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– Comparing the real genus and the symmetric crosscap number
of a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

A. Bacelo, J. J. Etayo and E. Mart́ınez

– Some inequalities associated with a partial differential operator . . 681

Raoudha Laffi

– Absolutely continuous spectrum preservation: A new proof
for unitary operators under finite-rank multiplicative
perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
Pablo A. Dı́az



CUBO, A Mathematical Journal

Vol. 27, no. 3, pp. 523–551, December 2025

DOI: 10.56754/0719-0646.2703.523

Infinitesimally tight Lagrangian submanifolds in
adjoint orbits: A classification of real forms

Jhoan Báez1,!

Luiz A. B. San Martin2

1 Beauchef 851, Edificio Norte – O!ce

610, Santiago, Chile.

sbaez@cmm.uchile.cl!

2 Imecc - Unicamp, Departamento de

Matemática. Rua Sérgio Buarque de

Holanda, 651, Cidade Universitária

Zeferino Vaz. 13083-859 Campinas - SP,

Brasil.

smartin@ime.unicamp.br

ABSTRACT

In this paper, we study the geometry of real flag manifolds

within complex flag manifolds, focusing on their Lagrangian

properties. We prove that the natural immersion of real

flag manifolds into their corresponding complex flag mani-

folds can be characterized as infinitesimally tight Lagrangian

submanifolds with respect to the Kirillov-Kostant-Souriau

(KKS) symplectic form. This property of tightness provides

a significant geometric constraint, indicating that the sub-

manifolds are locally minimal and cannot be deformed in-

finitesimally to reduce their volume further in the ambient

space. We further provide a comprehensive classification of

these immersions, detailing the conditions under which such

submanifolds exist across various symmetric pairs. This clas-

sification elucidates the relationship between the structure of

the real flags and the associated complex flags, contributing

to a deeper understanding of the interplay between symplec-

tic geometry and representation theory.
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RESUMEN

En este artículo, estudiamos la geometría de variedades ban-

dera reales dentro de variedades bandera complejas, con foco

en sus propiedades Lagrangianas. Demostramos que la in-

mersión natural de variedades bandera reales en sus corres-

pondientes variedades bandera complejas puede caracteri-

zarse como subvariedades Lagrangianas infinitesimalmente

estrechas con respecto a la forma simpléctica de Kirillov-

Kostant-Souriau (KKS). Esta propiedad de estrechez provee

una restricción geométrica significativa, indicando que las

subvariedades son localmente mínimas y no pueden defor-

marse infinitesimalmente para reducir aún más su volumen

en el espacio ambiente. Además entregamos una clasificación

completa de estas inmersiones, detallando las condiciones

bajo las cuales tales subvariedades existen entre varios pares

simétricos. Esta clasificación aclara la relación entre la es-

tructura de las banderas reales y las banderas complejas aso-

ciadas, contribuyendo a un entendimiento más profundo de

la interacción entre la geometría simpléctica y la teoría de

representaciones.

Keywords and Phrases: Flag manifolds, homogeneous space, Lagrangian submanifolds, infinitesimally tight

2020 AMS Mathematics Subject Classification: 14M15, 17Bxx, 22Bxx, 22Cxx, 22F30, 53D12
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1 Introduction

Lagrangian submanifolds in symplectic homogeneous spaces have been extensively studied, with

significant contributions to their classification in various contexts. For instance, compact symplec-

tic homogeneous manifolds have been classified in [24]. In this paper, we focus on the coadjoint

orbits of semisimple Lie groups, exploring the applications of semisimple Lie theory to symplectic

geometry, specifically in identifying Lagrangian submanifolds within adjoint orbits. Our motiva-

tion stems from the homological mirror symmetry conjecture and, in particular, from concepts

in Fukaya–Seidel categories, where objects and morphisms are generated by Lagrangian vanishing

cycles and their thimbles, exhibiting specific behaviors within symplectic fibrations (see [10] and

[12]).

The primary objective of this paper is to investigate the locally, globally, and infinitesimally tight

Lagrangian submanifolds on adjoint orbits, a concept first introduced by Y.-G. Oh in 1991 (see

[17]). Oh defined tightness for closed Lagrangian submanifolds in compact Hermitian symmetric

spaces as follows:

Definition 1.1. Let (M,ω, J) be a Hermitian symmetric space of compact type and L a closed

embedded Lagrangian submanifold of M . Then L is said to be globally tight (resp. locally

tight) if it satisfies

# (L ⌐ g ⋅L) = SB (L,Z2)
for any isometry g ∈ G (resp. su!ciently close to the identity) such that L intersects g ⋅ L trans-

versely. Here, SB (L,Z2) denotes the sum of the Z2-Betti numbers of L.
In the same work, Oh demonstrated that the standard RP

n inside CP
n is tight and minimizes

volume among all its Hamiltonian deformations (see [17]), linking tightness to Hamiltonian volume

minimization (see [18]). This concept is further connected to the Arnold–Givental conjecture,

which posits that the number of intersection points between a Lagrangian L and its image under

a Hamiltonian flow ε(L) is bounded below by the sum of its Z2-Betti numbers:

# (L ⌐ ε(L)) ≥⩀ bk(L;Z2).

The study of tight Lagrangian submanifolds is therefore of significant interest in symplectic geom-

etry. Oh also posed the open problem:

Problem 1.2. Classify all possible tight Lagrangian submanifolds in other Hermitian symmetric

spaces.

By [17], Oh proposed the following conjecture:
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Conjecture 1.3. Are the real forms in these spaces the only possible tight Lagrangian submani-

folds?

While Oh’s conjecture suggests that real forms may be the only possible tight Lagrangian sub-

manifolds in Hermitian symmetric spaces, our study is restricted to the case of flag manifolds.

In particular, we examine the natural immersion of real flag manifolds into their corresponding

complex flag manifolds and demonstrate that they can be characterized as infinitesimally tight La-

grangian submanifolds with respect to the Kirillov-Kostant-Souriau (KKS) symplectic form. This

characterization provides a significant geometric constraint, indicating that these submanifolds

are locally minimal and cannot be deformed infinitesimally to further reduce their volume in the

ambient space.

Furthermore, we provide a comprehensive classification of these immersions, detailing the con-

ditions under which such submanifolds exist across various symmetric pairs. This classification

elucidates the relationship between the structure of real flags and their associated complex flag

manifolds, contributing to a deeper understanding of the interplay between symplectic geometry

and representation theory.

In a similar vein, Iriyeh and Sakai classified tight Lagrangian submanifolds in S
2 ⋊ S2 (see [15]),

showing that if L is a closed, embedded, tight Lagrangian surface in S
2 ⋊ S2, then L must be one

of the following:

• L = {(x,−x) ∈ S2 ⋊ S2 ⋉ x ∈ S2} (global tight submanifold).

• L = S1(a) ⋊ S1(b) ⊂ S2 ⋊ S2, where S
1(a) is a round circle of radius 0 < a ≤ 1 (locally tight

submanifold).

This classification forms a special case of tight submanifolds in products of flag manifolds, which

were studied in [13]. There, the authors demonstrated that a product of flag manifolds F!1 ⋊ F!2

admits a Lagrangian orbit under the diagonal action (or shifted diagonal action) if and only if

!2 = !⌐1, where !2 = ϑ!1 with ϑ being the symmetry of the Dynkin diagram, given by ϑ = −w0,

and w0 being the longest element of the Weyl group W . Such a Lagrangian orbit is described by

the graph of

− id ⋉ Ad(U)(iH)→ Ad(U)(iϑ(H)),
or by the graph of −Ad(m), where m ∈ U for the shifted diagonal action.

A significant contribution of [13] was the introduction of the concept of infinitesimally tight sub-

manifolds. The authors proved that Lagrangian orbits resulting from the diagonal (or shifted

diagonal) action are infinitesimally tight. This notion is formally defined as follows:
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Definition 1.4. Let L be a submanifold of M = G⌜H. An element X ∈ g = Lie(G) is called

transversal to L if it satisfies the following two conditions:

(1) For any x ∈ L, if ⌜X(x) ∈ TxL, then ⌜X(x) = 0.
(2) The set

fL(X) = ⌝x ∈ L ⋉ 0 = ⌜X(x) ∈ TxL⌝
is finite.

That is, ⌜X is tangent to L only at finitely many points where it vanishes.

A Lagrangian submanifold L in M = G⌜H is called infinitesimally tight if

# (fL(X)) = SB (L,Z2)
for any X ∈ g such that ⌜X is transversal to L. Moreover, [13] presents the following theorem:

Theorem 1.5. Let M = G⌜H be a homogeneous space with a G-invariant symplectic form ω. Then

a Lagrangian submanifold L ⊂M is infinitesimally tight if and only if it is locally tight.

As discussed in [6] and [13], isotropic submanifolds can be characterized through the moment

map of a Hamiltonian action. In particular, Gorodski and Podestà [6] classified compact tight

Lagrangian submanifolds in irreducible compact homogeneous Kähler manifolds that have the Z2-

homology of a sphere. This classification is closely related to our study, as it provides structural

constraints on the existence of tight Lagrangian submanifolds within compact homogeneous spaces.

Our work builds upon these ideas by characterizing the complex flag manifolds that admit real

flag manifolds as Lagrangian submanifolds.

To establish this characterization, we equip the complex flag manifolds with the Kirillov-Kostant-

Souriau (KKS) symplectic form and consider the compact orbits of the real forms of the associated

complex Lie group. This approach aligns with recent developments related to the Ph.D. thesis of

Báez, where the author studied Lagrangian submanifolds of adjoint semisimple orbits. The results

from this thesis are directly related to the findings presented in this paper, further reinforcing the

connection between Lagrangian submanifolds and the geometry of adjoint orbits in semisimple Lie

theory.

Regarding the work of Gorodski and Podestà [6], although our conclusions share similarities, the

methodologies di!er significantly. While their approach focuses on homogeneous Kähler manifolds

with topological constraints on homology, our classification provides a systematic study of complex

flag manifolds and their real forms that possess compact Lagrangian orbits. This classification is

explicitly detailed in Table 1 at the end of Subsection 3.1, with a case-by-case proof given in

Appendix A.
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Specifically, in Section 4, we prove that real flag manifolds can be seen as infinitesimally tight

submanifolds of the corresponding complex flag manifolds. This result establishes a direct link

between the structure of flag manifolds, symplectic geometry, and representation theory, o!ering

a broader perspective on the classification of Lagrangian orbits within homogeneous symplectic

spaces.

2 Flag manifolds

Flag manifolds play a central role in the study of Lie groups and their geometric structures.

However, their treatment varies significantly depending on whether they are considered within

the framework of complex semisimple Lie groups or real semisimple Lie groups. This distinction

is crucial, as notation and conventions often diverge in the literature, with most works focusing

exclusively on either the real or the complex setting. To provide a unified perspective, this section

introduces both real and complex flag manifolds, along with fundamental concepts such as Weyl

chambers and Weyl groups. The goal is to establish a consistent notation and clarify potential

ambiguities, ensuring that the reader can navigate seamlessly through subsequent discussions.

There exist several equivalent definitions of flag manifolds, and they are sometimes referred to

as generalized flag manifolds. This terminology appears in various sources, with one of the most

well-known references being Alekseevsky’s work (see [1]), where these spaces are studied from a

broader geometric perspective. A fundamental definition, which serves as a starting point for our

discussion, is the following:

Definition 2.1. Let g be a semisimple non-compact Lie algebra, and let G be a connected Lie

group with Lie algebra g. The flag manifold FH is the homogeneous space

FH = G⌜PH ,

where PH is a parabolic subgroup of G, determined by an element H ∈ g, which can be chosen

within the closure of a positive Weyl chamber of g.

The construction of the parabolic subgroup PH depends on whether g is a real or complex Lie alge-

bra. In what follows, we shall present these constructions using fundamental tools from semisimple

Lie theory. Although di!erent approaches provide valuable insights, in this work, we adopt the

perspective that complex flag manifolds are most naturally understood as adjoint orbits of compact

semi-simple Lie groups. This viewpoint not only highlights their intrinsic geometric structure but

also establishes a direct connection with symplectic geometry and representation theory, which will

be further explored in the subsequent discussion.
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To avoid confusion, let us denote the following:

• The notation gC will be used to explicitly indicate that g is considered as a complex Lie

algebra, and similarly, G
C will denote a complex Lie group when necessary. When this

notation is omitted, g and G should be understood in a general sense or as real structures,

depending on the context.

• The notation gC denotes the complexification of the Lie algebra g, which in this case is a real

Lie algebra.

For a more detailed study of these flag manifolds, we recommend referring to [1–3,19]. Additionally,

for further geometric insights, see [4, 8].

2.1 Complex flag manifolds

Let gC be a semisimple complex Lie algebra, and let h be a Cartan subalgebra of gC. We define

the following:

• ”C is a root system, where for each ϖ ∈ ”C, there exists an element Hω ∈ hC such that

ϖ(H) = ⌝Hω,H⌝, ∀H ∈ hC,
where ⌝⋅, ⋅⌝ denotes the Cartan–Killing form of gC.

• #C is a simple root system, such that ”+C denotes the set of positive roots in ”C, and

{Hω ⋉ ϖ ∈ #C} forms a basis of hC.

• a+ is the corresponding positive Weyl chamber, given by

a+ = {H ∈ hC ⋉ ϖ(H) > 0, ∀ϖ ∈ #C}.

Thus, we have the root space decomposition:

gC = hC ⧖ ⩀
ω∈”C

gC
ω
,

where each root space is given by

gC
ω
= {X ∈ gC ⋉ [H,X] = ϖ(H) ⋅X, ∀H ∈ hC}.
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The Borel subalgebra b, which is the maximal solvable subalgebra, is defined as

b = hC ⧖ ⩀
ω∈”+C

gC
ω
.

A subalgebra p of gC is called parabolic if it contains a Borel subalgebra. The parabolic subalgebra

associated with an element H is defined as

pH = hC ⧖ ⩀
ω(H)≥0

gC
ω
. (2.1)

Remark 2.2. In some sources, the parabolic subalgebra defined in Equation (2.1) is denoted by

p!H
, where !H = {ϖ ∈ #C ⋉ ϖ(H) = 0}.

Let GC be a connected Lie group with Lie algebra gC. The parabolic subgroup PH is the normalizer

of pH in G
C, given by

PH = {g ∈ GC ⋉ Ad(g) ⋅ pH = pH}.
The complex flag manifold associated with H is then defined as the quotient space:

FH = GC⌜PH .

Furthermore, we will see that the complex flag manifold can be seen as an adjoint orbit of a

compact Lie group. For instance, choosing a Weyl basis given by Hω for ϖ ∈ #C and Xω ∈ gCω for

ϖ ∈ ”C, we have:

• [Xω,X−ω] =Hω,

• [Xω,Xε] = mω,εXω+ε with mω,ε ∈ R, where mω,ε = 0 if ϖ + ϱ is not a root and mω,ε =
−m−ω,−ε .

Defining Aω =Xω −X−ω and Sω = i(Xω +X−ω), we obtain the compact real form:

u = spanR{iHω,Aω, Sω ⋉ ϖ ∈ ”+C}.

Let U = expu be a compact real form of GC, and define

UH = PH ⌐U.



CUBO
27, 3 (2025)

Infinitesimally tight Lagrangian submanifolds in adjoint orbits... 531

The adjoint action of U is transitive on FH with isotropy subgroup UH at H, yielding

FH ≃ U⌜UH ≃ Ad(U) ⋅H.

Additionally, denoting bH = 1 ⋅UH as the origin of FH , its tangent space at bH is given by

TbH
FH = spanR{Aω, Sω ⋉ ϖ(H) > 0} = ⩀

ω(H)>0
uω,

where uω = ⌝gCω ⧖ gC−ω⌞ ⌐ u = spanR{Aω, Sω}.
Remark 2.3. Given a complex semisimple Lie algebra gC, a real Lie algebra g0 is called a real

form of gC if its complexification satisfies g0 ⊗C = gC. A real form of gC can be either compact or

non-compact. Additionally, all compact semisimple Lie algebras are real.

2.2 Real flag manifolds

Let g be a semisimple, non-compact real Lie algebra. To construct real flag manifolds, we introduce

the following fundamental elements of real semisimple Lie theory:

• Let ς be a Cartan involution, that is, an involutive automorphism such that the associated

bilinear form

Bϑ(X,Y ) = −⌝X, ςY ⌝, X,Y ∈ g
defines an inner product on g, where ⌝⋅, ⋅⌝ denotes the Cartan–Killing form of g. The Cartan

involution induces a Cartan decomposition

g = k⧖ s,

where

k = {X ∈ g ⋉ ςX =X}, and s = {Y ∈ g ⋉ ςY = −Y }.
The subspaces k and s are orthogonal with respect to both Bϑ and the Cartan–Killing form.

Notably, k is often referred to as the compact component of the Cartan decomposition,

although it is not necessarily compact. Furthermore, we define the maps φ ⋉ g → k and

ϑ ⋉ g→ s, given by

φ(X) = X + ςX
2

, and ϑ(X) = X − ςX
2

,

which correspond to the parallel projections onto k and s, respectively.
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• Let a ⊂ s be a maximal Abelian subalgebra. Then, there exists a Cartan subalgebra h of g

that contains a. Given a pair (ς,a), we denote by ”R the set of roots associated with (ς,a),
where each root is a linear functional ϖ ⋉ a→ R satisfying

Bϑ(Hω,H) = ϖ(H), ∀H ∈ a.

These roots can be interpreted as restrictions of the roots of hC, the Cartan subalgebra of

the complexification of g, denoted as gC.

• The Weyl group associated with a is the finitely generated group of reflections across the

hyperplanes defined by ϖ = 0 in a, for ϖ in the root system of a. The generators of the Weyl

group corresponding to these reflections are called simple reflections.

• The Weyl chambers associated with (ς,a) are the connected components of

{H ∈ a ⋉ ϖ(H) ≠ 0, ∀ϖ ∈ ”R}.
Selecting one of these chambers as the positive Weyl chamber a+, we define the set of positive

roots as

”+R = {ϖ ∈ ”R ⋉ ϖ⌞a+ > 0}.
Consequently, we define

n = ⩀
ω∈”+R

gω, and n− = ⩀
ω∈”+R

g−ω,

where ςgω = g−ω and ςn = n−. Furthermore, there exists a simple root system #R associated

with a+, such that {Hω ∈ a ⋉ ϖ ∈ #R} forms a basis of a.

Moreover, we obtain the Bϑ-orthogonal decomposition

s = a⧖ ϑ(n).

The triplet (ς,a,a+) is called an admissible triple of g, and it gives rise to the decomposition

g = k⧖ a⧖ n,

known as the Iwasawa decomposition. Let G be a connected Lie group with Lie algebra g. If K, A,

and N are the connected subgroups generated by k, a, and n, respectively, then G is di!eomorphic

to K ⋊A ⋊N . This leads to the global Iwasawa decomposition:

G =KAN.
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For H ∈ cl(a+), we define

n+
H
= ⩀

ω(H)>0
gω, and n−

H
= ⩀

ω(H)<0
gω.

Remark 2.4. If H ∈ a+, i.e., H is a regular element, then n = n+
H

and n− = n−
H

. In some literature,

n+
H

is denoted by n+!, where ! = {ϖ ∈ #R ⋉ ϖ(H) = 0}.
Given an admissible triple (ς,a,a+), the parabolic subalgebra associated with H ∈ cl(a+) is

pH = kH ⧖ a⧖ n.

Let G be a connected Lie group with Lie algebra g. The parabolic subgroup associated with H is

defined as the normalizer of pH in G. By the global Iwasawa decomposition of G, we obtain:

KH = {k ∈K ⋉ Ad(k)⌞aH
= idaH

}
where aH = a⊖a(H) and a(H) be a subalgebra generated by {Hω ⋉ ϖ(H) ≠ 0}. Then, the parabolic

subgroup PH is given by:

PH =KH ⋅A ⋅N.

Consequently, we have the quotient structure:

G⌜PH = K ⋅A ⋅N
KH ⋅A ⋅N ≃K⌜KH ,

and it follows that:

K⌜KH ≃ Ad(K) ⋅H
which represents the K-adjoint orbit passing through H, commonly known as the real flag man-

ifold.

Remark 2.5. Given ⌜H ∈ s, we have that Ad(K)⋅ ⌜H⌐cl(a+) ≠ ∅. Since the action of K is transitive,

we can choose an element H ∈ cl(a+) which determines the same manifold.

Remark 2.6. We denote by FH the flag manifold passing through H ∈ cl(a+) when there is no

ambiguity regarding the compact group acting on it. Otherwise, we will specify it as an adjoint

orbit. To maintain clarity, we will represent flag manifolds in terms of the adjoint action (as the

orbit of U in the complex case and K in the real case).
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3 Lagrangian immersion of real flags on complex flag

In this section, we investigate the conditions under which a given real flag manifold can be realized

as a Lagrangian submanifold within a complex flag manifold. Specifically, given an adjoint orbit

Ad(K) ⋅H corresponding to a real flag manifold, we determine in which complex flag manifolds

it can be immersed as a Lagrangian submanifold. Importantly, this classification depends on the

choice of H, which we analyze using Satake diagrams, as well as the structural properties of K.

Contrary to a universal embedding, our approach highlights the interplay between the choice of H

and the ambient complex flag manifold.

As discussed in [3], given a compact semisimple Lie group U with Lie algebra u, the adjoint orbits

of U in u correspond to the flag manifolds of its complexified Lie group UC, whose Lie algebra is

uC. These adjoint orbits naturally inherit a symplectic structure, providing a geometric foundation

for our analysis.

The Kostant–Kirillov–Souriau (KKS) symplectic form on an adjoint orbit Ad(U) ⋅H is given by

ωx ⌝ ⌜X(x), ⌜Y (x)⌞ = ⌝x, [X,Y ]⌝u, X,Y ∈ u, (3.1)

where ⌝⋅, ⋅⌝u denotes the Cartan–Killing form on u, and ⌜X = ad(X) represents the Hamiltonian

vector field associated with the Hamiltonian function HX(x) = ⌝x,X⌝u. As a consequence, the

moment map µ of the U -adjoint action is simply the identity map, which is inherently equivariant.

To identify specific isotropic submanifolds within Ad(U) ⋅H, we rely on the following key result:

Proposition 3.1. Let (M,ω) be a connected symplectic manifold equipped with a Hamiltonian

action of a Lie group G, given by G ⋊M → M , along with an equivariant moment map µ. Let

L ⊂ G be a Lie subgroup.

Then, the orbit L ⋅ x is isotropic if and only if µ(x) belongs to the annihilator (l⋊)0 of the derived

algebra l⋊ of l.

This proposition was established in [13] and [14] using distinct methodologies.

3.1 Lagrangian immersion of real flags

Let U be a compact semisimple Lie group with Lie algebra u, and let k ⊂ u be a Lie subalgebra.

The pair (u, k) is called a symmetric pair if

[k, k⊥] ⊂ k⊥, and [k⊥, k⊥] ⊂ k,
where ↢ denotes the orthogonal complement with respect to the Cartan–Killing form on u.
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For any symmetric pair (u, k), if we define K = ⌝exp k⌝, then the quotient space U⌜K forms a

symmetric space. The dual symmetric pair is given by (g, k), where g is a non-compact semisimple

Lie algebra that serves as the real form of uC and admits a Cartan decomposition

g = k⧖ s, where s = ik⊥ ⊂ uC.
By construction, the orbits of the K-isotropy representation on s (or equivalently on k⊥) correspond

to the flag manifolds of g.

Given H ∈ k⊥, the Lagrangian immersion of real flag manifolds into their corresponding complex

flag manifolds is constructed as follows: Let a ⊂ s be a maximal abelian subalgebra. Then, there

exists a Cartan subalgebra h of g such that a ⊂ h and hC is a Cartan subalgebra of gC. Consequently,

for H ∈ a, we obtain

K⌜KH = Ad(K) ⋅H ↪ Ad(U) ⋅ iH = U⌜UH = FH . (3.2)

Thus, the flag manifolds of g are determined by the adjoint action of K on H and are immersed

in the flag manifolds of gC (complexification), which are determined by the adjoint action of U on

iH. Moreover, since u is compact, the connected component of the identity of k⋊⊥ corresponds to

the orthogonal complement of k⋊ with respect to the invariant scalar product on u. Consequently,

we arrive at the following proposition:

Proposition 3.2. Given a symmetric pair (u, k) and an element H ∈ a ⊂ ik⊥, the real flag manifold

Ad(K) ⋅H is a Lagrangian submanifold of FH with respect to the Kirillov-Kostant-Souriau (KKS)

symplectic form.

Proof. Since k⋊ ⊂ k, then k⊥ ⊂ (k⋊)⊥ and Ad(K) ⋅H ⊂ k⊥ = is, then Ad(K) ⋅H ⌐ (k⋊)⊥ ≠ ∅ and by

Proposition 3.1, the adjoint K-orbit (real flag) is an isotropic submanifold.

Furthermore, if bH = 1 ⋅K, we have that

dim (TbH
Ad(K) ⋅H) = dim⌞⌞ ⩀

ω(H)<0
gω
⌞
⌟ =#{ϖ ∈ ”C ⋉ ϖ(H) < 0} ,

and as the root spaces of gC are 1-dimensional complex spaces (i.e., 2-dimensional real spaces),

then

2dimR (Ad(K) ⋅H) = dimR(FH).
Hence Ad(K) ⋅H is a Lagrangian submanifold of FH .
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Remark 3.3. Intuitively, one can observe that each complex root space e"ectively doubles its

dimension when considered as a real vector space. However, this identification is purely at the

level of vector spaces and does not yet take into account the underlying Lie algebraic or geometric

structure. In [16, 21, 23], the authors provide a detailed exposition of this vector space approach,

emphasizing how the real and complex structures relate in the context of flag manifolds.

Our focus now shifts to identifying the complex flag manifolds of gC (complexification of g real

non-compact semi-simple) that admit a real flag manifold, generated by the action of K = ⌝exp k⌝
for the symmetric pair (u, k), as a Lagrangian submanifold. Consider a maximal abelian subalgebra

a ⊂ s and a Cartan subalgebra h of g such that a ⊂ h. Let ”C be the set of roots of hC, where the

roots of a correspond to their restrictions on hC.

If ς is a Cartan involution associated with the Cartan decomposition g = k⧖ s, then there exists an

involutive extension of ς to gC, which we also denote by ς. As shown in [21], the restriction of ”C

to a is given by

P = 1

2
(1 − ς⌐) , where ς

⌐
ϖ = ϖ ○ ς.

Define ”im ⊂ ”C as the set of imaginary roots, where ϖ ∈ ”im if and only if P (ϖ) = 0. Letting

”co = ”C ∧”im, the set of restricted roots is given by P (”co).
Considering an appropriate ordering (such as the lexicographic order on a⌐), let #im denote the

system of imaginary simple roots, and let #co be its complement. The projection of #co onto a⌐
forms a system of restricted roots #, with a+ denoting the positive Weyl chamber of g determined

by #.

For H ∈ cl (a+), define

!H = {ϱ ∈ # ⋉ ϱ(H) = 0} ⊂ #.
Next, define ⌜!H ⊂ #C by

⌜!H = P −1(!H) ∨#im, (3.3)

which is determined by the Satake diagram of g (see [16,21]).

Remark 3.4. In general, we select H ∈ cl (a+) because for any other choice H
⋊ ∈ a such that the

orbits remain the same, there exists a Weyl conjugation ϑ satisfying ϑ ⋅H =H ⋊. Consequently, the

associated sets of admissible roots remain unchanged, i.e., ⌜!H = ⌜!H⌐ .



CUBO
27, 3 (2025)

Infinitesimally tight Lagrangian submanifolds in adjoint orbits... 537

Proposition 3.5. ⌜!H = {ϖ ∈ #C ⋉ ϖ(H) = 0}.
Proof. If H ∈ a, then for all ϖ ∈ #C

ς
⌐
ϖ(H) = ϖ ○ ς(H) = −ϖ(H), (3.4)

because ς⌞s = − id. Also, if ϖ ∈ #im, then ς
⌐
ϖ = ϖ, and by (3.4) we have that ϖ(H) = 0, therefore it is

enough to see for roots in #co. If ϖ ∈ P −1(!H), then (ϖ−ς⌐ϖ)(H) = 0 implies that ϖ(H) = ς⌐ϖ(H),
and by (3.4) we have that ϖ(H) = 0. Thus ⌜!H ⊆ {ϖ ∈ #C ⋉ ϖ(H) = 0}. Conversely, if ϖ ∈ #co such

that ϖ(H) = 0, then ς
⌐
ϖ(H) = −ϖ(H) = 0, thus P (ϖ)(H) = 0 and implies that P (ϖ) ∈ !H , i.e.

ϖ ∈ P −1(!H).
Therefore,

Theorem 3.6. Given a symmetric pair (u, k), the complex flags of uC of type ⌜! ⊂ #C admit, as

Lagrangian submanifold, the real flag of g = k⧖ ik⊥ of type ! ⊂ # if and only if

⌜! = P −1(!) ∨#im.

That is, ⌜! is determined by the Satake diagram of g.

In particular, we can conclude

Corollary 3.7. A maximal flag F of gC admits a real flag Ad(K) ⋅H as Lagrangian submanifold

if and only if #im = ∅ and ∅ = !H .

Example 3.8. Let u = su(7), k = s(u(2) ⧖ u(5)) and g = su(2,5) that determine the symmetric

pair (u, k) and its respective dual symmetric pair (g, k). The Satake diagram of su(2,5) is

ϖ1 ϖ2 ϖ3

ϖ4ϖ5ϖ6

By Theorem 3.6, the flags of type ⌜! ⊂ #C that admit as Lagrangian submanifold a real flag of type

! ⊂ # = {ϱ1 = P (ϖ1) = P (ϖ6),ϱ2 = P (ϖ2) = P (ϖ5)} are

• If !0 = ∅, then ⌜!0 = #im = {ϖ3,ϖ4}.
• If !1 = {ϱ1}, then ⌜!1 = {ϖ1,ϖ3,ϖ4,ϖ6}.
• If !2 = {ϱ2}, then ⌜!2 = {ϖ2,ϖ3,ϖ4,ϖ5}.
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Analogously, this is equivalent to that given in the Table 1, for n = 7:
• ⌜!0 = #C ∧ {ϖ1,ϖ2,ϖn−2,ϖn−1},
• ⌜!1 = #C ∧ {ϖ2,ϖn−2},
• ⌜!2 = #C ∧ {ϖ1,ϖn−1}.

Hence, using the Satake diagrams we can determine which are the complex flags of type ⌜! ⊂ #C,

for which there exists ! such that Theorem 3.6 is satisfied.

Corollary 3.9. The complex flags of type ⌜! ⊂ #C admits as Lagrangian submanifold a real flag

given by the K-adjoint orbit if and only if ⌜! appears in Table 1.

Remark 3.10. Corollary 3.9 states that given a complex flag manifold FH associated with the

semisimple complex Lie algebra gC, we can determine which real flag manifolds of g0 are Lagrangian

submanifolds of FH by analyzing the Satake diagram of g0. Here, g0 denotes a real form of gC.

The proof of this result is given in the following subsection. For that we will use a convenient

notation of partitioning an integer, that is, we define ♭(n) for n ∈ N, as the set of ordered l-tuples

of integers (n1, . . . , nl) such that 0 < n1 < ⋅ ⋅ ⋅ < nl ≤ n, for example:

♭(3) = {(1), (2), (3), (1,2), (1,3), (2,3), (1,2,3)}.

Using this notation, we build the Table 1. The case-by-case analysis used to construct Table 1 is

detailed in Appendix A.

4 Infinitesimally tight

In this section, we establish the main result of this paper. Specifically, we demonstrate that the

Lagrangian submanifolds listed in Table 1 are infinitesimally tight. To achieve this, we compute

the sum of the Z2-Betti numbers of the real flag manifolds and identify the transversal elements.

To lay the groundwork for our proof, we first provide the necessary definitions to understand

Schubert cells, which play a fundamental role in computing the homology of real flag manifolds.

This exposition is based on [5] and [9].

Let g be a semisimple non-compact real Lie algebra, and let W be the Weyl group associated with

a maximal abelian subalgebra a ⊂ g, with # denoting the corresponding system of simple roots.
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Table 1: Complex flags that admit a Lagrangian immersion of the real flag determined by the
action of K = exp k.
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• For ! ⊆ #, the subgroup W! of W is generated by the roots in !. This subgroup acts

transitively on the cosets of W .

• Given ! ⊆ #, the Bruhat decomposition of the real flag manifold F! = G⌜P! expresses it

as the disjoint union of N -orbits, where N is determined by the Iwasawa decomposition of

P! =K!AN . That is,

F! = ⊍
w∈W⌝W!

N ⋅wb!,
where the equivalence relation N ⋅w1b! = N ⋅w2b! if w1 ⋅W! = w2 ⋅W! holds.

• Each N -orbit passing through w ∈ W is di!eomorphic to a Euclidean space, and the orbit

N ⋅wb! is referred to as a Bruhat cell.

• Every Bruhat cell is open and dense in F!.

• The Schubert cell associated with w ∈W⌜W! is denoted by S
!
w

and defined as

S
!
w
= cl(N ⋅wb!), w ∈W⌜W!.

Using the Schubert cells S!
w

, the authors of [20] introduced a boundary map ↼, which was employed

to compute the homology of the real flag manifold F!. In particular, for any H ∈ cl(a+), there

exists a subset !H ⊂ # such that the Z2-homology of F!H
= Ad(K) ⋅H is freely generated by the

Schubert cells S!H

w
, where w ∈W⌜W!H

.

Therefore,

SB (Ad(K) ⋅H,Z2) =# (W⌜W!H
) , (4.1)

That is, the cardinality of the quotient W⌜W!.

Since Ad(K) ⋅H ⊆ s = ik⊥, for x ∈ Ad(K) ⋅H we have:

Tx (Ad(K) ⋅H) = {ad(A)(x) ⋉ A ∈ k} .
Then,

• If X ∈ k⊥, then ⌜X = ad(X) is a Hamiltonian field of the function HX = ⌝X,x⌝. Thus the

singularities of X are the singularities of HX , and their number is finite, if and only if X is

regular.

Therefore, the transversal elements are the regular elements X, and they satisfy

# ⌝fAd(K)⋅H(X)⌞ =# (W⌜W!H
) .

• If Y ∈ k, then ⌜Y is tangent, thus it cannot be transversal.
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• If Z = X + Y for X ∈ k⊥ and Y ∈ k, then ⌜Z(x) ∉ TxAd(K) ⋅H if ⌜X(x) ≠ 0, so for Z to have

singularity in x we need that ⌜X(x) = ⌜Y (x) = 0 in a finite quantity. But this only happens

for X regular, such that [X,Y ] = 0. Thus:

# ⌝fAd(K)⋅H(Z)⌞ =# (W⌜W!H
) .

Consequently,

Theorem 4.1. The real flags are infinitesimally tight submanifolds of their corresponding complex

flag manifolds, as listed in Table 1.

