos que ▷.φ ↗ Irr(2k). Más aún, la acción del grupo

de Galois correspondiente en PU2k es transitiva, entonces para todo ω ↗ PU2k tenemos que

Gal(ω) = PU2k , así que concluimos que la acción de Gal sobre Irr(2k) es transitiva. Por otro lado,

como las representaciones irreducibles de dimensión uno están definidas sobre Q, estas están fijas

por cada elemento del grupo de Galois. Luego concluimos que hay n+2 órbitas, cuatro de ellas son

singletons que consisten en las representaciones de dimensión uno y las otras n ↘ 2 corresponden

a los conjuntos Irr(2k).

Ahora calcularemos la cantidad de representaciones irreducibles, salvo equivalencia, sobre los otros

subcuerpos de Q(ε2n→1).
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Proposición 5.3. Considere el grupo Q(2n), con n ∝ 3, el número de representaciones irreducibles

sobre Q(ε2k), con 2 ↙ k ↙ n↘ 1 es (n↘ k + 1)2k↑2 + 3

Demostración. Para este resultado recordemos que la notación ordb(a) se refiere al orden multi-

plicativo del elemento a visto en (Z/bZ)→.

Si Gal= Gal(Q(ε2n→1)/Q(ε2k)) entonces |Gal| = 2n↑2/2k↑1 = 2n↑k↑1. Ahora, como las representa-

ciones irreducibles en los conjuntos Irr(2q), con 2 ↙ q ↙ k están definidas sobre Q(ε2k) los estabili-

zadores de la representación en estos conjuntos son todos los elementos de Gal(Q(ε2n→1)/Q(ε2k)).

Para calcular los estabilizadores de las otras representaciones note que Gal(Q(ε2n→1)/Q(ε2k)) es

un subgrupo de Gal(Q(ε2n→1)/Q) y este último es isomorfo a (Z/2n↑1Z)→. De hecho, usando el

resultado de que para todo k ∝ 2 ord2k(5) = 2k↑2, se puede ver que la acción de 52
k→2

fija el

elemento ε2k , es decir que si ▷ ↗ Gal(Q(ε2n→1)/Q) es tal que ▷(ε2n→1) = ε5
2k→2

2n→1 entonces ▷(ε2k) =

ε2k y por lo tanto ▷ ↗ Gal(Q(ε2n→1)/Q(ε2k)), más aún, se tiene que |▷ | = 2n↑k↑1, y por lo

tanto podemos concluir que Gal(Q(ε2n→1)/Q(ε2k)) es isomorfo a ≃5̄2k→2⇐ ↓ (Z/2n↑1Z)→. Así que

considere φ ↗ Irr(2q), con k + 1 ↙ q ↙ n↘ 1. Esta representación tiene asociada una raíz 2q-ésima

primitiva de la unidad ω. Entonces si identificamos a los elementos de Gal(Q(ε2n→1)/Q(ε2k)) con

sus respectivas imágenes en (Z/2n↑1Z)→ se cumple que ▷ i ↗ StabGal(φ) si y solo si ωφ i

= ω o

ω↑φ i

= ω, y esto pasa si y solo si ▷ i ∞ 1(mod(2q)) o ▷ i ∞ ↘1(mod(2q)), recuerde que ▷ i = 5̄2
k→2i

para algún 1 ↙ i ↙ 2n↑k↑1. Esta última condición no pasa ya que 5 ∞ 1(mod(4)) y entonces se

tendría que 1 ∞ ↘1(mod(4)), lo que es una contradicción. Así es que queremos conocer cuándo

52
k→2i ∞ 1(mod(2q)), esto pasa si y solo si 2k↑2i = 2q↑2r, para algún r ↗ Z, entonces se tiene

que i = 2q↑kr, y como 1 ↙ i ↙ 2n↑k↑1, existen 2n↑q↑1 posibilidades para r. Concluimos que

|StabGal(φ)| = 2n↑q↑1.

Usando el lema de conteo de Burnside, se tiene que

|Gal\IrrC(Q(2n))| = 1

|Gal|


↼↘Irr

|StabGalφ|

=
1

|Gal| (4|Gal|+
k

q=2

|Irr(2q)||Gal|+
n↑1

q=k+1

|Irr(2q)|2n↑q↑1)

= 4 +
k

q=2

2q↑1 +
1

2n↑k↑1

n↑1

q=k+1

2q↑22n↑q↑1

= 4 + 2k↑1 ↘ 1 + (n↘ k ↘ 1)2k↑2 = (n↘ k + 1)2k↑2 + 3.

Y con esto se concluye el resultado.
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5.2. Representaciones irreducibles matriciales racionales para el cuater-

nio generalizado

Una vez que conocemos la cantidad de representaciones irreducibles racionales de un grupo G

y su descomposición en irreducibles complejas, nos interesa describir explícitamente las matrices

correspondientes en cada una de ellas. Para eso usamos el método del Teorema 3.5.

Para el caso de G = Q(2n) sabemos obtener explícitamente las n+ 2 representaciones irreducibles

racionales sobre Q(2n) como representaciones complejas, ver [5, §3.1]. Ahora queremos exhibir cómo

se ven matricialmente con coeficientes efectivamente en el cuerpo Q. Recordemos que, técnicamente,

el resultado en [6] escribe cómo construir cada irreducible racional como suma directa de complejas,

luego estas no se verán necesariamente como matrices con coeficientes en Q. Lo que se sabe, en ese

punto, es que es realizable sobre Q; es decir, es C-equivalente a una representación racional.

Vamos entonces a la construcción explícita de las representaciones irreducibles racionales de Q(2n)

(salvo isomorfismo). Primero, sabemos que las cuatro representaciones (de grado 1) son realizables

sobre Q. Para obtener las otras n↘ 2 representaciones irreducibles racionales de forma efectiva en

los racionales, escogeremos un elemento del conjunto Irr(2k) para cada 2 ↙ k ↙ n↘ 1. Luego, con

el procedimiento descrito en el Lema 3.3 y Teorema 3.5, obtenemos explícitamente una represen-

tación racional irreducible ϖ. Esta, al tensorizarla con C, se descompone en suma de algunas de

las irreducibles que tenemos. Repetimos el proceso con otra de las representaciones irreducibles

complejas de Q(2n) que no es componente de ϖ. Con este procedimiento encontramos todas las

representaciones irreducibles racionales del grupo.

Proposición 5.4. Sea ⇁2k la representación en Irr(2k) que envía x a la matriz



ε2k 0

0 ε↑1
2k



, con

ε2k una raíz 2k-ésima primitiva de la unidad. Entonces, la transformada Q de ⇁2k(x) corresponde

a la matriz

Q(⇁2k(x)) =



[ε2k ]ϑ 0

0 [ε↑1
2k ]ϑ



 =





0 · · · 0 ↘1

0
.
.
.

0

0
.
.
.

0

↘1 0 · · · 0

0
I2k↑1↘1

0
I2k↑1↘1




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y la transformada Q de ⇁2k(y) corresponde a la matriz



 0 In

(↘In)s 0



 .

En ambos casos I↽ denota la matriz identidad de tamaño ◁.

Demostración. Considere la Q-base de Q(ε2k), ϱ = {1, ε2k , . . . , ε2
k→1↑1

2k }. Como se cumple que

ε2
k→1

2k = ↘1 y ε↑1
2k = ↘ε2

k→1↑1
2k , la representación resultante de aplicar la transformada K = Q a

⇁2k es tal que g ⇔→ Q(⇁2k(g)) para todo g ↗ Q(2n). Recuerde que esta transformada consiste en

aplicar la Definición 3.1 a cada entrada de cada matriz correspondiente a ⇁2k(g).

Para ver que esta representación es irreducible calculamos su caracter.

Note que los elementos de Gal(Q(ε2k)/Q) actúan enviando ε2k a ες2k con ⇀ un número impar.

Entonces si ϑ es el caracter de la representación ⇁2k ↗ Irr(2k) escogida y ϑ↔ es el caracter de la

representación Q(⇁2k) después de aplicar la transformada a Q (Definición 3.1), por el Lema 3.4

sabemos que para todo g ↗ Q(2n) se cumple que ϑ↔(g) =
∑2k→1

i=1 ↼i(ϑ(g)) con ↼i los elementos

de Gal(Q(ε2k)/Q). Entonces como ω(xς) =



ες2k 0

0 ε↑ς
2k



 se tiene que ϑ↔(xς) =
∑2k→1

i=1 ες(2i↑1)
2k +

ε↑ς(2i↑1)
2k .

Hay distintos casos,

si ⇀ no es congruente a 0 ni a 2k↑1 módulo 2k entonces siempre que aparezca un sumando,

estará su inverso aditivo, luego en este caso tenemos que ϑ↔(xς) = 0.

Si ⇀ es congruente a 2k↑1 módulo 2k entonces todos los sumandos son ↘1, por lo tanto,

ϑ↔(xς) = ↘2k.

Por último si ⇀ es congruente a 0 módulo 2k entonces ϑ↔(xς) = 2k. Calculando explícitamente

las matrices asociadas a los elementos y y xy vemos que ϑ↔(y) = ϑ↔(xy) = 0, y con esto

sabemos los caracteres de un representante en cada clase de conjugación de Q(2n), y por lo

tanto, conocemos toda la tabla de caracteres.

Luego comparamos este caracter con el obtenido de aplicar transformadas a K, ver la Definición

3.1, de forma inductiva. Esto es, se toma ⇁2k y, para obtener la representación racional irreducible

asociada iremos bajando de cuerpo uno a uno a partir de Q(2n↑1). Así, en un paso, de la represen-

tación ω que está definida en Q(2k), obtenemos una representación en Q(2k↑1) y así sucesivamente,

bajando en la cadena de cuerpos hasta llegar a la representación racional. Este proceso nos asegura

obtener una representación irreducible en cada paso, por el Teorema 3.5.
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Note que el grupo de Galois de la extensión Q(ε2k)/Q(ε2k→1) es un grupo de orden 2 generado por

el automorfismo ε2k ⇔→ ↘ε2k . Luego si ϑ es el caracter de la reprentación ω del conjunto Irr(2k) y

ϑ↔↔ es el caracter de la representación transformada a Q(ε2k→1), se tendrá que si ⇀ no es congruente

a 0 ni a 2k↑1 módulo 2k entonces ϑ↔↔(xς) = ες2k + ε↑ς
2k + (↘ε2k)

ς + (↘ε2k)
↑ς.

Si ⇀ es impar entonces ϑ↔↔(xς) = 0. Si no lo fuera, entonces ϑ↔↔(xς) = 2(εϑ2q + ε↑ϑ
2q ) con ϱ impar

y 2 ↙ q. Entonces, para los ⇀ que son impares, el caracter de la representación racional obtenida

evaluado en xς es 0, pues al ir bajando de cuerpo los caracteres serán sumas de 0.

Para el caso en donde ⇀ no es impar, la imagen del caracter se irá duplicando cada vez que bajemos

a otro cuerpo hasta llegar a la representación sobre Q(ε2q ). Entonces, en este cuerpo el caracter

asociado evaluado en xς es 2r(εϑ2q + ε↑ϑ
2q ).

Para la siguiente etapa el grupo de Galois actuará enviando ε2q ⇔→ ↘ε2q . Por lo tanto, como ϱ es

impar, el caracter asociado evaluado en xς es 0.

Luego, de todas formas cuando lleguemos en este proceso inductivo a la representación sobre los

racionales, se tendrá que el caracter de xς es 0. Luego para xς con ⇀ no congruente a 0 ni a 2k↑1

módulo 2k, la imagen del caracter racional es igual a la del caracter racional de la representación

obtenida en la Proposición, calculado más arriba.

Si ⇀ es congruente a 2k↑1 módulo 2k es fácil ver que el caracter de la representación racional

obtenida evaluado en xς es ↘2k. Similarmente, si ⇀ es congruente a 0 módulo 2k, entonces el

caracter evaluado en xς es 2k.

Por último como ϑ(y) = ϑ(xy) = 0, el caracter racional obtenido también es 0 al evaluarlo en y y

xy. Concluimos que esta representación racional, obtenida inductivamente haciendo el proceso de

K-transfomada con K desde Q(ε2n→1) a Q, que sabemos que es irreducible, tiene el mismo caracter

que la representación racional que calculamos directamente y por lo tanto son equivalentes. Eso

implica que la representación que calculamos es irreducible. De esta forma, tenemos de forma

efectiva las n+ 2 representaciones irreducibles racionales del grupo Q(2n).

5.3. Algoritmo constructivo y explícito

El siguiente procedimiento es claramente generalizable a un grupo finito G y permite encontrar sus

K-representaciones irreducibles salvo K-equivalencia. Donde, al igual que antes, K es un cuerpo

de números contenido en un cuerpo de descomposición de G que es una extensión algebraica finita

de Q. Por ejemplo, el cuerpo de descomposición Lt = Q(εt) con t el exponente de G y εt una raíz

t-ésima primitiva de 1. Sin embargo, lo redactamos para el grupo G = Q(2n) cuaternio generalizado

con el propósito de simplificar la ilustración.
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Sea Q ⇓ K ⇓ L una extensión finita algebraica de cuerpos, considere que si ω es una L-

representación, llamamos al conjunto {ω⇀ : ↼ ↗ Gal(L/K)} la clase de Galois de L sobre K

de ω. El conjunto de L-representaciones irreducibles de G se particiona en estas clases de Galois,

hablamos de un representante de las clases de Galois cuando se considera un representante por

cada una de estas clases.

Para el procedimiento que sigue, consideramos L = Q(ε2k→1) y K = Q(ε2k→2), con k bajando desde

k = n hasta k = 2 en cada paso.

Algoritmo 5.5. Procedimiento para la construcción explícita de K-representaciones irreducibles

a partir de las L-representaciones irreducibles de G, con L extensión finita algebraica de K.

Entrada: El conjunto U constituido por un representante ⇁ por cada órbita de Galois, para

Gal(L/K), de representaciones irreducibles.

Salida: Las representaciones irreducibles sobre K.

Procedimiento:

1. Tome ⇁ ↗ U , luego es irreducible y definida sobre Q(ε2n→1).

2. Si ⇁ está definida sobre Q(ε2k→2), o un cuerpo K de grado menor sobre Q, no hace nada

pues ⇁ ya está definida por matrices con coeficientes en el cuerpo buscado.

3. Si no, entonces

Realice la transformada a K para K = Q(ε2k→2) a ⇁ usando la base ϱ = {1, ε2k→1}.

Obtenga la representación K(⇁) con coeficientes en K, para K = Q(ε2k→2).

4. Repita el procedimiento con cada ⇁ ↗ U .

Demostración. El algoritmo comienza seleccionando entre las representaciones irreducibles sobre

L := Q(ε2k→1), cada una en una órbita de Galois distinta, considerando el grupo de Galois

Gal(Q(ε2k→1)/Q(ε2k→2)), para obtener todas las representaciones irreducibles sobre Q(ε2k→2) no

equivalentes entre sí.

Como el grupo de Galois de la extensión Q(ε2k→1)/Q(ε2k→2) es el grupo de orden 2 que contiene

al automorfismo que envía ε2k→1 a ↘ε2k→1 , una base apropiada para realizar la transformada es la

base ϱ = {1, ε2k→1}. El Teorema 3.5 nos asegura que las representaciones obtenidas en cada paso

son irreducibles.

Observe que el algoritmo comienza seleccionando una de las 3·2n↑4+3 representaciones irreducibles

sobre L = Q(ε2n→1), cada una en una órbita de Galois distinta, considerando el grupo de Galois

Gal(Q(ε2n→1)/Q(ε2n→2)), para obtener representaciones irreducibles sobre Q(ε2n→2) no equivalentes

entre sí.
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Una vez que tenemos este conjunto de representaciones, cambiamos los cuerpos, por lo tanto el

grupo de Galois, al paso inferior. Es decir, L = Q(ε2n→2) , K = Q(ε2n→3) y el grupo de Galois

ahora es Gal(Q(ε2n→2)/Q(ε2n→3)) y encuentra las representaciones irreducibles sobre Q(ε2n→3) y así

sucesivamente hasta Q.

Para ilustrar cómo funciona el Algoritmo 5.5, obtenemos las representaciones irreducibles en los

distintos cuerpos intermedios para Q(24).

Ejemplo 5.6. Sea G = Q(24) el grupo cuaternio de orden 16. En este caso n = 4 y G tiene

3 + 2n↑2 = 7 representaciones irreducibles complejas, todas realizables en L8 = Q(ε8) Como

antes, G tiene cuatro representaciones irreducibles de grado 1 definidas sobre Q que mandan los

generadores a (1) y (↘1). Las otras representaciones irreducibles están dadas por

⇁s : x ⇔→



εs8 0

0 ε↑s
8



 , y ⇔→



 0 1

(↘1)s 0





con s ↗ {1, 2, 3}.

Para encontrar las representaciones irreducibles sobre Q(i), ya tenemos las cuatro definidas sobre

Q y la representación que envía x a



i 0

0 ↘i



, falta una más, para eso escogemos la representación

que envía x a



ε8 0

0 ε↑1
8



 y ocuparemos el Algoritmo 5.5 con la base ϱ = {1, ε8} entonces con esto

la representación está dada por

φ : x ⇔→





0 i 0 0

1 0 0 0

0 0 0 1

0 0 ↘i 0




, y ⇔→





0 0 1 0

0 0 0 1

↘1 0 0 0

0 ↘1 0 0





y las representaciones de Q ya las calculamos anteriormente. Y serán las cuatro representaciones

de dimensión uno y dos representaciones más que están dadas por

ω1 : x ⇔→





0 ↘1 0 0

1 0 0 0

0 0 0 1

0 0 ↘1 0




, y ⇔→





0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




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ω2 : x ⇔→





0 0 0 ↘1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 ↘1 0 0 0





, y ⇔→





0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

↘1 0 0 0 0 0 0 0

0 ↘1 0 0 0 0 0 0

0 0 ↘1 0 0 0 0 0

0 0 0 ↘1 0 0 0 0





.
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1. Introducción

De la periodicidad de las funciones elípticas, sabemos que el conjunto de valores singulares es un

conjunto finito, en otras palabras, toda función elíptica pertenece a la llamada clase de Speiser

o clase S. De los resultados de Eremenko y Lyubich [5] se sigue que tales funciones exhiben un

comportamiento dinámico similar al de las funciones racionales: no existen dominios errantes ni

dominios de Baker.

La iteración de funciones elípticas ha sido objeto de estudio en las últimas décadas. Los trabajos

[7] y [16] son considerados pioneros en el estudio y ahora existe una vasta literatura sobre el tema,

mencionamos los trabajos [6–10,13–17,19] como referencias.

La mayoría de los trabajos se enfocan en estudiar funciones elípticas que están directamente re-

lacionadas con la función ω de Weierstrass asociada a ciertas retículas particulares. Este estudio

está orientado en la misma dirección.

En el presente trabajo se estudia la familia paramétrica de funciones elípticas definidas por F!,c(z) =

(ω!(z))2 + c, para c → C, donde ω! denota la función elíptica de Weierstrass (véanse las secciones

2.2 y 2.3). En [13], la familia más general fn,!,c(z) = (ω!(z))n+ c es estudiada, obteniendo valores

particulares de parámetros para los cuales el conjunto de Fatou de la función correspondiente es un

conjunto vacío. Y en [11] el caso n = 1 ha sido estudiado obteniendo resultados similares. Ahora

buscamos extender algunos de los resultados obtenidos en [11] de la familia f1,!,c(z) = ω!(z)+ c a

nuestra familia. Además, utilizando algunos de los resultados en [8] podemos obtener parámetros

para los cuales la función correspondiente presenta una dinámica prescrita.

La organización del escrito es la siguiente. En la Sección 2 presentamos los preliminares de la teoría

de iteración de funciones meromorfas, los fundamentos de las funciones elípticas y en particular

algunas propiedades de la función ω!. La familia F!,c es definida en la Sección 3 y los primeros

resultados son presentados. En la Sección 4 construimos algunos parámetros con dinámica prescrita.

Finalmente, en la Sección 5 consideramos deformaciones quasi-conformes simples de funciones

elípticas.

2. Teoría preliminar

2.1. Teoría de Fatou y Julia para funciones meromorfas

Denotemos por Ĉ = C ↑ {↓} a la esfera de Riemann y sea f : C ↔ Ĉ una función meromorfa

trascendente. La iteración de la función f genera una dicotomía en la esfera de Riemann. El

conjunto de Fatou, denotado por F(f), está compuesto por los puntos z → C para los cuales existe

una vecindad en la que la sucesión de iteradas {fn}n→0 está bien definida y es normal en el sentido
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de Montel. El conjunto de Julia, denotado por J (f), consiste en el complemento del conjunto de

Fatou en la esfera de Riemann. Si f posee al menos un polo que no es un valor omitido, el conjunto

de Julia está determinado por la siguiente relación

J (f) =
⋃

n→0

f↑n(↓).

Un punto z0 → C es llamado periódico si existe un p ↗ 1 tal que fp(z0) = z0. Al mínimo p con

esta propiedad, se le llama periodo de z0 y el conjunto {z0, f(z0), . . . , fp↑1(z0)} es llamado el p-

ciclo de z0. Si p = 1, z0 es un punto fijo. El multiplicador de un punto p-periódico está dado

por la derivada (fp)↓(z0). El multiplicador proporciona información dinámica local de los ciclos

periódicos. Decimos así que un punto p-periódico es atractor, repulsor o neutro si |(fp)↓(z0)| es

menor, mayor o igual a 1, respectivamente. Si (fp)↓(z0) = 0, z0 es llamado súper-atractor y si el

multiplicador es una raíz de la unidad, el ciclo es llamado parabólico. Es un hecho conocido que el

conjunto de puntos periódicos repulsores es denso en el conjunto de Julia.

De la definición, el conjunto de Fatou es abierto en C. Además, tanto F(f) como J (f) son com-

pletamente invariantes. Sea U ↘ F(f) una componente conexa. Decimos que U es pre-periódica si

existen m > n ↗ 0 tales que fm(U) = fn(U). Si n = 0, U es una componente periódica de periodo

p = m ≃ n, y si m = 1, U es llamada una componente invariante. Una componente que no es

pre-periódica, es llamada un dominio errante. Análogo al caso racional, existe una clasificación de

las componentes periódicas de una función meromorfa trascendente, aunque en el contexto tras-

cendente aparece un nuevo tipo de componente periódica de Fatou que no existe para funciones

racionales, los llamados dominios de Baker. U ↘ F(f) es un dominio de Baker de periodo p, si

existe un punto z0 → εU tal que fnp(z) ↔ z0 cuando n ↔ ↓, pero fp(z0) no está definido. En

particular, si p = 1 tenemos que z0 = ↓ → Ĉ.

Denotemos por Crit(f) al conjunto de puntos críticos de la función f . Además de los valores

críticos, en el contexto meromorfo existen otros puntos en C, en los cuales la rama inversa f↑1

puede no estar bien definida. Un punto w se denomina un valor asintótico para f si existe una

trayectoria ϑ : [0,↓) ↔ C tal que ĺımt↔↗ ϑ(t) = ↓ y ĺımt↔↗ f(ϑ(t)) = w. Definimos así el

conjunto singular de f , denotado por sing(f↑1), como el conjunto de valores críticos y valores

asintóticos de f . Existe una fuerte relación entre cuencas atractoras o parabólicas y el conjunto

singular de f . Si C = {U0, U1, . . . , Up↑1} es un p-ciclo de componentes atractoras o parabólicas,

entonces Uj ⇐ sing(f↑1) ⇒= ⇑ para algún 0 ⇓ j < p. Si C es un ciclo de discos de Siegel o anillos de

Herman, entonces εUj ↘ P(f) para todo 0 ⇓ j < p, donde P(f) denota el conjunto post-singular

el cual está dado por

P(f) =
⋃

n→0

fn(sing(f↑1)).
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Una descripción más detallada de los resultados en iteración de funciones meromorfas se puede

encontrar en [1, 2] para funciones meromorfas en general y en [7, 8, 10] para funciones elípticas.

2.2. Funciones elípticas

Existen varias formas de definir una función elíptica. En el presente trabajo, consideramos la

definición más simple que se basa en una propiedad de periodicidad. Siendo el conjunto de periodos,

una retícula en el plano complejo.

Definición 2.1. Una retícula ! de números complejos, es un subconjunto de C con dos propieda-

des:

i. ! es un grupo aditivo.

ii. Las normas de los elementos distintos de cero, están acotadas por abajo, es decir, existe

k → R, k > 0, tal que |ϖ| ↗ k para todo ϖ → ! \ {0}.

Existen tres tipos de retículas:

i. Trivial: consiste solo del cero.

ii. Simple: consiste de todos los múltiplos enteros de un solo elemento generador, que es único

salvo el signo.

iii. Doble: consiste de todas las combinaciones lineales con coeficientes enteros de dos elementos

generadores ϖ1 y ϖ2, cuya razón es no real. Estos generadores no son únicos; si ϖ1 y ϖ2

generan !, también lo hacen

ϖ↓
1 = pϖ1 + qϖ2, ϖ↓

2 = rϖ1 + sϖ2

donde p, q, r, s son enteros con pr ≃ qs = 1.

Es usual elegir el orden de ϖ1 y ϖ2 de tal manera que Im(ϖ2/ϖ1) > 0. En lo sucesivo, consideraremos

retículas de tipo doble con esta propiedad. Así, si ! es una retícula doble, generado por ϖ1 y ϖ2,

entonces

! = [ϖ1,ϖ2] = {mϖ1 + nϖ2 : m, n → Z}.

Definición 2.2. Un subconjunto P ↘ C cerrado y conexo es una región fundamental para ! si

para cada z → C, P contiene al menos un punto en la misma !-órbita de z y no existen dos puntos

en el interior de P en una misma !-órbita. Si P es un paralelogramo, es llamado un paralelogramo

periodo para !.
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Los puntos retícula, son los vértices de un patrón de paralelogramos que llenan todo el plano y

cuyos lados pueden ser tomados como cualquier par de generadores.

2.2.1. Formas

Dada una retícula ! = [ϖ1,ϖ2], su apariencia en el plano complejo, está determinada por la razón

ϱ = ϖ2/ϖ1 (por convención, elegimos los generadores de tal manera que Im(ϱ) > 0). Es usual

referirse al tipo de retícula por la forma del paralelogramo periodo correspondiente. Si ! es una

retícula y k ⇒= 0 es un número complejo, k! denota el subconjunto de valores kϖ, ϖ → !. Ésta

también es una retícula, que es llamada similar a !; la similitud es una relación de equivalencia

entre retículas y a una clase de equivalencias se le llama la forma de la retícula. Como ejemplo,

dado que ϖ1 ⇒= 0, la retícula !ω = [1, ϱ ] es similar a la retícula ! = ϖ1!ω .

Sin embargo, si los generadores de una retícula arbitraria ! no son especificados, el valor ϱ no

está determinado de manera única. La acción del grupo modular clásico ” actuando en el semi-

plano superior brinda la relación entre las posibles elecciones de ϱ para una sola forma de retícula.

Entonces cada forma de retícula está representada por un solo punto en una región fundamental

del grupo ”. La región fundamental primitiva del grupo modular ” se muestra en la Figura 1 y

está definida por

B =

{
Im(ϱ) > 0, ≃1

2
⇓ Re(ϱ) <

1

2
, |ϱ | ↗ 1, con |ϱ | > 1 si Re(ϱ) > 0

}
. (2.1)

Figura 1: La región fundamental B.

Definición 2.3. Sea ! = [ϖ1,ϖ2] una retícula.

(1) ! es rectangular real si los generadores pueden ser elegidos (bajo similitud) como ϖ1 → R y

ϖ2 → iR.

(2) ! es rómbica real si los generadores pueden ser elegidos (bajo similitud) como complejos

conjugados, i.e. ϖ2 = ϖ1.
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(3) ! es cuadrada si ! = i!.

(4) ! es triangular si e2εi/3! = !. En este caso el paralelogramo periodo consta de dos triángulos

equiláteros.

En cada caso (1)≃(3), el paralelogramo periodo con vértices en 0, ϖ1, ϖ2 y ϖ1+ϖ2 puede ser elegido

como un paralelogramo rectangular, rómbico o cuadrado respectivamente.

Lema 2.4 ([7]). ! es una retícula triangular si y solo si ! = [ϖeεi/3,ϖe↑εi/3], para algún ϖ → C,

ϖ ⇒= 0.

Toda retícula satisface ! = ≃!, los únicos casos donde ! = k!, con k ⇒= ±1, son las retículas

cuadradas (! = i!) y las retículas triángulares (! = ς!, donde ς3 = 1).

Definición 2.5. Sea f : C ↔ Ĉ una función meromorfa. Decimos que f es una función elíptica

si f es periódica con respecto a una retícula !. Equivalentemente, f es periódica de periodo ! si

f(z + ϖ) = f(z), para todo z → C y todo ϖ → !.

2.3. La función ω de Weierstrass

Nos referimos a [4,7,8] para mayor información sobre resultados y propiedades de la función ω de

Weierstrass.

Dada una retícula ! arbitraria, el ejemplo típico de una función elíptica con respecto a ! es la

función ω de Weierstrass, definida por

ω!(z) =
1

z2
+

∑

w↘!\{0}

(
1

(z ≃ w)2
≃ 1

w2

)
.

ω es una función elíptica par con polos de orden 2. Además, la derivada ω↓ es una función elíptica

impar de orden 3, periódica con respecto a !. Ambas funciones están relacionadas por la ecuación

diferencial

(ω↓
!(z))

2 = 4(ω!(z))
3 ≃ g2ω!(z)≃ g3, (2.2)

donde g2(!) = 60
∑

ϑ↘!\{0} ϖ
↑4 y g3(!) = 140

∑
ϑ↘!\{0} ϖ

↑6. Si g2(!) = g2(!↓) y g3(!) = g3(!↓)

para retículas ! y !↓, entonces ! = !↓. Por lo que g2(!) y g3(!) son llamados invariantes de la

retícula !. Además, si g2, g3 → C son tales que g32 ≃ 27g23 ⇒= 0, entonces existe una retícula ! con

g2 = g2(!) y g3 = g3(!) como sus invariantes. Para !ω = [1, ϱ ], las funciones gi(ϱ) = gi(!ω ) son

funciones de ϱ analíticas en el semi-plano superior Im(ϱ) > 0.

Los invariantes g2 y g3 cumplen la siguiente propiedad de homogeneidad con respecto a retículas

similares.
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Lema 2.6 ([8]). Para retículas ! y !↓, tenemos que !↓ = k!, para algún k → C \ {0} si y solo si

g2(!
↓) = k↑4g2(!) y g3(!

↓) = k↑6g3(!).

Una retícula ! es llamada real si ! = ! := {ϖ : ϖ → !}. Aquí, z̄ denota el conjugado complejo de

z → C. Tenemos la siguiente caracterización para retículas reales.

Proposición 2.7 ([12]). Las siguientes afirmaciones son equivalentes:

1. ! es un retícula real;

2. ω!(z̄) = ω!(z);

3. g2, g3 → R.

Sean ! y k → C \ {0}, al sustituir k en la definición correspondiente de las funciones ω! y ωk! se

obtiene la siguiente propiedad de homogeneidad

ωk!(kz) =
1

k2
ω!(z), ⇔z → C. (2.3)

Observación 2.8. Mencionamos un par de propiedades adicionales que relacionan los puntos

críticos, los valores críticos y los invariantes de una función de Weierstrass para una retícula !

fija.

1. Para toda retícula ! = [ϖ1,ϖ2], ω! tiene una infinidad de puntos críticos simples, uno en

cada punto medio de la retícula. Denotamos este conjunto por Crit(ω!) = {ς1,ς2,ς3} + !,

donde

ς1 =
ϖ1

2
, ς2 =

ϖ2

2
y ς3 = ς1 + ς2.

2. Sabemos que ω! no contiene valores asintóticos finitos, por lo que el conjunto singular de la

función ω! está dado por los valores críticos w = ω!(c), c → Crit(ω!). De la periodicidad de

ω!, el conjunto singular es finito y consta de los valores:

e1 = ω!(ς1), e2 = ω!(ς2) y e3 = ω!(ς3). (2.4)

3. Dado que los ei son soluciones distintas a la ecuación (2.2), al factorizar e igualar, obtenemos

las siguientes relaciones:

e1 + e2 + e3 = 0, e1e3 + e1e2 + e2e3 = ≃g2
4
, e1e2e3 =

g3
4
. (2.5)
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2.4. ω!(z) y retículas triangulares

Los siguientes resultados relacionan las formas de las retículas con los valores críticos de ω!, véase

[4,7]. Sea p(x) = 4x3≃ g2x≃ g3 el polinomio asociado a ! por (2.2) y defínase # = g32 ≃27g23 como

su discriminante.

Proposición 2.9 ([4]). Sea ! una retícula real.

Si ! es cuadrada, g3 = 0 y las raíces de p son 0, ±↖
g2/2. Así e1 =

↖
g2/2 y e2 = ≃e1.

Si ! es triangular, g2 = 0 y las raíces de p son las raíces cúbicas de g3/4 siendo todas distintas

de cero. Entonces e1, e2, e3 tienen el mismo módulo y ei → R para algún i = 1, 2, 3 si y solo

si g3 → R.

La simetría de las retículas está reflejada en el comportamiento del conjunto post-crítico.

Proposición 2.10 ([7]). Sea ! una retícula real.

Si ! es cuadrada, P(ω!) incluye al punto al infinito y e3 → J (ω!). De hecho, P(ω!) =
⋃

n→0 ω
n
!(e1) ↑ {e2, 0,↓}. Por lo que dicho conjunto está determinado por la órbita de e1.

P(ω!) está contenido en tres conjuntos positivamente invariantes: el conjunto ϑ =
⋃
ωn
!(e1),

y los conjuntos e2εi/3ϑ y e4εi/3ϑ. (Estos conjuntos no son necesariamente disjuntos.)

2.5. El conjunto de Fatou

Los siguientes resultados clasifican todas las posibilidades del conjunto de Fatou para la función

de Weierstrass con retículas triangulares y cuadradas, respectivamente.

Proposición 2.11 ([8]). Para toda retícula triangular ! = [ϖ, e2εi/3ϖ], uno de los siguientes casos

debe ocurrir:

1. J (ω!) = Ĉ.

2. Para algún periodo p y algún multiplicador µ, 0 ⇓ µ ⇓ 1 existen exactamente tres ciclos

periódicos (super)atractores o parabólicos en el conjunto de Fatou de periodo p y multiplicador

µ.

3. Existe exactamente un ciclo periódico (súper)atractor o parabólico en el conjunto de Fatou

que contiene los tres valores críticos.

4. Los únicos ciclos de Fatou son discos de Siegel.



316 A. Esparza-Amador CUBO
27, 2 (2025)

Proposición 2.12. Para una retícula cuadrada !, uno de los siguientes casos ocurre:

1. J (ω!) = Ĉ.

2. Existe exactamente un ciclo periódico (súper)atractor o parabólico del conjunto de Fatou.

3. Los únicos ciclos periódicos de Fatou son discos de Siegel.

La siguiente definición será utilizada al estudiar las familias paramétricas ω2
! + c, c → C y ! una

retícula.

Definición 2.13. Dos funciones elípticas f = f! y g = g!→ sobre retículas ! y !↓ respectivamente,

son conformemente conjugadas si existe una aplicación φ(z) = ϑz+↼, ϑ ⇒= 0 tal que f ↙φ = φ ↙ g.

3. La familia F!,c(z) = (ω!(z))2 + c

En este trabajo buscamos extender algunos de los resultados obtenidos en [8] y [11] para la familia

F!,c, definida por

F!,c(z) = (ω!(z))
2 + c, (3.1)

donde c → C y ! es una retícula real. Dado que F ↓
!,c = 2ω! · ω↓

!, se cumple

Crit(F!,c) = Crit(ω!) ↑ {ω↑1
! (0)}.

y los valores críticos están dados por v1 = e21+c, v2 = e22+c, v3 = e23+c y v4 = c. De las relaciones

en (2.5), tenemos la siguiente relación

v1 + v2 + v3 + v4 = 4c+
g2(!)

2
. (3.2)

Para cada retícula fija !, decimos que la familia holomorfa de aplicaciones meromorfas F!,c, para-

metrizada sobre c → A ↘ C es reducida si para todo c ⇒= c↓ en A, F!,c y F!,c→ no son conformemente

conjugadas. Siguiendo las ideas en [11], probamos que es suficiente restringirse a un paralelogramo

periodo P como una familia reducida.

Proposición 3.1. Dada una retícula ! si F!,c(z) = (ω!(z))2 + c, entonces para todo ϖ → !, F!,c

es conformemente conjugada a F!,c+ϑ.

Demostración. Un cálculo directo muestra que ↽(z) = z ≃ ϖ es una conjugación conforme entre

F!,c y F!,c+ϑ.

La siguiente identidad, probada en [7], será útil en el resto de esta sección.
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Teorema 3.2. Sea ! una retícula arbitraria y u → C. Para cada i = 1, 2, 3, tenemos

ω!(u± ςi) =
(ei ≃ ej)(ei ≃ ek)

ω!(u)≃ ei
+ ei. (3.3)

A continuación mostramos algunos resultados análogos a [11, Sección 3]. Nos restringimos a un

paralelogramo periodo P .

Teorema 3.3. Sea ! una retícula. Si c y c↓ pertenecen al interior de un paralelogramo periodo P

para !, entonces F!,c y F!,c→ no pueden ser conformemente conjugados.

Demostración. Para simplificar la demostración, omitiremos ! de la notación. Supongamos que

(Fc ↙↽)(z) = (↽ ↙Fc→)(z) para todo z → C. Dado que la conjugación debe fijar el punto al infinito,

tenemos que ↽(z) = Az + B, para algunos A,B → C con A ⇒= 0. Por otro lado, dado que 0 es

un polo de ambas funciones elípticas, ↽(0) = B debe ser un polo de Fc, por lo que B = ϖ0 → !.

Además, ↽ debe enviar polos en polos de manera inyectiva, así que ! = ↽(!) = A! + ϖ0, lo que

implica que A! = ! ≃ ϖ0 = !. Análogamente, para ↽↑1, tenemos que A↑1! = !. Por lo que

Ak! = ! para todo k → Z, lo que implica que |A| = 1 y A = e2εi/p para algún p → N. Entonces

e2εi/p! = !. De los resultados en [18], tenemos que si e2εi/p = A ⇒= 1 entonces p = 2, 3, 4 o 6.

Ahora bien, dado que ↽ envía los valores críticos de Fc→ en los valores críticos de Fc, tenemos

c = ↽(c↓) = Ac↓ + ϖ0. (3.4)

Calculando las composiciones en la conjugación, tenemos por un lado

F!,c(↽(z)) = (ω!(Az +B))2 + c = (ω!(Az))2 +Ac↓ + ϖ0

y

↽(F!,c→(z)) = A(ω!(z))
2 +Ac↓ + ϖ0,

para todo z → C. Igualando ambas composiciones y usando la homogeneidad tenemos

A(ω!(z))
2 = (ω!(Az))2 =

1

A4
(ω!(z))

2.

Lo que implica que A5 = 1, i.e., A = e2εi/p con p = 5, lo que contradice las opciones de p. Se

sigue que A = 1. Finalmente, B = ϖ0 = 0 ya que c y c↓ están en el interior de un paralelogramo

periodo. Por lo que ↽ = Id, contradiciendo la conjugación. Con esto concluimos la demostración

del resultado.
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Proposición 3.4. Dada una retícula arbitraria !, z → C y cualquier punto ς → Crit(ω!), entonces

tenemos que ς + z → J (F!,c) si y solo si ς ≃ z → J (F!,c).

Demostración. Del Teorema 3.2 y Crit(F!,c) = Crit(ω!) ↑ {ω↑1
! (0)}, se sigue que

F!,c(ς + z) = (ω!(ς + z))2 + c = (ω!(ς ≃ z))2 + c = F!,c(ς ≃ z).

Lema 3.5. Si ! es una retícula real y c → C es algún parámetro fijo, entonces F!,c es anti-

conformemente conjugado a F!,c̄.

Demostración. Un cálculo directo muestra que ⇀(z) = z̄ es una conjugación.

4. Parámetros con dinámicas predeterminadas

En la presente sección, mostraremos valores de parámetros específicos en la familia F!,c para los

cuales se cumplen algunos de los casos en las proposiciones 2.11 y 2.12.

Proposición 4.1. Sea !↓ una retícula real tal que ϖ↓/2 es el punto crítico real positivo más pequeño

y er es el valor crítico real más grande. Si m es cualquier entero impar y k = 3
√

2er/(mϖ↓) (tomando

la raíz real), entonces para

! = k!↓ y c =
mkϖ↓

2

(
1≃ mkϖ↓

2

)
,

la función F!,c tiene un punto fijo súper-atractor z0 =
mkϖ↓

2
.

Demostración. Del Lema 7.2 en [8], sabemos que z0 es un punto fijo súper-atractor para ω!. Luego,

F!,c(z0) = (ω!(z0))
2 +

mkϖ↓

2

(
1≃ mkϖ↓

2

)
=

mkϖ↓

2
.

Dado que F ↓
!,c = 2ω! · ω↓

!, se sigue que F ↓
!,c(z0) = 0, lo que demuestra la proposición.

Consideramos la siguiente normalización para retículas triangulares.

Definición 4.2. Denotamos por ! = [ϖ, e2εi/3ϖ], con ϖ > 0, a la retícula con invariantes g2 = 0

y g3 = 4. ! es llamada la retícula triangular estándar.

Teorema 4.3 ([8, Teorema 8.3]). Sea ! la retícula triangular estándar. Para todo m,n → Z, si

k =

(
1

(ϖ/2) +mϖ+ nϖe2εi/3

)1/3

,
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entonces $ = k! tiene exactamente tres puntos fijos súper-atractores. Estos parámetros se localizan

en g3($) = 4(ϖ/2 +mϖ+ nϖe2εi/3)2.

Denotamos por c0 a uno de los puntos fijos súper-atractores del teorema anterior.

Proposición 4.4. Sean !, k y $ como en el Teorema 4.3 y sea c0 uno de los puntos fijos súper-

atractores de la función de ω”. Entonces la función

F”,c0(z) = (ω”(z))
2 + c0(1≃ c0),

tiene un punto fijo súper-atractor en z = c0.

Demostración. Por el Teorema 4.3, tenemos que ω”(c0) = c0 con ω↓
”(c0) = 0. Así, sustituyendo en

la forma de F”,c0 tenemos

F”,c0(c0) = c20 + c0(1≃ c0) = c0, y F ↓
”,c0(c0) = 0.

Finalmente, mostramos parámetros en el caso de retículas cuadradas con puntos súper-atractores.

Definición 4.5. Denotamos por ! = [ϖ, iϖ], con ϖ > 0, a la retícula con invariantes g2 = 4 y

g3 = 0. ! es llamada la retícula cuadrada estándar.

Teorema 4.6 ([8], Teorema 9.3). Sea ! la retícula cuadrada estándar. Si

k =

(
1

(ϖ/2) +mϖ+ nϖi

)1/3

,

(tomando cualquier raíz compleja), si $ = k! entonces ω” tiene un punto fijo súper atractor. Estos

parámetros están localizados en g2($) = 4(ϖ/2 +mϖ+ niϖ)4/3.

Proposición 4.7. Sean !, k y $ como en el Teorema 4.6. Denotemos por c0 al punto fijo súper-

atractor de ω”. Entonces la función

F”,c0(z) = (ω”(z))
2 + c0(1≃ c0),

tiene un punto fijo súper-atractor en c0.

Demostración. El resultado se sigue al sustituir c0 en F”,c0 y su derivada.
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5. Deformaciones lineales

Finalmente, en esta sección mostramos que es posible obtener funciones elípticas de orden 4 con

dinámica prescrita análogas a aquellas descritas en la sección anterior, por medio de deformaciones

quasi-conformes lineales.

5.1. Campo de funciones elípticas para una retícula dada

Fijemos una retícula ! arbitraria. Es conocido que el conjunto de funciones meromorfas constituye

un campo (anillo con división conmutativo).

Por un lado, un cálculo directo muestra que la suma, la resta y el producto de cualesquiera dos

funciones elípticas con periodos !, así como el recíproco de cualquier función elíptica no cero,

son de nuevo funciones elípticas con respecto a !. Por otro lado, como subconjunto del campo de

funciones meromorfas, la suma y la multiplicación están sujetas a las leyes usuales (conmutatividad,

asociatividad y distributividad). En consecuencia, el subconjunto de funciones elípticas con respecto

a ! constituye un (sub)campo, el cual se denota por:

E(!) := {f : C ↔ Ĉ : f es elíptica de periodo !}.

5.2. Aplicaciones quasiconformes

Dado que nos interesa solo el caso en que las transformaciones a conjugar sean de tipo lineal,

daremos una descripción de las aplicaciones quasi-conformes solo de este tipo. Véase [3].

Consideremos a CR como el plano cartesiano visto como R-espacio vectorial. Toda aplicación R-

lineal L : CR ↔ CR puede ser escrita usando coordenadas (z, z̄), en la forma

L(z) = az + bz̄, a, b, z → C.

Nos restringimos a aplicaciones R-lineales que son invertibles y preservan orientación, i.e., |a| > |b|.

Definimos el coeficiente de Beltrami de L como µ(L) =
b

a
y denotamos por ⇁ → R/(πZ) el argu-

mento medio de µ(L), tenemos así

µ(L) :=

∣∣∣∣
b

a

∣∣∣∣ e
2ϖi.

Nótese que µ(L) → D cuando L preserva orientación y que L es holomorfa si y solo si b = 0 si y

solo si µ(L) = 0.
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Definimos la dilatación K(L) de L por

K(L) :=
1 + |µ|
1≃ |µ| =

|a|+ |b|
|a|≃ |b| ,

y la dilatación compleja de L como el coeficiente de Beltrami µ(L).

Siguiendo las definiciones en [3], tenemos entonces que L es una aplicación (lineal) quasi-conforme

sobre el plano complejo. Además, es un hecho conocido en la literatura de aplicaciones quasi-

conformes que si φ es quasi-conforme y f es una función holomorfa, entonces

g = φ ↙ f ↙ φ↑1,

es una función holomorfa en los dominios de definición correspondientes.

5.3. Conjugación

A lo largo de esta última sección, para ϖ en el semi-plano superior H, denotamos por ! := [1,ϖ].

Ahora bien, sea f → E(!), y para µ → D tomamos φ → QC(Ĉ), dado por

φ(z) =
z + µz

1 + µ
.

Tenemos así que φ fija 0, 1 e ↓. Estamos interesados en estudiar el conjunto de funciones

g(z) = (φ ↙ f ↙ φ↑1)(z), f → E(!).

En particular, nos interesa dar respuesta a las siguientes preguntas:

¿Es φ(!) = !↓ una retícula?

En caso afirmativo, ¿g → E(!↓)?

¿Qué propiedades tiene g con respecto a f como función elíptica?

Lema 5.1. Sea ! = [1, ϱ ], con ϱ → H, una retícula. Entonces φ(!) = !↓ es una retícula con

!↓ = [1, ϱ ↓] = φ(ϱ).

Demostración. Para verificar que !↓ es efectivamente una retícula, debemos probar que las dos

propiedades se cumplen.

i. !↓ es un grupo aditivo.

ii. ∝k → R, k > 0 tal que |ϖ| ↗ k para todo ϖ → !↓ ≃ {0}.
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Dado ! = [1, ϱ ], definimos ϖ1 = φ(1) = 1 y ϖ2 = φ(ϱ) = ω+µω
1+µ . Así, dada la linealidad de φ, vemos

que

!↓ = [1, ϱ ↓] = {n+mϱ ↓ : n,m → Z, ϱ ↓ = φ(ϱ)}.

Lo que prueba que !↓ es de hecho un grupo aditivo.

Sea h(n,m) = |ϖ|2 = (n ≃ ϱym)2 + m2ϱ2x , donde ϱ ↓ = ϱx + iϱy. Calculando los puntos críticos,

vemos que (n0,m0) es punto crítico, si y solo si n0 = m0 = 0, lo que implica que ϖ ′ 0, o bien,

n0 = m0ϱx. Permitiendo solo que n,m → Z, vemos que h(n,m) tiene un mínimo con respecto a

Z, lo que implica que !↓ tiene un mínimo distinto de cero. Se sigue que !↓ es efectivamente una

retícula.

Veamos ahora que φ(!) es de hecho una retícula doble. Para ello, no es difícil ver que, para que

!↓ sea una retícula simple, basta que ϱ ↓ → R. Si este fuera el caso, tendríamos que:

r =
ϱ + µϱ

1 + µ
, φ(ϱ) = r → R,

despejando µ tenemos

µ =
ϱ ≃ r

r ≃ ϱ
,

lo que implica que

|µ| =
∣∣∣∣
ϱ ≃ r

r ≃ ϱ

∣∣∣∣ = 1,

lo que contradice la elección de µ. Luego !↓ es una retícula doble.

Veamos que φ(ϱ) = ϱ ↓ → H. Sabemos que Im(ϱ ↓) = 1
2i (ϱ

↓ ≃ ϱ ↓), entonces

ϱ ↓ ≃ ϱ ↓ =
ϱ + µϱ

1 + µ
≃
(
ϱ + µϱ

1 + µ

)
=

(ϱ + µϱ)(1 + µ)≃ (ϱ + µϱ)(1 + µ)

|1 + µ|2

=
ϱ + µϱ + µϱ + |µ|2ϱ ≃ (ϱ + ϱµ+ µϱ + |µ|2ϱ)

|1 + µ|2 =
(1≃ |µ|2)(ϱ ≃ ϱ)

|1 + µ|2

2iIm(ϱ ↓) =
1≃ |µ|2

|1 + µ|2 2i Im(ϱ)

Luego, Im(ϱ ↓) =
1

2i
(ϱ ↓ ≃ ϱ ↓) =

1≃ |µ|2

|1 + µ|2 Im(ϱ) > 0.

Lema 5.2. Sean ! = [1, ϱ ] y f → E(!). Si

g(z) = (φ ↙ f ↙ φ↑1)(z),

entonces g → E(!↓), con ϱ ↓ = φ(ϱ).
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Demostración. Tenemos que φ es una aplicación lineal, por lo que su inverso, φ↑1, debe también

ser una aplicación lineal. Así, calculando la composición:

g(z + 1) = (φ ↙ f ↙ φ↑1)(z + 1) = (φ ↙ f)(φ↑1(z) + φ↑1(1)) = (φ ↙ f)(φ↑1(z) + 1)

= φ(f(φ↑1(z))) = (φ ↙ f ↙ φ↑1)(z) = g(z).

De igual forma

g(z + ϱ ↓) = (φ ↙ f ↙ φ↑1)(z + ϱ ↓) = (φ ↙ f)(φ↑1(z) + φ↑1(ϱ ↓)) = (φ ↙ f)(φ↑1(z) + ϱ)

= (φ ↙ f)(φ↑1(z)) = φ(f(φ↑1(z))) = g(z).

Por lo que g es periódica con respecto a !↓.

5.4. Propiedades de la retícula ε(!) = !→
via ε

Antes de considerar las propiedades que tiene g como función elíptica, analizaremos qué propiedades

tiene !↓ como imagen bajo φ de la retícula !. Dado que !↓ = [1, ϱ ↓], basta analizar las propiedades

de ϱ ↓, con

ϱ ↓ =
ϱ + µϱ

1 + µ
.

Tenemos así la aplicación
φ : D∞B ↔ H

(µ, ϱ) ∈↔ ϱ + µϱ

1 + µ
.

De esta manera, tenemos en principio, una aplicación de dos variables complejas, difícil de visualizar

geométricamente. Una forma de reducir el problema, es analizar la manera en que cambia una

retícula dada bajo una pequeña perturbación con respecto al origen del disco unitario D. Por lo

que, fijando una retícula !0 = [1, ϱ0], restringimos nuestra aplicación

φ : D∞ {ϱ0} ↔ H

(µ, ϱ0) ∈↔ ϱ0 + µϱ0
1 + µ

.

Análogamente, despejando µ de nuestra aplicación original ϱ ↓ = ω+µω
1+µ , podemos obtener el pará-

metro de la deformación entre dos retículas, representadas por ϱ y ϱ ↓, dado por

µ = ≃ϱ ↓ ≃ ϱ

ϱ ↓ ≃ ϱ
.
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De nuevo, tenemos una aplicación de dos variables complejas. Considerando la misma restricción

anterior, podemos fijar un punto base ϱ0, obteniendo así

µω0 = µω0(ϱ
↓) =

ϱ0 ≃ ϱ ↓

ϱ ↓ ≃ ϱ0
.

Nótese que µω0(ϱ
↓) → Aut(Ĉ) y que esta aplicación lleva el eje real en el círculo unitario, ya que si

r → R, entonces

|µω0(r)| =
∣∣∣∣
ϱ0 ≃ r

r ≃ ϱ0

∣∣∣∣ = 1

y como µω0(ϱ0) = 0, entonces la aplicación es un isomorfismo conforme entre el semi-plano superior

H y el disco unitario D.

De esta manera, dados dos puntos ϱ0, ϱ ↓ → H, es posible encontrar una trayectoria en D (que parte

del origen) que genera una trayectoria que conecta a ϱ0 con ϱ ↓.

Si traducimos esto a nuestro objeto de estudio, las funciones elípticas, dada f → E(!0) y una

trayectoria t ∈↔ γ(t) → D con γ(0) = 0, entonces, para cada µt = γ(t), la expresión

gt(z) = (φµt ↙ f ↙ φ↑1
µt

)(z), con φµt(z) =
z + µtz

1 + µt
,

representa una familia de funciones elípticas, que son deformaciones quasi-conformes de la función

f , y además cada gt → E(!t).

5.5. El caso f = ω

Sean ! = [1, ϱ ] una retícula y f = ω! la función de Weierstrass asociada. Queremos analizar el

conjunto

Gϱ =
{
g = φ ↙ ω! ↙ φ↑1 : φ → QCK(Ĉ) de tipo lineal

}

donde cada φ es normalizada de tal forma que fija 0, 1 e ↓.

Dado que φ es un homeomorfismo que fija 0 e ↓, es claro que los ceros y polos de g son las imágenes

de los ceros y polos (respectivamente) de ω! bajo φ. Y además, el orden se preserva. Por lo que g

es también de orden 2. También, se puede probar que g es una función par:

g(≃z) = (φ ↙ f ↙ φ↑1)(≃z) = (φ ↙ f)(≃φ↑1(z))

= (φ ↙ f)(φ↑1(z)) = φ(f(φ↑1(z))) = g(z).
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Figura 2: Se muestran los planos dinámicos con base en los parámetros de la Proposición 4.1.
IZQUIERDA: El plano dinámico de la función ω!. CENTRO: El plano dinámico de la función
ω2
! + c. DERECHA: Plano dinámico de la conjugación g = φ ↙ ω! ↙ φ↑1, con φ quasi-conforme.

Por otro lado, sabemos que los polos de ω! son justamente los puntos de la retícula !. Por lo

que, los polos de g son los puntos de la retícula !↓ = φ(!). Ahora bien, sea w0 un cero de ωω y

z0 = φ(w0), tenemos

(φ ↙ ω! ↙ φ↑1)(z0) = (φ ↙ ω!)(w0) = φ(0) = 0,

es decir, si %(ω!) = {ω↑1
! (0)} denota el conjunto de ceros de la función ω!, entonces φ(%(!)) es

el conjunto de ceros de la función g. No es difícil ver que la implicación es en las dos direcciones.

De esta manera, dada una retícula arbitraria !↓ (no necesariamente real, ni rectangular, ni cua-

drada), podemos encontrar una función elíptica g → E(!↓) con la dinámica prescrita en cada uno

de los resultados de la sección anterior.

La Figura 2 muestra los tres casos asociados a la Proposición 4.1.
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Introducción

Mucho del progreso del estudio de la continuidad automática en álgebras de Banach ha ocurrido en

relación con el estudio de las álgebras de grupo, ámbito predilecto del análisis armónico abstracto.

Ejemplos de este fenómeno se pueden encontrar en el famoso libro de Dales [3] o en el estudio [2].

En esta nota estudiaremos la continuidad de operadores de entrelazamiento, un objetivo que ya

ha sido llevado a cabo en el contexto de álgebras de grupo por Willis [12], Dales y Willis [4] y

Runde [11], entre otros. Versiones particulares de este problema también han suscitado interés. Por

ejemplo, podemos mencionar los trabajos de Jewell [8] y Willis [13] sobre continuidad automática

para derivaciones, o el trabajo de Runde [10] sobre continuidad automática para homomorfismos.

El propósito de esta nota es extender resultados anteriores sobre el problema de continuidad

automática para →-álgebras de Banach dadas por convolución (generalizada, torcida) de funciones

de tipo L1 sobre grupos. De hecho, buscamos mejorar los resultados de [5] de dos formas diferentes,

pero relacionadas. Una de estas formas involucra relajar la condición de generación compacta,

fundamental para los resultados de ese artículo, mientras que la otra se basa en hacer el álgebra

de coeficientes finito-dimensional. Esto permite, por supuesto, grandes generalizaciones y nuevos

ejemplos de fenómenos de continuidad automática.

Nuestro enfoque se basa en el estudio de la semisimplicidad para los cocientes mediante ideales

finito-codimensionales (también llamados cofinitos), cerrados y bilaterales. Esta propiedad está

sorprendentemente conectada con la teoría de la continuidad automática, como lo ejemplifican los

resultados en [11], y especialmente en [4]. De hecho, nuestro enfoque hará uso explícito de algunos

de los teoremas en estos artículos, atribuidos a Willis (Teorema 2.4) y Dales-Willis (Teorema

2.7). Estos teoremas, combinados con los resultados de [5] y el resultado que obtendremos sobre

semisimplicidad, producen los nuevos ejemplos de continuidad automática.

A continuación describimos la organización del artículo: En la Sección 1 introducimos lo que lla-

mamos álgebras de convolución torcida y demostramos que sus cocientes de dimensión finita son

semisimples. Esto concluye con el Teorema 1.5 y su demostración. En la Sección 2 recordamos con-

ceptos básicos de continuidad automática y luego procedemos a combinar los resultados mencio-

nados anteriormente con los teoremas de Willis y de Dales-Willis para obtener nuestros resultados

en continuidad automática, concluyendo el artículo.

1. Semisimplicidad de los cocientes finito-dimensionales

Una acción torcida es una 4-tupla (G,ω,ε,A), donde G es un grupo localmente compacto, A un

C→-álgebra y tenemos las aplicaciones continuas ω : G → Aut(A), ε : G↑ G → UM(A), tales que

ε y G ↓ x ↔→ ωx(a) ↗ A satisfacen
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(i) ωx(ε(y, z))ε(x, yz) = ε(x, y)ε(xy, z),

(ii) ωx

(
ωy(a)

)
ε(x, y) = ε(x, y)ωxy(a),

(iii) ε(x, e) = ε(e, y) = 1,ωe = idA,

para todos los x, y, z ↗ G y a ↗ A. Aquí e denota la identidad en G.

Dada una tupla de este tipo, se puede formar el álgebra de convolución torcida L1
ω,ε(G,A), que

consta de todas las funciones Bochner-integrables ! : G → A y está dotada del producto de

convolución:

! ↘”(x) =

∫

G
!(y)ωy[”(y↑1x)]ε(y, y↑1x)dy,

mientras que la involución está dada por

!→(x) = #(x↑1)ε(x, x↑1)→ωx[!(x
↑1)→].

Con estas operaciones, L1
ω,ε(G,A) es una →-álgebra de Banach bajo la norma

≃!≃L1
ω,ε(G,A) =

∫

G
≃!(x)≃A dx.

En estas integrales dx denota la medida de Haar en G, mientras que # denota la función modular

asociada a dx. En el caso en que ε ⇐ 1, denotamos al álgebra resultante como L1
ω(G,A). Por

otra parte, en el caso en que A = C y ω ⇐ idC, el álgebra resultante se denotará por L1
ε(G) y la

llamaremos álgebra de grupo torcida.

El objetivo de este capítulo es demostrar que los ideales cofinitos y cerrados de L1
ω,ε(G,A) producen

cocientes semisimples y, para ello, necesitamos introducir una clase especial de multiplicadores. Es

conveniente entonces recordar la definición del álgebra de multiplicadores de un álgebra de Banach.

En lo que sigue, si X es un espacio de Banach, entonces B(X ) denotará el conjunto de operadores

acotados T : X → X , mientras que GL(X ) ⇒ B(X ) denotará el grupo de operadores acotados que

son invertibles.

Definición 1.1. Sea B un álgebra de Banach. Un multiplicador de B es un par m = (ϑ, µ), donde

ϑ, µ ↗ B(B) son tales que

aϑ(b) = µ(a)b, ϑ(ab) = ϑ(a)b y µ(ab) = aµ(b),

para todo a, b ↗ B.

El conjunto de todos los multiplicadores de B se llama el álgebra de multiplicadores de B y la

denotamos por M(B).
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Recordemos que el producto de multiplicadores viene dado por la siguiente fórmula:

(ϑ, µ)(ϑ↓, µ↓) = (ϑ ⇑ ϑ↓, µ↓ ⇑ µ).

Además, la norma natural en M(B) está dada por ≃(ϑ, µ)≃M(B) = máx{≃ϑ≃, ≃µ≃}. Si B es una
→-álgebra de Banach, entonces el álgebra de multiplicadores también tiene una involución natural,

(ϑ, µ)→ = (ϑ→, µ→), que verifica

ϑ→(a) = µ(a→)→ y µ→(a) = ϑ(a→)→, para todo a ↗ B.

Si B es involutiva, entonces utilizamos UM(B) para denotar al grupo unitario de M(B).

Nótese que M(B) siempre es unital y además contiene una copia de B, dada por los multiplicadores

(Lb, Rb), b ↗ B. Estos multiplicadores vienen, naturalmente, definidos por

Rb(a) = ab y Lb(a) = ba, para todo a ↗ B.

Lo interesante de esta inclusión es que, asumiendo la existencia de identidades aproximadas con-

tractivas, toda representación no-degenerada de B se extiende naturalmente a una representación

de M(B). Es un hecho bien conocido que L1
ω,ε(G,A) siempre tiene una identidad aproximada

contractiva, por lo que el siguiente lema será de importancia para nosotros.

Lema 1.2. Sea B un álgebra de Banach, X un espacio de Banach y sea ϖ : B → B(X ) una

representación contractiva. Asuma además que las siguientes son ciertas:

(i) B tiene una identidad aproximada contractiva.

(ii) La representación ϖ es no-degenerada, es decir, span{ϖ(b)ϱ | b ↗ B, ϱ ↗ X} = X .

Entonces existe una única representación unital y contractiva ϖ̃ : M(B) → B(B), tal que ϖ̃ ⇑ ςB =

ϖ.

Dada una acción torcida (G,ω,ε,A), y para a ↗ M(A), y ↗ G, consideramos el multiplicador

ma,y = (ϑa,y, µa,y) de L1
ω,ε(G,A) que viene dado por

ϑa,y(!)(x) = aωy

(
!(y↑1x)

)
ε(y, y↑1x),

µa,y(!)(x) = #(y↑1)!(xy↑1)ωxy→1(a)ε(xy↑1, y).

También fijamos la siguiente notación

$G,A = {mu,y | u ↗ UM(A), y ↗ G}.
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En el siguiente lema, recopilaremos algunos hechos bien conocidos y fáciles de probar, pero útiles

para el desarrollo de nuestro resultado.

Lema 1.3. Las siguientes aseveraciones son verdaderas.

(i) $G,A es un grupo.

(ii) Todo mu,y ↗ $G,A es unitario y tiene norma 1.

(iii) Todo multiplicador de la forma ma,y puede ser escrito como una combinación lineal de 4

elementos en $G,A.

(iv) El adjunto de ma,y satisface la formula

m→

a,y = mε(y→1,y)↑ωy→1 (a↑),y→1 , (1.1)

para todo a ↗ M(A), y ↗ G.

A continuación, procedemos a demostrar el resultado principal de la sección. Nuestra demostra-

ción está basada en el hecho de que las representaciones de grupos compactos son similares a

representaciones unitarias. El hecho relevante es el siguiente (véase [9, Theorem 0.1]).

Lema 1.4. Sea X un espacio de Hilbert de dimensión finita y V ⇒ GL(X ) un subgrupo tal que

supv↔V ≃v≃B(H) < ⇓. Entonces existe una transformación lineal positiva e invertible T ↗ GL(X )

tal que TvT↑1 ↗ U(X ), para todo v ↗ V .

Teorema 1.5. Sea (G,ω,ε,A) una acción torcida. Si I ⇒ B = L1
ω,ε(G,A) es un ideal bilateral,

cerrado y de codimensión finita, entonces I es automáticamente auto-adjunto y el álgebra cociente

B/I es semisimple.

Demostración. Dado que I es cerrado y de codimensión finita, X = B/I es un espacio de Banach

de dimensión finita. Sea ⇔·, ·↖ cualquier producto interno, por ser de dimensión finita, X es un

espacio de Hilbert con respecto a este producto interno.

Denotamos por ϖ : B → B(X ), la representación inducida en el cociente, es decir,

ϖ(!)(”+ I) = ! ↘”+ I,

para todo !,” ↗ B. Esta representación es contractiva y no degenerada, por lo que, debido al Lema

1.2 y abusando de la notación, ϖ se extiende a M(B) y, por ende, los operadores ϖ(ma,y) ↗ B(X )

están bien definidos y son uniformemente acotados. De hecho, no es difícil notar que cumplen la

identidad

ϖ(ma,y)(”+ I) = ma,y(”) + I, para todo ” ↗ B.



CUBO
27, 2 (2025)

Una nota sobre cocientes finito-dimensionales 335

Por este motivo, uno observa que

ϖ(!)(”+ I) =

∫

G
ϖ(m!(y),y)(”+ I)dy =

∫

G
m!(y),y(”)dy + I. (1.2)

Ahora bien, notamos que V = {ϖ(m)}m↔”G,A satisface todas las condiciones del Lema 1.4 y, por

ende, debe existir un operador positivo e invertible T ↗ GL(X ) tal que Tϖ(m)T↑1 ↗ U(X ), para

todo m ↗ $G,A.

Definimos entonces la representación ϖ↓ : B → B(X ) dada por ϖ↓(!) = Tϖ(!)T↑1 y probaremos

ahora que es una →-representación y que Kerϖ↓ = I, con lo cual se seguirá que B/I es →-isomorfa

a ϖ↓(B), que es una C→-álgebra, y por lo tanto habremos demostrado que B/I es semisimple.

En efecto, nótese que Kerϖ↓ = Kerϖ. Ahora bien, sea ! ↗ Kerϖ y sea ”j ↗ B alguna identidad

aproximada acotada de B. Notamos que

I = ĺım
j

ϖ(!)(”j + I) = ĺım
j

! ↘”j + I = !+ I,

por lo cual ! ↗ I. Esto prueba que Kerϖ↓ = I.

Veamos ahora que ϖ↓ es una →-representación. En efecto, si m ↗ $G,A y ϱ, φ ↗ X , entonces uno

tiene

⇔ϖ↓(m)ϱ, φ↖ = ⇔ϱ,ϖ↓(m)→φ↖ = ⇔ϱ,ϖ↓(m)↑1φ↖ = ⇔ϱ,ϖ↓(m↑1)φ↖ = ⇔ϱ,ϖ↓(m→)φ↖.

Pero, recordando que todo ma,y se puede escribir como una combinación lineal de 4 elementos en

$G,A (punto (iii) del Lema 1.3), vemos que

ϖ↓(ma,y)
→ = ϖ↓(m→

a,y), para todo a ↗ M(A), y ↗ G.

Y, en consecuencia, para ! ↗ B, ϱ ↗ X , y utilizando la igualdad (1.2), uno observa que

ϖ↓(!→)ϱ = Tϖ(!→)T↑1ϱ = T

∫

G
ϖ
(
m!↑(y),y

)
T↑1ϱ dy

= T

∫

G
#(y↑1)ϖ

(
mε(y,y→1)↑ωy(!(y→1)↑),y

)
T↑1ϱ dy

= T

∫

G
ϖ
(
mε(y→1,y)↑ωy→1 (!(y)↑),y→1

)
T↑1ϱ dy

(1.1)
=

∫

G
Tϖ

(
m→

!(y),y

)
T↑1ϱ dy

=

∫

G
ϖ↓(m!(y),y)

→ϱ dy = ϖ↓(!)→ϱ,

con lo que se termina la demostración.
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2. Aplicaciones al problema de continuidad automática

Sea B un álgebra de Banach. Un espacio de Banach X que también es un B-bimódulo se llama

B-bimódulo de Banach si las funciones

B↑ X ↓ (b, ϱ) ↔→ bϱ ↗ X y X ↑B ↓ (ϱ, b) ↔→ ϱb ↗ X

son continuas conjuntamente.

Definición 2.1. Sea B un álgebra de Banach y sean X1,X2 B-bimódulos de Banach. Una función

lineal ↼ : X1 → X2 se denomina operador de B-entrelazamiento si para cada b ↗ B, las funciones

X1 ↓ ϱ ↔→ ↼(bϱ)↙ b↼(ϱ) ↗ X2 y X1 ↓ ϱ ↔→ ↼(ϱb)↙ ↼(ϱ)b ↗ X2

son continuas.

Ejemplo 2.2. (i) Todo homomorfismo de B-bimódulos entre B-bimódulos de Banach es un

operador de B-entrelazamiento.

(ii) Sea X un B-bimódulo de Banach. Una derivación es una función lineal D : B → X que

satisface

D(ab) = D(a)b+ aD(b).

Toda derivación es un operador de B-entrelazamiento.

El problema de continuidad automática consiste en entender qué tipo de condiciones garantizan

que todo operador de B-entrelazamiento sobre el álgebra de Banach B es necesariamente continuo.

Una herramienta fundamental para atacar este problema es el llamado ideal de continuidad, que

introducimos a continuación.

Definición 2.3. Sea B un álgebra de Banach y ↼ : X1 → X2 un operador de B-entrelazamiento

entre B-bimódulos de Banach. Entonces

I(↼) = {b ↗ B | X1 ↓ ϱ ↔→ ↼(bϱ) ↗ X2 y X1 ↓ ϱ ↔→ ↼(ϱb) ↗ X2 son funciones continuas}

es el ideal de continuidad de ↼.

Nótese que I(↼) es cerrado, ya que X2 es un B-bimódulo de Banach. El siguiente teorema se debe

a Willis [12, Lemma 4.3.5]. Véase también [11, pág. 498].
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Teorema 2.4 (Willis). Sea B un álgebra de Banach, X1,X2 B-bimódulos de Banach y ↼ : X1 → X2

un operador de B-entrelazamiento. Suponga que existe una familia dirigida {Bi}i de subálgebras

de Banach de B tales que

(i) B =
⋃

i Bi y

(ii) para cada índice i, el álgebra Bi/Bi ∝I(↼) es semisimple y finito-dimensional.

Entonces I(↼) es de codimensión finita en B.

La principal aplicación de este resultado es levantar la hipótesis de generación compacta de G

de algunos de los resultados obtenidos en [5]. Nos gustaría destacar que dicha restricción fue de

importancia fundamental en ese trabajo, ya que permitió garantizar la existencia de funciones de

peso con propiedades notables (ver [5, Lemma 3.4]).

Proposición 2.5. Sea (G,ω,ε,A) una acción torcida, denotemos por B = L1
ω,ε(G,A) y suponga-

mos que ↼ : X1 → X2 es un operador de B-entrelazamiento entre los B-bimódulos de Banach X1,X2

con la propiedad de que para todos los subgrupos abiertos y compactamente generados H ⇒ G, el

ideal I(↼)∝L1
ω,ε(H,A) tiene codimensión finita en L1

ω,ε(H,A). Entonces I(↼) tiene codimensión

finita en B.

Demostración. Observamos que I(↼)∝L1
ω,ε(H,A) coincide con el ideal de continuidad de ↼ cuando

este se considera como un operador de L1
ω,ε(H,A)-entrelazamiento y, por lo tanto, es cerrado.

Ahora, consideramos la familia {Hi}i de subgrupos abiertos, generados de manera compacta de G,

ordenados por inclusión y observamos que la familia Bi = L1
ω,ε(Hi,A) es una familia dirigida de

subálgebras de B tales que B =
⋃

i Bi. Esto último se sigue, por ejemplo, del hecho de que
⋃

i Bi

contiene todas las funciones continuas de soporte compacto.

Nótese que Bi/Bi ∝ I(↼) es finito-dimensional por suposición y semisimple por el Teorema 1.5.

Entonces, el resultado se sigue de aplicar el Teorema 2.4.

En particular, ahora podemos proporcionar los siguientes ejemplos de continuidad automática, ya

para grupos que no precisan ser compactamente generados.

Corolario 2.6. Sea G un grupo localmente compacto y nilpotente. Sea X un B-bimódulo de Banach

y ↼ : B → X un operador de B-entrelazamiento. Entonces ↼ es automáticamente continuo cuando

B es una de las siguientes:

(i) Álgebras de grupos torcidas L1
ε(G), asociadas con un 2-cociclo ε : G↑ G → C.

(ii) Álgebras de convolución ↽1ω(G,A), donde (G,A,ω) es un sistema C→
-dinámico con A una

C→
-álgebra unital y promediable (=nuclear).
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Demostración. Combinando la Proposición 2.5 con [5, Corollary 4.21], sabemos que I(↼) ⇒ B

es un ideal cofinito y cerrado. Además, en ambos casos el álgebra B tiene la siguiente propiedad:

todo ideal bilateral cerrado y cofinito I ⇒ B tiene una identidad aproximada izquierda de norma

acotada.

Esta propiedad que acabamos de mencionar es probada directamente en el primer caso [5, Theorem

A.3] y se sigue de la combinación de [6, Proposition VII.2.31] con el hecho de que ↽1ω(G,A) es

promediable [7, Proposition IV.4.2] en el segundo.

Dicho esto, podemos repetir parte del argumento en [5, Theorem 3.6] para concluir la demostración.

En efecto, debido al teorema de factorización de Cohen-Hewitt [1, Corollary 11.12], para cada

secuencia {bn} ⇒ I(↼) que converge a cero, existen c, dn ↗ I(↼) que factorizan a bn:

bn = cdn y ĺım
n

dn = 0.

Como la función B ↓ d ↔→ ↼(cd) es continua por la definición de I(↼), tenemos

ĺım
n

↼(bn) = ĺım
n

↼(cdn) = 0

y, por lo tanto, la restricción de ↼ a I(↼) es continua. Dado que I(↼) tiene codimensión finita, ↼

es de hecho continua en todo B.

Ahora nos limitaremos al estudio de (algunos) operadores de entrelazamiento con imágenes de

dimensión finita, lo que nos dará más flexibilidad en las hipótesis impuestas sobre la acción torcida.

Dales y Willis demostraron el siguiente teorema en [4, Theorem 2.5] y será nuestra principal

motivación para lo que sigue.

Teorema 2.7 (Dales-Willis). Sea B un álgebra de Banach tal que B/I es semisimple para cada

ideal bilateral cerrado y cofinito I ⇒ B. Entonces las siguientes condiciones son equivalentes:

(i) Cada homomorfismo de B con imagen finito-dimensional es continuo.

(ii) Cada derivación en un B-bimódulo de Banach de dimensión finita es continua.

(iii) Cada ideal bilateral cofinito de B es cerrado.

(iv) I2 es cerrado y cofinito, para cada ideal bilateral cerrado y cofinito I ⇒ B.

Por lo tanto, una aplicación del Teorema 1.5 produce la siguiente proposición.

Proposición 2.8. Sea (G,ω,ε,A) una acción torcida. Entonces, todas las condiciones en el Teo-

rema 2.7 son equivalentes para L1
ω,ε(G,A).
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En particular, obtenemos muchas clases de ejemplos para este fenómeno de dimensión finita. Los

recopilamos en el siguiente corolario. Como veremos, en este contexto se pueden extender en gran

medida los resultados del artículo [5] (cf. [5, Corollary 4.21]).

Corolario 2.9. Sea B una de las siguientes álgebras:

(i) L1
ε(G), para un grupo promediable G y un 2-cociclo ε : G↑ G → C.

(ii) ↽1ω(G,A), para una acción (no torcida) (G,ω,A) donde G es discreto y promediable y A es

una C→
-álgebra promediable (=nuclear).

Entonces B satisface todas las condiciones del Teorema 2.7.

Demostración. Verificamos la condición (iv) del Teorema 2.7. Tal como en la demostración del Co-

rolario 2.6, vemos que todo ideal bilateral cerrado y cofinito I ⇒ B tiene una identidad aproximada

izquierda de norma acotada. En este caso, I = I2 también se deduce del teorema de factorización

de Cohen-Hewitt.
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Presentamos los cálculos explícitos del caso de la acción del
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group G, we prove that the associated local moduli functor
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a function of the analytic action of the group. We present
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1. Introducción

El objetivo del presente artículo es demostrar la existencia del moduli local de variedades abelianas

polarizadas que admiten un grupo de automorfismos distinto a {±1}. Es bien sabido que estas

variedades coinciden con el locus singular del espacio de moduli Ag, que parametriza variedades

abelianas con un tipo de polarización fija (véase, por ejemplo, [20]).

En [8,10] los autores trataron este problema en el caso particular en que el grupo de automorfismo

considerado es Zp, con p un número primo. Esto era suficiente para su objetivo principal: el

estudio de las componentes irreducibles del lugar singular de Ag y las posibles inclusiones entre

estas componentes. Ahora tratamos el problema para un grupo arbitrario G.

Hemos intentado mantener la discusión en un contexto tan general como sea posible. De este modo,

trabajamos sobre un campo k algebraicamente cerrado, pero hasta donde sea posible evitamos

cualquier hipótesis sobre la característica. Del mismo modo, no suponemos que la polarización de las

variedades abelianas X consideradas sea principal y de hecho el teorema de pro-representabilidad es

demostrado para casi-polarizaciones (el divisor asociado al morfismo X → X
t no es necesariamente

amplio).

El método utilizado es la teoría formal de deformaciones locales. La teoría de deformaciones fue

creada en el contexto analítico por Kodaira y Spencer ([13]) y adaptada al caso algebraico por

Grothendieck y su escuela (véase, por ejemplo, [11, exposición VI]). Esta teoría, altamente abs-

tracta, requería algunas simplificaciones para aplicaciones prácticas. Una de estas simplificaciones

fundamentales fue desarrollada por Schlessinger ([22]) quien demostró su famoso criterio de pro-

representabilidad (véase Teorema 2.6 en la sección 2).

Afortunadamente, en la actualidad existen tratamientos sistemáticos sobre la teoría algebraica de

deformaciones, como [6, 12] o [23]. Este artículo está fuertemente basado en [8, 10] y los trabajos

pioneros de Frans Oort ([19,20]).

Los resultados de [8] y [10] han sido utilizados para estudiar algunas propiedades del lugar sin-

gular de Ag. Por ejemplo, en [9] para dar una reinterpretación de los resultados de [3] y en [2]

para el estudio del número de polarizaciones principales de una variedad abeliana con grupo de

automorfismos no trivial.

Fundamentar de un modo preciso y tan general como sea posible la existencia del moduli local de

variedades abelianas polarizadas con automorfismos ayudará a obtener resultados más profundos

sobre los puntos singulares del moduli de variedades abelianas polarizadas. Este estudio debe ser

continuado con la comprobación de que este moduli formal es algebrizable.

La combinación de estos resultados permitirá seguramente arrojar una nueva luz sobre los ejemplos

y problemas tratados en estudios más recientes como los presentados en [5, 14,15,21] y [24].
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La motivación principal de los autores es aún la determinación completa de las componentes

irreducibles del lugar singular de Ag.

En la sección 2 introducimos los conceptos básicos de la teoría local de deformaciones y los funtores

de deformación asociados a variedades abelianas y variedades abelianas polarizadas. En la sección

3 demostramos el teorema de pro-representabilidad y damos una fórmula explícita para calcular

la dimensión del moduli local. El artículo termina con los cálculos de dimensión en el ejemplo del

producto de curvas elípticas E↑E↑E, donde el grupo simétrico S3 actúa por permutación de los

factores.

Las referencias básicas para los fundamentos de la teoría de variedades abelianas son [4] y [18].

Queremos agradecer a los árbitros anónimos que ayudaron, con sus comentarios, a mejorar la

presentación de este artículo.

2. Preliminares

2.1. Funtores de deformación local

Sea k un campo algebraicamente cerrado; denotamos por Art/k la categoría de k-álgebras artinia-

nas locales R, con campo residual k.

Definición 2.1 (Funtor de deformación, [6, Definición 6.1.4]). Sea D : Art/k → Sets un funtor.

Decimos que D es de deformación si D es covariante y D(k) es un conjunto con un solo elemento.

Recordemos que dada cualquier categoría C y X ↓ C, podemos definir un funtor covariante:

hX : C → Sets,

mediante:

(i) para cada Y ↓ C, hX(Y ) = Mor(X,Y )

(ii) a cada morfismo ω0 : Y → Z en C, asociamos el morfismo

hX(ω0) : Mor(X,Y ) → Mor(X,Z)

ε ↔→ ω0 ↗ ε

Un funtor F : C → Sets, F se dice representable si existe un objeto X ↓ C tal que para todo

Y ↓ C:

F (Y ) = hX(Y ).
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Sea CLoc/k la categoría de k-álgebras noetherianas locales completas R con campo residual k,

notemos que R/m
n
R ↓ Art/k para cada n ↘ 1.

Definición 2.2 ([19, página 227]). Un funtor de deformación D se dice pro-representable si existe

R ↓ CLoc/k tal que D es isomorfo a hR. Diremos entonces que R pro-representa a D.

Demostrar que un funtor de deformaciones es pro-representable puede parecer a primera vista una

tarea difícil. La idea para atacar este problema es comenzar con D(k) y a partir de ahí tratar de

“levantar” el funtor a D(R), donde R ↓ Art/k tiene un ideal máximo m
n
R ≃= 0, con n cada vez más

grande.

Para esto son fundamentales los siguientes conceptos.

Definición 2.3 ([19, página 229]). Un epimorfismo ϑ : R → R
→ en Art/k se dice pequeño, si

I := Ker(ϑ) satisface I ·mR = 0.

Definición 2.4 ([19, página 228]). Sea C una categoría con objeto final ⇐ y productos fibrados. Un

funtor covariante F : C → Sets es llamado exacto por la izquierda si

(i) F (⇐) = {pt},

(ii) F conmuta con productos fibrados, esto es, el morfismo natural

F (X ↑Y Z)
↑
→ F (X)↑F (Y ) F (Z)

es biyectivo.

Definición 2.5 ([19, página 229]). Un funtor F : Art/k → Sets se dice formalmente suave si para

todo epimorfismo ϑ : R → R
→
→ 0 en Art/k, F (ϑ) : F (R) → F (R→) es sobreyectivo.

La teoría de funtores pro-representables fue desarrollada inicialmente por A. Grothendieck en [11].

En 1968 Schlessinger ([22]) estableció un criterio que permite verificar efectivamente que un funtor

es pro-representable (véase también [19, Theorem 2.1.1]).

Teorema 2.6 (Criterio de Schlessinger). Un funtor covariante F : Art/k → Sets es pro-representable

si y sólo si F es exacto por la izquierda y

dimk(F (k[ϖ])) < ⇒.

Además, es suficiente verificar la exactitud por la izquierda para morfismos R1 → R2 ⇑ R3

en Art/k, cuando la primera flecha es un epimorfismo pequeño. Si F es pro-representable por

O ↓ CLoc/k, es formalmente suave, y dimk(F (k[ϖ])) = m, entonces existe un isomorfismo

O ⇓= k[[t1, . . . , tm]].
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2.2. Funtores de deformación asociados a variedades abelianas

En esta sección presentamos un breve resumen del artículo [19]. Todas las definiciones y enunciados

pueden ser encontrados en esta fuente.

Definición 2.7. Sea X0 una variedad abeliana sobre k. El funtor de moduli local de X0:

M : Art/k → Sets,

se define como:

M(R) :=




 clases de equivalencia (X,ω)

∣∣∣∣∣∣
X es un esquema abeliano /R,

ω : X ⇔R k
↑
↖→ X0




 ,

módulo la relación de equivalencia (X,ω) ⇓ (X →
,ω

→) si existe un morfismo

! : X
↑=

!!

""

X
→

##

Spec R

tal que !⇔R k = id.

Si R → R
→ es un morfismo en Art/k, M(R) → M(R→) se define por cambio de base.

Oort, siguiendo argumentos de Grothendieck, mostró que M es un funtor pro-representable.

Teorema 2.8 ([19, Teorema 2.2.1]). El funtor M es pro-representable por O = k[[ti,j ]]1↓i,j↓g,

donde g = dim(X0).

El siguiente paso es estudiar variedades abelianas polarizadas (o casi-polarizadas).

Sea L un haz lineal sobre un esquema abeliano ϑ : X → S, y sea µ : X↑SX → X la multiplicación

de grupo. Como Pic(X/S) es un moduli fino, el haz

µ
↔(L)⇔ p

↔
1(L)⇔ p

↔
2(L)

sobre X ↑S X define un homomorfismo

”(L) : X → Pic0(X/S) = X
t
.
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Definición 2.9. Sea R ↓ Art/k y ϑ : X → SpecR un esquema abeliano. Un homomorfismo

ϱ : X → X
t es llamado casi polarización si existe un haz lineal L ↓ Pic(X) tal que ”(L) = ϱ.

Si además L es relativamente amplio con respecto a ϑ, decimos que ϱ es una polarización. A una

pareja (X,ϱ) con ϱ una (casi)polarización se le llama variedad abeliana (casi)polarizada.

También escribimos (X,L) en lugar de (X,ϱ) si ϱ es la (casi)polarización definida por L o incluso

si L = OX(#), escribimos (X,#) en lugar de (X,ϱ). En el caso R = k decimos que la pareja (X,ϱ)

es una variedad abeliana (casi)polarizada. Abreviamos diciendo que la pareja (X,ϱ) es un e.a.c.p.

(esquema abeliano casi polarizado) o e.a.p. (esquema abeliano polarizado) y del mismo modo para

variedades abelianas (v.a.c.p. o v.a.p.)

Definición 2.10. Sea (X0,#0) una v.a.c.p. y ”(#) = ϱ!0 ↓ Hom(X0, X
t
0) la casi polarización

asociada. El funtor de moduli local de (X0,#0)

P : Art/k → Sets

se define como:

P (R) :=





clases de equivalencia (X,ω,#)

∣∣∣∣∣∣∣∣

X es un e.a.c.p. /R,

ω : X ⇔R k
↑
↖→ X0,

ϱ! ⇔R k = ϱ!0





,

donde (X,ω,#) ⇓ (X →
,ω

→
,#→) si (X,ω) ⇓ (X →

,ω
→) como elementos de M(R) (vea Definición 2.7)

y el diagrama:

X
”
!!

ω!

$$

X
→

ω!→
$$

X
t

X
→t

”t
%%

conmuta. Si R → R
→ es un morfismo en Art/k, P (R) → P (R→) se define por cambio de base y

levantamiento (“pull-back”) del divisor asociado a la casi-polarización.

Claramente existe un morfismo de olvido:

P → M.

Sin embargo, no es claro que sea inyectivo, esto es, que P sea un subfuntor de M . Esta propiedad

es importante, pues tenemos:

Lema 2.11. Sean P ↙ M funtores pro-representables, M pro-representado por O, entonces existe

un ideal ς ↙ O tal que P es pro-representado por O/ς.

El mecanismo apropiado para demostrar que P es un subfuntor de M es el lema de rigidez.
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Lema 2.12 (Lema de rigidez, [17, Corolario 6.2]). Sea S un esquema, X un S↖esquema y G un

grupo esquema sobre S. Dado un diagrama:

X

p

$$

g
!!

f
!!

G

q
&&

S,

supongamos que p es plano y propio, y que ∝s ↓ S, H0(Xs,OXs) ⇓= φ(s). Si existe s ↓ S, tal que

fs = gs, entonces existe una sección ↼ : S → G tal que

f = (↼ ↗ p) · (g).

Utilizando el lema de rigidez y el criterio de Schlessinger (Teorema 2.6), Oort demostró en [19,

Teorema 2.3.3, página 242] que P es un subfuntor pro-representable de M .

Teorema 2.13. Si (X0,ϱ0) es una v.a.c.p. de dimensión g, entonces

(i) el funtor P es un subfuntor de M ,

(ii) P es pro-representable; y si ϱ0 es una polarización separable y principal entonces P es pro-

representado por:

OP = k[[tij ]]1↓i↓j↓g

Observación 2.14. 1) Recordemos que una polarización se llama principal si el morfismo ϱ0 :

X0 → X
t
0 es un isomorfismo.

2) Si ϱ0 es separable y principal tenemos, en concordancia con el Lema 2.11:

OP = O/′tij ↖ tji∞,

donde O = k[[tij ]]1↓i,j↓g es la k-álgebra completa que pro-representa a M .

3. El funtor PG

En esta sección adaptamos las definiciones y construcciones de la sección anterior al caso en que la

variedad abeliana X0 admite un grupo de automorfismo no trivial como variedad (casi)polarizada.
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Definición 3.1. Sea (X0,#0) una variedad abeliana casi-polarizada y G0 un subgrupo de Aut(X0,#0).

Definimos el funtor de deformación

PG0 : Art/k → Sets

de la siguiente manera:

PG0(R) :=






clases de equivalencia (X,ω,#, G)

∣∣∣∣∣∣∣∣∣∣∣

X es un e.a.c.p. /R,

ω : X ⇔R k
↑
↖→ X0

ϱ! ⇔R k = ϱ!0 , G ∈ Aut(X,#)

G⇔R k = G0






,

donde G ⇔R k := {ς ⇔R k | ς ↓ G} y (X,ω,#, G) ⇓ (X →
,ω

→
,#→

, G
→) si (X,ω,#) ⇓ (X →

,ω
→
,#→)

como elementos de P (R) (vea Definición 2.10) y ! ↗ ς ↗ !↗1
↓ G

→, para todo ς ↓ G.

Si ω : R → R
→ es un morfismo en Art/k, entonces PG0(ω) : PG0(R) → PG0(R

→) envía (X,ω,#, G)

a (X ⇔R R
→
,ω

→
,# ⇔R R

→
, G ⇔R R

→), donde G ⇔R R
→ := {ς ⇔R R

→
| ς ↓ G} y ω

→ es la composición

(X ⇔R R
→)⇔R→ k ⇓= X ⇔A k

ε
⇓= X0.

Con esta definición PG0 resulta ser un funtor de deformación y tenemos:

Lema 3.2. PG0 es un subfuntor del funtor P introducido en la Definición 2.10.

Demostración. Debemos ver que si

(X,ω,#) ⇓ (X →
,ω

→
,#→),

entonces (X,ω,#, G) ⇓ (X →
,ω

→
,#→

, G
→). Sabemos que existe un isomorfismo

! : X
↑=

!!

""

X
→

##

SpecR

que satisface las condiciones mencionadas en la definición de P (Definición 2.10). Así, basta com-

probar que ! ↗ ς ↗ !↗1
↓ G

→, para todo ς ↓ G.

De la definición de PG0(R), se sigue que G⇔R k = G0 = G
→
⇔R k. Sea ς ↓ G, tenemos:

(! ↗ ς ↗ !↗1)⇔R k = !⇔R k ↗ ς⇔R k ↗ !↗1
⇔R k = id ↗ ς0 ↗ id = ς

→
⇔R k,

donde ς0 ↓ G0, y ς
→ es algún elemento en G

→. Finalmente, por el lema de rigidez (vea Lema 2.12)
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tenemos que

! ↗ ς ↗ !↗1 = ς
→
.

El objetivo principal de este artículo es demostrar que PG0 es un funtor pro-representable; para

esto necesitamos utilizar varios resultados básicos de la teoría de deformaciones.

La idea principal de la teoría de deformaciones es, dado un epimorfismo pequeño

0 → I → R → R
→
→ 0

en la categoría Art/k y un diagrama:

X
→

$$

SpecR→
!! SpecR

,

determinar bajo qué condiciones existe X → SpecR tal que X ⇔R R
→
∋ X

→. Tal X se denomina,

indistintamente, deformación o levantamiento.

De este modo, definimos:

L(X →;R → R
→) :=




 clases de equivalencia (X,ε
→)

∣∣∣∣∣∣
X es suave/S,

ε
→ : X ⇔S S

→ ↑
↖→ X

→




 ,

el conjunto de clases de equivalencia de levantamientos de X
→
→ S

→ a S, donde S = Spec R y

S
→ = SpecR→.

En el caso afín, es decir, cuando X = SpecB y X
→ = SpecB→, el problema de existencia de otro

levantamiento B1 → B
→ se traduce en completar el diagrama de k↖álgebras:

B !! B
→

B1

'' ((

.

Si la variedad afín X es no singular, siempre es posible encontrar tales levantamientos. Aún más,

la diferencia de dos levantamientos es un elemento de Derk(B→
, B

→) ⇔ I (véase, por ejemplo, [16,

capítulo 9], [12, capítulo 1.4], y [23, capítulo 1.1]). Esta es la razón por la cual en teoría de

deformaciones el haz tangente TX→ juega un papel esencial.

Al pasar al caso no afín debemos amalgamar (“gluing” en inglés) las diferentes deformaciones afines

y es así como aparece, de manera natural, H1(X0, TX0)⇔ I.

Al formalizar estas ideas obtenemos:
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Proposición 3.3. i) Si L ≃= ⇐, entonces existe una biyección

L(X →
, R → R

→) ∋ H
1(X0, TX0)⇔ I.

ii) Un S
→-automorfismo ↽

→ : X →
→ X

→, satisface que ↽0 := ↽
→
⇔k se levanta a un S-automorfismo

↽ : X → X si y sólo si al considerar la clase ↼ ↓ H
1(X0, TX0) ⇔ I determinada por (X →

S) ↓ L(X →
, R

→
→ R) y el diagrama:

H
1(X0, TX0)⇔ I

dϑ0

$$

H
1(X0, ↽

↔
0TX0)⇔ I H

1(X0, TX0)⇔ I
ϑ↑
0
%%

se verifica que:

d↽0(↼) = ↽
↔
0(↼).

iii) Sin tomar en cuenta la estructura de grupo de las variedades abelianas, existe una biyección:

M(ϑ)↗1(X →
,ω)

ϖ
→ L(X →

, R → R
→),

para todo (X →
,ω) ↓ M(R→), donde M es el funtor de la Definición 2.7.

Observación 3.4. 1) En el inciso ii) de la Proposición 3.3, abusamos ligeramente de la nota-

ción al escribir, por ejemplo, d↽0 en lugar de d↽0⇔ id. Esta notación se mantendrá en lo que

resta del artículo.

2) La biyección del inciso iii) de la Proposición 3.3 es mucho más natural. Simplemente hay

que recordar las definiciones involucradas.

3) En la práctica la condición en el inciso ii) se verifica de la siguiente manera: si denotamos

por ↽0 la representación analítica del automorfismo, entonces la condición de levantamiento

se traduce en:

T↽0 = (↽t0)
↗1

T,

con T = (tij)1↓i↓j (véase la discusión que sigue a [20, Proposición 3.1]).

La Proposición 3.3 es un paso previo para comprobar que el funtor PG0 satisface las condiciones de

Schlessinger. La demostración se puede encontrar en [19, Lema 2.2.3, Proposiciones 2.2.5 y 2.2.6],

y la del inciso ii) en [20, Proposición 3.1], .
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Lema 3.5. Sea

Q

ϑ

$$

ϱ
!! R

ς

$$

T
µ
!! R

→

(3.1)

un diagrama cartesiano en la categoría Art/k, con ϑ un epimorfismo pequeño. Sea

((Y,⇀0), (X,ω0)) ↓ M(T )↑M(R→)M(R), con (X →
,ω

→
0) = ϑ(X,ω0). Sea ςY un SpecT -automorfismo

de Y y ςX un SpecR-automorfismo de X, tal que ςY ⇔T R
→ = ςX ⇔R R

→. Sea (Z,⇀→
0) un levanta-

miento (Y,⇀0) de T a Q, entonces existe ςZ , un SpecQ-automorfismo de Z tal que ςZ⇔QT = ςY .

Demostración. Definimos I := Ker(ϑ), J := Ker(↽) y ς0 := ςY ⇔T k. Notemos que

ς0 = (ςY ⇔T R
→)⇔R→ k = (ςX ⇔R R

→)⇔R→ k = ςX ⇔R k.

Como ϑ es un epimorfismo pequeño y el diagrama (3.1) es cartesiano, concluimos que ↽ es un

epimorfismo pequeño y que ⇁ induce un isomorfismo ⇁ : J → I. Tenemos el siguiente diagrama

conmutativo (vea [19, página 237]):

H
1(X0, TX0)⇔k J

ϱ

↑=
!!

lZ↑=
$$

H
1(X0, TX0)⇔k I

lω(Z)

$$

L(Y ;Q → T ) !!

! "

ϖ↓1

$$

L(X →;R → R
→)! "

ϖ↓1

$$

M(Q)
ϱ

!! M(R),

(3.2)

donde la flecha horizontal del medio está dada por cambio de base; ⇁ es M⇁ y (Z,⇀→
0) es un

levantamiento (Y,⇀0) de T a Q (tal levantamiento existe, en virtud de [19], último párrafo de la

página 236). De [19] sabemos que ⇁(Z,⇀→
0) = (X,ω0).

Si denotamos la clase de levantamiento correspondiente a

X
→

!!

$$

X

$$

SpecR→
!! SpecR

como ↼ ↓ H
1(X0, TX0)⇔k I y la correspondiente a

Y !!

$$

Z

$$

SpecT !! SpecQ
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como ξ ↓ H
1(X0, TX0) ⇔k J (Proposición 3.3 i)), entonces por el diagrama (3.2) se deduce que

⇁(ξ) = ↼. Notemos que ςX es un levantamiento de ςX ⇔R R
→ y por Proposición 3.3 ii), sabemos

que esto sucede si y sólo si

dς0(↼) = ς
↔
0(↼).

Consideremos ahora el diagrama:

H
1(X0,#X0)⇔ J

dφ0
!!

ϱ↑=
$$

H
1(X0,ς

↔
0#X0)⇔ J

ϱ↑=
$$

H
1(X0,#X0)⇔ J

ϱ↑=
$$

φ↑
0
%%

H
1(X0,#X0)⇔ I

dφ0
!! H

1(X0,ς
↔
0#X0)⇔ I H

1(X0,#X0)⇔ I
φ↑

0
%%

(3.3)

De aquí se sigue que dς0(ξ) = ς
↔
0(ξ), y así obtenemos un levantamiento ςZ de ςY .

Teorema 3.6. El funtor PG0 introducido en la Definición 3.1 es pro-representable.

Demostración. Usaremos la notación del Lema 3.5. Por el criterio de Schlessinger (Teorema 2.6) y

el hecho de que PG0 es un subfuntor de P (Lema 3.2), se sigue que PG0 es pro-representable si la

función

PG0(Q) → PG0(T )↑PG0 (R
→) PG0(R)

es sobreyectiva. Esta función es la que se obtiene de aplicar PG0 al diagrama cartesiano (3.1) y

considerando la propiedad universal del producto cartesiano. Sea

((Y,⇀0,#Y , GY ), (X,ω0,#X , GX)) ↓ PG0(T )↑PG0 (R
→) PG0(R)

y

(X →
,ω

→
0,#X→ , GX→) = PG0(ϑ)(X,ω0,#X , GX).

Notemos que, en particular

((Y,⇀0,#Y ), (X,ω0,#X)) ↓ P (T )↑P (R→) P (R).

Por Teorema 2.13 y el criterio de Schlessinger, Teorema 2.6, existe una pre-imagen (Z,⇀→
0,#Z) ↓

P (Q) de ((Y,⇀0,#Y ), (X,ω0,#X)) bajo la aplicación

P (Q) → P (T )↑P (R→) P (R).

En particular, tenemos que M⇁(Z,⇀→
0) = (X,ω0).
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Sea ςY ↓ GY como GY ⇔T R
→ = GX→ = GX ⇔R R

→, existe un ςX ↓ GX tal que

ςY ⇔T R
→ = ςX ⇔R R

→
.

Notemos que ςX es único por el lema de rigidez.

Por el Lema 3.5 existe ςZ : Z → Z que es levantamiento de ςY . Además, por el lema de rigidez

y [19, Lema 2.2.2, página 231] este resulta ser un automorfismo de Z como variedad abeliana

casi-polarizada (una vez más este ςZ es único por el lema de rigidez).

Concluimos que para todo ςY ↓ GY existe un único ςZ tal que

ςZ ⇔Q T = ςY .

Definamos GZ como el conjunto formado por los ςZ . Veamos que GZ es un grupo. Sean g, h ↓ GZ ,

como el cambio de base es un funtor,

gh
↗1

⇔Q T = (g ⇔Q T )(h⇔Q T )↗1
↓ GY ,

entonces existe β ↓ GZ tal que gh
↗1

⇔Q T = β ⇔Q T , así por el lema de rigidez gh
↗1 = β ↓ GZ .

Concluimos que GZ es un subgrupo de Aut(Z) y GZ ⇔Q T = GY , lo que significa que

PG0↽(Z,⇀
→
0,#Z , GZ) = (Y,⇀0,#Y , GY ).

Tenemos que

(GZ ⇔Q R)⇔R R
→ = (GZ ⇔Q T )⇔T R

→ = GY ⇔T R
→ = GX

→ = GX ⇔R R
→
.

Entonces, por el lema de rigidez, GZ ⇔Q R = GX , lo que demuestra que

PG0⇁(Z,⇀
→
0,#Z , GZ) = (X,ω0,#X , GX).

Recordemos que un funtor F : Art/k → Sets se dice formalmente suave si para cualquier epimor-

fismo ϑ : R → R
→ en Art/k la función

F (ϑ) : F (R) → F (R→)

es sobreyectiva (Definición 2.5).
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Teorema 3.7. Sea (X0,#0) una variedad abeliana polarizada, tal que el morfismo asociado a la

polarización #0, ϱ0 : X0 → X
t
0 es separable, y sea G0 ∈ Aut(X0,#0), entonces

PG0 : Art/k → Sets

es formalmente suave.

Demostración. Sea R
ς
↖→ R

→ un epimorfismo en Art/k y (X →
,ω

→
,#→

, G
→) ↓ PG0(R

→). Este epimorfis-

mo puede descomponerse en una sucesión finita de epimorfismos pequeños de la siguiente forma:

R = R0
ς1
↖→ R1

ς2
↖→ · · ·

ςn
↖↖→ Rn = R

→
.

Si aplicamos PG0 obtenemos:

PG0(R = R0)
ς1
↖→ PG0(R1)

ς2
↖→ · · ·

ςn
↖↖→ PG0(Rn = R

→),

donde abusamos de la notación y entendemos que PG0(ϑi) = ϑi. Definimos ξn = (X →
,ω

→
,#→

, G
→) ↓

PG0(R
→). Supongamos que para todo i existe ξi↗1 ↓ PG0(Ri↗1) tal que ϑi(ξi↗1) = ξi. Entonces

ϑ(ξ0) = ϑn ↗ · · · ↗ ϑ1(ξ0) = ξn.

Así, es suficiente demostrar que todo epimorfismo pequeño I → R
ς
↖→ R

→
→ 0 en Art/k,

(X →
,ω

→
,#→

, G
→) tiene un levantamiento.

Sea ϱ
→ : X →

→ X
→t, el morfismo inducido por #→. Sabemos que PG0 es un subfuntor de P y por tanto

de M , y que (X →
,ω

→) ↓ M(R→). Como ϱ!0 : X0 → X
t
0 es separable, P es formalmente suave por

[19, Teorema 2.4.1]. Por lo tanto, existe (X,ω,#) ↓ P (R) que levanta a (X →
,ω

→
,#→). En particular:

ϑ(X,ω) = (X →
,ω

→) ↓ M(R→).

Por la Proposición 3.3 iii) tenemos las siguiente biyección

ϑ
↗1(X →

,ω
→)

ϖ
↖→ L(X →

, R → R
→).

Definamos (X,⇀) := φ(X,ω) ↓ L(X →
, R → R

→). Como L(X →
, R → R

→) ≃= ⊋, por Proposición 3.3

ii), (X,⇀) induce la siguiente biyección

H
1(X0, T X0)⇔k I

↼X
↖→ L(X →

, R → R
→).



358 U. Guerrero-Valadez, H. Torres-López & A. G. Zamora CUBO
27, 2 (2025)

Definamos (X1,⇀1) := ▷X(0). Por [19, página 245], tenemos:

◁X1(#
→) = ◁X(#→) + f ⇔ idI(▷

↗1
X (X1,⇀1)) = 0,

sea L1 el levantamiento de #→, definamos (X1,ω1) = φ
↗1(X1,⇀1). Concluimos que (X →

,ω
→
,#→)

levanta a (X1,ω1, L1).

Notemos que para todo ς ↓ G0,

dς(0) = ς
↔(0),

así, existe G1 ∈ Aut(X1, L1) (automorfismos de variedad abeliana polarizada), tal que G1⇔RR
→ =

G
→. Se concluye que

PG0(ϑ)(X1,ω1, L1, G1) = (X →
,ω

→
,#→

, G
→).

Recordemos que una variedad abeliana polarizada (X0,#0) es principalmente polarizada si

h
0(X0,#0) = 1, o equivalentemente el morfismo ϱ0 inducido por #0 es un isomorfismo (a partir

de ahora se denotará como v.a.p.p.). Sea G0 ∈ Aut(X0,#0) y denotemos por V = T0X el espacio

tangente de X en el 0.

Teorema 3.8. Sea (X0,#0) una variedad abeliana polarizada, tal que ϱ0 : X0 → X
t
0 es separable

y sea G0 ∈ Aut(X0,#0), entonces:

i) PG0 es pro-representado por k[[t1, . . . , tm]], donde m := dimkPG0(k[ϖ]).

ii) Si además (X0,#0) es principalmente polarizada, entonces

m = dimk(Sym
2
T0X)G0 ,

donde G0 actúa sobre Sym2
T0X con la acción inducida por la representación analítica.

Demostración. La parte i) es consecuencia inmediata de los Teoremas 3.7 y 2.6.

Para la parte ii) comenzamos con la siguiente observación: como por hipótesis (X0,#0) es princi-

palmente polarizada, tenemos un isomorfismo de espacios vectoriales dϱ0 : V → V
t. De este modo

obtenemos:

V ⇔ V ∋ V ⇔ V
t
∋ End(V, V ).

Así, podemos definir $ ↙ V ⇔ V
t, como:

$ := (id⇔ dϱ0)(Sym2
V ).

Si fijamos una base ei de V , la correspondiente base dϱ0(ei) de V
t y su base dual en V , entonces

los elementos de $ se corresponden en End(V, V ) con matrices simétricas.
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Oort demostró en [19, página 237] que

M(k[ϖ]) ⇓= H
1(X0, TX0) ⇓= V ⇔ V

t
,

y que P (k[ϖ]) = $ △ V ⇔ V
t. De este modo, ↼ ↓ $ satisface que ↼ ↓ PG0(k[ϖ]) si y sólo si podemos

levantar G0 a k[ϖ]. Por la Proposición 3.3 ii) esto sucede si y sólo si:

∝↽ ↓ G0, ↼d↽ = (d↽t)↗1
↼.

Es decir,

↼ = d↽
t
↼d↽,

o equivalentemente, ↼ ↓ ($)G0 . Así concluimos que:

PG0(k[ϖ]) = (Sym2
V )G0 .

Una vez establecido el Teorema 3.8, podemos calcular fórmulas explícitas para la dimensión del

álgebra que pro-representa a PG0 .

Corolario 3.9. Si char(k) = 0, entonces PG0 es pro-representado por k[[t1, . . . , tm]], con

m =
1

| G0 |

∑

g↘G0

⇁Sym2V (g) =
1

| G0 |

∑

g↘G0

⇁
2
V (g) + ⇁V (g2)

2
,

donde ⇁V y ⇁Sym2V son, respectivamente, los caracteres de las representaciones V y Sym2
V .