As a result of Theorem 1.5, we have:

Corollary 4.2. The real flags are locally tight submanifolds of their corresponding complex flag

manifolds.

A Appendix

In this appendix, we analyze each Satake diagram case by case to identify all complex flag manifolds

that permit the Lagrangian immersion of the corresponding real flag, as determined by the possible

symmetric pairs. This analysis culminates in the construction of Table 1, where for the classical

cases AI, CI, G2, F4I, E6I, E7I, and E8I, all possible sets ⌜! ⊂ #C are admissible.

Type AII

In this case, we have g = sl(n,H), with gC = sl(2n,C). The Satake diagram is represented as:

ϖ1 ϖn−1ϖn−3 ϖn−2ϖ3ϖ2

. . .

Here, #im = {ϖ2j−1 ⋉ 1 ≤ j ≤ n} and # = {ϱj = P (ϖ2j) ⋉ 1 ≤ j ≤ n − 1}. The sets ⌜! that satisfy the

Theorem 3.6 are given by:

⌜! = #C ∧ {ϖ2s1 , . . . ,ϖ2sl ⋉ (s1, . . . , sl) ∈ ♭ (n − 1)}. (A.1)
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Type AIII

For g = su(k,n − k)
• If k < n − k, the Satake diagram is

ϖ1 ϖ2 ϖk ϖk+1

ϖn−k ϖn−k−1ϖn−2ϖn−1

. . .

. . .

⋮

As #im = {ϖj ⋉ k < j < n − k} and # = {ϱj = P (ϖj) = P (ϖn−j) ⋉ 1 ≤ j ≤ k}. The sets ⌜! that

satisfy the Theorem 3.6 are given by:

⌜! = #C ∧ {ϖs1 , . . . ,ϖsl
,ϖn−sl , . . . ,ϖn−s1 ⋉ (s1, . . . , sl) ∈ ♭ (k)}. (A.2)

• If k = n − k, the Satake diagram is

ϖ1 ϖ2 ϖk−1

ϖk+1ϖn−2ϖn−1

ϖk

. . .

. . .

As #im = ∅ and # = {ϱj = P (ϖj) = P (ϖn−j), ϱk = P (ϖk) ⋉ 1 ≤ j ≤ k − 1}. The sets ⌜! that

satisfy the Theorem 3.6 are given by:

⌜! = #C ∧ {ϖs1 , . . . ,ϖsl
,ϖn−sl , . . . ,ϖn−s1 ⋉ (s1, . . . , sl) ∈ ♭ (k − 1)}, (A.3)

or
⌜! = #C ∧ {ϖs1 , . . . ,ϖsl

,ϖk,ϖn−sl , . . . ,ϖn−s1 ⋉ (s1, . . . , sl) ∈ ♭ (k − 1)}. (A.4)
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Type B

For g = so(k,2n + 1 − k), then the Satake diagram is

ϖ1 ϖn−1ϖn−2ϖk+1ϖk

. . . . . .

As #im = {ϖj ⋉ k < j ≤ n} and # = {ϱj = P (ϖj) ⋉ 1 ≤ j ≤ k}. If k = n then g is normal, and the sets
⌜! that satisfy the Theorem 3.6 are given by:

⌜! = #C ∧ {ϖs1 , . . . ,ϖsl
⋉ (s1, . . . , sl) ∈ ♭ (k)}. (A.5)

Type CII

For g = sp(k,n − k).
• If k < n − k, the Satake diagram is

ϖ3ϖ2ϖ1 ϖnϖn−1ϖ2k+1ϖ2k

. . . . . .

As #im = {ϖ2j−1,ϖq ⋉ 1 ≤ j ≤ k, q > 2k} and # = {ϱj = P (ϖ2j) ⋉ 1 ≤ j ≤ k}. The sets ⌜! that

satisfy the Theorem 3.6 are given by:

⌜! = #C ∧ {ϖ2s1 , . . . ,ϖ2sl ⋉ (s1, . . . , sl) ∈ ♭ (k)}. (A.6)

• If n = 2m and k =m, the Satake diagram is

ϖ3ϖ2ϖ1 ϖnϖn−1ϖn−2
. . .

As #im = {ϖ2j−1 ⋉ 1 ≤ j ≤m} and # = {ϱj = P (ϖ2j) ⋉ 1 ≤ j ≤m}. The sets ⌜! that satisfy the

Theorem 3.6 are given by:

⌜! = #C ∧ {ϖ2s1 , . . . ,ϖ2sl ⋉ (s1, . . . , sl) ∈ ♭ (k)}. (A.7)
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Type DI

For g = so(k,2n − k).
• If k = n then g is a normal form.

• If k < n − 1 then the Satake diagram is

ϖn−2ϖk ϖk+1ϖ1

. . . . . .

ϖn

ϖn−1

As #im = {ϖj ⋉ j > k} and # = {ϱj = P (ϖj) ⋉ 1 ≤ j ≤ k}. The sets ⌜! that satisfy the Theorem

3.6 are given by:
⌜! = #C ∧ {ϖs1 , . . . ,ϖsl

⋉ (s1, . . . , sl) ∈ ♭ (k)}. (A.8)

• If k = n − 1 then the Satake diagram is

ϖk−1

ϖ2ϖ1 ϖk−2
. . .

ϖn

ϖk

As #im = ∅ and # = {ϱj = P (ϖj), ϱk = P (ϖk) = P (ϖn) ⋉ 1 ≤ j < k}. The sets ⌜! that satisfy

the Theorem 3.6 are given by:

⌜! = #C ∧ {ϖs1 , . . . ,ϖsl
⋉ (s1, . . . , sl) ∈ ♭ (k − 1)}, (A.9)

or
⌜! = #C ∧ {ϖs1 , . . . ,ϖsl

,ϖk,ϖn ⋉ (s1, . . . , sl) ∈ ♭ (k − 1)}. (A.10)



CUBO
27, 3 (2025)

Infinitesimally tight Lagrangian submanifolds in adjoint orbits... 545

Type DII

For g = so⌐(2n).
• If n is even, the Satake diagram is

ϖn−2

ϖ3ϖ2ϖ1 ϖn−3
. . .

ϖn

ϖn−1

As #im = {ϖj ⋉ j is odd} and # = {ϱj = P (ϖ2j) ⋉ 1 ≤ j ≤ n}. The sets ⌜! that satisfy the

Theorem 3.6 are given by:

⌜! = #C ∧ {ϖ2s1 , . . . ,ϖ2sl ⋉ (s1, . . . , sl) ∈ ♭ (k)}. (A.11)

• If n is odd, the Satake diagram is

ϖn−2

ϖ3ϖ2ϖ1 ϖn−3
. . .

ϖn

ϖn−1

As #im = {ϖj ⋉ j is odd and j < n} and # = {ϱj = P (ϖ2j), ϱk = P (ϖn−1) = P (ϖn) ⋉ 1 ≤ j ≤
k, k = (n − 1)⌜2}. The sets ⌜! that satisfy the Theorem 3.6 are given by:

⌜! = #C ∧ ⌟ϖ2s1 , . . . ,ϖ2sl ⋉ (s1, . . . , sl) ∈ ♭⌟n − 32
⌟⌟ , (A.12)

or
⌜! = #C ∧ ⌟ϖ2s1 , . . . ,ϖ2sl ,ϖn−1,ϖn ⋉ (s1, . . . , sl) ∈ ♭⌟n − 3

2
⌟⌟ . (A.13)
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Exceptional cases

Type F4II

For g = F −204 , then the Satake diagram is

ϖ1 ϖ4ϖ3ϖ2

Therefore the only non-trivial possibility of ⌜! that satisfy the Theorem 3.6 is

⌜! = {ϖ1,ϖ2,ϖ3} = #im. (A.14)

Type E6II

For g = E2
6 , then the Satake diagram is

ϖ6 ϖ3

ϖ2

ϖ4

ϖ1

ϖ5

Therefore the non-trivial possibilities for ⌜! that satisfy Theorem 3.6 are:

• ⌜! = ∅,

• ⌜! = {ϖ6},
• ⌜! = {ϖ3},
• ⌜! = {ϖ2,ϖ4},
• ⌜! = {ϖ1,ϖ5},
• ⌜! = {ϖ3,ϖ6},
• ⌜! = {ϖ2,ϖ4,ϖ6},
• ⌜! = {ϖ1,ϖ5,ϖ6},

• ⌜! = {ϖ2,ϖ3,ϖ4},
• ⌜! = {ϖ1,ϖ3,ϖ5},
• ⌜! = {ϖ1,ϖ2,ϖ4,ϖ5},
• ⌜! = {ϖ2,ϖ3,ϖ4,ϖ6},
• ⌜! = {ϖ1,ϖ3,ϖ5,ϖ6},
• ⌜! = {ϖ1,ϖ2,ϖ4,ϖ5,ϖ6},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ4,ϖ5}.
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Type E6III

For g = E−146 , then the Satake diagram is

ϖ6 ϖ3

ϖ2

ϖ4

ϖ1

ϖ5

Therefore the non-trivial possibilities for ⌜! that satisfy the Theorem 3.6 are:

• ⌜! = {ϖ2,ϖ3ϖ4},
• ⌜! = {ϖ2,ϖ3,ϖ4,ϖ6},

• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ4,ϖ5 }.

Type E6IV

For g = E−266 , then the Satake diagram is

ϖ1 ϖ2 ϖ5ϖ4ϖ3

ϖ6

Therefore the non-trivial possibilities for ⌜! that satisfy the Theorem 3.6 are:

• ⌜! = {ϖ2,ϖ3ϖ4,ϖ6},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ4,ϖ6},

• ⌜! = {ϖ2,ϖ3,ϖ4,ϖ5,ϖ6 }.

Type E7II

For g = E−57 , then the Satake diagram is

ϖ2 ϖ3 ϖ6ϖ5ϖ4

ϖ7

ϖ1

Therefore the non-trivial possibilities for ⌜! that satisfy the Theorem 3.6 are:



548 J. Báez & L. A. B. San Martin CUBO
27, 3 (2025)

• ⌜! = {ϖ1,ϖ3,ϖ7},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ7},
• ⌜! = {ϖ1,ϖ3,ϖ6,ϖ7},
• ⌜! = {ϖ1,ϖ3,ϖ4,ϖ7},
• ⌜! = {ϖ1,ϖ3,ϖ5,ϖ7},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ4,ϖ7},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ5,ϖ7},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ6,ϖ7},

• ⌜! = {ϖ1,ϖ3,ϖ4,ϖ5,ϖ7}.
• ⌜! = {ϖ1,ϖ3,ϖ4,ϖ6,ϖ7},
• ⌜! = {ϖ1,ϖ3,ϖ5,ϖ6,ϖ7},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ4,ϖ5,ϖ7},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ4,ϖ6,ϖ7},
• ⌜! = {ϖ1,ϖ3,ϖ4,ϖ5,ϖ6,ϖ7},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ5,ϖ6,ϖ7}.

Type E7III

For g = E−257 , then the Satake diagram is

ϖ2 ϖ3 ϖ6ϖ5ϖ4

ϖ7

ϖ1

Therefore the non-trivial possibilities for ⌜! that satisfy the Theorem 3.6 are:

• ⌜! = {ϖ3,ϖ4,ϖ5,ϖ7},
• ⌜! = {ϖ1,ϖ3,ϖ4,ϖ5,ϖ7},
• ⌜! = {ϖ2,ϖ3,ϖ4,ϖ5,ϖ7},
• ⌜! = {ϖ3,ϖ4,ϖ5,ϖ6,ϖ7},

• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ4,ϖ5,ϖ7},
• ⌜! = {ϖ1,ϖ3,ϖ4,ϖ5,ϖ6,ϖ7},
• ⌜! = {ϖ2,ϖ3,ϖ4,ϖ5,ϖ6,ϖ7}.

Type E8II

For g = E−248 , then the Satake diagram is

ϖ3 ϖ4 ϖ7ϖ6ϖ5

ϖ8

ϖ2ϖ1

Therefore the non-trivial possibilities for ⌜! that satisfy the Theorem 3.6 are:
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• ⌜! = {ϖ4,ϖ5,ϖ6,ϖ8},
• ⌜! = {ϖ1,ϖ4,ϖ5,ϖ6,ϖ8},
• ⌜! = {ϖ2,ϖ4,ϖ5,ϖ6,ϖ8},
• ⌜! = {ϖ3,ϖ4,ϖ5,ϖ6,ϖ8},
• ⌜! = {ϖ4,ϖ5,ϖ6,ϖ7,ϖ8},
• ⌜! = {ϖ1,ϖ2,ϖ4,ϖ5,ϖ6,ϖ8},
• ⌜! = {ϖ1,ϖ3,ϖ4,ϖ5,ϖ6,ϖ8},
• ⌜! = {ϖ2,ϖ3,ϖ4,ϖ5,ϖ6,ϖ8},

• ⌜! = {ϖ2,ϖ4,ϖ5,ϖ6,ϖ7,ϖ8},
• ⌜! = {ϖ1,ϖ4,ϖ5,ϖ6,ϖ7,ϖ8},
• ⌜! = {ϖ3,ϖ4,ϖ5,ϖ6,ϖ7,ϖ8},
• ⌜! = {ϖ1,ϖ2,ϖ3,ϖ4,ϖ5,ϖ6,ϖ8},
• ⌜! = {ϖ1,ϖ2,ϖ4,ϖ5,ϖ6,ϖ7,ϖ8},
• ⌜! = {ϖ1,ϖ3,ϖ4,ϖ5,ϖ6,ϖ7,ϖ8},
• ⌜! = {ϖ2,ϖ3,ϖ4,ϖ5,ϖ6,ϖ7,ϖ8}.
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ABSTRACT

It is well known that every cubic polynomial with complex

coe!cients has three not necessarily distinct complex zeros.

In this paper, zeros of cubic polynomials over complex zeons

are considered. In particular, a monic cubic polynomial with

zeon coe!cients may have three spectrally simple zeros, un-

countably many zeros, or no zeros at all. A classification of

zeros is developed based on an extension of the cubic discrim-

inant to zeon polynomials. In indeterminate cases, su!cient

conditions are provided for existence of spectrally nonsim-

ple zeon zeros. We also show that when considering zeros of

cubic polynomials over the finite-dimensional complex zeon

algebra CZ2, there are no indeterminate cases.

RESUMEN

Es bien sabido que todo polinomio cúbico con coeficientes

complejos tiene tres ceros complejos no necesariamente dis-

tintos. En este artículo consideramos los ceros de polinomios

cúbicos sobre los complejos zeones. En particular, un poli-

nomio cúbico mónico con coeficientes zeones puede tener tres

ceros espectralmente simples, una cantidad no numerable

de ceros, o no tener ceros. Desarrollamos una clasificación

de ceros en base a una extensión del discriminante cúbico

a polinomios zeones. En casos indeterminados, entregamos

condiciones suficientes para la existencia de ceros zeones es-

pectralmente no simples. También mostramos que cuando

consideramos ceros de polinomios cúbicos sobre el álgebra

de complejos zeones finito-dimensional CZ2, no hay casos in-

determinados.
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1 Introduction

The n-particle (real) zeon algebra is a commutative R-algebra generated by a fixed collection

{ω{i} : 1 → i → n} and the scalar identity 1 = ω⊋, whose generators satisfy the zeon commutation

relations

ω{i}ω{j} + ω{j}ω{i} =






2ω{i}ω{j} i ↑= j,

0 otherwise.

We denote this algebra by Zn. Like fermions the algebra has null-square generators; like bosons,

the generators commute. Hence the name “zeon algebra”, first suggested by Feinsilver [2].

Combinatorial properties of zeons have proven useful in problems ranging from enumerating paths

and cycles in finite graphs to routing problems in communication networks. Where classical ap-

proaches to routing problems require construction of trees and the use of heuristics to prevent

combinatorial explosion, the zeon algebraic approach avoids tree constructions and heuristics.

Much of the essential background on algebraic and combinatorial properties and applications of

zeons is summarized in the books [9] and [13]. Other works involving zeons include combinatorial

identities developed by Neto [5–8] and first and second order di!erential equations considered by

Mansour and Schork [4].

Polynomials over the n-particle complex zeon algebra, denoted by CZn, were first considered in [11].

We extend the finite-dimensional zeon algebras to the infinite-dimensional complex zeon algebra

CZ and focus on zeros of cubic polynomials over CZ. Our study is restricted to monic polynomials

of the form ε(u) = u3 + ϑu2 + ϖu + ϱ ↓ CZ[u], which generalize naturally to non-monic cubic

polynomials with invertible leading coe"cients. Observing that

ε
(
u↔ ϑ

3

)
= u3 + 3qu↔ 2r,

where q = 1
3ϖ ↔ 1

9ϑ
2 and r = 1

6 (ϖϑ ↔ 3ϱ) ↔ 1
27ϑ

3, our work is further simplified by focusing on

solutions of the depressed cubic equation u3 + 3qu↔ 2r = 0.

Traditionally, the cubic discriminant !f = 18abc↔ 4a3b+ a2b2 ↔ 4b3 ↔ 27c2 is used to classify the

zeros of the real monic cubic function f(x) = x3 + ax2 + bx + c ↓ R[x]. In particular, !f = 0

implies that the polynomial has a repeated zero, !f < 0 implies distinct real zeros, and !f > 0

indicates that the polynomial has one real zero and a conjugate pair of complex zeros.

To classify the zeon zeros of monic zeon cubic function ε(u), we define the zeon cubic discriminant

by !ω = q3 + r2. When !ω is invertible, the zeon cubic ε has three spectrally simple zeon

zeros. If q is also invertible, the zeros can be obtained from the depressed zeon cubic formula (or

general extension thereof). If q is nilpotent, zeros can be obtained using the spectrally simple zeros

algorithm recalled in Section 2. By contrast, when !ω is not invertible, the zeon cubic ε either
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has no zeros or uncountably many of them. Some examples and special cases are considered in

detail in Section 4.

We proceed as follows. Terminology, notational conventions, and essential results on kth roots of

complex zeons are established in Subsections 1.1 and 1.4. Essential background on zeon polynomials

is recalled in Section 2.

Main results appear in Sections 3 and 4, where depressed and general cubic formulas are presented

and a classification of zeros based on the cubic discriminant is established. Beginning with Theorem

3.2, we show that a depressed cubic ε(u) = u3 +3qu↔ 2r ↓ CZ[u] with invertible q has zeon zeros

given by u = A1/3 ↔ qA→1/3 for the cube roots of A = r ±
√
q3 + r2 with either choice of sign,

provided q3 + r2 has square roots. The restrictions are relaxed to allow nilpotent q in Theorem

3.5, where we find that if r is invertible, then ε(u) has three spectrally simple zeros, while if r is

nilpotent, then ε has either no zeros or uncountably many nilpotent zeros. Section 3 concludes

with the establishment of a general cubic formula for zeon polynomials in Theorem 3.16.

In Section 4, our attention turns to classification via the cubic discriminant. In Theorem 4.1, we

consider zeon cubic ε(u) = u3 + ϑu2 + ϖu+ ϱ ↓ CZ[u], and define the discriminant !ω = q3 + r2,

where q = 1
3ϖ ↔ 1

9ϑ
2, and r = 1

6 (ϖϑ ↔ 3ϱ) ↔ 1
27ϑ

3. We show that if !ω is invertible, then ε has

three spectrally simple zeros. On the other hand, if !ω is nilpotent, then ε either has no zeros

or has uncountably many zeros. Section 4 concludes with a discussion of classification of cubic

polynomials over the finite-dimensional zeon algebra CZ2.

Examples appearing throughout the paper have been computed using Mathematica with the “Zeon

Essentials” package freely available online via the “Research” link at https://www.siue.edu/

~sstaple.

1.1 Preliminaries

Throughout the paper N, R, and C represent the natural numbers (i.e., positive integers), real

numbers, and complex numbers, respectively.

Let CZ denote the infinite-dimensional complex Abelian algebra generated by a fixed collection

{ω{i} : i ↓ N} along with the scalar 1 = ω⊋ subject to the zeon commutation relation (ZCR):

{ω{i}, ω{j}} = ω{i}ω{j} + ω{j}ω{i} = 2ςijω{i}ω{j} := 2ςijω{i,j},

where we employ multi-index notation for the final equality. For each finite subset I of N, define

ωI =
∏

ε↑I

ωε. Letting the finite subsets of positive integers be denoted by [N]<ϑ, the algebra CZ has

a canonical basis of the form {ωI : I ↓ [N]<ϑ}. Elements of this basis are referred to as the basis

blades of CZ. The algebra CZ is called the (complex) zeon algebra.

https://www.siue.edu/~sstaple
https://www.siue.edu/~sstaple
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While nonzero scalar multiples of generators also generate the algebra CZ, nontrivial linear combi-

nations of generators are not generators. For example, i ↑= j and a, b ↑= 0 imply (aω{i} + bω{j})
2 =

2abω{i,j}, which is not a generator of the algebra. Hence, the representation is unique up to

generator labeling and scaling.

By the null-square property of the generators {ωi : i ↓ N}, the basis blade product satisfies

ωIωJ =






ωI↓J I ↗ J = ⊋,

0 otherwise.
(1.1)

An element u ↓ CZ has canonical expansion u =
∑

I uIωI , where each I is a finite subset of N,

uI ↓ C, and only finitely many of the coe"cients uI are nonzero. Two elements u, v are equal if

and only if uI = vI for every multi-index in the canonical expansions.

We note that CZ is graded. For non-negative integer k, the grade-k part of element u =
∑

I uIωI

is defined as

↘u≃k =
∑

{I:|I|=k}

uIωI . (1.2)

The mapping ↘·≃k : CZ ⇐ CZ is clearly a projection onto the subspace of CZ spanned by {ωI :

|I| = k}.

Given z ↓ CZ we write Cz = ↘z≃0 for the complex (scalar) part of z, and Dz = z ↔ Cz for the

dual part of z. Here, the term “dual” is motivated by regarding zeons as higher-dimensional dual

numbers.

Remark 1.1. The algebra CZ can be regarded as the algebra of polynomials in commuting null-

square variables ω{1}, ω{2}, . . . Equivalently, CZ ⇒= C[z1, z2, . . .]/↘z12, z22, . . .≃, the quotient of the

algebra of complex polynomials in commuting variables zi by the ideal generated by squares of

variables. The basis blades of CZ correspond to basis monomials of the polynomial algebra.

Definition 1.2. The minimal grade of u ↓ CZ is defined by

φu =






min {k ↓ N : ↘Du≃k ↑= 0} Du ↑= 0,

0 u = Cu.
(1.3)

We emphasize that φu = 0 if and only if u is a scalar, in which case u is said to be trivial. As

it is often useful to refer to the minimal grade part of an element u ↓ CZ, we further define the

following notation:

uϖ := ↘u≃ϖu.



CUBO
27, 3 (2025)

Zeros of cubic polynomials in zeon algebra 557

Example 1.3. Let u = 3 ↔ ω{2} + 5ω{3} ↔ 12ω{1,2,3}. We are looking for the minimal grade and

the minimal grade part of u. Appealing to (1.2), we see that u has nonzero grade-k parts for

k ↓ {0, 1, 3}. In particular,

↘u≃0 = 3,

↘u≃1 = ↔ω{2} + 5ω{3},

↘u≃3 = ↔12ω{1,2,3}.

Hence, by Definition 1.3, the minimal grade of u is φu = 1 and the minimal grade part of u is

uϖ = ↘u≃1 = ↔ω{2} + 5ω{3}.

Finally, we note that the nilpotent elements of CZ form a maximal ideal, which we denote by

CZ↔ = {u ↓ CZ : Cu = 0}.

The invertible elements form a multiplicative abelian group denoted by

CZ↗ = CZ \ CZ↔ = {u ↓ CZ : Cu ↑= 0}.

1.2 Finite-dimensional complex zeon algebras

Letting [n] denote the n-set {1, . . . , n}, the complex zeon algebra generated by {ω{i} : i ↓ [n]}
along with the unit scalar 1 is denoted by CZn. As a vector space over C, CZn has dimension 2n.

Given any zeon u ↓ CZ, we define the maximum index of u to be the least positive integer n such

that

u ↓ CZn ⇑ CZn+1 ⇑ CZn+2 ⇑ · · · .

Equivalently, we have the following definition.

Definition 1.4. The maximum index of u ↓ CZ is the unique positive integer n such that u ↓ CZn

and u /↓ CZn→1.

For example, if u = 1 + 3ω{1,4} ↔ 2ω{1,3,5}, the maximum index of u is n = 5.

1.3 Multiplicative properties of zeons

The elements of CZ form a multiplicative semigroup, and it is not di"cult to establish convenient

formulas for expanding products of zeons. Moreover, u ↓ CZ is invertible if and only if Cu ↑= 0.

The following result is recalled from [1] for reference.
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Proposition 1.5. Let u ↓ CZ, and let ↼ denote the index of nilpotency1 of Du. It follows that u

is uniquely invertible if and only if Cu ↑= 0, and the inverse is given by

u→1 =
1

Cu

ϱ→1∑

j=0

(↔1)j(Cu)→j(Du)j . (1.4)

One way to see Proposition 1.5 is to first recall that if the geometric series
∑↘

j=0 x
j converges, its

limit is 1
1→x . Again letting a = Cu ↑= 0 and writing u = a+Du, we see that

u→1 = (a+Du)→1 = a→1 1

1↔ (↔aDu)
= a→1

ϱ→1∑

j=0

(↔1)ja→j(Du)j ,

where nilpotency of Du reduces the infinite series to a finite sum, eliminating any concern about

lack of convergence.

1.3.1 Products and partitions

For convenience, we recall without proof the multinomial theorem. Let {x1, . . . , xm} be a collection

of commuting variables. For any positive integer m and any nonnegative integer n, one has

(x1 + x2 + · · ·+ xm)n =
∑

k1+···+km=n
k1,k2,...,km→0

(
n

k1, k2, . . . , km

) m∏

ς=1

xς
kω , (1.5)

where (
n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!

is a multinomial coe"cient. We further take x0 = 1 even when x = 0.

When n = 2, (1.5) reduces to the more commonly seen binomial theorem. The importance of the

multinomial theorem when considering powers of zeons becomes evident when one realizes that

the nonnegative integers k1, . . . , km are restricted to values 0 or 1 when x1, . . . , xm are zeon basis

blades.

For an immediate consequence, let u, v ↓ CZ, write u =
∑

I uIωI and v =
∑

I vIωI , and let

the product w = uv be written w =
∑

I

wIωI . Then for fixed multi-index I, the corresponding

coe"cient of ωI in w is given by

wI =
∑

K≃I

uKvI\K .

Extending to powers of zeons, let u =
∑

I

uIωI ↓ CZ. For positive integer k, let w = uk be written

1
In particular, ω is the least positive integer such that (Du)ω = 0.
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w =
∑

I

wIωI . For any fixed multi-index I, the corresponding coe"cient of ωI in w is given by

wI =
k∑

j=0

k!

j!
u⊋

j
∑

ε↑P(I)
|ε|=k↓j

uφ.

Here, P(I) denotes the collection of partitions of the multi-index I. When ↽ ↓ P(I) is a partition,

|↽| denotes the number of blocks (nonempty subsets of I) in the partition ↽ and uφ :=
∏

b↑φ ub;

i.e., the product of coe"cients ub in the expansion of u corresponding to blocks b in the partition

↽. Note that the scalar part of u is Cu = u⊋. By convention, we define u⇐
0 = 1 when u⇐ = 0.

1.4 Complex zeon roots: Existence and recursive formulations

Invertible zeons have roots of all positive integer orders. Generalizing the result established in [1]

for Zn, their existence is established recursively as follows.

Theorem 1.6. Let w ↓ CZ↗, and let k ↓ N. Then, there exists some z ↓ CZ↗ such that zk = w.

Further, writing w = u+ vω{n}, where u, v ↓ CZn→1, z is computed recursively by

z = w1/k = u1/k +
1

k
u→(k→1)/kvω{n}.

Proof. Proof is by induction on the maximum index n of w. When n = 1, let w = w⊋ + bω{1},

where w⊋ = Cw ↑= 0 and b ↓ C. Applying the binomial theorem and null-square properties of zeon

generators, one finds

(
w⊋

1/k +
b

kw⊋(k→1)/k
ω{1}

)k

= w⊋ + kw⊋
(k→1)/k b

kw⊋(k→1)/k
ω{1} = w⊋ + bω{1}.

Next, suppose the result holds for some n↔1 ⇓ 1 and let w ↓ CZn be written w = u+vω{n}, where

u, v ↓ CZn→1. In particular, this implies u ↓ CZn
↗. Let ϑ = u1/k, and let z = ϑ+

1

k
ω{n}ϑ

→(k→1)v.

Then

zk =

(
ϑ+

1

k
ϑ→(k→1)vω{n}

)k

= u+ kϑ(k→1) 1

k
ϑ→(k→1)vω{n} = u+ vω{n} = w.

Theorem 1.6 establishes the existence of kth roots of invertible zeons. The following corollary

shows that for each kth root of Cw, there exists exactly one zeon kth root of w.
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Corollary 1.7. Let w ↓ CZ↗, and let k ↓ N. Then, w has exactly k distinct kth roots; i.e.,

⇀{u : uk = w} = k.

Proof. Given any invertible zeon w, the nonzero scalar part Cw has precisely k distinct kth roots

in C. We claim that for each of these scalars ⇁, there is precisely one zeon z satisfying Cz = ⇁ and

zk = w.

To see this, suppose uk = w = vk, where Cu = Cv = ⇁ and observe that u↔ v is nilpotent because

u = ⇁+Du and v = ⇁+Dv. Note that the product wς of invertible w and nilpotent ς, is zero if

and only if ς = 0, since 0 = w→10 = ς. With the assumption uk = vk, we then have

uk ↔ vk = (u↔ v)(uk→1 + uk→2v + · · ·+ vk→1)

= (u↔ v)
[
(⇁k→1 + ς1) + (⇁k→1 + ς2) + · · ·+ (⇁k→1 + ςk)

]

= (u↔ v)
[
k⇁k→1 + ς

]
,

where ς = ς1+ · · ·+ ςk is nilpotent because CZ↔ is an ideal. It is clear that k⇁k→1+ ς is invertible,

so (u↔ v)(k⇁k→1 + ς) = 0 implies (u↔ v) = 0.

Given invertible u ↓ CZ and positive integer k, the principal kth root of u is defined to be the zeon

kth root of u whose scalar part is the principal kth root of Cu ↓ C.

1.4.1 Roots of nilpotent zeons

Generally, for positive integer k ⇓ 2, a nilpotent zeon has either no kth roots or uncountably many

of them. We restrict our attention to square roots and cube roots here because these are the only

roots of interest when dealing with cubic polynomials.

An element u =
∑

{I↑N↔ϑ} uIωI has a square root w =
∑

J wJωJ if for each coe"cient uI in the

expansion of u, the coe"cients of w satisfy

∑

K⇒I

wKwI\K = uI . (1.6)

For each nonempty multi index I, (1.6) is an equation in 2|I| ↔ 1 variables. Letting n denote

the smallest positive integer such that u ↓ CZn
↔, and observing that squares of elements in the

maximal ideal CZ↔ always have minimal grade greater than 1, it follows that there are 2n ↔ n↔ 1

such equations to consider. The resulting underdetermined system of 2n↔n↔1 equations in 2n↔2

variables then has either no solution or uncountably many solutions.
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Example 1.8. Consider the nilpotent zeon u = 4ω{1,2} ↔ 5ω{1,3} ↔ 10ω{2,3} ↔ 5ω{1,2,3}. A square

root w =
∑

I wIωI of u must satisfy the following system of equations:

w{1}w{2} = 2,

w{1}w{3} = ↔5

2
,

w{2}w{3} = ↔5,

w{3}w{1,2} + w{2}w{1,3} + w{1}w{2,3} = ↔5

2
.

One such solution is

w = ↔ω{1} ↔ 2ω{2} +
5

2
ω{3} + ω{1,2} + ω{1,3} + 3ω{2,3}.

Similarly, a nilpotent zeon of minimal grade 3 or more having expansion u =
∑

{I↑N↔ϑ :|I|⇑3} uIωI

has cube root w =
∑

J wJωJ if for each coe"cient uI , the coe"cients of w satisfy

∑

{K,L⇒I:K⇓L=⊋}

wKwLwI\(K↓L) = uI .

This leads to an underdetermined system of 2n ↔
n
2


↔ n ↔ 1 equations in 2n ↔ 2 variables with

either no solution or uncountably many solutions.

We turn now to a simple special case for which symbolic computation is straightforward.

1.4.2 Fundamental roots of nonzero null monomials

In this section we consider kth roots of aωI for a ↓ C↗ and nonempty I ⇑ N. Such elements are

referred to as nonzero null monomials2 of CZ.

Remark 1.9. Nonzero null monomials are square roots of zero. It follows that every kth root of

a nonzero null monomial is a 2kth root of zero.

Definition 1.10. Given a nonzero null monomial w = aωI and a k-block partition ↽ of I, a

fundamental kth root of w is any nilpotent zeon of the form

uφ =
∑

J↑φ

uJωJ , (1.7)

satisfying (uφ)k = w.

2
In particular, aεI is a zero of the monomial ϑ(u) = u2

for any I →= ⊋.
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For purposes of symbolic computation, two forms of roots are particularly convenient. Roots of

the form (1.8) are referred to as flat form fundamental kth roots of u, while roots of the form (1.9)

will be referred to as spike form fundamental kth roots of u.

Lemma 1.11. Given a nonzero null monomial w = aωI , a nilpotent zeon of the form

uφ = k


a

k!

∑

J↑φ

ωJ (1.8)

satisfies uφ
k = w for any k-block partition ↽ of the multi index I and any complex kth root of a

k! .

Moreover,

uφ,M =
∑

J↑φ\M

ωJ +
a

k!
ωM (1.9)

satisfies uφ
k = w for any fixed block M of the k-block partition ↽ of the multi index I.

Proof. By direct computation via the multinomial theorem,


k


a

k!

∑

J↑φ

ωJ

k

=
a

k!
k!

k∏

ς=1

ωIω = aωI =




∑

J↑φ\M

ωJ +
a

k!
ωM




k

.

Hence, the result.

Example 1.12. The flat form fundamental square roots of aω{1,2,3} are

u1|23 = ±


a

2
(ω{1} + ω{2,3}), u2|13 = ±


a

2
(ω{2} + ω{1,3}),

u3|12 = ±


a

2
(ω{3} + ω{1,2}),

and the spike form fundamental square roots are

u1|23,{2,3} =
(
ω{1} +

a

2
ω{2,3}

)
, u2|13,{1,3} =

(
ω{2} +

a

2
ω{1,3}

)
,

u3|12,{1,2} =
(
ω{3} +

a

2
ω{1,2}

)
, u1|23,{1} =

(a
2
ω{1} + ω{2,3}

)
,

u2|13,{2} =
(a
2
ω{2} + ω{1,3}

)
, u3|12,{3} =

(a
2
ω{3} + ω{1,2}

)
.

Notation. The numbers of k-block partitions of sets containing m elements are given by Stirling

numbers of the second kind, denoted
m

k


.
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Lemma 1.13. The number of fundamental kth roots of a null monomial of grade m ⇓ k is k
m

k


.