Demostración. Consideremos una representación G0 → GL(V ).

Utilizando la Proposición 2.8 de [7] y que char(k) = 0 obtenemos

dim(V G0) =
1

| G0 |

∑

g↘G0

⇁V (g).

Como char(k) = 0 y k es algebraicamente cerrado, g : V → V admite una forma canónica de

Jordan y todo g : V → V es diagonalizable. Por esta razón podemos replicar la demostración de

la Proposición 2.1 de [7] para deducir que

⇁Sym2V (g) =
⇁
2
V (g) + ⇁V (g2)

2
.

Ejemplo 3.10. Sea E una curva elíptica suave. Consideremos la variedad abeliana X = E↑E↑E.

Consideremos la acción del grupo simétrico S3 sobre X que permuta los factores. Denotemos β =
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(123) y ς = (12). La representación analítica de β es:





0 0 1

1 0 0

0 1 0



 .

y la de ς es:

ς =





0 1 0

1 0 0

0 0 1



 .

El polinomio característico de β es P↽(ϱ) = det(β ↖ ϱid) = 1↖ ϱ
3
, sus valores principales son 1, ξ

y ξ
2
, donde ξ es una 3-raíz primitiva de la unidad; y sus vectores principales son v1 := (1, 1, 1),

v2 := (1, ξ2, ξ), y v3 := (1, ξ, ξ2). Como ςβ
2 = βς, tenemos que ς(v1) = v1, ς(v2) = ξ

2
v3 y

ς(v3) = ξv2.

Así, si fijamos en T0X la base que diagonaliza a β, tenemos que en esta base, β = diag(1, ξ, ξ2) y

ς =





1 0 0

0 0 ξ

0 ξ
2 0



 .

Sea T = (tij)1↓i↓j. Las condiciones de levantamiento de la Proposición 3.3 ii) (Observación 3.4

iii) se traducen en:

Tβ = β
↗1

T, Tς = ς
t
T,

donde usamos que β
t = β y ς

↗1 = ς.

Estas dos ecuaciones dan como resultado:

T =





t11 0 0

0 0 t23

0 t23 0



 .

Así obtenemos que dimkPS3(k[ϖ]) = 2. Por supuesto, esta dimensión también puede ser calculada

usando el Corolario 3.9.

De este modo, en el moduli local para esta acción existen más variedades que las inducidas por la

deformación de la curva E.

Un árbitro anónimo ha sugerido una posible conexión entre este ejemplo y el concepto de trialidad

(veáse por ejemplo, [1]). Trataremos de explorar esta sugerencia en el futuro.
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RESUMEN

En este artículo centramos nuestro interés en el estudio de

un problema inverso que surge en el modelamiento matemá-

tico de la transmisión de enfermedades infectocontagiosas. El

modelo matemático viene dado por un problema con condi-

ciones iniciales y en la frontera para un sistema de difusión-

reacción. Mientras tanto, el problema inverso consiste en la

determinación de las tasas de transmisión y de recuperación

de la enfermedad, a partir de la medición observada de la so-

lución del problema directo en un tiempo fijo. Las incógnitas

del problema inverso aparecen en el modelo como coeficien-

tes del término de reacción. Formulamos el problema inverso

como un problema de optimización para un funcional de cos-

to adecuado. Luego, se deduce la existencia de soluciones del

problema inverso probando la existencia de un minimizador

para el funcional de costo. Establecemos la unicidad del pro-

blema de identificación. La unicidad es una consecuencia de

la condición necesaria de optimalidad de primer orden y una

estabilidad de las incógnitas del problema inverso con respec-

to a las observaciones. Ademas se se realiza una aproximación

numérica y simulaciones para el problema inverso.
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ABSTRACT

In this article we focus our interest on the study of an in-

verse problem arising in the mathematical modeling of di-

sease transmission. The mathematical model is given by an

initial boundary value problem for a reaction di!usion sys-

tem. Meanwhile, the inverse problem consists in the deter-

mination of the disease and recovery transmission rates from

observed measurement of the direct problem solution at some

fixed time. The unknowns of the inverse problem are coe"-

cients of the reaction term. We formulate the inverse problem

as an optimization problem for an appropriate cost functio-

nal. Then, the existence of solutions of the inverse problem

is deduced by proving the existence of a minimizer for the

cost functional. We establish the uniqueness of identification

problem. The uniqueness is a consequence of the first order

necessary optimality condition and a stability of the inverse

problem unknowns with respect to the observations. Moreo-

ver, we develop a numerical approximation and simulations

of the inverse problem.
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2020 AMS Mathematics Subject Classification: 35B45, 35Q35, 76B03, 76D03.

Published: 15 October, 2025

Accepted: 29 September, 2025

Received: 30 November, 2024

©2025 A. Coronel et al. This open access article is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2702.363
https://orcid.org/0000-0001-6602-7378
https://orcid.org/0000-0003-2794-029X
https://orcid.org/0009-0000-7809-1342
https://orcid.org/0009-0003-7786-603X
mailto:acoronel@ubiobio.cl
mailto:elozada@ubiobio.cl
mailto:jotorres@ubiobio.cl
mailto:fhuancas@utem.cl


CUBO
27, 2 (2025)

Análisis matemático de un problema inverso... 365

1. Introducción

El modelamiento matemático de la transmisión de enfermedades infectocontagiosas es un área de

investigación activa de la biología matemática [1, 2, 4, 5, 16, 18, 19, 22, 26, 29, 31, 34, 35]. Particu-

larmente para la aplicación de sistemas de reacción-difusión a sistemas originados en ecología y

epidemiología señalamos los siguientes trabajos [6, 7, 17, 37]. En la actualidad, se utilizan varios

enfoques para construir los modelos matemáticos en epidemiología matemática. A pesar de los

diferentes tipos de tales modelos, y de manera análoga a los sistemas bioquímicos, podemos dis-

tinguir cinco pasos comunes en los procesos de modelamiento [9]: recopilación y análisis de datos e

información experimentales sobre la enfermedad específica; selección de la teoría matemática que

se utilizará en la formulación del modelo; el análisis matemático del buen planteamiento del mo-

delo; la calibración o identificación de parámetros del modelo; y la validación y el refinamiento del

modelo. Además, observamos que el modelamiento es un proceso cíclico en lugar de lineal: todas

las suposiciones hechas en los pasos anteriores se reconsideran y refinan una vez finalizado el pro-

ceso de modelamiento. Podemos mejorar el modelo introduciendo nuevas hipótesis, diseñar nuevos

experimentos, realizar predicciones y profundizar el análisis de cada paso. Así, en particular, nos

interesa el análisis de calibración o identificación de parámetros del modelo. Para ser más precisos,

el objetivo de este artículo es proporcionar un marco para resolver el problema inverso que surge

en el paso de la calibración del modelo asumiendo que el modelo matemático es un problema con

condiciones iniciales y en la frontera para un sistema de reacción-difusión.

Precisemos el modelo matemático o problema directo. Consideramos que el proceso de la enfer-

medad infecciosa se desarrolla en un dominio acotado ! → Rd (d = 1, 2, 3) y que su dinámica se

describe mediante un modelo de reacción-difusión SIS, donde la densidad de población de indi-

viduos susceptibles e infectados en el momento t y la ubicación x están dados por S(x, t) y por

I(x, t), respectivamente. Se considera que la matriz de difusión es igual a la identidad. Suponemos

que el proceso de infección se da por la interacción de individuos susceptibles e infectados el cual es

modelado en el punto x y tiempo t por la “ley potencial” ω(x)Sm(x, t)In(x, t), donde ω es la tasa

de transmisión de enfermedades y m,n ↑]0, 1[ son algunos parámetros dados (fijos). El proceso

de recuperación está representado por ε(x)I(x, t) con ε la tasa de recuperación de la enfermedad.

Por lo tanto, el problema directo se define de la siguiente manera: Dado el conjunto de funciones

{ω, ε, S0, I0} encuentre las funciones S y I que satisfagan el siguiente problema con condiciones

iniciales y valores en la frontera

St ↓”S = ↓ω(x)Sm
I
n + ε(x)I, en QT := !↔ [0, T ], (1.1)

It ↓”I = ω(x)Sm
I
n ↓ ε(x)I, en QT , (1.2)

↗S · n = ↗I · n = 0, sobre # := ϑ!↔ [0, T ], (1.3)

S(x, 0) = S0(x), en !, (1.4)

I(x, 0) = I0(x), en !, (1.5)
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donde ϑ! es el la frontera de ! y n es el vector unitario exterior a ϑ!. Las condiciones de

contorno (1.3) y las funciones S0 y I0 modelan las condiciones iniciales. La suposición que ω y ε

son funciones que dependen de la posición espacial es utilizada en diversos trabajos, por ejemplo en

[7,36,37]. Desde el punto de vista biológico es más natural asumir que estos coeficientes dependen de

la variable temporal, tal como es considerado para el modelo de ecuaciones diferenciales ordinarias

estocásticas originado en la dinámica de la influeza en [28]. Sin embargo, en el mejor de nuestro

conocimiento no es aún utilizado en los modelos de reacción-di!usión.

El problema inverso consiste en la determinación de las funciones de tasa ω y ε en el modelo SIS

(1.1)-(1.5), a partir de medidas observadas tanto de S como de I en tiempo t = T ; las cuales están

dadas por las funciones Sobs e Iobs, definidas sobre !, respectivamente. Entonces, podemos definir el

problema inverso de la siguiente manera: Dado el conjunto de funciones {S0, I0, S
obs

, I
obs} definidas

en !, encontrar las funciones ω y ε, tales que las funciones S e I sean solución del problema (1.1)-

(1.5) y satisfacen la condición final de sobreespecificación S(x, T ) = S
obs(x), I(x, T ) = I

obs(x)

para x ↑ !. Se observa que la igualdad se satisface solo en el caso que (Sobs
, I

obs) sean alcan-

zables para algún (ω, ε), siendo más esperable el caso en el cual (S, I)(·, T ) es lo más cercano

posible a (Sobs
, I

obs). De hecho, para precisar el análisis del problema inverso, consideramos una

reformulación operativa, como el siguiente problema de optimización

ı́nf J(ω, ε) sujeto a (Sω,ε , Iω,ε) solución de (1.1)-(1.5), (1.6)

donde

J(ω, ε) :=
1

2
↘(S, I)(·, T )↓ (Sobs

, I
obs)↘2

L2(!)2 +
ϖ

2
↘↗(ω, ε)↘2

L2(!)2 , ϖ > 0, (1.7)

es una función definida en el conjunto admisible

Uad(!) = A(!) ≃H
|[d/2]|+1(!)2, (1.8)

A(!) =
{
(ω, ε) ↑ C

ϑ(!)2 : Ran(ω)↔ Ran(ε) ⇐ [b, b]↔ [r, r] → (0,⇒)2
}
, (1.9)

Aquí, Hm(!) y C
ϑ(!) denotan los espacios estándar de Sobolev y Hölder Wm,2(!) y C

0,ϑ(!), res-

pectivamente; L2(!)2 = L
2(!)↔L

2(!), definiendo similarmente los otros espacios como H
|[d/2]|+1(!)2

y C
ϑ(!)2; y Ran(f) denotan el rango de la función f . La construcción de Uad(!) se desarrolló

recientemente en [12] y también notamos que Uad(!) = A(!) cuando d = 1 coincidiendo con el

conjunto admisible considerado por Xiang y Liu en [36], consulte tambien [11] para un caso más

general.

El resultado principal de este trabajo son las condiciones para la teoría del buen planteamiento del

problema inverso. Más precisamente, probamos el siguiente teorema:
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Teorema 1.1. Consideremos c = (c1, c2) ↑ R2
+ (fijo) y definamos el subconjunto del conjunto

admisible

Uc(!) =
{
(ω, ε) ↑ Uad(!) : ↘ω↘L1(!) = c1 y ↘ε↘L1(!) = c2

}
. (1.10)

Considere que el conjunto abierto acotado y convexo ! es tal que ϑ! es de clase C
1 y las condiciones

iniciales S0 y I0 son funciones que pertenecen a C
2,ϑ(!) y satisfacen las desigualdades

S0(x) ⇑ 0, I0(x) ⇑ 0,

∫

!
I0(x)dx > 0, S0(x) + I0(x) ⇑ ϱ0 > 0, (1.11)

sobre !, para alguna constante positiva ϱ0. Además, suponga que las funciones de observación S
obs

y I
obs son funciones que pertenecen a L

2(!). Entonces, existe al menos una solución de (1.6) y

existen $ ↑ R+ tal que la solución de (1.6) es única (salvo una constante aditiva) en Uc(!) para

cualquier parámetro de regularización ϖ > $.

En términos generales para obtener la unicidad del problema de optimización juega un rol muy

relevante, desde el punto de vista analítico y numérico, el término de regularización en la función de

costo definida en (1.7). En otras palabras, sin este término es esperable que se pierda la unicidad,

tal como se muestra en el Ejemplo 1 presentado en la Sección 4.1. En este punto se debe observar

que una regularización natural es considerar ↘(ω, ε)↘2
L2(!)2 en vez de ↘↗(ω, ε)↘2

L2(!)2 . Sin embargo

esto se descarta, debido a dos dificultades: no es claro como utilizarlo para el análisis matemático

y debido a que en la práctica y en presencia de casos extremos puede converger a los coeficientes

de norma L
2 mínima y que no necesariamente resuelve el problema inverso. Sin embargo, tal como

se presenta en el Ejemplo 2 (Ver Sección 4.2) se puede definir un término de regularización que

incorpore la condición que (ω, ε) ↑ Uc con c fijo, tal como lo establece el Teorema 1.1. Una discusión

general sobre otras formas de regularización se puede consultar en [21].

Por otro lado, recordamos que los problemas inversos en las ecuaciones de reacción-difusión y los

sistemas se han abordado en la literatura de las últimas décadas, por ejemplo [8,14,15,27,30,32,36].

En [8] los autores estudian la identificación de q(x) en la ecuación ut = ”u+ q(x)u con condición

de frontera de Dirichlet y a partir de los datos de medición finales u(x, T ). Ellos prueban la

existencia de soluciones y desarrollan una solución del problema inverso utilizando un problema

de optimización. Los autores de [15] consideran la reacción-difusión no lineal ecuación ut = ”u+

p(x)f(u) con f una función no lineal y estudian la identificación de p, obteniendo algunos resultados

para la existencia y la unicidad local. Ahora, en [32] los autores estudian el problema inverso

para un sistema de reacción-difusión con un término de reacción lineal y obtienen la existencia y

unicidad local del problema inverso. Más recientemente, en [36] los autores han estudiado el caso

unidimensional del problema inverso considerado en este trabajo. Obtienen un resultado para la

existencia y unicidad local de la solución asumiendo que el proceso de infección está modelado por

un función de transmisión dependiente de la frecuencia en lugar de la función de ley de potencia.
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Ahora, los artículos [14, 27, 30] se centran en problemas inversos en sistemas epidémicos, pero son

de un tipo diferente al considerado en este trabajo. Por tanto, el Teorema 1.1 es una extensión al

caso multidimensional de los resultados unidimensional obtenidos en [36].

Desde otra perspectiva, se observa que el estudio de los problemas de control óptimo similares a los

estudiados en este trabajo, y suponiendo que las condiciones iniciales y los coeficientes se encuentran

en espacios de funciones con menor regularidad ha sido recientemente estudiado utilizando el

formalismo de Dubovitskii–Milyutin [10, 13]. En consecuencia, es esperable que los resultados de

este trabajo se puedan extender a espacios de Sobolev.

El resto del artículo está organizado en tres secciones. En la sección 2 presentamos algunos resul-

tados para la solución directa del problema, introducimos el estado adjunto y las condiciones de

optimalidad necesarias, y demostramos un resultado de estabilidad. En la sección 3 presentamos

la demostración del Teorema 1.1. En la sección 4 se discute la aproximación numérica y se realizan

simulaciones numéricas.

2. Preliminares

2.1. Solución del problema directo

El buen planteamiento del problema directo (1.1)-(1.5) viene dado por el siguiente resultado.

Teorema 2.1. Considere que !, S0 y I0 satisfacen las hipótesis del Teorema 1.1. Si (ω, ε) ↑
C

ϑ(!) ↔ C
ϑ(!), el problema con condiciones iniciales y en la frontera (1.1)-(1.5) admite una

solución clásica positiva única (S, I), tal que S y I pertenecen a C
2+ϑ,1+ϑ/2(Q

T
) y también S y I

son acotadas uniformemente sobre Q
T
, para cualquier T ↑ R+.

La existencia y la unicidad puede ser desarrollado por la teoría de Sch auder para ecuaciones

parabólicas [23–25]. Hay que aclarar que la noción de solución para ecuaciones parabólicas con

coeficientes y condiciones iniciales en espacios de Hölder se entiende en un sentido generalizado.

En tal sentido no se necesita las condiciones de compatibilidad de las condiciones iniciales y en la

frontera que son necesarias para las soluciones en un contexto de espacios de funciones regulares,

para mayores detalles consultar [23]. Mientras tanto, el comportamiento positivo de la solución es

una consecuencia del principio máximo. En efecto, si denotamos por N la población total, es decir,

N(x, t) = S(x, t) + I(x, t). Entonces, del sistema (1.1)-(1.5), podemos deducir que N satisface el

siguiente problema con condiciones iniciales y en la frontera

Nt ↓”N = 0, en QT ,

↗N · n = 0, sobre #,

N(x, 0) = S0(x) + I0(x), en !.
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Por el principio máximo de ecuaciones parabólicas y la hipótesis (1.11) tenemos que N(x, t) ⇑
S0(x) + I0(x) ⇑ ϱ0 > 0 sobre QT .

Corolario 2.2. Considere que !, S0 e I0 satisfacen las hipótesis del Teorema 2.1. Si (ω,ς) ↑
C

ϑ(!) ↔ C
ϑ(!) y (S, I) es la solución del problema con condiciones iniciales y en la frontera

(1.1)-(1.5), entonces las estimaciones 0 < Sm ⇓ S(x, t) ⇓ SM , y 0 < Im ⇓ I(x, t) ⇓ IM , son

válidos en Q
T
, para algunas constantes estrictamente positivas Sm, SM , Im, e IM .

2.2. Sistema adjunto

Consideremos que (ω̄, ε̄) es una solución del problema de control óptimo (1.6) y (S̄, Ī) es la corres-

pondiente solución de (1.1)-(1.5) con (ω̄, ε̄) en lugar de (ω, ε). Luego introducimos las variables

adjuntas (p1, p2), es decir, la solución del sistema adjunto que viene dada por el siguiente problema

retrógrado con valores en la frontera

(p1)t +”p1 = mω̄(x)S̄m→1
Ī
n(p1 ↓ p2), en QT , (2.1)

(p2)t +”p2 = nω̄(x)S̄m
Ī
n→1(p1 ↓ p2)↓ ε̄(x)(p1 ↓ p2), en QT , (2.2)

↗p1 · n = ↗p2 · n = 0, sobre #, (2.3)

p1(x, T ) = S̄(x, T )↓ S
obs(x), en !, (2.4)

p2(x, T ) = Ī(x, T )↓ I
obs(x), en !. (2.5)

La existencia de soluciones generalizadas (notar que (Sobs
, I

obs) ↑ L
2(!)2) para el sistema (2.1)-

(2.5) puede ser desarrollado por argumentos similares a un resultado similar presentados en [3].

Ahora, para nuestro propósito, necesitamos algunas estimaciones a priori dadas en el siguiente

resultado.

Lema 2.3. Considere que !, S0, I0, S
obs y I

obs, satisfacen las hipótesis del Teorema 1.1. Además,

considere que (ω̄, ε̄) ↑ Uad es una solución de (1.6), y (S̄, Ī) es una solución de (1.1)-(1.5) con (ω̄, ε̄)

en lugar de (ω, ε). Entonces, la solución del sistema adjunto (2.1)-(2.5) satisface las siguientes

estimaciones

↘(p1, p2)(·, t)↘2L2(!)2 ⇓ C, ↘(p1, p2)(·, t)↘H1
0 (!)2 ⇓ C, (2.6)

↘”(p1, p2)(·, t)↘L2(!)2 ⇓ C, ↘(p1, p2)(·, t)↘L→(!)2 ⇓ C, (2.7)

para t ↑ [0, T ] y una constante positiva genérica C.

Demostración. En términos generales, la demostración de este teorema se realiza en dos pasos

principales: primero se transforma el sistema adjunto (2.1)-(2.5) en un problema de valores iniciales

y en la frontera y luego aplicando estimaciones de energía. En efecto, consideremos el cambio de
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variable φ = T ↓ t para t ↑ [0, T ] y también considera la notación

wi(x, φ) = pi(x, T ↓ φ), i = 1, 2, S
↑(x, φ) = S̄(x, T ↓ φ), I

↑(x, φ) = Ī(x, T ↓ φ).

Entonces, el sistema adjunto (2.1)-(2.5) se puede reescribir de la siguiente manera

(w1)ϖ ↓”w1 = ↓mω̄(x)(S↑)m→1(I↑)n(w1 ↓ w2), en QT , (2.8)

(w2)ϖ ↓”w2 = ↓nω̄(x)(S↑)m(I↑)n→1(w1 ↓ w2) + ε̄(x)(w1 ↓ w2), en QT , (2.9)

↗w1 · n = ↗w2 · n = 0, sobre #, (2.10)

w1(x, 0) = S̄(x, T )↓ S
obs(x), w2(x, 0) = Ī(x, T )↓ I

obs(x), en !. (2.11)

Ahora, aplicando aplicando estimaciones de energía obtenemos para wi las cuales conducen a las

desigualdades (2.6) y (2.7).

Para probar (2.6) procedemos como sigue. Multiplicamos (2.8) por w1 y (2.9) por w2, integramos

sobre ! y usamos las fórmulas de Green, para obtener

∫

!
(w1)ϖw1 dx+

∫

!
(↗w1)

2
dx =↓m

∫

!
ω̄(x)(S↑)m→1(I↑)nw2

1 dx

+m

∫

!
ω̄(x)(S↑)m→1(I↑)nw1w2 dx,

∫

!
(w2)ϖw2 dx+

∫

!
(↗w2)

2
dx =↓

∫

!

[
nω̄(x)(S↑)m(I↑)n→1 ↓ ε̄(x)

]
w1w2 dx

+

∫

!

[
nω̄(x)(S↑)m(I↑)n→1 ↓ ε̄(x)

]
w

2
2 dx,

respectivamente. Luego, sumando las igualdades, aplicando la desigualdad de Cauchy, reordenando

algunos términos y aplicando el Corolario 2.2, podemos deducir la siguiente estimación

1

2

d

dφ

(
↘(w1, w2)(·, φ)↘2L2(!)2

)
+ ↘↗(w1, w2)(·, φ)↘2L2(!)2 ⇓ Ĉ

[
↘(w1, w2)(·, φ)↘2L2(!)2

]
. (2.12)

con

Ĉ = máx

{
3Ĉ1 + Ĉ2

2
,
Ĉ1 + 3Ĉ2

2

}
, Ĉ1 = b m Sm→1

m
In
M
, Ĉ2 = b n Sm

M
In→1
n

+ r. (2.13)

La notación b y r es definida en (1.9). Entonces, de (2.12) y la desigualdad de Gronwall, obtenemos

↘(w1, w2)(·, φ)↘2L2(!)2 ⇓ ↘(w1, w2)(·, 0)↘2L2(!)2e
2ĈT

, (2.14)

lo que implica la primera estimación en (2.6). Ahora, de (2.12) y (2.14), tenemos que

↘↗(w1, w2)(·, φ)↘2L2(!)2 ⇓ Ĉ e
2ĈT ↘(w1, w2)(·, 0)↘2L2(!)2 .
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Así, por la definición de la norma de H
1
0 (!) deducimos la segunda estimación en (2.6).

La demostración de (2.7) se realiza como sigue. Por otro lado, usando el hecho de que

∫

!
(wi)ϖ”wi dx = ↓

∫

!
↗[(wi)ϖ ] ·↗wi dx+

∫

ϱ!
(wi)ϖ↗(wi) · n dS = ↓1

2

d

dφ
↘wi(·, φ)↘2L2(!),

para i = 1, 2. Observamos que, al multiplicar (2.8) por ”w1, multiplicando (2.9) por ”w2, inte-

grando en !, y sumando los resultados, deducimos que

1

2

d

dφ

(
↘(w1, w2)(·, φ)↘2H1

0 (!)2

)
+ ↘”(w1, w2)(·, φ)↘2L2(!)2

⇓ Ĉ

[
↼↘(w1, w2)(·, φ)↘2L2(!)2 +

1

4↼
↘”(w1, w2)(·, φ)↘2L2(!)2

]
,

con Ĉ definido sobre (2.13) y ↼ > 0 arbitrario. Entonces, tenemos que

1

2

d

dφ

(
↘(w1, w2)(·, φ)↘2H1

0 (!)2

)
+

(
1↓ Ĉ

4↼

)
↘”(w1, w2)(·, φ)↘2L2(!)2 ⇓ ↼Ĉ↘(w1, w2)(·, φ)↘2L2(!)2 .

Ahora, seleccionando ↼ > Ĉ/4 y usando la estimación (2.14) obtenemos

↘”(w1, w2)(·, φ)↘2L2(!)2 ⇓ 4↼2Ĉ

4↼↓ Ĉ
e
2ĈT ↘(w1, w2)(·, 0)↘2L2(!)2 ,

lo que implica la primera desigualdad en (2.7). Ahora, de (2.6) y la primera estimación en (2.7),

tenemos que p1 y p2 están acotados en la norma de H
2(!). Así, según el teorema de inclusión

continua H
2(!) → L

↓(!), deducimos la segunda desigualdad de (2.7).

2.3. Condición necesaria de optimalidad de primer orden.

Lema 2.4. Sean (ω̄, ε̄) la solución del problema de control óptimo (1.6) y (S̄, Ī) la solución de (1.1)-

(1.5) con (ω̄, ε̄) en lugar de (ω, ε) y (p1, p2) la solución del sistema adjunto (2.1)-(2.5). Entonces,

la desigualdad

∫
T

0

∫

!

[(
ω̂ ↓ ω̄

)
S̄
m
Ī
n ↓ (ε̂ ↓ ε̄) Ī

]
(p2 ↓ p1) dx dt

+ ϖ

∫

!

[
↗ω̄↗

(
ω̂ ↓ ω̄

)
+↗ε̄↗ (ε̂ ↓ ε̄)

]
dx ⇑ 0, (2.15)

es válida para todo (ω̂, ε̂) ↑ Uad.

Demostración. La demostración se realiza utilizando los conceptos de diferenciabilidad en espacios

de Banach y la ecuación de sensibilidad. Consideremos un par arbitrario (ω̂, ε̂) ↑ Uad e introducimos
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la notación

(ως
, ε

ς) = (1↓ ↽)(ω̄, ε̄) + ↽(ω̂, ε̂) ↑ Uad,

Jς = J(ως
, ε

ς) =
1

2

∫

!

(∣∣Sς(x, t)↓ S
obs(x)

∣∣2 +
∣∣Iς(x, t)↓ I

obs(x)
∣∣2
)
dx

+
ϖ

2

∫

!

(
|↗ω

ς(x)|2 + |↗ε
ς(x)|2

)
dx,

donde (Sς
, I

ς) es la solución de (1.1)-(1.5) con (ως
, ε

ς) en lugar de (ω, ε). Ahora, usando la hipótesis

de que (ω̄, ε̄) es una solución óptima de (1.6) y tomando la derivada de Frechet de Jς, tenemos que

dJς

d↽

∣∣∣
ς=0

=

∫

!

(∣∣Sς(x, t)↓ S
obs(x)

∣∣ ϑS
ς

ϑ↽

∣∣∣
ς=0

+
∣∣Iς(x, t)↓ I

obs(x)
∣∣ ϑI

ς

ϑ↽

∣∣∣
ς=0


dx

+ ϖ

∫

!

[
↗ω̄↗

(
ω̂ ↓ ω̄

)
+↗ε̄↗ (ε̂ ↓ ε̄)

]
dx ⇑ 0, (2.16)

donde ϑςS
ς y ϑςI

ς para ↽ = 0 se calculan analizando las sensibilidades de las soluciones para

(1.1)-(1.5) con respecto a las perturbaciones de (ω, ε).

De la definición de (Sς
, I

ς) y (S̄, Ī) tenemos

(Sς)t ↓”S
ς = ↓ω

ς(x)(Sς)m(Iς)n + ε
ς(x)Iς, en QT , (2.17)

(Iς)t ↓”I
ς = ω

ς(x)(Sς)m(Iς)n ↓ ε
ς(x)Iς, en QT , (2.18)

↗S
ς · n = ↗I

ς · n = 0, sobre #, (2.19)

S
ς(x, 0) = S0(x), I

ς(x, 0) = I0(x), en !, (2.20)

y

(S̄)t ↓”S̄ = ↓ω̄(x)(S̄)m(Ī)n + ε̄(x)Ī , en QT , (2.21)

(Ī)t ↓”Ī = ω̄(x)(S̄)m(Ī)n ↓ ε̄(x)Ī , en QT , (2.22)

↗S̄ · n = ↗Ī · n = 0, sobre #, (2.23)

S̄(x, 0) = S0(x), Ī(x, 0) = I0(x), en !. (2.24)

Restando el sistema (2.21)-(2.24) del sistema (2.17)-(2.20), dividiendo por ↽ y usando la notación

(zς1, z
ς

2) = ↽
→1


S
ς ↓ S̄, I

ς ↓ Ī

, deducimos el siguiente sistema

(zς1)t ↓”z
ς

1 = ↓ω
ς(x)

[
(Sς)m ↓ (S̄)m

]

Sς ↓ S̄
(Iς)nzς1 ↓ ω

ς(x)(S̄)m
[
(Iς)n ↓ (Ī)n

]

Iς ↓ Ī
z
ς

2

↓ (ω̂ ↓ ω̄)(S̄)m(Ī)n + ε
ς(x)zς2 + (ε̂ ↓ ε̄)Ī , en QT , (2.25)

(zς2)t ↓”z
ς

2 = ω
ς(x)

[
(Sς)m ↓ (S̄)m

]

Sς ↓ S̄
(Iς)nzς1 + ω

ς(x)(S̄)m
[
(Iς)n ↓ (Ī)n

]

Iς ↓ Ī
z
ς

2

+ (ω̂ ↓ ω̄)(S̄)m(Ī)n ↓ ε
ς(x)zς2 ↓ (ε̂ ↓ ε̄)Ī , en QT , (2.26)
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↗z
ς

1 · n = ↗z
ς

2 · n = 0, sobre #, (2.27)

z
ς

1(x, 0) = z
ς

2(x, 0) = 0, en !. (2.28)

Entonces, denotando por (z1, z2) el límite de (zς1, z
ς

2) cuando ↽ ⇔ 0, de (2.25)-(2.28), deducimos

(z1)t ↓”z1 = ↓mω̄(x)(S̄)m→1(Ī)nz1 ↓ nω̄(x)(S̄)m(Ī)n→1
z2

↓ (ω̂ ↓ ω̄)(S̄)m(Ī)n + ε̄(x)zς2 + (ε̂ ↓ ε̄)Ī , en QT , (2.29)

(z2)t ↓”z2 = mω̄(x)(S̄)m→1(Ī)nz1 + nω̄(x)(S̄)m(Ī)n→1
z2

+ (ω̂ ↓ ω̄)(S̄)m(Ī)n ↓ ε̄(x)zς2 ↓ (ε̂ ↓ ε̄)Ī , en QT , (2.30)

↗z1 · n = ↗z2 · n = 0, sobre #, (2.31)

z1(x, 0) = z2(x, 0) = 0, en !. (2.32)

Así, en (2.16) se tiene

dJς

d↽

∣∣∣
ς=0

=

∫

!

( ∣∣Sς(·, t)↓ S
obs

∣∣ z1(·, t) +
∣∣Iς(·, t)↓ I

obs
∣∣ z2(·, t)

)
dx

+ ϖ

∫

!

[
↗ω̄↗

(
ω̂ ↓ ω̄

)
+↗ε̄↗ (ε̂ ↓ ε̄)

]
dx ⇑ 0, (2.33)

cuando (z1, z2) es la solución de (2.29)-(2.32).

Por otro lado, de (2.1)-(2.2) y (2.29)-(2.30), deducimos

ϑ

ϑt
(p1z1 + p2z2) = p1”z1 + p2”z2 ↓ z1”p1 ↓ z2”p2 + (ω̂ ↓ ω̄)S̄m

Ī
n(p2 ↓ p1)↓ (ε̂ ↓ ε̄)Ī(p2 ↓ p1),

lo cual implica

∫∫

QT

ϑ

ϑt
(p1z1 + p2z2)dx dt =

∫∫

QT

[
(ω̂ ↓ ω̄)S̄m

Ī
n ↓ (ε̂ ↓ ε̄)Ī

]
(p2 ↓ p1)dx dt, (2.34)

mediante integración sobre QT . Además, notamos que

∫∫

QT

ϑ

ϑt
(p1z1 + p2z2)dx dt =

∫

!

(
p1(x, T )z1(x, T ) + p2(x, T )z2(x, T )

)
dx

=

∫

!

( ∣∣S̄(x, T )↓ S
obs(x)

∣∣ z1(x, T ) +
∣∣Ī(x, T )↓ I

obs(x)
∣∣ z2(x, T )

)
dx. (2.35)

Luego, de (2.34) y (2.35) deducimos que

∫∫

QT

[
(ω̂ ↓ ω̄)S̄m

Ī
n ↓ (ε̂ ↓ ε̄)Ī

]
(p2 ↓ p1)dx dt

=

∫

!

( ∣∣S̄(x, T )↓ S
obs(x)

∣∣ z1(x, T ) +
∣∣Ī(x, T )↓ I

obs(x)
∣∣ z2(x, T )

)
dx. (2.36)
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Podemos concluir la demostración de (2.15) reemplazando (2.36) en el primer término de (2.33).

2.4. Algunos resultados de estabilidad

Lema 2.5. Considere que los conjuntos de funciones {S, I, p1, p2} y {Ŝ, Î, p̂1, p̂2} son soluciones

a los sistemas (1.1)-(1.5) y (2.1)-(2.5) con los coeficientes, condiciones iniciales y observaciones

dada por {ω, ε, S0, I0, S
obs

, I
obs} y {ω̂, ε̂, S0, I0, Ŝ

obs
, Î

obs}, respectivamente. Entonces, existen las

constantes positivas %i, i = 1, 2, 3 tales que las estimaciones

↘(Ŝ ↓ S, Î ↓ I)(·, t)↘2
L2(!)2 ⇓ %1↘(ω̂ ↓ ω, ε̂ ↓ ε)↘2

L2(!)2 , (2.37)

↘(p̂1 ↓ p1, p̂2 ↓ p2)(·, t)↘2L2(!)2 ⇓ %2↘(ω̂ ↓ ω, ε̂ ↓ ε)↘2
L2(!)2

+%3↘(Ŝobs ↓ S
obs

, Î
obs ↓ I

obs)↘2
L2(!)2 (2.38)

son válidas para cualquier t ↑ [0, T ].

Demostración. Por razones de simplicidad de la presentación, introducimos las siguientes notacio-

nes

ϖS = Ŝ ↓ S, ϖp1 = p̃1 ↓ p2, ϖω = ω̂ ↓ ω

ϖI = Î ↓ I, ϖp2 = p̂2 ↓ p2, ϖε = ε̂ ↓ ε.

Entonces, del sistema (1.1)-(1.5) para (S, I) y (Ŝ, Ŝ) tenemos que (ϖS, ϖI) satisfacen el sistema

(ϖS)t ↓”(ϖS) = ↓ω̂(x)
[
(Ŝ)m(Î)n ↓ (S)m(I)n

]

↓ ϖω(x)(Ŝ)m(Î)n + ε̂(x)ϖI + ε(x)I, en QT , (2.39)

(ϖI)t ↓”(ϖI) = ω̂(x)
[
(Ŝ)m(Î)n ↓ (S)m(I)n

]

+ ϖω(x)(Ŝ)m(Î)n ↓ ε̂(x)ϖI ↓ ε(x)I, en QT , (2.40)

↗(ϖS) · n = ↗(ϖI) · n = 0, sobre #, (2.41)

(ϖS)(x, 0) = (ϖI)(x, 0) = 0, en !. (2.42)

Del mismo modo, del sistema adjunto (2.1)-(2.5), deducimos que (ϖp1, ϖp2) es la solución del sistema

(ϖp1)t +”(ϖp1) = mω̂(x)(Ŝ)m→1(Î)n(p̂1 ↓ p̂2)

↓mω(x)(S)m→1(I)n(p1 ↓ p2), en QT , (2.43)

(ϖp2)t +”(ϖp2) = nω̂(x)Ŝm
Î
n→1(p̂1 ↓ p̂2)↓ ε̂(x)(p̂1 ↓ p̂2)

↓ nω(x)Sm
I
n→1(p1 ↓ p2) + ε(x)(p1 ↓ p2), en QT , (2.44)
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↗(ϖp1) · n = ↗(ϖp2) · n = 0, sobre #, (2.45)

(ϖp1)(x, T ) = ϖS(x, T )↓
(
Ŝ
obs(x)↓ S

obs(x)
)
, en !, (2.46)

(ϖp2)(x, T ) = ϖI(x, T )↓
(
Î
obs(x)↓ I

obs(x)
)
, en !. (2.47)

Luego, las pruebas de (2.37) y (2.38) se reducen a obtener estimaciones para los sistemas (2.39)-

(2.42) y (2.43)-(2.47), respectivamente.

Para demostrar (2.37), testeamos las ecuaciones (2.39) y (2.40) por ϖS y ϖI, respectivamente.

Luego, sumando los resultados obtenemos

1

2

d

dt

(
↘ϖS(·, t)↘2

L2(!) + ↘ϖI(·, t)↘2
L2(!)

)
+ ↘↗(ϖS)(·, t)↘2

L2(!) + ↘↗(ϖI)(·, t)↘2
L2(!)

⇓
∫

!
|ω̂(x)|

∣∣∣Ŝm
Î
n ↓ S

m
I
n

∣∣∣|ϖS| dx+

∫

!
|ϖω(x)||Ŝ|mÎ|n|ϖS| dx+

∫

!
|ε̂(x)||ϖI||ϖS| dx

+

∫

!
|ϖε(x)||I||ϖS| dx+

∫

!
|ω̂(x)|

∣∣∣Ŝm
Î
n ↓ S

m
I
n

∣∣∣|ϖI| dx+

∫

!
|ϖω(x)||Ŝ|m|Î|n|ϖI| dx

+

∫

!
|ε̂(x)||ϖI|2 dx+

∫

!
|ϖε(x)||I||ϖI| dx

=
8

j=1

Ij , (2.48)

donde Ij están definidos por cada término. Ahora, usando el Corolario 2.2 para conseguir que

|Ŝm
Î
n ↓ S

m
I
n| = |Ŝm

Î
n ↓ Ŝ

m
I
n + Ŝ

m
I
n ↓ S

m
I
n|

=

∣∣∣∣∣Ŝ
m
n

∫
Î

I

u
n→1

du+ I
n
m

∫
Ŝ

S

u
m→1

du

∣∣∣∣∣

⇓ n|Ŝ|m
∫

Î

I

In→1
m

du+m|I|n
∫

Ŝ

S

Sm→1
m

du,

⇓ n Sm
M
In→1
m

|Î ↓ I|+m Sm→1
m

In
M
|Ŝ ↓ S|, (2.49)

procedemos a obtener las cotas apropiados para Ij . En efecto, por la desigualdad de Cauchy y

(2.49), tenemos que I1 se puede acotar de la siguiente manera

I1 ⇓ n b

2
Sm
M
In→1
m

(∫

!
|ϖI|2 dx+

∫

!
|ϖS|2 dx


+m bSm→1

m
In
M

∫

!
|ϖS|2 dx.

En caso de I2, I3 y I4, se tiene

I2 ⇓ 1

2
Sm
M
In
M

(∫

!
|ϖω|2 dx+

∫

!
|ϖS|2 dx


, I3 ⇓ r

2

(∫

!
|ϖI|2 dx+

∫

!
|ϖS|2 dx


,

I4 ⇓ 1

2
IM

(∫

!
|ϖε|2 dx+

∫

!
|ϖS|2 dx


.
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Del mismo modo, deducimos que

I5 ⇓ n bSm
M
In→1
m

∫

!
|ϖI|2 dx+

m b

2
Sm→1
m

In
M

(∫

!
|ϖI|2 dx+

∫

!
|ϖS|2 dx


,

I6 ⇓ 1

2
Sm
M
In
M

(∫

!
|ϖω|2 dx+

∫

!
|ϖI|2 dx


,

I7 ⇓ r

∫

!
|ϖI|2 dx, I8 ⇓ 1

2
IM

(∫

!
|ϖε|2 dx+

∫

!
|ϖI|2 dx


.

Así, a partir de las estimaciones de Ij y (2.48) tenemos

d

dt

(
↘ϖS(·, t)↘2

L2(!) + ↘ϖI(·, t)↘2
L2(!)

)
+ 2

(
↘↗(ϖS)(·, t)↘2

L2(!) + ↘↗(ϖI)(·, t)↘2
L2(!)

)

⇓ D1

(
↘ϖS(·, t)↘2

L2(!) + ↘ϖI(·, t)↘2
L2(!)

)
+D2

(
↘ϖω↘2

L2(!) + ↘ϖε↘2
L2(!)

)
,

donde D1 = 2Ĉ + I con Ĉ definido en (2.13) y D2 = Sm
M
In
M

+ IM . Luego, aplicando la desigualdad

de Gronwall, deducimos que

↘ϖS(·, t)↘2
L2(!) + ↘ϖI(·, t)↘2

L2(!)

⇓ e
D1T

(
↘ϖS0↘2L2(!) + ↘ϖI0↘2L2(!)

)
+D2T

(
↘ϖω↘2

L2(!) + ↘ϖε↘2
L2(!)

)
,

que implica (2.37) al utilizar (2.42).

La prueba de (2.38) se desarrolla de la siguiente manera. Podemos probar fácilmente que la iden-

tidad algebraica

⇀̂ Â(p̂1 ↓ p̂2)↓ ⇀ A(p1 ↓ p2) =
(
⇀̂ ↓ ⇀

)
Âp̂1 + ⇀

(
Â↓ A

)
p̂1 + ⇀ Aϖp1

↓
(
⇀̂ ↓ ⇀

)
Âp̂2 ↓ ⇀

(
Â↓ A

)
p̂2 ↓ ⇀ Aϖp2 (2.50)

es válida. Ahora, si (⇀̂, ⇀, Â,A) =
(
ω̂,ω,m(Ŝ)m→1(Î)n,m(S)m→1(I)n

)
, tenemos que (2.50) implica

que el lado derecho de la ecuación (2.43) se puede reescribir de la siguiente manera

mω̂ (Ŝ)m→1(Î)n(p̂1 ↓ p̂2)↓mω (S)m→1(I)n(p1 ↓ p2)

= mϖω (Ŝ)m→1(Î)np̂1 +mω

[
(Ŝ)m→1(Î)n ↓ (S)m→1(I)n

]
p̂1

+mω (S)m→1(I)nϖp1 ↓mϖω (Ŝ)m→1(Î)np̂2

↓mω

[
(Ŝ)m→1(Î)n ↓ (S)m→1(I)n→1

]
p̂2 ↓mω (S)m→1(I)nϖp2. (2.51)

Luego, testeando (2.43) por ϖp1 y usando (2.51), obtenemos

1

2

d

dt
↘ϖp1(·, t)↘2L2(!) = ↘↗(ϖp1)(·, t)↘2L2(!) +

∫

!
mϖω (Ŝ)m→1(Î)np̂1ϖp1dx
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+

∫

!
mω

[
(Ŝ)m→1(Î)n ↓ (S)m→1(I)n

]
p̂1ϖp1dx

+

∫

!
mω (S)m→1(I)n(ϖp1)

2
dx↓

∫

!
mϖω (Ŝ)m→1(Î)np̂2ϖp1dx

↓
∫

!
mω

[
(Ŝ)m→1(Î)n ↓ (S)m→1(I)n

]
p̂2ϖp1dx↓

∫

!
mω (S)m→1(I)nϖp1ϖp2dx.

Del Lema 2.3, Corolario 2.2, usando argumentos similares a (2.49), y la desigualdad de Cauchy

tenemos

↓1

2

d

dt
↘ϖp1(·, t)↘2L2(!) + ↘↗ϖp1(·, t)↘2L2(!) ⇓ máx

{
P4, P5

}{
mSm→1

m
In
M

(
↘ϖp1(·, t)↘2L2(!) + ↘ϖω↘2

L2(!)

)

+mnbSm→1
m

In→1
m

(
↘ϖp1(·, t)↘2L2(!) + ↘ϖI(·, t)↘2

L2(!)

)

+m|m↓ 1|bSm→2
M

In
M

(
↘ϖp1(·, t)↘2L2(!) + ↘ϖS(·, t)↘2

L2(!)

)}

+
mb

2
Sm→1
m

In
M

(
3↘ϖp1(·, t)↘2L2(!) + ↘ϖp2(·, t)↘2L2(!)

)
. (2.52)

Ahora, de (2.50), seleccionando (⇀̂, ⇀, Â,A) =
(
ω̂,ω, n(Ŝ)m(Î)n→1

, n(S)m(I)n→1
)

y (⇀̂, ⇀, Â,A) =
(
ε̂, ε, 1, 1

)
, podemos reescribir el lado derecho de la ecuación (2.44). Entonces, testeando (2.43)

por ϖp2 y usando argumentos similares obtenemos una estimación similar a (2.52). Así, tenemos

que existen las constantes positivas Ẽi, i = 1, 2, 3, tales que

↓ d

dt

(
↘ϖp1(·, t)↘2L2(!) + ↘ϖp2(·, t)↘2L2(!)

)
+ 2

(
↘↗ϖp1(·, t)↘2L2(!) + ↘↗ϖp2(·, t)↘2L2(!)

)

⇓ Ẽ1

(
↘ϖp1(·, t)↘2L2(!) + ↘ϖp2(·, t)↘2L2(!)

)

+ Ẽ2

(
↘ϖS(·, t)↘2

L2(!) + ↘ϖI(·, t)↘2
L2(!)

)
+ Ẽ3

(
↘ϖω↘2

L2(!) + ↘ϖε↘2
L2(!)

)
.

Aplicando la estimación (2.37) y reordenando algunos términos deducimos que

↓ d

dt

(
e
Ẽ1t

[
↘ϖp1(·, t)↘2L2(!) + ↘ϖp2(·, t)↘2L2(!)

])
⇓ (Ẽ2%1 + Ẽ3)

(
↘ϖω↘2

L2(!) + ↘ϖε↘2
L2(!)

)
,

e integrando en [t, T ] tenemos que

e
Ẽ1t

[
↘ϖp1(·, t)↘2L2(!) + ↘ϖp2(·, t)↘2L2(!)

]
⇓ e

Ẽ1T

[
↘ϖp1(·, T )↘2L2(!) + ↘ϖp2(·, T )↘2L2(!)

]

+ T (Ẽ2%1 + Ẽ3)e
C̃1T

(
↘ϖω↘2

L2(!) + ↘ϖε↘2
L2(!)

)
.

Por tanto, podemos deducir (2.38) mediante la aplicación de la condición final (2.47).
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3. Prueba del teorema

Existencia. Podemos probar la existencia considerando la estrategia estándar de una sucesión

minimizadora y utilizando las inclusiones de compacidad adecuadas. En efecto, notamos claramente

que Uad(!) ↖= ↙ y J(ω, ε) están acotadas para cualquier (ω, ε) ↑ Uad(!). Entonces podemos

considerar que {(ωn, εn)} → U es una sucesión minimizadora de J . Entonces la inclusión compacta

H
|[d/2]|+1(!) → C

ϑ(!) para ς ↑]0, 1/2], implica que la sucesión de minimización {(ωn, εn)} está

acotada en la topología fuerte de C
ϑ(!)↔C

ϑ(!) para todos ς ↑]0, 1/2], desde existe una constante

positiva C (independiente de ω, ε y n) tal que

↘ωn↘Cω(!) + ↘εn↘Cω(!) ⇓ C

(
↘ωn↘H|[d/2]|+1(!) + ↘εn↘H|[d/2]|+1(!)

)
, ∝ς ↑]0, 1/2].

Observe que el lado derecho está acotado por el hecho de que ωn, εn ↑ H
|[d/2]|+1(!), ver la definición

de Uad(!) dada en (1.8). Ahora, denotemos por (Sn, In) la solución del problema del valor inicial

y en la frontera (1.1)-(1.5) correspondiente a (ωn, εn). Entonces, considerando el hecho de que

{(ωn, εn)} pertenece a C
ϑ(!) ↔ C

ϑ(!) para todo ς ↑]0, 1/2], por el Teorema 2.1, tenemos que

Sn y In pertenecen al espacio de Hölder C
2+ϑ,1+ω

2 (Q
T
) y también {(Sn, In)} es una sucesión

acotada en la topología fuerte de C
2+ϑ,1+ω

2 (Q
T
) ↔ C

2+ϑ,1+ω
2 (Q

T
) para todo ς ↑]0, 1/2]. Así, del

acotamiento de la sucesión de minimización y la correspondiente secuencia {(Sn, In)}, implica que

existe

(ω, ε) ↑
[
C

1/2(!)↔ C
1/2(!)

]
≃ Uad(!), (S, T ) ↑ C

2+ 1
2 ,1+

1
4 (Q

T
)↔ C

2+ 1
2 ,1+

1
4 (Q

T
),

y la subsucesión nuevamente etiquetada por {(ωn, εn)} y {(Sn, In)} tal que

ωn ⇔ ω, εn ⇔ ε uniformemente sobre C
ϑ(!), (3.1)

Sn ⇔ S, In ⇔ I uniformemente sobre C
ϑ,

ω
2 (Q

T
) ≃ C

2+ϑ,1+ω
2 (Q

T
). (3.2)

Además, podemos deducir que (S, I) es la solución de el problema del valor límite inicial (1.1)-(1.5)

correspondiente a los coeficientes (ω, ε). Por tanto, según el teorema de convergencia dominado de

Lebesgue, la semicontinuidad inferior de la norma L
2, y la definición de la secuencia minimizadora,

tenemos que

J(ω, ε) ⇓ ĺım
n↔↓

J(ωn, εn) = ı́nf
(ω,ε)↗Uad(!)

J(ω, ε). (3.3)

Entonces, (ω, ε) es una solución de (1.6) y la prueba de existencia está concluida.

Unicidad. Demostramos la unicidad usando adecuadamente el resultado de estabilidad del Le-

ma 2.5 y la condición de optimalidad necesaria del Lema 2.15. Para ser más precisos, consideremos

los conjuntos de funciones {S, I, p1, p2} y {Ŝ, Î, p̂1, p̂2} son soluciones a los sistemas (1.1)-(1.5) y
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(2.1)-(2.5) con los datos {ω, ε, Sobs
, I

obs} y {ω̂, ε̂, Ŝobs
, Î

obs}, respectivamente. Del Lema 2.15 y la

hipótesis que (ω, ε) y (ω̂, ε̂) son soluciones de (1.6) tenemos que las siguientes desigualdades

∫∫

QT

[ (
ω ↓ ω

)
S
m
I
n ↓


ε ↓ ε


I

]
(p2 ↓ p1) dx dt

+ ϖ

∫

!

[
↗ω↗

(
ω ↓ ω

)
+↗ε↗


ε ↓ ε

]
dx ⇑ 0, ∝(ω, ε) ↑ Uad, (3.4)

∫∫

QT

[ (
ω ↓ ω̂

)
Ŝ
m
Î
n ↓

(
ε ↓ ε̂

)
Î

]
(p̂2 ↓ p̂1) dx dt

+ ϖ

∫

!

[
↗ω̂↗

(
ω ↓ ω̂

)
+↗ε̂↗

(
ε ↓ ε̂

)]
dx ⇑ 0, ∝(ω, ε) ↑ Uad, (3.5)

son válidas, respectivamente. En particular, seleccionando (ω, ε) = (ω̂, ε̂) en (3.4) y (ω, ε) = (ω, ε)

en (3.5), y sumando ambas desigualdades, obtenemos

ϖ

[
↘↗(ω̂ ↓ ω)↘2

L2(!) +↘↗(ε̂ ↓ ε)↘2
L2(!)

]
⇓

∫∫

QT

∣∣∣ω̂ ↓ ω

∣∣∣
∣∣∣Ŝm

Î
n(p̂2 ↓ p̂1)↓ S

m
I
n(p2 ↓ p1)

∣∣∣ dx dt

+

∫∫

QT

|ε̂ ↓ ε||Î(p̂2 ↓ p̂1)↓ I(p2 ↓ p1)| dxdt := I1 + I2. (3.6)

Ahora, de (2.49), (2.50), Corolario 2.2, Lema 2.3, y la desigualdad de Cauchy, observamos que

I1 ⇓
∫∫

QT

|ω̂ ↓ ω||Ŝm
Î
n ↓ S

m
I
n||p̂1| dx dt+

∫∫

QT

|ω̂ ↓ ω||Ŝm
Î
n ↓ S

m
I
n||p̂2| dx dt

+

∫∫

QT

|ω̂ ↓ ω||Sm
I
n||p̂1 ↓ p1| dx dt+

∫∫

QT

|ω̂ ↓ ω||Sm
I
n||p̂2 ↓ p2| dx dt

⇓ n

2
Sm
M
In→1
m

máx
{
P4, P5

}(
T↘ω̂ ↓ ω↘2

L2(!) +

∫
T

0
↘Î(·, t)↓ I(·, t)↘2

L2(!)dt

)

+
m

2
In
M
Sm→1
m

máx
{
P4, P5

}(
T↘ω̂ ↓ ω↘2

L2(!) +

∫
T

0
↘Ŝ(·, t)↓ S(·, t)↘2

L2(!)dt

)

+
m

2
Sm
M
In
M

(
2T↘ω̂ ↓ ω↘2

L2(!) +

∫
T

0
↘(p̂1 ↓ p1)(·, t)↘2L2(!)dt+

∫
T

0
↘(p̂2 ↓ p2)(·, t)↘2L2(!)dt

)

y

I2 ⇓ máx
{
P4, P5

}(
T↘ε̂ ↓ ε↘2

L2(!) +

∫
T

0
↘Î(·, t)↓ I(·, t)↘2

L2(!)dt

)

+ IM

(
T↘ε̂ ↓ ε↘2

L2(!) +

∫
T

0
↘(p̂1 ↓ p1)(·, t)↘2L2(!)dt

)
.