Proof. Each partition of I into k nonempty subsets {Iς : 1 → , →
m

k


} gives a principal kth root

of aωI since

(a1/kωIω)
k = k!(a1/k)k

k∏

ς=1

ωIω = aωI .

Each a ↓ C↗ has k distinct complex kth roots, so there are k zeon kth roots of the form seen in

(1.8) for each k-block partition ↽ of I.

2 Zeon polynomials

Let f(z) = amzm + · · · + a1z + a0 (am ↑= 0) be a polynomial function with complex coe"cients,

and recall that by the Fundamental Theorem of Algebra, f(z) has exactly m complex zeros. If

f(z) can be written in the form f(z) = (z↔ r)ςg(z), where , ↓ N and g(r) ↑= 0, then r is said to be

a zero of multiplicity , of f(z). For convenience, µf (r) will denote the multiplicity of r as a zero

of f(z).

On the other hand, if ε(u) = ϑmum+ · · ·+ϑ1u+ϑ0 ↓ CZ[u] is a polynomial with zeon coe"cients,

it is not obvious how many zeros this polynomial may have in CZ. For example, ε(u) = u2 ↔ ω{1}

has no zeon zeros because ω{1} has no square root.

2.1 Spectrally simple zeros of zeon polynomials

Given a complex zeon polynomial ε(u) = ϑmum+ · · ·+ϑ1u+ϑ0, a complex polynomial fω : C ⇐ C
is induced by

fω(z) =
m∑

ς=0

(Cϑς)z
ς.

It follows that

fω(Cu) =
m∑

ς=0

(Cϑς)(Cu)
ς = C(ε(u)),

so that fω ⇔ C = C ⇔ ε.

We restrict our attention to zeon polynomials with invertible leading coe"cients because when ϑm

is nilpotent, the induced polynomial fω(z) is of lower degree than ε(u). Moreover, as a matter of

convenience the zeros of ε(u) are exactly the zeros of the monic polynomial ϑm
→1ε(u).

The zeon extension of the Fundamental Theorem of Algebra developed in [11] shows that ε(u) has

a simple zeon zero if the complex polynomial fω(z) has a simple complex zero.
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Let ε(u) be a nonconstant monic zeon polynomial. A zeon ⇁ ↓ CZ is said to be a simple zero of

ε if ε(u) = (u↔ ⇁)g(u) for some zeon polynomial g satisfying g(⇁) ↑= 0.

The spectrum of an element u in a unital algebra is the collection of scalars ⇁ for which u ↔ ⇁ is

not invertible. Hence, the spectrum of u ↓ CZ is the singleton {⇁ = Cu}, motivating the next

definition.

Definition 2.1. A simple zero ⇁0 ↓ CZ of ε(u) is said to be a spectrally simple if C⇁0 is a simple

zero of the complex polynomial fω(z).

2.1.1 Fundamental theorem of zeon algebra

The Fundamental Theorem of Zeon Algebra presented in [11] for the finite dimensional zeon algebra

CZn shows that a zeon polynomial ε(u) ↓ CZn[u] has a spectrally simple zero ⇁ = ⇁0 + D⇁

whenever the complex polynomial fω(z) ↓ C[z] has a simple zero ⇁0 ↓ C. The theorem also holds

also for a polynomial over CZ by first defining the maximum index of a zeon polynomial ε to be

the least positive integer n such that ε(u) ↓ CZn[u] and proceeding as in the finite-dimensional

zeon algebra.

For reference, the theorem is recalled here without proof. We note that it also provides a method

for calculating spectrally simple zeros of any zeon polynomial.

Theorem 2.2 (Fundamental Theorem of Zeon Algebra). Let ε(u) ↓ CZ[u] be a monic zeon

polynomial of degree m and having maximum index n, and let fω(z) ↓ C[z] be induced by ε. If

⇁0 ↓ C is a simple zero of fω(z), let g be the unique complex polynomial such that fω(Cu) =

(Cu ↔ ⇁0)g(C(u)). Then ε(u) has a simple zero ⇁ such that C⇁ = ⇁0. Letting n denote the

maximum index of ε(u), for 1 → k → n, the grade-k part of ⇁ (denoted ⇁k) is given by

⇁k = ↔ 1

g(⇁0)


ε


k→1∑

i=0

⇁i



k

.

Moreover, such a zero ⇁ is unique.

The idea behind the proof is that when ⇁0 is a simple zero of fω(z), the remainder ε(⇁0) of ε(u)

when divided by u↔ ⇁0 has zero scalar part. The minimal grade part of the remainder w = ε(⇁0)

can then be utilized to construct a new zeon element ⇁0+⇁ϖw having the property that ε(⇁0+⇁ϖw)

has higher minimal grade than ε(⇁0). Grades of all remainders will be at most n (the maximum

index of ε(u)), so the process terminates in a finite number of steps.

Of particular significance, Theorem 2.2 provides an algorithm by which a spectrally simple zeon

zero can be calculated. Algorithm 1 returns the spectrally simple zeon zero ⇁ of ε whose scalar

part ⇁0 satisfies fω(⇁0) = 0.
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Algorithm 1: Compute spectrally simple zeon zero.
input : Zeon polynomial ε(u) over CZn and a simple nonzero root ⇁0 of the associated

complex polynomial C(ε(u)).
output: Zeon zero ⇁ of ε(u) with C⇁ = ⇁0.
Initialize complex polynomial g(Cu).

g(Cu) ↖ C(ε(u))

Cu↔ ⇁0
;

Note g(Cu) satisfies C(ε(u)) = (Cu↔ ⇁0)g(Cu), where g(⇁0) ↑= 0.
ξ ↖ ε(⇁0)ϖ/g(⇁0);
⇁ ↖ ⇁0 ↔ ξ;
while 0 < φξ → n do

ξ ↖ ε(⇁)ϖ/g(⇁0);
⇁ ↖ (⇁↔ ξ);

return ⇁;

When ε(u) ↓ CZ[u] is of degree m ⇓ 1 and the zeros of fω(z) are all simple, we see that ε(u) has

exactly m complex zeon zeros. For example, when ϑ ↓ CZ↗, ε(u) = uk + ϑ has exactly k distinct

complex zeon zeros.

2.2 Spectrally nonsimple zeon zeros

Algorithm 1 is useful for computing spectrally simple zeros of ε(u), but it is not applicable to any

zero w whose scalar part Cw is a multiple zero of the induced complex polynomial fω satisfying

C(ε(u)) = fω(Cu). These spectrally nonsimple zeros are considered next.

A zero ⇁0 ↓ CZ of ε(u) ↓ CZ[u] is said to be spectrally nonsimple if C⇁0 is a multiple zero of

the induced complex polynomial fω. We note that zeon zeros of multiplicity greater than one are

included among spectrally nonsimple zeros.

It was shown in [11] that if a monic polynomial ε(u) ↓ CZ[u] has distinct complex zeon zeros w1, w2

satisfying Cw1 = Cw2 = w⊋, then ε(u) has uncountably many zeros of the form w = w⊋ +Dw.

As a consequence, if ε ↓ CZ[u] has a zero z ↓ CZ of multiplicity two or greater, then ε has

uncountably many zeros w ↓ CZ satisfying Cw = Cz .

Lacking an algorithm for computing spectrally nonsimple zeros of zeon polynomials, our attention

turns to zeon extensions of well-known special cases: quadratic and cubic polynomials.

2.2.1 The zeon quadratic formula

We close this review of zeon polynomials by recalling a basic result concerning zeros of quadratic

zeon polynomials. A zeon quadratic polynomial has solutions if and only if its discriminant has a
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square root [3].

Theorem 2.3 (Zeon Quadratic Formula). Let ε(u) = ϑu2 + ϖu+ ϱ be a quadratic function with

zeon coe!cients from CZ, where Cϑ ↑= 0. Let !ω = ϖ2 ↔ 4ϑϱ denote the zeon discriminant of ε.

The zeros of ε are given by

ε→1(0) =


ϑ→1

2
(w ↔ ϖ) : w2 = ϖ2 ↔ 4ϑϱ


.

In particular,

(1) When !ω = 0, the zeros of ε are given by u = ↔ϑ→1ϖ/2 + ▷ for any ▷ ↓ CZ satisfying

▷2 = 0.

(2) When C!ω ↑= 0, ε(u) = 0 has two distinct solutions.

(3) If !ω ↑= 0 is nilpotent and ε(u) = 0 has a solution, then it has uncountably many solutions.

To see the result, begin by writing ϑu2 + ϖu + ϱ = ↼↓1

4 ((2ϑu + ϖ)2 ↔ (ϖ2 ↔ 4ϑϱ)) and expand.

This reduces the problem to seeking square roots of the zeon discriminant. We are now ready to

turn our attention to cubic polynomials over CZ.

3 Cubic polynomials with zeon coe!cients

Beginning with the general zeon cubic equation z3 + ϑz2 + ϖz + ϱ = 0, where ϑ,ϖ, ϱ ↓ CZ and

ϑ ↑= 0, the depressed cubic equation is obtained via the substitution z = u↔ ϑ/3. In particular,

0 =
(
u↔ ϑ

3

)3
+ ϑ

(
u↔ ϑ

3

)2
+ ϖ

(
u↔ ϑ

3

)
+ ϱ = u3 +

(
ϖ ↔ ϑ

3

)
u+

2ϑ3

27
↔ ϑϖ

3
+ ϱ

= u3 + 3

(
ϖ

3
↔ ϑ2

9

)
u↔ 2

(
↔ϑ3

27
+

ϑϖ

6
↔ ϱ

2

)
= u3 + 3qu↔ 2r

where q = 1
3ϖ↔ 1

9ϑ
2 and r = 1

6 (ϖϑ↔ 3ϱ)↔ 1
27ϑ

3. It follows that depressed cubics are su"cient for

our purposes.

We note that any monic cubic polynomial having a spectrally simple zero ⇁ can be reduced via

polynomial division to the product ε(u) = (u↔ ⇁)◁(u), where ◁(⇁) ↑= 0 is a quadratic polynomial

over CZ. The remaining zeros of ε(u) can then be classified by the zeon quadratic formula of

Theorem 2.3.
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Example 3.1. To motivate our discussion, consider the depressed zeon cubic equation ε(u) = 0

where

ε(u) = u3 + u

↔18ω{1,2,3} ↔ 6ω{1} + 9ω{2} ↔ 9


↔ 10ω{1,2} ↔ 6ω{1,2,3}. (3.1)

The induced scalar cubic polynomial is fω(z) = z3 ↔ 9z, which has simple zeros {↔3, 0, 3}. Con-

sequently, ε(u) has three spectrally simple zeon zeros, each of which can be found by applying

Algorithm 1. Applying the algorithm with simple zero ⇁0 = ↔3 of fω(z), we obtain the first zero:

u1 = ↔3 +
1

18
ω{1,2} ↔

8

3
ω{1,2,3} ↔ ω{1} +

3ω{2}
2

.

At this point, we may either repeat the algorithm with the other two zeros of fω(z) or we may

perform polynomial division to write ε(u) = (u↔ u1)◁(u) and apply the zeon quadratic formula to

◁(u) to obtain the remaining zeros. In the latter method, we apply the quadratic formula to

◁(u) = u2 + u

(
1

18
ω{1,2} ↔

8

3
ω{1,2,3} ↔ ω{1} +

3ω{2}
2

↔ 3

)
↔ 10

3
ω{1,2} ↔ 2ω{1,2,3},

which yields the remaining zeros:

u2 = ↔10

9
ω{1,2} ↔

2

3
ω{1,2,3},

u3 = 3 +
19

18
ω{1,2} +

10

3
ω{1,2,3} + ω{1} ↔

3

2
ω{2}.

We point out that the approach taken in Example 3.1 involves the application of Algorithm 1 once,

followed by polynomial division and an application of the zeon quadratic formula. Alternatively,

since the zeros of ε(u) were all spectrally simple, we could have applied Algorithm 1 three times.

We further point out that when the scalar polynomial fω(z) has a single zero of multiplicity three,

the approach taken in Example 3.1 fails completely.

To treat such cases as well as to gain deeper insight on zeros of zeon cubics for all cases, we

now consider a zeon extension of the cubic formula. The complex zeon result below is based on

Cardano’s approach to cubic polynomials with real coe"cients, as presented in [10].

Theorem 3.2 (Depressed Zeon Cubic Formula). Let ε(u) = u3 + 3qu ↔ 2r ↓ CZ[u], where

Cq ↑= 0 and square roots of q3 + r2 are assumed to exist. The zeon zeros of ε(u) are given by

u = A1/3 ↔ qA→1/3, for the cube roots of A = r ±
√

q3 + r2 with either choice of sign.

Proof. Note that A is invertible if and only if Cq ↑= 0, since CA = 0 if and only if Cr =

↙C
(√

q3 + r2
)
. Squaring both sides yields Cq3 = 0. Proof is then by direct substitution, where

all necessary cube roots, square roots, and inverses exist. Assuming A = r +
√

q3 + r2, it follows

that
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ε(A
1
3 ↔ qA→ 1

3 ) = (A
1
3 ↔ qA→ 1

3 )3 + 3q(A
1
3 ↔ qA→ 1

3 )↔ 2r

= A↔ 3A
2
3 qA→ 1

3 + 3A
1
3 q2A→ 2

3 ↔ q3A→1 + 3qA
1
3 ↔ 3q2A→ 1

3 ↔ 2r

= A↔ 3qA
1
3 + 3q2A→ 1

3 ↔ q3A→1 + 3qA
1
3 ↔ 3q2A→ 1

3 ↔ 2r

= A↔ q3A→1 ↔ 2r

= (r2 + 2r
√

q3 + r2 + q3 + r2 ↔ q3)(r +
√
q3 + r2)→1 ↔ 2r

= 2r(r +
√

q3 + r2)(r +
√
q3 + r2)→1 ↔ 2r = 2r ↔ 2r = 0.

Similar calculations establish the result for A = r ↔
√
q3 + r2.

Since A is assumed to be invertible in Theorem 3.2, there are three distinct zeon cube roots of A

for any square root of q3 + r2.

Example 3.3 (Cq ↑= 0, q3 + r2 invertible). Consider the zeon cubic ε(u) = u3 + 3qu↔ 2r defined

by

ε(u) = u3 + u

6ω{1,2} ↔ 12ω{2,3} ↔ 3ω{3} ↔ 36


+ 6ω{2} ↔ 4ω{3}.

We note that Cq ↑= 0, since

q = ↔12 + 2ω{1,2} ↔ 4ω{2,3} ↔ ω{3}.

Further, q3 + r2 is invertible since r is clearly nilpotent. The zeros of ε(u) are then found via

Theorem 3.2:

u1 = ↔6 +
1

2
ω{1,2} ↔

215

216
ω{2,3} ↔

5

432
ω{1,2,3} ↔

ω{2}
12

↔ 7

36
ω{3},

u2 = ↔ 1

72
ω{2,3} ↔

1

54
ω{1,2,3} +

ω{2}
6

↔
ω{3}
9

,

u3 = 6↔ 1

2
ω{1,2} +

109

108
ω{2,3} +

13

432
ω{1,2,3} ↔

1

12
ω{2} +

11

36
ω{3}.

When q3 + r2 ↓ CZ is nilpotent and has a square root, uncountably many square roots exist. In

this case, the associated cubic equation has infinitely many solutions.

Example 3.4 (Cq ↑= 0, q3 + r2 ↓ CZ↔). Consider the depressed zeon cubic ε(u) = u3 + 3qu↔ 2r,

where

q = ↔ω{1,2} + ω{1,3} + ω{2,3} + 2ω{1} ↔ 2ω{2} ↔ 1,

r = ↔3ω{1} + 3ω{2} + 1.
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The nilpotent element q3 + r2 = 3ω{1,2} + 3ω{1,3} + 3ω{2,3} has uncountably many square roots;

for example, 0 =


3

2


ω{1} + ω{2} + ω{3}


. It follows that ε(u) has uncountably many zeros of the

form (r + 0)1/3 ↔ q(r + 0)→1/3. In particular,

u0 = 2↔ 2ω{1} + 2ω{2} +
10

3
ω{1,2} ↔

2

3
ω{1,3} ↔

2

3
ω{2,3}

satisfies ε(u0) = 0.

Next we consider the depressed cubic ε(u) = u3 + 3qu ↔ 2r, where Cq = 0. It follows that the

complex polynomial induced by ε is fω(z) = z3 ↔ 2Cr. If Cr = 0, then fω(z) = z3 has one zero 0

of multiplicity three. Hence, if ε has zeros, there are uncountably many and they are all nilpotent.

On the other hand, if Cr ↑= 0, then fω(z) has exactly three distinct complex zeros, so that ε has

three spectrally simple zeros. Thus, we have derived the following theorem.

Theorem 3.5 (Depressed Cubic Zeros II). Let ε(u) = u3+3qu↔2r ↓ CZ[u], where Cq = 0. Then

the following are true.

(1) If Cr ↑= 0, then ε(u) has three spectrally simple zeros.

(2) If Cr = 0, then ε has either no zeros or uncountably many nilpotent zeros.

We illustrate Theorem 3.5 with the following example.

Example 3.6. The case Cq = 0 is illustrated by the zeon cubic polynomial

ε(u) = u3 +

(
↔2

3
ω{1,2} +

4

3
ω{1,3} +

4

3
ω{2,3} ↔

8

3
ω{1,2,3}

)
u↔ 8

9
ω{1,2,3}.

In this example r = 4
9ω{1,2,3}, so that ε(u) either has no zeros or uncountably many. Letting

s = ω{1} + ω{2} ↔ ω{3} + ω{1,2} ↔ ω{1,3}, it is seen that ε(s) = 0. Moreover, ε(s+ aω{1,2,3}) = 0 for

any a ↓ C.

3.1 Special case: ω(u) = u3 + 3qu

Note that if r = 0, the zeros of ε(u) include {0,±
∝
↔3q}, provided the square roots exist. When

q is invertible (i.e., Cq ↑= 0), these are the three distinct zeros of ε(u). When Cq = 0, ε(u) = 0

has uncountably many solutions.

Our goal in this subsection is to describe some of the zeros of u3 + 3qu when q is nilpotent.

Definition 3.7. Let q =
∑

I qIωI ↓ CZ. The index support of q is defined to be

[q] =


{I:qI ⇔=0}

I. (3.2)
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The index support of a nilpotent q is used to obtain a null monomial that “annihilates” q; i.e.,

qω[q] = 0. For this reason, ω[q] will be referred to as an annihilator of q ↓ CZ↔. More generally,

qω[q] = (Cq)ω[q] for arbitrary q ↓ CZ, so that ω[q] is an annihilator of Dq.

Example 3.8. Let q = 3 + 4ω{2} ↔ 5ω{1,3,4}. Then [q] = {1, 2, 3, 4} and

qω[q] = (3 + 4ω{2} ↔ 5ω{1,3,4})ω{1,2,3,4} = 3ω{1,2,3,4}.

While it is clear that when q is nilpotent, qωI = 0 for all I ′ [q], a nilpotent q may also be

annihilated by a basis blade ωI for one or more I ⫅̸ [q]. Letting Nq = {I ∞ [q] : qωI = 0}, it follows

that w

q
∑

I↑Nq

aIωI = 0

for any linear combination of basis blades indexed by Nq. The resulting subspace of CZ is denoted

by AnnZ(q).

It is clear that AnnZ(u) ↗ AnnZ(v) ∞ AnnZ(u + v) because z ↓ AnnZ(u) ↗ AnnZ(v) implies

z(u + v) = zu + zv = 0. However, the reverse inclusion need not hold, as illustrated in Example

3.9.

Example 3.9. Let u = ω{1} + ω{2}, v = ↔ω{2} ↓ CZ↔. Letting z = ω{1}, we see that

z(u+ v) = ω{1}(ω{1} + ω{2} ↔ ω{2}) = ω{1}
2 = 0,

so that z ↓ AnnZ(u+ v) even though z /↓ AnnZ(u) and z /↓ AnnZ(v).

With the concept of zeon annihilators in hand, we are ready to present our result on zeros of

ε(u) = u3 + 3qu when q is nilpotent.

Theorem 3.10 (Zeros of ε(u) = u3 + 3qu when Cq = 0). Let ε(u) = u3 + 3qu ↓ CZ[u], where

q ↑= 0 and Cq = 0. Then,

(1) ε(z) = 0 for any z ↓ AnnZ(q) satisfying ↼(z) → 3; and

(2) if q has square roots, then ε(z) = 0 for any z ↓ {±
∝
↔3q}.

In particular, ε(aω[q]) = 0 for a ↓ C.

Proof. First, for any z ↓ AnnZ(q) satisfying ↼(z) → 3,

ε(z) = z3 + 3qz = 0 + 0 = 0.
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Second, let (↔3q)1/2 = {z ↓ CZ : z2 = ↔3q} and recall that this set has infinite cardinality when

it is nonempty. It follows that for each z ↓ (↔3q)1/2,

ε(z) = z(z2 + 3q) = z(↔3q + 3q) = 0.

Finally, ω[q] ↓ AnnZ(q) satisfies ↼(ω[q]) = 2, so ε(aω[q]) = 0 for all a ↓ C.

Theorem 3.10 does not characterize all zeros of the cubic ε(u) = u3+3qu, as illustrated by Example

3.11.

Example 3.11. Consider the cubic ε(u) = u3 + 3qu, where

q =
1

3
ω{1,2,3} ↔

2

3
ω{1,2} ↔

2

3
ω{1,3} ↔

2

3
ω{2,3}.

Letting z = ω{1} + ω{2} + ω{3}, one finds that z2 = 2(ω{1,2} + ω{1,3} + ω{2,3}), z2 +3q = ω{1,2,3}, and

z3 = 6ω{1,2,3}, so that ↼(z) > 3 and z /↓ (↔3q)1/2. Further, z /↓ AnnZ(q) because

qz =
1

3
(ω{1,2,3} ↔ 2ω{1,2} ↔ 2ω{1,3} ↔ 2ω{2,3})(ω{1} + ω{2} + ω{3}) = ↔2ω{1,2,3}.

Clearly, z fails to satisfy the su!cient conditions described in Theorem 3.10. However, z ↓ ε→1(0)

since

ε(z) = z3 + 3qz = 6ω{1,2,3} ↔ 6ω{1,2,3} = 0.

Corollary 3.12. Let ε(u) = u3 ↔ aωIu ↓ CZ[u], where a ↑= 0 and |I| ⇓ 2. Then ε(u) = 0 has
|I|

2


flat form solutions of the form

uφ =


a

2

∑

J↑φ

ωJ ,

where ↽ ranges over the 2-block partitions of the multi index I.

Proof. Note that u3 ↔ aωIu = u(u2 ↔ aωI) = 0. Let ↽ be a 2-block partition of I. Let K be one

block of the partition. It follows that

uφ =


a

2
(ωK + ωI\K),

so that

ε(uφ) = uφ(uφ
2 ↔ aωI) = uφ

(
a

2
(ωK + ωI\K)

)2

↔ aωI



= uφ
a

2
(2aωI ↔ aωI) = uφ(aωI ↔ aωI) = 0.
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The number of two block partitions ↽ of I is
|I|

2


, so the result follows from Lemma 1.13.

3.2 Special case: q = 0

Lemma 3.13 (Depressed cubics: q = 0). Let ε(u) = u3 ↔ 2r ↓ CZ[u]. Then the following are

true.

(1) If r = 0, then ε→1(0) = {▷ ↓ CZ↔ : ↼(▷) → 3}.

(2) If Cr ↑= 0, then ε has three spectrally simple zeros: ε→1(0) = (2r)1/3.

(3) If r ↑= 0 and Cr = 0, then ε has either no zeros or uncountably many zeros; in particular,

ε→1(0) = {1 : 13 = 2r}.

Proof. Consider the zeon cubic ε(u) = u3 ↔ 2r.

(1) Clearly ε(▷) = ▷3 = 0 if and only if ▷ is nilpotent of index 3 or less.

(2) If r is invertible, then u3 ↔ 2r = 0 if and only if u is a cube root of 2r. There are three such

zeros, one for each complex cube root of C2r.

(3) When r is nonzero and nilpotent, the zeros of ε(u) are precisely the nilpotent cube roots of

2r. As seen in Section 1.4.1, 2r has either no cube roots or uncountably many of them.

Corollary 3.14. Let ε(u) = u3 ↔ aωI ↓ CZ[u], where a ↑= 0 and |I| ⇓ 3. It follows that ε(u) = 0

has
|I|

3


flat form solutions of the form

uφ = 3


a

6

∑

J↑φ

ωJ ,

where ↽ ranges over the 3-block partitions of the multi index I.

Proof. Proceeding as in the proof of Corollary 3.12, let ↽ be a 3-block partition of I. Let J,K,L

be the blocks of partition ↽. It follows that

uφ = 3


a

6
(ωJ + ωK + ωL),

so that

ε(uφ) =

(
3


a

6
(ωJ + ωK + ωL)

)3

↔ aωI =
a

6
6ωJωKωL ↔ aωI = aωI ↔ aωI = 0.

The number of three block partitions ↽ of I is
|I|

3


, so the result follows from Lemma 1.13.
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Example 3.15. Consider the cubic polynomial

ε(u) = u3 + u2

3↔ ω{1}


+ u


↔ω{1,2} ↔ 2ω{1} + 3


+ 1↔ ω{1} ↔ ω{1,2}.

Writing ε(u) = u3 + ϑu2 + ϖu + ϱ, let q =
(

↽
3 ↔ ↼2

9

)
and let r = 1

6 (ϖϑ ↔ 3ϱ) ↔ 1
27ϑ

3, so that

ε(u) = u3 + 3qu ↔ 2r. It follows that ω[q] = ω{1,2} and that q has spike form fundamental square

roots ω{1} ↔ 3
2ω{2} and ω{2} ↔ 3

2ω{1}, the (uncountably many) zeros of ε(u) include the following:

u1 = ↔1 +
1

3
ω{1} + ω{1,2},

u2 = ↔1 +
4

3
ω{1} ↔

3

2
ω{2},

u3 = ↔1↔ 7

6
ω{1} + ω{2}.

These zeros are easily confirmed by evaluating the polynomial.

3.3 A general cubic formula

For convenience in symbolic computation, a general cubic formula is now obtained as a corollary

of Theorem 3.2.

Theorem 3.16 (General Zeon Cubic Formula). Let ε(u) = u3 + ϑu2 + ϖu + ϱ ↓ CZ[u], let

q = 1
3ϖ ↔ 1

9ϑ
2 and let r = 1

6 (ϖϑ ↔ 3ϱ) ↔ 1
27ϑ

3. Suppose Cq ↑= 0 and set !ω = q3 + r2. Suppose

!ω has a square root ς. Letting s1 ↓ (r + ς)1/3 and s2 ↓ (r ↔ ς)1/3, it follows that ε(u) has zeros

given by

u1 = (s1 + s2)↔
ϑ

3
,

u2 = ↔1

2
(s1 + s2)↔

ϑ

3
+

i
∝
3

2
(s1 ↔ s2),

u3 = ↔1

2
(s1 + s2)↔

ϑ

3
↔ i

∝
3

2
(s1 ↔ s2).

Proof. First, the general cubic equation ε(u) = u3 + ϑu2 + ϖu + ϱ = 0 is depressed by the

substitution u ∈⇐ z ↔ ϑ/3 as follows

ε(z ↔ ϑ/3) = (z ↔ ϑ/3)3 + ϑ(z ↔ ϑ/3)2 + ϖ(z ↔ ϑ/3) + ϱ

= z3 +

(
ϖ ↔ ϑ2

3

)
z +

2ϑ3

27
↔ ϑϖ

3
+ ϱ

= z3 +

(
ϖ ↔ ϑ2

3

)
z ↔ 2

(
ϑϖ

6
↔ ϑ3

27
↔ ϱ

2

)
.
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Since Cq ↑= 0, the zeros of ε(z↔ϑ/3) are given by the depressed cubic formula of Theorem 3.2. In

particular, the zeros are given by

z = A1/3 ↔
(
ϖ

3
↔ ϑ2

9

)
A→1/3,

corresponding to the cube roots of

A =

(
ϑϖ

6
↔ ϱ

2
↔ ϑ3

27

)
±

(
ϖ

3
↔ ϑ2

9

)3

+

(
ϑϖ

6
↔ ϑ3

27
↔ ϱ

2

)2

.

Letting q = ϖ/3↔ ϑ2/9 and r = (ϑϖ ↔ 3ϱ)/6↔ ϑ3/27, we have z = A1/3 ↔ qA→1/3, where

A = r ±
√

q3 + r2.

Letting ς be a square root of !ω = q3+ r2, we have A = r± ς. Next, observe that (r+ ς)(r↔ ς) =

r2 ↔ ς2 = ↔q3, so that

(r + ς)→1 = ↔(r ↔ ς)q→3.

It follows that qA→1/3 = ↔(r ↔ ς)1/3. Hence, the first zero of the depressed cubic is z1 = s1 + s2,

where s1 = (r + ς)1/3 and s2 = (r ↔ ς)1/3. Letting x0 be a fixed cube root of A, it follows that

ei2φ/3x0 and ei4φ/3x0 are the remaining cube roots, where ei4φ/3 = (ei2φ/3)→1. Thus, the remaining

zeros of the depressed cubic are

z2 = ei2φ/3s1 + ei4φ/3s2 =


↔1

2
+ i

∝
3

2


s1 +


↔1

2
↔ i

∝
3

2


s2 = ↔1

2
(s1 + s2) + i

∝
3

2
(s1 ↔ s2)

and

z3 = ei4φ/3s1 + ei2φ/3s2 =


↔1

2
↔ i

∝
3

2


s1 +


↔1

2
+ i

∝
3

2


s2 = ↔1

2
(s1 + s2)↔ i

∝
3

2
(s1 ↔ s2).

Translating by ϑ/3 gives the zeros uj = zj ↔ ϑ/3 of the general cubic for j = 1, 2, 3.

4 Classification

As we have seen since beginning with Example 3.1, there can be multiple possible approaches to

finding solutions of zeon cubic equations. It would be helpful to have a method for determining

which methods are appropriate for a given zeon cubic. For that, we turn to a zeon extension of

the cubic discriminant.
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We recall that given a monic cubic polynomial (with real coe"cients) f(x) = x3+ax2+bx+c ↓ R[x],
the cubic discriminant of f(x) is defined to be

!f = 18abc↔ 4a3b+ a2b2 ↔ 4b3 ↔ 27c2. (4.1)

Letting q = b
3 ↔ a2

9 and r = 1
6 (ab↔ 3c)↔ a3

27 , the discriminant is given by

!f = ↔4(3q)3 ↔ 27(2r)2 = ↔108(q3 + r2).

Traditionally, the cubic discriminant is used to characterize the zeros of f(x). In particular, the

following properties are well known.

• When !f = 0, the cubic has a repeated root.

• When !f < 0, the cubic has three distinct real roots.

• When !f > 0, the cubic has one real root and a conjugate pair of complex roots.

We extend the cubic discriminant to zeon cubic polynomials by defining !ω = q3 + r2. In view of

Theorems 3.2, and 3.5, the following classification is sensible for cubic polynomials over CZ.

Theorem 4.1 (Classification). Let ε(u) = u3 + ϑu2 + ϖu+ ϱ ↓ CZ[u]. Let !ω = q3 + r2, where

q =
1

3
ϖ ↔ 1

9
ϑ2, r =

1

6
(ϖϑ↔ 3ϱ)↔ 1

27
ϑ3.

Then the following hold.

(1) If C!ω ↑= 0, then ε has three spectrally simple zeros. When Cq ↑= 0, the zeros are given by

the cubic formula of Theorem 3.16. When Cq = 0, the zeros are obtained from Algorithm 1

using the scalar zeros of fω.

(2) If C!ω = 0, then ε either has no zeros or has uncountably many zeros.

Proof. Observing that !fϖ = ↔108C!ω, we see that the scalar polynomial fω has three distinct

complex zeros when the discriminant is nonzero. Hence, ε has three spectrally simple zeon zeros

when C!ω ↑= 0.

It is clear that C!ω = 0 implies Cq ↑= 0 ∋ Cr ↑= 0. It follows that the induced complex polynomial

fω(z ↔ Cϑ/3) = z3 + 3Cqz ↔ 2Cr has a repeated root, ⇁0. Thus, ε has no zeros or uncountably

many zeros. If the repeated root ⇁0 has multiplicity 2, there exists a spectrally simple zero µ of

ε(u) and uncountably many other zeros having common scalar part ⇁0 ↔ Cϑ/3. If ⇁0 is a zero of

multiplicity three and ε has zeros, then all zeros of ε(u) have common scalar part ⇁0 ↔ Cϑ/3.
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Example 4.2. Consider the zeon cubic polynomial ε(u) = u3 + ω{1,2}u ↔ (1 + 3ω{2}). The zeon

cubic discriminant of ε is !ω = 1
4 +ω{2,3}, which is invertible. Hence, ε has three spectrally simple

zeros. However, since q = 1
3ω{1,2} is nilpotent, the cubic formula of Theorem 3.2 fails.

The scalar zeros of fω(z) = z3↔1 are


1,↔1

2
+

∝
3

2
i,↔1

2
↔

∝
3

2
i


. Applying Algorithm 1, rational

approximations of the spectrally simple zeros are as follows:

⇁1 = 1↔ 1

3
ω{1,2} +

2

3
ω{2,3},

⇁2 =

(
↔1

2
+

181i

209

)
+

(
1

6
+

125i

433

)
ω{1,2} ↔

(
1

3
↔ 153i

265

)
ω{2,3},

⇁3 =

(
↔1

2
↔ 181i

209

)
+

(
1

6
↔ 153i

530

)
ω{1,2} ↔

(
1

3
+

153i

265

)
ω{2,3}.

4.1 Cubic polynomials over CZ2

In this section, the special case of cubic polynomials over CZ2 are considered. When ε is a cubic

polynomial in CZ2[u], there are no indeterminate cases.

Proposition 4.3. Let ε(u) = u3 + 3qu↔ 2r ↓ CZ2[u]. Let !ω = q3 + r2, where

q =
1

3
ϖ ↔ 1

9
ϑ2, r =

1

6
(ϖϑ↔ 3ϱ)↔ 1

27
ϑ3.

(1) If !ω is invertible, then ε(u) has three spectrally simple zeon zeros. The zeros are given by

the cubic formula of Theorem 3.2 if Cq ↑= 0. Otherwise, the zeros are obtained from Algorithm

1 using the scalar zeros of fω.

(2) If !ω is a nonzero null monomial of grade 2, then

(a) ε(u) has one spectrally simple zero and a set of spectrally non-simple zeros if q is

invertible;

(b) ε(u) has no zeros if q is a nonzero nilpotent in CZ2.

(3) If !ω is a nonzero nilpotent of minimal grade 1, then ε(u) has no zeros.

(4) If !ω = 0, then

(a) ε(u) has a spectrally simple zeon zero and a set of spectrally non-simple zeon zeros if r

is invertible;

(b) ε(u) has a set of spectrally non-simple zeros if r = aω[2] for a ↓ C;

(c) ε(u) has no zeros if r ↑= 0 is nilpotent and not a null monomial of grade 2.
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Proof. The results follow from Theorems 3.2 and 3.5 along with the following observations.

(1) Nilpotent cube roots do not exist in CZ2.

(2) In CZ2, nilpotent square roots only exist for null monomials aω[2].

To prove 2(b), suppose !ω = aω[2] for nonzero a ↓ C. If q is a nonzero nilpotent in CZ2, then

q3 = 0 so that !ω = r2. It follows that r = bω{1}+ cω{2} for nonzero b, c ↓ C. Any zeros of ε must

also be nilpotent. Hence, any zero z ↓ CZ2 must satisfy

ε(z) = z3 + 3qz ↔ 2r = 3qz ↔ 2(bω{1} + cω{2}) = 0,

where the minimal grade of qz is either 0 or 2. In either case, we have a contradiction.

Part 3 follows from the fact that a nilpotent of minimal grade 1 has no square roots.

Next, 4(b) is established as follows. If r = aω[2] and !ω = 0, then Cq = 0 so that q3 = 0. If q = sωi

for any nonzero s, then

ε

(
2a

3s
ω[2]\{i}

)
=

(
2a

3
ω[2]\{i}

)3

+ 3sω{i}

(
2a

3s
ω[2]\{i}

)
↔ 2aω[2] = 0 + 2aω[2] ↔ 2aω[2] = 0.

Turning to 4(c), suppose r = aω{1} + bω{2} where a, b ↓ C are not both zero. If a and b are both

nonzero, then r2 = 2abω[2]. Thus !ω = 0 requires q3 = ↔r2, which is impossible in CZ2. We

conclude that r = aω{i} for nonzero a ↓ C and i ↓ {1, 2}; further, we see that q is nilpotent.

Hence, if z ↓ CZ2 is a zero of ε, it follows that

ε(z) = z3 + 3qz ↔ 2r = 3qz ↔ 2aω{i} = 0,

where the minimal grade of qz is either 0 or 2. Again, we have a contradiction.

5 Conclusion & avenues for further research

Zeros of cubic polynomials over CZ have been classified up to two indeterminate cases. In those

indeterminate cases, su"cient conditions have been provided for existence of spectrally nonsimple

zeon zeros. In the special case of cubic polynomials over CZ2, the zeros have been completely

classified.

One obvious goal of future work is the consideration of zeros of quartic zeon polynomials over CZ,

particularly since the quartic is the highest order polynomial equation that can be solved by radicals

in the general case. Based on existing results, a quartic polynomial ε(u) = u4+ϑu3+ϖu2+ϱu+ς

having one spectrally simple zeon zero 1 can be reduced by polynomial division to the product
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(u ↔ 1)◁(u), where ◁(u) is a monic cubic polynomial in CZ[u]. The classification of cubic zeros

established here can then be applied to ◁(u). If ε(u) has two simple zeros, the zeon quadratic

formula can be applied to the remaining factor. If ε(u) splits, all zeros can be found using

Algorithm 1. If all zeros of ε(u) are spectrally nonsimple, additional tools are needed: either an

e!ective algorithm for computing spectrally nonsimple zeros or a zeon extension of the quartic

formula.

More broadly, zeros of zeon polynomials are essential for considering spectral properties of zeon

matrices. Letting ” denote an m△m matrix with entries from CZ, eigenvalues of ” are spectrally

simple zeon zeros of the characteristic polynomial of ”. Here ” is appropriately regarded as a CZ-

linear operator on the module CZm. The zeon combinatorial Laplacian has recently been shown

to enumerate paths and cycles in finite graphs, so its spectral properties are of particular interest

[12]. With zeon eigenvalues in hand Putzer’s theorem can also be useful for computing zeon matrix

exponentials.
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ABSTRACT

In this paper, we introduce two sets of linear fractional or-

der h-di!erence equations and derive their solutions. These

solutions, referred to as trigonometric functions of fractional

h-discrete calculus, are proven to have properties similar to

sine and cosine functions on R. The illustrated graphs con-

firm these similarities.

RESUMEN
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de h-diferencias lineales de orden fraccionario y derivamos

sus soluciones. Probamos que estas soluciones, referidas

como funciones trigonométricas del cálculo fraccionario h-

discreto, tienen propiedades similares a las funciones seno y

coseno en R. Las gráficas ilustradas confirman estas similar-

idades.
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1 Introduction

The linear second order di!erential equation

y→→(t) + ω2y(t) = 0,

where t → R and ω is a nonzero real number, produces two linearly independent solutions.

They are well-known trigonometric functions, sin(ωt) =
∑↑

n=0(↑1)nω2n+1 t2n+1

(2n+1)! and cos(ωt) =
∑↑

n=0(↑1)nω2n t2n

(2n)! . Picard’s iteration method is one of the fundamental methods in applied

mathematics to construct these infinite series. Motivated by this construction technique, we will

use calculus on the discrete time domain hNa = {a, a+ h, a+ 2h, . . . }, where a → R and h → R+,

to derive corresponding sum representations for sine and cosine functions of h-discrete fractional

calculus.

Discrete fractional calculus, also known as non-integer order calculus on a discrete domain, has

garnered significant attention from mathematicians over the past decade. It o!ers a novel approach

to analyzing di!erences (derivatives) and sums (integrals) of arbitrary (non-integer) orders within

discrete settings. A recent book by Goodrich and Peterson [6] provides a comprehensive collection

of pioneering results for discrete fractional calculus, with a particular focus on the case where h = 1.

In particular, the results obtained on the domain hNa extend the findings of fractional discrete

calculus on Na. This generalization provides a more comprehensive framework for understanding

and applying fractional calculus within discrete settings. For further reading on this generalized

domain, we refer the reader to the following papers [1–3,7–15].

In this article, our goal is to introduce and derive solutions for the following two sets of linear

fractional order h-di!erence equations

↓ω
h,ay(t) + ω2y(t↑ h) = 0, (1.1)

and

↓ω
h,ay(t) + ω2y(t) = 0, (1.2)

where t → hNa, 1 < ε < 2. The equation (1.1) includes a time delay, while the equation (1.2) is

formulated without a time delay. We also note that in [1] the authors proved that ↓ω
hy(t) is getting

close to y→→(t) when ε ↔ 2 and h ↔ 0. Hence in the limit position, the Eq. (1.2) is approximating

to the second order di!erential equation, y→→(t) + ω2y(t) = 0.

The following theorem, found in [3], presents the solution to the fractional h-di!erence equation

in terms of Mittag-Le"er type functions. A natural question arises: Do sine and cosine functions

appear in this solution when k = 2? To explore this, we apply Picard’s iteration method to derive

the sine and cosine functions of fractional h-discrete calculus.
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Theorem 1.1 ([3]). Let ϑ → R, h > 0, k → N , and ε → (k ↑ 1, k). The general solution of the

following problem

↓ω
h,0y(t) = ϑy(t↑ h), t → hNkh, (1.3)

is given by

y(t) = C1Ẽ
h
ε,ω,ω↓1(t, 0) + C2Ẽ

h
ε,ω,ω↓2(t, 0) + · · ·+ CkẼ

h
ε,ω,ω↓k(t, 0),

where C1, C2, . . . , Ck are constants.

This paper is organized by following the outline given below. In order to make our calculations

easy to follow, we provide basic definitions in h-discrete fractional calculus and related results in

the preliminary section. We use Riemann-Liouville definition for the fractional derivative. Addi-

tionally, we develop techniques to convert Eqs. (1.1) and (1.2) into sum equations to apply Picard’s

iteration. Section 3 focuses on Eq. (1.1), where we define a iteration formula and derive two finite

sums as solutions, illustrating their graphs for various values of ε between one and two. Building

on Section 3, we define two infinite series and state a theorem that outlines their properties and

shows them as solutions to Eq. (1.2) in Section 4. Finally, we give a short concluding remark.

2 Preliminaries

Let h be any positive real number and a be any real number. We define hNa to be the set

{a, a+ h, a+ 2h, . . . }. Suppose F : hNa ↔ R is a function.

Definition 2.1 ([5]). The forward and the backward h-di!erence operator are defined by

!hF (t) =
F (t+ h)↑ F (t)

h
, t → hNa,

and

↓hF (t) =
F (t)↑ F (t↑ h)

h
, t → hNa+h,

respectively.

Remark 2.2. Throughout this paper, we suggest that the reader considers the following:

(i) if h = 1, we have the backward di!erence operator, or nabla operator (↓)

↓F (t) = F (t)↑ F (t↑ 1), t → Na+1;

(ii) if lim
h↔0

F (t)↑ F (t↑ h)

h
exists, then we have lim

h↔0
↓hF (t) = F →(t).
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Definition 2.3 ([3]). For any t, r → R, the h-rising factorial function is defined by

trh = hr ”(
t
h + r)

”( t
h )

,

whenever the quotient is well-defined. Here ”(·) denotes the Euler gamma function.

Definition 2.4 ([3]). Let a → R and ε → R+
. The nabla h-fractional sum of order ε is defined by

↓↓ω
h,aF (t) :=

1

”(ε)

t/h∑

s=a/h

(t↑ ϖ(sh))ω↓1
h F (sh)h, t → hNa,

where h → R+
and ϖ(t) = t↑ h.

Definition 2.5 ([3]). The nabla h-fractional di!erence of order ε in the sense of Riemann–

Liouville is defined by

↓ω
h,aF (t) := ↓n

h↓
↓(n↓ω)
h,a F (t), t → hNa+nh,

where a → R, n↑ 1 < ε ↗ n, and n → N.

Lemma 2.6 ([3]). Let ε → R+
and ϱ → R such that

!(ϑ+1)
!(ϑ+ω+1) and

!(ϑ+1)
!(ϑ↓ω+1) are defined. Then we

have that

(i) ↓↓ω
h,a(t↑ ϖ(a))ϑh = !(ϑ+1)

!(ϑ+ω+1) (t↑ ϖ(a))ϑ+ω
h , t → hNa.

(ii) ↓ω
h,a(t↑ ϖ(a))ϑh = !(ϑ+1)

!(ϑ↓ω+1) (t↑ ϖ(a))ϑ↓ω
h , t → hNa.

In the following sections, we use Lemma 2.6 as one of the main tools to obtain some important

identities. We want to note that
1

”(↑n)
for n → N0 is considered as zero. The proof of the next

lemma is elementary. We omit the proof.

Lemma 2.7. Let b → hNa. The following is valid:

↓h(b↑ t)ϑh = ↑ϱ(b↑ ϖ(t))ϑ↓1
h , t → hNa.

The following equality is known as Leibniz’s rule for the nabla di!erence operator. The proof can

be adapted from its proof in time scales calculus [5].

Lemma 2.8. For a function G : hNa ↘ N ↔ R, the following is valid:

↓h

t
h∑

s= a
h+1

G(t, sh)h =

t
h∑

s= a
h+1

↓hG(t, sh)h+G(ϖ(t), t),

where t → hNa.
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Next, we demonstrate how ↓h and ↓↓ω
h,a commute in a theorem.

Theorem 2.9. For any positive real number ε, the following equality holds:

↓↓ω
h,a+h↓hf(t) = ↓h↓↓ω

h,af(t)↑
(t↑ a+ h)ω↓1

h

”(ε)
f(a).

Proof. Using Lemma 2.7 and the summation by parts formula in h-discrete calculus, we have

↓↓ω
h,a+h↓hf(t) =

1

”(ε)

t
h∑

s= a+h
h

(t↑ ϖ(sh))ω↓1
h ↓hf(sh)h

=
(t↑ ϖ(sh))ω↓1

h

”(ε)
f(sh)

∣∣∣
t
h

a
h

+
(ε↑ 1)

”(ε)

t
h∑

s= a+h
h

(t+ h↑ ϖ(sh))ω↓2
h f(ϖ(sh))h

= hω↓1f(t)↑
(t↑ a+ h)ω↓1

h

”(ε)
f(a) +

1

”(ε↑ 1)

t
h↓1∑

s= a
h

(t↑ ϖ(sh))ω↓2
h f(sh)h

= ↑
(t↑ a+ h)ω↓1

h

”(ε)
f(a) +

1

”(ε↑ 1)

t
h∑

s= a
h

(t↑ ϖ(sh))ω↓2
h f(sh)h

= ↓h↓↓ω
h,af(t)↑

(t↑ a+ h)ω↓1
h

”(ε)
f(a).

This result can be generalized for the operator ↓n
h using the principle of mathematical induction.

Theorem 2.10. Let ε → R+
and n → N. The following equality holds.

↓↓ω
h,a+nh↓

n
hf(t) = ↓n

h↓↓ω
h,af(t)↑

1

”(ε)

n↓1∑

k=0

↓n↓k↓1
h (t↑ kh↑ ϖ(a))ω↓1

h ↓k
hf(t)

∣∣∣
t=a+kh

.

Proof. The proof of the equality follows from Theorem 2.9 for n = 1 and the induction assumption

for n > 1

↓↓ω
h,a+nh↓

n
hf(t) = ↓n

h↓↓ω
h,af(t)↑

1

”(ε)

n↓1∑

k=0

↓n↓k↓1
h (t↑ kh↑ ϖ(a))ω↓1

h ↓k
hf(t)

∣∣∣
t=a+kh

.

For n+ 1, we have

↓↓ω
h,a+(n+1)h↓

n+1
h f(t) = ↓↓ω

h,a+nh+h↓h↓n
hf(t)

= ↓h↓↓ω
h,a+nh↓

n
hf(t)↑

(t↑ nh↑ ϖ(a))ω↓1
h

”(ε)
↓k

hf(t)
∣∣∣
t=a+nh

= I.
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Next we use the induction assumption on the quantity ↓h↓↓ω
h,a+nh↓n

hf(t) to obtain

I = ↓h

[
↓n

h↓↓ω
h,af(t)↑

1

”(ε)

n↓1∑

k=0

↓n↓k↓1
h (t↑ kh↑ ϖ(a))ω↓1

h ↓k
hf(t)

∣∣∣
t=a+kh

]

↑
(t↑ nh↑ ϖ(a))ω↓1

h

”(ε)
↓k

hf(t)
∣∣∣
t=a+nh

= ↓n+1
h ↓↓ω

h,af(t)↑
1

”(ε)

n↓1∑

k=0

↓n↓k
h (t↑ kh↑ ϖ(a))ω↓1

h ↓k
hf(t)

∣∣∣
t=a+kh

↑
(t↑ nh↑ ϖ(a))ω↓1

h

”(ε)
↓k

hf(t)
∣∣∣
t=a+nh

= ↓n+1
h ↓↓ω

h,af(t)↑
1

”(ε)

n∑

k=0

↓n↓k
h (t↑ kh↑ ϖ(a))ω↓1

h ↓k
hf(t)

∣∣∣
t=a+kh

.

This completes the proof.

We close the preliminary section with the following lemma. The identities we have in this lemma

will be used in the following sections to shortened the quantities in our calculations.

Lemma 2.11. Let 1 < ε < 2. The following are valid.

(i) ↓↓(2↓ω)
h,a f(t)

∣∣∣
t=a

= h2↓ωf(a),

(ii) ↓h↓↓(2↓ω)
h,a f(t)|

∣∣∣
t=a+h

= h1↓ω [f(a+ h) + (1↑ ε)f(a)] .

Proof. The proof of the part (i) follows from the definition of the fractional h-di!erence operator.

Indeed we have,

↓↓(2↓ω)
h,a f(t)

∣∣∣
t=a

=
1

”(2↑ ε)

t
h∑

s= a
h

(t↑ ϖ(sh))2↓ω↓1
h f(sh)h

∣∣∣
t=a

=
h

”(2↑ ε)

a
h∑

s= a
h

(a↑ ϖ(sh))1↓ω
h f(sh)

=
h

”(2↑ ε)
(a↑ ϖ(a))1↓ω

h f(a) = h2↓ωf(a).

For the proof of the part (ii), we use Lemma 2.8 as a tool. Hence we have

↓h↓↓(2↓ω)
h,a f(t)|

∣∣∣
t=a+h

= ↓h

[ 1

”(2↑ ε)

t
h∑

s= a
h

(t↑ ϖ(sh))1↓ω
h f(sh)h

]∣∣∣
t=a+h
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=
1

”(2↑ ε)

t
h∑

s= a
h

↓h[(t↑ ϖ(sh))1↓ω
h ]f(sh)h

∣∣∣
t=a+h

+

(t↑ h↑ ϖ(t))1↓ω
h ]f(t)

∣∣∣
t=a+h

=
h(1↑ ε)

”(2↑ ε)

a
h+1∑

s= a
h

(a+ h↑ ϖ(sh))↓ω
h f(sh)

=
h(1↑ ε)

”(2↑ ε)

[
(2h)↓ω

h f(a) + (h)↓ω
h f(a+ h)|

]

= h1↓ω [f(a+ h) + (1↑ ε)f(a)] .

3 A fractional order h-di!erence equation with delay

Here we consider the following ε-th order linear fractional h-di!erence equation

↓ω
hy(t) + ω2y(t↑ h) = 0, (3.1)

where 1 < ε < 2 and ω → R.

Apply the operator ↓↓ω
h,a+2h to each side of the equation (3.1) to obtain

↓↓ω
h,a+2h↓

2
h↓

↓(2↓ω)
h,a y(t) +↓↓ω

h,a+2hω
2y(t↑ h) = 0.

Apply Theorem 2.10 to obtain

↓2
h↓↓ω

h,a↓
↓(2↓ω)
h,a y(t)↑

1∑

k=0

↓1↓k
h (t↑ kh↑ ϖ(a))ω↓1

h

”(ε)
↓k

h↓
↓(2↓ω)
h,a y(t)|t=a+kh+↓↓ω

h,a+2hω
2y(t↑h) = 0.

Hence we have

↓2
h↓↓ω

h,a↓
↓(2↓ω)
h,a y(t) =

(t↑ ϖ(a))ω↓2
h

”(ε↑ 1)
↓↓(2↓ω)

h,a y(t)|t=a +
(t↑ h↑ ϖ(a))ω↓1

h

”(ε)
↓h↓↓(2↓ω)

h,a y(t)|t=a+h

↑ ω2↓↓ω
h,a+2hy(t↑ h).

It follows from Lemma 2.11 and the composition property for the fractional sum operators (Lemma

2 in [2]), we have

y(t) =
(t↑ ϖ(a))ω↓2

h

”(ε↑ 1)
h2↓ωy(a) +

(t↑ h↑ ϖ(a))ω↓1
h

”(ε)
h1↓ω [(1↑ ε)y(a) + y(a+ h)]

↑ ω2↓↓ω
h,a+2hy(t↑ h). (3.2)
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Conversely, assume that y has the representation (3.2). We first note that

↓↓ω
h,a+2hy(t) = ↓↓ω

h,ay(t)↑
1

”(ε)
(t↑ ϖ(a+ h)ω↓1

h y(a+ h)h↑ 1

”(ε)
(t↑ ϖ(a))ω↓1

h y(a)h.

In addition to the above equality, we use the power rule (Lemma 2.6) and the composition property

for the fractional sum operators (Lemma 2 in [2]) to derive from (3.2) by applying the operator

↓ω
h to the each side of the equation to obtain

↓ω
hy(t) =↓ω

h

[
(t↑ ϖ(a))ω↓2

h

”(ε↑ 1)
h2↓ωy(a) +

(t↑ h↑ ϖ(a))ω↓1
h

”(ε)
h1↓ω[(1↑ ε)y(a) + y(a+ h)]

↑ ω2↓↓ω
h,a+2hy(t↑ h)

]

= ↓ω
h

[
(t↑ ϖ(a))ω↓2

h

”(ε↑ 1)
h2↓ωy(a) +

(t↑ h↑ ϖ(a))ω↓1
h

”(ε)
h1↓ω [(1↑ ε)y(a) + y(a+ h)]

]

↑ ω2↓ω
h

[
↓↓ω

h,ay(t↑ h)↑ 1

”(ε)
(t↑ h↑ ϖ(a+ h))ω↓1

h y(a+ h)h

↑ 1

”(ε)
(t↑ h↑ ϖ(a))ω↓1

h y(a)h

]
= ↑ω2y(t↑ h).

Thus, we have proved the following lemma.

Lemma 3.1. y is a solution of the problem (3.1), if and only if, y has the representation (3.2).

Next, for the simplicity in our calculations, we consider a = 0. We define a sequence of functions

on hN0 as follows:

y0(t) =
(t+ h)ω↓2

h

”(ε↑ 1)
h2↓ωy(0) +

(t)ω↓1
h

”(ε)
h1↓ω [(1↑ ε)y(0) + y(h)] ,

yn(t) = ↑ω2↓↓ω
h,2hyn↓1(t↑ h),

for n → N1.

Using this iteration formula along with the power rule (Lemma 2.6), we observe that
↑∑

n=0

yn(t)

truncates to the following finite sum

h2↓ωy(0)

t
h∑

n=0

(↑1)nω2n (t↑ (n↑ 1)h)(n+1)ω↓2
h

”((n+ 1)ε↑ 1)

+ h1↓ω [(1↑ ε)y(0) + y(h)]

t
h∑

n=0

(↑1)nω2n (t↑ nh)(n+1)ω↓1
h

”((n+ 1)ε)
.
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To convince the reader, we present a few elements in the sequence < yn(t) > and explain why we

have finite sum instead of infinite sum at the end of this process.

y1(t) = ↑ω2↓↓ω
h,2hy0(t↑ h)

= ↑ω2↓↓ω
h,2h

[
(t)ω↓2

h

”(ε↑ 1)
h2↓ωy(0) +

(t↑ h)ω↓1
h

”(ε)
h1↓ω [(1↑ ε)y(0) + y(h)]

]

= ↑ω2

[
(t)2ω↓2

h

”(2ε↑ 1)
h2↓ωy(0) +

(t↑ h)2ω↓1
h

”(2ε)
h1↓ω [(1↑ ε)y(0) + y(h)]

]
.

We repeat this calculation for y2 to obtain the general term yn of the sequence. Our main tool is

the power rule (Lemma 2.6).

y1(t) = ↑ω2↓↓ω
h,2hy1(t↑ h)

= ↑ω2↓↓ω
h,2h

[
↑ω2

[
(t↑ h)2ω↓2

h

”(2ε↑ 1)
h2↓ωy(0) +

(t↑ 2h)2ω↓1
h

”(2ε)
h1↓ω [(1↑ ε)y(0) + y(h)]

]]

= ω4

[
(t↑ h)3ω↓2

h

”(3ε↑ 1)
h2↓ωy(0) +

(t↑ 2h)3ω↓1
h

”(3ε)
h1↓ω [(1↑ ε)y(0) + y(h)]

]
.

From this, the general term yn(t) follows.

yn(t) = (↑1)nω2n

[
h2↓ωy(0)

(t↑ (n↑ 1)h)(n+1)ω↓2
h

”((n+ 1)ε↑ 1)
+ h1↓ω [(1↑ ε)y(0) + y(h)]

(t↑ nh)(n+1)ω↓1
h

”((n+ 1)ε)

]
.

When we consider the infinite sum
↑∑

n=0

yn(t), the terms with h-rising factorial powers become zero

for n > t
h . Hence we obtain

h2↓ωy(0)

t
h∑

n=0

(↑1)nω2n (t↑ (n↑ 1)h)(n+1)ω↓2
h

”((n+ 1)ε↑ 1)

+ h1↓ω [(1↑ ε)y(0) + y(h)]

t
h∑

n=0

(↑1)nω2n (t↑ nh)(n+1)ω↓1
h

”((n+ 1)ε)
.

If we look closely at this sum which is the general solution of the fractional di!erence equation

(3.1), we observe that there are two linearly independent solutions. Hence we define these two

linearly independent solutions as sine and cosine functions.

We define

Ch(t,ε,ω) =

t
h∑

n=0

(↑1)nω2n (t+ h↑ nh)(n+1)ω↓2
h

”((n+ 1)ε↑ 1)
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and

Sh(t,ε,ω) =

t
h∑

n=0

(↑1)nω2n+1 (t↑ nh)(n+1)ω↓1
h

”((n+ 1)ε)
,

t → hN0. It turns out that Ẽh
↓ϖ2,ω,ω↓2(t + h, 0) = Ch(t,ε,ω) and Ẽh

↓ϖ2,ω,ω↓1(t, 0) = Sh(t,ε,ω)

when we compare the above solutions with the solution representation in Theorem 1.1.

Next we list some properties of these functions.

Theorem 3.2. The following equalities are valid.

(i) !hSh(t,ε,ω) = ωCh(t,ε,ω).

(ii) h2↓ωCh(0,ε,ω) = 1, Sh(0,ε,ω) = 0.

(iii) ↓ω
h,aCh(t,ε,ω) + ω2Ch(t↑ h,ε,ω) = 0.

(iv) ↓ω
h,aSh(t,ε,ω) + ω2Sh(t↑ h,ε,ω) = 0.

Proof. The proofs of (i) and (ii) are straightforward from the definitions of the functions Ch and

Sh. The proofs of (iii) and (iv) can be found at Theorem 3.6 in [3].

Remark 3.3. In Figure 1, we illustrate the graphs of Ch(t,ε,ω) and Sh(t,ε,ω) for a small value

of h and for several ε values between one and two.

Figure 1: Family of graphs of S.5(t,ε, .5) and C.5(t,ε, .5).
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(b) C.5(t,ω, .5)
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4 A fractional order h-di!erence equation without delay

Here we consider the following ε-th order linear fractional h-di!erence equation

↓ω
h,ay(t) + ω2y(t) = 0, (4.1)

where 1 < ε < 2 and ω → R. We assume that ω2hω < 1.

Here we define

Cosh(t,ε,ω) = (1 + ω2hω)
↑∑

n=0

(↑1)nω2n (t+ h)(n+1)ω↓2
h

”((n+ 1)ε↑ 1)

and

Sinh(t,ε,ω) = (1 + ω2hω)
↑∑

n=0

(↑1)nω2n+1 (t)
(n+1)ω↓1
h

”((n+ 1)ε)
,

t → hN0. These series are convergent when ω2hω < 1.

Next we list some properties of these functions. We omit their proof since they are mainly relying

on the power rule (Lemma 2.6).

Theorem 4.1. The following equalities are valid.

(i) !hSinh(t,ε,ω) = ωCosh(t,ε,ω).

(ii) h2↓ωCosh(0,ε,ω) = 1, Sinh(0,ε,ω) = 0.

(iii) ↓ω
h,aCosh(t,ε,ω) + ω2Cosh(t,ε,ω) = 0.

(iv) ↓ω
h,aSinh(t,ε,ω) + ω2Sinh(t,ε,ω) = 0.

Remark 4.2. In Figure 2, we illustrate the graphs of Cosh(t,ε,ω) and Sinh(t,ε,ω) for a small

value of h and for several ε values between one and two.

5 A concluding remark

The development of fractional calculus on the set hNa = {a, a+ h, a+ 2h, . . . } has shown promis-

ing results. In a recent paper [4], the pharmacokinetic (PK)-pharmacodynamic (PD) model was

formulated on this time domain, with the PK component defined on an hourly basis and the PD

component on a daily basis. h-discrete calculus o!ers the flexibility to select the right h values,

enabling the construction of such an advanced model. Continuous improvement in existing mod-

els, whether in science, technology, or any other field, often hinges on the development of new

theories and the refinement of analytical methods. Such a development of the theory starts with

construction of the basic functions.
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Figure 2: Family of graphs of Sin.5(t,ε, .5) and Cos.5(t,ε, .5).
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(a) Sin.5(t,ω, .5)
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In this article, we employed the widely recognized applied mathematics technique, Picard’s itera-

tion, to develop sine and cosine like functions within the framework of h-discrete fractional calculus.

We constructed these functions as solutions to some linear fractional h-di!erence equations and

illustrated their graphs. Sine and cosine functions as infinite sums can be calculated using a similar

matrix method as in [2]. All these functions are potential candidates for application in various

areas of mathematics. Deriving their analytical properties is just one of many open problems to

explore.
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ABSTRACT

In this work, we study the Nehari manifold and its application

to the following sub-elliptic system involving strongly coupled

critical terms and concave nonlinearities:






→!Gu =
ω1ε1

2→
|u|ω1↑2|v|ε1u+

ω2ε2

2→
|u|ω2↑2|v|ε2u

+ ϑ g(z) |u|q↑2u, z ↑ ”,

→!Gv =
ω1ϖ1

2→
|u|ω1 |v|ε1↑2v +

ω2ϖ2

2→
|u|ω2 |v|ε2↑2v

+ µh(z) |v|q↑2v, z ↑ ”,

u = v = 0, z ↑ ϱ”,

where ” is an open bounded subset of G with smooth bound-

ary, →!G is the sub-Laplacian on a Carnot group G; ω1, ω2,

ϑ, µ, are positive, ε1 + ϖ1 = 2→, ε2 + ϖ2 = 2→, 1 < q < 2,

2→ = 2Q
Q↑2 is the critical Sobolev exponent, and Q is the homo-

geneous dimension of G. By exploiting the Nehari manifold

and variational methods, we prove that the system has at

least two positive solutions.
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RESUMEN

En este trabajo, estudiamos la variedad de Nehari y su apli-

cación al siguiente sistema sub-elíptico que involucra términos

críticos fuertemente acoplados y nolinealidades cóncavas:






→!Gu =
ω1ε1

2→
|u|ω1↑2|v|ε1u+

ω2ε2

2→
|u|ω2↑2|v|ε2u

+ ϑ g(z) |u|q↑2u, z ↑ ”,

→!Gv =
ω1ϖ1

2→
|u|ω1 |v|ε1↑2v +

ω2ϖ2

2→
|u|ω2 |v|ε2↑2v

+ µh(z) |v|q↑2v, z ↑ ”,

u = v = 0, z ↑ ϱ”,

donde ” es un conjunto abierto acotado de G con frontera

suave, →!G es el sub-Laplaciano en un grupo de Carnot G;

ω1, ω2, ϑ, µ, son positivas, ε1 + ϖ1 = 2→, ε2 + ϖ2 = 2→, 1 <

q < 2, 2→ = 2Q
Q↑2 es el exponente crítico de Sobolev, y Q es

la dimensión homogénea de G. Usando la variedad de Nehari

y métodos variacionales, demostramos que el sistema tiene al

menos dos soluciones positivas.

Keywords and Phrases: Sub-Laplacian, concave-convex nonlinearities, strongly coupled critical terms, Nehari

manifold.

2020 AMS Mathematics Subject Classification: 35J60, 47J30.
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1 Introduction

In this paper, we are concerned with the sub-Laplacian system involving strongly coupled critical

terms and concave nonlinearities on the Carnot group G given below






→!Gu =
ω1ε1

2→
|u|

ω1↑2
|v|

ε1u+
ω2ε2

2→
|u|

ω2↑2
|v|

ε2u+ ϑg(z)|u|q↑2
u, z ↑ ”,

→!Gv =
ω1ϖ1

2→
|u|

ω1 |v|
ε1↑2

v +
ω2ϖ2

2→
|u|

ω2 |v|
ε2↑2

v + µh(z)|v|q↑2
v, z ↑ ”,

u = v = 0, z ↑ ϱ”,

(1.1)

where ” is an open bounded subset of G with smooth boundary, →!G is the sub-Laplacian on

a Carnot group G. ϑ, µ, are positive, 2→ = 2Q
Q↑2 is the critical Sobolev exponent, and Q is the

homogeneous dimension of G. We consider the following conditions:

(A0) Q ↓ 4, 1 < q < 2, 0 < ωi < ↔, εi,ϖi > 1 and εi + ϖi = 2→ (i = 1, 2),

and we give the following assumptions on the weight functions g and h:

(A1) g, h ↑ L
2→

2→↑q (”), g± = max{±g, 0} ↗= 0 in ”̄ and h
± = max{±h, 0} ↗= 0 in ”̄.

(A2) There exist a0, r0 > 0 such that Bd(0, r0) ↘ ” and g(z), h(z) ↓ a0 for all z ↑ Bd(0, r0).

Here Bd(z, r) denotes the quasi-ball with center at z and radius r with respect to the gauge d.

|u|
ωi↑2

u|v|
εi and |u|

ωi |v|
εi↑2

v, i = 1, 2 are called strongly coupled terms. We now recall some

known results concerning the elliptic system involving the strongly coupled critical terms. When G
is the ordinary Euclidean space

(
RN

,+
)
, ω1 = ω2 = 1, ε1 = ε2 = ε, ϖ1 = ϖ2 = ϖ and g = h ≃ 1,

problem (1.1) becomes the following Laplacian elliptic system:






→!u = 2ω
ω+ε |u|

ω↑2
|v|

ε
u+ ϑ|u|

q↑2
u, in ”,

→!v = ε
ω+ε |u|

ω
|v|

ε↑2
v + µ|v|

q↑2
v, in ”,

u = v = 0, on ϱ”.

(1.2)

The authors in [10] proved that the system (1.2) admits at least two positive solutions. Later,

Hsu [9] obtained the same results for the p-Laplacian elliptic system. There are other multiplicity

results or critical elliptic equations involving concave–convex nonlinearities, see for example [1,

2]. Contrary to the nonlinear elliptic problem with the Laplacian or p-Laplacian in Euclidean

space that have been widely investigated, the situation seems to be in a developing state for

the sub-Laplacian problem on Carnot groups. Recently, great attention has been devoted to

nonlinear elliptic problems involving critical nonlinearities, in the context of Carnot group, see

for example [11, 13, 20] and references therein. To the best of our knowledge, there is no result
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so far concerning sub-elliptic system involving strongly coupled critical terms nonlinearities with

sign-changing weight functions on Carnot group.

We look for weak solutions of (1.1) in the product space H := S
1
0(”) ⇐ S

1
0(”), endowed with the

norm

⇒(u, v)⇒H =
(
⇒u⇒

2
S1
0(!) + ⇒v⇒

2
S1
0(!)

) 1
2
, ⇑(u, v) ↑ H,

where the Folland-Stein space S
1
0(”) = {u ↑ L

2(”) :
∫
! |⇓Gu|2dz < ↔}, is defined as the comple-

tion of C↓

0 (”) with respect to the norm

(
⇒u⇒S1

0(!)

)
=

(∫

!
|⇓Gu|

2
dz

) 1
2

, ⇑u ↑ S
1
0(”).

By using the Nehari manifold and fibering map analysis, we establish the existence of at least two

positive solutions for a sub-elliptic system (1.1) when (ϑ, µ) belongs to certain subset of R2
+. Since

the embedding S
1
0(”) ς⇔ L

2→(”) is not compact, then the corresponding energy functional does not

satisfy the Palais-Smale condition in general. Therefore, it is di!cult to obtain the critical points

of energy functional by simple arguments, which are based on the compactness of the Sobolev

embedding. To overcome this di!culty, we extract a Palais-Smale sequence in the Nehari manifold

and show that the weak limit of this sequence is the required solution of problem (1.1). The best

constant of the Sobolev inequality was studied on graded groups in [15]. But in that paper, the

best constant was expressed in variational form.