De Lema 2.5 y las estimaciones de I1 y I2 en (3.6) tenemos que

ϖ

[
↘↗(ω̂ ↓ ω)↘2

L2(!) + ↘↗(ε̂ ↓ ε)↘2
L2(!)

]
⇓ &1

[
↘ω̂ ↓ ω↘2

L2(!) + ↘ε̂ ↓ ε↘2
L2(!)

]

+&2

[
↘Ŝobs ↓ S

obs↘2
L2(!) + ↘Îobs ↓ I

obs↘2
L2(!)

]
, (3.7)
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donde

&1 =
[(

n

2
Sm
M
In→1
m

+
m

2
Sm→1
m

In
M

+ 1
)
(1 +%1)máx

{
P4, P5

}
+

(
m

2
Sm
M
In
M

+ IM
)
(2 +%2)

]
T,

&2 =
(
m

2
Sm
M
In
M

+ IM
)
%3T.

Ahora, considerando que (ω̂, ε̂), (ω, ε) ↑ Uc(!), por la desigualdad generalizada de Poincaré, tene-

mos que

↘ω̂ ↓ ω↘2
L2(!) + ↘ε̂ ↓ ε↘2

L2(!)

⇓ Cpoi

(
↘↗(ω̂ ↓ ω)↘2

L2(!) + ↘↗(ε̂ ↓ ε)↘2
L2(!) + ↘ω̂ ↓ ω↘2

L1(!) + ↘ε̂ ↓ ε↘2
L1(!)

)

= Cpoi

(
↘↗(ω̂ ↓ ω)↘2

L2(!) + ↘↗(ε̂ ↓ ε)↘2
L2(!)

)
.

Entonces, en (3.7) tenemos

(
ω →!2Cpoi

) [
↑↓(ε̂ → ε)↑2L2(!) + ↑↓(ϑ̂ → ϑ)↑2L2(!)

]
↔ !2

[
↑Ŝobs → Sobs↑2L2(!) + ↑Îobs → Iobs↑2L2(!)

]
.

Por lo tanto, seleccionando $ = &2Cpoi deducimos la unicidad hasta una constante aditiva.

4. Simulaciones numéricas

En esta sección, consideramos la aproximación numérica del problema de control óptimo siguiendo

las ideas detalladas en [33] (véase también [20]). La construcción de la aproximación numérica es

un procedimiento que consta de los siguientes tres pasos: se desarrolla una aproximación numérica

mediante un esquema IMEX de la ecuación de estado (1.1)-(1.5); se construye una aproximación

numérica de la función objetivo (1.7); y, asumiendo que las funciones a identificar tienen formas

específicas en términos de un numero finito de parámetros desconocidos, se aproxima el problema

de optimización infinito dimensional (1.6) por un problema de optimización numérica en dimension

finita, donde las incógnitas son los parámetros. Luego, se aplica un algoritmo de optimización nu-

mérica para resolver el problema de optimización en dimension finita o forma discreta del problema

de optimización. En efecto, en lo que sigue se especifica cada uno de estos pasos.

En primer lugar especificamos la discretización de (1.1)-(1.5). Consideremos que ! =]0, 1[,

ϑ! = {0, 1}, QT = (0, 1) ↔ [0, T ] y # = {0, 1} ↔ [0, T ]. La discretización del problema de valores

iniciales y en la frontera (1.1)-(1.5) se realiza mediante un esquema semi-implícito de diferencias

finitas. Comenzamos introduciendo la discretización estándar de QT . Seleccionamos M,N ↑ N de

modo que la discretización de ! esté dada por xj = j”x para j = 0, . . . ,M con ”x = L/(M +1),

y la discretización de [0, T ] esté dada por tk = k”t para k = 0, . . . , N con ”t = 1/N . Además,

consideramos que la aproximación de una función dada % : Q
T

en (xj , tk) se denota por %k

j
. De

forma similar, la aproximación de las funciones % : ! ⇔ R y % : [0, 1] ⇔ R en xj y tk se denotan

por %j y por %k, respectivamente. El sistema (1.1)-(1.5) se aproxima mediante el siguiente esquema



CUBO
27, 2 (2025)

Análisis matemático de un problema inverso... 381

de diferencias finitas.

S
k+1
j

↓ S
k

j

”t
↓

S
k+1
j+1 ↓ 2Sk+1

j
+ S

k+1
j→1

(”x)2
= ↓ωj(S

k

j
)m(Ik

j
)n + εjI

k

j
, j = 1, . . . ,M ↓ 1, (4.1)

I
k+1
j

↓ I
k

j

”t
↓

I
k+1
j+1 ↓ 2Ik+1

j
+ I

k+1
j→1

(”x)2
= ωj(S

k

j
)m(Ik

j
)n ↓ εjI

k

j
, j = 1, . . . ,M ↓ 1, (4.2)

S
k+1
j

↓ S
k+1
j→1

”x
=

I
k+1
j

↓ I
k+1
j→1

”x
= 0, j ↑ {0,M}, (4.3)

S
0
j
= S0(xj), I

0
j
= I0(xj), j = 0, . . . ,M, (4.4)

donde k = 0, . . . , N ↓ 1. Utilizamos la notacion (S”, I”, R”) para la aproximación numérica de

(1.1)-(1.5) obtenida por el esquema (4.1)–(4.4) con coeficientes numéricos (ω”, ε”).

La aproximación de la función costo (1.7) es denotada por J” y es definida por

J”(S”, I”,ω”, ε”) =
”x

2

M

j=0

[
(SN

j
↓ S

obs

j
)2 + (IN

j
↓ I

obs

j
)2
]
+

ϖ”x

2

M

j=0

[
(ω↘

j
)2 + (ε↘

j
)2
]
. (4.5)

Se observa que (Sobs

j
, I

obs

j
) corresponde a una aproximación de las observaciones, las cuales en la

práctica son interpolaciones de los datos observados que son obtenidos en un conjunto discreto de

puntos del dominio y que no considera la discretización de !.

La discretización del problema de optimización (1.6) cuando (ω, ε) son formas funcionales de-

pendientes de los parámetros se realiza como sigue. Asumimos que las funciones ω y ε están

parametrizadas por un número finito de parámetros denotados por e = (e1, e2, . . . , eφ) y que el

problema de control óptimo (1.6) se aproxima mediante el problema de optimización de dimensión

finita.

Encontrar e ↑ Rφ minimizando la función costo J”(e) = J”(S”, I”,ω”, ε”)

restringida a (S”, I”,ω”, ε”) solución de (4.1)-(4.4) con ω y ε parametriza-

das por e, i.e. ω” = ω”(·, e) y ε” = ε”(·, e),





(4.6)

En esta definición del problema de la discretización del problema de optimización observamos que

(S”, I”) depende de e aunque tal notación no está incluida explícitamente a fin de no recargar la

notación.

En los ejemplos numéricos que se muestran en lo que sigue de la sección, la solución del problema

de optimización (4.6) se realizo utilizando la función optimiset de Matlab. Adicionalmente, en los

ejemplos numéricos se consideró el parámetro de regularización ϖ = 1, y los exponentes (m,n) =

(1/2, 1/10) es decir, la fuerza de infección es ω(x)S1/2
I
1/10.



382 A. Coronel, F. Huancas, E. Lozada & J. Torres CUBO
27, 2 (2025)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

(c) (d)

Figura 1: Simulaciones con los datos del Ejemplo 1 presentado en el subsección 4.1.

4.1. Ejemplo 1: Funciones constantes ω y ε

En este ejemplo, consideramos que los coeficientes de los términos de reacción ω, ε : ! ⇔ (0, 1) son

funciones constantes por determinar. Más precisamente, asumimos que los parámetros a determinar

por el problema de control óptimo son e = (e1, e2), tales que ω(x; e) = e1 y ε(x; e) = e2. Cons-

truimos los perfiles de observación desarrollando una simulación numérica del problema directo

(1.1)-(1.5) con condición inicial

S0(x) =





(1↓ 4x)(4x↓ 3), x ↑ [1/4, 3/4],

0, en otro caso,
(4.7)

I0(x) = 1↓ S0(x), (4.8)

mediante aplicación del esquema de diferencias finitas (4.1)–(4.4); utilizando ”t = 1,0E↓ 7, ”x =

2,0E ↓ 4 y eobs = (0,7, 0,2), ver Figura (1). Se observa que en este caso en la definición de J”

en 4.5 el termino de regularización se anula dado que ω
↘(x) = ε

↘(x) = 0. La identificación numérica

se desarrolla considerando M = 100 y N = 500 y utilizando varios puntos de inicialización para

el método de optimización numérica. Por ejemplo, si suponemos que la aproximación inicial es

e0 = (1.E ↓ 06, 1) obtenemos que las funciones identificadas están definidas por los parámetros

e↓ = (0,77964, 0,25706). Otras simulaciones se realizaron, según lo documentado en la Tabla 1.

En la Tabla 1 se muestra que la función J” tiene varios puntos donde la función costo toma el

valor 2,752908, para una representación gráfica consultar la Figura 2. En la segunda columna se
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muestran los parámetros iniciales para la solución numérica del problema de optimización (4.6). En

la tercera columna los resultados de la convergencia y en la cuarta columna el valor de la función

de costo en el punto de convergencia. La comparación de los perfiles observados, identificados y de

aproximación inicial para dos casos de la Tabla 1 se muestran en la Figura 3. En los otros casos,

las representaciones gráficas son similares.

Tabla 1: Resultados que muestran la no-unicidad del problema de identificación para el caso de ω

y ε no constantes (ver Figura 2).

Caso e0 e↓ J”(e↓)
1 (1.E ↓ 06, 1) (0,77964, 0,25706) 2,752908
2 (1.E ↓ 06, 2) (1,34835, 0,63480) 2,752908
3 (1.E ↓ 06, 3) (1,92203, 1,01875) 2,752908
4 (1.E ↓ 06, 4) (2,36179, 1,31490) 2,752908
5 (1.E ↓ 06, 5) (3,52866, 2,10784) 2,752908
6 (1.E ↓ 06, 6) (2,5164, 1,41940) 2,752908

En términos generales, en el caso de funciones constantes ω y ε no se tiene la unicidad debido a

que en la función de costo el término de regularización se anula.

(a)

1 2 3 4 5 6

1

2

3

4

5

6

(b)

Figura 2: Gráfica de la función costo para el Ejemplo 1 presentado en el subsección 4.1 considerando
e ↑ (0, 8]2. (a) Superficie mostrando varios mínimos para J” dada en (4.5). (b) curvas de nivel de
la función costo J”. Para los valores numéricos consultar la Tabla 1.

Tabla 2: Parámetros observados y resultados de la identification en el caso del Ejemplo 2 y que
definen las funciones dadas en (4.9).

e J”(e↓) ↘ω”↘L1(!) ↘ε”↘L1(!)

eobs (0,0800, 80,0000, 50,0000, 0,0800, 80,0000, 50,0000) 0,0031 0,1109
eig (0,0200, 71,0000, 41,0000, 0,0200, 71,0000, 41,000)
e↓ (0,0763, 79,7212, 49,7254, 0,0925, 80,6862, 48,2397) 1,8207E ↓ 08 0,0030 0,1101
eig (0,0200, 73,0000, 43,0000, 0,0200, 73,0000, 43,000)
e↓ (0,0710, 73,0037, 43,0037, 0,0942, 73,0037, 43,0038) 7,3171E ↓ 09 0,0031 0,1101
eig (0,0200, 85,0000, 55,0000, 0,0200, 85,0000, 55,000)
e↓ (0,0763, 79,7212, 49,7254, 0,0925, 80,6862, 48,2397) 1,8208E ↓ 08 0,0030 0,1101
eig (0,0200, 88,0000, 55,0000, 0,0200, 88,0000, 58,000)
e↓ (0,0789, 79,7340, 49,7355, 0,0904, 80,2810, 48,9074) 1,1057E ↓ 09 0,0031 0,1101
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Figura 3: Comparación de los perfiles en tiempo T de la soluciones para Ejemplo 1 presentado en
el subsección 4.1. (a)-(b) y (c)-(d) son los perfiles para los casos 1 y 6 presentados en la Tabla 1.
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Figura 4: Simulaciones con los datos del Ejemplo 2 presentado en la subsección 4.2.
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4.2. Ejemplo 2: Funciones no constantes ω y ε

En este ejemplo, asumimos que las funciones ω, ε : ! ⇔ (0, 1) están parametrizadas en términos

de e = (e1, . . . , e6) como sigue

ω(x; e) = e1 sech(e2x↓ e3), ε(x; e) = 0,09↓ e4 tanh(e5x↓ e6). (4.9)

Los perfiles de observación considerados son sintéticos y son construidos resolviendo las ecuaciones

de estado (1.1)-(1.5) con la condición inicial para los susceptibles la función S0 definida en (4.7) y

la condición inicial para los infectados dada por

I0(x) =





0,4↓ 0,3 tanh(10x↓ 2,5), x ↑ [0, 1/4],

0, en otro caso.
(4.10)

La solución numérica es obtenida mediante aplicación del esquema de diferencias finitas (4.1)–

(4.4); utilizando ”t = 1,0E ↓ 7, ”x = 2,0E ↓ 4 y los parámetros dados en eobs en la Tabla 2 (ver

Figura 4). Observamos que ↘ω(·; eobs)↘L1(!) = 0,0031 y ↘ε(·; eobs)↘L1(!) = 0,1109. Luego, con el fin

de utilizar la hipótesis del Teorema 1.1 que permite lograr la unicidad, fijamos c = (0,0031, 0,1109)

y redefinimos la función costo como sigue

J̃”(S”, I”,ω”, ε”) = J”(S”, I”,ω”, ε”) +



”x

M

j=0

|ωj |↓ 0,0031




2

+



”x

M

j=0

|εj |↓ 0,1109




2

,

donde J”(S”, I”,ω”, ε”) es la función definida en (4.5). El problema de optimización se resolvió

considerando M = 100 y N = 1000 y la función costo J̃”. Se seleccionaron distintos valores eig,

como estimación inicial de los parámetros, y se obtuvo que el algoritmo de optimización convergió

a distintos valores e↓ para los parámetros identificados, los cuales son reportados en la Tabla 2. En

esta tabla se reporta el valor de la función costo en el punto de convergencia, de donde se observa que

el menor valor para la función de costo es el de la fila inferior, para el cual J”(e↓) = 1,1057E↓09.

Adicionalmente en las dos últimas columnas de la derecha se reporta el valor de ↘ω(·; eobs)↘L1(!)

y ↘ε(·; eobs)↘L1(!), los cuales son aproximados a los valores fijados para c. La comparación de los

perfiles observados e identificados y así como los coeficientes ω y ε se muestran en la Figura 5.
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Figura 5: Comparación de los perfiles en tiempo T de la soluciones para Ejemplo 2 presentado en
el subsección 4.2. Estas gráficas son construidas con los valores de la Tabla 2.

En síntesis, en el caso de funciones no constantes ω y ε es esperable obtener la unicidad bajo las

consideraciones del Teorema 1.1. Así mismo se observa que es esperable que se los resultados sigan

siendo válidos bajo condiciones de menor regularidad de las condiciones iniciales. En efecto, para

las simulaciones numéricas de este ejemplo se consideró una función discontinua como condición

inicial para la población de individuos infectados.
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1. Introducción

Consideremos un sistema diferencial polinomial autónomo en el plano real, esto es, un sistema de

ecuaciones diferenciales de la forma

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

donde P (x, y) y Q(x, y) son polinomios en dos variables reales con coeficientes en R y donde t

es una variable independiente real, considerada usualmente como el tiempo. Recordemos que una

solución del sistema diferencial (1) es una función

ω : (a, b) → R ↑↓ R2
, t ↔↑↓ ω(t) =

(
x(t), y(t)

)
,

que satisface (1) en todo (a, b), esto es,

d

dt

(
ω(t)

)
=

(
d

dt
x(t),

d

dt
y(t)

)
=

(
P
(
ω(t)

)
, Q

(
ω(t)

))
, ↗ t ↘ (a, b).

En tal caso, a medida que t varía, ω(t) =
(
x(t), y(t)

)
describe una curva en R2 llamada órbita del

sistema diferencial (1). Esta órbita depende de la condición inicial ω(0) =
(
x(0), y(0)

)
= (x0, y0),

y al considerar todas las condiciones iniciales posibles se obtiene una colección de órbitas llamada

retrato fase del sistema diferencial.

Dentro de las posibles soluciones que un sistema diferencial puede tener, hay dos tipos especiales:

las soluciones constantes y las soluciones periódicas. La órbita definida por una solución constante

es una singularidad del sistema diferencial y la órbita definida por una solución periódica es un

ciclo u órbita periódica del sistema diferencial, la cual es homeomorfa a la circunferencia unitaria

S1 := {x
2 + y

2 = 1} ≃ R2. Cualquier sistema diferencial (1) tiene solo tres tipos de órbitas:

singularidades, órbitas periódicas y órbitas homeomorfas al intervalo unitario (0, 1) ≃ R. Por

lo cual, la configuración de todas las órbitas de un sistema diferencial determina una foliación

(singular) de dimensión uno en R2 y el retrato fase del sistema diferencial es una descripción

geométrico-topológica de tal foliación.

Fue Henri Poincaré, en su trabajo seminal sobre la teoría cualitativa de ecuaciones diferenciales

[34–37], quien descubrió la existencia de ciclos límite, un tipo especial de órbitas periódicas; ver §2

para más detalles. Este tipo de órbitas llamaron poderosamente la atención de Poincaré, por lo cual

desarrolló varias herramientas para su estudio, como la ahora llamada aplicación de primer retorno

de Poincaré, el teorema de la región anular, el método de parámetros pequeños, etc. Además,

demostró que existen sistemas diferenciales (1) que pueden tener ciclos límite y que éstos tienen

un papel esencial en la determinación del retrato fase del sistema diferencial.
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Después del trabajo de Poincaré, David Hilbert presentó, en el Segundo Congreso Internacional de

Matemáticos de 1900, una lista de 23 problemas que consideraba fundamentales para la investiga-

ción matemática del siglo XX; ver [18]. La segunda parte del problema 16 de la lista de problemas

de Hilbert plantea la siguiente pregunta:

¿Cuál es el número máximo y la posición relativa de los ciclos límite que puede presentar un

sistema diferencial polinomial (1) de grado fijo?

De este modo, Hilbert anticipó que el estudio de los ciclos límite en sistemas diferenciales polino-

miales en el plano sería uno de los problemas más trascendentales del siglo XX. No se equivocó:

aunque este problema sigue siendo uno de los más desafiantes de su célebre lista y permanece

abierto incluso para sistemas diferenciales polinomiales de grado dos, su investigación ha impulsa-

do el desarrollo de diversas áreas fundamentales de la teoría moderna de ecuaciones diferenciales

y sistemas dinámicos, como la teoría de bifurcaciones, la teoría de formas normales y la teoría de

foliaciones, entre otras; ver [20].

El interés y la relevancia de la investigación sobre los ciclos límite en sistemas diferenciales han

sido tan significativos que, en 1998, Steve Smale destacó este mismo problema, pero restringido

a los sistemas diferenciales polinomiales de Liénard, como uno de los problemas más desafiantes

para el siglo XXI; ver [45].

Por otra parte, muchos fenómenos de las ciencias aplicadas que son modelados por sistemas di-

ferenciales tienen movimientos periódicos, por lo cual la investigación de las órbitas periódicas,

en general, y los ciclos límite, en particular, es esencial también desde el punto de vista aplicado.

Por ejemplo, en biología, los ciclos límite pueden representar las fluctuaciones periódicas en po-

blaciones de animales, mientras que en ingeniería y física, describen comportamientos cíclicos en

sistemas mecánicos o eléctricos. Resolver la segunda parte del problema 16 de Hilbert proporcio-

naría no solo una respuesta teórica, sino también herramientas prácticas para entender y predecir

el comportamiento de sistemas dinámicos en múltiples contextos científicos.

En este trabajo, queremos destacar algunas contribuciones relevantes de matemáticos que desa-

rrollan su investigación en Chile a la teoría de ciclos límite y su relación con la segunda parte del

problema 16 de Hilbert.

2. El concepto de ciclo límite

El primer ejemplo concreto de un sistema diferencial exhibiendo un ciclo límite fue dado por

Poincaré en [35, p. 278]. Usando nuestra notación, tal sistema es

dx

dt
= x(x2 + y

2
↑ 1)↑ y(x2 + y

2 + 1),
dy

dt
= y(x2 + y

2
↑ 1) + x(x2 + y

2 + 1).
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Poincaré demostró que la circunferencia unitaria S1 es un ciclo límite del sistema diferencial mos-

trando que todas las circunferencias centradas en el origen con radio positivo y diferente de 1 son

curvas sin contacto para el sistema diferencial, es decir, son curvas que son atravesadas transver-

salmente por las órbitas del sistema diferencial. Además, el sistema tiene una única singularidad

en el origen. Con esto, Poincaré construyó el retrato fase del sistema diferencial mostrado en la

Figura 1 a). Notar que el retrato fase está dado en lo que hoy llamamos disco de Poincaré, una

compactificación de R2 a través de la proyección central sobre la esfera de Poincaré; ver [32, §3.10].

Esto permite describir y entender el comportamiento de las órbitas del sistema diferencial cuando

las órbitas son no acotadas y “tienden a infinito". De esta manera, el interior del disco de Poincaré

se corresponde con el plano R2 y su frontera representa los llamados “puntos al infinito".

a) b)

Figura 1: En a) primer ciclo límite de Poincaré [35, p. 279]. En b) comportamiento típico de las
órbitas cercanas a un ciclo límite (en negrita); los puntos son condiciones iniciales.

De acuerdo con lo descrito por Poincaré, un ciclo límite es un ciclo del sistema diferencial que

es asintóticamente abordado, en tiempo pasado (t ↓ ↑⇐) o tiempo futuro (t ↓ +⇐), por otras

órbitas del mismo sistema diferencial pero sin llegar a él; ver Figura 1 b). De forma más precisa, un

ciclo límite de un sistema diferencial es una órbita periódica del sistema que es topológicamente

aislada en el conjunto de todas las órbitas periódicas del sistema.

3. Segunda parte del problema 16 de Hilbert

El objetivo principal de la teoría cualitativa de ecuaciones diferenciales, introducida y desarrollada

por Poincaré, es describir los retratos fase de sistemas diferenciales autónomos. Para lograr este

objetivo en el caso planar, resulta fundamental determinar la configuración de sus ciclos límite,

es decir, el número y la posición relativa de los ciclos límite en cada sistema diferencial planar

autónomo. En [35], Poincaré demostró que un sistema diferencial (1) sin conexiones de silla tiene

solo un número finito de ciclos límite. El problema más famoso relacionado con el estudio de

ciclos límite es la segunda parte del problema 16 de Hilbert, que se ha fragmentado en diferentes

subproblemas y actualmente se plantea de la siguiente manera.
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Segunda parte del problema 16 de Hilbert. Considere un sistema diferencial polinomial

arbitrario
dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y), (2)

de grado n = máx{gradoPn, gradoQn}.

Parte A. Para cada n ↘ N, ¿cada sistema diferencial (2) tiene un número finito, H(Pn, Qn), de

ciclos límite?

Parte B. Para cada n ↘ N, ¿existe H(n) ↘ N, que dependa solo de n, tal que H(Pn, Qn) ⇒ H(n)?

Parte C. Para cada n ↘ N, hallar el valor de H(n) (si existe).

Parte D. Para cada n ↘ N, obtener todas las configuraciones posibles (topológicamente distintas)

de ciclos límite, al variar Pn y Qn en (2).

Si n = 1, cualquier sistema diferencial de la forma (2) es lineal y no posee ciclos límite (resultado

elemental, ver [32, §1.5]). Así, H(1) = 0. Para n ⇑ 2, la situación se complica considerablemente. De

hecho, podemos afirmar que la investigación sobre este problema ha tenido una historia dramática,

casi digna de una novela. A continuación mencionaremos algunos de los eventos más relevantes.

3.1. Hitos clave hasta 1980

En 1923, Henri Dulac afirmó que la respuesta a la Parte A era afirmativa [11]. En 1952, Nicolai

Bautin demostró la existencia de sistemas diferenciales cuadráticos (sistemas (2) de grado n = 2)

con tres ciclos límite [2] y a finales de la década de 1950, Ivan Petrovskĭı y Yevgueni Landis

afirmaron que H(2) = 3 [33]. Sin embargo, en la década de 1960 su afirmación fue refutada [24], y en

1979 se construyeron ejemplos de sistemas diferenciales cuadráticos con cuatro ciclos límite [9,44].

Bajo este escenario, el avance en la solución del problema sufrió un retroceso significativo.

3.2. Hitos clave entre 1980 y 1999

A principios de la década de 1980, Yulij Ilyashenko descubrió una falla en la prueba de Dulac

[19], y en 1984 demostró que los sistemas diferenciales (2) con solo singularidades no degeneradas

tienen un número finito de ciclos límite [22]. A principios de la década de 1990, tanto Ilyashenko

[23] como Jean Écalle [14] afirmaron, de manera independiente, haber encontrado una prueba de

la afirmación de Dulac para la Parte A. Pocos años después de la publicación de estos trabajos,

Smale escribía: “estos dos artículos aún no han sido completamente asimilados por la comunidad

matemática”. Hasta donde sabemos, esta afirmación sigue siendo valida hasta el día de hoy.

Con el fin de profundizar en la comprensión de la dificultad del problema, en 1994, Fredy Dumortier,

Robert Roussarie y Christiane Rousseau plantearon un programa [12,13] para resolver la Parte B



CUBO
27, 2 (2025)

Ciclos límite en el plano 397

en el caso cuadrático. Sin embargo, a pesar de los esfuerzos realizados por investigadores tan

destacados como los mencionados arriba, la Parte B y la Parte C del problema permanecen abiertas,

incluso en el caso n = 2.

Debido a la complejidad inherente a la investigación sobre ciclos límite, se han planteado varios

subproblemas. Un ejemplo de esto es la restricción de la segunda parte del problema 16 de Hilbert a

la familia de sistemas de Liénard, propuesta por Smale. Otro subproblema de gran relevancia es la

versión “tangencial” o “infinitesimal” de la segunda parte del problema 16 de Hilbert, que se refiere

al estudio de la bifurcación de ciclos límite bajo perturbaciones de un sistema integrable que tiene

un conjunto foliado por órbitas periódicas. Además, en las últimas décadas, se ha desarrollado el

estudio de ciclos límite en diversas familias especiales de sistemas diferenciales polinomiales, como

las de Kukles, Kolmogórov y otras; ver siguiente sección para más detalles.

4. Versiones de la segunda parte del problema 16 de Hilbert

4.1. Sistemas Hamiltonianos perturbados

Supongamos que H : R2
↑↓ R es un polinomio real de grado m + 1. Consideremos el sistema

Hamiltoniano planar

ẋ = Hy(x, y), ẏ = ↑Hx(x, y), (30)

donde Hx(x, y) :=
ω
ωxH(x, y) y Hy(x, y) :=

ω
ωyH(x, y), el cual es un sistema diferencial polinomial

de grado m. Una idea clásica, debida a Poincaré y que fue continuada por L. Pontryagin, A.

Andronov, Ilyashenko, V. Melnikov, etc., es estudiar el sistema Hamiltoniano perturbado:

ẋ = Hy(x, y) + εB(x, y; ε), ẏ = ↑Hx(x, y)↑ εA(x, y; ε), (3ε)

donde A(x, y; ε) y B(x, y; ε) son polinomios de grado n en las variables x e y, cuyos coeficientes son

funciones analíticas en ε, un parámetro real que pertenece a una vecindad del 0 suficientemente

pequeña: ε ↘ (R, 0). Aquí el problema central es saber qué tan diferente es el retrato de fase del

sistema perturbado (3ε), para ε ⇓= 0, en comparación con el retrato fase del sistema no perturbado

(30), el cual se entiende completamente pues de la teoría clásica de Ecuaciones Diferenciales Or-

dinarias sabemos que las órbitas de este sistema Hamiltoniano están contenidas en las curvas de

nivel, H→1(c), de la función H, la cual recibe el nombre de Hamiltoniano asociado al sistema.
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El interés en estos sistemas dentro del contexto de ciclos límite radica en la siguiente idea: suponga-

mos que la foliación definida en R2 por las órbitas de (30) posee una familia de ciclos ϑc ≃ H
→1(c),

que depende continuamente del parámetro c variando en algún intervalo (a, b). Entonces bajo la

perturbación, a veces, algunos de estos ciclos no se rompen mientras que todos sus ciclos vecinos

si lo hacen. Este tipo de ciclos que persisten bajo la perturbación dan origen a ciclos límite del

sistema perturbado (3ε), con ε ⇓= 0, y representan una clase de las órbitas que más interesan en

el estudio de sistemas Hamiltonianos perturbados. Esta propiedad establece una conexión entre la

segunda parte del problema 16 de Hilbert y el estudio de los ciclos límite de (3ε). De esta manera,

obtenemos el siguiente problema

Versión infinitesimal de la segunda parte del problema 16 de Hilbert. Hallar la cota

superior H(m,n), que dependa únicamente de m y n, para el número de ciclos límite del sistema

perturbado (3ε), con ε ⇓= 0, que pueden generarse a partir de ciclos de (30) bajo la perturbación.

De hecho, esta conexión es muy importante ya que los sistemas diferenciales (3ε) son más mane-

jables y han dado excelente información sobre el problema general. Por ejemplo, han permitido

obtener cotas inferiores para H(n) y posibles configuraciones de ciclos límite; ver [10,21].

4.2. Sistemas de Liénard

Un sistema de Liénard polinomial (generalizado) es un sistema diferencial planar de la forma

ẋ = y ↑ Fn(x), ẏ = ↑x↑ gm(x), (4)

donde Fn(x) y gm(x) son polinomios de grados n y m, respectivamente, tal que n ⇑ 2 y Fn(0) = 0.

Si gm(x) ⇔ 0, entonces (4) es un sistema de Liénard polinomial clásico. La pregunta principal sobre

estos sistemas es:

¿cuál es el número máximo, HLie(n,m), de ciclos límite de (4)?

La versión de la segunda parte del problema 16 de Hilbert que planteó Smale respecto de los

sistemas de Liénard, en su lista de problemas para el siglo XXI, consiste en hallar HLie(n, 0).

4.3. Sistemas de Kukles

Un sistema de Kukles es un sistema diferencial polinomial planar de la forma

ẋ = ↑y, ẏ = Qn(x, y), (5)

donde Qn(x, y) es un polinomio real de grado n ⇑ 2 y tal que y no lo divide.
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El estudio de los ciclos límite en esta familia ha sido abordado por varios autores en las últimas tres

décadas, convirtiéndola en una familia relevante dentro de los sistemas diferenciales polinomiales

planares. La principal pregunta sobre estos sistemas es:

¿cuál es el número máximo, HKuk(n), de ciclos límite de (5)?

4.4. Sistemas de Kolmogórov

Un sistema de Kolmogórov polinomial planar es un sistema diferencial de la forma

ẋ = xPn→1(x, y), ẏ = y Qn→1(x, y), (6)

donde Pn→1(x, y) y Qn→1(x, y) son polinomios reales de grado n↑ 1, con n ⇑ 2.

Al igual que en las familias anteriores, la pregunta principal es:

¿cuál es el número máximo, HKol(n), de ciclos límite de (6)?

5. Contribuciones desde Chile

A pesar de los desafíos que presenta la resolución de la segunda parte del problema 16 de Hilbert,

investigadores de universidades chilenas han realizado contribuciones valiosas que han enriquecido

el estudio de este complejo problema. Estos avances, fruto de un esfuerzo colectivo y continuo,

han permitido ampliar la comprensión de los ciclos límite en sistemas diferenciales polinomiales.

A continuación, se destacan algunos de los logros más relevantes en este ámbito.

5.1. Aportes entre 1980 y 1999

Con la aparición, en 1979-80, de ejemplos de sistemas cuadráticos con cuatro ciclos límite, se reforzó

aún más la sospecha de que la demostración de Dulac de 1923, que afirmaba la finitud del número

de ciclos límite, era incorrecta.

Por esas fechas, Rodrigo Bamón partió de la Universidad de Chile para continuar su doctorado en el

Instituto de Matemática Pura e Aplicada (IMPA) en Brasil, bajo la dirección de Jorge Sotomayor,

quien, según las palabras de Bamón1 consideraba errónea la prueba de Dulac. Bamón se sintió

atraído (nunca mejor dicho) por los ciclos límite y, hacia su tercer año de doctorado, decidió

intentar ofrecer una nueva demostración de la finitud de los ciclos límite en sistemas diferenciales

cuadráticos. Cabe destacar que, para entonces, ya se reconocía ampliamente que la prueba de Dulac
1Un especial agradecimiento a Rodrigo Bamón por la enriquecedora conversación en la que compartió su valiosa

experiencia y perspectiva del problema en esa época.
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no estaba completa, aunque el error evidente en su demostración, identificado por Ilyashenko, no

fue publicado hasta 1985.

El problema de la finitud del número de ciclos límite en sistemas diferenciales en el plano real se

reduce a probar la no acumulación de ciclos límite en los llamados ciclos singulares (acotados y no

acotados). A esto se le pasó a llamar el Problema de Dulac.

Bamón cuenta que clasificó todos los ciclos singulares de sistemas diferenciales cuadráticos en el

plano y probó que todos ellos, salvo dos, no podían ser acumulados por ciclos límite. Esto fue su tesis

doctoral (1983). Para uno de estos ciclos singulares sabía como probar que no era acumulado por

ciclos límite, sin embargo, no lo incluyó en su tesis. Para el otro ciclo singular (hiperbólico acotado)

no tenía idea de como probar que no era acumulado por ciclos límite, hasta que en el verano de

1985, en el IMPA, escuchó una charla de Robert Moussu sobre un reciente trabajo de Ilyashenko

donde mostraba que todo ciclo singular hiperbólico, de cualquier sistema diferencial polinomial

en el plano, no podía ser acumulado por ciclos límite [22]. Bamón se dio cuenta que usando este

resultado de Ilyashenko y su propia tesis resolvía el Problema de Dulac para sistemas diferenciales

cuadráticos, en otras palabras, completaba la prueba de la finitud del número de ciclos límite para

sistemas diferenciales cuadráticos. Bamón contó con el apoyo del IMPA para que concluyera su

trabajo y para publicarlo en 1986 en la prestigiosa revista Publications Mathématiques de l’IHÉS.

Rodrigo Bamón mostraba al mundo su aporte a la segunda parte del problema 16 de Hilbert:

Teorema 5.1 (Bamón [1]). Cada sistema diferencial cuadrático en R2 tiene un número finito de

ciclos límite.

Moussu conoció el resultado de Bamón durante su estancia en el IMPA y cuando regresó a Francia

expuso en el prestigioso Seminaire Bourbaki sobre “Le Problème de la finitude du nombre de cycles

limites [d’après R. Bamón et Yu. S. Il’yasenko]”. Este hecho reflejó el considerable interés que el

resultado de Bamón suscitó en su momento.

Con sus resultados, Bamón generó un creciente interés por los ciclos límite entre diversos inves-

tigadores en sistemas dinámicos, tanto en Santiago como en otras regiones. Así, a finales de la

década de 1980 y a principios de la década de 1990, se publicaron varios trabajos sobre ciclos lí-

mite de sistemas diferenciales polinomiales planares. Sin pretender ser exhaustivos, a continuación

se mencionaran algunos de estos estudios.

Myrna Wallace, de la Universidad de Concepción, Jorge Billeke, de la Universidad de Santiago de

Chile, y Hernán Burgos, de la Universidad de la Frontera, realizaron una serie de trabajos sobre

sistemas de Liénard polinomiales, tanto clásicos como generalizados [3–6]. Uno de esos trabajos

trata sobre sistemas de Liénard clásicos perturbados, es decir, sistemas de la forma (3ε) que son

de Liénard. Concretamente, en [5] (1992), consideran el sistema de Liénard perturbado:

ẋ = y ↑ ε(a1x+ a2z
2 + a3x

3 + a4x
4 + a5x

5), ẏ = ↑x. (7ε)
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Aquí, el Hamiltoniano asociado al sistema no perturbado es H(x, y) = (x2 + y
2)/2 y al sistema no

perturbado (70), se le conoce como el centro lineal o el oscilador armónico.

Sistemas de Liénard polinomiales de grado arbitrario, provenientes de perturbaciones del centro

lineal, ya habían sido estudiados en 1977 por Alcides Lins-Neto, Welington de Melo y Charles C.

Pugh [25]. Sus resultados prueban que existen sistemas (7ε) con dos ciclos límite. Wallace, Billeke

y Burgos realizaron un estudio detallado en el disco de Poincaré de (7ε) y uno de sus resultados

principales en [5] se puede enunciar como:

Teorema 5.2. Cada sistema de Liénard (7ε) tiene a lo más dos ciclos límite.

Con este resultado se completaba el estudio del número máximo de ciclos límite para sistemas de

Liénard polinomiales perturbados de grado cinco.

Por aquella misma época, Ana María Urbina, Mario y Guillermo León de la Barra así como Moisés

Cañas, todos ellos de la Universidad Técnica Federico Santa María de Valparaíso, realizaron varios

trabajos en sistemas diferenciales polinomiales planares. En particular, entre 1991 y 1992 estudiaron

los sistemas de Liénard generalizados

ẋ = y ↑ (amx
m + · · ·+ aNx

N ), ẏ = ↑x
2n→1

, (8)

donde m ⇑ 2 y N ⇑ m, y también el sistema de Liénard perturbado

ẋ = 2y ↑ ε(a2x
2 + · · ·+ aNx

N ), ẏ = ↑4x3
, (9ε)

cuyo Hamiltoniano asociado al sistema no perturbado es H(x, y) = y
2 + x

4.

El sistema (8) fue estudiado en [47] y representó una generalización del trabajo de Lins-Neto, de

Melo y Pugh, de 1977. El sistema (9ε) se estudió en [46], usando el enfoque de integrales Abelianas,

ver siguiente subsección y [10]. Los resultados principales de cada uno de estos trabajos los podemos

enunciar de la siguiente forma:

Teorema 5.3. Supongamos s ↘ N.

Si n = 2s, y N ⇑ 2s+ 3, entonces HLie(N, 2s) ⇑
[
N→1
2

]
↑ s.

Si n = 2s↑ 1 y N ⇑ 2s+ 1, entonces HLie(N, 2s↑ 1) ⇑
[
N+1
2

]
↑ s.

Teorema 5.4. Existen sistemas (9ε) con al menos
[
N→1
2

]
↑ 1 ciclos límite.

Víctor Guíñez, de la Universidad de Chile, Eduardo Sáez e Iván Szántó, de la Universidad Técnica

Federico Santa María de Valparaíso, trabajaron sobre bifurcación de ciclos límite de sistemas

diferenciales polinomiales. En particular, en 1990 estudiaron el número máximo, S(n), de puntos

singulares aislados contenidos en la región acotada determinada por un ciclo límite de un sistema
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diferencial polinomial planar de grado n. Uno de sus resultados principales en [17] se puede enunciar

como:

Teorema 5.5. Existe un sistema diferencial polinomial planar de grado 2k+1, tal que S(2k+1) =

(2k + 1)2.

La prueba de este resultado se basa en la construcción de un sistema Hamiltoniano perturbado que

es polinomial. Siguiendo la misma idea, en 1993 estudian posibles configuraciones de ciclos límite

del sistema diferencial cúbico perturbado

ẋ = ↑y ↑ 2cy2 + ax
2
y + y

3 + εxy(y ↑ 4), ẏ = x+ 2dx2
↑ x

3
↑ bxy

2 + εxy(x↑ 4), (10ε)

y uno de sus principales resultados en [16] lo podemos enunciar de la siguiente manera:

Teorema 5.6. Existen a > b > 1, c, d, ε ↘ (R, 0) tal que el sistema (10ε) tiene una de las siguientes

configuraciones de ciclos límite en el disco de Poincaré.

Este resultado es una contribución a la Parte D de la segunda parte del problema 16 de Hilbert.

El primer resultado general relativo a esta parte apareció en [27], donde proporcionan una cota

sobre el grado del sistema diferencial polinomial que puede realizar una configuración de ciclos

límite. De acuerdo con [27] las tres configuraciones del teorema anterior pueden ser realizadas

por un sistema diferencial polinomial de grado a lo más 15, 23 y 19, respectivamente. El teorema

anterior proporciona sistemas diferenciales polinomiales del grado mínimo posible que realizan esas

configuraciones, por ello es un resultado relevante, sin embargo, no fue citado en [27].

En la segunda parte de la década de 1990, Sáez y Szántó, realizaron algunos estudios sobre siste-

mas de Kolmogórov polinomiales planares [28, 41]. En particular, uno de sus resultados en [28] lo

podemos enunciar como sigue.

Teorema 5.7. HKol(3) ⇑ 4.

5.2. Aportes entre 2000 y 2009

Con la publicación de los resultados de Écalle e Ilyashenko sobre la finitud del número de ciclos

límite de cualquier sistema diferencial polinomial de grado n, surgió una gran efervescencia mundial
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en torno al estudio de los ciclos límite. El interés de Sáez y Szántó por estos objetos no solo

se mantuvo, sino que también se amplió con la incorporación de colaboradores internacionales.

En la década de 2000, publicaron más de quince trabajos sobre ciclos límite y curvas algebraicas

invariantes de sistemas diferenciales. Recordamos que una curva algebraica invariante de un sistema

diferencial es una curva en R2 definida por los ceros de un polinomio real f(x, y) que esta formada

por órbitas del sistema diferencial. Aquí recordamos solo algunos resultados destacados de cuatro

de esos trabajos. En 2002 publicaron [29], cuyo resultado principal lo podemos enunciar como:

Teorema 5.8. HKol(3) ⇑ 6.

Este fue su último resultado sobre sistemas de Kolmogórov. Después, trabajaron en sistemas pro-

venientes de modelos de carácter aplicado y en sistemas de Kukles. En este último tema publicaron

varios artículos [7, 8, 26]. En 2008, consideraron el sistema de Kukles de grado cinco:

ẋ = ↑y, ẏ = ↑a+ bx+ q3(x, y)f(x, y), (11)

donde b = 1 + 2a, f(x, y) = a ↑ 2ax + bx
2 + y

2, cuyos ceros definen una elipse invariante, y

q3(x, y) = 1+ϖy+b30x
3+b11xy+b21x

2
y+b12xy

2+b03y
3. El resultado principal de su investigación,

publicado en [42], lo podemos enunciar de la siguiente manera:

Teorema 5.9. En el espacio de parámetros del sistema diferencial existe un conjunto abierto

tal que (11) tiene al menos seis ciclos límite, uno de ellos es un ciclo límite (algebraico), que

corresponde a la elipse invariante.

Guíñez, Wallace y Billeke, por otro lado, prácticamente abandonaron el estudio de ciclos límite a

partir del 2000. No obstante, su trabajo inspiró a varios estudiantes a continuar sus estudios de

doctorado en temas relacionados con la segunda parte del problema 16 de Hilbert. Marco Uribe

Santibañez fue uno de estos estudiantes. Realizó su doctorado en la Université de Bourgogne,

Francia, el cual concluyó en 2006 bajo la dirección de Pavao Marde!i". A su regreso a Chile,

desde la Universidad de Católica de la Santísima Concepción, ha centrado su trabajo en temas

relacionados con los ciclos límite. Sus principales contribuciones han sido en el ámbito de los

sistemas Hamiltonianos perturbados. Para poder expresarlas de manera adecuada, es necesario

introducir algunos conceptos adicionales.

Recordemos que, en un sistema Hamiltoniano perturbado, el objetivo es estudiar los ciclos límite

que se originan a partir de los ciclos del sistema no perturbado. Una herramienta común para

controlar estos ciclos límite es la función de desplazamiento asociada a (3ε) y la familia {ϑc}: una

función analítica que tiene la forma

L(ε, c) = εL1(c) + ε
2
L2(c) + ε

3
L3(c) + · · · .
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El coeficiente Li(c) es la función de Poincaré–Pontryagin–Melnikov (PPM) de i-ésimo orden. Los

ciclos límite de (3ε), ε ⇓= 0, que bifurcan de los ciclos de (30) se estudian a través de la ceros de la

primera función de PPM que no se anula Lk(c), con k ⇑ 1. De hecho, el número máximo de ceros

aislados, contando multiplicidades, de Lk(c) es una cota superior para el número de ciclos límite

de (3ε), ε ⇓= 0, que bifurcan de los ciclos {ϑc} de (30); además, el número de ceros distintos de

Lk(c) puede proporcionar una cota inferior para el número de estos ciclos límite.

Por conveniencia, el sistema diferencial (3ε) lo escribimos en su versión P#afiana, esto es, como la

ecuación diferencial perturbada

dH + εϱ = 0,

con ϱ = A(x, y; ε) dx + B(x, y; ε) dy (una 1-forma diferencial polinomial). Se sabe que L1(c) esta

dada siempre por una integral Abeliana, i.e., la integral de una 1-forma racional sobre una curva

algebraica, más precisamente

L1(c) = ↑

∫

ϑc

ϱ.

Si se calcula L1(c) y no es idénticamente cero, entonces se conocerá el número máximo de ciclos

límite que bifurcan de los ciclos {ϑc}. Si L1(c) ⇔ 0, entonces las funciones de PPM de orden

2, 3, . . . deben estudiarse hasta encontrar la primera que no se anula o concluir que el sistema no

tiene ciclos límite. Si H(x, y) = (x2 + y
2)/2, entonces Lk(c) siempre se puede calcular por una

integral Abeliana, esto fue demostrado en 1996 por Françoise [15].

En 2006, Uribe estudió la ecuación Hamiltoniana perturbada

dH + εϱ = 0, (12ε)

donde H(x, y) = x(y2 ↑ (x↑ 3)2), ε ↘ (R, 0) y ϱ una 1-forma diferencial polinomial. Este sistema

Hamiltoniano tiene tres rectas invariantes, H→1(0), que forman un triángulo, cuyo interior esta

foliado por ciclos. Uribe probó en [48] el siguiente resultado.

Teorema 5.10. La primera función de PPM no nula asociada al sistema (12ε) y a la familia

de ciclos {ϑc}, que folian el interior del triángulo, pertenece al módulo C[t, 1/t] generado por las

integrales

I1(c) :=

∫

ϑc

y dx, I2(c) :=

∫

ϑc

x
2
y dx, I

↑(c) :=

∫

ϑc

lnx d

(
ln

y ↑ x+ 3

y + x↑ 3

)
.

Este fue uno de los primeros ejemplos de sistemas diferenciales cuadráticos perturbados, para los

cuales será difícil resolver la versión infinitesimal del problema 16 de Hilbert, debido a que I
↑(c)

no es una integral Abeliana. En 2009, Uribe generalizó este resultado para sistemas de la forma

(12ε), con H(x, y) el producto de d+ 1 rectas [49].
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5.3. Aportes entre 2010 y 2019

Dado lo reciente de este período y la facilidad con la que se pueden acceder a las publicaciones, no

detallaremos resultados específicos como en los casos anteriores. Nos limitaremos a proporcionar

una descripción general del contenido de dichas publicaciones y su relación con los temas discutidos

en las secciones previas.

Sáez y Szántó continuaron su interés por los ciclos límite de sistemas de Kukles. En 2012, conside-

raron sistemas de Kukles perturbados y obtuvieron cotas inferiores para el número de ciclos límite

de tales sistemas [43].

Por otro lado, Mariana Saavedra fue otra de las personas inspiradas por el grupo chileno de

sistemas dinámicos. Estudió su doctorado en la Université de Bourgogne, Francia, el cual concluyó

en 1995 bajo la dirección de Moussu. A su regreso a la Universidad de Concepción orientó su

investigación principalmente en las propiedades del desarrollo asintótico de la aplicación de primer

tiempo de retorno y de la función de periodo para ciclos singulares. Estos temas, aunque análogos

y relacionados con el problema de Dulac, se desarrollaron sin considerar explícitamente las posibles

implicancias sobre los ciclos límite. Sus resultados fueron publicados en [38–40].

En 2012, Saavedra, Wallace y Uribe, en colaboración con Marde!i", estudiaron las perturbaciones

cuadráticas del triángulo Hamiltoniano [30] y determinaron el desarrollo de la función desplaza-

miento del sistema perturbado, lo cual es útil para establecer cotas superiores para el número

de ciclos límite de estos sistemas. Posteriormente, Saavedra, Uribe y Marde!i" extendieron estos

resultados para perturbaciones de sistemas Hamiltonianos más generales [31].

6. Desafíos en la segunda parte del problema 16 de Hilbert

Como mencionamos en la introducción, el objetivo principal de este trabajo es destacar algunos de

los aportes relevantes realizados desde Chile a la segunda parte del problema 16 de Hilbert, tarea

que hemos llevado a cabo en la sección anterior. Sin embargo, un segundo objetivo, que también

constituye la motivación inicial para la elaboración de este artículo, es reflexionar sobre uno de los

progresos más recientes en torno a la cuestión de la finitud del número de ciclos límite en sistemas

diferenciales polinomiales. La noticia en cuestión es la siguiente.

Recientemente, Melvin Yeung ha encontrado un contraejemplo [50] a uno de los

argumentos utilizados por Ilyashenko para demostrar que todo sistema diferencial

polinomial posee un número finito de ciclos límite.

Yeung presentó su construcción en diversos centros especializados en el tema, sin que se haya iden-

tificado error alguno en sus argumentos. Esto significa que la prueba de Ilyashenko está incompleta.

Esta hallazgo abre una amplia gama de desafíos y nuevas perspectivas en el estudio de ciclos límite.
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Recordemos que, a inicios de la década de 1990, se publicaron dos pruebas distintas sobre la finitud

del número de ciclos límite. La prueba propuesta por Écalle podría ser correcta; sin embargo, como

señaló Smale, esta no ha sido comprendida completamente en más de treinta años. En este contexto,

parece natural plantear los siguientes desafíos:

Obtener una nueva prueba de la finitud del número máximo de ciclos límite en sistemas

diferenciales polinomiales en el plano.

Desarrollar una demostración de dicha finitud utilizando métodos o herramientas suficiente-

mente generales y adaptables para abordar también las tres primeras partes del problema 16

de Hilbert.

Determinar el sistema diferencial polinomial de grado más pequeño que realice como ciclos

límite una configuración dada de curvas cerradas aisladas en el plano (salvo homeomorfismos).

7. Conclusión

A lo largo de este trabajo hemos revisado algunos de los aportes significativos realizados desde

Chile al estudio de los ciclos límite, con especial énfasis en su relación con la segunda parte del pro-

blema 16 de Hilbert. Estos avances han sido posibles gracias a la labor de destacados matemáticos

chilenos, quienes, a través de sus investigaciones y de los vínculos establecidos con investigadores

internacionales, han dejado un legado que continúa inspirando a nuevas generaciones.

Además, hemos discutido los principales desafíos actuales en torno a la segunda parte del problema

16 de Hilbert, destacando cómo la reciente identificación de posibles debilidades en la prueba de

Ilyashenko reaviva el interés en este problema clásico, abriendo nuevas líneas de investigación y

renovando la relevancia de métodos más generales que puedan abordar otras partes del problema.

El estudio de ciclos límite sigue siendo un campo fértil y desafiante, cuya resolución no solo enrique-

cerá la teoría matemática, sino que también impulsará avances en áreas relacionadas. El panorama

actual, aunque complejo, invita a las nuevas generaciones de matemáticos a seguir explorando,

construyendo sobre los logros previos y enfrentando con creatividad los retos aún abiertos.
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RESUMEN

El grupo de homeomorfismos de una superficie topológica !,

Homeo(!), admite una topología conocida como la topolo-
gía compacto-abierta, con la cual es un grupo topológico. En

este escrito damos una demostración autocontenida de este

hecho. Del mismo modo, utilizamos herramientas elementa-

les para demostrar que Homeo(!) es un grupo polaco (es de-

cir, es separable y completamente metrizable). Traducimos

la relación de isotopía en Homeo(!) como arcoconexidad en

Homeo(!) y, denotando por Homeo0(!) a la componente

arcoconexa de la identidad, usamos resultados clásicos de la

Teoría Descriptiva de Conjuntos para probar que el Grupo
Modular Extendido de ! (o mapping class group extendido),

Mod
±
(!) := Homeo(!)/Homeo0(!), es un grupo polaco con

la topología cociente. Al final de este compendio, discutimos

una demostración alternativa de este resultado que se basa

en ver al Grupo Modular Extendido como el grupo de auto-

morfismo del grafo de curvas; esta conexión figura como una

de las más importantes y bellas en toda la teoría de Grupos

Modulares.
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ABSTRACT

The homeomorphism group of a topological surface !,

Homeo(!), admits a topology known as the compact-open
topology, with which it becomes a topological group. In this

work, we provide a self-contained proof of this fact. Moreo-

ver, we use elementary tools to prove that Homeo(!) is a

Polish group (i.e., it is separable and completely metriza-

ble). We translate the isotopy relation in Homeo(!) as path-

connectedness in Homeo(!) and, denoting by Homeo0(!) the

identity path component, we use classic results in Descriptive

Set Theory to prove that the Extended Mapping Class Group
of !, Mod

±
(!) := Homeo(!)/Homeo0(!), is a Polish group

with the quotient topology. At the end of this survey, we dis-

cuss an alternative proof of this result based on realizing the

Extended Mapping Class Group as the automorphism group

of the complex of curves; this connection arises as one of

the most important and beautiful in the theory of Mapping

Class Groups.