We consider the following scalar critical equation:

→!Gu = |u|
2→↑2

u in G. (1.3)

For equation (1.3), it is well known (see e.g. [3, 11]) that positive solutions have the following

decay:

U(z) ↖
C

d(z)Q↑2
as d(z) ⇔ ↔, (1.4)

where d is the gauge norm on G. This result applies, in particular, to the extremals of the Sobolev

inequality on Carnot groups (whose existence was proved in [8, 17], i.e., to the functions U that

achieve the best constant for the embedding S
1
0(G) ς⇔ L

2→(G), that is,

SG := inf
u↔S1

0(G)\{0}

∫
G |⇓Gu|2dz

(∫
G |u|2

→
dz

) 2
2→

=

∫
G |⇓GU |

2
dz

(∫
G |U |2

→
dz

) 2
2→

.

We underline that the knowledge of the exact asymptotic behavior of Sobolev minimizers turns out

to be a crucial ingredient in order to obtain existence results for Brézis-Nirenberg type problems,

whenever the explicit form of Sobolev minimizers is not known, as in the present Carnot case. The

knowledge of the behavior of Sobolev minimizers turns out to be crucial also for the system, due
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to the relation between the extremals for the best constant Sϑ,ω,ε associated to the system and

the Sobolev constant SG (see Theorem 2.1 below).

The energy functional Iϑ,ω,ε : H →⇔ R associated to (1.1) is given by

Iϑ,ω,ε(u, v) =
1

2
⇒(u, v)⇒2

H
→

1

2→
Kϑ(u, v)→

1

q
#ϖ,µ(u, v), ⇑(u, v) ↑ H,

where

Kϑ(u, v) =

∫

!

(
ω1|u|

ω1 |v|
ε1 + ω2|u|

ω2 |v|
ε2
)
dz, #ϖ,µ(u, v) =

∫

!
(ϑg(z)|u|q + µh(z)|v|q) dz.

It is easy to check that Iϑ,ω,ε ↑ C
1(H,R) and the critical point of Iϑ,ω,ε is the weak solution of

(1.1). We call a solution (u, v) positive if both u and v are positive, (u, v) is nontrivial if u ↗≃ 0 or

v ↗≃ 0.

Definition 1.1. A pair of functions (u, v) ↑ H is said to be a weak solution of problem (1.1) if

∫

!
(⇓u⇓φ+⇓v⇓↼) dx =

∫

!

(
ω1ε1

2→
|u|

ω1↑2
|v|

ε1uφ+
ω2ε2

2→
|u|

ω2↑2
|v|

ε2uφ

)
dx

+

∫

!

(
ω1ϖ1

2→
|u|

ω1 |v|
ε1↑2

v↼ +
ω2ϖ2

2→
|u|

ω2 |v|
ε2↑2

v↼

)
dx (1.5)

+

∫

!

(
ϑg(x)|u|q↑2

uφ+ µh(x)|v|q↑2
v↼

)
dx for all (φ,↼) ↑ H.

Define the set

Dϱ :=
{
(ϑ, µ) ↑ R+

⇐ R+
\{(0, 0)} : 0 < µ⇒g⇒

L
2→

2→↑q
+ µ⇒h⇒

L
2→

2→↑q
< ↽

}
, and

$ :=
2→ → 2

2→ → q

(
2→ q

(ω1 + ω2) (2→ → q)

) 2↑q
2→↑2

S

2→↑q
2→↑2

G .

(1.6)

So, the main result of this paper can be included in the following theorem.

Theorem 1.2. Let G be a Carnot group. Assume that (A0), (A1) and (A2) hold. Then, we have

the following results:

(i) If (ϑ, µ) ↑ D”, then (1.1) has at least one positive solution in H.

(ii) There exists a constant $→ > 0 such that system (1.1) has at least two distinct positive

solutions in H for all (ϑ, µ) ↑ D”→ .

The paper is organized into three sections. In Section 2, we recall some basic definitions of Sobolev

space on Carnot groups and we give some useful auxiliary lemmas. In Section 3, we investigate

the Palais-Smale condition for the energy functional Iϑ,ω,ε . Finally, the proof of Theorem 1.2 is

given in Sections 4 and 5.
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2 Preliminaries

In this section we recall some basic facts on the Carnot groups. For a complete treatment, we refer

to the classical papers [6, 7]. We also quote for an overview on general homogeneous Lie group.

Let G =
(
RN

, ↙
)

be a homogeneous group, i.e., a Lie group equipped with a family {⇀ς}ς>0 of

dilations, acting on z ↑ RN as follows

⇀ς

(
z
(1)

, . . . , z
(r)

)
=

(
⇁
1
z
(1)

, ⇁
2
z
(2)

, . . . , ⇁
r
z
(r)

)
,

where z
(k)

↑ RNk for every k ↑ {1, . . . , r} and N =
∑r

k=1 Nk. Then, the structure G :=(
RN

, ↙, {⇀ς}ς>0

)
is called a homogeneous group with homogeneous dimension

Q :=
r

k=1

k ·Nk.

Note that the number Q is naturally associated to the family {⇀ς}ς>0 since, for every ⇁ > 0, the

Jacobian of the map z ∝⇔ ⇀ς(z) equals ⇁
Q. From now on, we shall assume throughout that Q ↓ 3.

We remark that, if Q ′ 3, then G is necessarily the ordinary Euclidean space G =
(
RQ

,+
)
.

Let g be the Lie algebra of left invariant vector fields on G and assume that g is stratified, i.e.,

g =
r

k=1 Vk with [V1, Vk] = Vk+1, for 1 ′ k ′ r→ 1 and [V1, Vr] = {0}. Under these assumptions,

we call G a Carnot group. Here the integer r is called the step of G, dim (Vk) = Nk and the

symbol [V1, Vk] denotes the subspace of g generated by the commutators [X,Y ], where X ↑ V1 and

Y ↑ Vk. Let X = {X1, X2, . . . , Xm} be a basis of V1 with m = dim (V1). From Proposition 1.2.29

of [14], the left invariant vector field Xi (k = 1, . . . ,m) has an explicit form as follows:

Xi =
ϱ

ϱx
(1)
i

+
k

l=2

dim(Vl)

r=1

a
(l)
i,r

(
x
(1)

, . . . , x
(l↑1)

)
ϱ

ϱx
(l)
r

,

where a
(l)
i,r is a homogeneous (with respect to ⇀ς) polynomial function of degree l → 1. Then, once

a basis X1, X2, . . . , Xm of the horizontal layer is fixed, we define, for any function u : G ⇔ R
for which the partial derivatives Xju exist, the horizontal gradient of u, denoted by ⇓Gu, as the

horizontal section

⇓Gu := (X1u,X2u, . . . ,Xmu) .

Moreover, if φ = (φ1,φ2, . . . ,φm) is an horizontal section such that Xjφj ↑ L
1
loc(G) for j =

1, . . . ,m, we define divG φ as the real-valued function

divG(φ) := →

m

j=1

X
→

j φj =
m

j=1

Xjφj .
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From the above results, the second-order di"erential operator

!G :=
m

j=1

X
2
j .

is called the (canonical) sub-Laplacian on G. The sub-Laplacian !G is a left invariant homogeneous

hypoelliptic di"erential operator, thanks to Hörmander’s theorem, and !Gu = divG (⇓Gu). In

addition, we can check that ⇓G and !G are left-translation invariant with respect to the group

action τz and ⇀ς-homogeneous, respectively, of degree one and two, that is, ⇓G (u ↙ τz) = ⇓Gu ↙

τz,⇓G (u ↙ ⇀ς) = ⇁⇓Gu ↙ ⇀ς , and !G (u ↙ τz) = !Gu ↙ τz, !G (u ↙ ⇀ς) = ⇁
2!Gu ↙ ⇀ς , where the left

translation τz : G ⇔ G is defined as

x ∝⇔ τzx := z ↙ x, ⇑x, z ↑ G.

Moreover, there exists a homogeneous norm d on G such that

%(z) =
C

d(z)Q↑2
, ⇑z ↑ G,

is a fundamental solution of →!G with pole at 0, for a suitable constant C > 0. By definition,

the homogeneous norm d on G is a continuous smooth function, away from the origin, such that

d (⇀ς(z)) = ⇁d(z) for every ⇁ > 0 and z ↑ G, d
(
z
↑1

)
= d(z) and d(z) = 0 i" z = 0.

We will give some results which will be used to prove the existence in multiple critical cases. Let

U be a fixed positive minimizer for the best constant SG and define the family

Uφ(z) = ε
2↑Q

2 U

(
⇀ 1

ω
(z)

)
, ⇑ε > 0. (2.1)

The functions Uφ are also minimizers for SG and, up to a normalization, they satisfy

∫

G
|⇓GUφ|

2
dz =

∫

G
|Uφ(z)|

2→
dz = S

Q
2
G , ⇑ε > 0.

For any 0 < ωi < ↔ (i = 1, 2), εi,ϖi > 1 with εi + ϖi = 2→, by the Young inequality, the following

best Sobolev-type constants are well defined and crucial for the study of (1.1):

Sϑ,ω,ε : = inf
(u,v)↔H\{(0,0)}

∫
G
(
|⇓Gu|2 + |⇓Gv|2

)
dz

(∫
G (ω1|u|ω1 |v|ε1 + ω2|u|

ω2 |v|ε2) dx
)2/2→

= inf
(u,v)↔H\{(0,0)}

⇒(u, v)⇒2
(∫

G

(
ω1|u|

ω1 |v|
ε1 + ω2|u|

ω2 |v|
ε2
)
dx

)↑2/2→

.

(2.2)
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For any t ↓ 0, we define the function

h(t) :=
1 + t

2

(ω1tε1 + ω2t
ε2)

2
2→

. (2.3)

Since h is continuous on (0,↔) such that lim
t↗0+

h(t) = lim
t↗+↓

h(t) = +↔, then there exists t0 > 0 a

minimal point of function h, that is,

h (t0) = min
t↘0

h(t) > 0. (2.4)

Summarizing, we have the following relationship between SG and Sϑ,ω,ε .

Theorem 2.1. Assume that (A0) hold, then

(i) Sϑ,ω,ε = h(t0)SG.

(ii) Sϑ,ω,ε has the minimizers
(
Uφ(z), t0Uφ(z)

)
, for ε > 0, where Uφ(z) are defined as in (2.1).

Proof. Suppose ▷ ↑ S
1
0(G). Choosing (u, v) = (▷, t0▷) in (2.2) we have

1 + t
2
0

(
ω1t

ε1
0 + ω2t

ε2
0

) 2
2→

∫

G
|⇓G▷|

2
dz

(∫

G
|▷|

2→
dz

)2/2→
↓ Sϑ,ω,ε . (2.5)

Taking the infimum as ▷ ↑ S
1
0(G) in (2.5), we have

h(t0)SG ↓ Sϑ,ω,ε . (2.6)

Let {(un, vn)} ↘ H be a minimizing sequence of Sϑ,ω,ε and define wn = snvn, where

sn :=

(∫

G
|vn|

2→ dz

)↑1 ∫

G
|un|

2→ dz

 1
2→

.

Then ∫

G
|wn|

2→ dz =

∫

G
|un|

2→ dz. (2.7)

From the Young inequality and (2.6) it follows that

∫

G
|un|

ωi |wn|
εi dz ′

εi

2→

∫

G
|un|

2→ dz +
ϖi

2→

∫

G
|wn|

2→ dz

=

∫

G
|un|

2→ dz =

∫

G
|wn|

2→ dz, i = 1, 2.
(2.8)
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Consequently,

⇒(un, vn)⇒2
(∫

G

(
ω1|un|

ω1 |vn|
ε1 + ω2|un|

ω2 |vn|
ε2
)
dx

)2/2→s
↓

∫

G
|⇓Gun|

2
dz

((
ω1s

↑ε1
n + ω2s

↑ε2
n

) ∫
G |un|

2→
) 2

2→
+

s
↑2
n

∫

G
|⇓Gwn|

2
dz

((
ω1s

↑ε1
n + ω2s

↑ε2
n

) ∫
G |wn|

2→ dz
) 2

2→
↓ h(s↑1

n )SG ↓ h(t0)SG.

As n ⇔ ↔ we have

Sϑ,ω,ε ↓ h(t0)SG,

which together with (2.6) implies that

Sϑ,ω,ε = h(t0)SG.

By (2.2) and (2.1), Sϑ,ω,ε has the minimizers (Uφ(x), t0Uφ(x)).

Let R > 0 be such that Bd(0, R) ↘ ” (we can suppose 0 ↑ ”, due to the group translation

invariance) and let a cut-o" function ◁ ↑ C
↓

0 (Bd(0, R)), 0 ′ ◁ ′ 1, ◁ = 1 in Bd

(
0, R

2

)
and ◁ = 0

in G\Bd(0, R). Set

uφ(z) = ◁(z)Uφ(z).

Then, from [11, Lemma 3.3], we obtain the required results.

Lemma 2.2. The functions uφ satisfy the following estimates, as ε ⇔ 0:

∫

!
|⇓Guφ|

2
dz = S

Q
2
G +O

(
ε
Q↑2

)
,

∫

!
|uφ|

2→
dz = S

Q
2
G +O

(
ε
Q
)
,

and

∫

!
|uφ|

2
dz =






Cε
2 +O

(
ε
Q↑2

)
, if Q > 4,

Cε
2
| ln ε|+O

(
ε
2
)
, if Q = 4.

Moreover, similarly as the proof of [12, Lemma 6.1], we get the following results.

Lemma 2.3. The following estimates hold as ε ⇔ 0:

∫

!
|uφ|

q
dz ↓






O

(
ε
Q+ (2↑Q)q

2

)
, if

Q
Q↑2 < q < 2,

O

(
ε
Q+ (2↑Q)q

2 | ln(ε)|
)
, if q = Q

Q↑2 ,

O

(
ε

(Q↑2)
2

)
, if 1 ′ q <

Q
Q↑2 .
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3 The Palais-Smale condition

In this section, we use the second concentration-compactness principle and concentration-compactness

principle at infinity to prove that the (PS)c condition holds.

Definition 3.1. Let c ↑ R and Iϑ,ω,ε ↑ C
1(H,R).

(i) A sequence {(un, vn)}n↔N ↘ H is called a Palais–Smale sequence at the level c (PS)c-

sequence, in short, for the functional Iϑ,ω,ε if Iϑ,ω,ε(un, vn) ⇔ c and I
≃

ϑ,ω,ε(un, vn) ⇔ 0

as n ⇔ ↔.

(ii) We say that Iϑ,ω,ε satisfies the (PS)c condition if any (PS)c-sequence {(un, vn)}n↔N ↘ H

for Iϑ,ω,ε has a convergent subsequence in E.

Since g, h ↑ L
2→

2→↑q (”), we obtain from the Hölder and Sobolev inequalities that, for all u ↑ S
1
0(”),

∫

!
g(z)|u|qdz ′

(∫

!
|g(z)|

2→
2→↑q dz

) 2→↑q
2→

(∫

!
|u|

2→
dz

) q
2

′ ⇒g⇒
L

2→
2→↑q

S
↑

q
2

G ⇒u⇒
q
S1
0(!)

. (3.1)

Similarly, one can get

∫

!
h(z)|v|qdz ′

(∫

!
|h(z)|

2→
2→↑q dz

) 2→↑q
2→

(∫

!
|v|

2→
dz

)ε
2

′ ⇒h⇒
L

2→
2→↑q

S
↑

q
2

G ⇒v⇒
q
S1
0(!)

. (3.2)

Hence, in view of (3.1) and (3.2), we can obtain

#ϖ,µ(u, v) ′
(
ϑ⇒g⇒

L
2→

2→↑q
+ µ⇒h⇒

L
2→

2→↑q

)
S
↑

q
2

G ⇒(u, v)⇒q
H
. (3.3)

Moreover, the Young inequality and (3.1), (3.2) imply that

#ϖ,µ(u, v) ′
1

Q

2→q

2→ → q
⇒(u, v)⇒H

+
2→ q

2
S
↑

q
2↑q

G

(
2→ → q

2→ → 2

) q
2↑q

(
ϑ⇒g⇒

L
2→

2→↑q

) 2
2↑q

+
(
µ⇒h⇒

L
2→

2→↑q

) 2
2↑q


. (3.4)

Lemma 3.2. Let {(un, vn)}n↔N ↘ H be a (PS)c-sequence of Iϑ,ω,ε with (un, vn) 0 (u, v) weakly

in H. Then I
≃

ϑ,ω,ε(u, v) = 0 and

Iϑ,ω,ε(u, v) ↓ →
(2→ → q) (2→ q)

2q2→
S
↑

q
2↑q

G

(
2→ → q

2→ → 2

) q
2↑q

(
ϑ⇒g⇒

L
2→

2→↑q

) 2
2↑q

+
(
µ⇒h⇒

L
2→

2→↑q

) 2
2↑q


.
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Proof. Since {(un, vn)}n↔N ↘ H is a (PS)c-sequence of Iϑ,ω,ε with (un, vn) 0 (u, v) weakly in H,

it is easy to check that I
≃

ϑ,ω,ε(u, v) = 0, and then

I
≃

ϑ,ω,ε(u, v), (u, v)

= 0, that is,

⇒(u, v)⇒H = Kϑ(u, v) +#ϖ,µ(u, v).

Then from (3.4), we have

Iϑ,ω,ε(u, v) =
1

Q
⇒(u, v)⇒H →

2→ → q

2→q
#ϖ,µ(u, v)

↓ →
(2→ → q) (2→ q)

2q2→
S
↑

q
2↑q

G

(
2→ → q

2→ → 2

) q
2↑q

(
ϑ⇒g⇒

L
2→

2→↑q

) 2
2↑q

+
(
µ⇒h⇒

L
2→

2→↑q

) 2
2↑q


.

This ends the proof of lemma.

Lemma 3.3. Assume that {(un, vn)}n↔N ↘ H is a (PS)c-sequence of Iϑ,ω,ε and the condition

(A1) holds. Then {(un, vn)}n↔N is bounded in H.

Proof. Assume by contradiction that ⇒(un, vn)⇒H ⇔ +↔. Set

(ũn, ṽn) =

(
un

⇒(un, vn)⇒H
,

vn

⇒(un, vn)⇒H

)
.

Then, ⇒(ũn, ṽn)⇒H = 1, and






(ũn, ṽn) 0 (u, v) weakly in H,

(ũn, ṽn) ⇔ (u, v) strongly in (Lr(”))2 , ⇑r ↑ [1, 2→) ,

(ũn(z), ṽn(z)) ⇔ (u(z), v(z)) a.e. in ”.

(3.5)

Set ūn := ũn → u, v̄n := ṽn → v, there exists a positive constant C > 0 such that

∫

!
|ūn|

2→
dz < C,

∫

!
|v̄n|

2→
dz < C, (3.6)

and by (3.5), one has that for any ε > 0, there exists r0 > 0 such that

∫

Bd(0,r0)
|ūn|

2→
dz < ε,

∫

Bd(0,r0)
|v̄n|

2→
dz < ε, (3.7)

for n large enough, where Bd (0, r0) = {z ↑ G : d(0, z) ′ r0} is a ball with center at 0 and radius

r0 with respect to the gauge d. Moreover, since g, h ↑ L
2→

2→↑q (”), for the above constant r0, we

have ∫

!\Bd(0,r0)
|g(z)|

2→
2→↑q dz < ε,

∫

!\Bd(0,r0)
|h(z)|

2→
2→↑q dz < ε. (3.8)
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Then, by (3.6), (3.7), (3.8) and Hölder inequality, we get

#ϖ,µ (ūn, ūn) =

∫

!\Bd(0,r0)
(ϑg(z)|ūn|

q + µh(z)|v̄n|
q) dz +

∫

Bd(0,r0)
(ϑg(z)|ūn|

q + µh(z)|v̄n|q
q) dz

′ ϑ

∫

!\Bd(0,r0)
|g|

2→
2→↑q dz

 2→↑q
2→

∫

!\Bd(0,r0)
|ūn|

2→
dz

 q
2→

+ µ

∫

!\Bd(0,r0)
|h|

2→
2→↑q dz

 2→↑q
2→

∫

!\Bd(0,u0)
|v̄n|

2→
dz

 q
2→

+ ϑ

∫

Bd(0,r0)
|g|

2→
2→↑q dz

 2→↑q
2→

∫

Bd(0,r0)
|ūn|

2→
dz

 q
2→

+ µ

∫

Bd(0,r0)
|h|

2→
2→↑q dz

 2→↑q
2→

∫

Bd(0,u0)
|v̄n|

2→
dz

 q
2→

′ C1ε
2→↑q
2→ + C22ε

q
2→ ,

which yields that #ϖ,µ (ūn, v̄n) ⇔ 0 as n ⇔ ↔. Consequently,

lim
n↗↓

#ϖ,µ (ũn, ṽn) = lim
n↗↓

#ϖ,µ (ūn, v̄n) +#ϖ,µ(u, v) = #ϖ,µ(u, v). (3.9)

On the other hand, since {(un, vn)}n↔N ↘ H is a (PS)c-sequence of Iϑ,ω,ε and un = ⇒(un, vn)⇒H·ũn,

vn = ⇒(un, vn)⇒H · ṽn, we deduce that

1

2
⇒(un, vn)⇒H ⇒(ũn, ṽn)⇒H =

1

2→
⇒(un, vn)⇒

2→

H
Kϑ (ũn, ṽn)

+
1

q
⇒(un, vn)⇒

q
H
#ϖ,µ (ũn, ṽn) + on(1),

(3.10)

and
⇒(un, vn)⇒H ⇒(ũn, ṽn)⇒H = ⇒(un, vn)⇒

2→

H
Kϑ (ũn, ṽn)

+ ⇒(un, vn)⇒
q
H
#ϖ,µ (ũn, ṽn) + on(1).

(3.11)

From (3.9), (3.10), (3.11), 1 < q < 2 and ⇒(un, vn)⇒H ⇔ +↔, one has

lim
n↗↓

⇒(ũn, ṽn)⇒H =
2 (2→ → q)

q (2→ → 2)
lim
n↗↓

#ϖ,µ (ūn, v̄n)

⇒(un, vn)⇒
2↑q
H

= 0,

which contradicts ⇒(ũn, ṽn)⇒H = 1. Therefore, {(un, vn)}n↔N is bounded in H.
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Lemma 3.4. Iϖ,ω,ε satisfies the (PS)c condition in H, with c satisfying

0 < c < c↓ :=
1

Q
S

Q
2
ϑ,ω,ε → C0

(
ϑ⇒g⇒

L
2→

2→↑q

) 2
2↑q

+
(
µ⇒h⇒

L
2→

2→↑q

) 2
2↑q


(3.12)

where C0 = C0(q,Q) := (2→↑q)(2↑q)
2q2→ S

↑
q

2↑q

G

(
2→↑q
2→↑2

) q
2↑q

is a positive constant depending only on q,

Q and SG.

Proof. Let {(un, vn)}n↔N ↘ H be a (PS)c-sequence for Iϑ,ω,ε with c ↑ (0, c↓). It follows from

Lemma 3.3 that {(un, vn)}n↔N is bounded in H. Then, there exists a subsequence still denoted by

{(un, vn)}n↔N and (u, v) ↑ H such that (un, vn) 0 (u, v) weakly in H, and






un 0 u, vn 0 v weakly in L
2→(”),

un ⇔ u, vn ⇔ v strongly in L
r(”), ⇑ 1 ′ r < 2→,

un(z) ⇔ u(z), vn(z) ⇔ v(z) a.e. in ”.

(3.13)

Hence, from (3.13), it is easy to verify that I
≃

ϑ,ω,ε(u, v) = 0 and

lim
n↗↓

#ϖ,µ (un, vn) = #ϖ,µ(u, v). (3.14)

Set ũn = un → u, ṽn = vn → v. By Brézis-Lieb lemma [18], we get

⇒(un, vn)⇒H = ⇒(u, v)⇒H + ⇒(ũn, ṽn)⇒H + on(1), (3.15)

∫

!
|un|

2→
dz =

∫

!
|u|

2→
dz +

∫

!
|ũn|

2→
dz + on(1), (3.16)

∫

!
|vn|

2→
dz =

∫

!
|v|

2→
dz +

∫

!
|ṽn|

2→
dz + on(1), (3.17)

and ∫

!
|un|

ωi |vn|
εidz =

∫

!
|u|

ωi |v|
εidz +

∫

!
|ũn|

ωi |ṽn|
εidz + on(1). (3.18)

So, (3.16), (3.17) and (3.18) yield

Kϑ (un, vn) = Kϑ(u, v) +Kϑ (ũn, ṽn) + on(1). (3.19)

Then, using (3.14), (3.15) and (3.19), we have

c =
1

2
⇒(ũn, ṽn)⇒H →

1

2→s
Kϑ (ũn, ṽn) + Iϑ,ω,ε(u, v) + on(1), (3.20)

and

on(1) = ⇒(ūn, v̄n)⇒H →Kϑ (ūn, v̄n) . (3.21)
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We may assume that

⇒(ũn, ṽn)⇒H ⇔ l, Kϑ (ũn, ṽn) ⇔ l ↓ 0 as n ⇔ ↔.

If l = 0, the proof is completed. Assume that l > 0, then from (3.21), we have

Sϑ,ω,εl
2
2→ = Sϑ,ω,ε

(
lim
n↗↓

Kϑ (ũn, ṽn)
) 2

2→
′ lim

n↗↓

⇒(ũn, ṽn)⇒H = l,

which implies that l ↓ S

Q
2
ϑ,ω,ε . Hence, from (3.20) and Lemma 3.2, we have

c = Iϑ,ω,ε(un, vn) + on(1) =

(
1

2
→

1

2→

)
l + Iϑ,ω,ε(u, v) + on(1)

↓
1

Q
S

Q
2
ϑ,ω,ε → C0

(
ϑ⇒g⇒

L
2→

2→↑q

) 2
2↑q

+
(
µ⇒h⇒

L
2→

2→↑q

) 2
2↑q


,

(3.22)

which contradicts c < c↓. The proof is completed.

4 Nehari manifold

Now we focus our attention on Problem (1.1) by using the Nehari manifold approach. For this

reason, we introduce the Nehari manifold

Nϑ,ω,ε =

w ↑ H\{0} :


I
≃

ϑ,ω,ε(w), w

= 0


.

where w = (u, v) and ⇒w⇒H = ⇒(u, v)⇒H. Note that Nϑ,ω,ε contains all nonzero solution of (1.1),

and w ↑ Nϑ,ω,ε if and only if

⇒w⇒H = Kϑ(w) +#ϖ,µ(w). (4.1)

Lemma 4.1. Iϑ,ω,ε is coercive and bounded below on Nϑ,ω,ε.

Proof. Let w ↑ Nϑ,ω,ε by (3.3) and (4.1). We find

Iϑ,ω,ε(w) =
2→ → 2

22→
⇒w⇒H →

2→ → 2

q2→
#ϖ,µ(w)

↓
2→ → 2

22→
⇒w⇒H →

2→ → q

q2→

(
ϑ⇒g⇒

L
2→

2→↑q
+ µ⇒h⇒

L
2→↑q
2→

)
S
↑

q
2

G ⇒w⇒
q
H
.

(4.2)

Since 1 < q < 2, we see that Iϑ,ω,ε is coercive and bounded below on Nϑ,ω,ε . This achieves the

proof of the lemma.
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Define &(w) :=

I
≃

ϑ,ω,ε(w), w

, then for all w = (u, v) ↑ Nϑ,ω,ε , we have

∞&≃(w), w∈ = 2⇒w⇒H → 2→Kϑ(w)→ q#ϖ,µ(w)

= (2→ q)⇒w⇒H → (2→ → q)Kϑ(w)

= (2→ 2→) ⇒w⇒H + (2→ → q)#ϖ,µ(w).

(4.3)

Now, similar to the method used in [16], we split Nϑ,ω,ε into three disjoint parts:

N
+
ϑ,ω,ε := {w ↑ Nϑ,ω,ε : ∞&≃(w), w∈ > 0} ,

N
0
ϑ,ω,ε := {w ↑ Nϑ,ω,ε : ∞&≃(w), w∈ = 0} ,

N
↑

ϑ,ω,ε := {w ↑ Nϑ,ω,ε : ∞&≃(w), w∈ < 0} .

(4.4)

Note that Nϑ,ω,ε contains every nonzero solution of problem (1.1). In order to study the properties

of Nehari manifolds. We now present some properties of N
+
ϑ,ω,ε ,N

0
ϑ,ω,ε and N

↑

ϑ,ω,ε to state our

main results.

Lemma 4.2. Assume that w0 = (u0, v0) is a local minimizer for Iϑ,ω,ε on the set Nϑ,ω,ε \N
0
ϑ,ω,ε.

Then I
≃

ϑ,ω,ε (w0) = 0 in H
↑1

, where H
↑1

denotes the dual space of the space H.

Proof. The proof is similar as that of [21, Lemma 3.4] and the details are omitted.

Lemma 4.3. N
0
ϑ,ω,ε = ∋ for all (ϑ, µ) ↑ R+

⇐ R+
with

0 < ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

< $

where $ is given in (1.6).

Proof. We argue by contradiction. Assume that there exist ϑ, µ ↑ (0,+↔) with

0 < ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

< $

such that N
0
ϑ,ω,ε ↗= ∋. Then, for w ↑ N

0
ϑ,ω,ε , by (4.3), we have

⇒w⇒H =
2→ → q

2→ q
Kϑ(w) (4.5)

and

⇒w⇒H =
2→ → q

2→ → 2
#ϖ,µ(w). (4.6)

From the Young inequality, we have that

Kϑ(w) ′ (ω1 + ω2)S
↑

2→
2

G ⇒w⇒
2→

H
,
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and (4.5) yields

⇒w⇒H ↓

(
2→ q

(ω1 + ω2) (2→ → q)
S

2→
2

G

) 1
2→↑2

. (4.7)

On the other hand, from (3.3) and (4.6), it follows that

⇒w⇒H ′

(
2→ → q

2→ → 2

(
ϑ⇒g⇒

L
2→

2→↑q
+ µ⇒h⇒

L
2→

2→↑q

)
S

↑q
2

G

) 1
2↑q

. (4.8)

Therefore, in view of (4.7) and (4.8), we obtain

ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

↓
2→ → 2

2→ → q

(
2→ q

(ω1 + ω2) (2→ → q)

) 2↑q
2→↑2

S

2→↑q
2→↑2

G := $,

which is a contradiction. This completes the proof of Lemma.

By Lemmas 4.2 and 4.3 , for (ϑ, µ) ↑ D”, we can write Nϑ,ω,ε = N
+
ϑ,ω,ε △N

↑

ϑ,ω,ε and define

cϑ,ω,ε = inf
w↔Nϑ,ϖ,ϱ

Iϑ,ω,ε(w); c
+
ϑ,ω,ε = inf

w↔N
+
ϑ,ϖ,ϱ

Iϑ,ω,ε(w); c
↑

ϑ,ω,ε = inf
w↔N

↑
ϑ,ϖ,ϱ

Iϑ,ω,ε(w).

Lemma 4.4. Assume that (A0), hold. Then, we have the following results:

(i) cϑ,ω,ε ′ c
+
ϑ,ω,ε < 0 for all (ϑ, µ) ↑ D”.

(ii) There exists a constant C0 = C0(ϑ, q, Q, SG,$) > 0 such that c
↑

ϑ,ω,ε ↓ C0 > 0, for all

(ϑ, µ) ↑ D q
2”

.

Proof. (i) For w ↑ N
+
ϑ,ω,ε ↘ Nϑ,ω,ε , by (4.3), we have

⇒w⇒H >
2→ → q

2→ q
Kϑ(w),

and so

Iϑ,ω,ε(w) =

(
1

2
→

1

q

)
⇒w⇒H →

(
1

2→
→

1

q

)
Kϑ(w)

′

(
q → 2

2q
+

2→ → q

2→q

2→ q

2→ → q

)
⇒w⇒H = →

(2→ q) (2→ → 2)

22→q
⇒w⇒H < 0.

Thus, from the definition of cϑ,ω,ε and c
+
ϑ,ω,ε , we can deduce that cϑ,ω,ε ′ c

+
ϑ,ω,ε < 0.

(ii) For w ↑ N
↑

ϑ,ω,ε , similar to (4.7), we have

⇒w⇒H >

(
2→ q

(ω1 + ω2) (2→ → q)
S

2→
2

G

) 1
2→↑2

. (4.9)
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In view of (4.2) and (4.9), we get

Iϑ,ω,ε(w) ↓ ⇒w⇒
q
H

(
2→ → 2

22→
⇒w⇒

2↑q
H

→
2→ → q

q2→

(
ϑ⇒g⇒

L
2

2→↑q
+ µ⇒h⇒

L
2→

2→↑q

)
S
↑

q
2

G

)

↓ ⇒w⇒
q
H


2→ → 2

22→

(
2→ q

(ω1 + ω2) (2→ → q)

) 2↑q

2→↑2

S

2→(2↑q)
2(2→↑2)

G

→
2→ → q

q2→

(
ϑ⇒g⇒

L
2

2→↑q
+ µ⇒h⇒

L
2→

2→↑q

)
S
↑

q
2

G

)
.

So, if namely,

0 < ϑ⇒g⇒
L

2
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

<
q

2

2→ → 2

2→ → q

(
2→ q

(ω1 + ω2) (2→ → q)

) 2↑q
2→↑2

S

2→↑q
2→↑2

G =
q

2
$,

we get

Iϑ,ω,ε(w) ↓

(
2→ q

(ω1 + ω2) (2→ → q)
S

2→
2

G

) q
2→↑2


2→ → 2

22→

(
2→ q

(ω1 + ω2) (2→ → q)

) 2↑q
2→↑2

S

2→(2↑q)
2(2→↑2)

G

→
2→ → q

q2→

(
ϑ⇒g⇒

L
2→

2→↑q
+ µ⇒h⇒

L
2→

2→↑4

)
S
↑

q
2

G

)
:= C0 (ϑ, q, Q, SG,$) > 0,

and this completes the proof.

For each w ↑ H\{0}, we have Kϑ(w) > 0 and let

tmax =

(
(2→ q)⇒w⇒H

(2→ → q)Kϑ(w)

) 1
2→↑2

> 0.

So, we get the following result.

Lemma 4.5. Let (ϑ, µ) ↑ D”. For every w ↑ H with Kϑ(w) > 0, the following results hold:

(i) If #ϖ,µ(w) ′ 0, then there is a unique t
↑
> tmax such that (t↑w) ↑ N

↑

ϑ,ω,ε and

Iϑ,ω,ε(t
↑
w) = sup

t↘0
Iϑ,ω,ε(tw).

(ii) If #ϖ,µ(w) > 0, then there exist unique t
+

and t
↑

with 0 < t
+

< tmax < t
↑

such that

(t+w) ↑ N
+
ϑ,ω,ε and (t↑w) ↑ N

↑

ϑ,ω,ε. Moreover,

Iϑ,ω,ε(t
+
w) = inf

0⇐t⇐tmax

Iϑ,ω,ε(tw), Iϑ,ω,ε(t
↑
w) = sup

t↘0
Iϑ,ω,ε(tw).

Proof. The proof is similar to [5, Lemma 2.6], and is omitted here.
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5 Proof of the main results

In this section, we provide the proofs of the main results of this work. Before giving the proof of

Theorem 1.2, we need the following lemma.

Lemma 5.1. Assume that (A0), hold. Then, we have the following results:

(i) If (ϑ, µ) ↑ D”, then there exists a (PS)cϑ,ϖ,ϱ -sequence {(un, vn)}n↔N ↘ Nϑ,ω,ε for Iϑ,ω,ε.

(ii) If (ϑ, µ) ↑ D q
2”

, then there exists a (PS)c↑ϑ,ϖ,ϱ
-sequence {(un, vn)}n↔N ↘ N

↑

ϑ,ω,ε for Iϑ,ω,ε.

Proof. The proof is almost the same as Proposition 9 in [19].

Now we establish the existence of a local minimizer of Iϑ,ω,ε on N
+
ϑ,ω,ε .

Theorem 5.2. Assume that (A0), hold. If (ϑ, µ) ↑ D”, then Iϑ,ω,ε has a minimizer (u1, v1) ↑

N
+
ϑ,ω,εsuch that (u1, v1) is a nonnegative solution of (1.1) and

Iϑ,ω,ε (u1, v1) = cϑ,ω,ε = c
+
ϑ,ω,ε < 0.

Proof. In view of the Lemma 5.1 (i), there exists a minimizing sequence {(un, vn)}n↔N ↘ Nϑ,ω,ε

such that

lim
n↗↓

Iϑ,ω,ε (un, vn) = cϑ,ω,ε and lim
n↗↓

I
≃

ϑ,ω,ε (un, vn) = 0. (5.1)

Since Iϑ,ω,ε is coercive on Nϑ,ω,ε , we get that {(un, vn)}n↔N is bounded in H. Passing to a

subsequence, still denoted by {(un, vn)}n↔N, we can assume that there exists (u1, v1) ↑ H such

that (un, vn) 0 (u1, v1) weakly in H and






un 0 u1, vn 0 v1 weakly in L
2→(”),

un ⇔ u1, vn ⇔ v1 strongly in L
r(”), ⇑r ↑ [1, 2→) ,

un(z) ⇔ u1(z), vn(z) ⇔ v1(z) a.e. in ”.

(5.2)

By the proof of Lemma 3.3 and (5.2), we get

lim
n↗↓

#ϖ,µ (un, vn) = #ϖ,µ (u1, v1) . (5.3)

From (5.1), (5.2) and (5.3), it is easy to prove that (u1, v1) is a weak solution of (1.1). Moreover,

the fact that (un, vn) ↑ Nϑ,ω,ε implies that

#ϖ,µ (un, vn) =
q (2→ → 2)

2 (2→ → q)
⇒(un, vn)⇒H →

q2→

2→ → q
Iϑ,ω,ε (un, vn) . (5.4)

Let n ⇔ ↔ in (5.4), by (5.3) and cϑ,ω,ε < 0, we deduce that

#ϖ,µ (u1, v1) ↓ →
q2→

2→ → q
cϑ,ω,ε > 0,
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which implies that (u1, v1) ↑ H is a nontrivial solution of (1.1).

Now, we prove that (un, vn) ⇔ (u1, v1) strongly in H and that Iϑ,ω,ε (u1, v1) = cϑ,ω,ε . By applying

Fatou’s lemma and (u1, v1) ↑ Nϑ,ω,ε , one has

cϑ,ω,ε ′ Iϑ,ω,ε (u1, v1) =

(
1

2
→

1

2→

)
⇒(u1, v1)⇒H →

2→ → q

q2→
#ϖ,µ (u1, v1)

′ lim inf
n↗↓

(
1

2
→

1

2→

)
⇒(un, vn)⇒H →

2→ → q

q2→
#ϖ,µ (un, vn)


′ lim

n↗↓

Iϑ,ω,ε (un, vn) = cϑ,ω,ε .

This yields Iϑ,ω,ε (u1, v1) = cϑ,ω,ε and limn↗↓ ⇒(un, vn)⇒H = ⇒(u1, v1)⇒H. The standard argument

shows that (un, vn) ⇔ (u1, v1) strongly in H.

Next, we claim that (u1, v1) ↑ N
+
ϑ,ω,ε . In fact, if (u1, v1) ↑ N

↑

ϑ,ω,ε , by Lemma 4.5 (ii), there are

unique t
+
1 and t

↑

1 > 0 such that
(
t
+
1 u1, t

+
1 v1

)
↑ N

+
ϑ,ω,ε ,

(
t
↑

1 u1, t
↑

1 v1

)
↑ N

↑

ϑ,ω,ε and t
+
1 < t

↑

1 = 1.

Since d
dtIϑ,ω,ε

(
t
+
1 u1, t

+
1 v1

)
= 0 and d2

dt2 Iϑ,ω,ε

(
t
+
1 u1, t

+
1 v1

)
> 0, there exists t

→

1 ↑
(
t
+
1 , t

↑

1

)
such that

Iϑ,ω,ε

(
t
+
1 u1, t

+
1 v1

)
< Iϑ,ω,ε (t→1u1, t

→

1v1). By Lemma 4.5, it follows that

Iϑ,ω,ε

(
t
+
1 u1, t

+
1 v1

)
< Iϑ,ω,ε (t

→

1u1, t
→

1v1) ′ Iϑ,ω,ε

(
t
↑

1 u1, t
↑

1 v1

)
= Iϑ,ω,ε (u1, v1) ,

which contradicts Iϑ,ω,ε (u1, v1) = cϑ,ω,ε . Moreover, since Iϑ,ω,ε (u1, v1) = Iϑ,ω,ε (|u1|, |v1|) and

(|u1|, |v1|) ↑ N
+
ϑ,ω,ε , we may assume that (u1, v1) is a nonnegative nontrivial solution of system

(1.1). By means of Bony’s maximum principle [4], such solution turn out to be strictly positive.

Now we establish the existence of a local minimizer of Iϑ,ω,ε on N
↑

ϑ,ω,ε .

Lemma 5.3. Assume that (A0) hold. Then, there exist (u0, v0) ↑ H\{(0, 0)} and $5 > 0 such

that for all (ϑ, µ) ↑ D”5 , the following holds:

sup
t↘0

Iϑ,ω,ε (tu0, tv0) < c↓, (5.5)

where c↓ is a constant given in (3.12). In particular, c
↑

ϑ,ω,ε < c↓ for all (ϑ, µ) ↑ D”5 .

Proof. Without loss of generality, we assume that 0 ↑ ”. Let R ↑ (0, r0) be such that the quasi-

ball Bd(0, R) ↘ ”, and let a cut-o" function ◁ ↑ C
↓

0 (Bd(0, R)) satisfying 0 ′ ◁ ′ 1, ◁ = 1 in

Bd

(
0, R

2

)
and ◁ = 0 in G\Bd(0, R). Here r0 is given in (A2). Now, let uφ(z) = ◁(z)Uφ(z) and

consider the function

Jϑ(t) =
t
2

2

(
1 + t

2
0

)
⇒uφ⇒

2
S1
0(!) →

t
2→

2→
(
ω1t

ε1 + ω2t
ε2
) ∫

!
|uφ|

2→
dz, (5.6)
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where t0 be given in Theorem 2.1. By Lemma 2.2 and the definition of Sϑ,ω,ε , we obtain that

sup
t↘0

Jϑ(t) ′

(
1

2
→

1

2→

)


(
1 + t

2
0

)
⇒uφ⇒

2
S1
0(!)

(ω1tε1 + ω2t
ε2)

2
2→

(∫
! |uφ|

2→dz
) 2

2→





2→
2→↑2

′
1

Q



h (t0)
⇒uφ⇒

2
S1
0(!)

(∫
! |uφ|

2→dz
) 2

2→





ς
2

=
1

Q




h (t0)

S

Q
2
G ++O(εQ↑2)

(
S

Q
2
G +O(εQ)

) 2
2→





Q
2

=
1

Q
(h (t0)SG)

Q
2 + c1ε

Q↑2 =
1

Q
S

Q
2
ϑ,ω,ε + c1ε

Q↑2
,

(5.7)

where c1 is a positive constant and the following fact has been used:

sup
t↘0

(
t
2

2
A→

t
2→

2→
B

)
=

1

Q


A

B
Q↑2
Q

Q
2

, ⇑A,B > 0.

Choosing $1 > 0 such that 0 < ϑ⇒g⇒
L

2→↑q
2→

+ µ⇒h⇒
L

2→
2→↑q

< $1, by the definitions of Iϑ,ω,ε , there

exists tm ↑ (0, 1) such that

Iϑ,ω,ε (tuφ, tt0uφ) ′
t
2

2

(
1 + t

2
0

)
⇒uφ⇒

2
S1
0(!) < c↓, ⇑t < tm,

and one has

sup
0⇐t<tm

Iϑ,ω,ε (tuφ, tt0uφ) < c↓, (5.8)

for all ϑ, µ ↑ (0,+↔) with

0 < ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

< $1.

Moreover, by the definitions of Iϑ,ω,ε and (uφ, t0uφ), using the condition (A2), Lemma 2.3 and

(5.7), we have

sup
t↘tm

Iϑ,ω,ε (tuφ, tt0uφ) = sup
t↘tm

(
Jϖ(t)→

t
q

q

∫

!
(ϑg(z) + µh(z)tq0) |uφ|

q
dz

)

′
1

Q
S

Q
2
ϑ,ω,ε + c1ε

Q↑2
→

t
q
m

q
a0 (ϑ+ µt

q
0)

∫

!
|uφ|

q
dz

′
1

Q
S

Q
2
ϑ,ω,ε + c1ε

Q↑2

→
t
q
m

q
a0 (ϑ+ µt

q
0)






c2ε
Q↑

(Q↑2)q
2 , if q >

Q
Q↑2 ,

c3ε
Q↑

(Q↑2)q
2 | ln ε|, if q = Q

Q↑2 ,

c4ε
(Q↑2)q

2 , if q <
Q

Q↑2 ,

(5.9)

where c2, c3, c4 are positive constants.
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(i) If 1 < q <
Q

Q↑2 , then by Q ↓ 4 one can get that q
Q↑2
2 <

Q
2 ′ Q→ 2. Thus, for ε > 0 small

enough, we can choose $2 > 0 such that

sup
t↘tm

Iϑ,ω,ε (tuφ, tt0uφ) ′
1

Q
S

q
2
ϑ,ω,ε + c1ε

Q↑2
→

t
q
0

q
a0c4ε

(Q↑2)q
2 < c↓,

for all ϑ, µ ↑ (0,+↔), with 0 < ϑ⇒g⇒
L

2
2→↑q

+ µ⇒h⇒
L

2
2→↑q

< $2.

(ii) If Q
Q↑2 ′ q < 2, we have Q > 4 and q ↓

Q
Q↑2 >

4
Q↑2 , which implies that

Q→
(Q→ 2)q

2
→ (Q→ 2) = 2→

(Q→ 2)q

2
=

4→ (Q→ 2)q

2
=

(Q→ 2)
(

4
Q↑2 → q

)

2
< 0.

Then for ε small enough, by a similar argument in (i), we can choose $3 > 0 such that

sup
t↘tm

Iϑ,ω,ε (tuφ, tt0uφ) < c↓,

for all ϑ, µ ↑ (0,+↔) with 0 < ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

< $3.

Set $4 = min {$2,$3}, from cases (i) and (ii), for all ϑ, µ ↑ (0,+↔) with

0 < sup
t↘tm

Iϑ,ω,ε (tuφ, tt0uφ) < c↓. (5.10)

Thus, taking $5 = min {$1,$4}, (5.8) and (5.10) induce that supt↘0 Iϑ,ω,ε (tuφ, tt0uφ) < c↓ holds

for all ϑ, µ ↑ (0,+↔) with 0 < ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

< $5.

Finally, we prove that c↑ϑ,ω,ε < c↓ for all ϑ, µ ↑ (0,+↔) with (ϑ, µ) ↑ D”5 . Recall that (u0, v0) :=

(uφ, t0uφ). It is easy to see that Kϑ (uφ, t0uφ) > 0. Then, combining (5.5) with Lemma 4.5, and

using the definition of c↑ϑ,ω,ε , we obtain that there exists t
↑

2 > 0 such that
(
t
↑

2 u0, t
↑

2 v0

)
↑ N

↑

ϑ,ω,ε

and

c
↑

ϑ,ω,ε ′ Iϑ,ω,ε

(
t
↑

2 u0, t
↑

2 v0

)
′ sup

t↘0
Iϑ,ω,ε (tu0, tv0) < c↓,

for all ϑ, µ ↑ (0,+↔) with (ϑ, µ) ↑ D”5 . The proof is now complete.

Theorem 5.4. Under the assumptions of Theorem 1.2. If (ϑ, µ) ↑ D”→ , then the functional Iϑ,ω,ε

has a minimizer (u2, v2) ↑ N
↑

ϑ,ω,ε and it satisfies Iϑ,ω,ε (u2, v2) = c
↑

ϑ,ω,ε, and (u2, v2) is a positive

solution of (1.1), where $→ = min

$5,

q
2$


.

Proof. By Lemma 5.1 (ii), there exists a minimizing sequence {(un, vn)} ↘ N
↑

ϑ,ω,ε in H for Iϑ,ω,ε ,

for all (ϑ, µ) ↑ R+
⇐ R+satisfying

0 < ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

<
q

2
$.
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In the light of Lemmas 5.3, 3.4 and 5.1 (ii), for 0 < ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

< $→, the func-

tional Iϑ,ω,ε satisfies (PS)c↑ϑ,ϖ,ϱ
condition for c

↑

ϑ,ω,ε > 0. Since Iϑ,ω,ε is coercive on Nϑ,ω,ε , we

can deduce that {(un, vn)}n↔N is bounded in Nϑ,ω,ε and H. So, there exists a subsequence still

denoted by {(un, vn)}n↔N and (u2, v2) ↑ N
↑

ϑ,ω,ε such that (un, vn) ⇔ (u2, v2) strongly in H, and

Iϑ,ω,ε (u2, v2) = c
↑

ϑ,ω,ε > 0, I ≃ϑ,ω,ε (u2, v2) = 0 for all (ϑ, µ) ↑ R+
⇐ R+ with

0 < ϑ⇒g⇒
L

2→
2→↑q

+ µ⇒h⇒
L

2→
2→↑q

< $→.

Finally, arguing as in the proof of Theorem 5.2, we have that (u2, v2) is a positive solution of the

system (1.1).

Proof of Theorem 1.2. By Theorem 5.2, we obtain that for all (ϑ, µ) ↑ D”, Problem (1.1) has a

positive solution (u1, v1) ↑ N
+
ϑ,ω,ε . By Theorem 5.4, we obtain a second positive solution (u2, v2) ↑

N
↑

ϑ,ω,ε for all (ϑ, µ) ↑ D”→ ↘ D”. Since N
+
ϑ,ω,ε ▽N

↑

ϑ,ω,ε = ∋, this implies that (u1, v1) and (u2, v2)

are distinct.
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ABSTRACT

Let {Ax : x → X} be a collection of complex Banach algebras
indexed by the compact Hausdor! space X. We investigate
the weak- and pseudo-amenability of certain algebras A of
Ax-valued functions in relation to the corresponding proper-
ties of the Ax.

RESUMEN

Sea {Ax : x → X} una colección de álgebras de Banach com-
plejas indexadas por un espacio de Hausdor! compacto X.
Investigamos la amenabilidad débil y la seudo-amenabilidad
de ciertas álgebras A de funciones con valores en Ax en
relación a las propiedades correspondientes de los Ax.
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1 Preliminaries

Suppose that P is a property which a Banach space A might possess. A reasonable question to

ask about P is of the sort “What constructions on Banach spaces preserve P?” To clarify this, we

take a specific example: Let A be a complex Banach algebra and suppose that we are interested

in amenability. It is then well known that P, the property of being amenable, is preserved by

quotients: If A is an amenable Banach algebra, and I → A is a closed ideal, then A/I is also

amenable. It is also well-known that amenability is preserved by projective tensor products: if A

and B are both amenable, then so is A↑̂B. (See e.g. the survey paper [15, Prop. 2.3.2].) Loosely

speaking, we can ask whether P is preserved “downwards” (through quotients), or “sideways”

(through tensor products); amenability is preserved in both of these directions. We could also ask

whether P is preserved by actions in two directions: e.g. if for a closed ideal I of a Banach algebra

A, both I and A/I satisfy P, does A also satisfy P? (This is the 3-space problem.)

This short discussion leads us to ask the following: Can a property P be preserved “upwards”?

We make this airy question more explicit: Let X be a set (usually, a topological space), and let

{Ax : x ↓ X} be a collection of Banach spaces indexed by X, over a common scalar field K, either

R or C. Suppose that Ax possesses property P for each x ↓ X. Let A →
∏
{Ax : x ↓ X} be a

Banach space of functions under the pointwise operations, and let ω ↓ A, so that ω(x) ↓ Ax for

all x ↓ X. What conditions on X, A, and the Ax (aside from possessing P) might be su!cient to

insure that A also has P? Again using amenability as an example, we see that if X is an infinite

compact Hausdor" space, then A = ε
1(X), the space of absolutely summable complex-valued

functions on X under the pointwise operations, is not amenable: The amenability of each Ax = C
is not passed on to A, since A does not have a bounded approximate identity. On the other hand,

A = c0(X), the closure in the sup-norm of the space of C-valued functions with finite support, is

amenable. This suggests that, at the very least, A should have some conditions on it, and perhaps

also that the collection {Ax : x ↓ X} should satisfy some additional unifying property, aside from

just having all Ax possess P. We might also want X to satisfy some reasonable conditions.

Obviously, there are many ways in which it might be possible to go “up” in this sense. In this

paper, we focus on one type of vector-valued function space A. We will assume unless otherwise

specified that X is a compact Hausdor" space and that {Ax : x ↓ X} is a collection of complex

Banach spaces; we take A →
∏
{Ax : x ↓ X} to be a Banach space of functions under the pointwise

operations which satisfies the conditions:

C1) For each x ↓ X, Ax = px(A) = {ω(x) : ω ↓ A}, that is, A is said to be full; px is the

evaluation map at x, so that px(ω) = ω(x).
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C2) For each ω ↓ A, the norm map x ↔↗ ↘ω(x)↘ is upper semicontinuous on X; hence ω is

bounded and norm-attaining, with

↘ω↘ = sup{↘ω(x)↘ : x ↓ X} = ↘ω(x0)↘

for some x0 ↓ X.

C3) A is a C(X)-module under the pointwise operations.

C4) A is complete in the sup-norm.

We will call a space A which satisfies C1) - C4) an upper semicontinuous function space with fibers

Ax, and abbreviate it to “function space”.

If in addition to C1) - C4) it is also the case that

C5) Each Ax is a Banach algebra, and A is closed under pointwise multiplication (so that A is a

Banach algebra). We call such an A a function algebra. Evidently, a function algebra A is

commutative if and only if each fiber Ax is commutative.

Examples of such function spaces (algebras) can be found in [11, Section 2], and also (using the

language of section spaces of bundles of Banach spaces and Banach algebras) in [5] and [14].

In particular, if A is a Banach algebra and {Ax : x ↓ X} is a collection of Banach algebras,

such function algebras include C(X,A), the space of continuous A-valued functions on X, and

c0(X, {Ax}), the closure in the sup norm of the functions ω ↓
∏
{Ax : x ↓ X} with finite support.

A brief, and quite incomplete, bibliographical note on such function spaces can be found at the

end of [11, Section 2].

For a more general setting, the reader may also wish to consult [1]. Using slightly di"erent language,

that paper studies algebras A of vector-valued functions over a completely regular Hausdor" space

X. These functions take their values in associative topological algebras {Ax : x ↓ X}, and the

algebra A is assumed to satisfy C1) and C3) above, without the completeness or norm conditions

of C2), C4), or C5).

Heritability has been explored previously (using either the language of function spaces or section

spaces of bundles of Banach spaces), for example in [4] (where A is simply a function space), [7],

and [8]. Of particular interest here are papers concerned with how some variants of amenability can

be inherited by function algebras A, e.g. amenability itself ([9]), module amenability ([11]), and

character amenability ([12]); in all these papers, appropriate uniform boundedness conditions were

shown su!cient to guarantee that the property under consideration was preserved by A. By using

the existence of certain conditions intrinsic to Banach algebras su!cient to establish the various

properties P of interest, it was possible to avoid the homological definitions of the properties. In
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this paper we will investigate the preservation to A of weak amenability in the Ax by employing

a similar work-around. We will also investigate the preservation to A of pseudo-amenability; the

results in this case are not so satisfying.

We note several important properties of function spaces (algebras) A.

I) The evaluation map ω ↔↗ ω(x) from A to Ax is a quotient map. Indeed, we have Ax ≃ A/IxA,

where Ix → C(X) is the maximal ideal of functions f such that f(x) = 0, and IxA is the

closed span in A of elements of the form fω (ω ↓ A, f ↓ Ix). The correspondence is given

by ω(x) ⇐ ω + IxA.

II) Let B be a function subspace of A, i.e. a closed subspace of A which is also a C(X)-module,

and set Bx = px(B) = {ω(x) : ω ↓ B} → Ax. Then Bx → Ax is a closed subspace, and

Bx = {ω ↓ A : ω(x) ↓ Bx} is a function subspace (necessarily full) of A; Bx has fibers Bx

and Ay (if y ⇒= x). Moreover, (*) B =
⋂
{Bx : x ↓ X} = {ω ↓ A : ω(x) ↓ Bx for all x ↓ X}

and px(B) = Bx. In particular, if B and C are function subspaces of A such that Bx = Cx

for all x, then B = C. [Two caveats: 1) We need B and C to be subspaces of a common

function space A; it is not enough to have function spaces B and C over X which have fibers

Bx = Cx for all x ↓ X, as the example B = C(X) and C = c0(X) shows. 2) In order for (*)

to hold, we also need to specify B, and hence both its fibers Bx and the function subspaces

Bx → A. Merely specifying some subspaces Bx → Ax is insu!cient if we wish the fibers of

B =
⋂
{Bx : x ↓ X} to be the Bx. For example, consider the case X = [0, 1], B = C(X),

and Bx = 0 if x is rational, and Bx = C otherwise. Then Bx = {f ↓ B : f(x) = 0} if x is

rational, and Bx = B otherwise. But
⋂
{Bx : x ↓ X} = {0} → B.]

III) Let A be a function algebra with fibers Ax. Then A is a C(X)-(bi)module, and we let

J = JA → A↑̂A be the closed span of elements of the form (fω ↑ ϑ) ⇑ (ω ↑ fϑ) = [(f ↑

1) ⇑ (1 ↑ f)](ω ↑ ϑ), where 1 ↓ C(X) is the identity, i.e. the function with constant

value 1. We call J the C(X)-balanced kernel in A↑̂A. It is easy to check that J is both

an ideal and a C(X)↑̂C(X) submodule in A↑̂A. Then there is a function algebra A ↑X A

with fibers Ax↑̂Ax and a C(X)-isometric isomorphism q : (A↑̂A)/J ↗ A ↑X A, where

[q(ω ↑ ϑ + J)](x) = (ω ⇓ ϑ)(x) = ω(x)↑ ϑ(x). The isometry is given by

∥∥∥∥∥
∑

k

ωk ⇓ ϑk

∥∥∥∥∥
A→XA

= sup
x↑X

∥∥∥∥∥
∑

k

ωk(x)↑ ϑk(x)

∥∥∥∥∥
Ax→̂Ax

=

∥∥∥∥∥
∑

k

ωk ↑ ϑk + J

∥∥∥∥∥
(A→̂A)/J

.

Of these properties, I) and II) can be found in various locations in [5, Chap. 9]; and III) is

[16, Thm. 1.2 and Prop. 1.5].

We now proceed to our studies of weak amenability and pseudo-amenability.
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2 Weak amenability and heritability

Recall that if A is a Banach algebra and M is a Banach A-bimodule, then M
↓ can be made into

Banach A-bimodule in a standard fashion via the actions

⇔m
↓
a,m↖ = ⇔m

↓
, am↖ and ⇔am

↓
,m↖ = ⇔m

↓
,ma↖ ,

where a ↓ A,m ↓ M, and m
↓
↓ M

↓
. A derivation D : A ↗ M is a continuous linear map such

that D(ab) = aD(b) +D(a)b. The derivation D : A ↗ M is said to be inner if

D(a) = ϖm(a) = am⇑ma

for some m ↓ M.

Definition 2.1. Let A be a complex Banach algebra. Say that A is weakly amenable if each

derivation D : A ↗ A
↓

is inner.

Recalling that A is said to be amenable if, for any Banach A-bimodule M, each derivation D : A ↗

M
↓ is inner [13], it is clear that an amenable algebra is also weakly amenable. If A is commutative,

then Fa = aF for each a ↓ A and F ↓ A
↓
, so for a commutative algebra A to be weakly amenable

is to say that A has no non-zero derivations to A
↓
.

Note that amenability and weak amenability can also be expressed in homological terms, the

details of which are not necessary here. In the event that A is commutative there are, however,

conditions intrinsic to A which are equivalent to its weak amenability. For the remainder of this

section we will assume (at the possible loss of some unnecessary generality) that all algebras are

commutative, and employ these conditions to investigate the heritability of weak amenability for

function algebras A.

We first note a necessary condition for A to be weakly amenable.

Proposition 2.2. Suppose that the function algebra A, defined over X, is weakly amenable. Then

each fiber Ax is weakly amenable.

Proof. Recall that Ax ≃ A/IxA, and use the fact that quotients of weakly amenable algebras by

closed ideals are themselves weakly amenable. (See [6, Prop. 2.1] or [15, Prop. 2.5.3].)

To exhibit conditions on the fibers Ax su!cient to make the function algebra A weakly amenable,

we start with some notation modified from [6]: If A is a complex commutative Banach algebra,

then we take A
# to be A with its standard adjunction of identity. (So, A# = A ↙ C1, with the

ε
1-norm, and multiplication (a↙ ϱ1)(b↙µ1) = (ab+ ϱb+µa)↙ ϱµ1. We will abuse notation only

slightly and write a + ϱ = a + ϱ1 ↓ A
#
.) Let K

#
A → A

#
↑̂A

# be the closed ideal which is the
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kernel of the multiplication map ς
# : A#

↑̂A
#
↗ A

#
, (a+ ϱ)↑ (b+ µ) ↔↗ ab+ ϱb+ µa+ ϱµ, and

let ς : A↑̂A ↗ A be the restriction of ς# to A↑̂A → A
#
↑̂A

#
. We set K

0
A = K

#
A ∝ (A↑̂A); note

that this makes sense since A is complemented in A
# by a projection of norm 1, and hence A↑̂A

is an actual subset of A#
↑̂A

# ([17, Prop. 2.4]). Since A↑̂A is an ideal in A
#
↑̂A

#
, we have K

0
A

→ A↑̂A is also a closed ideal. In particular, for u =
∑

k(ak + ϱk) ↑ (bk + µk) ↓ A↑̂A, we have

u ↓ K
#
A if and only if

∑

k

(akbk + ϱkbk + µkak + ϱkµk) = 0 ↓ A
#
.

Especially, we have
∑

k ϱkµk = 0 ↓ C. Likewise, an element u ↓ K
0
A is of the form

∑
k ak ↑ bk,

with
∑

k akbk = 0 ↓ A.

For later use, we note the following:

Lemma 2.3. Let A be a Banach algebra. Then (K0
A)

2
→ K

#
A (A↑̂A).

Proof. By definition, K0
A is a subset of both K

#
A and A↑̂A, so that if z, z↔ ↓ K

0
A, we consider that

z ↓ K
#
A and z

↔
↓ A↑̂A, so that zz

↔
↓
(
K

0
A

)2
→ K

#
A (A↑̂A); now use linearity and density.

The following result characterizes the weak amenability of a commutative Banach algebra A. Recall

that a Banach algebra is said to be essential provided that A2 = span{ab : a, b ↓ A} is dense in A.

Theorem 2.4 ([6, Thm. 3.2]). Let A be a commutative complex Banach algebra. Then the

following are equivalent:

1) A is weakly amenable;

2) A is essential and (K0
A)

2 = K
#
A (A↑̂A).

Note that there are other equivalences established in the cited theorem; the one here is su!cient

for our purpose.

Suppose now that A is a function algebra such that each Ax is weakly amenable. We will show

that A is also weakly amenable. The first task is to show that A is essential.

Proposition 2.5. Let A be a function algebra over X, and suppose that each Ax is essential.

Then A is essential, and conversely.

Proof. This result (a Stone-Weierstrass theorem for function algebras) is a variant of [5, Cor. 4.3],

and can also be found in [11]. However, it is worth looking at a proof, using our current language.

Let ω ↓ A, and let φ > 0. For each x ↓ X, we can find tx =
∑mx

k=1 ax,kbx,k ↓ A
2
x such that

↘ω(x)⇑ tx↘ < φ. From condition C1), above, we can choose ϑx,k, ϑ
↔
x,k ↓ A such that ϑx,k(x) = ax,k,

ϑ
↔
x,k(x) = bx,k. Set ↼x =

∑mx

k=1 ϑx,kϑ
↔
x,k ↓ A

2
. Since ↘ω(x)⇑ ↼x(x)↘ < φ, it follows from C2) that
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there is a neighborhood Vx of x such that whenever y ↓ Vx, we have ↘ω(y)⇑ ↼x(y)↘ < φ. Take a

finite subcover {Vj} = {Vxj : j = 1, . . . , n} of the Vx, and let {fj : j = 1, . . . , n} → C(X) be a

partition of unity subordinate to the Vj , so that for each j = 1, . . . , n, we have: 0 ′ fj ′ 1, fj is

supported on Vj , and
∑

j fj = 1.

For any y ↓ X, we then have

∥∥∥∥∥∥
ω(y)⇑

∑

j

fj(y)↼j(y)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∑

j

fj(y) [ω(y)⇑ ↼j(y)]

∥∥∥∥∥∥
′

∑

j s.t. y↑Vj

fj(y) ↘ω(y)⇑ ↼j(y)↘ < φ,

so that
∥∥∥ω ⇑

∑
j fj↼j

∥∥∥ < φ, and therefore ω is in the closure of A2
.

The converse is an immediate consequence of C1).

This shows, in particular, that the property of being essential is preserved by function algebras.

Especially, if each Ax has an approximate identity, so also does A; if the approximate identities in

the fibers Ax of A are uniformly bounded, then the approximate identity in A is bounded. (See

[9] and [12].)

It is straightforward to check that both (K0
A)

2 and K
#
A (A↑̂A) are closed C(X)↑̂C(X)-submodules

of, and ideals in, A↑̂A.

Lemma 2.6. Let A be a function algebra such that each Ax is weakly amenable, and let J → A↑̂A

be the C(X)-balanced kernel. Then J → (K0
A)

2.

Proof. Note that since each Ax is weakly amenable, we have each A
2
x is dense in Ax, so that A

2

is dense in A. By definition, J is the closed span in A↑̂A of elements of the form [(1 ↑ f) ⇑

(f ↑ 1)](ω ↑ ϑ). But since A
2 is dense in A, ω ↑ ϑ can be written as a limit of elements of form

(
∑

k ω
↔
kω

↔↔
k )↑

(∑
j ϑ

↔
jϑ

↔↔
j

)
=

∑
k,j ω

↔
kω

↔↔
k ↑ ϑ

↔
jϑ

↔↔
j =

∑
j,k

(
ω
↔
k ↑ ϑ

↔
j

) (
ω
↔↔
k ↑ ϑ

↔↔
j

)
. Restricting ourselves for

the moment to elements of the form ω ↑ ϑ = ω1ω2 ↑ ϑ1ϑ2 = (ω1 ↑ ϑ1)(ω2 ↑ ϑ2) ↓ A↑̂A, and noting

that (1↑ f)⇑ (f ↑ 1) is in the kernel of the multiplication map f ↑ g ↔↗ fg from C(X)↑̂C(X) to

C(X), we can write

[
(1↑ f)⇑ (f ↑ 1)

]
(ω ↑ ϑ) = lim

µ

[
(1↑ f)⇑ (f ↑ 1)

]
(ω1 ↑ ϑ1)hµ(ω2 ↑ ϑ2),

where {hµ} is a bounded approximate identity for kerςC(X). (Such an {hµ} exists because C(X)

is amenable, so that the above-mentioned kernel J has a bounded approximate identity; see [10, p.

254].)

It is evident that both
[
(1↑ f)⇑ (f ↑ 1)

]
(ω1 ↑ ϑ1) ↓ K

0
A, and hµ(ω2 ↑ ϑ2) ↓ K

0
A, so that

[
(1↑ f)⇑ (f ↑ 1)

]
(ω1 ↑ ϑ1)hµ(ω2 ↑ ϑ2) ↓ (K0

A)
2. The rest follows by linearity, density, and the

boundedness of {hµ}.
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It follows from Lemma 2.3 that we also have J → K
#
A (A↑̂A).

We obtain from the above that G = (K0
A)

2/J and H = K
#
A (A↑̂A)/J are function subalgebras of

A↑X A, with fibers Gx, Hx → Ax↑̂Ax, respectively.

Now, consider H = K
#
A (A↑̂A)/J. Recalling the discussion preceding Lemma 2.3 about the mul-

tiplication maps ς
# and ς, we see that a typical element u ↓ K

#
A (A↑̂A) is a limit of sums of

elements of the form

[
∑

k

(ωk + ϱk)↑ (ϑk + µk)

]


∑

j

↽j ↑ ⇀j



 ↓ A↑̂A,

(where the first sum is in K
#
A and the second is in A↑̂A), with ς

#(u) = ς(u) = 0 ↓ A. If u is

such a limit, the image of u in K
#
A (A↑̂A)/J under the quotient map is therefore a (uniform) limit

of sums of functions of the type

[
∑

k

(ωk + ϱk)⇓ (ϑk + µk)

]


∑

j

↽j ⇓ ⇀j



 =
∑

k,j

(ωk↽j + ϱk↽j)⇓ (ϑk⇀j + µk⇀j) ↓ A↑̂XA,

where

ω








∑

k,j

(εkϑj + ϖkϑj)↑ (ϱkςj + µkςj)



 (x)



 = ω




∑

k,j

[εk(x)ϑj(x) + ϖkϑj(x)]↓ [ϱk(x)ςj(x) + µkςj(x)]





= ω

([
∑

k

(εk(x) + ϖk)↓ (ϱk(x) + µk)

][
∑

j

ϑj(x)↓ ςj(x)

])

= 0 → Ax,

for each x ↓ X. Thus, (u + J)(x) ↓ K
#
x (Ax↑̂Ax), for each x ↓ X, where K

#
x = K

#
Ax

, and so the

fibers Hx = px(K
#
x (Ax↑̂Ax)/J) → px(A ↑X A) of H are subspaces of the K

#
x (Ax↑̂Ax) for each

x ↓ X.