Keywords and Phrases: Topological surfaces, homeomorphism group, mapping class group of surfaces, compact-

open topology, isotopy, complex of curves.
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1. Introducción

El concepto moderno de homeomorfismo hace referencia a una función entre dos espacios topológi-

cos X → Y que es continua, invertible y cuya inversa es continua. Dicho concepto fue reformulado

a lo largo de la historia para representar lo que significa hoy en día. Después de los avances de

M. Fréchet y F. Hausdor!, finalmente W. Sierpinski en 1928 y K. Kuratowski en 1934 realizaron

importantes escritos de topología donde el término homeomorfismo ya tenía el significado moderno.

La palabra “homeomorfismo” la introdujo H. Poincaré en 1895 y originalmente hacía referencia a

un difeomorfismo entre variedades diferenciables. Pronto H. Poincaré observó que los difeomorfis-

mos forman un grupo interesante por sí mismo; con visión de gran alcance, se atrevió a afirmar

que la ciencia cuyo objetivo es el estudio de este grupo, así como otros grupos análogos, recibi-

ría el nombre de analysis situs, hoy topología. El desarrollo de las matemáticas ha confirmado el

sentimiento de H. Poincaré; el estudio de objetos como el grupo de homeomorfismos, el grupo de

difeomorfismos y el grupo modular de superficies, así como todas sus variantes, forman parte de

la columna vertebral de las matemáticas. Para una revisión histórica de la evolución del concepto

de homeomorfismo, recomendamos ampliamente la lectura de G. H. Moore [27].

Una de las motivaciones para estudiar el grupo de homeomorfismos o difeomorfismos de una varie-

dad proviene de los sistemas dinámicos, en donde clásicamente se estudian las transformaciones de

un conjunto de puntos en una variedad bajo iteraciones de un difeomorfismo, es decir, se estudia el

comportamiento de un subgrupo cíclico del grupo de difeomorfismos de la variedad. En los últimos

cincuenta años se ha adoptado el objetivo de no sólo estudiar subgrupos cíclicos de difeomorfismos

u homeomorfismos, sino de subgrupos finitamente generados de ellos. Lo que se busca con esto es

explicar la influencia algebraica en la dinámica que realiza la acción del grupo sobre la variedad

y de ser posible construir relaciones entre propiedades algebraicas como nilpotencia, torsión, etc.,

con propiedades dinámicas como la entropía, puntos fijos, etc. Sin embargo, el estudio del grupo

de homeomorfismos o difeomorfismos de una variedad no se limita a sistemas dinámicos; estos

grupos forman parte importante en la clasificación de haces fibrados en Topología Algebraica [35].

Así mismo, el tema de estudiar la continuidad automática (tema propio de la Teoría Descriptiva

de Conjuntos) de estos grupos ha derivado en importantes resultados de rigidez. Más motivacio-

nes para estudiar el grupo de homeomorfismos de variedades se puede consultar en el interesante

artículo de K. Mann [24].

En general, estudiar el grupo de homeomorfismos no es sencillo, sobre todo porque a pesar de ser

un grupo topológico con buenas propiedades topológicas y algebraicas, es un grupo no numerable

y no es localmente compacto. Surge así la necesidad de estudiar al Grupo Modular (conocido por

mapping class group en la literatura inglesa), Mod(M), de una variedad M , el cual se define como

el cociente Homeo(M)/Homeo0(M), donde Homeo0(M) denota a la componente arcoconexa de la

identidad. El estudio del Grupo Modular de variedades está motivada por su profunda conexión
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con la clasificación de clases de haces fibrados, véase [29]. En otras situaciones resulta que el Grupo

Modular es más sencillo de estudiar que el grupo de homeomorfismos en sí. El ejemplo típico de esto

son los grupos modulares de superficies de tipo finito1, los cuales son grupos finitamente generados.

La historia de los grupos modulares de superficies se remonta a comienzos del siglo XX y su conexión

con diversas áreas de las matemáticas (en la clasificación de 3-variedades, en Teoría de Teichmüller,

en Geometría Algebraica, en la Teoría Geométrica de Grupos, por mencionar algunas), ha quedado

confirmada en toda una vasta literatura; por ejemplo, el lector puede consultar las referencias [9,17].

Recientemente se ha iniciado el desarrollo sistemático de los grupos modulares de superficies de

tipo infinito. A diferencia del caso de superficies de tipo finito, estos son grupos que ya no son

finitamente generados. Recomendamos revisar [1] para una exposición amplia del desarrollo de la

teoría de grupos modulares en superficies de tipo infinito. El rápido desarrollo de la teoría de estos

grupos en los últimos 15 años justifica la necesidad de tener escritos accesibles a toda la comunidad

hispanohablante que trate el tema de grupos modulares de superficies.

Con el objetivo de producir un texto autocontenido en la medida de lo posible, en este escrito

recopilamos algunas de las propiedades topológicas y/o geométricas más básicas del grupo de

homeomorfismos de una superficie topológica, así como del respectivo grupo modular. De ese

modo, esperamos que un lector que no haya tenido un acercamiento a dichos grupos encuentre en

nuestro escrito una introducción amena. La novedad de este trabajo es su enfoque unificado, ya

que nuestro tratamiento de los temas incluye a todas las superficies topológicas; compactas o no

compactas, orientables o no orientables, con frontera compacta o con frontera no compacta. Los

autores esperan que ésta sea una lectura agradable, y que en el mejor de los casos, sea de alguna

utilidad para el lector.

1.1. Estructura del texto

En la Sección 2 presentamos a las superficies, definimos la frontera de una superficie y la noción

de orientabilidad. A pesar de ser fundamental en el estudio de superficies, no detallaremos en la

clasificación de superficies. Sin embargo, en esta misma sección comentamos la bibliografía a la

que se puede acudir.

En la Sección 3 introducimos la noción de homeomorfismo de una superficie ! en sí misma. Exhi-

biremos ejemplos de las estructuras de la superficie que son transformadas por la acción de un

homeomorfismo. Probaremos que con la operación composición y la topología compacto-abierta,

el grupo de homeomorfismos Homeo(!) es un grupo topológico Hausdor! y segundo numerable.

Utilizaremos herramientas de Teoría Descriptiva de Conjuntos para probar que Homeo(!) tiene

una métrica compatible invariante por la operación del grupo. Definiremos de manera explícita una

1Una superficie es de tipo finito si tiene grupo fundamental finitamente generado. En otro caso se dice que la
superficie es de tipo infinito.
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métrica (una para superficies compactas y otra para superficies no compactas) completa y compa-

tible con la topología compacto-abierta. La existencia de dicha métrica concluye que Homeo(!) es

un grupo polaco.

En la Sección 4 definimos una relación de equivalencia en Homeo(!), llamada isotopía. Veremos

que dicha relación está estrechamente relacionada con la componente arcoconexa de la identidad (el

cual es un subgrupo normal del grupo de homeomorfismos): dos homeomorfismos f, g ↑ Homeo(!)

son isotópicos si, y sólo si están en la misma componente conexa por trayectorias. El grupo cociente

es conocido como Grupo Modular Extendido y será denotado por Mod
±
(!). Demostraremos que

Mod
±
(!) hereda propiedades topológicas de Homeo(!), como el hecho de ser Hausdor! y segundo

numerable, y que por lo tanto, es también metrizable. Explicaremos un panorama que utiliza

resultados importantes de Teoría Descriptiva de Conjuntos para demostrar que la metrizabilidad

en Mod
±
(!) es suficiente para que sea un grupo polaco. Al final de la Sección 4 introducimos el

grafo de curvas de una superficie orientable de tipo infinito con frontera vacía, y discutimos una

forma alternativa de demostrar que el Grupo Modular Extendido es polaco; esto se obtiene como

consecuencia de ver a Mod
±
(!) como el grupo de automorfismos del grafo de curvas. A pesar

de que nuestra intención es producir un texto autocontenido, en esta sección es deseado que el

lector tenga una comprensión básica del concepto de homotopía y principios básicos del grupo

fundamental. Dichos conceptos son utilizados en la Sección 4.5. Sin embargo, el resto de la Sección

4 no pide dichos prerrequisitos de manera imperativa.

1.2. Recomendaciones bibliográficas

Ponemos a disposición del lector referencias clásicas para el estudio de los grupos de transfor-

maciones en superficies. A primer on Mapping Class Groups [9] es una guía autocontenida de

teoremas, ejemplos y técnicas utilizadas en el estudio del Grupo Modular de una superficie de tipo

finito. O!ce hours with a geometric group theorist [5] es una muy buena guía que puede servir a

estudiantes de licenciatura en un primer acercamiento a Grupos Modulares de superficies de tipo

finito así como a la Teoría Geométrica de Grupos. Presentando al toro y sus simetrías [18] es un

escrito en donde se detalla el cálculo del Grupo Modular del toro. Big Mapping Class Groups: An

Overview [1] es un sumario de resultados topológicos asociados al grupo modular de superficies de

tipo infinito. Notes on the Topology of Mapping Class Groups [37] es una referencia para localizar

resultados relevantes relacionando las técnicas de Teoría Descriptiva de Conjuntos con el grupo

modular, particularmente de superficies de tipo infinito. La lectura Superficies Topológicas y sus

simetrías: una introducción a grupos modulares de superficies de tipo finito e infinito [6] es una

introducción accesible a grupos modulares de superficies de tipo finito e infinito, incluidas las su-

perficies no orientables; en particular, en este texto el lector puede comenzar a informarse sobre los

invariantes que clasifican a las superficies topológicas, incluidas las no compactas. Para consultas
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de propiedades de grupos topológicos recomendamos Beginner’s Course in Topology [10]. Una guía

de la Teoría Descriptiva de Conjuntos que recomendamos es Classical Descriptive Set Theory [19].

Por último, un texto introductorio al estudio de haces fibrados es Fiber bundles and homotopy

[36].

2. Superficies

Probablemente el ejemplo principal de una superficie es la gráfica de una función continua f :

U → R definida en un subconjunto abierto conexo U ↓ R
2; recordemos que la gráfica de f es el

subespacio de R
3 dado por

”(f) :=
{
(x, y, f(x, y)) ↑ R

3
: (x, y) ↑ U

}
.

Las superficies son espacios topológicos especiales, que modelan “mundos posibles”. Por ejemplo la

gráfica de la función f(x, y) = x
2
↔ y

2 (Figura 2.1), se puede imaginar como la hoja de una planta

en la que caminan las hormigas.

Figura 2.1: Porción de la gráfica de f(x, y) = x
2
↔ y

2.

Para cualquier función continua f : U ↓ R
2
→ R existe un homeomorfismo entre U y la gráfica ”(f)

dado por la proyección ω(x, y, z) = (x, y). En otras palabras, la gráfica de f se puede aplanar. Sin

embargo, existen mundos posibles que interpretamos como superficies que no se pueden aplanar,

como la superficie de un planeta o el chocolate que recubre una dona glaseada. Por eso la definición

de superficie topológica es más general. Partiremos primero de la definición de superficies sin

frontera (o bien, con frontera vacía), la cual definiremos más tarde.

Definición 2.1 (Superficie topológica). Un espacio topológico conexo ! es una superficie (con

frontera vacía) si es Hausdor", segundo numerable2 y cada punto p ↑ ! tiene un entorno V ↓ !

homeomorfo a algún abierto de R
2.

Nótese que la definición no considera que una superficie ! esté incluida como un subespacio de
2Un espacio topológico es segundo numerable si tiene una base numerable de abiertos.
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R
n, sino que es un espacio topológico abstracto que cumple las restricciones de la definición. Por

ejemplo el plano proyectivo en el siguiente ejemplo es un espacio dado por clases de equivalencia.

Ejemplo 2.2. Los siguientes espacios topológicos son superficies. En las imágenes colocamos las

representaciones poligonales de las superficies, que consisten en realizar el pegado de los lados con

la misma etiqueta en el sentido que indican las flechas.

El plano R
2 es una superficie, así como cualquier subconjunto U ↓ R

2 abierto y conexo.

La esfera S
2
:=

{
(x, y, z) ↑ R

3
: x

2
+ y

2
+ z

2
= 1

}
es una superficie compacta. Consideremos

N = (0, 0, 1), el polo norte y, S = (0, 0,↔1), el polo sur. Definimos los homeomorfismos

ε : S
2
⊋ {N} ↔→ R

2

(u, v, w) ↗↔→

(
2u

1→w
,

2v
1→w

)
;

ϑ : S
2
⊋ {S} ↔→ R

2

(u, v, w) ↗↔→

(
2u

1+w
,

2v
1+w

)
,

que prueban que S
2 es una superficie. Estos homeomorfismos son conocidos como la proyec-

ción estereográfica de la esfera (Figura 2.3).

Figura 2.2: La esfera y su representación poligonal.

Figura 2.3: Obtención de proyección estereográfica mediante la recta que pasa por el polo norte
N = (0, 0, 1), intersecta a la esfera únicamente en (u, v, w) y después intersecta el plano R

2
↘{↔1}

en ε(u, v, w).

El toro T
2
:= S

1
↘ S

1 es una superficie compacta. Podemos presentar al toro, también como
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el espacio cociente

R
2
/Z

2
:= R

2
/ ≃,

donde la relación de equivalencia ≃ está dada por: x ≃ y si y sólo si x↔ y ↑ Z
2.

Figura 2.4: El toro y su representación poligonal.

El plano proyectivo se define como el espacio cociente

RP
2
:= R

3
⊋ {0} / ≃,

donde la relación de equivalencia ≃ en R
3
⊋ {0} está dada por: x ≃ y si existe ϖ ↑ R tal

que x = ϖy. Este espacio no se puede visualizar encajado en R
3, pero sí podemos dar su

representación poligonal.

Figura 2.5: Representación poligonal de RP
2.

La escalera de Jacob es una superficie con género infinito, que se extiende de manera infinita

hacia dos direcciones.

Figura 2.6: Escalera de Jacob.

Basados en la nomenclatura de la clasificación de superficies no compactas (Subsección 2.2),
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la siguiente superficie se conoce como la superficie con tres fines acumulados por género.

Pero por simplicidad, nosotros la llamaremos trípode.

Figura 2.7: Trípode.

El conjunto R
2
⊋ N↘ {0} es abierto en R

2, por lo que es una superficie.

Figura 2.8: R2
⊋ N↘ {0}.

Del mismo modo R
2
⊋ C ↘ {0}, donde C es el conjunto de Cantor, es un abierto de R

2 y por

ende, es una superficie.

Figura 2.9: R2
⊋ C ↘ {0}.

Existen superficies con ramificaciones infinitas, como el árbol de Cantor y el árbol florido

de Cantor.

(a) (b)

Figura 2.10: (a) Árbol de Cantor; (b) Árbol florido de Cantor.
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Ejemplo 2.3 (Espacios que no son superficies). Contrario a la intuición, existen espacios que

cumplen ser localmente homeomorfos a R
2 pero no ser Hausdor". En este ejemplo también ejem-

plificamos con el cono espacios que no son localmente homeomorfos a R
2.

El cono está definido como el conjunto de puntos (x, y, z) ↑ R
3 que satisfacen la ecuación

x
2
+ y

2
= z

2. El origen (0, 0, 0) es un punto del cono que no tiene una vecindad homeomorfa

a algún abierto de R
2.

Figura 2.11: Punto singular en el cono.

El plano con dos orígenes es el espacio cociente

X =
R

2
↘ {0, 1}

(x, y, 0) ≃ (x, y, 1) si (x, y) ⇐= (0, 0)
.

Todo punto de X tiene una vecindad homeomorfa a R
2, pero falla en ser Hausdor" para las

imágenes de los puntos (0, 0, 0) y (0, 0, 1).

Figura 2.12: Plano con dos orígenes.

Hacemos énfasis en que la Definición 2.1 es exclusiva de superficies sin frontera pues en el estudio de

homeomorfismos es importante distinguirlas de las superficies con frontera no vacía. Incluso veremos

más adelante que el concepto de frontera en una superficie permite extender a toda la superficie

ciertos homeomorfismos definidos en subsuperficies con frontera (como los que mencionaremos en

el Ejemplo 3.3). ¿Pero a qué nos referimos con una superficie con frontera?

Dado que una superficie ! es un espacio topológico abstracto que no está encajado necesariamente
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dentro de algún otro espacio topológico X, no podemos especificar cuál es la frontera topológica

de ! dentro de X. Más bien, a lo que nos referimos es a una frontera geométrica, que captura la

información del semiplano superior cerrado H2 =
{
(x, y) ↑ R

2
: y ⇒ 0

}
como subespacio de R

2. En

la Figura 2.13 se puede notar que en H2 hay abiertos como el subconjunto V ↓ H2 que también

es un abierto de R
2. Por otro lado hay abiertos como U ↓ H2 que son abiertos sólo del semiplano.

Los puntos en la intersección de U ⇑ {(x, 0) : x ↑ R} describen a lo que nos referimos como puntos

frontera.

Figura 2.13: V un abierto de R
2 y U abierto exclusivamente de H2

Definición 2.4 (Superficie topológica con frontera). Un espacio topológico conexo ! es una su-

perficie, con frontera posiblemente vacía, si es Hausdor", segundo numerable y cada punto p ↑ !

tiene un entorno V homeomorfo a algún abierto de H2.

La frontera geométrica de una superficie !, o simplemente frontera, es el conjunto denotado

por ϱ!, que consta de todos los puntos p ↑ ! que no tienen una vecindad homeomorfa a algún

abierto de R
2. Entonces, una caracterización de los puntos frontera es la siguiente. Si p ↑ ! es

un punto frontera y V es una vecindad de p con un homeomorfismo ε : V → W (W ↓ H2

abierto), entonces debe tenerse ε(p) ↑ R ↘ {0}. Recíprocamente, si p ↑ ! cumple que exista tal

homeomorfismo ε : V → W (V abierto de ! y W abierto de H2) con ε(p) ↑ R ↘ {0}, entonces

p debe ser punto frontera. De lo contrario, ε(p) tendría una vecindad en H2 homeomorfa a una

vecindad de R
2. Eso contradice que los abiertos de H2 que tocan el borde no son homeomorfos a

abiertos de R
2, por el Teorema de Invarianza del Dominio3 [12, Teorema 2.B3].

Los puntos en ϱ! se conocen como puntos frontera y los puntos en !⊋ϱ! como puntos interiores.

Al conjunto de puntos interiores lo denotamos por int(!). Claramente int(!) es un abierto de !,

por lo que ϱ! es cerrado. Además, se puede observar que cada punto p ↑ ϱ! tiene una vecindad

relativa a ϱ! que es homeomorfa a un intervalo abierto de R; es decir, la frontera es una 1-variedad.

Siendo consistentes con la Definición 2.1, diremos que ! es una superficie sin frontera si ϱ! = ⫅̸.
3El Teorema de Invarianza del Dominio afirma que una función continua e inyectiva f : U → R

n, donde U ↑ R
n

es abierto, debe ser un mapeo abierto. La demostración de este teorema requiere el uso homología.
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Un homeomorfismo entre superficies f : ! → !
↑ cumple que f(ϱ!) = ϱ!

↑. Por lo tanto, tener o

no frontera es un invariante topológico.

Ejemplo 2.5. Algunos ejemplos de superficies con frontera y sus representaciones poligonales son

los siguientes.

El semiplano superior cerrado H2, con frontera ϱH2 = {(x, 0) : x ↑ R}.

El disco cerrado D
2
=

{
(x, y) ↑ R

2
: x

2
+ y

2
⇓ 1

}
, cuya frontera es ϱD

2
= S

1.

El anillo A
2
=

{
(x, y) ↑ R

2
: 1 ⇓ x

2
+ y

2
⇓ 2

}
es una superficie compacta con frontera ϱA

2
=

{
(x, y) ↑ R

2
: x

2
+ y

2
= 1

}
⇔
{
(x, y) ↑ R

2
: x

2
+ y

2
= 2

}
, que es homeomorfa a S

1
↖ S

1.

Figura 2.14: El anillo.

La banda de Möbius, BM, es la superficie parametrizada por

BM :=

{((
1↔ t sin

ς

2

)
cos ς,

(
1↔ t sin

ς

2

)
sin ς, t cos

ς

2

)
: (t, ς) ↑

[
↔
1

2
,
1

2

]
↘ [0, 2ω]

}
.

La frontera de BM es homeomorfa a S
1.

Figura 2.15: Banda de Möbius y su representación poligonal.

La escalera de Jacob recortada por la mitad es una superficie con frontera no compacta. Sin

embargo, toda componente conexa de la frontera es compacta homeomorfa al círculo.

Figura 2.16: Escalera de Jacob recortada.
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D
2
⊋C, donde C ↓ ϱD

2 es homeomorfo al conjunto de Cantor, es otra superficie con frontera

no compacta. En este caso, toda componente conexa de la frontera es no compacta homeo-

morfa a la línea real.

Figura 2.17: Disco menos un Cantor en la frontera

Ejemplo 2.6 (Suma conexa). Para construir más ejemplos de superficies suele utilizarse la suma

conexa. La suma conexa de dos superficies !1,!2, denotada por !1#!2, se define como la super-

ficie que se obtiene al restar un disco abierto en cada una de las superficies e identificarlos por la

frontera mediante la topología cociente.

Figura 2.18: Suma conexa de dos toros.

2.1. Orientabilidad

En los ejemplos anteriores, la banda de Möbius y el plano proyectivo son ejemplos de superficies no

orientables. En cambio, el resto fueron ejemplos de superficies orientables. La definición formal de

orientabilidad requiere mayor profundidad y sugerimos al lector revisar [11] para una introducción

formal mediante el grupo fundamental. También recomendamos revisar [22] para el caso de super-

ficies con una estructura diferenciable. Nosotros expondremos el concepto de orientabilidad con un

enfoque informal. Esperamos que a pesar de eso, esta sección le sirva a los lectores (en especial los

que están iniciándose en el tema) para continuar la lectura de este artículo.

Dada una superficie ! y un punto p ↑ !⊋ ϱ!, se puede definir el sentido en el que una curva da

vueltas al rededor de p. En la Figura 2.19 se muestra que hay dos posibles sentidos.
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Figura 2.19: Elección de sentidos alrededor de p.

Una orientación en la superficie ! consiste en una elección de sentidos en cada punto, de tal

forma que en cada vecindad V ↓ ! (homeomorfa a un abierto de R
2), todos los puntos tienen

asignados sentidos “compatibles”. Diremos que una superficie es orientable si se le puede asignar

una orientación compatible; en caso contrario diremos que es no orientable. Por ejemplo, en la

Figura 2.20 (a) el toro tiene una elección de sentidos que efectivamente conforma una orientación

en el toro. Sin embargo, en la Figura 2.20 (b) en la banda de Möbius se muestra una vecindad,

donde los sentidos asignados a los puntos fueron incompatibles.

(a) (b)

Figura 2.20: (a) orientación en el toro; (b) sentidos incompatibles en la banda de Möbius.

Teorema 2.7. Una superficie ! es no orientable si y sólo si BM está encajada en !.

Demostración. (↙) Si pudiera asignársele una elección de sentidos a cada punto de !, dicha

elección definiría una elección de sentidos en BM. Esta elección no puede ser compatible en BM,

pues BM es no orientable. Por lo tanto, tampoco es compatible en !, implicando que esta última

es no orientable.

(∝) Por el Teorema de Clasificación de Superficies compactas (ver [11]), cualquier superficie com-

pacta no orientable tiene un encaje de la banda de Möbius. Por otro lado, para cualquier su-

perficie no compacta ! podemos encontrar una colección de superficies compactas {!n} tal que

!n ↓ int (!n+1) ↓ ! y que
⋃
!n = !. Si cada subsuperficie !n es orientable, entonces se puede

definir una orientación global en !. De esta manera, si ! es no orientable, alguna de las !n tendría

que ser no orientable. En dicho caso se tiene que ! tendría un encaje de la banda de Möbius.
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Ejemplo 2.8. RP
2 tiene un encaje de BM, por lo que no es orientable.

Nos bastará poder interpretar la no orientabilidad de una superficie como el hecho de tener sólo

una cara, como es el caso de la banda de Möbius BM. Así, si decidiéramos pintar una superficie

no orientable, sólo podríamos usar un color. En superficies orientables como la esfera o el toro

podemos usar dos colores: uno para la parte externa y otro para la parte interna.

Notación 2.9. Usualmente utilizamos la letra S para representar superficies orientables. Para

superficies no orientables reservamos la letra N .

2.2. Comentarios sobre la clasificación de superficies

La clasificación de superficies comprende una serie de teoremas que proveen una lista de todas

las superficies que cumplen ciertas características. En dichos teoremas también se describe un

procedimiento para determinar si dos superficies no son homeomorfas, usualmente comparando

una colección de invariantes4.

No enunciaremos los teoremas de clasificación, pero sugerimos al lector revisar nuestras recomenda-

ciones bibliográficas. Para la clasificación de superficies compactas véase [11]. Para la clasificación

de superficies no compactas puede revisarse [31]. Para una revisión de los teoremas de clasificación

de superficies (compactas o no compactas, orientables o no orientables) así como los invariantes que

determinan por completo a una superficie recomendamos ver el Capítulo 1 del escrito Superficies

Topológicas y sus simetrías: una introducción a grupos modulares de superficies de tipo finito e

infinito [6].

3. El grupo de homeomorfismos de una superficie

En esta sección estudiaremos la estructura algebraica del grupo (con la operación composición de

funciones) de todos los homeomorfismos f : ! → ! de una superficie ! (posiblemente con frontera

no vacía), el cual denotamos por Homeo(!). Dotaremos al grupo Homeo(!) de una estructura

topológica, la cual se conoce como topología compacto-abierta. Veremos que ambas estructu-

ras (la estructura de grupo y la estructura topológica) en Homeo(!) son compatibles. En otras

palabras, Homeo(!) es un grupo topológico.

4Un invariante asociado a una superficie ! es un objeto ω(!), tal que si ! es homeomorfa a !→, entonces
ω(!) = ω(!→). Ejemplos: la orientabilidad, la frontera, característica de Euler, género, espacio de fines, espacio de
fines acumulados por género, espacio de fines acumulados por género no orientable.
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Definición 3.1. Un grupo G con una topología φ es un grupo topológico si las operaciones

G↘G ↔→ G

(a, b) ↗↔→ a · b

y
G ↔→ G

a ↗↔→ a
→1

son continuas.

Nuestra meta principal será demostrar que el grupo de homeomorfismos de una superficie ! es un

grupo polaco, que significa que es separable5 y tiene una métrica completa compatible6 con la

topología compacto-abierta.

Los grupos polacos son objetos de estudio en el ámbito de la Teoría Descriptiva de Conjuntos, la

cual desarrolla herramientas para deducir propiedades topológicas de los morfismos o acciones de

dichos grupos. Un tema recurrente es este ámbito es el de determinar si un grupo Polaco G tiene

la propiedad de Continuidad Automática (propiedad AC); este se refiere a que para H un grupo

topológico separable arbitrario, todo homomorfismo algebraico de grupos G → H es continuo.

Recomendamos ver el capítulo 9 en [19] para una introducción a este tema. Una gran variedad

de grupos topológicos tiene la propiedad AC: por ejemplo, el grupo de automorfismos de Q que

preservan el orden, el grupo Homeo(R) de homeomorfismos de R [33], el grupo Homeo(!) de

homeomorfismos de una superficie compacta ! [32], y más generalmente, el grupo Homeo(M) de

homeomorfismos de una variedad compacta M [25].

3.1. Ejemplos de homeomorfismos

El hecho de pensar en un homeomorfismo f : ! → ! parece trivial, pues ya sabíamos que !

era homeomorfa a sí misma. Sin embargo, hay propiedades de la superficie ! que pueden verse

alteradas mediante la acción de dicho homeomorfismo; puede alterarse el anudamiento de curvas

cerradas simples7 (Ejemplo 3.3) o puede alterarse la orientación de la superficie (Ejemplo 3.7).

Como ejemplo de la primera clase de transformaciones introducimos el giro de Dehn.

Ejemplo 3.2 (Giro de Dehn en el anillo). Recordemos que el anillo A es una superficie orientable

con frontera no vacía dada por A = {z ↑ C : 1 ⇓ |z| ⇓ 2}. Definamos la función

T : A ↔→ A

te
iω

↗↔→ te
iω+2εi(t→1).

Podemos ver que la función T es un homeomorfismo cuya restricción a la frontera de A es la función

5Un espacio topológico X se dice separable si contiene un subconjunto denso numerable.
6Una métrica d : X ↓ X → R en un espacio topológico (X, ε) es compatible con la topología ε si la topología

inducida por la métrica d coincide con ε .
7Una curva cerrada simple en ! es un encaje topológico del círculo S

1 en !, es decir, es una función inyectiva
S
1 ϑ↔→ ! que es homeomorfismo sobre su imagen.
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identidad y su acción en el interior del anillo realiza una rotación mientras rodea la superficie como

puede verse en la Figura 3.1.

Figura 3.1: Acción del giro de Dehn T sobre el arco que conecta las dos componentes de frontera
del anillo.

El hecho de que el giro de Dehn fija puntualmente la frontera es de especial utilidad para definir

giros de Dehn en otras superficies. Esto se debe a que cada punto interior de la superficie tiene una

vecindad homeomorfa a un disco de R
2, el cual tendrá encajado al anillo como un cerrado de !.

Ejemplo 3.3 (Giros de Dehn en cualquier superficie). Sea ! una superficie y ε : A → ! un

encaje del anillo. Recordemos que T : A → A denota el giro de Dehn en el anillo. Podemos definir

T̃ : ! → ! mediante

T̃ (p) =





p si p ↑ !⊋ ε(A)

ε ′ T ′ ε
→1

(p) si p ↑ ε(A).

Si encontramos el encaje apropiado del anillo en el toro (Figura 3.2), obtenemos un giro de Dehn

que altera el anudamiento de la curva naranja.

Figura 3.2: Giro de Dehn en el toro.

El giro de Dehn en un anillo que está encajado en un disco en realidad no afecta el anudamiento

del mismo. Es decir, podemos realizar un proceso de deformación continua para restaurar el arco

rojo a su posición original (Figura 3.3). Este proceso de deformación es conocido como isotopía y

lo abordaremos formalmente en la Sección 4 (Definición 4.1). El problema consiste en encontrar

un encaje apropiado del anillo en la superficie !, de modo que defina giros de Dehn que alteren

efectivamente el anudamiento de curvas, como lo es en el caso del giro de Dehn en el Toro ilustrado

en la Figura 3.2. Incluso habrá superficies como R
2 o la esfera, para los cuales no podrán encontrarse

homeomorfismos que alteren el anudamiento de curvas. Por ejemplo, cada giro de Dehn en R
2
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proviene de una transformación continua que puede deshacerse del mismo modo (Figura 3.3).

Figura 3.3: Deformación continua del giro de Dehn en R
2.

Ejemplo 3.4 (Homeomorfismos en la esfera). Sea p ↑ S
2 un punto fijo. Recordando la proyección

estereográfica, podemos definir un homeomorfismo ε : S
2
⊋ {p} → R

2. Cualquier homeomorfismo

f : R
2
→ R

2 define un homeomorfismo f̃ : S
2
⊋ {p} → S

2
⊋ {p} dado por f̃ = ε

→1
′ f ′ ε. Dicho

homeomorfismo se puede extender a un homeomorfismo en toda la esfera que fija al punto p.

Con la construcción del homeomorfismo f̃ podemos manipular la esfera así como si lo hiciéramos

con R
2. Una aplicación de este hecho aparece en el Ejemplo 3.27.

En algunas superficies podemos exhibir algunos ejemplos de homeomorfismos que modifican o

permutan las estructuras de una superficie, sin provenir de giros de Dehn.

Ejemplo 3.5 (Traslación de Género). La escalera de Jacob puede encajarse en R
3 de manera

simétrica a lo largo del eje x, y del plano xy. En dicho caso, la traslación T : R
3
→ R

3
: (x, y, z) ↗→

(x↔ 1, y, z) se restringe a un homeomorfismo dentro de la escalera de Jacob.

Figura 3.4: Traslación del género en la Escalera de Jacob.

Ejemplo 3.6 (Permutación de fines acumulados por género). Así como en el Ejemplo 3.5, algunas

rotaciones de R
3 también se pueden restringir a homeomorfismos de superficies encajadas. Tal es

el caso de la superficie trípode en la que se realiza una rotación por un ángulo de 2ε
3 . Nótese que

este homeomorfismo tiene orden 3.
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Figura 3.5: Rotación de fines.

Homeomorfismos que invierten la orientación. Un homeomorfismo f : S → S en una su-

perficie orientable S tiene la cualidad de preservar o invertir la orientación de la superficie. En

la literatura que concierne a los grupos modulares de superficies es relevante la distinción entre

homeomorfismos que preservan o invierten la orientación.

La diferencia entre dichos homeomorfismos se ejemplifica con la Figura 3.6. Los homeomorfismos

que preservan la orientación, preservan el sentido en que las curvas rodean un punto y su imagen.

Por ejemplo, la función identidad idS : S → S es un homeomorfismo que preserva la orientación.

Una definición precisa de lo que significa preservar o invertir orientación puede revisarse en [22]

para el caso diferenciable.

Figura 3.6: El homeomorfismo f preserva la orientación; el homeomorfismo h invierte la orientación.

Ejemplo 3.7. A continuación presentamos homeomorfismos que invierten la orientación en al-

gunas superficies orientables.

En R
2 la conjugación compleja (x, y) = z ↗→ z = (x,↔y) invierte la orientación.

En la esfera, f : S
2
→ S

2 dado por f(x, y, z) = (x, y,↔z) invierte la orientación.
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La suma conexa de tres toros S3 := T
2
#T

2
#T

2 (ver Ejemplo 2.6), puede encajarse en R
3 de

manera simétrica a lo largo del plano xy, de tal forma que f : R
3
→ R

3
f(x, y, z) = (x, y,↔z)

cumple que f(S3) = S3. En dicho caso, la reflexión f se restringe a un homeomorfismo de

S3 → S3 que invierte la orientación.

Figura 3.7: Construcción del encaje simétrico de S3 a lo largo del plano xy.

Cualquier superficie orientable (posiblemente de tipo infinito y posiblemente con frontera no vacía)

puede encajarse en R
3 de manera simétrica a lo largo del plano xy. La forma de lograr tal encaje

se describe en [28, Sección 4.2.1], mediante el inflamiento de una vecindad regular de una gráfica

plana que describe la estructura de la superficie. Por lo tanto, la reflexión siempre define un

homeomorfismo que invierta la orientación.

3.2. Topología compacto-abierta

Como mencionamos previamente, el grupo de homeomorfismos también tiene estructura topológica.

Dado un compacto K ↓ ! y un abierto U ↓ ! de una superficie !, definimos

(K,U) := {f ↑ Homeo(!) : f(K) ↓ U} .

Dichos conjuntos conforman una prebase8 para la topología en Homeo(!) que se conoce como la

topología compacto-abierta. Con dicha topología, tenemos el siguiente teorema, cuya demos-

tración se divide en las Proposiciones 3.10 y 3.11.

Teorema 3.8. El grupo de homeomorfismos de una superficie !, Homeo(!), es un grupo topológico

con la topología compacto-abierta.

El teorema anterior es general en el sentido de que es independiente de si la superficie ! es orien-

table, compacta o con frontera no vacía. Para proceder con la demostración de las Proposiciones

3.10 y 3.11 debemos simplificar la prebase para la topología compacto-abierta. Esto lo haremos

mediante el siguiente resultado.

Lema 3.9. La colección de abiertos (en la topología compacto-abierta)
{
(K,U)

}
donde K ↓ !

es abierto y conexo con K compacto y U ↓ ! abierto, conforma una prebase de la topología

compacto-abierta.
8Una prebase P para una topología de X es una colección de subconjuntos de X cuya unión es X. La topología

generada por una prebase P es aquella definida por la colección de todas las uniones de intersecciones finitas de
elementos de P.
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Demostración. Sea (C,U) un prebásico en la topología compacto-abierta y tomemos f ↑ (C,U).

Entonces C ↓ f
→1

(U). Dado que ! es Hausdor!, localmente conexo y localmente compacto, para

cada p ↑ C, existe un abierto Up, conexo y relativamente compacto9 tal que p ↑ Up ↓ Up ↓

f
→1

(U). Por la compacidad de C, podemos tomar una cantidad finita p1, . . . , pk ↑ C tales que

C ↓
⋃

k

i=1 Upi ↓
⋃

k

i=1 Upi ↓ f
→1

(U). Se sigue que f ↑


k

i=1(Upi , U) ↓ (C,U).

Proposición 3.10. La operación composición

µ : Homeo(!)↘Homeo(!) ↔→ Homeo(!)

(f, g) ↗↔→ f ′ g,

es continua.

Demostración. Sea (K,U) un abierto prebásico cualquiera y sean f, g ↑ Homeo(!) tales que

µ(f, g) = f ′ g ↑ (K,U). Se cumple entonces que g(K) ↓ f
→1

(U). Dado que ! es localmente

compacta y que g(K) es compacto, existe un abierto V ↓ Homeo(!) relativamente compacto

tal que g(K) ↓ V ↓ V ↓ f
→1

(U). Se tiene así que g(K) ↓ V y f(V ) ↓ U , lo que implica

(f, g) ↑ (V , U)↘ (K,V ) ↓ µ
→1

(K,U). Esto prueba que la operación composición es continua.

Proposición 3.11. La involución

↼ : Homeo(!) ↔→ Homeo(!)

f ↗↔→ f
→1,

es un homeomorfismo.

Demostración. Tomemos un abierto prebásico (K,U) como los definidos en el Lema 3.9, y sea

h ↑ Homeo(!) tal que ↼(h) = h
→1

↑ (K,U). Del mismo modo que se demostró en el Lema 3.9,

existen entornos V1, V2 ↓ ! abiertos, tales que

h
→1

(K) ↓ h
→1

(K) ↓ V1 ↓ V1 ↓ V2 ↓ V2 ↓ U.

Se sigue que V2 ⊋ V1 ↓ U ⊋ h
→1

(K). Aplicando h se obtiene que h(V2 ⊋ V1) = h(V2) ⊋ h(V1) ↓

h(U)⊋K. De esta manera, dado p ↑ h
→1

(K) ↓ V1, el conjunto

M := ({p} ,K) ⇑ (V2 ⊋ V1, h(U)⊋K),

define una vecindad de h.

Veamos que ↼(M) ↓ (K,U). En efecto, tomemos f ↑ M . Por un lado, tenemos que ! = f(V1) ↖

f(V2 ⊋V1)↖ f(!⊋V2) es una unión disjunta y por otro lado sabemos que f(V2 ⊋V1) ↓ h(U)⊋K.
9Un subconjunto A ↑ X de un espacio topológico X es relativamente compacto si su cerradura en X es compacta.
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De este modo concluimos que K ↓ f(V1) ↖ f(!⊋ V2). Sin embargo, K es conexo, por lo que debe

tenerse K ↓ f(V1) o bien K ↓ f(!⊋ V2). Dado que f(p) ↑ K, tenemos que K ⇑ f(V1) ⇐= ⫅̸. Así,

K ↓ f(V1), y por lo tanto ↼(f) = f
→1

↑ (K,U).

Una de las propiedades más interesantes de la topología compacto-abierta es que la acción de grupo

de homeomorfismos sobre la superficie ! es continua; en otras palabras, la función evaluación

Homeo(!)↘ ! ↔→ !

(f, p) ↗↔→ f(p)

es continua; abajo en la Proposición 3.12 damos una prueba de este resultado.

En general, R. Arens decide llamar topología admisible de Homeo(X) a toda aquella que hace

continua a la acción del grupo de homeomorfismos sobre el espacio topológico X. Una consecuencia

importante del estudio de Arens es que para toda superficie !, la topología compacto-abierta en

Homeo(!) es, de hecho, la topología más gruesa entre todas aquellas que cumplen la propiedad de

admisibilidad. Recomendamos revisar el interesante artículo [2, Teorema 2] para más detalles.

Proposición 3.12. Sea ! una superficie topológica y Homeo(!) el grupo de homeomorfismo de !

con la topología compacto-abierta. Entonces la función evaluación

Homeo(!)↘ ! ↔→ !

(f, p) ↗↔→ f(p)

es continua.

Demostración. Sean f ↑ Homeo(!) y p ↑ !. Sea U ↓ ! una vecindad de f(p). Entonces f
→1

(U)

es una vecindad de p. Sabemos que ! es localmente compacta, por lo que existe un abierto V con

V compacto y

p ↑ V ↓ V ↓ f
→1

(U).

Podemos deducir que f(V ) ↓ U y con ello f ↑ (V , U). Nótese que (f, p) ↑ (V , U)↘ V y que cada

(h, q) ↑ (V , U)↘V cumple h(q) ↑ h(V ) ↓ U , por lo que (V , U)↘V está contenido en la preimagen

de U bajo la función evaluación.

Observación 3.13. La continuidad de la función evaluación implica que: si {fn} es una sucesión

de homeomorfismos que converge a f ↑ Homeo(!) con la topología compacto-abierta, entonces fn

converge a f puntualmente.

El grupo de homeomorfismos hereda propiedades topológicas de !, como las enunciadas a conti-

nuación.
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Proposición 3.14. Para toda superficie !, Homeo(!) es Hausdor".

Demostración. Dados f, g ↑ Homeo(!) distintos, en algún punto p ↑ ! tendremos f(p) ⇐= g(p).

Ya que ! es Hausdor!, podemos encontrar U, V ↓ ! vecindades de f(p) y g(p) respectivamente

que son disjuntas. Nótese que f ↑ ({p} , U), g ↑ ({p} , V ) y ({p} , U) ⇑ ({p} , V ) = ⫅̸.

Proposición 3.15. Para toda superficie !, Homeo(!) es segundo numerable.

Demostración. Escogemos una base numerable {Bn}n↓N de abiertos de !, relativamente com-

pactos, homeomorfos al disco D
2 (o al semidisco D

2
⇑ H

2 para puntos frontera). La colección

numerable de abiertos ” =
{
(Bn, Bm)

}
n,m↓N es una prebase para Homeo(!) con la topología

compacto-abierta. Notemos que para cualquier homeomorfismo f ↑ Homeo(!), y cualquier abierto

Bn, existe m tal que Bm ↓ f
→1

(Bn). Así que f ↑ (Bm, Bn).

Ahora, basta ver que B(”), la base generada por ”, genera la topología compacto-abierta. Esto,

porque B(”) consiste en las intersecciones finitas de los elementos de ”, por lo tanto sigue siendo

numerable. Sea (K,U) cualquier abierto prebásico de Homeo(!) y tomemos f ↑ (K,U). Dado

x ↑ K, existe jx tal que f(x) ↑ Bjx ↓ Bjx ↓ U . Similarmente, existe ix tal que

x ↑ Bix ↓ Bix ↓ f
→1

(Bjx) ↓ f
→1

(Bjx) ↓ f
→1

(U),

de modo que f(Bix) ↓ Bjx ↓ U . Por la compacidad de K, existen x1, . . . , xk ↑ K tales que

K ↓
⋃

k

l=1 Bixl
. Nótese que f ↑


k

l=1(Bixl
, Bjxl

). Pero si g ↑


k

l=1(Bixl
, Bjxl

), entonces

g(K) ↓

k

l=1

g(Bixl
) ↓

k

l=1

Bjxl
↓ U.

Por lo tanto f ↑


k

l=1(Bixl
, Bjxl

) ↓ (K,U), probando lo deseado.

Observación 3.16. Una consecuencia de que Homeo(!) sea segundo numerable es que es separa-

ble. De cada abierto de la base numerable se puede escoger un punto, para formar un subconjunto

D ↓ Homeo(!), que será denso y numerable.

Observación 3.17. Las demostraciones expuestas en esta sección son válidas, en general, para

Homeo(X), cuando X es un espacio topológico Hausdor", locamente compacto y locamente conexo.

Tales propiedades son satisfechas por superficies. Específicamente la Proposición 3.14 sólo utiliza

que ! sea Hausdor"; las Proposiciones 3.10 y 3.12 requieren adicionalmente que ! sea localmente

compacta; mientras que para el Lema 3.9, la Proposición 3.11 y el Teorema 3.8 también se utilizó

que ! fuera localmente conexa.
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3.3. Metrizabilidad invariante del grupo de homeomorfismos

El grupo (R
2
,+) con la métrica euclidiana es un grupo topológico, donde las traslaciones p ↗→ p+c

son isometrías. Esta propiedad de la métrica se conoce como invarianza de la operación del grupo.

Como R
2 es conmutativo, no hace falta distinguir si la invarianza es mediante sumar por la izquierda

o por la derecha. En general este no es el caso, como veremos en la Sección 3.4 con el grupo

Homeo(!). De momento, consideremos una cualidad de metrizabilidad en grupos descrita en la

siguiente definición.

Definición 3.18. Sea G un grupo con una métrica d : G↘G → R. Diremos que d es una métrica

invariante izquierda si

d(f, g) = d(hf, hg), para cada f, g, h ↑ G.

La métrica d es invariante derecha si

d(f, g) = d(fh, gh), para cada f, g, h ↑ G.

Si G es un grupo con una métrica d invariante tanto por la izquierda como por la derecha, entonces

G es grupo topológico con la topología inducida por d. Para esto basta ver que la función (g, h) ↗→

g
→1

h es continua (por el Lema 3.30). Esto sigue directamente de la desigualdad

d(g
→1

h, ĝ
→1

ĥ) ⇓ d(ĝ, g) + d(ĥ, h).

En general una métrica arbitraria en un grupo, no suele ser invariante izquierda y derecha al mismo

tiempo. Además, hay ocasiones en las que no habrá invarianza izquierda ni derecha (Ejemplo 3.27).

Observación 3.19. Sea G un grupo topológico, con una métrica d invariante por la izquierda,

compatible con la topología. Dado que G↘G → G↘G : (f, g) ↗→ (f
→1

, g
→1

) es un homeomorfismo,

la métrica d
↑
(f, g) = d(f

→1
, g

→1
) es invariante por la derecha y es compatible con la topología.

Análogamente si d es invariante derecha, entonces d
↑ es invariante izquierda.

Una forma de comprobar que Homeo(!) tiene una métrica compatible que es invariante por la

izquierda (o por la derecha) es aplicando el siguiente teorema, cuyas hipótesis son claramente

satisfechas por el grupo de homeomorfismos de una superficie. Una demostración se puede encontrar

en [7, Teorema 2.B.2].

Teorema 3.20 (Birkho!-Kakutani). Sea G un grupo topológico. Entonces, G es Hausdor" y el

neutro 1 ↑ G tiene una base numerable de abiertos si, y sólo si, G es metrizable. Más aún, la

métrica compatible d : G↘G → R se puede escoger de forma que sea invariante izquierda.
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Corolario 3.21. El grupo Homeo(!) admite una métrica invariante izquierda.

El teorema anterior es muy fuerte porque logra sincronizar la topología de un grupo topológico con

una métrica invariante izquierda (o derecha). Sin embargo, la existencia de una métrica invariante

izquierda no significa que sea completa. Un claro ejemplo es Q ↓ R. Aún así, hay situaciones

en las que sí se puede afirmar que una métrica invariante izquierda es una métrica completa. Por

ejemplo, si G es un grupo topológico localmente compacto con una métrica compatible d invariante

izquierda, entonces G es completo con dicha métrica [7, Observación 2.B.1].

Queremos encontrar una métrica completa para Homeo(!). La razón por la que no acudimos

al planteamiento anterior es porque para superficies cuyo grupo fundamental no es finitamente

generado, el grupo de homeomorfismos no es localmente compacto (Observación 4.10 de la Sección

4). Es por ello que tenemos que buscar una alternativa más elemental.

3.4. El grupo de homeomorfismos es un grupo polaco

Se dice que un grupo topológico G es un grupo polaco si es separable y es completamente metrizable.

Es decir, existe una métrica d : G↘G → R completa y compatible con la topología de G. En esta

sección nos dedicaremos a probar que el grupo de homeomorfismos de toda superficie, con la

topología compacto-abierta, es un grupo polaco.

Teorema 3.22. Para toda superficie !, el grupo de homeomorfismos Homeo(!) es un grupo polaco.

De la Observación 3.16 sabemos que Homeo(!) es separable, por lo que para demostrar que es

polaco bastará con exhibir una métrica completa compatible con la topología compacto-abierta.

Dado que las superficies son espacios completamente metrizables (consecuencia del Teorema 4.5 y

4.6 de [20]), podemos suponer que en una superficie ! existe una métrica d : !↘! → R completa.

Dado f ↑ Homeo(!), un compacto K ↓ ! y un número ↽ > 0, definimos

[f,K, ↽] :=

{
g ↑ Homeo(!) : sup

x↓K

d(f(x), g(x)) < ↽

}
.

Estos conjuntos conforman una base para la topología conocida como topología de convergencia

compacta.

Resulta que en Homeo(!), la topología compacto-abierta coincide con la de convergencia compacta

[30, Teorema 46.8]. Así que podemos aprovechar esta nueva descripción y definir, de manera explí-

cita, métricas compatibles y completas en Homeo(!). Las métricas que definiremos a continuación

dependerán de si la superficie ! es compacta o no.
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Definición 3.23. Sea ! una superficie compacta con una métrica completa d. Definimos la métrica

⇀ : Homeo(!)↘Homeo(!) → R dada por

⇀(f, g) = máx
x↓!

d(f(x), g(x)).

Con la métrica ⇀ considérese en Homeo(!) la métrica D : Homeo(!) ↘ Homeo(!) → R definida

por

D(f, g) = ⇀(f, g) + ⇀(f
→1

, g
→1

).

Para el caso no compacto tenemos la métrica que describimos a continuación. En esencia son

similares, salvo el hecho de que se requiere el uso de una saturación por compactos. Diremos que

una colección {Kn}n↓N de subconjuntos de ! es una saturación por compactos si cada Kn es

compacto, Kn ↓ intKn+1 y
⋃

n↓N Kn = !.

Definición 3.24. Sea ! una superficie no compacta y {Kn}n↓N una saturación por compactos de

!. Dados f, g ↑ Homeo(!) definimos

⇀n(f, g) := mı́n

{
máx
x↓Kn

{d(f(x), g(x))}, 2
→n

}
.

Se define en Homeo(!) la métrica ⇀ : Homeo(!)↘Homeo(!) → R dada por

⇀(f, g) :=

↔

n=1

⇀n(f, g) ⇓ 1,

y mediante ⇀ se define la métrica D : Homeo(!)↘Homeo(!) → R por

D(f, g) := ⇀(f, g) + ⇀(f
→1

, g
→1

).

Mostraremos que las métricas ⇀ y D en la Definición 3.24 son compatibles con la topología de

convergencia compacta (Proposición 3.25). Para verificar la compatibilidad de las métricas ⇀ y D

de la Definición 3.23 se puede emular la misma demostración.

Proposición 3.25. La métrica ⇀ de la Definición 3.24 es compatible con la topología de conver-

gencia compacta.

Demostración. Veamos que ⇀ es compatible con la topología de convergencia compacta. Tomemos

un abierto básico de la topología de convergencia compacta

[h,K, ↽] =

{
g
↑
↑ Homeo(!) : sup

x↓K

d(h(x), g
↑
(x)) < ↽

}
,

con K ↓ ! compacto, h ↑ Homeo(!) y ↽ > 0. Sea n ↑ N con K ↓ Kn. Definamos ↽
↑
:=
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mı́n
{
↽, 2

→n→1
}

y tomemos

g ↑ Bϑ(h, ↽
↑
) := {g

↑
↑ Homeo(!) : ⇀(h, g

↑
) < ↽

↑
} .

Tenemos que máxx↓K d(h(x), g(x)) ⇓ ⇀n(h, g) < ⇀(h, g) < ↽. Por lo tanto g ↑ [h,K, ↽]. De este

modo Bϑ(h, ↽
↑
) ↓ [h,K, ↽].

Ahora, si tomamos una bola arbitraria

Bϑ(h, ↽) := {g
↑
↑ Homeo(!) : ⇀(h, g

↑
) < ↽} ,

definida con algún h ↑ Homeo(!) y ↽ > 0, entonces para algún natural n ⇒ 2 se tiene
↔

k=n
2
→k

<

ϖ

2 . Definimos ↽
↑
= mı́n

{
ϖ

2n , 2
→n

}
y tomamos cualquier

g ↑

n→1

k=1

[h,Kk, ↽
↑
] ,

donde estamos intersectando abiertos prebásicos de la topología de convergencia compacta. Se

verifica que ⇀k(h, g) < ↽
↑
⇓

ϖ

2n para toda k < n. De este modo

⇀(h, g) <
↽

2
+

n→1

k=1

↽

2n
< ↽,

y por lo tanto, g ↑ Bϑ(h, ↽). Esto prueba que

n→1

k=1


h,Kk,mı́n


↽

2n
, 2

→n


↓ Bϑ(h, ↽).

La métrica ⇀ de la Definición 3.24, no asegura completitud métrica, porque si una sucesión de

homeomorfismos {fn} es de Cauchy, poco sabemos de la sucesión
{
f
→1
n

}
. De ahí nuestra necesidad

de considerar la métrica D. Tanto la métrica D de la Definición 3.23 como la métrica D de la

Definición 3.24 son completas. En la siguiente proposición sólo demostraremos el caso de la métrica

D de la Definición 3.24, pues el caso de la Definición 3.23 es aún más sencillo.

Proposición 3.26. Sea ! una superficie no compacta. La métrica D de la Definición 3.24, es una

métrica completa en Homeo(!).

Demostración. Sea {fn} una sucesión de Cauchy de elementos de Homeo(!) respecto a la métrica

D. Tomemos p ↑ ! y sea M ↑ N tal que el compacto KM contenga al punto p. Dado ↽ > 0, con

2
→M

> ↽, existe N ↑ N tal que si n,m ⇒ N entonces ↽ > D(fn, fm). De la siguiente cadena de

desigualdades
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2
→M

> ↽ > D(fn, fm) ⇒ ⇀(fn, fm) ⇒ ⇀M (fn, fm) ⇒ d(fn(p), fm(p))

concluimos que para m,n ⇒ N se tiene d(fn(p), fm(p)) < ↽, lo cual implica que la sucesión {fn(p)}

es de Cauchy en !, y debe converger a algún punto f(p) := ĺımn↗↔ fn(p).