On the other hand, an element v ↓ K
#
x (Ax↑̂Ax) is the limit in Ax↑̂Ax of sums of elements of the

form

[
∑

k

(ak + ϱk)↑ (bk + µk)

]


∑

j

cj ↑ dj



 =
∑

k,j

(akcj + ϱkcj)↑ (bkdj + µkdj) ↓ K
#
x (Ax↑̂Ax).

For each such element v, we can choose ↽k,j ,⇀k,j ↓ A↑̂A such that ↽k,j(x) = akcj + ϱkcj ,

↘↽k,j↘ = ↘akcj + ϱkcj↘ , and ⇀k,j(x) = bkdj + µkdj , ↘⇀kj↘ = ↘bkdj + µkdj↘ (see [14, Prop. 1.1]).
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Note that by the definition of the norm in projective tensor products, we have

∥∥∥∥∥
∑

k

(ak + ϱk)↑ (bk + µk)

∥∥∥∥∥ ′

∑

k

↘ak + ϱk↘ ↘bk + µk↘ < ∞,

and similarly for
∥∥∥
∑

j cj ↑ dj

∥∥∥ . Then

∥∥∥∥∥∥

∑

k,j

↽k,j ↑ ⇀k,j

∥∥∥∥∥∥
′

∑

k,j

↘↽k,j↘ ↘⇀k,j↘ =
∑

k,j

↘akcj + ϱkcj↘ ↘bkdj + µkdj↘

′

∑

k,j

↘ak + ϱk↘ ↘cj↘ ↘bk + µk↘ ↘dj↘

=


∑

k

↘(ak + ϱk)↑ (bk + µk)↘




∑

j

↘cj ↑ dj↘



 < ∞

and so we have
∑

k,j ↽k,j ↑ ⇀k,j ↓ A↑̂A. Moreover,

ς




∑

k,j

↽k,j ↑ ⇀k,j + J



 (x) = ς




∑

k,j

↽k,j ⇓ ⇀k,j



 (x)

= ς




∑

k,j

(akcj + ϱkcj)↑ (bkdj + µkdj)



 = 0 ↓ Ax

so that
∑

k,j ↽k,j ⇓ ⇀k,j ↓ Hx. Thus, px(Hx) = Hx is dense in K
#
x (Ax↑̂Ax); coupled with the

preceding, we have Hx = K
#
x (Ax↑̂Ax).

By similar arguments, we have px(G) = Gx = (K0
x)

2, so that G = (K0
A)

2/J =
⋂

x{z ↓ (A↑̂A)+J :

z(x) ↓ (K0
x)

2 = Gx} =
⋂
{Gx : x ↓ X}.

But now, since Ax is weakly amenable for each x, the fibers Gx of (K0
A)

2/J → A↑X A and Hx of

K
#
A (A↑̂A)/J → A↑X A are identical, so that K

#
A (A↑̂A)/J = (K0

A)
2/J → A↑X A.

We have shown:

Lemma 2.7. Let A be a commutative function algebra such that each fiber Ax is weakly amenable.

Then the quotient algebras K
#
A (A↑̂A)/J → A↑X A and (K0

A)
2/J → A↑X A are identical.

Corollary 2.8. Let A be a commutative function algebra with weakly amenable fibers Ax. Then

K
#
A (A↑̂A) = (K0

A)
2.

Proof. Elementary algebra: Let z ↓ K
#
A (A↑̂A). Then from the preceding Lemma, there exists

w ↓ (K0
A)

2 such that z + J = w + J. Hence z ⇑ w ↓ J → (K0
A)

2, so that z ↓ (K0
A)

2 + w = (K0
A)

2.

Similarly, (K0
A)

2 → K
#
A (A↑̂A).
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Theorem 2.9. Suppose that A is a commutative function algebra such that each fiber Ax is weakly

amenable. Then A is weakly amenable.

Proof. Apply Theorem 2.4 to the preceding results.

Corollary 2.10. Suppose that X is a compact Hausdor! space, and that A and {Ax : x ↓ X} are

commutative and weakly amenable. Then so are C(X,A) and c0(X, {Ax}). If X is locally compact

and Hausdor!, and A is commutative and weakly amenable, then so is C0(X,A), the space of

continuous A-valued functions disappearing at infinity.

Proof. We need only address the last assertion. Let X↗ = X∈{∞} be the one-point compactifica-

tion of X. Then C0(X,A) is C(X)-isometrically isomorphic to the function algebra I↗C(X↗, A),

where I↗ is the ideal in C(X↗) of functions which disappear at ∞; and it is easily checked that

I↗C(X↗, A) is a function algebra with fibers Ax = A, if x ⇒= ∞, A↗ = {0}.

Corollary 2.11. Let A be a function algebra all of whose fibers are commutative C
↓
-algebras.

Then A is weakly amenable.

Proof. A C
↓-algebra is weakly amenable [2, Thm. 5.6.77].

To the authors’ knowledge, it is an open question as to whether a function algebra A with fibers that

are all C↓-algebras is itself a C
↓-algebra. That is easily seen to be the case if A is adjoint-closed,

but the conclusion is not apparent if A is not assumed to be adjoint-closed.

We note that, in say [9], and similarly in [11] and [12], in order to induce amenability of its fibers Ax

upward to a function algebra A, we had to find someway of spreading the necessary boundedness

conditions on each Ax across X to all of A. In [9], for instance, we accomplished this by assuming

that the bounded approximate identities on each Ax were uniformly bounded across the Ax. In the

present situation, a necessary (and su!cient) condition for weak amenability of the fibers Ax of A

is that each fiber be essential and that K
#
x (Ax↑̂Ax) = (K0

x)
2. And, as it turns out, Proposition

2.5 and the passing from A↑̂A to the quotient A↑X A are the tools which spread that property

across X to all of A.

3 Pseudo-amenability and heritability

In the preceding section we mentioned the presence of conditions involving boundedness or essen-

tialness of fibers which were su!cient to induce the heritability of the relevant conditions from

fibers upward to function algebras. What happens if we eliminate boundedness conditions from

the fibers? The answer, as we see in the following, is not nearly so satisfactory, at least as far as

we are able to demonstrate. In this section, we make no assumptions about commutativity.
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Recall the definition:

Definition 3.1 ([3]). A (complex) Banach algebra A is said to be pseudo-amenable if there is a net

{uω} → A↑̂A (called an approximate diagonal) such that for each a ↓ A we have ↘uωa⇑ auω↘ ↗ 0

(in A↑̂A) and ↘ς(uω)a⇑ a↘ ↗ 0 (in A), where ς : A↑̂A ↗ A is the multiplication map.

As an immediate consequence of this definition, we note:

Proposition 3.2. Let A be a pseudo-amenable function algebra. Then each fiber Ax is pseudo-

amenable.

Proof. Note that Ax ≃ A/IxA and that pseudo-amenability is preserved by quotients (see [3, Prop.

2.2]).

If {Ax : x ↓ X} is a collection of pseudo-amenable algebras over the compact Hausdor" space X,

it is shown in [3, Prop. 2.1] that each of the algebras c0(X, {Ax}) and ε
p(X, {Ax}), 1 ′ p < ∞,

is pseudo-amenable, where ε
p(X, {Ax}) →

∏
{Ax : x ↓ X} is the space of choice functions ω over

X such that ↘ω↘ = (
∑

x ↘ω(x)↘
p)

1/p
< ∞. While all of these are algebras and C(X)-modules, of

course, only c0(X, {Ax}) is a function algebra in our sense. Can we extend the pseudo-amenability

result for c0(X, {Ax}) to arbitrary function algebras with values in the Ax?

We obtain a partial answer. Recall that an elementary member of A ↑X A is of the form x ↔↗

(ω ⇓ ϑ)(x) = ω(x)↑ ϑ(x), where ω, ϑ ↓ A. Recall also that J → kerς, where ς : A↑̂A ↗ A is the

multiplication map; thus (again abusing notation only slightly) ς : A↑X A ↗ A is well-defined.

Definition 3.3. Let A be a function algebra over the compact Hausdor! space X with fibers Ax.

Say that A is quotient pseudo-amenable if there exists a net {↼ω} → A↑̂A such that for any ω ↓ A

we have both

↘(↼ω + J)ω ⇑ ω(↼ω + J)↘A→XA = sup
x

↘↼ω(x)ω(x)⇑ ω(x)↼ω(x)↘ ↗ 0

and

↘ς(↼ω + J)ω ⇑ ω↘A = sup
x

↘[ς(↼ω)](x)ω(x)⇑ ω(x)↘ ↗ 0.

There is a slightly stronger version of Proposition 3.2:

Proposition 3.4. Suppose that the function algebra A is quotient pseudo-amenable. Then each

fiber Ax is pseudo-amenable.

Proof. Let {↼ω} → A↑̂A be a net which makes A pseudo-amenable. For any x0 ↓ X and ω ↓ A,

we have

↘(↼ω + J)ω ⇑ ω(↼ω + J)↘ = sup
x↑X

↘[↼ω(x)]ω(x)⇑ ω(x)[↼ω(x)]↘ ∋ ↘[↼ω(x0)]ω(x0)⇑ ω(x0)[↼ω(x0)]↘ ↗ 0

and similarly for the other necessary convergence.
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Before we proceed to the next result, we gather some notation. Suppose that A is a function algebra

with pseudo-amenable fibers {Ax : x ↓ X} and respective approximate diagonals {uωx : ϱx ↓ !x}.

Set ! =
∏
{!x : x ↓ X}, and write ϱ(x) = ϱx (to avoid having subscripts be nested too deeply).

Order ! pointwise, i.e. ϱ
↔
∋ ϱ if and only if ϱ

↔(x) ∋ ϱ(x) for each x ↓ X. Given ϱ ↓ !, for

each x ↓ X we can choose and fix ↼ω(x) ↓ A ↑X A such that ↼ω(x)(x) = uω(x) and such that
∥∥↼ω(x)(x)

∥∥ =
∥∥uω(x)

∥∥ ; again, the existence of such ↼ω(x) is guaranteed by Prop. 1.1 of [14]. Then

by the definition of pseudo-amenability, for each x ↓ X and ω ↓ A, we have

∥∥↼ω(x)(x)ω(x)⇑ ω(x)↼ω(x)(x)
∥∥ =

∥∥uω(x)ω(x)⇑ ω(x)uω(x)

∥∥ ↗ 0

and
∥∥[ς(↼ω(x))](x)ω(x)⇑ ω(x)

∥∥ =
∥∥ς(uω(x))ω(x)⇑ ω(x)

∥∥ ↗ 0,

both as ϱ(x) increases in !x.

Theorem 3.5. Let A be a function algebra over the compact Hausdor! space X with fibers Ax,

and suppose that each Ax is pseudo-amenable. Then A is quotient pseudo-amenable.

Proof. We use the methods of Lemma 4 and Cor. 3 of [11]. Let F = {ωk : k = 1, . . . , n} ↓ A and

m ↓ N be given. Fix ω = ωk ↓ F and x ↓ X. Choose ↼ω(x) as above, and choose ϱm,k(x) ↓ !x

such that if ϱ(x) ∋ ϱm,k(x), then both

∥∥↼ω(x)(x)ω(x)⇑ ω(x)↼ω(x)(x)
∥∥ =

∥∥uω(x)ω(x)⇑ ω(x)uω(x)

∥∥ < 1/m

and
∥∥[ς(↼ω(x))](x)ω(x)⇑ ω(x)

∥∥ =
∥∥ς(uω(x))ω(x)⇑ ω(x)

∥∥ < 1/m.

Then if ϱm ↓ ! is such that ϱm ∋ max{ϱm,k : k = 1, . . . , n} (i.e. ϱm(x) ∋ max{ϱm,k(x) : k =

1, . . . , n} for each x ↓ X), the above inequalities hold (for ϱm) for each ω ↓ F and x ↓ X.

We now employ the upper semicontinuity of the norm functions in both A and A↑XA. For x ↓ X,

choose a neighborhood Vx(F,m) such that if y ↓ Vx(F,m) then both

∥∥↼ω(x)(x)ω(x)⇑ ω(x)↼ω(x)(x)
∥∥ < 1/m

and
∥∥[ς(↼ω(x))](x)ω(x)⇑ ω(x)

∥∥ < 1/m

for all ω ↓ F.

Now, X is compact, so we can choose {xj : j = 1, . . . , s} such that {Vj} = {Vxj (F,m) : j = 1, . . . , s}

also covers X. As in Proposition 2.5, let {fj : j = 1, . . . , s} a partition of unity subordinate to the
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Vj , and define ⇁ = ⇁(F,m) by ⇁ =
∑s

j=1 fj↼ωm(xj) ↓ A ↑X A. Then for y ↓ X and ω ↓ F, and

setting p = ↘⇁(y)ω(y)⇑ ω(y)⇁(y)↘ , we have

p =

∥∥∥∥∥∥

∑

j s.t. y↑Vj

fj(y)[↼ωm(xj)(y)ω(y)⇑ ω(y)↼ωm(xj)(y)]

∥∥∥∥∥∥

′

∑

j s.t. y↑Vj

fj(y)
∥∥↼ωm(xj)(y)ω(y)⇑ ω(y)↼ωm(xj)(y)

∥∥ <

∑

j s.t. y↑Vj

fj(y) · 1/m ′ 1/m,

so that ↘⇁ω ⇑ ω⇁↘ = supy
∥∥↼ωm(xj)(y)ω(y)⇑ ω(y)↼ωm(xj)(y)

∥∥ < 1/m (in A↑X A).

Similarly, we have ↘ς(⇁)ω ⇑ ω↘ = supx ↘[ς(⇁)](y)ω(y)⇑ ω(y)↘ < 1/m (in A).

Finally, set ” = {(F,m) : F → A is finite and m ↓ N}, and order ” by (F ↔
,m

↔) > (F,m) if F ↔
△ F

and m
↔
> m. By the preceding, for each (F,m) ↓ ” there exists ⇁ = ⇁(F,m) ↓ A↑X A such that

for each ω ↓ F we have both ↘⇁ω ⇑ ω⇁↘ < 1/m and ↘ς(⇁)ω ⇑ ω↘ < 1/m. In particular, for a given

ω0 ↓ A and m0 ↓ N, there exists (F0,m0) ↓ ”, with ω0 ↓ F0, such that if (F ↔
,m

↔) > (F0,m0)

then both ↘⇁
↔
ω0 ⇑ ω0⇁

↔
↘ < 1/m↔

< 1/m0 and ↘ς(⇁↔)ω0 ⇑ ω0↘ < 1/m↔
, where ⇁

↔ = ⇁
↔(F ↔

,m
↔) is

constructed as above. Therefore {⇁ = ⇁(F,m) : F → A is finite and m ↓ N} is an approximate

diagonal for A.

Thus, A is quotient pseudo-amenable if and only if each Ax is itself pseudo-amenable.

Proposition 3.6. Suppose that A is a function algebra over X, and that each fiber Ax is abelian

and pseudo-amenable. Then A is weakly amenable.

Proof. An abelian pseudo-amenable algebra is weakly amenable [3, Cor. 3.7]. Therefore A is

weakly amenable; see Theorem 2.9.

Naturally, Theorem 3.5 is a weaker result than we would like, especially given other amenability

results on function algebras. We suspect that the main obstacle in general is that for pseudo-

amenability we can not employ any boundedness conditions. (Indeed, in [15], pseudo-amenability

is introduced as “amenability without boundedness.”) The reader will note that in the proof of

pseudo-amenability of c0(X, {Ax}) (and the other spaces εp(X, {Ax})) in [3], crucial use is made of

the facts that elements ω ↓ c0(X, {Ax}) with finite support are dense in the space and that there

are projections from c0(X, {Ax}) into its subspaces consisting of functions with finite support.

This of course need not be the case for general function algebras.
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ABSTRACT

This paper investigates the existence and stability of so-

lutions for a class of totally nonlinear neutral Caputo q-

fractional di!erence equations of order 0 < ω < 1. By trans-

forming the equation into an equivalent integral equation and

leveraging the Krasnoselskii-Burton fixed point theorem, we

establish su"cient conditions for the existence of solutions.

The methodology involves decomposing the integral operator

into a sum of a compact operator and a large contraction.

Furthermore, suitable conditions for the stability of these

solutions are derived. Our theoretical results extend and

generalize previous findings in the literature. An illustrative

example is provided to demonstrate the applicability of the

main theorems.

RESUMEN

Este artículo investiga la existencia y estabilidad de solu-

ciones para una clase de ecuaciones en diferencias Caputo

q-fraccionarias neutrales totalmente no lineales de orden

0 < ω < 1. Transformando la ecuación en una ecuación

integral equivalente y aprovechando el teorema de punto

fijo de Krasnoselskii-Burton, establecemos condiciones su-

ficientes para la existencia de soluciones. La metodología

involucra descomponer el operador integral en una suma

de operadores compactos y una contracción grande. Más

aún, derivamos condiciones apropiadas para la estabilidad

de estas soluciones. Nuestros resultados teóricos extienden

y generalizan hallazgos previos en la literatura. Se entrega

un ejemplo ilustrativo para demostrar la aplicabilidad de los

teoremas principales.
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1 Introduction

The realm of q-calculus, also known as quantum calculus, o!ers a fascinating extension of classical

calculus, operating without the conventional concept of limits. Its genesis can be traced back

to the early twentieth century with the pioneering work of F. H. Jackson [21]. This framework

provides a robust mathematical toolkit for analyzing functions that may exhibit non-smooth behav-

ior. Subsequent developments by numerous researchers have significantly enriched the theoretical

underpinnings of q-calculus and broadened its applicability [5, 17–20].

In recent decades, the intersection of q-calculus with fractional calculus has given rise to the vi-

brant field of q-fractional calculus, leading to the study of q-fractional di!erence equations. These

equations have garnered considerable attention due to their capacity to model complex systems

with memory and hereditary properties [2,8–10,17,22–24,30]. Fixed point theorems have emerged

as indispensable tools in the analysis of q-fractional di!erence equations, instrumental not only in

establishing the existence and uniqueness of solutions but also in examining crucial stability prop-

erties [6, 12–16,25–28]. The work of Mesmouli, Ardjouni, and collaborators [25–28] is particularly

relevant, addressing various forms of nonlinear neutral Caputo q-fractional di!erence equations.

The Caputo q-fractional derivative, introduced by Abdeljawad and Baleanu [3], alongside support-

ing theoretical work [1, 7], provides essential tools for such investigations.

For 0 < q < 1, define the time scale Tq = {qn, n → Z} ↑ {0}, where Z is the set of integers. For

a = q
n0 and n0 → Z, denote Ta = [a,↓)q = {qia, i = 0, 1, 2, . . . }. Let Rm be the m-dimensional

Euclidean space and define Iω = {ωa, q→1
ωa, q

→2
ωa, . . . , a} and Tωa = [ωa,↓)q = {q→i

ωa, i =

0, 1, 2, . . . }, where ω = q
d → Tq, d → N0 = {0, 1, 2, . . . } and Iω = {a} with d = 0, is the non-delay

case.

Recently, Abdeljawad, Alzabut and Zhou in [2] studied the existence of solutions for the q-fractional

di!erence equation 



qC

ε
a x(t) = f(t, x(t), x(ω t)), t → Ta,

x(t) = ε(t), t → Iω ,
(1.1)

where f : Ta ↔R↔R ↗ R and qC
ε
a represents Caputo’s q-fractional di!erence of order ϑ → (0, 1).

By employing the Krasnoselskii fixed point theorem, the authors obtained existence results.

Moreover, Mesmouli and Ardjouni in [25] studied the existence, uniqueness and stability of solutions

for nonlinear neutral q-fractional di!erence equation





qC

ε
a (x(t)↘ g(t, x(ω t)) = f(t, x(t), x(ω t)), t → Ta,

x(t) = ϖ(t), t → Iω ,
(1.2)

where f : Ta↔R↔R ↗ R and g : Ta↔R ↗ R, ϖ : Iω ↗ R and qC
ε
a represents Caputo’s q-fractional
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di!erence of order ϑ → (0, 1). To establish the results, the authors applied Krasnoselskii’s and

Banach’s fixed point theorems, as well as Arzela–Ascoli’s theorem.

Motivated by [2] and [25], we study the existence and stability of solutions for the totally nonlinear

neutral q-fractional di!erence equation





qC

ε
a (h(x(t))↘ g(t, x(ω t))) = f(t, x(t), x(ω t)), t → Ta,

x(t) = ϖ(t), t → Iω ,
(1.3)

where h : R ↗ R, f : Ta ↔ R ↔ R ↗ R and g : Ta ↔ R ↗ R, ϖ : Iω ↗ R and qC
ε
a represents

Caputo’s q-fractional di!erence of order ϑ → (0, 1). To prove our main results, we employ the

Krasnoselskii-Burton fixed point theorem.

The paper is structured as follows: Section 2 provides essential preliminaries, including definitions

and lemmas from q-calculus and fractional di!erence calculus, the inversion of Equation (1.3) to

its integral form, and the statement of the Krasnoselskii-Burton fixed point theorem. Section 3

is dedicated to proving the existence of solutions for Equation (1.3) under derived conditions.

Section 4 presents results on the stability of these solutions. Section 5 o!ers an illustrative example.

Finally, Section 6 presents concluding remarks.

2 Preliminaries

In this section, we give some basic notations, definitions, and properties of q-calculus and fractional

di!erence calculus, which are used throughout this paper; see [2] and [25].

Definition 2.1 ([3]). For a function f : Tq ↗ R, its nabla q-derivative of f is defined as

q≃f(t) =
f(t)↘ f(qt)

(1↘ q)t
, t → Tq ↘ {0}. (2.1)

Definition 2.2 ([3]). For a function f : Tq ↗ R, the nabla q-integral of f is defined as

∫ t

0
f(s)≃qs = (1↘ q)t

↑∑

i=0

q
i
f
(
q
i
t
)
. (2.2)

For a → Tq, (2.2) becomes

∫ t

a
f(s)≃qs =

∫ t

0
f(s)≃qs↘

∫ a

0
f(s)≃qs. (2.3)
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Definition 2.3 ([1, 3]). The q-factorial function for n → N is given by

(t↘ s)nq =
n→1∏

i=0

(
t↘ q

i
s
)
. (2.4)

In case ϑ is a non-positive integer, the q-factorial function is given by

(t↘ s)εq = t
ε

↑∏

i=0

(
1↘ s

t q
i
)

(
1↘ s

t q
i+ε

) . (2.5)

In the following Lemma, we present some properties of q-factorial functions.

Lemma 2.4 ([9]). For ϑ,ϱ, a → R, we have

(i) (t↘ s)ε+ϑ
q = (t↘ s)εq (t↘ q

ε
s)ϑq .

(ii) (at↘ as)εq = a
ε(t↘ s)εq .

(iii) The nabla q-derivative of the q-factorial function with respect to t is

≃q(t↘ s)εq =
1↘ q

ε

1↘ q
(t↘ s)ε→1

q . (2.6)

(iv) The nabla q-derivative of the q-factorial function with respect to s is

≃q(t↘ s)εq =
1↘ q

ε

1↘ q
(t↘ qs)ε→1

q . (2.7)

Definition 2.5 ([3, 7]). For a function f : Tq ↗ R, the left q-fractional integral q≃→ε
a of order

ϑ ⇐= 0,↘1,↘2, . . . and starting at a = q
n0 → Tq, n0 → Z, is defined by

q≃→ε
a f(t) =

1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q f(s)≃qs =
1↘ q

!q(ϑ)

n0→1∑

i=n

q
i
(
q
n ↘ q

i+1
)ε→1

q
f
(
q
i
)
, (2.8)

where

!q(ϑ+ 1) =
1↘ q

ε

1↘ q
!q(ϑ), !q(1) = 1, ϑ > 1. (2.9)

Remark 2.6. The left q-fractional integral q≃→ε
a maps functions defined on Tq to functions defined

on Tq.

Definition 2.7 ([3]). Let 0 < ϑ /→ N. Then

(i) the left Caputo q-fractional derivative of order ϑ of a function f defined on Tq is defined by

qC
ε
a f(t) = ≃→(n→ε)

a ≃n
q f(t) =

1

!q(n↘ ϑ)

∫ t

a
(t↘ qs)n→ε→1

q ≃n
q f(s)≃qs (2.10)
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where n = [ϑ] + 1. In case ϑ → N, then qC
ε
a f(t) = ≃n

q f(t).

(ii) The left Riemann q-fractional derivative is defined by (q≃ε
af) (t) =

(
≃q≃→(n→ε)

a f

)
(t).

(iii) In virtue of [3], the Riemann and Caputo q-fractional derivatives are related by

(qC
ε
a f) (t) = (q≃ε

af) (t)↘
(t↘ a)→ε

q

!q(1↘ ϑ)
f(a). (2.11)

Lemma 2.8 ([3]). Let ϑ > 0 and f be defined in a suitable domain. Then

q≃→ε
a (qC

ε
a f) (t) = f(t)↘

n→1∑

k=0

(t↘ a)kq
!q(k + 1)

≃k
qf(a), (2.12)

and if 0 < ϑ ⇒ 1 we have

q≃→ε
a (qC

ε
a f) (t) = f(t)↘ f(a). (2.13)

The following identity is crucial in solving the linear q-fractional equations

q≃→ε
a (x↘ a)µq =

!q(µ+ 1)

!(ϑ+ µ+ 1)
(x↘ a)µ+ε

q , (0 < a < x < b), (2.14)

where ϑ → R+ and µ → (↘1,↓).

We give the equivalence of Equation (1.3). So, the solvability of this equivalent equation implies

the existence and stability of solutions to Equation (1.3).

Lemma 2.9. x(t) is a solution of (1.3) if and only if it admits the following representation

x(t) = ϖ(a)↘H(ϖ(a))↘ g(a,ϖ(ωa)) +H(x(t)) + g(t, x(ω t))

+
1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q f(s, x(s), x(ωs))≃qs, t → Ta (2.15)

where

H(x(t)) = x(t)↘ h(x(t)). (2.16)

Proof. Let

z(t) = h(x(t))↘ g(t, x(ω t)).

Then, we can write (3) as

qC
ε
a z(t) = f(t, x(t), x(ω t)).

By the same way used in [2] and [25], we obtain for t → Taω , the initial value problem for Equa-
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tion (1.3) is equivalent to the following equation

z(t) = z(a) +
1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q f(s, x(s), x(ωs))≃qs. (2.17)

So

x(t) = ϖ(a)↘H(ϖ(a))↘ g(a,ϖ(ωa)) +H(x(t)) + g(t, x(ω t))

+
1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q f(s, x(s), x(ωs))≃qs.

The proof is complete.

The space l↑ denotes the set of real bounded sequences with respect to the usual supremum norm.

We recall that l↑ is a Banach space.

Definition 2.10. A set M of sequences in l↑ is uniformly Cauchy if for every ς > 0, there exists

an integer N↓ such that |x(t)↘ x(s)| < ς whenever t, s > N↓ for any x = {x(n)} in M.

The following discrete version of Arzela–Ascoli’s theorem has a crucial role in the proof of our

main theorem.

Definition 2.11 ([29, Arzela-Ascoli]). A bounded, uniformly Cauchy subset M of l↑(Ta) (all

bounded real-valued sequences with domain Ta) is relatively compact.

Definition 2.12 ([11, Large contraction]). Let (M, d) be a metric space and B : M ↗ M. B is

said to be a large contraction if for each pair x, y → M with x ⇐= y then d(Bx,By) < d(x, y) and if

for each φ > 0 there exists ↼ < 1 such that

[x, y → M, d(x, y) ⇑ φ] ⇓ d(Bx,By) < ↼d(x, y).

Theorem 2.13 ([11, Krasnoselskii-Burton]). Let M be a closed convex non-empty subset of a

Banach space (S, ⇔ · ⇔). Suppose that A and B map M into M such that

(i) for all x, y → M, implies Ax+By → M,

(ii) A is continuous and AM is contained in a compact subset of M,

(iii) B is a large contraction.

Then there is a z → M with z = Az +Bz.

We will use the next theorem to show the existence of solutions for Equation (1.3).
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Theorem 2.14 ([4]). Let ⇔ · ⇔ be the supremum norm, M = {x → C(T,R) : ⇔x⇔ ⇒ R}, where R is

a positive constant. Suppose that h is satisfying the following conditions

(H1) h is continuous on UR = [↘R,R].

(H2) h is strictly increasing on UR.

(H3) sups↔UR↗Ta qC
ε
a h(s) ⇒ 1.

(H4) (s↘r)
{
supi↔UR↗Ta qC

ε
a h(i)

}
⇑ h(s)↘h(r) ⇑ (s↘r)

{
infi↔UR↗Ta qC

ε
a h(i)

}
⇑ 0 for s, r → UR

with s ⇑ r.

Then, the mapping H defined by Equation (2.16) is a large contraction on M.

Let T = [ωa, T1]q = {q→i
ωa, i = 0, 1, . . . , n1 + d} where T1 = q

→n1→d
ωa with n1 → [d + 3,↓) ↖ Z,

and C(T,R) be the set of all real bounded sequences. C(T,R) is a Banach space endowed with the

norm

⇔x⇔ = sup
t↔T

|x(t)|.

Define the set

M = {x → C(T,R) : x(t) = ϖ(t) for t → Iω and ⇔x⇔ ⇒ R}, (2.18)

a non-empty bounded closed and convex subset of C(T,R).

3 Existence of solutions

We prove our main results under the following assumptions:

• There exists a constant Lf > 0 such that for all t → Ta, and for all x, y, z, w → R,

|f(t, x, z)↘ f(t, y, w)| ⇒ Lf (⇔x↘ y⇔+ ⇔z ↘ w⇔). (3.1)

• There exists a constant Lg > 0 such that for all t → Ta, and for all x, y → R,

|g(t, x)↘ g(t, y)| ⇒ Lg⇔x↘ y⇔. (3.2)

• There exists a constant R > 0, satisfying the inequality,

J

[
|ϖ(a)|+ |H(ϖ(a))|+ |g(a,ϖ(ωa))|+RLg + ↽g +

(2RLf + ↽f )C(ϑ)

!q(ϑ)

]
⇒ R, (3.3)

where C(ϑ) =
(1→q)(T1→a)ωq

(1→qω) is a positive constant depending on ϑ and T1, with ↽f =

supt↔Ta
|f(t, 0, 0)|, ↽g = supt↔Ta

|g(t, 0)| and J ⇑ 3 is a constant.



642 A.-P. A!ul, E. Yankson & A. Adom-Konadu CUBO
27, 3 (2025)

Define a mapping S : M ↗ C by

(Sx)(t) = ϖ(a)↘H(ϖ(a))↘ g(a,ϖ(ωa)) +H(x(t)) + g(t, x(ω t))

+
1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q f(s, x(s), x(ωs))≃qs. (3.4)

We express (3.4) as

(Sx)(t) = (Ax)(t) + (Bx)(t),

where the operators A,B : M ↗ C are defined by

(Ax)(t) = ϖ(a)↘H(ϖ(a))↘ g(a,ϖ(ωa)) + g(t, x(ω t))

+
1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q f(s, x(s), x(ωs))≃qs, (3.5)

and

(Bx)(t) = H(x(t)). (3.6)

Lemma 3.1. Assume that conditions (3.1), (3.2) and (3.3) hold. Then, the operator A : M ↗ M
defined in Equation (3.5) is compact and continuous.

Proof. Let A be defined by Equation (3.5). In view of conditions (3.1) and (3.2), we arrive at

|f(t, x(t), x(ω t))| = |f(t, x(t), x(ω t))↘ f(t, 0, 0) + f(t, 0, 0)|

⇒ |f(t, x(t), x(ω t))↘ f(t, 0, 0)|+ |f(t, 0, 0)| ⇒ 2Lf⇔x⇔+ ↽f .

and

|g(t, x(ω t))| = |g(t, x(ω t))↘ g(t, 0) + g(t, 0)| ⇒ |g(t, x(ω t))↘ g(t, 0)|+ |g(t, 0)| ⇒ Lg⇔x⇔+ ↽g.

We have

|(Ax(t))| =
ϖ(a)↘H(ϖ(a))↘ g(a,ϖ(ωa)) + g(t, x(ω t)) +

1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q f(s, x(s), x(ωs))≃qs



⇒ |ϖ(a)|+ |H(ϖ(a))|+ |g(a,ϖ(ωa))|+ |g(t, x(ω t))|+ 1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q |f(s, x(s), x(ωs))|≃qs

⇒ |ϖ(a)|+ |H(ϖ(a))|+ |g(a,ϖ(ωa))|+ Lg⇔x⇔+ ↽g +
2Lf⇔x⇔+ ↽f

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q ≃qs

⇒ |ϖ(a)|+ |H(ϖ(a))|+ |g(a,ϖ(ωa))|+RLg + ↽g +
2RLf + ↽f

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q ≃qs.
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By the relations (2.9), (2.14) and the fact that (t↘ a)0q = 1, we have

1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q (t↘ a)0q≃qs =q ≃ε
a (t↘ a)0q =

!q(1)(t↘ a)εq
!q(ϑ+ 1)

⇒
(T1 ↘ a)εq
!q(ϑ+ 1)

=
(1↘ q)(T1 ↘ a)εq
(1↘ qε)!q(ϑ)

, t < T1.

Then

|(Ax(t))| ⇒ |ϖ(a)|+ |H(ϖ(a))|+ |g(a,ϖ(ωa))|+RLg + ↽g +
(2RLf + ↽f )C(ϑ)

!q(ϑ)
.

Thus

⇔Ax⇔ ⇒ R

J
⇒ R.

Hence, A : M ↗ M which implies A(M) is uniformly bounded.

To prove the continuity of A, we consider a sequence (xn) which converges to x such that

|(Axn)(t)↘ (Ax)(t)| ⇒ |g(t, xn(ω t))↘ g(t, x(ω t))|

+
1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q

f(s, xn(s), xn(ωs))↘ f(s, x(s), x(ωs))
≃qs

⇒ Lg⇔xn ↘ x⇔+ Lf

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q ⇔xn ↘ x⇔≃qs

⇒ Lg⇔xn ↘ x⇔+ 2LfC(ϑ)

!q(ϑ)
⇔xn ↘ x⇔ ⇒


Lg +

2LfC(ϑ)

!q(ϑ)


⇔xn ↘ x⇔.

From the above analysis, it implies that

⇔(Axn)(t)↘ (Ax)(t)⇔ ⇒

Lg +

2LfC(ϑ)

!q(ϑ)


⇔xn ↘ x⇔.

Hence whenever xn ↗ x, Axn ↗ Ax. This shows the continuity of A.

To prove that A is compact. We will prove that A(M) is equicontinuous. Let x → M, then for any

t1, t2 → Ta with 0 ⇒ t1 ⇒ t2 ⇒ T1, we have

|(Ax)(t2)↘ (Ax)(t1)| ⇒ |g(t2, x(ω t2))|+ |g(t1, x(ω t1))|

+
1

!q(ϑ)


∫ t2

a
(t2 ↘ qs)ε→1

q f(s, x(s), x(ωs))≃qs

↘
∫ t1

a
(t1 ↘ qs)ε→1

q f(s, x(s), x(ωs))≃qs


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⇒ |g(t2, x(ω t2))|+ |g(t1, x(ω t1))|

+
1

!q(ϑ)

∫ t1

a

(t2 ↘ qs)ε→1
q ↘ (t1 ↘ qs)ε→1

q

|f(s, x(s), x(ωs))|≃qs

+

∫ t2

t1

(t2 ↘ qs)ε→1
q |f(s, x(s), x(ωs))|≃qs.