El hecho de que p ↑ KM haya sido arbitrario, implica que la sucesión fn es uniformemente de

Cauchy en KM , y por lo tanto, converge de manera uniforme a f en KM . Así que f es continua

tanto en KM como en int(KM ). Nuevamente, M ↑ N fue arbitrario, y f se puede definir en
⋃

M↓N int(KM ) = !. Por lo tanto f es continua en !.

De manera análoga podemos demostrar que la sucesión f
→1
m

converge de manera puntual a una

función continua h : ! → !.

Probaremos ahora que f es un homeomorfismo cuya inversa coincide con h. Tomemos p ↑ ! y

definamos qm := f
→1
m

(p) para cada m ↑ N. La sucesión {qm} converge a h(p) con h(p) ↑ int(KM )

para algún natural M . Por lo tanto, existe un L ↑ N tal que para toda m > L, se tiene qm ↑

int(KM ) ↓ KM .

Por otro lado, sabemos que la sucesión {fn} es de Cauchy, por lo que para todo 0 < ↽ < 2
→M

existe un natural L↑ tal que para todo m,n > L
↑ se satisface

2
→M

> ↽ > D(fn, fm) ⇒ ⇀M (fn, fm).

Dado que ⇀M (fn, fm) < 2
→M , se tiene que

⇀M (fn, fm) = máx
q↓KM

d(fn(q), fm(q)).

Por lo tanto, si m,n > máx {L,L
↑
}, se tiene por un lado que qm ↑ KM , y por otro lado

d(fn(f
→1
m

(p)), p) = d(fn(qm), fm(qm)) ⇓ máx
q↓KM

d(fn(q), fm(q)) = ⇀M (fn, fm) ⇓ D(fn, fm) < ↽.

Tomar los límites m → ∞ y n → ∞ para ver que

⇁ > ĺım
n↗↔

ĺım
m↗↔

d(fn(f
→1
m

(p)), p) = d

(
ĺım

n↗↔
fn

(
ĺım

m↗↔
f
→1
m

(p)

)
, p

)
= d(f(h(p)), p).

Dado que ↽ fue arbitrario, se tiene que d(f(h(p)), p) = 0, por lo que f(h(p)) = p. De manera

análoga se cumple que h(f(p)) = p. Terminamos concluyendo así que h es la función inversa de f .

Finalmente, veamos que fn converge a f respecto a la métrica D. Sea ↽ > 0. Por un lado podemos
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encontrar M ↑ N tal que
↔

k=M+1

1

2k
<

↽

4
.

Por otro lado, como las sucesiones {fn} y {f
→1
n

} convergen uniformemente en cada compacto Ki

a f y f
→1, respectivamente, existe N ↑ N tal que para toda n ⇒ N , y toda k ⇓ M se tenga

⇀k(fn, f), ⇀k(f
→1
n

, f
→1

) <
↽

4M
.

De este modo se concluye que si n ⇒ N , entonces

D(fn, f) < ↽.

Por el hecho de que un homeomorfismo no es necesariamente una isometría, la métrica ⇀ de la

Definición 3.23 en general no es invariante izquierda (Ejemplo 3.27), aunque un cálculo sencillo

verifica que ⇀ sí es invariante derecha (Proposición 3.28).

Ejemplo 3.27 (La métrica ⇀ en Homeo(S
2
) no es invariante izquierda). Recordemos que el diáme-

tro de la esfera S
2, diam(S

2
), está dado por la distancia entre el polo norte N = (0, 0, 1) y el polo

sur S = (0, 0,↔1). En la esfera, podemos tomar un homeomorfismo f cuya distancia a la identidad

idS2 cumpla que para alguna p0 ↑ S
2,

diam (S
2
) > ⇀(f, idS2) = d(f(p0), p0) > 0,

por ejemplo, tomar f una rotación por un ángulo diminuto.

También podemos construir un homeomorfismo h de la esfera tal que h(f(p0)) = N , y h(p0) = S

(Figura 3.8). Para una construcción del homeomorfismo h recordar el Ejemplo 3.4. Esto implica

que

⇀(hf, h) = diam (!) > ⇀(f, id).

Proposición 3.28. Sea ! una superficie compacta y ⇀ la métrica en Homeo(!) de la Definición

3.23. Entonces ⇀ es invariante derecha.

Demostración. Sean h, f, g ↑ Homeo(!). Dado x ↑ !, definimos y = h
→1

(x), y notemos que

d(fh(x), gh(x)) = d(f(y), g(y)) ⇓ ⇀(f, g).
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Figura 3.8: Homeomorfismo h que no es isometría.

De este modo ⇀(fh, gh) ⇓ ⇀(f, g). Lo anterior funciona para cualesquiera f, g, h ↑ Homeo(!). Así

que podemos definir los homeomorfismos f̃ = fh, g̃ = gh, h̃ = h
→1, y seguir teniendo

⇀(f, g) = ⇀(f̃ h̃, g̃h̃) ⇓ ⇀(f̃ , g̃) = ⇀(fh, gh).

Por lo tanto, ⇀(fh, gh) = ⇀(f, g).

La métrica ⇀ de la Definición 3.24 no va a ser invariante derecha y tampoco invariante izquierda,

como lo muestra el siguiente ejemplo.

Ejemplo 3.29 (La métrica ⇀ en Homeo(R
2
) no es invariante izquierda ni invariante derecha). En

el plano R
2, consideremos para cada n ⇒ 1 el conjunto Kn := B2n→4(0) =

{
p ↑ R

2
: |p| ⇓ 2

n→4
}
.

Si hacemos f := id, g := ↔id y h := 2id, tendremos

d(f(p), g(p)) = 2 |p| y d(fh(p), gh(p)) = 4 |p| = d(hf(p), hg(p)).

Con ello se observa que ⇀1(f, g) = mı́n
{
2
→2

, 2
→1

}
= 2

→2 y similarmente ⇀1(hf, hg) = ⇀1(fh, gh) =

2
→1. Pero para n ⇒ 2 sucede que

⇀n(f, g) = 2
→n

= ⇀n(fh, gh) = ⇀n(gf, hg).

Por lo tanto ⇀(f, g) ⇐= ⇀(fh, gh) = ⇀(hf, hg).

3.5. Subgrupos especiales

Incluidos en Homeo(!) existen algunos subgrupos que son muy importantes en la literatura. Por

ejemplo, Homeo0(!), que denota a la componente arcoconexa de la identidad id!, es un subgrupo

normal, como demostraremos en la Proposición 3.31.
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Lema 3.30. Sea G un grupo con topología φ . Entonces G es grupo topológico si y sólo si la función

ϖ(f, g) = f
→1

· g es continua.

Demostración. Si G es un grupo topológico, la continuidad de ϖ se sigue de ver a esta función

como la siguiente composición de funciones continuas

ϖ : G↘G
ϱ↘id
↔→ G↘G

µ

↔→ G

(f, g) ↗↔→ (f
→1

, g) ↗↔→ f
→1

· g.

Recíprocamente, supongamos que la función ϖ es continua. Entonces la involución se compone de

las siguientes funciones continuas

↼ : G ↔→ G↘ {1}
ς

↔→ G

f ↗↔→ (f, 1) ↗↔→ f
→1

· 1 = f
→1.

En consecuencia, la operación del grupo se compone de funciones continuas

µ : G↘G
ϱ↘id
↔→ G↘G

ς
↔→ G

(f, g) ↗↔→ (f
→1

, g) ↗↔→ (f
→1

)
→1

· g = f · g.

Proposición 3.31. Sea G un grupo topológico y G0 la componente arcoconexa del elemento neutro

1 ↑ G. Se cumple que G0 es un subgrupo normal de G.

Demostración. Por el Lema 3.30 tenemos función ϖ : G ↘ G → G dada por ϖ(g, h) = g
→1

h es

continua. Si g, h ↑ G0, entonces existen dos caminos L, C : [0, 1] → G de tal forma que L(0) = 1 =

C(0), L(1) = g y C(1) = h. Con esto podemos construir el camino

[0, 1] ↔→ G↘G ↔→ G

t ↗↔→ (L(t), C(t)) ↗↔→ L(t)
→1

C(t)

define un camino que conecta a 1 con g
→1

h. Esto prueba que g
→1

h ↑ G0. Concluimos así que

G0 ⇓ G.

Veamos que G0 es normal en G. Nuevamente por el Lema 3.30 tenemos que la conjugación h ↗→

g
→1

hg es una función continua. Dado h ↑ G0 y cualquier g ↑ G, existe un camino L : [0, 1] → G

tal que L(0) = 1 y L(1) = h. Por lo tanto, tenemos la composición de funciones continuas

[0, 1] ↔→ G ↔→ G

t ↗↔→ L(t) ↔→ g
→1

L(t)g

que conecta a 1 con g
→1

hg, y se concluye que g
→1

hg ↑ G0.
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Si ϱ! ⇐= ⫅̸, podemos definir

Homeo(!; ϱ!) :=
{
f ↑ Homeo(!) : f|φ! = idφ!

}
,

y si ϱ! = ⫅̸ conviene establecer

Homeo(!; ϱ!) := Homeo(!).

Proposición 3.32. Para toda superficie !, Homeo(!; ϱ!) es un subgrupo normal cerrado de

Homeo(!).

Demostración. Sean f ↑ Homeo(!; ϱ!) y h ↑ Homeo(!). Entonces para cualquier p ↑ ϱ!, se debe

tener que h(p) ↑ ϱ!. Por lo tanto f(h(p)) = h(p), concluyendo que h
→1

′f ′h(p) = h
→1

(f(h(p))) =

h
→1

(h(p)) = p. De este modo h
→1

fh ↑ Homeo(!; ϱ!).

El hecho de ser cerrado se argumenta usando que si {fn} ↓ Homeo(!; ϱ!) converge a algún

f ↑ Homeo(!) en la topología compacto-abierta, entonces {fn} converge puntualmente a f (Ob-

servación 3.13). En ese sentido, para toda p ↑ ϱ!, se tiene que p = ĺımn↗↔ fn(p) = f(p). Por lo

tanto, f ↑ Homeo(!; ϱ!).

En caso de que la superficie S sea orientable, para los homeomorfismos que preservan la orientación

reservamos la notación siguiente

Homeo
+
(S) := {f ↑ Homeo(S) : f preserva la orientación} .

Recordemos que toda superficie orientable admite homeomorfismos que invierten la orientación

(véase el Ejemplo 3.7). Si la superficie N es no orientable, por convención ponemos

Homeo
+
(N) := Homeo(N).

Proposición 3.33. Para toda superficie orientable S, Homeo
+
(S) es un subgrupo normal abierto

y cerrado de Homeo(S) que tiene índice 2.

Demostración. Si f preserva la orientación y g la invierte, entonces f ′ g y g ′ f invierten la

orientación. Si h también invierte la orientación, entonces g ′ h preserva la orientación, pues sólo

hay dos orientaciones posibles. De este modo g ′ f ′ g
→1

↑ Homeo
+
(S) para todo g ↑ Homeo(S) y

todo f ↑ Homeo
+
(S).

Si f y g invierten la orientación, entonces f→1
′g preserva la orientación implicando que f y g son de

la misma clase de equivalencia en Homeo(S)/Homeo
+
(S). De ello que

Homeo(S)/Homeo
+
(S)

 =
2.
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Las métricas de las definiciones 3.23 y 3.24 permiten concluir que si dos homeomorfismos f, g ↑

Homeo(S) son suficientemente cercanos, entonces ambos preservan la orientación de la superficie o

ambos la invierten (Figura 3.9). Esto significa que la asignación orientación O : Homeo(S) → {0, 1}

h ↗→





1 si h preserva orientación

0 si la invierte

es localmente constante. En otras palabras, O es continua, donde {0, 1} tiene la topología discre-

ta. Nótese que esto implica que Homeo
+
(S) = O

→1
{1} es un subconjunto abierto y cerrado de

Homeo(S).

Figura 3.9: Acción de f y g en una triangulación orientada de S.

Por último, podemos definir

Homeo
+
(!; ϱ!) := Homeo

+
(!) ⇑Homeo(!; ϱ!).

Nótese que si S es una superficie orientable con ϱS ⇐= ⫅̸, entonces todo homeomorfismo f ↑

Homeo(S; ϱS) también está en Homeo
+
(S). Al ser una intersección de subgrupos normales y

cerrados, Homeo
+
(!; ϱ!) es un subgrupo normal y cerrado del grupo de homeomorfismos.

Proposición 3.34. Si S es una superficie orientable entonces todo elemento de Homeo0(S) pre-

serva la orientación de S, es decir,

Homeo0(S) ⇓ Homeo
+
(S).

Demostración. Recordemos que en la demostración de la Proposición 3.33 utilizamos la continuidad

de la asignación orientación

O : Homeo(S) → {0, 1}

para ver que Homeo
+
(S) es cerrado en Homeo(S). En este caso, notemos además que la imagen

de Homeo0(S) bajo O es conexo y contiene a {1}. Concluimos que O(Homeo0(S)) = {1} .
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Observación 3.35. Nótese que si G es un grupo polaco y H ⇓ G es un subgrupo cerrado, entonces

H también es un grupo polaco. Esto porque cualquier métrica completa compatible con la topología

de G induce una métrica completa compatible con la topología de H.

4. El grupo modular de una superficie

En la Sección 3 discutimos la metrizabilidad de Homeo(!). Esto introduce una forma de medir

cuánto de diferentes son dos homeomorfismos. Si la distancia entre dos homeomorfismos es sufi-

cientemente pequeña, esperaríamos que ambos transformaran de manera similar la superficie.

En esta sección definiremos el concepto isotopía, el cual describe a qué nos referimos cuando deci-

mos que dos homeomorfismos transforman de manera similar la superficie. También, exploraremos

la relación de este concepto con la conexidad por trayectorias en Homeo(!). De este modo, podre-

mos definir el Grupo Modular Mod(!) (Mapping Class Group, MCG(!), en inglés), y revisaremos

cómo Mod(!) hereda propiedades topológicas de Homeo(!): como el hecho de ser un grupo to-

pológico, Hausdor! y segundo numerable. Al final haremos una breve revisión de las alternativas

para demostrar que también es un grupo polaco.

4.1. La relación entre isotopía y arcoconexidad

Una isotopía describe cómo un homeomorfismo se convierte en otro pasando continuamente por

homeomorfismos intermedios indexados por tiempos t ↑ [0, 1].

Definición 4.1. Sea ! una superficie. Una isotopía es una función H : !↘ [0, 1] → ! continua,

tal que para todo t ↑ [0, 1] la función

Ht : ! ↔→ !

p ↗↔→ H(p, t)

es un homeomorfismo.

Podemos establecer la siguiente relación en Homeo(!): diremos que dos homeomorfismos f, g ↑

Homeo(!) son isotópicos si existe una isotopía H : !↘ [0, 1] → ! tal que H0 = f y H1 = g.

La relación de isotopía es una relación de equivalencia. Más aún, f es isotópica a g si y sólo si

f
→1

′ g es isotópica a la identidad. Es importante notar que una isotopía es en particular una

homotopía. Por lo tanto, si un homeomorfismo f es isotópico a id!, entonces debe fijar la clase

de homotopía de toda curva. Por ejemplo en la Figura 4.1, se observa que el giro de Dehn T ha

cambiado la clase de homotopía de la curva naranja, y por ello no es isotópico a id!. Para el

converso, basta encontrar una colección particular de curvas cerradas simples, tal que si f fija la
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clase de isotopía de cada una de ellas, entonces f es isotópico a id!, este criterio se conoce como

el Método de Alexander (ver detalles en [9, Proposición 2.8]).

Figura 4.1: f fija la clase de isotopía de la curva naranja; el giro de Dehn T no es isotópico a la
identidad.

Es de nuestro interés detallar las propiedades topológicas de Homeo(!) que son consecuencia de la

relación de isotopía. Por ejemplo, la proposición siguiente describe la relación que tiene el concepto

de isotopía con la conexidad por trayectorias de Homeo(!).

Proposición 4.2. Sea F : !↘ [0, 1] → ! una función (no necesariamente continua) tal que para

todo t ↑ [0, 1], se tenga Ft ↑ Homeo(!). Defina la función L por

L : [0, 1] ↔→ Homeo(!)

t ↗↔→ Ft.

Entonces F es continua si y sólo si L es continua.

Demostración. Supongamos que F es continua. Basta ver que L
→1

(K,U) es un abierto, para K

compacto y U abierto de !. Notar que

L
→1

(K,U) =
{
t ↑ [0, 1] : K ↘ {t} ↓ F

→1
(U)

}
.

Tomando t0 ↑ L
→1

(K,U) se tiene que K ↘ {t0} ↓ F
→1

(U). Por el Lema del Tubo [30, Lema 26.8],

existe una vecindad W de t0 con K ↘W ↓ F
→1

(U). Por lo tanto t0 ↑ W ↓ L
→1

(K,U).

Ahora, supongamos que L es continua. Notemos que la función F se puede factorizar como la

siguiente composición

F : !↘ [0, 1] ↔→ !↘Homeo(!) ↔→ !

(p, t) ↗↔→ (p, Ft) ↗↔→ Ft(p) = F (p, t).
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La continuidad de la función evaluación (Proposición 3.12)

Homeo(!)↘ ! ↔→ !

(f, p) ↗↔→ f(p)

implica la continuidad de F .

Del mismo modo que las proposiciones de la Sección 3.2, el resultado anterior puede generalizarse

cuando ! es sustituída por un espacio topológico X localmente compacto y Hausdor!, ya que son

las hipótesis requeridas en la demostración de la Proposición 3.12.

Recordemos que Homeo0(!) denota a la componente arcoconexa de Homeo(!) que contiene al

homeomorfismo identidad. Por la Proposición 4.2 podemos caracterizar la relación de isotopía

como sigue:

f y g son isotópicos ∈ f
→1

′ g es isotópico a id! ∈ f
→1

′ g ↑ Homeo0(!)

∈ f y g están en la misma clase lateral

de Homeo(!)/Homeo0(!).

La relevancia de esta condición cobra sentido por el hecho de que Homeo0(!) es subgrupo normal

de Homeo(!) (Proposición 3.31), por lo que el cociente Homeo(!)/Homeo0(!) tiene estructura de

grupo. Del mismo modo, podemos restringir la definición de isotopía

Definición 4.3. (Isotopía relativa a la frontera) Sea ! una superficie con ϱ! ⇐= ⫅̸. Una isotopía

relativa a la frontera es una isotopía H : !↘I → ! tal que para todo t ↑ [0, 1], Ht ↑ Homeo(!; ϱ!).

Denotamos por Homeo0(!; ϱ!) a la componente arcoconexa de Homeo(!; ϱ!) que contiene a id!.

Nuevamente Homeo0(!; ϱ!) es un subgrupo normal de Homeo(!; ϱ!). Notemos que la Proposición

4.2 también aplica para isotopías relativas a ϱ! respecto a la arcoconexidad de Homeo(!; ϱ!). En

ese sentido, también podemos caracterizar la relación de isotopía relativa a la frontera como

f y g son isotópicos relativo a ϱ! ∈ f
→1

′ g ↑ Homeo0(!; ϱ!)

∈ f y g están en la misma clase lateral

de Homeo(!; ϱ!)/Homeo0(!; ϱ!).

4.2. Definición del grupo modular

Recordemos que Homeo0(!; ϱ!) es un subgrupo normal de Homeo(!; ϱ!) y también de

Homeo
+
(!; ϱ!). Dado que la relación de isotopía “f isotópico a g” es equivalente a que f

→1
′ g ↑
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Homeo0(!; ϱ!). Entonces, las clases de isotopía coinciden con el grupo cociente

Homeo
+
(!; ϱ!)/isotopía = Homeo

+
(!; ϱ!)/Homeo0(!; ϱ!).

Definición 4.4. Dada una superficie !, definimos el Grupo Modular de ! como el grupo cociente

Mod(!) := Homeo
+
(!; ϱ!)/Homeo0(!; ϱ!).

Si S es una superficie orientable, entonces podemos definir el Grupo Modular Extendido como

Mod
±
(S) := Homeo(S; ϱS)/Homeo0(S; ϱS).

Observación 4.5. Nótese que para una superficie orientable S, existe distinción entre Mod(S) y

Mod
±
(S) sólo si ϱS = ⫅̸. Esto es porque si ϱS ⇐= ⫅̸, entonces todo elemento f ↑ Homeo(S; ϱS)

preserva la orientación.

Recordemos que, por convención, si N es una superficie no orientable entonces Homeo
+
(N ; ϱN) =

Homeo(N ; ϱN). Por lo tanto, el Grupo Modular y el Grupo Modular Extendido de una superficie

no orientable coinciden.

Naturalmente tenemos las funciones proyección

p : Homeo
+
(!; ϱ!) ↔→ Mod(!)

f ↗↔→ [f ].
y

p
±
: Homeo(!; ϱ!) ↔→ Mod

±
(!)

f ↗↔→ [f ],

las cuales son homomorfismos de grupos sobreyectivos. Nótese que Mod(!) ⇓ Mod
±
(!), ya que

los elementos de ambos son clases laterales g · Homeo0(!; ϱ!), para algún g ↑ Homeo
+
(!; ϱ!) ó

g ↑ Homeo(!; ϱ!).

Podemos dotar a Mod(!) y a Mod
±
(S) de la topología cociente proveniente de la función proyección

respectiva. En ese caso, deducimos que Mod(!) es un subgrupo cerrado de Mod
±
(!). Recordemos

que la topología cociente es la más pequeña que hace que cada proyección p y p
± sea una función

cociente10. Veremos que con esta nueva topología, el grupo modular es un grupo topológico.

Proposición 4.6. Si G es un grupo topológico y H es un subgrupo de G, entonces la proyección

p : G → G/H es una función abierta.

Demostración. Sólo hay que notar que si B ↓ G es un abierto, entonces

p
→1

(p(B)) = B ·H =



h↓H

Bh

10Una función sobreyectiva entre espacios topológicos Q : X → Z es función cociente si, U ↑ Z es abierto si y
sólo si Q↑1(U) ↑ X es abierto. En particular, una función cociente es continua.
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es unión de abiertos. Por ser p una función cociente, tenemos que p(B) es abierto.

Procedemos ahora a demostrar que el Grupo Modular es un grupo topológico. Para ello nos apo-

yaremos en el siguiente resultado.

Lema 4.7. Sean X,Y, Z espacios topológicos y suponga que ϖ : Z → Y es una función, ε : X → Y

es una función continua tal que ε = ϖ ′ Q, donde Q : X → Z es una función que cumple alguna

de las siguientes posibilidades

Q es una función cociente,

Q es abierta sobreyectiva,

Q es cerrada sobreyectiva.

Entonces ϖ es una función continua.

Demostración. Dado U ↓ Y abierto, la continuidad de ε implica que ε
→1

(U) = (ϖ ′ Q)
→1

(U) =

Q
→1

(ϖ
→1

(U)) es abierto. Si Q es cociente o abierto, trivialmente ϖ
→1

(U) es abierto. Esto prueba

que ϖ es continuo en dichos casos.

El caso en que Q sea una función cerrada es análogo. Notar que la hipótesis de sobreyectividad se

usó para argumentar que Q(Q
→1

(A)) = A.

Proposición 4.8. Dado un grupo topológico G y un subgrupo normal H ⇓ G, el cociente G/H

con la topología cociente es un grupo topológico.

Demostración. Por el Lema 3.30 basta ver que la función ϖ([f ], [g]) = [f ]
→1

[g] = [f
→1

g] es continua

en G/H. Si ε denota la composición de funciones siguiente

ε : G↘G ↔→ G ↔→ G/H

(f, g) ↗↔→ f
→1

· g ↗↔→ [f
→1

· g],

entonces ε es una composición de funciones continuas, porque G es grupo topológico.

Por otro lado, la función Q definida por

Q : G↘G ↔→ G↘G

(f, g) ↗↔→ ([f ], [g])

es sobreyectiva y abierta, pues Q = p ↘ p. El resultado se sigue de que ε = ϖ ′ Q y del Lema

4.7.
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Corolario 4.9. Para toda superficie !, Mod(!) y Mod
±
(!) son grupos topológicos.

Si G es un grupo topológico localmente compacto y H ⇓ G cualquier subgrupo, entonces G/H es

localmente compacto. Por lo tanto hacemos la siguiente observación.

Observación 4.10. En general, el grupo de homeomorfismos, Homeo(!), no es localmente com-

pacto, pues si ! es de tipo infinito entonces Mod(!) no es localmente compacto ([1, Teorema 4.2]).

Proposición 4.11. Para toda superficie !, el Grupo Modular Extendido Mod
±
(!) es segundo

numerable. En particular, el Grupo Modular, Mod(!), es segundo numerable.

Demostración. Recordemos que Homeo(!) es segundo numerable. Dado que la función cociente

p : Homeo(!; ϱ!) → Mod
±
(!) es abierto, dada una base numerable {Bn} de Homeo(!; ϱ!), la

colección {p(Bn)} conforma una colección numerable de abiertos en Mod
±
(!). De hecho {p(Bn)}

es base para Mod
±
(!). Si U es abierto de Mod

±
(!) y y ↑ U , entonces existe x ↑ Homeo(!; ϱ!)

tal que y = p(x) ↑ U . Pero x ↑ p
→1

(U), y este último es abierto. Dado que {Bn} es base, existe

n ↑ N con x ↑ Bn ↓ p
→1

(U). Se sigue que y = p(x) ↑ p(Bn) ↓ p(p
→1

(U)) = U , porque p es

sobreyectiva. Se sigue que {p(Bn)} es una base numerable de Mod
±
(!).

Observación 4.12. Dado que Mod(!) ⇓ Mod
±
(!) son ambos segundo numerables, tenemos en

consecuencia que ambos son separables (Observación 3.16).

4.3. Conexidad y conexidad por trayectorias en Homeo(!, ω!)

En nuestra discusión que resta de este escrito tengamos en cuenta la siguiente

Definición 4.13. Una superficie es de tipo finito si su grupo fundamental es finitamente generado.

En caso contrario, se dice que la superficie es de tipo infinito.

El siguiente teorema tiene consecuencias muy importantes para lo que resta del escrito. Una de-

mostración general se puede encontrar en [38, Teorema 6.11].

Teorema 4.14. Para toda superficie !, la componente Homeo0(!; ϱ!) es un subgrupo cerrado de

Homeo(!; ϱ!).

Para superficies de tipo finito el resultado es más fuerte ([38, Teorema 6.11]), pues en este contexto

resulta que Homeo0(!; ϱ!) es abierto (y por lo tanto, es cerrado). En consecuencia, Homeo0(!; ϱ!)

coincide con la componente conexa que la contiene. Nótese que esto implica que si ! es una

superficie de tipo finito, entonces Mod(!) es discreto, esto será relevante el la Sección 4.5 en donde

damos una prueba alternativa de que Mod(!) es grupo polaco.
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Se puede dar una demostración elemental del Teorema 4.14 usando el llamado Método de Alexander

[9, Proposición 2.8] el cual merece unas palabras, pues puede resultar muy ilustrativo para los

interesados en estudiar grupos modulares de superficies (revisar también [37]). Este método describe

un criterio para decidir si un homeomorfismo es isotópico a id!. Una versión simplificada, aunque

débil, se puede interpretar de la siguiente manera: si f ↑ Homeo(!; ϱ!) fija la clase de isotopía de

toda curva cerrada simple de !, entonces f es isotópico a la identidad.

El método de Alexander tiene validez para todas las superficies, salvo una lista pequeña de ellas.

Para superficies de tipo infinito, está garantizada su validez (ver [13, 15]). Mientras tanto, si ! es

una superficie de tipo finito, la superficie debe satisfacer 3g ↔ 3 + n + b ⇒ 4 si ! es orientable, ó

g + n+ b ⇒ 5 si ! es no orientable, donde g denota el género, n el número de ponchaduras y b el

número de componentes frontera de la superficie (ver [13, Teorema 2.1]).

Una consecuencia directa de la siguiente proposición y de que Homeo0(!; ϱ!) es cerrado es que

Mod
±
(!) es Hausdor!. Recordar que por el Teorema 3.20, una consecuencia adicional será que el

Grupo Modular tiene una métrica invariante izquierda compatible con la topología.

Proposición 4.15. Sea G un grupo topológico y suponga que H es un subgrupo normal G. Entonces

H es cerrado en G si y sólo si G/H es Hausdor".

Demostración. =∝ Supongamos que H es cerrado. Para ver que G/H es Hausdor! basta probar

que la diagonal

#G/H = {([g], [h]) ↑ G/H ↘G/H : [g] = [h]}

es cerrado en G/H. Si p : G → G/H denota la proyección a las clases laterales, entonces

p
→1

{[e]} = H

es cerrado. Como p es función cociente, se tiene que {[e]} es cerrado. Luego, dado que G/H

es un grupo topológico, la función

ϖ : G/H ↘G/H ↔→ G/H

([g], [h]) ↗↔→ [g
→1

h]

es continua. Así, ϖ→1
{[e]} = #G/H es cerrado.

↙= Supongamos ahora que G/H es Hausdor!. En todo espacio que es Hausdor!, todo subespa-

cio unipuntual es cerrado. De esta manera, {[e]} es cerrado en G/H. Como p es continua,

inmediatamente obtenemos que

p
→1

{[e]} = H

es cerrado en G.

450



CUBO
27, 2 (2025)

Aspectos topológicos de las simetrías en superficies 451

4.4. El grupo modular es un grupo polaco

Hasta este momento hemos visto que Mod
±
(!) hereda de Homeo(!; ϱ!) las propiedades de ser

grupo topológico, Hausdor!, segundo numerable y separable. En gran medida estas propiedades

fueron heredadas directamente porque Mod
±
(!) es un cociente de Homeo(!; ϱ!) por un subgrupo.

Adicionalmente Mod
±
(!) también hereda de Homeo(!; ϱ!) la propiedad de ser grupo polaco.

Aunque contrario a las propiedades mencionadas, la demostración de ser polaco recae sobre el

Teorema de Sierpinski ([19, Teorema 8.19]), que es un resultado importante de la Teoría Descriptiva

de Conjuntos. Nos enfocaremos en explicar sólo un breve panorama para quien busque el camino

a la demostración.

En la sección 4.5 explicamos una manera alternativa a esta para probar que el Grupo Modular

Extendido (de una superficie orientable con frontera vacía) es un grupo polaco. Lo esencial de este

enfoque reside en ver a Mod
±
(!) como el grupo de automorfismos del grafo de curvas, un objeto

que ha sido piedra angular en el estudio de grupos modulares.

Teorema 4.16 (Sierpinski). Sean X un espacio polaco y Y un espacio separable y metrizable.

Suponga que existe una función f : X → Y continua, abierta y sobreyectiva. Entonces Y es un

espacio polaco.

Recordemos que la proyección p : Homeo(!; ϱ!) → Mod
±
(!) es continua, abierta y sobreyectiva,

donde Homeo(!; ϱ!) es un grupo polaco. Por otro lado, sabemos que Mod
±
(!) es separable, por

lo que basta demostrar que es metrizable.

Proposición 4.17. Para toda superficie !, el grupo modular extendido, Mod
±
(!), es metrizable.

Demostración. Recordemos que Homeo0(!; ϱ!) denota a la componente arcoconexa de

Homeo (!; ϱ!) que contiene a id!. Por el Teorema 4.14, la componente conexa de la identidad

de Homeo(!; ϱ!) es subgrupo cerrado de Homeo(!; ϱ!). Por la Proposición 4.15, el cociente

Mod
±
(!) = Homeo(!; ϱ!)/Homeo0(!; ϱ!) es Hausdor!. Por otro lado, Mod

±
(!) es segundo

numerable (Proposición 4.11). Por el Teorema 3.20, existe una métrica invariante izquierda com-

patible con la topología de Mod
±
(!).

Por el Teorema de Sierpinski (Teorema 4.16) y la Proposición 4.17 obtenemos que el Grupo Modular

Extendido de una superficie es un grupo polaco. Al ser Mod(!) un subgrupo cerrado de Mod
±
(!),

la propiedad de grupo polaco es heredada también a Mod(!). Esto justifica el resultado principal

de esta sección.

Teorema 4.18. Para toda superficie !, el Grupo Modular Extendido, Mod
±
(!), es un grupo

polaco. Así mismo, el Grupo Modular, Mod(!), es un grupo polaco.
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4.5. Prueba alternativa usando el grafo de curvas

Una de las herramientas más usadas para estudiar al Grupo Modular de una superficie ha sido

a través del paradigma del grafo de curvas (Definición 4.22). En esta sección final usaremos una

fuerte relación del Grupo Modular con el grafo de curvas (se puede ver al grupo modular extendido

de casi toda superficie como el grupo de automorfismos del grafo de curvas, Teorema 4.24), para

deducir de esto que el Grupo Modular es polaco. En nuestra argumentación sólo nos ocuparemos

de superficies orientables de tipo infinito, pues para superficies de tipo finito, el argumento es más

sencillo sin necesidad de utilizar el grafo de curvas (vea los comentarios al final de esta sección).

En lo que resta de este apartado supondremos que ! es una superficie orientable de tipo infinito

y con frontera vacía. El grafo de curvas será tal que sus vértices son representados por clases de

isotopía de curvas cerradas simples en la superficie. Recapitulamos estos conceptos brevemente.

Definición 4.19 (Curvas cerradas simples). Una curva cerrada simple en una superficie ! es un

encaje γ : S
1
↪↔→ !.

Así como podemos decir que dos homeomorfismos son isotópicos cuando podemos deformar uno en

el otro realizando una trayectoria continua de homeomorfismos, asimismo podemos deformar una

curva cerrada simple en otra por medio de una trayectoria continua de curvas cerradas simples,

conocida como isotopía de curvas cerradas simples. La principal diferencia con la isotopía de ho-

meomorfismos, es que esta toma en cuenta una transición de funciones, mientras que una isotopía

de curvas cerradas simples será una isotopía entre conjuntos: precisamente sobre sus imágenes. Lo

que se gana al identificar una curva con su imagen es que se ignora por completo su orientación.

Definición 4.20 (Isotopía de curvas cerradas simples). Dos curvas cerradas simples ▷,◁ : S
1
→ !

son isotópicas si existe una función continua H : S
1
↘ [0, 1] → ! tal que H0(S

1
) = ▷(S

1
), H1(S

1
) =

◁(S
1
) y para cada tiempo t ↑ [0, 1], la curva Ht : S

1
→ ! es una curva cerrada simple.

Para definir el grafo de curvas, tomaremos en cuenta sólo un tipo de curvas cerradas simples que

conocemos como curvas esenciales, y pueden ser definidas incluso si ϱ! ⇐= ⫅̸.

Definición 4.21 (Curva esencial). Una curva cerrada simple ▷ : S
1
→ ! se dice esencial si no es

homotópicamente trivial ni homotópica a la frontera de un disco menos un punto.

La relación de isotopía de curvas también es una relación de equivalencia. Dado que ignora el hecho

de que im(▷) = im(▷), donde ▷ es el camino recorrido en el sentido inverso, la isotopía de curvas

conforma clases de equivalencia de curvas esenciales isotópicas sin orientación. A dicho conjunto

de clases de curvas lo denotamos por C
(0)

(!), y conformará el conjunto de vértices del grafo de

curvas en !.
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Definición 4.22 (Grafo de curvas). El grafo de curvas de la superficie !, denotado por C(!), es

el grafo cuyo conjunto de vértices es C
(0)

(!), el conjunto de todas las clases de isotopía de curvas

cerradas simples esenciales y no orientadas. Dos vértices del grafo de curvas a, b ↑ C
(0)

(!) están

conectados por una arista si existen representantes ▷ ↑ a,◁ ↑ b con ▷ ⇑ ◁ = ⫅̸.

El grafo de curvas de ! es conexo, más aún, C(!) tiene diámetro 2. Esto se puede ver de la siguiente

manera: cómo ! es una superficie de tipo infinito, si ▷ y ◁ son dos curvas esenciales en ! arbitrarias

entonces existe una tercera curva γ que no intersecta ni a ▷ ni a ◁, todo esto incluso hasta isotopía.

En el contexto de superficies de tipo finito, el grafo de curvas tiene propiedades geométricas más

ricas, es Gromov hiperbólico y tiene diámetro infinito, las cuales lo hacen idóneo para estudiar la

geometría a larga escala del grupo modular y del espacio de Teichmüller asociado a la superficie.

En esta dirección, recomendamos las lecturas [26,34].

Topología de permutación en el grupo de automorfismos de C(!). Cualquier grafo tiene

asociado su grupo de automorfismos, en nuestro caso, recordamos que el grupo de automorfismos

del grafo de curvas C(!), denotado por Aut(C(!)), consiste en todas las biyecciones ε : C
(0)

(!) →

C
(0)

(!) que preservan la incidencia, es decir, dos vértices a y b están conectadas por una arista si,

y sólo si ε(a) y ε(b) están conectadas.

Ahora imponemos una topología sobre el grafo de curvas. Dado un subconjunto de vértices A ↓

C
(0)

(!), el estabilizador puntual de A se define como

U(A) := {ε ↑ Aut(C(!)) : ε([▷]) = [▷], ∋[▷] ↑ A} .

La colección de todas las traslaciones {ε·U(A)}, con A ↓ C
(0)

(!) finito y ε ↑ Aut(C(!)) constituye

una base para una topología de Aut(C
(0)

(!)), la cual se conoce como la topología permutación.

Más adelante demostraremos que el Grupo Modular Extendido, Mod
±
(!), es isomorfo, como grupo

topológico, a Aut(C(!)) (Teorema 4.24). De este hecho y junto al resultado siguiente se podrá

deducir fácilmente que el Grupo Modular Extendido de ! es un grupo Polaco.

Teorema 4.23. Para toda superficie !, el grupo de automorfismos del grafo de curvas de !,

Aut(C(!)), es un grupo polaco.

Esbozamos brevemente la demostración del Teorema 4.23. El grupo simétrico infinito, denotado por

Sym(N), está definido como el grupo de todas las biyecciones N → N con la operación composición

de funciones. Por otro lado, el espacio N
N de todas las funciones N → N con la topología producto,

donde a los naturales N se les asigna la topología discreta, es un espacio polaco. Claramente, el

grupo simétrico infinito es un subespacio de N
N. Resulta que con esta topología el grupo simétrico
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infinito Sym(N) es un grupo polaco; esto es consecuencia de ver a Sym(N) como subconjunto11
G↼

de N
N. Para consultar los detalles de todos estos hechos recomendamos al lector consultar la tesis

de maestría de L. Elliott [8]. Ahora, el conjunto de vértices del grafo de curvas es numerable, de

esta manera podemos ver al grupo Aut(C(!)) como subgrupo del grupo simétrico infinito Sym(N).

Un teorema de P. J. Cameron ([4, Theorem 5.8]) permite concluir que Aut(C(!)) es cerrado en el

grupo simétrico infinito y, por lo tanto, es un grupo polaco.

El grupo modular extendido como el grupo de automorfismos del grafo de curvas. El

grupo modular extendido Mod
±
(!) actúa de manera natural sobre el grafo de curvas C(!): en el

conjunto de vértices está acción se ve de la siguiente manera,

Mod
±
(!)↘ C

(0)
(!) ↔→ C

(0)
(!)

([f ], [▷]) ↗↔→ [f ′ ▷].

Esta acción está bien definida, pues todo homeomorfismo de ! transforma curvas esenciales en

curvas esenciales. Más todavía, la acción es por automorfismos, pues si denotamos por ε[f ] :

C
(0)

(!) → C
(0)

(!), [▷] ↗→ [f ′ ▷], a la función inducida por el homeomorfismo f ↑ Homeo(!; ϱ!)

entonces ε[f ] es un automorfismo con inversa ε
→1
[f ] = ε[f→1]. En resumen tenemos un homomorfismo

de grupos

ω : Mod
±
(!) ↔→ Aut(C(!))

[f ] ↗↔→ ε[f ].

En la teoría de grupos modulares, una de las conexiones más importantes y bellas, nos dice que

el homomorfismo de grupos ω es un isomorfismo de grupos topológicos. La importancia de esta

conexión queda manifiesta en la diversidad de resultados que de ésta se derivan, véase [17].

Teorema 4.24. Sea ! una superficie orientable de tipo infinito con frontera vacía. Entonces

ω : Mod
±
(!) → Aut(C(!)) es un isomorfismo de grupos topológicos.

Demostración. El Método de Alexander para superficies de tipo infinito [15] verifica que el mor-

fismo ω es inyectivo. La prueba de la sobreyectividad de ω que esbozamos a continuación es una

adaptación del argumento en el artículo [14]; la sobreyectividad de ω fue establecida de forma in-

dependiente en [3]. Suponga que ε : C(!) → C(!) es un isomorfismo simplicial del grafo de curvas

de !. Sea S1 △ S2 △ · · · una saturación principal12 de ! por subsuperficies de tipo finito y denote

por B al conjunto de todas las curvas frontera de las superficies Si. El primer paso clave en la
11Un subconjunto de un espacio topológico X es Gω si es igual a la intersección numerable de abiertos en X.
12Dada una superficie de tipo infinito !, se dice que una sucesión {Si}i↓N de subsuperficies de ! de tipo finito

es una saturación principal de ! si ! =
⋃

i↓N Si y para cada i ↗ N se satisfacen las siguientes condiciones: (i) el
interior de Si está contenido en el interior de Si+1, (ii) ϖSi ⊋ ϖ! es una unión disjunta finita de curvas esenciales
separadoras en ! y, (iii) el interior de cada componente conexa de Si+1⊋Si tiene suficiente complejidad topológica,
para detalles véase [14, Definición 2.8].
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prueba es demostrar que existe un homeomorfismo f : ! → ! tal que ε coincide con ω([f ]) en

B, es decir, ε([◁]) = ε[f ]([◁]) para todo ◁ ↑ B. La herramienta principal para establecer esto es

el uso del grafo de adyacencia ([14, Definición 2.7]) asociada a una descomposición en pantalones

de S, véase también [14, Proposción 3.1]. El siguiente paso es demostrar que la restricción de ε

a C(Si) define una función simplicial inyectiva εi : C(Si) → C(f(Si)). Aplicando el trabajo de K.

Shackleton sobre la rigidez combinatoria del grafo de curvas de superficies de tipo finito se obtie-

nen homeomorfismos gi : Si → f(Si) que coinciden con εi. La prueba finaliza mostrando que esta

colección de homeomorfismos induce un homeomorfismo global h : ! → ! tal que ω([h]) coincide

con ε en todo C(!).

Hasta este punto, el morfismo de grupos ω es un isomorfismo de grupos. Podemos observar que ω

es continua; en efecto, si A := {[▷1], . . . , [▷n]} es un conjunto finito de vértices del grafo de curvas,

entonces ω
→1

(U(A)) consiste de todas las clases de isotopía de homeomorfismos [f ] ↑ Mod
±
(!)

tales que f ′▷i es isotópica a ▷i para todo i = 1, 2, . . . , n. Consideremos, para cada i = 1, 2, . . . , n,

una vecindad regular de ▷i, N(▷i) (la cual es homeomorfa a un anillo encajada en !), y definamos

el abierto [▷i, N(▷i)] := {[g] ↑ Mod
±
(!) | g(▷i) ↓ N(▷i)}. La continuidad de ω se deduce de

observar que


n

i=1[▷i, N(▷i)] forma una vecindad de [Id!] que coincide con ω
→1

(U(A)).

Para ver la continuidad de ω
→1, tomemos ahora [K,U ] = {[g] ↑ Mod

±
(!) | g(K) ↓ U} vecindad

de [Id!] con K ↓ ! compacto y U ↓ ! abierto. Sin pérdida de generalidad se puede asumir

que K ↓ U . El Método de Alexander ([9, Proposición 2.8]) para superficies de tipo finito permite

asegurar la existencia de una colección finita {▷1, . . . ,▷n} de curvas esenciales contenidas en K tales

que [Id!] ↑


n

i=1[▷i, N(▷i)] ↓ [K,U ] donde N(▷i) es una vecindad regular de ▷i completamente

contenida en K. Haciendo A igual al conjunto de clases de isotopía de las curvas ▷i podemos ver

que U(A) ↓ (ω
→1

)
→1

([K,U ]). De esto se puede concluir que la inversa de ω, ω→1, es continua.

Superficies de tipo finito. Convencernos de que el Grupo Modular Extendido es un grupo

polaco es más directo en el caso de superficies de tipo finito. Si ! es una superficie orientable

de tipo finito con frontera vacía, podemos usar nuevamente el Método de Alexander para ob-

tener que Mod
±
(!) es discreto13. La razón es que la componente arcoconexa de la identidad,

Homeo0(!; ϱ!), es abierto en el grupo de homeomorfismos. En efecto, por la Proposición 2.8 en [9]

existe una colección finita {▷1, . . . ,▷n} de curvas esenciales en ! tales que Id! ↑


n

i=1(▷i, N(▷i)) ↓

Homeo0(!; ϱ!) donde N(▷i) es una vecindad regular de ▷i. Ahora, el hecho de que Mod
±
(!) sea

discreto implica que éste sea numerable pues hemos visto que, en general, Mod
±
(!) es segundo

numerable. Esto a su vez implica que Mod
±
(!) es localmente compacto. Por [7, Observación 2.B.1]

se concluye que el grupo Modular Extendido es un grupo polaco.

13El Método de Alexander es aplicable para todas las superficies de tipo finito, excepto una cantidad finita de
ellas. Para ver que el grupo modular extendido es discreto en los casos restantes, recomendamos al lector consultar
[9].
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Cabe destacar que la conexión del grupo modular extendido con el grafo de curvas, es decir, el

Teorema 4.24, es cierto para casi todas las superficies de tipo finito. Al ser un resultado clásico en

la teoría de grupos modulares, este teorema lleva por nombre “Teorema de Ivanov”([16,21,23]).

Superficies no orientables. El paradigma de ver al grupo modular extendido como el grupo de

automorfismos del grafo de curvas también es válido para superficies no orientables; recomendamos

consultar [13] y las referencias contenidas allí. Una vez establecido este resultado, la demostración

de que el grupo modular extendido es grupo polaco es exactamente igual a la que hemos descrito

aquí para superficies orientables.
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RESUMEN

Los esquemas de subdivisión son una herramienta muy uti-

lizada en gráficos por computadora y modelado geométrico,

permitiendo la generación de curvas y superficies suaves a

partir de datos discretos. Aunque los esquemas de subdi-

visión lineales son muy utilizados, los esquemas no lineales

ofrecen mayor flexibilidad, permitiendo el manejo de datos

con irregularidades y facilitando la preservación de formas.

Además, estos esquemas son útiles para abordar subdivisión

en variedades, corregir las oscilaciones de Gibbs alrededor de

singularidades y en general intentar abordar problemas don-

de los enfoques lineales no aportan resultados satisfactorios.

Este artículo revisa 25 años de contribuciones relacionadas

con la construcción, el análisis y el uso, en diversas aplica-

ciones, de esquemas de subdivisión no lineales.
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ABSTRACT

Subdivision schemes are a very useful tool in computer

graphics and geometric modelling, allowing for the genera-

tion of curves and smooth surfaces starting from discrete

data. Even though linear subdivision schemes are used pro-

fusely, non-linear schemes o!er more flexibility, allowing for

the handling of data with irregularities and making the sha-

pe preservation easier. In addition, these schemes are useful

to deal with subdivision on manifolds, to correct Gibbs osci-

llations around singularities, and, in general, to try to tackle

problems where linear approaches do not provide satisfac-

tory results. This article reviews 25 years of contributions

related to the construction, analysis, and use, in di!erent

applications, of non-linear subdivision schemes.
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1. Introducción

Los esquemas de subdivisión son procesos iterativos que permiten construir curvas o superficies

suaves a partir de un conjunto discreto de puntos. En aplicaciones gráficas por computadora y mo-

delado geométrico, estos esquemas se han convertido en una herramienta esencial. Los esquemas de

subdivisión tradicionales son lineales, lo que implica que los nuevos puntos generados son combina-

ciones lineales de puntos vecinos, facilitando el análisis matemático mediante teorías clásicas como

las matriciales o la teoría de Fourier. Sin embargo, existen muchas aplicaciones que exigen mayor

flexibilidad para considerar datos más complejos e irregulares, lo que ha motivado el desarrollo de

esquemas de subdivisión no lineales. A diferencia de los esquemas lineales, los esquemas no lineales

pueden: adaptarse a la geometría local de los datos, ajustarse mejor a situaciones donde los datos

contienen ruido, cambios pronunciados o incluso irregularidades, permiten trabajar directamente

en variedades, preservan propiedades geométricas intrínsecas y pueden adaptarse la presencia de

discontinuidades no generando oscilaciones tipo Gibbs, [31], 2002.

Estos esquemas se enmarcan dentro de las áreas de análisis numérico, teoría de la aproximación y

modelado geométrico computacional, con conexiones estrechas a las ondículas y a la representación

multirresolución.

Más concretamente, los esquemas de subdivisión son procesos iterativos diseñados para generar

curvas o superficies suaves a partir de un conjunto discreto de puntos de control p(0). En cada

paso, una regla de refinamiento S reemplaza los puntos {p(k)} en el nivel k por una secuencia más

densa {p(k+1)} en el nivel k + 1, es decir:

p(k+1) = S(p(k)).

En los esquemas lineales, las nuevas posiciones se obtienen mediante un operador lineal S. Sin

embargo, estos métodos presentan limitaciones cuando los datos contienen irregularidades, rui-

do o discontinuidades, ya que pueden introducir oscilaciones no deseadas o distorsionar formas

geométricas básicas (círculos, esferas).

Por el contrario, los esquemas de subdivisión no lineales introducen reglas de refinamiento adap-

tativas que dependen de la geometría local de los datos. De este modo, permiten:

Trabajar directamente sobre variedades o espacios no euclidianos.

Preservar formas geométricas intrínsecas (círculos, esferas, cilindros).

Reducir efectos no deseados como las oscilaciones de Gibbs en presencia de discontinuidades.

Mejorar la flexibilidad en aplicaciones donde los enfoques lineales no son satisfactorios.
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Estos esquemas tienen relevancia práctica en áreas como el modelado geométrico, la animación

por computadora, el diseño asistido por ordenador (CAD), el procesado de imágenes y el análisis

numérico de ecuaciones en derivadas parciales.

Figura 1: A partir de los puntos de control se itera un algoritmo de subdivisión no lineal en la
izquierda y uno lineal en la derecha. Observamos como el algoritmo lineal produce oscilaciones tipo
Gibbs debajo de la cabeza.

Figura 2: En esta figura se muestran las reconstrucciones de unos datos discontinuos con algoritmos
de subdivisión lineales (izquierda) y no lineales (derecha). Observamos como los algoritmos lineales
producen oscilaciones tipo Gibbs en presencia de discontinuidades.
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Esta revisión la hemos estructurado en cinco secciones monotemáticas y una última de conclu-

siones. La segunda sección aborda algunos trabajos relacionados con esquemas de subdivisión en

variedades. La preservación de formas geométricas será estudiada en la sección tercera. La si-

guiente sección está dedicada a la adaptación de los esquemas de subdivisión a la presencia de

discontinuidades. La sección cinco aborda los esquemas de multirresolución no lineales que son

una generalización de las ondículas (wavelets) y que son altemente usadas en procesamiento de

imágenes. Finalmente, en la sexta sección se repasan algunas de las nuevas teorías desarrolladas

para el análisis de la convergencia, la regularidad y la estabilidad de los esquemas de subdivisión

no lineales en distintos contextos.

2. Esquemas de subdivisión para variedades

Los esquemas de subdivisión lineales tradicionales están formulados para datos que residen en

espacios euclidianos. Sin embargo, muchas aplicaciones requieren trabajar con datos que residen

en variedades. En este contexto, los esquemas de subdivisión no lineales son particularmente útiles

ya que permiten definir las reglas de subdivisión directamente sobre la geometría de la variedad,

respetando las propiedades intrínsecas de la superficie o espacio subyacente. Esto es crucial, por

ejemplo, en el modelado de superficies en geometrías no planas, en la interpolación de datos en

espacios curvados, en gráficos por computadora cuando se modelan superficies curvas o en la

reconstrucción de formas tridimensionales complejas, [54], 1998.

El principal desafío en estos esquemas radica en definir reglas de interpolación y refinamiento

que preserven las propiedades topológicas y métricas de la variedad. Técnicas como el uso de

proyecciones locales, interpolación geodésica o métodos basados en paralelismo de transporte han

sido exploradas para garantizar que los nuevos puntos generados por el esquema sigan respetando

la estructura geométrica subyacente.

A continuación, revisaremos algunas aportaciones interesantes:

Ajuste de Clotoides y Subdivisión Hermítica Geométrica: Ulrich Reif y Andreas Weinmann

[60], 2021.

Este artículo trata sobre la subdivisión hermítica geométrica para curvas planas, donde se

refina iterativamente un polígono inicial usando información adicional de tangentes o vectores

normales en los vértices. El componente clave para los esquemas de subdivisión propuestos

está basado en el promedio de clotoides. Se propone una nueva estrategia para aproximar

clotoides interpoladoras hermíticas, la cual se utiliza para definir los análogos geométricos

hermíticos de los conocidos esquemas de Lane-Riesenfeld y el esquema de cuatro puntos.

Concretamente, el objetivo principal es generar curvas planas mediante pares de puntos y
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vectores tangentes o normales asociados. En lugar de promediar puntos y vectores tangentes

de manera lineal, como en los esquemas tradicionales, se propone un promedio basado en

clotoides. Las clotoides son curvas con curvatura lineal, y su uso permite obtener una mejor

representación geométrica de las formas naturales de las curvas.

Se introduce el problema de interpolación Hermítica entre dos puntos p0 y p1, con ángulos

tangentes ω0 y ω1. El esquema propuesto emplea clotoides, cuyas ecuaciones dependen de la

curvatura ε de la curva, definida como ε = ω→

v , donde v = |p→| es la velocidad de la curva y

ω
→
la derivada del ángulo tangente.

Para aproximar la interpolación hermítica con clotoides, se utiliza la función de ángulo tan-

gente ϑ(t), que puede escribirse como:

ϑ(t) = ϑ0ϖ0(t) + ϑ1/2ϖ1/2(t) + ϑ1ϖ1(t)

donde las funciones de Lagrange ϖ0(t), ϖ1/2(t) y ϖ1(t) son polinomios cuadráticos.

La fórmula aproximada para resolver este problema se describe mediante una función F ,

que aproxima el ángulo intermedio ϑ1/2 y la velocidad v. Esta aproximación es eficiente en

términos de computación y produce un error pequeño en la interpolación.

Se presentan ejemplos numéricos que ilustran la eficiencia de los esquemas de subdivisión

propuestos. En particular, los esquemas basados en clotoides generan curvas suaves que pre-

servan las características geométricas deseadas, como la continuidad de la tangente y una

distribución de curvatura más uniforme en comparación con otros métodos basados en círcu-

los.

Hermite multi-ondículas para datos en variedades: Mariantonia Cotronei, Caroline Moosmü-

ller, Tomas Sauer, Nada Sissouno, [22], 2023.

Este artículo presenta una construcción de multiwavelets interpolatorios de Hermite para

funciones que toman valores en geometrías no lineales, como variedades Riemannianas o

grupos de Lie. Los wavelets adaptados a datos con valores en variedades tienen aplicaciones

importantes en la compresión y el procesamiento de señales.

La clave es la conexión entre esquemas de subdivisión y wavelets, usando un enfoque de

predicción-corrección basado en esquemas de subdivisión de Hermite. Se demuestra que los

coeficientes de los wavelets decaen de manera similar al caso lineal.

Un esquema de subdivisión de Hermite lineal se define por:

p(n+1) = SA[n]p
(n),

donde p(n) es una secuencia de datos y SA[n] es un operador asociado con la máscara A[n]. Este
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esquema reproduce funciones como polinomios o exponenciales, asegurando la convergencia

de las secuencias generadas.

El sistema de multiwavelets se construye usando la transformación:

SA[n]Dnp
(n) = Dn+1p

(n+1),

donde Dn es una matriz de escalado. El objetivo es preservar las propiedades de los wavelets

lineales en el contexto de datos sobre variedades.

En el esquema de predicción-corrección, la reconstrucción se basa en:

cn+1,2i = SA[n]cn,i, dn+1,2i+1 = cn+1,2i+1 → SA[n]cn,i.

Este esquema garantiza que la corrección mediante dn anule los elementos no deseados en

los datos originales.

Para extender estos conceptos a datos con valores en variedades M , se utilizan el transporte

paralelo y el mapa exponencial:

pj = expmj

(
∑

k↑Z

aj↓2k exp
↓1
mj

(pk)

)
,

donde exp es el mapa exponencial, y el transporte paralelo P p
q asegura que los cálculos se

realicen en el marco adecuado de la variedad.

El mapa exponencial en un punto m ↑ M :

expm : TmM ↓ M

lleva un vector tangente v ↑ TmM al punto alcanzado al caminar en M siguiendo la geodésica

con velocidad inicial v.

El decaimiento de los coeficientes de wavelets en el caso de datos sobre variedades sigue una

propiedad similar al caso lineal:

↔d[n]↔↔ ↗ C2↓2n.

Esto asegura que los wavelets pueden representar eficientemente los datos manteniendo una

tasa de compresión adecuada.

Este trabajo extiende los wavelets tipo Hermite a datos con valores en variedades, mante-

niendo propiedades fundamentales como el decaimiento de los coeficientes. Esta técnica tiene

aplicaciones en el procesamiento de señales geométricas y la compresión de datos.
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Esquemas de subdivisión para datos valorados en variedades con simetría temporal: Du-

champ, Xie y Yu, [27], 2016.

Este trabajo investiga la suavidad de esquemas de subdivisión no lineales para datos valorados

en variedades, conocidos como esquemas de subdivisión con un único punto base. Estos

esquemas surgen en la construcción de transformaciones tipo wavelet para datos definidos

sobre una variedad M , como las matrices simétricas positivas. Se estudian las condiciones

de suavidad Ck y cómo los esquemas de subdivisión garantizan simetría temporal pero no

espacial. Se estudian las condiciones de suavidad Ck y cómo los esquemas de subdivisión

garantizan simetría temporal pero no espacial.

Se define un esquema de subdivisión sobre una variedad M como:

(Sx)2h+ε = expxh

(
∑

ϑ

a2ϑ+ε logxh
(xh↓ϑ)

)
, ϱ = 0, 1, h ↑ Z,

donde expxh
es el mapa exponencial en el punto xh, logxh

es su inverso local, y aϑ es la

máscara de un esquema de subdivisión lineal subyacente Slin.

Se explora la equivalencia de suavidad entre el esquema no lineal S y su versión lineal Slin.

Se sabe que la equivalencia C3 se logra si un cierto tensor asociado al mapa de retracción f ,

llamado Pf , se anula:

Pf (u) = F0,2 (u, F0,2(u, u)) +
1

2
F1,2(u, u, u)→

1

2
F0,3(u, u, u),

donde Fω,ϖ representa derivadas parciales del mapa f y Pf = 0 garantiza la equivalencia C3.

El trabajo analiza cómo el mapa de retracción f define una conexión afín sin torsión en M ,

con coeficientes de conexión dados por:

!k
ij = →ς2fk(x, 0)

ςXiςXj
,

y cómo la simetría temporal (invariancia ante t ↓ →t) influye en la equivalencia C4. Si el

esquema lineal Slin tiene simetría temporal dual, esto implica que Pf = 0 y se mantiene la

suavidad C4 sin restricciones adicionales sobre el comportamiento de cuarto orden del mapa

de retracción f .

El artículo muestra que los esquemas de subdivisión con un único punto base pueden alcan-

zar una suavidad hasta C4 bajo ciertas condiciones. Sin embargo, para grados mayores de

suavidad, la curvatura juega un rol esencial, limitando la aplicabilidad de estos esquemas a

ciertos tipos de variedades con curvatura cero.

En conjunto, los trabajos de Reif y Weinmann [60], Cotronei et al. [22], y Duchamp et al.

[27] muestran la evolución de los esquemas de subdivisión desde curvas planas basadas en
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clotoides, pasando por extensiones a variedades Riemannianas, hasta alcanzar análisis de

suavidad en contextos más generales. Una diferencia clave es que mientras los dos primeros

se enfocan en la construcción geométrica, el tercero pone énfasis en condiciones de regularidad

Ck. Así, puede verse una progresión natural desde lo constructivo hacia lo analítico.

Finalizamos, con cuatro aportaciones independientes de gran interés y seguimiento:

Esquemas de subdivisión con dilatación general en el contexto geométrico y no lineal: Andreas

Weinmann, [65], 2012.

Este artículo investiga esquemas de subdivisión con dilatación general en entornos geomé-

tricos y no lineales. Los esquemas de subdivisión tradicionales suelen utilizar un factor de

dilatación fijo, pero el autor amplía este enfoque permitiendo dilataciones generales, lo que

resulta en un mayor control sobre el refinamiento. El trabajo analiza la convergencia y la

regularidad de estos esquemas en espacios métricos y geométricos, haciendo hincapié en su

aplicabilidad en la interpolación de datos y en el diseño de curvas y superficies no lineales.

Sobre el esquema de subdivisión log-exp de Donoho: elección de retracción y simetría tem-

poral: Esfandiar Nava-Yazdani y Thomas P. Y. Yu, [57], 2006.

Este artículo examina el esquema de subdivisión log-exp de Donoho, enfocado en la elección

de la retracción y la simetría temporal. El esquema log-exp es un método no lineal que

utiliza funciones logarítmicas y exponenciales para suavizar y refinar curvas y superficies.

Los autores investigan diferentes opciones de retracción para optimizar el comportamiento

del esquema y analizan su simetría temporal, lo que es clave para garantizar la estabilidad

en aplicaciones de procesamiento de señales y modelado geométrico.

Ondículas interpolatorias en variedades: Philipp Grohs y Johannes Wallner, [42], 2009.

Este artículo introduce una nueva clase de wavelets interpolatorios diseñados para trabajar

con datos valorados en variedades. Los wavelets tradicionales son herramientas poderosas

para representar funciones y señales en el dominio euclidiano, pero los autores extienden este

concepto al caso de datos ubicados en espacios más generales, como las variedades. El artículo

presenta un análisis teórico de la construcción y aplicación de estos wavelets, con especial

énfasis en la interpolación de datos geométricos, con aplicaciones potenciales en gráficos por

computadora y procesamiento de datos científicos.

Análogos logarítmico-exponenciales de esquemas de subdivisión univariados en grupos de Lie

y sus propiedades de suavidad: Philipp Grohs y Johannes Wallner, [41], 2007.

Este artículo explora los análogos log-exponenciales de los esquemas de subdivisión univa-

riados dentro del contexto de los grupos de Lie. Los autores investigan cómo los esquemas

de subdivisión pueden adaptarse para operar en grupos de Lie, manteniendo propiedades

de suavidad similares a los esquemas tradicionales. Este enfoque es útil en áreas donde las
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simetrías continuas, descritas por los grupos de Lie, juegan un papel importante, como en

física teórica y simulaciones geométricas.

Tabla 1: Comparación de esquemas de subdivisión en variedades.

Autores Tipo de variedad Aporte distintivo
Reif y Weinmann Planas Preservación de tangentes y curvatura
Cotronei et al. Riemannianas, Lie Extensión de wavelets a datos geométricos
Duchamp et al. Positivas simétricas Equivalencia con esquemas lineales

Weinmann Geométricas generales Control de refinamiento en espacios métricos

3. Preservación de formas geométricas

En este contexto, “preservación de formas geométricas” significa que, bajo la iteración del esquema

de subdivisión, ciertas figuras básicas permanecen invariantes. Es decir, si los puntos de control

iniciales pertenecen a una de estas formas, entonces la curva o superficie límite también lo hará,

incluso tras infinitas iteraciones. Una de las ventajas más importantes de los esquemas de subdivi-

sión no lineales es su capacidad para preservar formas geométricas particulares, como círculos en

2D o esferas en 3D, entre otras formas interesantes. Esto es especialmente relevante en el contexto

de modelado geométrico y gráficos por computadora, donde la precisión en la representación de

estas formas es crítica. En los esquemas lineales, las formas geométricas suaves como los círculos y

esferas a menudo se distorsionan a medida que se refinan los puntos debido a la naturaleza rígida

y global de las reglas de subdivisión. Por ejemplo, en un esquema lineal, un círculo podría volverse

ligeramente ovalado o distorsionado debido a errores acumulativos.

Los esquemas no lineales abordan este problema ajustando las reglas de subdivisión localmente, de

modo que los puntos generados respeten las propiedades geométricas de las formas originales. En el

caso de un círculo, por ejemplo, los esquemas no lineales pueden mantener la curvatura constante

a lo largo de toda la forma, lo que asegura que el refinamiento sucesivo no altere su estructura

global [50], 1996.

Para esferas en 3D, se pueden aplicar técnicas similares, garantizando que las nuevas subdivisio-

nes mantengan las propiedades de simetría y curvatura de la esfera original. Algunos esquemas

no lineales utilizan operadores geométricos específicos que se ajustan al radio local de la esfera,

permitiendo que los nuevos puntos permanezcan sobre la superficie esférica en lugar de desviarse

hacia fuera o hacia dentro. Esto es fundamental en aplicaciones como la animación de personajes,

simulaciones físicas y diseño de objetos tridimensionales, donde la precisión en la representación

de esferas y otras formas geométricas básicas es esencial [23], 1997.
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A continuación, revisaremos algunas aportaciones en este contexto:

Esquema de Subdivisión Interpolatoria Hermítica basado en Splines de Bernstein Bézier:

Mahendra Kumar Jena, [49], 2021.

Este artículo introduce un nuevo esquema de subdivisión interpolatoria Hermítica no lineal

para la interpolación de curvas, construido a partir de un spline racional de Bernstein Bézier.

El esquema permite interpolar tanto los valores de la función como sus derivadas. Se presenta

un análisis de convergencia, reproducción de polinomios y propiedades de preservación de la

forma. Se demuestra que las funciones límite generadas por el esquema son globalmente C1

y que el esquema también reproduce polinomios cuadráticos, preservando la monotonía y la

convexidad.

El esquema Hermítico es una técnica recursiva para calcular una función ϖ(x) y sus derivadas.

Se parte de una función inicial f0 : Z ↓ Rd+1, donde el primer componente corresponde a

los valores de ϖ, el segundo a su derivada ϖ→, y así sucesivamente. La regla de subdivisión

tiene la forma:

fn+1(i) =
∑

j↑Z
A(i→ 2j)fn(j)

donde A(i) es una matriz de máscara y fn(i) es la secuencia refinada en el paso n.

El esquema se construye a partir de los polinomios de Bernstein Bézier racionales de grado

2. Para un intervalo [a, b], las coordenadas baricéntricas de un punto x se definen como

b0(x) =
b↓x
b↓a y b1(x) =

x↓a
b↓a . Los polinomios de Bernstein Bézier son:

B0(x) = (b0(x))
2, B1(x) = 2b0(x)b1(x), B2(x) = (b1(x))

2

Con esto, los polinomios de Bernstein Bézier racionales se escriben como:

R0(x) =
w0B0(x)∑
wiBi(x)

, R1(x) =
w1B1(x)∑
wiBi(x)

, R2(x) =
w2B2(x)∑
wiBi(x)

donde w0, w1, w2 son los pesos.

El esquema es C1-convergente y reproduce polinomios cuadráticos cuando se eligen adecua-

damente los pesos w0 y w2. Para la convergencia, se utiliza una técnica basada en diferencias

divididas, que permite garantizar que las funciones límite sean suaves y continuas en todo el

dominio.

Se demuestra que el esquema preserva la monotonía y convexidad de los datos iniciales. Si los

datos de entrada son monótonos crecientes o convexos, el esquema garantizará que la curva

interpolada mantenga estas propiedades a lo largo de todas las iteraciones.

Este nuevo esquema de subdivisión interpolatoria Hermítica basado en splines de Bernstein

Bézier es adecuado para la generación de curvas suaves que reproducen polinomios de grado 2,
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preservan la forma y garantizan la convergencia C1. Su aplicación puede ser útil en problemas

donde se requiera una interpolación precisa que mantenga la geometría de los datos originales.

Un esquema de subdivisión generalizado no lineal de grado arbitrario con un parámetro de

tensión: Zeze Zhang, Hongchan Zheng, Jie Zhou y Lulu Pan, [73], 2020.

Este artículo presenta un esquema de subdivisión no lineal de grado arbitrario con un pa-

rámetro de tensión. Este esquema refina pares punto-normal en 2D, y se construye sobre el

esquema de subdivisión lineal generalizada con un parámetro de tensión, reemplazando el

promedio aritmético ponderado en el esquema lineal con un promedio circular:

Dado dos pares punto-normal P0 = (p0, n0) y P1 = (p1, n1), el promedio circular se define

como el par Pt = (pt, nt), donde:

pt ↑ arco(p0, p1), nt =
n0 ↘ n1

↔n0 ↘ n1↔
,

siendo ↘ el promedio geodésico de las normales unitarias. De esta forma, pt se mantiene

sobre el círculo determinado por p0 y p1.

Se demuestra que este esquema alcanza suavidad C1 con una elección adecuada del parámetro

de tensión cuando el grado es m ≃ 3.

El esquema de subdivisión generalizada lineal con un parámetro de tensión para un grado

m ≃ 2 se define por la siguiente iteración:

p(m)
i =

1

2

(
p(m↓1)
i + p(m↓1)

i+1

)

donde pi son los puntos del polígono de control inicial y u es el parámetro de tensión. Este

esquema es una generalización del algoritmo de Lane Riesenfeld.

El promedio circular se aplica a pares punto-normal. Dados dos pares punto-normal P0 =

(p0, n0) y P1 = (p1, n1), con p0, p1 puntos y n0, n1 vectores normales unitarios, el promedio

circular produce un nuevo par Pt = (pt, nt), donde pt está sobre el arco entre p0 y p1, y nt

es el promedio geodésico de los vectores normales.

El esquema no lineal se construye reemplazando el promedio aritmético en el esquema lineal

por el circular. La regla de refinamiento es:

P (j)
2i+1 = P (j)

i ⇐ P (j)
i+1

donde ⇐ denota el promedio circular. Este esquema permite reconstruir curvas suaves y

controlar la forma de la curva límite a través del parámetro de tensión u.

La convergencia del esquema se asegura bajo ciertas condiciones. Definimos la diferencia
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entre puntos consecutivos como:

ej = sup
i

|pj,i+1 → pj,i|

y mostramos que la secuencia ej es contractiva, es decir:

ej+1 ↗ φej con 0 < φ < 1

lo que implica la convergencia del esquema para cualquier conjunto de datos de entrada.

El esquema alcanza suavidad C1 para m ≃ 3 si el parámetro de tensión u satisface:

⇒
2→ 1 < u <

⇒
2 + 1

Esto asegura que las curvas generadas sean suaves sin perder la capacidad de reconstruir

curvas como el círculo.

Este esquema es útil para controlar la suavidad y la forma de las curvas límite, alcanzando

suavidad C1 con la elección adecuada de parámetros. Futuras investigaciones se centrarán

en demostrar órdenes de suavidad superiores.

Esquemas de subdivisión no lineales para funciones hiperbólicas y trigonométricas: Donat y

López Ureña, [25], 2017.

Este trabajo introduce una nueva familia de esquemas de subdivisión interpolatorios no

lineales, con capacidad para reproducir funciones hiperbólicas y trigonométricas, así como

polinomios de hasta segundo grado. Los esquemas tradicionales de subdivisión lineales y no

estacionarios pueden lograr esta reproducción, pero requieren la determinación práctica de

parámetros dependientes del nivel, lo cual complica la implementación en aplicaciones de

modelado geométrico.

Este trabajo se enfoca en esquemas binarios estacionarios donde la regla de refinamiento está

dada por:

(Sf)2i+j = ϖj(fi↓q, . . . , fi+q), j = 0, 1, i ↑ Z.

Si las funciones ϖj son lineales, el esquema se puede representar como:

ϖj(fi↓q, . . . , fi+q) =
q∑

l=↓q

ajfi+l,

donde (aj)j↑Z es la máscara del operador lineal S.

Uno de los principales resultados es que los esquemas no lineales estacionarios propuestos
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pueden reproducir espacios de polinomios exponenciales de la forma:

W0,ϱ = span{1, exp(↼t), exp(→↼t)}, ↼ ↑ R.

Por ejemplo, el esquema puede generar con precisión formas cónicas (círculos, elipses) me-

diante la interpolación de funciones trigonométricas. La reproducción se garantiza cuando

los datos iniciales pertenecen a este espacio de funciones.

El trabajo también analiza las condiciones para obtener funciones límite con derivadas con-

tinuas, lo que se relaciona con la preservación de la monotonía de los datos iniciales.

Los esquemas de subdivisión no lineales propuestos ofrecen una herramienta eficiente para

la reproducción exacta de secciones cónicas y formas hiperbólicas sin necesidad de un pre-

procesamiento de los datos. Estos esquemas son una extensión de los métodos tradicionales,

permitiendo la generación de formas complejas con alta precisión.

Curvas y superficies de subdivisión punto-normal: X. Yang, [71], 2006.

Este trabajo propone esquemas de subdivisión no lineales punto-normal (PN) para el mode-

lado de curvas y superficies. Los esquemas refinan tanto las posiciones de los vértices como

las normales en los puntos de control, lo que permite reproducir primitivas geométricas como

círculos, cilindros y esferas.

El esquema de subdivisión PN refina los vértices y normales de la siguiente forma:

qk+1
i =

∑

j

ai↓2jp
k
j , nk+1

i =

∑
j ai↓2jnk

j∥∥∥
∑

j ai↓2jnk
j

∥∥∥
, pk+1

i = qk+1
i +

∑

j

ai↓2jh
k
ijn

k+1
i ,

donde hk
ij es la altura en la dirección de la normal nk+1

i y qk+1
i es el vértice subdividido

linealmente.

Los esquemas de subdivisión PN preservan ciertas propiedades geométricas, como:

• Invarianza geométrica: Las curvas y superficies PN son invariantes bajo traslaciones,

escalas y rotaciones del sistema de coordenadas.

• Preservación de círculos y esferas: Si los puntos de control y las normales iniciales están

sobre un círculo o esfera, los puntos subdivididos también lo estarán.

Se demuestra que los esquemas de subdivisión PN tienen la misma convergencia y órdenes

de suavidad que los esquemas lineales subyacentes.

Los esquemas de subdivisión PN propuestos generalizan los esquemas de subdivisión lineales

tradicionales al permitir el control mediante puntos y normales. Estos esquemas son eficientes

para modelar superficies suaves con alta precisión, preservando formas geométricas simples

como círculos y esferas, y manteniendo el mismo grado de suavidad que los esquemas lineales.
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Figura 3: Superficies generadas con algoritmos de subdivisión punto-normal introducidos por Yang,
[71].

Un nuevo esquema de subdivisión de corte de esquinas invariante circular de cuatro puntos

para diseño de curvas: Jian-ao Lian, [52], 2012.

Este artículo introduce un nuevo esquema de subdivisión de corte de esquinas de cuatro

puntos, invariante bajo transformaciones circulares, para el diseño de curvas. El método

presentado permite generar curvas suaves y estéticamente agradables a partir de un conjunto

inicial de puntos de control, manteniendo la propiedad de invariancia circular, lo que lo hace

especialmente útil en aplicaciones gráficas. El autor proporciona un análisis detallado de la

convergencia y suavidad del esquema, destacando sus ventajas en comparación con otros

métodos de subdivisión existentes.

Subdivisión con control exacto de bordes y geometría sin variedad: Fehmi Cirak y Quan

Long, [18], 2011.

Este artículo propone un enfoque novedoso para el control exacto de bordes y geometrías sin

variedad utilizando esquemas de subdivisión. Las capas de subdivisión permiten la creación

de superficies suaves que se ajustan con precisión a los bordes definidos por el usuario.

El enfoque también aborda geometrías complejas no manifold, que son estructuras que no

pueden ser descritas completamente por métodos de subdivisión tradicionales. Este trabajo

tiene importantes aplicaciones en simulaciones de ingeniería y modelado geométrico avanzado.

Subdivisión de curvas con control de longitud de arco: Victoria Hernández Mederos, Jorge

C. Estrada-Sarlabous, Silvio R. Morales y Ioannis Ivrissimtzis, [47], 2009.

Este artículo propone un esquema de subdivisión de curvas que controla la longitud de arco.

En lugar de refinar las curvas de manera uniforme, los autores presentan un método que
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ajusta dinámicamente los puntos de control para mantener una distribución controlada de la

longitud de arco. Este enfoque es útil en aplicaciones donde la precisión en la longitud de las

curvas es crucial, como en el modelado geométrico, el diseño de caminos y trayectorias, y la

animación por computadora.

Esquemas de subdivisión no lineales circulares para el diseño de curvas: Jian-ao Lian, Yonghui

Wang y Yonggao Yang, [53], 2009.

Este artículo introduce esquemas de subdivisión no lineales diseñados para generar curvas

circulares en aplicaciones de diseño geométrico. Los autores desarrollan un método basado en

la subdivisión que se adapta a la naturaleza geométrica de las curvas circulares, permitiendo

la creación de curvas suaves y precisas a partir de puntos de control discretos. Este enfoque

es útil en el diseño asistido por computadora (CAD) y en gráficos por computadora para

representar con precisión formas circulares y curvas cerradas.

Un esquema de subdivisión no lineal que preserva círculos: Pavel Chalmoviansk! y Bert

Jüttler, [17], 2007.

Este artículo presenta un esquema de subdivisión no lineal que preserva las propiedades

geométricas de las curvas circulares. Los autores desarrollan un algoritmo que permite la

generación y refinamiento de curvas manteniendo su naturaleza circular durante el proceso

de subdivisión. El esquema es útil en el diseño geométrico y en aplicaciones donde la precisión

en la representación de curvas circulares es crucial.

Esquemas de subdivisión basados en las normales para el diseño de curvas: Xunnian Yang,

[70], 2006.

Este artículo introduce un esquema de subdivisión basado en normales para el diseño de

curvas. El método se basa en la utilización de las normales de las curvas en puntos de control

para mejorar la suavidad y precisión de las curvas generadas. Este enfoque es útil en el diseño

asistido por computadora (CAD) y en gráficos por computadora, donde se requiere un control

preciso sobre la forma y suavidad de las curvas.

En esta línea de trabajo se observa una evolución desde métodos orientados a propiedades locales,

como el esquema de Jena [49] que garantiza monotonía y convexidad, hasta propuestas más globales

como la de Yang [70, 71] que asegura invariancia de círculos y esferas bajo refinamiento iterativo.

Mientras los enfoques basados en promedio circular (Zhang et al. [73]) introducen un parámetro

de tensión que permite cierto control del refinamiento, los métodos geométricos de Lian [52, 53]

y Chalmoviansk!-Jüttler [17] se centran en mantener formas circulares exactas en el límite. En

conjunto, estos trabajos muestran un balance entre flexibilidad algorítmica y preservación estricta

de la geometría.
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Tabla 2: Esquemas no lineales orientados a preservación de formas geométricas.

Autores Forma preservada Ventaja principal
Jena Curvas convexas Monotonía y convexidad

Zhang et al. Círculos Control por parámetro de tensión
Yang Círculos y esferas Invariante bajo isometrías
Lian Curvas circulares Suavidad con invariancia

Chalmoviansk! y Jüttler Círculos Mantiene circularidad exacta

4. Adaptación a las presencia de discontinuidades

Uno de los problemas comunes en esquemas de subdivisión lineales, especialmente cuando se aplican

a señales o datos con discontinuidades (por ejemplo, bordes afilados en imágenes), es la aparición

de oscilaciones de Gibbs. Estas oscilaciones son artefactos no deseados que surgen en las cercanías

de discontinuidades cuando los esquemas suavizan excesivamente la señal o la superficie. Las dis-

continuidades también pueden haber aparecido por falta de datos cerca de regiones con gradientes

altos (variaciones muy rápidas).

Los esquemas de subdivisión no lineales son efectivos para mitigar este fenómeno, ya que pueden

adaptarse mejor a la presencia de bordes o discontinuidades. A diferencia de los métodos lineales,

que aplican las mismas reglas de refinamiento en toda la señal, los esquemas no lineales pueden

ajustar las reglas de subdivisión localmente para evitar sobre-suavización en áreas con caracterís-

ticas importantes, como bordes [50], 1996.

Algunas estrategias no lineales para eliminar las oscilaciones de Gibbs incluyen el uso de operadores

adaptativos, donde los coeficientes de subdivisión varían en función de la pendiente local o la

curvatura, lo que permite preservar mejor las características significativas de la señal. Otra técnica

es incorporar regularización basada en variación total o métodos relacionados, que son adecuados

para manejar discontinuidades.

Veamos algunas de las aportaciones en este contexto:

Sobre una familia de esquemas de subdivisión no oscilatorios teniendo una regularidad Cr,

r > 1: Sergio Amat, Juan Ruiz, Juan C. Trillo y Dionisio F. Yáñez, [11], 2020.

Este artículo presenta una familia de esquemas de subdivisión no oscilatorios con regularidad

Cr para r > 1. Los autores desarrollan esquemas que permiten obtener suavidad en los

resultados interpolados, evitando fenómenos de oscilación que pueden ocurrir en los procesos

de subdivisión. El enfoque está en garantizar un equilibrio entre la suavidad y la precisión

del esquema, explorando cómo estos esquemas pueden ser aplicados en contextos numéricos

y gráficos.
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Sobre una familia estable de esquemas de subdivisión no lineales eliminando el fenómeno de

Gibbs: Sergio Amat, Juan Ruiz, J. Carlos Trillo y Dionisio F. Yáñez, [10] 2019.

Los autores introducen una familia de esquemas de subdivisión no lineales de cuatro puntos

que eliminan el fenómeno de Gibbs, un problema común en el procesamiento de señales y

gráficos que genera oscilaciones no deseadas en los bordes de las señales. El artículo aborda la

estabilidad y la convergencia de estos esquemas, proponiendo métodos efectivos para suavizar

las transiciones sin perder precisión en la interpolación, lo cual es especialmente útil en

aplicaciones como el tratamiento de imágenes y gráficos digitales.

Una familia de esquemas interpolatorios ternarios de 5-puntos con regularidad C2: Muham-

mad Aslam, [15], 2018.

Este artículo presenta una familia de esquemas de subdivisión ternarios no lineales de in-

terpolación con suavidad C2. El trabajo se centra en desarrollar métodos que aseguren una

suavidad considerable en las curvas y superficies generadas, lo que es crucial para aplica-

ciones gráficas y de modelado geométrico. La investigación analiza tanto las propiedades

geométricas como las cualidades numéricas de estos esquemas, enfatizando su aplicabilidad

en interpolación y gráficos computacionales, logrando transiciones suaves y sin distorsiones.

Esquemas de subdivisión no lineales ternarios de (2n → 1) puntos: Muhammad Aslam, [14],

2018.

Este trabajo presenta una familia de esquemas de subdivisión ternarios no lineales con in-

terpolación, basada en (2n → 1) puntos. Los esquemas propuestos permiten generar curvas

suaves a partir de un conjunto de puntos de control, mejorando la precisión y la suavidad

de las curvas en comparación con los métodos lineales tradicionales. Se realiza un análisis

detallado de la regularidad y convergencia de estos esquemas, enfocándose en su aplicabilidad

en la geometría computacional y el procesamiento de gráficos.

Sobre un esquema de subdivisión ternario no lineal y no interplatorio eliminando el fenómeno

de Gibbs: Sergio Amat, Abdelaziz Choutri, Juan Ruiz y Sofiane Zouaoui, [1], 2018.

Este artículo introduce un esquema de subdivisión no lineal de 4 puntos, ternario y no

interpolatorio, diseñado para eliminar el fenómeno de Gibbs, que se manifiesta en oscilaciones

no deseadas cerca de las discontinuidades. Los autores presentan un método que suprime

estas oscilaciones, garantizando transiciones suaves entre las partes de la señal o imagen

procesada. Además, se analiza la convergencia y la estabilidad del esquema, haciéndolo apto

para aplicaciones en procesamiento de imágenes, gráficos computacionales y señales digitales.
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Análisis de un nuevo esquema de subdivisión no lineal. Aplicaciones en el procesamiento de

imágenes. Sergio Amat, Rosa Donat, Jacques Liandrat y J. Carlos Trillo [8], 2006.

Este trabajo presenta un análisis y desarrollo de un nuevo esquema de subdivisión no lineal,

diseñado para mejorar la precisión y la calidad en la representación de datos en gráficos

y procesamiento de imágenes. En el contexto del procesamiento digital de imágenes, los

métodos de subdivisión son útiles para generar imágenes de alta resolución a partir de datos

de baja resolución. Sin embargo, los métodos de subdivisión lineales tradicionales suelen tener

limitaciones cuando se trata de preservar detalles importantes en zonas con discontinuidades

o bordes marcados, lo cual es crucial en la calidad visual de una imagen.

El esquema no lineal propuesto en el artículo se enfoca en conservar los detalles y bordes

dentro de la imagen, evitando los efectos de suavizado excesivo que suelen presentarse en los

métodos tradicionales. Los autores presentan un análisis detallado del comportamiento del

esquema en términos de convergencia, estabilidad y preservación de características esenciales

de la imagen. La metodología incorpora técnicas matemáticas avanzadas que permiten que

el esquema responda de forma adaptativa a las variaciones en la estructura de la imagen.

Además de la teoría detrás del nuevo esquema, los autores realizan una serie de experimentos

numéricos que demuestran su eficacia y utilidad práctica en el procesamiento de imágenes.

Estos experimentos muestran cómo el esquema no lineal propuesto puede aplicarse a diversas

tareas de mejora de imágenes, incluyendo la preservación de bordes y la reducción de arte-

factos en imágenes ampliadas. Los resultados obtenidos son prometedores y sugieren que el

esquema puede ser una alternativa valiosa en aplicaciones que requieren alta fidelidad en la

representación de detalles visuales.

En conclusión, el artículo presenta un avance significativo en el campo del procesamiento

de imágenes mediante la introducción de un esquema de subdivisión que mejora la calidad

visual al tiempo que reduce los efectos negativos de los métodos lineales convencionales.

Sobre un esquema de subdivisión no lineal cuaternario de 4 puntos elimnando el fenómeno

de Gibbs: Sergio Amat y Jacques Liandrat [4], 2013.

Este artículo aborda un esquema de subdivisión no lineal de 4 puntos cuaternario, diseñado

para aproximación en lugar de interpolación, que elimina el fenómeno de Gibbs. Este fenó-

meno, caracterizado por oscilaciones no deseadas en los bordes de señales o imágenes, es un

problema común en el procesamiento de datos digitales. Los autores presentan un esquema

que logra una transición suave y precisa, reduciendo estas oscilaciones sin comprometer la

calidad de la aproximación. El trabajo incluye un análisis de la estabilidad y convergencia

del esquema propuesto, con aplicaciones en procesamiento de imágenes, señales y gráficos.
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Una clase de esquemas de subdivisión no lineales de 4 puntos: Allal Guessab, María Moncayo

y Gerhard Schmeisser, [43], 2012.

Este artículo propone una clase de esquemas de subdivisión no lineales de cuatro puntos. Estos

esquemas son diseñados para generar curvas suaves a partir de un conjunto inicial de puntos

de control, y son aplicables en gráficos computacionales y modelado geométrico. A diferencia

de los esquemas lineales tradicionales, los métodos no lineales presentados permiten un mayor

control sobre la suavidad y precisión de las curvas generadas, reduciendo oscilaciones no

deseadas. El artículo incluye un análisis teórico de la convergencia y la regularidad de los

esquemas, junto con aplicaciones prácticas en geometría computacional.

Esquemas de subdivisión no lineales ponderados Weighted-Power-p: Francesc Aràndiga, Rosa

Donat, Maria Santágueda [13], 2012.

Este trabajo introduce y analiza esquemas de subdivisión no lineales ponderados, conocidos

como “Weighted-Power-p”. Estos esquemas permiten el refinamiento de curvas o superficies

mediante un proceso iterativo, en el que los pesos asignados a los puntos de control dependen

de una función de potencia p. Se estudia el comportamiento de los esquemas en términos

de suavidad, convergencia y estabilidad. El artículo también aborda aplicaciones en gráficos

computacionales y modelado geométrico, mostrando cómo los esquemas ponderados ofrecen

flexibilidad en la manipulación de formas geométricas.

Las propuestas analizadas para el tratamiento de discontinuidades muestran diferentes estrategias:

los trabajos de Amat et al. y Moncayo et al. [43] se centran en eliminar oscilaciones de Gibbs

mediante modificaciones no lineales de esquemas clásicos, mientras que Aslam [14, 15] opta por

un enfoque interpolatorio que mantiene suavidad C2 incluso en curvas complejas. Por su parte,

Aràndiga et al. [13] introducen pesos adaptativos con base en funciones de potencia, lo que aporta

flexibilidad para distintos tipos de datos. En conjunto, los distintos esquemas tienen como objetivo

preservar la suavidad global incorporando adaptación local en presencia de irregularidades.

Tabla 3: Esquemas de subdivisión no lineales para manejo de discontinuidades.

Autores Tipo Enfoque Beneficio
Amat et al. Variado Fenómeno Gibbs Estabilidad y convergencia

Aslam Ternario Interpolatorio C2 Suavidad en curvas complejas
Aràndiga et al. Weighted-Power-p Pesos adaptativos



CUBO
27, 2 (2025)

Esquemas de subdivisión no lineales: 25 años de historia... 481

5. Esquemas de Multirresolución

Los esquemas de multirresolución son fundamentales en el análisis de señales e imágenes, pro-

porcionando representaciones compactas en varias escalas. En particular, los esquemas no lineales

propuestos por Harten [45,46], 1989, 1995, mejoran la adaptabilidad de la multirresolución al pre-

servar características locales mediante técnicas de umbralización y aproximación adaptativa, lo cual

es especialmente útil en contextos donde las estructuras de las señales no siguen un comportamiento

lineal.

La multirresolución implica la descomposición de una señal f(x) en varias escalas. En un esquema

clásico de multirresolución, se busca representar f(x) en términos de una serie de funciones de

base, generadas a través de funciones escalares y de detalles. Matemáticamente, esto se expresa

como:

f(x) =
∑

j

cjϖj(x) +
∑

j,k

dj,k↽j,k(x), (5.1)

donde ϖj(x) representa una función de baja frecuencia o escala y ↽j,k(x) representan funciones de

detalle en diferentes niveles de resolución.

En los esquemas lineales, como las ondas Haar o Daubechies, los coeficientes cj y dj,k se obtienen

mediante convoluciones lineales. Sin embargo, en los esquemas no lineales, el cálculo de estos

coeficientes depende de técnicas adaptativas que no requieren necesariamente una estructura lineal.

Harten desarrolló un esquema de multirresolución no lineal que introduce operaciones adaptativas

en el cálculo de los coeficientes dj,k. En lugar de emplear convoluciones, se aplican operadores no

lineales que filtran selectivamente los detalles de la señal de acuerdo con su importancia local.

La técnica de umbralización permite eliminar componentes de la señal que se consideran irrelevan-

tes. Sea f(x) una señal continua, su versión umbralizada, T (f(x)), puede representarse como:

T (f(x)) =






f(x) si |f(x)| > ⇀,

0 si |f(x)| ↗ ⇀,
(5.2)

donde ⇀ es el umbral. Este valor puede ajustarse dinámicamente según las características de la

señal. En el contexto de la multirresolución no lineal, esta umbralización permite preservar sólo los

detalles más significativos, reduciendo la complejidad computacional y mejorando la compresión.

En las técnicas de interpolación adaptativa, se ajusta el grado de resolución en función de las

características locales de la señal. Para una señal f(x), la interpolación adaptativa I(f(x)) podría

definirse a través de una función de ponderación w(x) que varía localmente:

I(f(x)) = w(x) · f(x) + (1→ w(x)) · f →(x), (5.3)
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donde f →(x) es una versión suavizada de f(x), y w(x) ↑ [0, 1] se ajusta para resaltar regiones de alta

variabilidad en f(x). En zonas de alta frecuencia, w(x) se aproxima a 1, manteniendo el detalle,

mientras que en zonas suaves, w(x) se aproxima a 0, reduciendo la resolución.

Los esquemas de multirresolución no lineales encuentran aplicaciones en varias áreas:

Compresión de Imágenes: Los métodos de umbralización adaptativa permiten comprimir

imágenes eliminando detalles irrelevantes, mientras que la interpolación adaptativa mantiene

la calidad visual en las áreas de interés.

Procesamiento de Señales Médicas: En imágenes médicas, estos esquemas mejoran la claridad

de características importantes, como estructuras anatómicas pequeñas o anomalías.

Figura 4: Reconstrucciones de algoritmos de multirresolución en un proceso de compresión de
imágenes. En la izquierda se observa la buena adaptación a las discontinuidades del algoritmo no
lineal, mientras que en la derecha aparecen las oscilaciones tipo Gibbs clásicas de multirresoluciones
lineales.

Podríamos destacar estas dos aportaciones pioneras de Ami Harten:

Harten, A. (1989). Discrete Multiresolution Analysis and Generalized Wavelets. Applied Nu-

merical Mathematics, 12(1-3), 153-192.

En este trabajo, Harten presenta una forma discreta de análisis de multirresolución y su

aplicación a las wavelets generalizadas, lo que es relevante para el desarrollo de esquemas

multirresolución no lineales.
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Harten, A. (1995). Multiresolution Representation of Data: A General Framework. SIAM

Journal on Numerical Analysis, 33(3), 1205-1256.

Este artículo proporciona un marco general para la representación de datos en múltiples

resoluciones, abarcando tanto métodos lineales como no lineales.

A continuación, repasaremos algunas otras aportaciones en este campo:

Sobre el acople de operadores de decimación con esquemas de subdivisión para análisis multi-

escala: Zhiqing Kui, Jean Baccou, Jacques Liandrat, [51], 2017.

Este trabajo explora el acoplamiento del operador de decimación con esquemas de subdivisión

para el análisis a múltiples escalas. El estudio aborda la interacción entre los operadores de

decimación, que reducen la resolución de una señal, y los esquemas de subdivisión, que

permiten su refinamiento y reconstrucción. Los autores presentan un enfoque sistemático

para integrar ambos métodos, destacando su relevancia en aplicaciones como la compresión

de datos y la representación de señales en diferentes escalas de detalle. El análisis incluye

tanto consideraciones teóricas como resultados numéricos que demuestran la efectividad de

la técnica.

Sobre un esquema de multirresolución en medias en celda para la compresión de imágenes:

Sergio Amat, Jacques Liandrat, Juan Ruiz, J. Carlos Trillo, [9], 2012.

Este artículo presenta un esquema no lineal de multirresolución basado en promedios celulares

para la compresión de imágenes. Los esquemas de multirresolución permiten representar

imágenes en diferentes niveles de detalle, facilitando la compresión sin perder información

relevante. El enfoque no lineal propuesto por los autores reduce las oscilaciones y mejora la

precisión en las representaciones comprimidas, en comparación con los métodos lineales. Se

incluyen resultados numéricos que muestran la efectividad del esquema en la compresión de

imágenes, destacando su capacidad para reducir el tamaño de los datos sin sacrificar calidad.

Transformaciones multiescala no lineales: teoría Lp: Peter Oswald, [59], 2012.

Este artículo presenta un análisis teórico de las transformaciones multiescala no lineales den-

tro del marco de la teoría Lp. Las transformaciones multiescala son herramientas importantes

para el procesamiento de señales y la compresión de datos, y el enfoque no lineal ofrece me-

joras significativas en la preservación de características esenciales en diferentes escalas. El

autor desarrolla un marco matemático para estudiar la estabilidad y el comportamiento de

estas transformaciones en espacios Lp, proporcionando nuevas perspectivas sobre cómo apli-

car estas técnicas en diversas aplicaciones, como la compresión de imágenes y la resolución

de problemas numéricos.
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Una familia de esquemas de multirresolución no lineales no separables en 2D: Sergio Amat,

K. Dadourian, Jacques Liandrat, Juan Ruiz, Juan C. Trillo, [3], 2010.

Este artículo presenta una familia de esquemas de multirresolución no lineales, no separables

y estables en dos dimensiones (2D). Los autores analizan cómo estos esquemas permiten

descomponer y representar datos bidimensionales en varios niveles de resolución, mantenien-

do estabilidad y precisión. El enfoque no separable es clave para tratar imágenes y datos

geométricos que no pueden descomponerse en direcciones independientes. El artículo incluye

aplicaciones en compresión de imágenes y análisis de datos bidimensionales complejos.

Aproximación multiescala, no lineal y adaptativa, [24], 2009.

Este extenso volumen de más de 650 páginas explora diversos enfoques de aproximación

multiescala, no lineales y adaptativos, con aplicaciones en áreas como el análisis numérico, el

procesamiento de señales y el modelado geométrico. Se aborda cómo las técnicas de aproxi-

mación multiescala permiten representar datos en diferentes niveles de detalle, y se analiza

cómo los métodos no lineales y adaptativos pueden mejorar la precisión en situaciones donde

los enfoques lineales tradicionales no son suficientes. El libro incluye contribuciones de varios

expertos y abarca tanto los aspectos teóricos como las aplicaciones prácticas.

Sobre esquemas de multirresolución utilizando una selección del esténcil y su aplicación en

esquemas ENO: Sergio Amat, Sonia Busquier, J. Carlos Trillo, [7], 2007.

Este artículo introduce un esquema de multiresolución basado en la selección de un esténcil

para mejorar la precisión y evitar oscilaciones no deseadas en esquemas ENO (Essentially

Non-Oscillatory). Los autores proponen un enfoque para seleccionar automáticamente el

esténcil adecuado, lo que reduce los errores en aplicaciones como la simulación de flujos y

ecuaciones en derivadas parciales. Este esquema es particularmente relevante en el análisis

numérico de fenómenos físicos que requieren alta precisión y estabilidad.

Compresión de datos con esquemas tipo ENO: Un caso de estudio: Sergio Amat, Francesc

Aràndiga, Albert Cohen, Rosa Donat, Gregori García y Markus von Oehsen, [5], 2001.

Se estudian las propiedades de compresión de transformaciones multiresolución no lineales

de tipo ENO en imágenes digitales. Se utilizan algoritmos de control de errores específicos

para garantizar una precisión prescrita. Los resultados numéricos revelan que estos métodos

superan con creces las descomposiciones de wavelets más clásicas en el caso de imágenes

geométricas suaves por partes.

Esquemas de multirresolución con control del error para la representación de imágenes com-

pactas: Sergio Amat, Francesc Aràndiga, Albert Cohen y Rosa Donat, [6], 2002.

Se estudia una clase de representaciones multiresolución basadas en predicción no lineal en

el contexto multivariado basado en estrategias de productos tensoriales. A diferencia de las
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transformadas wavelet lineales estándar, estas representaciones no pueden considerarse como

un cambio de base, y el error inducido al establecer un umbral o cuantificar los coeficientes

requiere un análisis diferente. Proponemos algoritmos de control de errores específicos que

garantizan una precisión prescrita en varias normas al realizar dichas operaciones con los

coeficientes. Estos algoritmos se comparan con umbrales estándar, para imágenes sintéticas

y reales.

En el ámbito de la multirresoluciún, los trabajos revisados parten de la construcción pionera de

Harten [45,46], centrada en compresión adaptativa de señales, y se diversifican hacia contextos como

el procesamiento de imágenes (Amat et al.) o la teoría funcional (Oswald [59]). La aproximación

de Kui et al. [51] ofrece un marco sistemático que integra decimación y subdivisión, mientras

que Amat et al. priorizan la estabilidad mediante algoritmos de error-control. Comparando estas

contribuciones, se aprecia un progreso desde esquemas fundamentalmente unidimensionales hacia

extensiones en dos dimensiones y aplicaciones más generales, siempre con el hilo conductor de

combinar eficiencia computacional con estabilidad analítica.

Tabla 4: Esquemas de multirresolución no lineales.

Trabajo Técnica Aplicación Aporte
Harten Multiescala adaptativa Señales, compresión Predicción adaptativa

Amat et al. Separables y no separables Tratamiento imágenes Precisión con estabilidad
Kui et al. Decimación + subdivisión Multi-escala Integración sistemática
Oswald Teoría Lp Procesamiento señales Análisis de estabilidad

Quisiéramos terminar esta sección enfatizando la existencia de trabajos donde se utilizan esque-

mas de multirresolución para mejorar la eficiencia computacional de aproximaciones numéricas de

EDPs. Si bien es cierto que la no linealidad está en el uso de umbrales no de esquemas no lineales,

pudiendo ser esto último una nueva línea de investigación. En este contexto, los esquemas no linea-

les podrían ser beneficiosos en ejemplos físicos donde aparezcan discontinuidades que se preserven,

básicamente fenómenos con ausencia total de difusión.

Bürger et al. [16], 2008: este trabajo presenta un esquema multirresolución completamente adap-

tativo para ecuaciones parabólicas fuertemente degeneradas en una dimensión espacial. Se basa en

volúmenes finitos y emplea una representación multirresolución almacenada en un árbol graduado.

El método mejora drásticamente el rendimiento computacional (CPU y memoria), manteniendo

convergencia hacia soluciones de entropía.

Coquel et al. [20], 2006: en el contexto de flujos multicomponentes con ondas de dispar velocidad,

proponen una estrategia híbrida (explícito e implícito) combinada con un esquema multirresolución

completamente adaptativo. Esto permite una malla adaptativa basada en la suavidad del fenómeno,

reduciendo así el coste computacional sin sacrificar la precisión.
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6. Teorías desarrolladas para el análisis teórico de esquemas

de subdivisión no lineales

El análisis de los esquemas de subdivisión lineales está bien establecido mediante herramientas

como la transformada de Fourier, el análisis matricial y los métodos basados en los símbolos. Estas

técnicas permiten caracterizar con precisión la convergencia, el orden de aproximación y la regula-

ridad Ck en términos espectrales. Sin embargo, los esquemas no lineales rompen la superposición

y, con ella, gran parte del andamiaje clásico:

Ausencia de superposición. La respuesta a una combinación lineal de datos no es la

combinación lineal de las respuestas, lo que invalida argumentos espectrales directos.

Dependencia del contexto. Las reglas locales pueden depender de la geometría o del estado

de los datos (selecciones ENO, medias no lineales, normalizaciones), generando dinámicas no

uniformes.

Datos con valores no euclidianos. Muchas aplicaciones requieren datos en variedades,

esferas o grupos de Lie, donde los cálculos dependen de la geometría subyacente.

Propiedades de forma. Positividad, monotonía o convexidad (y sus análogos en variedades)

pasan a ser restricciones esenciales que los polinomios lineales no siempre preservan; los

esquemas no lineales se diseñan, a menudo, para respetarlas.

Se han desarrollado distintas aproximaciones teóricas para el estudio de esquemas de subdivisión

no lineales. Una primera línea la constituyen los esquemas geométricos, en los que las reglas de

refinamiento conmutan con similitudes y permiten descomponer la dinámica en componentes inva-

riantes, de modo que el control de la distorsión relativa durante las iteraciones conduce a resultados

de rectificación y a garantías de regularidad de tipo Hölder. Otra aproximación se basa en la pro-

ximidad diferencial frente a un esquema lineal de referencia, lo que permite transferir suavidad,

orden de aproximación y estabilidad del modelo lineal al no lineal siempre que se cumplan ciertas

condiciones de compatibilidad en derivadas discretas. En contextos más generales, como variedades,

esferas, grupos de Lie o espacios métricos, el análisis recurre a herramientas geométricas intrín-

secas como contracciones, comparaciones de curvatura y desarrollos geodésicos, que proporcionan

criterios de convergencia y regularidad en entornos no euclidianos. Finalmente, en esquemas cuasi

lineales o aquellos basados en medias no lineales, la selección dependiente de los datos requiere

técnicas específicas que combinan estabilidad, proximidad y control de variación total, incluyendo

además condiciones estructurales para garantizar el buen comportamiento en mallas irregulares.

En conjunto, todas estas teorías persiguen como objetivos centrales la convergencia, la regularidad

y el orden de aproximación en un marco no lineal y no necesariamente euclidiano, constituyendo

un área de investigación activa.
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A continuación, repasaremos algunas de estas teorías:

Regularidad hölderiana para esquemas de subdivisión geométrica, T. Ewald, U. Reif, M.

Sabin, [34], 2015.

Este artículo presenta un marco teórico para analizar esquemas de subdivisión no lineales

con valores en Rd, donde los esquemas son geométricos en el sentido de que conmutan con

las similitudes en Rd. El objetivo principal es establecer la regularidad C1,ω para esquemas

arbitrarios de este tipo y C2,ω para un subconjunto importante de ellos, incluyendo todos los

esquemas con valores reales. La clave está en determinar el rango de ciertas funciones reales

para garantizar la convergencia del esquema y la regularidad de Hölder de las curvas límite.

Los esquemas de subdivisión univariados definen una curva como el límite de un proceso de re-

finamiento a partir de un polígono de control inicial. En este trabajo, se consideran esquemas

geométricos que conmutan con transformaciones de similitud, es decir, la transformación:

S(p) = ⇀pQ+ s

donde ⇀ es un factor de escala, Q una matriz ortogonal y s un vector de traslación. Este tipo

de esquemas se clasifican como GLUE-schemes (Geometric, Local, Uniform, Equilinear).

Para medir la desviación de un conjunto de puntos respecto a un comportamiento lineal, se

introduce el concepto de distorsión relativa, definida como:

ε(p) =
|p|2
|”p|1

,

donde ” es la proyección ortogonal y | · |i es norma euclidiana ⇁i en Rd. Un esquema de

subdivisión está rectificado si la distorsión relativa de la sucesión de puntos converge a cero.

La regularidad C1,ω se alcanza si las curvas límite generadas por el esquema son diferencia-

bles con derivada localmente Hölder continua. Esto se puede verificar garantizando que la

distorsión relativa decae con un factor 2↓ω en cada iteración del esquema:

ε(pn+1) ↗ C2↓ωn.

Si esta condición se cumple, el esquema se considera fuertemente rectificado.

Este trabajo proporciona un marco general para analizar la regularidad de esquemas de

subdivisión geométricos y garantiza la regularidad C1,ω y C2,ω bajo ciertas condiciones. Los

resultados son aplicables a una amplia gama de algoritmos geométricos.
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Condición de proximidad para la suavidad en esquemas de subdivisión no lineales: Tom

Duchamp, Gang Xie, Thomas Yu, [26], 2013.

Este artículo presenta una condición necesaria y suficiente para la equivalencia en la suavidad

de esquemas de subdivisión no lineales respecto a esquemas de subdivisión lineales. El análisis

se basa en la introducción de una nueva condición de proximidad diferencial. El problema

abordado es determinar cuándo un esquema de subdivisión no lineal hereda la regularidad

de su contraparte lineal.

Un esquema de subdivisión S es una transformación que actúa sobre secuencias x = (xi) con

valores en una variedad suave M . Si S es un esquema de subdivisión Ck, existe una función

Ck que interpola los datos de control definidos por x.

Para comparar la suavidad entre un esquema de subdivisión no lineal S y su versión lineal

Slin, se introduce la condición de proximidad diferencial, que se expresa mediante derivadas

parciales de la siguiente forma:

Dς#ε|(φ0,0,...,0) = 0, si |ν| ≃ 2 y
K∑

j=1

jνj ↗ k,

donde ν es un multiíndice que determina el orden de las diferencias finitas, y k es el grado de

suavidad del esquema. La condición de proximidad diferencial garantiza que, hasta el orden

de suavidad k, el comportamiento local del esquema no lineal es indistinguible del lineal.

El artículo también presenta la condición de compatibilidad suave, que asegura que el esquema

no lineal S y el esquema lineal Slin comparten ciertos factores locales y de fase.

Finalmente, se demuestra que la condición de proximidad diferencial es tanto necesaria como

suficiente para que el esquema de subdivisión S sea Ck-suave si el esquema lineal corres-

pondiente Slin es Ck-suave. Los resultados son probados utilizando expansiones de Taylor y

análisis de resonancia en sistemas dinámicos discretos.

Análisis de convergencia de esquemas de subdivisión sobre la esfera: Svenja Hüning, Johannes

Wallner, [48], 2022.

Este artículo analiza la convergencia de procesos de subdivisión en la esfera, un campo

relevante en geometría computacional y procesamiento de gráficos 3D. Los autores investigan

esquemas de subdivisión que operan sobre superficies esféricas en lugar de superficies planas,

centrándose en su convergencia y propiedades numéricas. El análisis incluye la introducción

de herramientas que permiten la estabilidad de los algoritmos, así como un estudio detallado

de las características geométricas y la regularidad de las superficies generadas.
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Análisis C1 de esquemas de subdivisión tipo Hermite sobre variedades: Caroline Moosmüller,

[56], 2016.

Este trabajo presenta un análisis detallado de la suavidad C1 de los esquemas de subdivisión

de Hermite en variedades. Los esquemas de subdivisión de Hermite son utilizados para generar

curvas y superficies suaves a partir de datos vectoriales y escalares. En este contexto, se

exploran las propiedades de suavidad de las curvas generadas cuando los puntos de control

residen en una variedad geométrica. El artículo proporciona un marco teórico para entender

cómo los esquemas de subdivisión pueden aplicarse a estructuras geométricas más generales

que los espacios euclidianos, y estudia su convergencia y regularidad en este contexto.

Convergencia de esquemas de refinamiento sobre espacios métricos: Oliver Ebner, [33], 2013.

Este trabajo investiga la convergencia de esquemas de refinamiento en espacios métricos.

Los esquemas de refinamiento son algoritmos iterativos utilizados para mejorar la resolución

de una señal o conjunto de datos. El autor estudia cómo estos esquemas convergen en el

marco general de espacios métricos, lo que extiende el análisis de esquemas de subdivisión a

contextos más abstractos que los tradicionales espacios euclidianos. El artículo proporciona

condiciones bajo las cuales los esquemas garantizan convergencia y analiza su comportamiento

en diversos tipos de espacios métricos.

Propiedad de invarianza de las condiciones de proximidad en subdivisión no lineal: Gang Xie,

Thomas P. Y. Yu, [69], 2012.

Este trabajo explora la propiedad de invariancia en condiciones de proximidad dentro de

los esquemas de subdivisión no lineales. Los autores analizan cómo los esquemas no lineales

preservan la proximidad entre puntos en cada nivel de refinamiento, lo que es crucial para

garantizar la estabilidad y precisión en la generación de curvas o superficies suaves. El artículo

desarrolla condiciones específicas bajo las cuales esta propiedad se mantiene, proporcionando

una base teórica sólida para el uso de esquemas no lineales en aplicaciones prácticas como el

modelado geométrico y el procesamiento de imágenes.

Propiedades de equivalencia en el order de aproximación de esquemas de subdivisión sobre

variedades: Gang Xie, Thomas P.-Y. Yu, [68], 2012.

Este artículo investiga las propiedades de equivalencia del orden de aproximación en esquemas

de subdivisión de datos valorados en variedades. Los esquemas de subdivisión tradicionales

operan en el espacio euclidiano, pero este trabajo extiende su aplicabilidad a datos en va-

riedades geométricas. Los autores demuestran que, bajo ciertas condiciones, los órdenes de

aproximación de los esquemas de subdivisión para datos en variedades pueden ser equiva-

lentes a los de datos en espacios euclidianos, lo que tiene implicaciones importantes para la

interpolación y el procesamiento de datos geométricos.
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Regularidad de esquemas de subdivisión no lineales y no separables: Basarab Matei, Sylvain

Meignen, Anastasia Zakharova, [55] 2011.

Este trabajo analiza la suavidad de esquemas de subdivisión no lineales y no separables.

Los autores estudian cómo estos esquemas generan curvas y superficies suaves, incluso en

configuraciones donde las propiedades de separación no se cumplen, lo que ocurre en muchos

problemas geométricos complejos. Se proporciona un análisis teórico de la convergencia y

suavidad de estos esquemas, y se destacan aplicaciones en gráficos por computadora y proce-

samiento de imágenes, donde es esencial el control de la suavidad en múltiples dimensiones.

Análisis de una clase de esquemas de subdivisión no lineales y transformaciones de multirre-

solución asociadas: Sergio Amat, K. Dadourian, Jacques Liandrat, [2], 2011.

Este artículo presenta un análisis detallado de una clase de esquemas de subdivisión no

lineales y sus transformaciones multirresolución asociadas. Los autores estudian cómo estos

esquemas pueden utilizarse para representar y comprimir señales e imágenes, proporcionando

un marco para realizar transformaciones multirresolución que preserven la estructura de los

datos originales. Se ofrece un análisis teórico y numérico de la convergencia y estabilidad de

los esquemas, mostrando su aplicabilidad en compresión de imágenes y modelado geométrico.

Orden de aproximación derivado de la estabilidad de esquemas de subdivisión no lineales:

Philipp Grohs, [39], 2010.

Este artículo explora el orden de aproximación que se deriva de la estabilidad en esquemas

de subdivisión no lineales. El autor establece condiciones bajo las cuales los esquemas de

subdivisión no lineales preservan la estabilidad, lo que resulta en un alto orden de aproxima-

ción. Este análisis es crucial para aplicaciones donde se requiere una representación precisa

de curvas y superficies, como en gráficos computacionales y simulaciones geométricas. El

trabajo también ofrece una comparación con esquemas de subdivisión lineales tradicionales,

mostrando las ventajas de los enfoques no lineales.

Esquemas de subdivisión no lineales en mallas irregulares: Andreas Weinmann, [64], 2010.

Este trabajo analiza los esquemas de subdivisión no lineales en mallas irregulares. A diferen-

cia de los esquemas tradicionales que requieren mallas regulares, este estudio aborda cómo

los métodos no lineales pueden aplicarse a mallas con geometrías irregulares, comunes en

simulaciones numéricas y gráficos computacionales. El autor investiga la convergencia y la

estabilidad de estos esquemas, presentando condiciones que garantizan la generación de su-

perficies suaves en mallas irregulares. Este enfoque es particularmente útil en aplicaciones de

diseño geométrico y modelado en mallas complejas.
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Estabilidad de subdivisión no lineal y transformaciones multiescala: S. Harizanov, Peter

Oswald, [44], 2010.

Este artículo estudia la estabilidad de los esquemas de subdivisión no lineales y las trans-

formaciones multiescala. La estabilidad es un factor clave para garantizar que las soluciones

generadas por estos esquemas sean útiles en aplicaciones prácticas, como la compresión de

datos o el procesamiento de señales. Los autores analizan diferentes clases de transformacio-

nes y esquemas, proporcionando resultados teóricos sobre cuándo estos métodos mantienen

su estabilidad, lo cual es crucial para el refinamiento progresivo de datos o la representación

de funciones.

Un análisis general de la proximidad de esquemas de subdivisión no lineales: Philipp Grohs,

[40], 2010.

Este trabajo realiza un análisis general de proximidad en esquemas de subdivisión no lineales.

El enfoque de proximidad se refiere a cómo los puntos generados por el esquema de subdivisión

se mantienen cercanos a los puntos originales, lo que afecta directamente la precisión y la

calidad de las soluciones generadas. El artículo presenta un marco teórico para estudiar

esta propiedad, derivando condiciones bajo las cuales los esquemas no lineales garantizan la

proximidad en iteraciones sucesivas, lo cual es importante para la interpolación geométrica

y la generación de curvas suaves.

Orden de aproximación de esquemas de subdivisión no lineales: Nira Dyn, Philipp Grohs,

Johannes Wallner, [30], 2010.

Este artículo investiga el orden de aproximación de los esquemas de subdivisión no lineales

interpolatorios. El orden de aproximación es una medida de la precisión con la que los es-

quemas de subdivisión pueden aproximar funciones o curvas a medida que se refinan. Los

autores desarrollan una teoría que extiende el análisis del orden de aproximación a esque-

mas no lineales, destacando cómo estos métodos pueden ofrecer mejores resultados que los

esquemas lineales tradicionales en aplicaciones de interpolación y modelado geométrico.

Subdivisión y transformaciones multiescala univariadas, el caso no lineal: Nira Dyn, Peter

Oswald, [32], 2009.

Este capítulo explora los esquemas de subdivisión univariados y las transformaciones mul-

tiescala en el contexto no lineal. Se estudian los métodos univariados, que trabajan en una

sola variable, y cómo las transformaciones multiescala pueden aplicarse de manera no lineal

para mejorar la representación de señales y funciones en diferentes niveles de detalle. Los

autores analizan la estabilidad y el comportamiento de estos esquemas en el caso no lineal,

mostrando aplicaciones en procesamiento de imágenes y compresión de datos.
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Esquemas de subdivisión lineales y no lineales en modelado geométrico: Nira Dyn, [29], 2008.

Este trabajo proporciona una revisión de los esquemas de subdivisión lineales y no lineales en

el contexto del modelado geométrico. Nira Dyn describe cómo los esquemas de subdivisión

se utilizan para generar curvas y superficies suaves a partir de datos discretos, y compara los

enfoques lineales tradicionales con los no lineales, destacando las ventajas de estos últimos

en la representación de formas geométricas complejas. El artículo también discute la con-

vergencia y la regularidad de los esquemas de subdivisión, con aplicaciones en gráficos por

computadora y diseño asistido por computadora (CAD).

Dos preguntas abiertas sobre subdivisión: Malcom Sabin, [61], 2009.

Este breve artículo plantea dos preguntas abiertas en el campo de los esquemas de subdi-

visión. Malcolm Sabin analiza problemas no resueltos relacionados con la convergencia y la

regularidad de ciertos esquemas de subdivisión, que son fundamentales para el refinamiento

iterativo de curvas y superficies. Estas preguntas son importantes tanto desde un punto de

vista teórico como práctico, ya que afectan la eficacia de los esquemas de subdivisión en

aplicaciones de gráficos por computadora, diseño de superficies y simulaciones numéricas.

Regularidad de subdivisión multivariada interpolatoria en grupos de Lie: Philipp Grohs, [38],

2009.

Este artículo aborda la suavidad de los esquemas de subdivisión interpolatorios en grupos de

Lie. Los grupos de Lie, que son estructuras algebraicas que describen simetrías continuas, se

utilizan en muchas áreas de la matemática y la física. Grohs analiza cómo los esquemas de

subdivisión pueden aplicarse a datos en estos grupos, preservando la suavidad y garantizando

la convergencia. Este enfoque tiene aplicaciones potenciales en gráficos por computadora,

robótica y simulaciones físicas donde se requiere trabajar con datos que residen en grupos de

Lie.

Sobre la regularidad de funciones reales generadas por esquemas de subdivisión usando medias

binarias no lineales: Ron Goldman, Etienne Vouga, Scott Schaefer, [36], 2009.

Este trabajo investiga la suavidad de las funciones reales generadas mediante esquemas de

subdivisión que emplean promedios binarios no lineales. Los autores analizan cómo la sua-

vidad de las funciones generadas se ve afectada por el tipo de promedio no lineal utilizado

en el esquema de subdivisión, proporcionando condiciones matemáticas que garantizan la

suavidad. Este estudio es relevante para la creación de curvas y superficies suaves en gráficos

por computadora y diseño geométrico.
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Sobre esquemas de subdivisión de Hermite con restricciones: Paolo Costantini, Carla Manni,

[21], 2008.

Este artículo aborda los esquemas de subdivisión no lineales de Hermite bajo restricciones.

Los esquemas de Hermite permiten el refinamiento de funciones mediante la interpolación

de valores y derivadas en puntos de control. Los autores presentan un enfoque no lineal para

estos esquemas, garantizando que se respeten ciertas restricciones geométricas o de suavidad.

Este trabajo tiene aplicaciones en el diseño de curvas y superficies que requieren precisión en

la forma y suavidad, como en gráficos por computadora y CAD.

Propiedades de equivalencia de suavidad de esquemas generales de subdivisión para datos

con valores en variedades: Gang Xie, Thomas P.-Y. Yu, [67], 2009.

Este trabajo examina las propiedades de suavidad de los esquemas de subdivisión aplicados

a datos con valores en variedades (manifolds). Los autores investigan cómo los esquemas

de subdivisión pueden generar funciones suaves cuando los datos residen en espacios no

Euclidianos, como las variedades. Este enfoque es útil en aplicaciones como la robótica,

gráficos por computadora y análisis de datos geométricos, donde los datos pueden estar

restringidos a variedades específicas.

Subdivisión no lineal a través de medias no lineales: Scott Schaefer, Etienne Vouga, Ron

Goldman, [62], 2008.

Este artículo introduce un esquema de subdivisión no lineal basado en el uso de promedios

no lineales. En lugar de utilizar métodos de interpolación lineal tradicionales, los autores

desarrollan un enfoque en el que los puntos de control se actualizan mediante una técnica de

promediado no lineal, lo que permite obtener subdivisiones más precisas y adaptativas en el

diseño de curvas y superficies. Este método tiene aplicaciones en el modelado geométrico y

el diseño de formas complejas.

Análisis de suavidad de esquemas de subdivisión en retículas regulares mediante proximidad:

Philipp Grohs, [37], 2008.

Este artículo analiza la suavidad de los esquemas de subdivisión aplicados a datos en redes

regulares utilizando una técnica basada en la proximidad. Grohs presenta un enfoque teórico

que garantiza que los esquemas de subdivisión conserven la suavidad al aplicarse iterativa-

mente sobre mallas regulares, lo que es crucial para el refinamiento de curvas y superficies

en gráficos por computadora y simulaciones numéricas.

Propiedades de equivalencia de suavidad de esquemas de subdivisión para datos con valores

en variedades basados en el enfoque de proyección: Gang Xie, Thomas P.-Y. Yu, [66], 2007.

Este trabajo investiga las propiedades de suavidad de los esquemas de subdivisión aplica-

dos a datos con valores en variedades (manifolds) utilizando el enfoque de proyección. Los
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autores demuestran que ciertos esquemas de subdivisión mantienen la suavidad cuando se

aplican a datos en espacios geométricos no euclidianos, como las variedades. Este estudio tie-

ne aplicaciones en gráficos por computadora y simulaciones que involucran datos geométricos

complejos.

Tres familias de esquemas de subdivisión no lineales: Nira Dyn, [28], 2006.

Este artículo analiza tres familias de esquemas de subdivisión no lineales. Estos esquemas

permiten la generación de curvas y superficies suaves a partir de puntos de control de manera

adaptativa. La investigación se centra en cómo las diferentes configuraciones de los esque-

mas pueden influir en la suavidad y estabilidad de las funciones generadas, proporcionando

herramientas útiles para el diseño geométrico y las aplicaciones de simulación que requieren

precisión en la forma.

¿Cuán dependiente de los datos es un esquema de subdivisión no lineal? Un estudio de caso

basado en la preservación de convexidad: Thomas Pok-Yin Yu, [72], 2006.

Este artículo examina la dependencia de los esquemas de subdivisión no lineales en los datos

iniciales, utilizando como caso de estudio un esquema que preserva la convexidad. El autor

analiza cómo las propiedades de los datos iniciales pueden afectar la convergencia y suavidad

del esquema, ofreciendo una comprensión profunda de la influencia de las condiciones iniciales

en la calidad de los resultados obtenidos mediante subdivisión no lineal.

Análisis de suavidad de esquemas de subdivisión mediante proximidad: Johannes Wallner,

[63], 2006.

Este trabajo proporciona un análisis detallado de la suavidad de los esquemas de subdivisión

mediante el concepto de proximidad. Wallner desarrolla una metodología matemática para

medir la suavidad de las funciones generadas por esquemas de subdivisión en relación con su

proximidad a funciones suaves conocidas, lo que es relevante para garantizar la calidad de

las curvas y superficies generadas en gráficos por computadora y simulaciones geométricas.

Suavidad de la subdivisión no lineal por interpolación de la mediana: Peter Oswald, [58],

2004.

Se presenta un análisis refinado de la regularidad de Hölder para las funciones límite que

surgen de un algoritmo piramidal no lineal para la eliminación robusta del ruido no gaussiano

propuesto por Donoho y Yu [6,7,17]. La parte de síntesis de este algoritmo se puede interpretar

como un esquema de subdivisión tríada no lineal donde se insertan nuevos puntos basándose

en la interpolación e imputación de la mediana polinómica cuadrática local. Introducimos la

analogía del esquema Donoho-Yu para el refinamiento diádico.
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Esquemas de subdivisión quasi lineales con aplicación a la interpolación ENO: Albert Cohen,

Nira Dyn, Basarab Matei, [19], 2003.

Se analiza la convergencia y suavidad de cierta clase de esquemas de subdivisión no lineales.

Se estudia las propiedades de estabilidad de estos esquemas y aplicamos este análisis a la

clase específica basada en técnicas de interpolación ENO y ENO ponderada. Nuestro interés

en estas técnicas está motivado por su aplicación al procesamiento de señales e imágenes.

Los trabajos [26, 30, 37, 40, 63, 69] articulan el puente entre no lineal y lineal mediante proximidad

diferencial; [34] proporciona una vía independiente basada en invariancia geométrica y rectificación.

En dominios no euclidianos ([33,38,48,56,66,67]) la convergencia se asienta en contracciones y en

el control de la geometría; [64] extiende a mallas irregulares. Las familias con medias no lineales

o selecciones del esténcil tipo ENO ([19, 32, 36, 44, 58, 62]) se basan en contracciones de esquemas

para las diferencias; [39] conecta estabilidad con orden de aproximación. Las revisiones [29, 61]

identifican huecos y preguntas abiertas sobre optimalidad y robustez.
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Tabla 5: Comparativa cruzada de referencias: ámbito, objetivo principal y herramienta analítica
dominante.

Referencia Ámbito de datos Objetivo principal Herramienta analítica do-
minante

Ewald–Reif–Sabin [34] Rd (geométrico,
GLUE)

C1,ω/C2,ω y rectificación Distorsión relativa, invariancia
a similitudes

Duchamp–Xie–Yu [26] No lineal vs. lineal Equivalencia de suavidad
Ck

Proximidad diferencial al es-
quema lineal

Hüning–Wallner [48] Esfera Convergencia/estabilidad Geometría esférica, contraccio-
nes

Moosmüller [56] Variedades (Her-
mite)

C1 Análisis Hermite en variedades

Ebner [33] Espacios métricos Convergencia Contracciones en métricas
Xie–Yu [69] No lineal vs. lineal Invariancia de proximidad Proximidad e invariancias
Xie–Yu [68] Variedades Orden de aproximación

(equivalencia)
Transferencia de orden a varie-
dades

Matei–Meignen–
Zakharova [55]

No separable Regularidad Estimaciones multivariadas no
separables

Amat–Dadourian–
Liandrat [2]

Señal/imagen Convergencia/estabilidad
multirresolución

Análisis de transformaciones
asociadas

Grohs [39] General Orden desde estabilidad Estabilidad ⇑ orden
Weinmann [64] Malla irregular Convergencia/estabilidad Condiciones estructurales en

mallas
Harizanov–Oswald [44] Multiescala Estabilidad Análisis multiescala no lineal
Grohs [40] General Proximidad (marco gene-

ral)
Proximidad/transferencia de
suavidad

Dyn–Grohs–Wallner
[30]

General Orden de aproximación Proximidad y estimaciones de
error

Dyn–Oswald [32] Univar., no lineal Multiescala y estabilidad Marco multiescala no lineal
Dyn [29] Revisión Estado del arte Síntesis crítica
Sabin [61] Revisión breve Preguntas abiertas Problemas de convergen-

cia/regularidad
Grohs [38] Grupos de Lie Suavidad interpolatoria Geometría de grupos de Lie
Goldman–Vouga–
Schaefer [36]

Medias no lineales Suavidad de funciones
reales

Promedios no lineales y suavi-
dad

Costantini–Manni [21] Hermite con res-
tricciones

Suavidad bajo restricciones Análisis con restricciones

Xie–Yu [67] Variedades Equivalencia de suavidad Proximidad en variedades
Schaefer–Vouga–
Goldman [62]

Medias no lineales Subdivisión no lineal Estructuras de promedio no li-
neal

Grohs [37] Retículas regulares Suavidad vía proximidad Proximidad en mallas regulares
Xie–Yu [66] Variedades (pro-

yección)
Suavidad por proyección Enfoques de proyección

Dyn [28] Tres familias NL Clasificación Taxonomía de familias NL
Yu [72] Dependencia de

datos
Preservación de convexidad Sensibilidad a datos iniciales

Wallner [63] General Suavidad vía proximidad Marco de proximidad
Oswald [58] Mediana no lineal Regularidad Hölder Análisis del esquema Donoho–

Yu
Cohen–Dyn–Matei [19] Quasi lineal / ENO Conv./suavidad

ENO/WENO
Estabilidad + proximidad en
ENO
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7. Conclusiones

Los esquemas de subdivisión no lineales representan una extensión poderosa de los métodos lineales

tradicionales, ofreciendo flexibilidad y capacidad de adaptación en una amplia gama de aplicaciones,

especialmente en el manejo de datos irregulares y la preservación de características geométricas.

Su aplicación en variedades, la mitigación de oscilaciones de Gibbs y la preservación de formas

geométricas como círculos y esferas demuestra su versatilidad y eficacia en situaciones donde los

enfoques lineales no son suficientes.

Del análisis comparado se desprende una clasificación natural de los trabajos:

1. Geométricos: centrados en la preservación de formas e invariancias (círculos, esferas).

2. Adaptativos: diseñados para manejar irregularidades o discontinuidades.

3. Multiescala: conectados a ondículas y compresión en múltiples resoluciones.

4. Teóricos: orientados al estudio de convergencia, estabilidad y regularidad.

Esta taxonomía permite visualizar la evolución del campo y resaltar vacíos actuales.

La selección bibliográfica responde a dos criterios principales: (i) representatividad de los métodos

más influyentes en cada línea de investigación que cubren las diferentes áreas de interés en el

contexto de esquemas de subdivisión, y (ii) diversidad en cuanto a las aplicaciones que se consideran

(modelado geométrico, procesamiento de imágenes, aproximación).

Existen trabajos de revisión de esquemas no lineales previos pero no hemos encontrado ninguno

que sea tan global como la presente revisión. Introducimos las cuatro aportaciones que hemos

encontrado y que pueden considerarse revisiones parciales. En [29], Dyn nos presenta una panorá-

mica sobre los esquemas de subdivisión en modelado geométrico, distinguiendo entre los enfoques

lineales y no lineales, revisando la teoría clásica (convergencia, suavidad y orden de aproximación)

y destacando cómo los esquemas no lineales permiten preservar propiedades geométricas como po-

sitividad, monotonía o convexidad. Por su parte, Dyn y Oswald [32] estudian el caso univariante en

relación con las transformaciones multiescala, extendiendo herramientas lineales al marco no lineal

y analizando estabilidad, contracción y orden de aproximación en contextos adaptativos. Micchelli

[35] investiga los esquemas estacionarios no lineales, estableciendo un marco matemático para su

convergencia y regularidad, con aplicaciones a problemas de interpolación y aproximación geomé-

trica. Finalmente, Aràndiga y Donat [12] desarrollan el enfoque de Harten para descomposiciones

multiescala no lineales, mostrando cómo éstas permiten representaciones estables y adaptativas en

el análisis numérico de ecuaciones hiperbólicas y en el procesamiento de señales.

Aunque se han hecho avances importantes en el desarrollo y aplicación de estos esquemas, el

análisis de los esquemas no lineales sigue siendo un desafío debido a su complejidad matemática.
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Aún queda mucho por explorar en términos de eficiencia computacional y aplicaciones en datos de

mayor dimensión.

Entre las líneas abiertas de investigación podríamos destacar:

Extender los esquemas a contextos de datos no euclidianos más complejos (grafos, redes

neuronales geométricas).

Integrar preservación geométrica y adaptación a discontinuidades en un marco único.

Explorar implementaciones paralelas y en GPU para aplicaciones en tiempo real en gráficos

por computadora.

Profundizar en aplicaciones de multirresolución no lineal en la resolución numérica de EDPs

de interés físico.

Desarrollar criterios automáticos de selección de parámetros (ej. tensión, pesos adaptativos)

guiados por aprendizaje automático.
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RESUMEN

En estas notas resumimos una serie de artículos dedicados a

perturbaciones de operadores de variadas clases, entre ellos

operadores diferenciales. En dichos artículos se estudian pro-

piedades espectrales, con énfasis en la estabilidad de los va-

lores propios y la ausencia de cierto espectro singular. Estas

perturbaciones son de diferente naturaleza, incluyendo rango

finito y el caso singular.

También se caracteriza y demuestra el fenómeno de resonan-

cia desde el punto de vista dinámico, es decir, la existencia

de estados que tienen larga vida y para los cuales la amplitud

de sobrevivencia tiene un comportamiento casi exponencial.

Además se incluye una discusión de acerca de varios proble-

mas abiertos en el área.
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ABSTRACT

In these notes, we summarize a series of papers devoted to

perturbations of operators of several classes, among them

di!erential operators. The articles mentioned before, study

spectral properties, with special emphasis on the stability of

the eigenvalues and the absence of a certain singular spec-

trum. These perturbations are of a di!erent nature, including

finite rank and the singular case.

We also characterize and prove the resonance phenomenon

from a dynamical point of view, that is, the existence of

states with long life and for which the survival amplitude

has an almost exponential behavior.

In addition, we include a discussion about several open pro-

blems in the area.
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1. Introducción

Como un reconocimiento a su contribución, y en el marco del 40º aniversario de la revista Cubo,

presentamos este artículo compendio de varios trabajos, principalmente de la última década.

La teoría espectral de operadores autoadjuntos es una parte esencial de la Física Matemática,

particularmente de la Mecánica Cuántica. Muchas veces estos operadores surgen como pertur-

baciones pequeñas de un operador dado (el Hamiltoniano libre). En general, aquí consideramos

perturbaciones de rango finito e incluimos casos regulares y casos singulares.

La naturaleza y estabilidad del espectro, en especial de sus componentes puntual, absolutamente

continuo y singular, bajo pequeñas perturbaciones, ha sido objeto de intensas investigaciones, tanto

por su conexión con la estabilidad de sistemas físicos cuánticos como por sus implicaciones en el

análisis de fenómenos de resonancia cuántica.

En este artículo, revisamos diversos resultados obtenidos en trabajos previos que analizan las

propiedades espectrales de operadores de este tipo. Estos estudios han demostrado que, aunque la

perturbación de un operador con espectro exento de parte singular genera cambios en el espectro,

los efectos de estas perturbaciones suelen estar relacionados con la aparición de resonancias y

variaciones en las frecuencias de los modos espectrales del sistema. En particular, se han identificado

condiciones bajo las cuales las perturbaciones de rango finito modifican el espectro del operador

base, pero sin introducir nuevas singularidades en el espectro resultante.

Además, discutimos la conexión entre estas propiedades espectrales y una formulación dinámica

del fenómeno de resonancia cuántica, en la cual se exploran las interacciones entre los operadores

perturbados y los estados del sistema cuántico, y cómo estas interacciones pueden llevar a la apa-

rición de picos resonantes en el espectro, los que se traducen en un comportamiento exponencial

aproximado de la llamada amplitud de probabilidad. Las resonancias cuánticas juegan un papel

fundamental en la descripción de procesos de transición entre estados cuánticos, lo que tiene apli-

caciones en el estudio de sistemas dinámicos y en la predicción del comportamiento del sistema a

largo plazo.

En el transcurso de este compendio, abordaremos tanto los resultados teóricos más relevantes como

los métodos matemáticos empleados para el análisis espectral de estos operadores, con el objetivo

de ofrecer una visión integral de cómo las perturbaciones de rango finito influyen en la estructura

espectral y, a su vez, cómo esta influencia se relaciona con el comportamiento dinámico de sistemas

cuánticos en resonancia.
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1.1. Valores propios inmersos

Este artículo se sitúa dentro del marco de la teoría espectral, parte central del análisis funcional.

El espectro de un operador describe los valores asociados con el comportamiento de este operador

y tiene una influencia importante en muchas áreas de las matemáticas y la física.

La “perturbación” en este contexto se refiere a una pequeña modificación del operador, es decir,

un cambio que se puede considerar de “tamaño pequeño”. La idea general consiste en determinar

cómo los valores propios (o el espectro en general) de un operador cambian cuando el operador

es alterado de esta manera. Esto involucra conceptos como la variación de los valores propios, los

efectos en la estructura espectral, y las condiciones bajo las cuales un espectro se desplaza o se

distorsiona de manera controlable.

Algunos de los resultados que siguen están motivados por el artículo [10] donde se desarrolla una

serie de ideas acerca de cómo un pequeño cambio en un operador afecta su espectro puntual y

su espectro continuo, además de demostrar la existencia de subespacios en los cuales el operador

no tiene componente singular. Dicho artículo está relacionado con la teoría de Weyl acerca de

perturbaciones de espectros.

Además del estudio de la estabilidad de las componentes del espectro, también se consideran

situaciones en las que una pequeña perturbación hace desaparecer un autovalor del operador no

perturbado. Específicamente cuando dicho autovalor esté inmerso en espectro continuo, aún cuando

también es interesante la situación en que sea aislado.

Al desaparecer, el valor propio se transforma en realidad en una resonancia, que es una especie

de valor propio generalizado. Este tema ha sido objeto de muchas investigaciones en las últimas

décadas, mencionamos por ejemplo [11] y la referencias que allí aparecen.

1.2. Introducción al fenómeno de resonancia

El fenómeno de resonancia aparece en varias áreas de la física y las matemáticas como la Mecánica

Clásica, Cuántica y Ondulatoria. Se han hecho varios intentos para darle una descripción matemáti-

ca precisa. Nos remitimos a [17] para una discusión sobre las dificultades que surgen al caracterizar

rigurosamente el concepto de resonancia para sistemas autónomos en Mecánica Cuántica.

Uno de los enfoques más fructíferos consiste en definir las resonancias cuánticas como polos de una

continuación meromorfa adecuada de la resolvente del hamiltoniano, desde el semiplano complejo

superior hasta el semiplano inferior. Cada polo aparece como un “valor propio” con parte imaginaria

negativa, correspondiente a funciones propias generalizadas fuera del espacio de Hilbert. Existe una

gran cantidad de literatura sobre este tema y remitimos al lector al texto [11] y las referencias que

allí aparecen.
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Las resonancias también se pueden caracterizar en términos de un decaimiento exponencial de

la evolución temporal del sistema gobernado por el hamiltoniano (definido como un operador

autoadjunto en algún espacio de Hilbert H). Este comportamiento se puede rastrear mediante la

probabilidad de supervivencia Pω para algunos estados adecuados ω. Esta cantidad, definida por

Pω(t) = |→ω, e→iHtω↑|2 ,

mide la probabilidad de encontrar en el instante t el sistema gobernado por el hamiltoniano H

en su estado inicial ω. Por un lado, sabemos que el decrecimiento exponencial exacto es imposible

para muchos modelos de interés físico; ver [17]. Por otro lado, si z = ε ↓ i! (con ! > 0) es un

polo de la resolvente del hamiltoniano H con “función propia resonante” ω (es decir, Hω = zω),

formalmente esperaríamos que,

Pω(t) = e→2!t
↔ω↔2 ,

lo cual es incorrecto puesto que la función propia resonante ω no pertenece al espacio de Hilbert.

Por lo tanto, en presencia de una resonancia z, lo mejor que se puede esperar es la existencia de un

estado ϑ ↗ H tal que la cantidad →ϑ, e→iHtϑ↑ se comporta aproximadamente como e→izt. Ambas

cantidades son iguales a 1 en t = 0 y en la mayoría de los casos de interés, ambas se acercan a cero

cuando t tiende a ↘. El objetivo principal es entonces estimar la diferencia,

→ϑ, e→iHtϑ↑ ↓ e→izt ,

para t no cerca de 0 ni de ↘.

Para operadores diferenciales, sobre el semieje real, esta diferencia se puede estimar uniformemente

en tiempo ([15]) o en norma L2 ([6]), mediante técnicas EDO. En estos casos, la función ϑ es una

función propia resonante truncada. Se han exhibido estimaciones puntuales cuando la resonancia

aparece con la perturbación de un valor propio simple inestable incrustado en algún espectro

continuo, ver [8] y [13] para una revisión. Los ingredientes principales son en este caso la reducción

de Feshbach-Livsic y la regla de oro de Fermi. En [8], este enfoque en realidad se combina con

algunas técnicas de conmutador positivo (teoría de Mourre) y las estimaciones se obtienen una vez

que la función propia se localiza en energía.

La aplicación de Feshbach-Livsic para estudiar resonancias se remonta al menos a [12] y ha sido

fuente de varios resultados en las últimas décadas en diferentes áreas.

Para la relación entre la evolución del tiempo (la perspectiva que abordamos en este artículo) y

los polos de la resolvente en el contexto de la teoría analítica de la perturbación, mencionamos el

trabajo [11] y las referencias contenidas en este último.
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2. Perturbaciones de rango uno

En el artículo [7] se abordan resonancias generadas por perturbaciones de rango uno de operadores

autoadjuntos con valores propios inmersos en el espectro continuo. La inestabilidad de estos valores

propios se analiza y se exhibe una caída casi exponencial de los estados resonantes asociados.

Además mostramos cómo estos resultados pueden ser aplicados a los operadores de Sturm-Liouville.

Las herramientas principales son la teoría de Aronszajn-Donoghue para perturbaciones de rango

uno, un proceso de reducción del operador resolvente basado en la fórmula de Feshbach-Livsic,

la regla de oro de Fermi y un análisis cuidadoso de la transformada de Fourier de funciones

cuasi-Lorentzianas. Estos resultados se pueden aplicar también para estimar explícitamente el

correspondiente tiempo de estadía y los fenómenos de concentración espectral.

La reducción de Feshbach-Livsic se desarrolla en el contexto de operadores diferenciales en la

semirecta, lo que permite obtener estimaciones puntuales cuando la resonancia aparece con la

perturbación de un valor propio simple e inmerso en el espectro absolutamente continuo. Aunque

varias de estas herramientas pueden adaptarse fácilmente a una clase bastante amplia de pertur-

baciones, en [7] se limita la discusión al caso de rango uno y se relacionan estos resultados con

resultados clásicos en este campo [10,18].

En la Sección 2 de dicho trabajo se establecen condiciones que aseguren que la transformada de

Fourier de una función tipo Lorentz exhiba una caída de tiempo exponencial aproximada. La

demostración de este hecho se basa en técnicas de análisis clásico, que siguen principalmente las

ideas de [8]. Este resultado es de interés en sí mismo y establece que si una función real está cerca

de
1

ϖ

a

(ε↓ ε0)2 + b2

entonces su Transformada de Fourier tiene un comportamiento casi exponencial.

Se consideran en particular, perturbaciones de rango uno de la forma

Hε = H0 + ϱ|ϑ↑→ϑ| ,

donde H0 tiene un valor propio simple incrustado en algún espectro absolutamente continuo.

Mostramos cómo la inestabilidad del valor propio inmerso y las propiedades espectrales de los

operadores Hε están relacionadas con los valores límite de la resolvente reducida de H0 y la regla

de oro de Fermi.
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Lo anterior permite formalizar la existencia de una resonancia en términos de decaimiento casi

exponencial, bajo hipótesis adecuadas sobre la resolvente reducida del operador H0. La prueba

combina el proceso de reducción de Feshbach-Livsic y la fórmula de Krein con el teorema que

estima la Transformada de Fourier de una función cuasi-Lorentziana.

Como corolario, se deduce la concentración espectral de Kato y el comportamiento asintótico

para el tiempo de estadía del estado propio correspondiente, en función del parámetro ϱ, bajo

la evolución gobernada por Hε y para valores pequeños de ϱ. Finalmente, las propiedades de los

valores límites de la resolvente reducida de H0 en el eje real, se deducen de las propiedades de la

medida espectral de H0, cuando ésta tiene multiplicidad finita. Esta reformulación se resume en la

estimación del comportamiento casi exponencial. Todos estos resultados se ilustran mediante un

modelo de Sturm-Liouville. En contraste con [8], el punto de vista adoptado no requiere ninguna

técnica de conmutador positivo.

3. Estimaciones para el tiempo de vida

En el artículo [1] se aborda el estudio de perturbaciones de rango uno aplicadas a operadores

autoadjuntos. Se estima cómo estas perturbaciones afectan el tiempo de permanencia de un estado

cuántico, especialmente cuando el operador perturbado tiene un valor propio simple incrustado en

su espectro absolutamente continuo.

En ese trabajo se analiza cómo una perturbación de rango uno puede alterar significativamente

el espectro de un operador autoadjunto, lo que incluye el cambio en la naturaleza de los valores

propios incrustados en el espectro continuo. Se utiliza principalmente el Modelo de Friedrichs, en

el que se perturba un operador absolutamente continuo en L2(R), por un operador de rango uno

|ϑ↑→ϑ|. Para este modelo se estiman las propiedades del tiempo de permanencia bajo perturbaciones

pequeñas.

Primero se revisa un resultado que caracteriza las pertubaciones de rango uno para las cuales el

operador,

H0 = M + c|ϑ↑→ϑ|

tiene exactamente un valor propio (simple) inmerso en el espectro continuo, con vector propio

correspondiente ω. Aquí, M es un operador absolutamente continuo y c una constante adecuada.

Luego se perturba este operador nuevamente por un operador de rango uno y se proporciona una

estimación explícita del tiempo de permanencia utilizando la teoría de perturbaciones y técnicas

de deformación analítica.
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Así, consideramos el operador

Hϑ = H0 + ς|ϑ↑→ϑ|

que para ς pequeño no tiene valores propios.

Se demuestra que en este caso el tiempo de permanencia en un vector ω para pequeñas pertur-

baciones, es finito y que, bajo ciertas condiciones, es proporcional a ς→2, donde ς representa la

magnitud de la perturbación.

En el caso en que M sea el operador de multiplicación por x en L2(R) y ϑ sea analítica en un

sentido adecuado, podemos usar la técnica de traslación analítica para demostrar que el tiempo de

vida,

φ(ω) =
1

2!
+O

(
1

ς

)
.

La cantidad 1
2! coincide con el término correspondiente de la regla de oro de Fermi,

2ς→2Im→ω, Rϑ(E0)ω↑

donde E0 es el valor propio y Rϑ la resolvente reducida del operador H0.

Existen numerosos trabajos (ver por ejemplo las referencias mencionadas en [1]) que describen

resonancias mediante el análisis del comportamiento de la amplitud de supervivencia, es decir, la

función R(t) = →ω, e→iHtω↑ que, en muchos casos, incluye leyes explícitas de decaimiento exponen-

cial para esta cantidad.

4. Perturbaciones de rango finito

Los resultados contenidos en las dos secciones anteriores pueden ser extendidos al caso de pertur-

baciones de rango finito. Esta generalización no es inmediata, de hecho ya en el uso de la fórmula

de Krein para expresar la resolvente perturbada en términos de la resolvente libre, aparece un

término matricial, que obliga al uso de descomposiciones matriciales, lo que para rango uno se

reduce a una función real.

Este tipo de resultados ha sido desarrollado ampliamente en el artículo [4]. Allí, se estudia el

comportamiento del espectro del operador perturbado

Hω = H0 +
N∑

i=1

↼i|ϑi↑→ϑi|,

donde {ϑ1, . . . ,ϑN} es un conjunto de vectores ortonormales en H y ω = (↼1, . . . ,↼N ), ↼i ↗ R,

para i = 1, . . . , N .
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Aquí, H0 es un operador autoadjunto en un espacio de Hilbert H.

Como en el caso de rango uno, para demostrar que una parte del operador es absolutamente

continua es necesario imponer una especie de regla de oro, que se traduce en la positividad de una

cantidad que involucra a la resolvente reducida.

El estudio se centra en dos aspectos principales: la identificación de subespacios en los que el

operador perturbado Hω tiene un espectro absolutamente continuo, y su comportamiento resonante

cuando el operador libre H0 tiene un valor propio inmerso en el espectro absolutamente continuo.

Para ambos resultados se requiere además una serie de relaciones entre la resolvente del operador

Hω y los subespacios,

Mω = span{Rω(z)ϑj : j = 1, . . . , N, z /↗ R} .

Aquí, Rϖ = (Hϖ↓z)→1 es la resolvente del operador Hϖ , definida para z un número complejo fuera

de su espectro.

En el caso de una perturbación de rango uno, M es simplemente el subespacio cíclico asociado al

operador Hω y al vector ϑ.

Los resultados respectivos aparecen en [7] para el caso de rango uno y en [5] para el caso de rango

finito y se basan en un estudio espectral detallado que se encuentra en [10].

La estrategia empleada depende también de una versión extendida de la fórmula de Krein. Para

formular este principio, notamos que la perturbación de rango finito puede ser factorizada,

Vω = φ↑ωφω =
N∑

i=1

↼i|ϑi↑→ϑi|

donde φω : H ≃ CN está definido por

φω↽ =





⇐
↼1→ϑ1,↽↑

⇐
↼2→ϑ2,↽↑

...
⇐
↼N →ϑN ,↽↑





donde →·, ·↑ denota el producto interior en el espacio de Hilbert.

La fórmula de Krein ahora establece: sean R0(z) y Rω las resolventes de los operadores H0 and

Hω respectivamente. Entonces, para ⇒z > 0,

Rω(z) = R0(z)↓R0(z) φ
↑
ω(1 + φωR0(z)φ

↑
ω)

→1φωR0(z) .
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Notamos que (1 + φωR0(z)φ↑ω) es una matriz compleja invertible, a diferencia del caso de rango

uno, en que esta cantidad es un escalar.

En relación con el comportamiento resonante, en este artículo se establece que, en caso que el

operador no perturbado H0 tenga un autovalor inmerso en el espectro absolutamente continuo, el

operador perturbado Hω exhibe un comportamiento resonante. Específicamente, la cantidad

|→ω0, e
→iHωtω0↑|

2

se comporta casi exponencialmente. Las herramientas utilizadas en la demostración de estos resul-

tados son nuevamente una regla de oro y fórmulas adecuadas de Krein y Feshbach-Livsic. Además,

se estima el correspondiente tiempo de permanencia.

5. Perturbaciones singulares

Las interacciones tipo delta en Mecánica Cuántica presentan una serie de dificultades técnicas y

conceptuales debido a la naturaleza singular de la delta de Dirac ⇀. La principal dificultad es que el

Hamiltoniano con una interacción delta no es un operador autoadjunto en el sentido convencional,

lo que complica el tratamiento riguroso del sistema.

Para un operador autoadjunto H0 que actúa en el espacio de Hilbert L2(Rn), estamos hablando

de

Hϖ = H0 + ↼|⇀↑→⇀|,

que opera como

Hϖϑ = H0ϑ + ↼ϑ⇀

Este tipo de interacción puede ser tratado mediante regularización, y es útil para modelar inte-

racciones locales. De hecho, la interacción está localizada en el origen, de modo que no influye para

elementos del espacio de Hilbert que se anulen en una vecindad de cero.

Además, se establece que esta interacción puede ser considerada una perturbación de rango uno,

lo que permite un tratamiento simplificado en muchos casos de interés. Este hecho se explota

en [4], donde, aparte de discutir las estrategias para caracterizar el Hamiltoniano como operador

autoadjunto, se demuestra una correspondiente fórmula de Krein.

En dicho trabajo se extienden estas ideas a perturbaciones singulares más generales, incluyendo

por ejemplo potenciales localizados en una superficie en el espacio n-dimensional.
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Se explicitan los dominios donde el operador singular Hϖ es autoadjunto. Además, se establecen

fórmulas para las correpondientes funciones de Green, para el caso H0 = ↓”+V (x) como operador

actuando en L2(Rn).

En particular, se demuestra en este caso el conocido teorema de Weyl, sobre la invariancia del es-

pectro esencial bajo perturbaciones compactas autoadjuntas. Para estas perturbaciones singulares

damos un resultado sobre la existencia de un espectro puntual puro (valores propios) de Hϖ .

La idea principal es aplicar una tipo de fórmula de Krein en este marco singular, junto con la

correspondiente relación entre las funciones de Green asociadas a los operadores H0 y Hϖ .

Como ejemplo explícito, se considera una clase especial de perturbaciones singulares del operador

autoadjunto H0 = ↓”+V (x) en el espacio de Hilbert L2(Rn), donde V (x) es una función acotada

de valor real.

Específicamente, consideraremos el operador perturbado Hϖ de H0 dado por el operador singular

|⇀S↑→⇀S | del tipo

Hϖ = H0 + ↼ |⇀S↑→⇀S | ,

donde S es la frontera de un dominio de Lipschitz acotado # en Rn, ↼ es un parámetro real y

⇀S(ω) =

∫

S

ω d⇁

donde d⇁ es el elemento de área de la superficie S.

Hay varios trabajos de perturbaciones singulares en una dimensión, es decir, perturbaciones del tipo

Función delta en un punto. En ellos se caracteriza el dominio de estos operadores en términos de

una condición de frontera. Seguimos este enfoque y somos capaces de relacionarlo con un operador

acotado en un espacio de Sobolev adecuado.

Por último, en dicho artículo se estudia la posible estabilidad de autovalores del operador libre

H0 = ↓”+ V (x), sujeto a una perturbación singular.

Ya que en estos espacios el operador se comporta como un verdadero operador de rango uno, es

posible establecer una fórmula de Krein en este contexto, la que se usa para demostrar una versión

del teorema de Weyl.
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6. Herramientas técnicas

Hemos incluido esta sección a sugerencia de uno de los evaluadores de este artículo, sugerencia que

por cierto agradecemos. El propósito es explicar con más detalle algunas herramientas útiles en

teoría espectral y que son ampliamente conocidas en el área de teoría de perturbaciones.

6.1. La fórmula de Feshbach-Livsic

Dado un operador autoadjunto H en un espacio de Hilbert H. La idea es estudiar la resolvente del

operador H reducido a un subespacio M.

Sea P la proyección ortonormal asociada al subespacio M y sea P↓ = I↓P , donde I es el operador

identidad en H. Consideremos el operador (el operador de Feshbach),

F (z) = PHP ↓ PHP↓(H↓
↓ z)→1P↓HP,

donde H↓ es el operador H reducido al complemento ortogonal de M. Entonces,

P (H ↓ z)→1P = (F (z)↓ z)→1

Esta fórmula permite estudiar la resolvente de un operador autoadjunto general, reducido a un

subespacio dado M y muestra como éste depende de la acción de vectores en el complemento

ortogonal de M, ver [12].

6.2. La fórmula de Krein

Esta es una fórmula explícita para la diferencia de las resolventes de dos operadores autoadjuntos

H y H0. Establece,

R(z)↓R0(z) = ↓R0(z)LV (z)R0(z),

donde z es un número complejo no real y LV (z) es un operador que depende de la perturbación

V ⇑ H ↓H0. Por ejemplo, cuando V = A↑B, la fórmula expresa,

LV (z) = A↑(I ↓BR0(z)A
↑)→1B

Hay muchos ejemplos para los cuales es posible factorizar la perturbación V de modo de obtener una

expresión muy simple para el operador LV (z). Por ejemplo, en el caso de rango uno, V = ϱ→ω, ·↑ω,

resulta,

LV (z) =
ϱ

1 + ϱ→ω, R0(z)ω↑
→ω, ·↑.
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Esta fórmula puede es muy útil en Teoría Espectral puesto que en ella es fácil identificar posibles

ceros y polos (como función de z) de la resolvente.

Para el caso de perturbaciones de rango finito, es posible obtener una expresión matricial para la

fórmula de Krein que se muestra en la Sección 4.

El caso singular, vale decir, perturbaciones que incluyan funciones de tipo delta, también puede

ser tratado con esta técnica.

6.3. La regla dorada de Fermi

Esta regla es un resultado fundamental en Mecánica Cuántica pero que, en realidad, no usamos en

los trabajos aquí mencionados. Solamente, hacemos notar que el parámetro ! que rige el compor-

tamiento casi exponencial de la probabilidad

P (t) = |→ω, e→itHω↑|2

aparece también en la regla dorada.

La regla de Fermi entrega la probabilidad de transición entre dos estados adecuados y, en nuestro

caso, P (t) es precisamente la probabilidad de transición entre el estado en tiempo t, es decir e→itHω

y el estado inicial ω.

Para el caso en que

H = H0 + ςV,

la regla indica que para ς pequeño, la probabilidad de transición debe ser proporcional a ς2.

En la Sección 3, presentamos estimaciones para el tiempo de vida

φ(ω) =

∫ ↔

→↔
P (t)dt.

En el caso resonante, se espera que la probabilidad P (t) tenga, para tiempo t grande, un compor-

tamiento aproximado de la forma e→!t, de modo que el tiempo de vida φ se debe comportar como
1
2! .

De hecho, en el caso de rango uno, el término que más influye en el tamaño de φ tiene la forma

cς→2, con c positivo. Esto es consistente con lo que indica la regla dorada.
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6.4. La estimación de Mourre

La estimación de Mourre (o conmutadores positivos) es una herramienta fundamental en Teoría

Espectral, particularmente para descartar la existencia de valores propios y de espectro singular

continuo.

Decimos que un operador autoadjunto H satisface una estimación de Mourre en un intervalo real

J si existe un operador autoadjunto A tal que.

EJ i[H,A]EJ ⇓ cEJ +KEJ .

Aquí, c es una constante positiva y K es un operador compacto. Además,

[H,A] = HA↓AH

es el conmutador entre los operadores H y A.

Bajo hipótesis adecuadas que aseguren entre otras cosas, que el conmutador i[H,A] es un operador

autoadjunto, la existencia de la estimación de Mourre, ver [16], tiene consecuencias muy relevantes,

tales como la ausencia de espectro singular continuo en J , la estabilidad del espectro absolutamente

continuo, un control de posibles valores propios y la existencia del límite de la resolvente R(z),

cuando z se acerca al eje real.

7. Algunos problemas abiertos

1. Estudio de perturbaciones fuera del espectro absolutamente continuo: aunque el trabajo se

centra en operadores con valores propios inmersos en el espectro absolutamente continuo, es

posible considerar perturbaciones de operadores con valores propios aislados. Es el caso por

ejemplo, de las “shape resonances”, ver por ejemplo [2] y [15]. En estos trabajos un operador

H, con un potencial de soporte compacto se considera una perturbación del operador H0 que

tiene una barrera de potencial infinita. La perturbación es grande pero puede ser pequeña en

la región donde los vectores propios de H0 son exponencialmente pequeños. En estos casos,

se podría obtener decaimiento casi exponencial además de la concentración espectral.

2. Aplicaciones a sistemas más generales de Sturm-Liouville: la teoría podría extenderse a siste-

mas más generales que no sean estrictamente de Sturm-Liouville, como operadores no lineales

o sistemas que incluyan interacciones de largo alcance.
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3. La concentración espectral en presencia de una resonancia, podría ser explorada con más

detalle. Por ejemplo, para el caso de una perturbación de rango uno,

Hε = H0 + ϱ|ϑ↑→ϑ| ,

donde H0 es un operador autoadjunto con un valor propio ε, con H0ω = εω. Como mostramos

en la Sección 2, puede ocurrir que para ϱ pequeño, Hε sea absolutamente continuo (o tenga

espectro absolutamente continuo en una vecindad de ε). Ciertamente, debemos tener que

ĺım
ε↗0

Eε

J
ω = ω,

donde Eε

J
es la proyección espectral asociada al operador Hε, en un intervalo J que contenga

a ε. Sería interesante estudiar el orden de la concentración del espectro en torno a ε, o sea

encontrar !ϱ, que tienda a 0 cuando ϱ tienda a 0, optimal, tal que que si Jε es el intervalo

centrado en ε y de radio !ϱ, entonces todavía se tenga,

ĺım
ε↗0

Eε

Jω
ω = ω,

La concentración espectral es un fenómeno mucho más general introducido en [14]. Men-

cionamos también [9] para una relación con resonancias. También se podría estudiar esta

propiedad para perturbaciones de rango finito y perturbaciones singulares.

4. Regla de oro de Fermi en sistemas: la regla de oro de Fermi es una herramienta central en

este trabajo. Sería interesante investigar su aplicabilidad y ajustes por ejemplo cuando se

consideran perturbaciones dependientes del tiempo, incluso para rango finito o singular.

5. Análisis del comportamiento de la función de supervivencia en sistemas dinámicos: el com-

portamiento de la amplitud de supervivencia R(t) = →ω, e→iHtω↑ se plantea aquí para la

ecuación de Schrödinger. Un área de investigación futura podría ser el estudio detallado de

su comportamiento por ejemplo para la ecuación de Dirac o para el movimiento de ondas.

6. Estudio de la estabilidad espectral y el tiempo de vida en presencia de perturbaciones singu-

lares: la estabilidad de los autovalores bajo perturbaciones singulares es un tema clave en el

artículo. Un área interesante para futuras investigaciones sería el análisis del tiempo de vida

o el tiempo de decaimiento de los estados cuánticos asociados a los autovalores, especialmen-

te en presencia de perturbaciones singulares. Además de la formulación de un teorema de

estabilidad espectral más general para sistemas con perturbaciones singulares.

7. Extensión de la teoría a perturbaciones dependientes del tiempo: en el artículo, las per-

turbaciones son estáticas, pero se podría investigar el comportamiento de perturbaciones

dependientes del tiempo, de tipo delta. Estudiar cómo evoluciona el espectro en presencia
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de perturbaciones dinámicas podría proporcionar nuevas perspectivas, particularmente en

sistemas cuánticos fuera de equilibrio.

8. Extensión de los resultados al caso de perturbaciones no autoadjuntas: aunque el enfoque se

limita a operadores autoadjuntos, sería interesante explorar cómo los resultados se generalizan

a operadores no autoadjuntos que podrían surgir en ciertos modelos cuánticos. En particular,

estudiar la estabilidad y la caracterización dinámica de las resonancias para estos operadores

podría ser un área de gran interés.

9. Estudio de la estabilidad espectral, resonancia y concentración espectral para operadores de

Schrödinger discretos. Mencionamos [3] para resultados en esta área.
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