By the assumptions (3.1), (3.3), and Lemma 2.9, we obtain

|(Ax)(t2)↘ (Ax)(t1)| ⇒ |g(t2, x(ω t2))|+ |g(t1, x(ω t1))|

+
(
2RLf + ↽f

)[ 1

!q(ϑ)

∫ t1

a

(t2 ↘ qs)ε→1
q ↘ (t1 ↘ qs)ε→1

q

≃qs

+
1

!q(ϑ)

∫ t2

t1

(t2 ↘ qs)ε→1
q ≃qs

]
.

By using (2.8), we obtain

|(Ax)(t2)↘ (Ax)(t1)| ⇒ |g(t2, x(ω t2))|+ |g(t1, x(ω t1))|

+ (2RLf + ↽f )

q≃→ε

a

(
(t2 ↘ a)0q ↘ (t1 ↘ a)0q

)
+q ≃→ε

t1 (t2 ↘ t1)
0
q


.

From (2.14), it follows that

|(Ax)(t2)↘ (Ax)(t1)| ⇒ |g(t2, x(ω t2))|+ |g(t1, x(ω t1))|

+

(
2RLf + ↽f

)

!q(ϑ+ 1)


(t2 ↘ a)εq ↘ (t1 ↘ a)εq + (t2 ↘ t1)

ε
q


.

Hence it follows that |(Ax)(t2)↘ (Ax)(t1)| ↗ 0 as t1 ↗ t2. Thus that A(M) is equicontinuous. So,

the compactness of A follows by the Ascoli-Arzela theorem.

The next Lemma, gives a relationship between the mappings H and B in the sense of large

contraction.

Lemma 3.2. Let B be defined by (3.6). Suppose that

max
(
|H(↘R)|, |H(R)|

)
⇒ (J ↘ 1)

J
R, (3.7)

and all conditions of Theorem 2.14 hold. Then B : M ↗ M is a large contraction.

Proof. We will first show that B maps M into itself. Let x → M, then by (3.7) we have

|(Bx)(t)| = |(Hx)(t)| ⇒ max
{
|H(↘R)|, |H(R)|

}
⇒ (J ↘ 1)

J
R ⇒ R.
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Thus

⇔Bx⇔ ⇒ R.

That is Bx → M and consequently, we have B : M ↗ M.

We next show that B is a large contraction. By Theorem 2.14, if H is a large contraction on M,

then for any x, y → M with x ⇐= y, we have ⇔Hx↘Hy⇔ ⇒ ⇔x↘ y⇔. This implies that

|(Bx)(t)↘ (By)(t)| = |(Hx)(t)↘ (Hy)(t)| ⇒ ⇔x↘ y⇔.

Thus

⇔Bx↘By⇔ ⇒ ⇔x↘ y⇔.

In a similar manner, one could also show that

⇔Bx↘By⇔ ⇒ ↼⇔x↘ y⇔,

holds if we know the existence of a ↼ → (0, 1) and that for all ς > 0,

[x, y → M, ⇔x↘ y⇔ > 0] ⇓ ⇔Hx↘Hy⇔ ⇒ ↼⇔x↘ y⇔.

The proof is complete.

Theorem 3.3. Suppose the hypotheses of Lemmas 3.1 and 3.2 hold. Let M defined by (2.18).

Then Equation (1.3) has a solution in M.

Proof. By Lemma 3.1, A : M ↗ M is continuous and compact. Also, from Lemma 3.2, the mapping

B : M ↗ M is a large contraction. Next, we prove that if x, y → M, we have ⇔Ax+By⇔ ⇒ R. Let

x, y → M with ⇔x⇔, ⇔y| ⇒ R. By (3.3) and (3.7), we obtain

⇔Ax+By⇔ ⇒ ⇔Ax⇔+ ⇔By⇔

⇒

ϖ(a)|+ |H(ϖ(a))|+ |g(a,ϖ(ωa))|+RLg + ↽g +

(2RLf + ↽f )C(ϑ)

!q(ϑ)


+

(J ↘ 1)R

J

⇒ R

J
+

(J ↘ 1)R

J
= R.

Clearly, all the hypotheses of the Krasnoselskii-Burton theorem are satisfied. Thus there exists a

fixed point z → M such that z = Az+Bz. By Lemma 2.9, this fixed point is a solution of Equation

(1.3). Hence Equation (1.3) has a solution. This completes the proof.
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4 Stability

Now, we show that the solutions of Equation (1.3) are stable by giving su"cient conditions.

Theorem 4.1. Assume that conditions (3.1) and (3.2) hold. Also, suppose that

c =


k + Lg +

2LfC(ϑ)

!q(ϑ)


< 1, (4.1)

and all conditions of Theorem 2.14 hold. Moreover, for ς > 0, there exists

↼ =
1↘ c

1 + k + Lg
ς.

Then, the solutions of Equation (1.3) are stable.

Proof. Let x be a solution of Equation (1.3) and x be a solution of Equation (1.3) satisfying the

initial function x(t) = ϖ(t) on Iω . For t → Ta, applying conditions (3.1), (3.2), (4.1) and all

conditions of Theorem 2.14, yields

|x(t)↘ x(t)| ⇒
ϖ(a)↘ ϖ(a)

+
H(ϖ(a))↘H( ϖ(a))

+
H(x(t))↘H(x(t))



+
g(a,ϖ(ωa))↘ g(a, ϖ(ωa))

+
g(t, x(ω t))↘ g(t, x(ω t))



+
1

!q(ϑ)

∫ t

a
(t↘ qs)ε→1

q

f(s, x(s), x(ωs))↘ f(s, x(s), x(ωs))
≃qs

⇒ (1 + k + Lg)⇔ϖ ↘ ϖ⇔+

k + Lg +

2LfC(ϑ)

!q(ϑ)


⇔x↘ x⇔

⇒ (1 + k + Lg)⇔ϖ ↘ ϖ⇔+ c⇔x↘ x⇔.

Hence

⇔x↘ x⇔ ⇒ 1 + k + Lg

1↘ c
⇔ϖ ↘ ϖ⇔

Then, for any ς > 0, let ↼ = 1→c
1+k+Lg

ς, so for ⇔ϖ ↘ ϖ⇔ < ↼ there is ⇔x ↘ x⇔ < ς. Therefore, the

solutions of Equation (1.3) are stable. The proof is complete.
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5 Illustrative example

In this section we provide an example. Specifically, we apply Theorems 3.3 and 4.1 to the equation





2
3
C

3
4
1

((
1
10 sin(x(t)) + 9

10x(t)
)
→ 1

50 cos(t) arctan
(
x
(
2t
3

)))
= 1

100

(
sin(x(t)) + cos

(
x
(
2t
3

)))
e→t,

t ↑ [1, 9/4] 2
3
,

x(t) = 0.02 cos(εt), t ↑
{
2/3, 1

}
.

(5.1)

It follows from the equation that q = 2/3, ϑ = 3/4, a = 1, ω = 2/3, h(x) = 1
10 sin(x) +

9
10x, which

yields H(x) = 1
10 (x↘ sin(x)).

Also,

g(t, x) =
1

50
cos(t) arctan(x), f(t, x, z) =

1

100
(sin(x) + cos(z))e→t

,

and

ϖ(t) = 0.02 cos(⇀t).

We define the set M = {x → C : ⇔x⇔ ⇒ R} with R = 0.5.

Now on the domain MR = [↘0.5, 0.5], h(x) is strictly increasing since

h
↘(x) =

1

10
cos(x) +

9

10
⇑ 1

10
cos(0.5) + 0.9 ↙ 0.987 > 0.

It can be verified that conditions (H3)-(H4) also hold, making H(x) a large contraction.

The Lipschitz constant for H(x) is

k = sup
x↔UR

|H ↘(x)| = sup
x↔UR

 1
10

(1↘ cos(x))
 ⇒ 1

10
(1↘ cos(0.5)) ↙ 0.001224.

Also,

|g(t, x)↘ g(t, y)| ⇒ 1

50
|x↘ y|, |f(t, x, z)↘ f(t, y, w)| ⇒ 1

100
(|x↘ y|+ |z ↘ w|)

Thus, Lg = 0.02 and Lf = 1/100 = 0.01.

It must also be noted that ↽g = sup |g(t, 0)| = 0 and ↽f = sup |f(t, 0, 0)| = 1
100e

→1 ↙ 0.00368,

ϖ(1) = ↘0.02 =⇓ H(ϖ(1)) ↙ 0 and g(1,ϖ(2/3)) ↙ ↘0.000108.

To verify the main conditions, we must select an endpoint T1 for the time scale. Let us choose

T1 = 9/4. A rigorous numerical calculation using the definitions of the q-Gamma function and

q-power function yields the q-integral bound

KA =
(T1 ↘ 1)εq
!q(ϑ+ 1)

=
(9/4↘ 1)3/42/3

!2/3(7/4)
↙ 1.4331.
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It must also be noted that |H(0.5)| ↙ 0.00206 and with J = 5

J ↘ 1

J
R =

4

5
(0.5) = 0.4.

Hence, showing that Lemma 3.2 holds. Moreover, to verify condition (3.3), we have

|ϖ(a)|+ |H(ϖ(a))|+ |g(a,ϖ(ωa))|+RLg + ↽g + (2RLf + ↽f )KA

= 0.02 + 0 + 0.000108 + (0.5)(0.02) + 0 + (2(0.5)(0.01) + 0.003679)(1.4331) = 0.0497

⇒ 0.1.

Thus, condition (3.3) hold. It therefore follows from Theorem 3.3 that Equation (5.1) has at least

one solution in M.

To verify the stability of solutions we verify condition (4.1). Thus,

k + Lg + 2LfKA = 0.01224 + 0.02 + 2(0.01)(1.4331) = 0.03224 + 0.02866 ⇒ 1.

Thus, by Theorem 4.1 the solutions of Equation (5.1) are stable.

6 Conclusion

This paper has established su"cient conditions for the existence and stability of solutions to a class

of totally nonlinear neutral Caputo q-fractional di!erence equations. The Krasnoselskii-Burton

fixed point theorem was a key tool in proving existence, by decomposing the solution operator

into a compact part and a large contraction. The stability analysis provides criteria based on

the Lipschitz constants of the involved functions and the bound on the q-integral operator. The

presented theoretical framework generalizes existing results by considering a more comprehensive

nonlinear and neutral structure. The illustrative example demonstrates the method of verifying the

derived conditions. Future work could explore specific applications of these equations or investigate

uniqueness conditions and other qualitative properties.
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In this note, we generalize a well-known theorem of Krein
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RESUMEN
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espacio vectorial topológico al caso de una noción abstracta

de convexidad en un espacio topológico con una estructura
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1 Introduction and results

The main pourpose of this paper is to prove a generalization of Krein and Milman Theorem (The-

orem 1.14). We start with some definitions and properties which will be useful for our pourpose.

Definition 1.1. Let X be a topological space. We say that a family F = {ω(x,y) : [0, 1] → X :

x, y ↑ X} introduces a convex structure on X if:

1. The functions ω(x,y) are continuous.

2. ω(x,y)(0) = x, ω(x,y)(1) = y.

The space X with the a such family F we call a space with convex structure.

Definition 1.2. Let X be a space with a convex structure. A subset A of X is said to be F↓convex

if for all x, y ↑ A we have that ω(x,y)([0, 1]) ↔ A.

It is easy to see that the space X, the empty and the intersection of two F↓convex sets is an

F↓convex set. Also the union of a monotone family of F↓convex sets is again an F↓convex set.

Example 1.3. Let X = S
2

be a two dimensional sphere and let ω(x,y) : [0, 1] → S
2

be a

parametrization of the geodesic line which joins the points x and y on this sphere. Then the

family F = {ω(x,y) : [0, 1] → X : x, y ↑ X} introduces a convex structure on S
2
. Particulary the

spherical triangles are F↓convex sets.

Example 1.4. Let X be a topological vector space or an abstract topological cone. Then the family

Fp = {ω(x,y) : ω(x,y)(t) = ty + (1 ↓ t
p)

1
px, t ↑ [0, 1], x, y ↑ X} introduces a convex structure on X

for all p > 0.

Definition 1.5. Let X be space with a convex structure and A be a subset of X. We say that

B ↔ A is an extremal subset of A if the condition ω(x,y)(t) ↑ B for some x, y ↑ A and t ↑ (0, 1)

implies that x, y ↑ B.

Lemma 1.6. Let X be a topological space with a convex structure F . Then every compact F↓convex

subset A of X contains an F↓convex extreme B which is minimal with respect to inclusion.

Proof. Let M be the family of all F↓convex closed extreme subsets of A ordered by inclusion. It

is easy to observe that M is nonempty since A ↑ M and the intersection of any chain of elements

of M also belongs to M. Hence by the Kuratowski-Zorn Lemma there exists an minimal element

of M.
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Similarly we can prove the following:

Definition 1.7. Let X be a topological space. We say that the family G = {gt : X → R : t ↑ T}
separates points of the space X, if for all x, y ↑ X, x ↗= y there exists t ↑ T such that gt(x) ↗= gt(y).

Definition 1.8. We say that a family G = {gt : X → R : t ↑ T} exposes faces of a compact

F↓convex subset A if for any g ↑ G the set

H
A
g =

{
x ↑ A : g(x) = sup

t→A
g(t)

}

is an extremal subset of A.

Definition 1.9. Let A be an F↓convex subset of X. We say that x ↑ A is an extreme point of A

if the set {x} is an extreme subset of A. The set of all extreme points of the set A is denoted by

Ext(A).

Definition 1.10. Let X be a topological space with a convex structure F and the family G of

functions which separates points of X. We say that the family G is compatible with the family F on

the class of F↓compact convex sets if for any compact F↓convex set A the set H
A
g is F↓convex

for all g ↑ G.

Proposition 1.11. Let X be a topological space with a convex structure F . Assume that there exists

a family G compatible with the family F on the class of F↓compact convex sets which separates

points of X and exposes faces of compact F↓convex sets. Then every compact F↓convex subset

A of X has extreme point.

Proof. By Lemma 1.6 there exists a minimal extreme F↓convex subset B of the set A. Suppose

that x, y ↑ B then there exists g ↑ G such that g(x) ↗= g(y) but in this case the set H
B
g is also

extreme F↓convex subset of A which is included in B and at least one of x, y does not belong to

B. Contradiction.

Definition 1.12. Let X be a topological space with the convex structure F . We say that the family

G of real functions defined on X separates compact F↓convex sets from points if for any compact

F↓convex set A and any b /↑ A there exists g ↑ G such that g(x) < g(b) for all x ↑ A.

Definition 1.13. Let A be a subset of a topological space X with the convex structure F . The

F↓convex hull of the set A is defined as the intersection of all F↓convex subsets of X which

contain the set A and we denote it by convF (A).

Analogously the closed F↓convex hull of the set A is defined as the intersection of all F↓convex

closed subsets of X which contains the set A and we denote it by convF (A).
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Clearly the F↓convex hull of any subset is F↓convex set and the closed F↓convex hull of any

subset is closed and F↓convex set. Now we are prove theorem which generalizes the classical

Krein-Milman theore.

Theorem 1.14. Let X be a topological space with a convex structure F on X. Suppose that there

exists a family G on X which is compatible with F on F↓compact convex subsets of X such that

separates F↓convex compact subsets of X from points of X and exposes faces of compact F↓convex

sets. Then every F↓convex compact subset A of X is equal to closed F↓convex hull of its extremal

points. Symbolically

A = convF (Ext (A)).

Proof. From Proposition 1.11 we have that the set Ext(A) is not empty. Obviously

K = convF (Ext(A)) ↔ A.

Assume that A \ K ↗= ↘ and let x ↑ A \ K. Since the set K is a closed F↓convex subset of the

compact set A it is also compact. Now since the family G separates points from compact F↓convex

sets then there exists g ↑ G such that supt→K g(t) < g(x). Since the family exposes faces of compact

F↓convex sets therefore the set HA
g is extreme subset of A. From the compatibility of the family G

with F on the compact F↓convex subsets we obtain that the set HA
g is itself a compact F↓convex

set and hence the set Ext(HA
g ) is not empty. Hence

Ext(HA
g ) ↔ Ext(A) ↔ K,

but this gives a contradiction since for y ↑ Ext(HA
g ) we have

g(y) = sup
t→A

g(t) ≃ g(x) > sup
t→K

g(t) ≃ g(y)

which ends the proof.

Extremal points play an important role in mathematics and its applications. As was shown in [4]

it plays an crucial role in proving continuity of convex functions. Hence the above theorem may

be a possible tool for examining the continuty of some wider class of convex functions (i.e. convex

functions defined by using abstract convex structure).

Remark 1.15. If X is a locally convex topological vector space then the family

F = {Ixy : [0, 1] → X : Ixy(t) = (1↓ t)x+ ty, x, y ↑ X}

defines a convex structure on X. It is clear that F↓convex sets are usual convex sets in this

case. Denote by X
↑
the topological dual of X i.e. the space of all real continous linear functionals
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defined on X. From the geometric form of Hahn-Banach theorem [1] it follows that the family

G = X
↑
separates points from compact convex subsets of X. Moreover it is easy that the family G is

compatible with F on convex subsets of X and the family G exposes faces of compact convex sets.

Hence the assumptions of Theorem 1.14 are satisfied and from this theorem we obtain a classical

version of Krein-Milman Theorem ([2,3]) i.e.

Theorem 1.16 (Krein-Milman theorem). Let X be a locally convex topological vector space and

let A be a compact convex subset of X. Then A is equal to the closed convex envelope of the set of

its extreme points. Symbolically,

A = conv(Ext(A)).
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ABSTRACT

Given a finite group G, there exist Klein surfaces, bordered

X and unbordered non-orientable S, such that G acts as an

automorphism group of X and of S. The minimum alge-

braic genus ω(G) of the surfaces X is called the real genus of

G, and the minimal topological genus ε̃(G) of the surfaces

S is the symmetric crosscap number of G. In this work we

study the relation between the real genus and the symmetric

crosscap number of a group G and how both parameters can

be compared. For instance, we see that there exist groups G

such that the di!erence ε̃(G)→ω(G) = t for all even negative

numbers t. In order to get it, we correct some inaccuracies in

previous works, on these parameters for the groups Cm↑Dn

and Dm ↑Dn. On the other hand, for some important fam-

ilies of groups, we prove that ε̃(G) = ω(G) + 1. We use it to

eliminate possible gaps in the symmetric crosscap spectrum,

enforcing the conjecture that 3 is in fact the unique gap.
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.
RESUMEN

Dado un grupo finito G, existen superficies de Klein, con

borde X y sin borde no-orientables S, tales que G actúa

como un grupo de automorfismos de X y de S. El género al-

gebraico mínimo ω(G) de las superficies X se llama el género

real de G, y el género topológico mínimo ε̃(G) de las su-

perficies S es el “symmetric crosscap number” de G, que lla-

maremos género imaginario aunque no es una denominación

estándar. En este trabajo, estudiamos la relación entre el

género real y el imaginario de un grupo G y cómo se pueden

comparar ambos parámetros. Por ejemplo, vemos que exis-

ten grupos G tales que la diferencia ε̃(G) → ω(G) = t para

todos los números negativos pares t. Para ello, corregimos al-

gunas inexactitudes en trabajos previos sobre estos parámet-

ros para los grupos Cm ↑ Dn y Dm ↑ Dn. Por otra parte,

para algunas familias importantes de grupos, demostramos

que ε̃(G) = ω(G) + 1. Esto lo utilizamos para eliminar posi-

bles huecos en el espectro simétrico imaginario, dando evi-

dencia adicional a la conjetura de que 3 es, de hecho, el único

hueco posible.

Keywords and Phrases: Real genus, symmetric crosscap number, Klein surfaces.
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1 Introduction and preliminaries

A Klein surface X is a compact surface endowed with a dianalytic structure. Klein surfaces may

be seen as a generalization of Riemann surfaces, including bordered and non-orientable surfaces.

An orientable unbordered Klein surface is a Riemann surface.

In the study of Klein surfaces and their automorphism groups, the non-Euclidean crystallographic

groups (NEC groups, in short) play an essential role. An NEC group ! is a discrete subgroup of

the group of isometries of the hyperbolic plane H with compact quotient H/!.

For the convenience of the reader we give a minimum of preliminaries about NEC groups and Klein

surfaces (for details see [4]).

An NEC group ! is a discrete subgroup of isometries of the hyperbolic plane H, including orien-

tation reversing elements, with compact quotient X = H/!. Every NEC group ! has associated

the following symbol called signature:

ω(!) = (g,±, [m1, . . . ,mr], {(ni,1, . . . , ni,si), i = 1, . . . , k}), (1.1)

where the numbers g, r, k and si are non-negative integers, mi, ni,j are integers such that mi, ni,j →

2. The number g is the topological genus of X, and the sign determines the orientability of X.

The numbers mi are the proper periods corresponding to cone points in X. The

brackets (ni,1, . . . , ni,si) are the period-cycles. The number k of period-cycles is equal to the number

of boundary components of X. Numbers ni,j are the periods of the period-cycle (ni,1, . . . , ni,si) also

called link-periods, corresponding to corner points in the boundary of X. The number p = εg+k↑1,

where ε = 2 or 1 according to the sign be “+” or “↑”, respectively, is called the algebraic genus of

X.

An NEC group with the above signature is generated by xi, (i = 1, . . . , r); ei, (i = 1, . . . , k); ci,j ,

(i = 1, . . . , k; j = 0, . . . , si); and ai, bi (i = 1, . . . , g) if ω has sign “+” or di (i = 1, . . . , g) if ω has

sign “↑”, and relations

xmi
i = 1; i = 1, . . . , r;

c2i,j→1 = c2i,j = (ci,j→1ci,j)ni,j = 1; i = 1, . . . , k; j = 1, . . . , si;

e→1
i ci,0eici,si = 1; i = 1, . . . , k;
∏r

i=1 xi
∏k

i=1 ei
∏g

i=1(aibia
→1
i b→1

i ) = 1; (if ω has sign “ + ”);
∏r

i=1 xi
∏k

i=1 ei
∏g

i=1 d
2
i = 1; (if ω has sign “↑ ”).

The isometries xi are elliptic, ei, ai, bi are hyperbolic, ci are reflections and di are glide reflections.

They are called canonical generators.
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Every NEC group ! with signature (1.1) has associated a fundamental region whose area µ(!),

called the area of the group, is

µ(!) = 2ϑ



εg + k ↑ 2 +
r∑

i=1

(
1↑

1

mi

)
+

1

2

k∑

i=1

si∑

j=1

(
1↑

1

ni,j

)

 ,

with ε = 2 or 1 according to the sign being “+” or “↑”. The group given by the presentation above

can be represented as an NEC group with signature (1.1) if and only if its area is greater than 0.

We denote by |!| the expression µ(!)/2ϑ and call it the reduced area of !.

If ! is a subgroup of an NEC group !↑ of finite index N , then ! is also an NEC group and the

following Riemann-Hurwitz formula holds:

µ(!) = Nµ(!↑).

If the group has neither proper periods nor link-periods, it is called a surface group and has the

following signature

ω(!) = (g,±, [↑], {(↑), k. . ., (↑)}),

For a Klein surface X with p → 2, there exists a NEC surface group ! such that X = H/!. A

finite group G of order N is an automorphism group of X = H/! if and only if there exists an

NEC group ” such that ! is a normal subgroup of ” with index N and G = ”/!. Since ! is a

surface group, it does not contain elements of finite order other than reflections. Therefore, there

must be an epimorphism ϖ : ” ↓ G with kernel !, such that the relations defining ” are preserved

by ϖ.

Given a finite group G there exist bordered Klein surfaces X such that G acts as an automorphism

group of X, and also unbordered non-orientable surfaces S, such that G acts on S. The minimum

algebraic genus of the surfaces X is called the real genus of G, ϱ(G), and the minimal topological

genus of the surfaces S is the symmetric crosscap number of G, ω̃(G). In order to obtain these

parameters we need to study NEC groups ” with minimal area such that G = ”/!.

An extensive study has been made on both parameters ϱ(G) and ω̃(G). The numbers which are

ϱ(G) for some G form the real genus spectrum, whilst those which are ω̃(G) form the symmetric

crosscap spectrum. None of these spectra is still completely known, and the relationship between

both parameters is a tool for that study. When an integer does not belong to either spectrum, it

is called a gap of that spectrum.

Regarding the real genus, there is no group with real genus 2, 12 or 24 [14]. No other gap was

currently known to exist, but in the very recent paper [6], it is proved that 72 is also a gap.

Therefore, the first number for which it is not known whether it belongs to the spectrum is 84.
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For the symmetric crosscap spectrum, the present knowledge is based on [1]. May proved that

there does not exist any group G such that ω̃(G) = 3. For N > 3, if N is a gap of the symmetric

crosscap spectrum then N lies in four congruence classes mod 120, namely 3, 51, 75 and 99, and

it satisfies additional conditions. The present result will be given below in Theorem 3.4. However,

many numbers satisfying those necessary conditions actually belong to the spectrum. In fact, no

gap apart from 3 is currently known.

2 Results on real genus and symmetric crosscap number

The goal of the present work is to compare both parameters ϱ(G) and ω̃(G). It is worth noting

that very often

ω̃(G) = ϱ(G) + 1. (2.1)

This property holds for important classes of groups, but it is not true in general. When it holds

for a group G, we say that G satisfies Property (2.1).

2.1 Groups of odd order

First, the authors proved in [1] that the Property (2.1) holds for all groups of odd order.

Theorem 2.1 ([1, Corollary 1]). If G has odd order, then ω̃(G) = ϱ(G) + 1.

2.2 Abelian groups

Property (2.1) is also true for Abelian groups. In [18] J. Rodríguez mentions in Remark 6.2 that

“the crosscap number of an Abelian group relates with its real genus straightforwardly: ω̃(G) =

ϱ(G) + 1”. However, as far as we know this result has not appeared anywhere, and we are now

providing its proof, taking into account that both parameters are already known in the case of

Abelian groups, obtained by McCullough and Gromadzki in [16] and [11] respectively.

First, we quote the result on real genus.

Theorem 2.2 ([16]). Let G be a non-cyclic Abelian group of order N , G ↔= C2 ↗ C2 ↗ C2,

C2 ↗ C2k (k → 1). Write

G = Ce1 ↗ · · ·↗ Cem ↗ Cd1 ↗ · · ·↗ Cdl ↗ Cn
2 ,

ei multiple of 4, dj odd, ei+1|ei, d1|em, dj+1|dj. Then ϱ(G) is

A) 1 +N
(
n+

∑m
i=1

(
1↑ 1

ei

)
+
∑l

j=1

(
1↑ 1

dj

)
↑ 1

)
, n < m.



664 A. Bacelo, J. J. Etayo & E. Martínez CUBO
27, 3 (2025)

B) 1 +N
(
m+ t+

(
1↑ 1

2dt

)
+
∑l

j=t+1

(
1↑ 1

dj

)
↑ 2

)
, if m < n ↘ m+ 2l↑ 1, n↑m = 2t↑ 1.

C) 1 +N
(
m+ t+

∑l
j=t+1

(
1↑ 1

dj

)
↑ 1

)
, if m ↘ n ↘ m+ 2l, n↑m = 2t.

D) 1 + N(3m+2l+n→3)
4 , if n → m+ 2l + 1.

On the other hand, for the symmetric crosscap number the result is the following

Theorem 2.3 ([11]). Let G be a non-cyclic Abelian group of order N , G ↔= C2 ↗ C2 ↗ C2,

C2 ↗ C2k (k → 1). If G has non-cyclic 2-Sylow subgroup, write G = Cm1 ↗ · · ·↗ Cmk ↗ Cs
2 , where

m1, . . . ,ml are odd, ml+1 . . . ,mk are even, mi|mi+1, and s is as large as possible. Then ω̃(G) is

i) 2 +N
(
k ↑ 1↑

∑k→s
i=1

1
mi

)
, if s↑ (k ↑ l) ↘ 0.

ii) 2 +N(k ↑ 1), if s↑ (k ↑ l) = 2l.

iii) 2 +N
(
k ↑ 1 + s→k→l+1

4

)
, if s↑ (k ↑ l) > 2l.

iv) 2 +N
(
k ↑ 1↑

∑(k+l→s)/2
i=1

1
mi

)
, if 0 < s↑ (k ↑ l) < 2l, s↑ (k ↑ l) even.

v) 2 +N
(
k ↑ 1↑ 1

2m(k+l→s+1)/2
↑
∑(k+l→s→1)/2

i=1
1
mi

)
, if 0 < s↑ (k ↑ l) < 2l, s↑ (k ↑ l) odd.

And if N is odd, or G has cyclic 2-Sylow subgroup write G = Cm1 ↗ · · ·↗Cmr , mi|mi+1 and then

ω̃(G) is

vi) 2 +N
(
↑1 +

∑r
i=1

(
1↑ 1

mi

))
.

Since in both Theorems the group G has been described in a di!erent way, it is not too easy to

compare ϱ(G) and ω̃(G). We shall do it now, by proving

Theorem 2.4. Let G be a non-cyclic Abelian group G ↔= C2 ↗ C2 ↗ C2, C2 ↗ C2k (k → 1). Then

ω̃(G) = ϱ(G) + 1.

Proof. We start with each of the four possibilities for ϱ(G), namely A, B, C and D.

The translation of the parameters between both Theorems is as follows. In [16], m is the number

of factors that are multiples of 4, l is the number of odd factors and n is the number of factors 2.

Instead, in [11], k ↑ l is the number of factors multiple of 4, l is the number of odd factors and s

is the number of factors 2.

We start with case A. Then n < m in [16] is equivalent to s < k↑l, what implies that s↑(k↑l) < 0,

and we are in case i) in [11]. Hence

ϱ(G) = 1 +N



n+
l∑

i=1

(
1↑

1

di

)
+

m∑

j=n+1

(
1↑

1

ej

)
↑ 1




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translates to

ϱ (G) = 1 +N



s+ l + (k ↑ l ↑ s)↑ 1↑
l∑

i=1

1

di
↑

m+l∑

j=l+s+1

1

ej





= 1 +N



k ↑ 1↑
l∑

i=1

1

di
↑

m+l∑

j=l+s+1

1

ej



 = 1 +N

(
k ↑ 1↑

k→s∑

i=1

1

mi

)
= ω̃ (G)↑ 1.

Now, we consider the case B. Then m < n ↘ m + 2l ↑ 1, n ↑ m = 2t ↑ 1 odd. This implies

k↑ l < s ↘ k↑ l+2l↑ 1 = k+ l↑ 1, s↑ (k↑ l) odd, and so 0 < s↑ (k↑ l) ↘ 2l↑ 1 with s↑ (k↑ l)

odd. We are in case v) in [11]. Then

ϱ (G) = 1 +N

(
m+ t+

(
1↑

1

2dt

)
+

l∑

i=t+1

(
1↑

1

di

)
↑ 2

)

translates to

ω (G) = 1 +N



k → l +
s→ k + l + 1

2
+

(
1→ 1

2d(s→k+l+1)/2

)
+

l∑

i=(s→k+l+3)/2

(
1→ 1

di

)
→ 2





= 1 +N



k → l +
s→ k + l + 1

2
+ 1 + l → s→ k + l + 3

2
+ 1→ 2→ 1

2d(s→k+l+1)/2
→

l∑

i=(s→k+l+3)/2

1
di





= 1 +N



k → l → 1
2m(l→s+k+1)/2

→
(l→s+k→1)/2∑

i=1

1
mi



 = ε̃ (G)→ 1.

We move to case D, where n → m+2l+1. This implies s → (k↑l)+2l+1, and so s↑(k↑l) → 2l+1.

Hence s↑ (k ↑ l) > 2l, and this corresponds to the case iii). In this case

ϱ(G) =
1 +N(3m+ 2l + n↑ 3)

4

corresponds to

ϱ(G) = 1 +N
3k ↑ 3l + 2l + s↑ 3

4
= 1 +N

3k ↑ l + s↑ 3

4

= 1 +N

(
k ↑ 1 +

s↑ k ↑ l + 1

4

)
= ω̃(G)↑ 1.

Finally, we must deal with the case C, where m ↘ n ↘ m + 2l, n ↑m = 2t is even. This means

that k ↑ l ↘ s ↘ k + l, with s↑ (k ↑ l) = 2t. This possibility splits into three subcases.

If s↑ (k ↑ l) = 0, we are in case i), and

ϱ(G) = 1 +N

(
m+ t+

l∑

i=t+1

(
1↑

1

di

))
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means that

ϱ(G) = 1 +N

(
k ↑ l + l ↑

l∑

i=t+1

1

di
↑ 1

)
= 1 +N

(
k ↑ 1↑

k→s∑

i=1

1

mi

)
= ω̃(G)↑ 1.

Now, if s↑(k↑l) = 2l, we are in case ii) and s↑(k↑l) = 2l implies t = (n↑m)/2 = (s↑(k↑l))/2 = l,

and so

ϱ(G) = 1 +N

(
m+ t+

l∑

i=t+1

(
1↑

1

di

))
= 1 +N(k ↑ l + l ↑ 1) = 1 +N(k ↑ 1) = ω̃(G)↑ 1.

For the remaining values of s↑ (k ↑ l) we go to case iv). Then

ϱ(G) = 1 +N

(
m+ t↑

l∑

i=t+1

(
1↑

1

di

)
↑ 1

)

= 1 +N

(
m+ t+ (l ↑ t)↑ 1↑

l∑

i=t+1

1

di

)

= 1 +N

(
m+ l ↑ 1↑

l∑

i=t+1

1

di

)
.

Since l ↑ t = l ↑ (s↑ (k ↑ l))/2 = (k ↑ s+ l)/2, we have

ϱ(G) = 1 +N



k ↑ 1↑

(k→s+l)/2∑

i=1

1

mi



 = ω̃(G)↑ 1.

Remark 2.5. Theorem 2.4 enables a comparison of the results from both papers [2] and [15]. Call

S
c
ab the set of numbers in the symmetric crosscap spectrum which are ω̃(A) for some Abelian group

A, and S
r
ab the set of numbers in the real genus spectrum which are ϱ(A) for some Abelian group A.

The set Sc
ab was studied in [2], and the set Sr

ab in [15]. Since we have proved that ω̃(A) = ϱ(A)+1

for each Abelian group A, the results in both papers imply each other. For instance, if n is even,

then n ≃ S
c
ab if and only if n ⇐ 2 (mod 4) (Theorem 2 of [2]), and if n is odd, then n ≃ S

r
ab if and

only if n ⇐ 1 (mod 4) (Theorem 1 in [15]). In the same way, all partial results on the structure of

each of both sets obtained in those two papers can be translated in terms of the other, by using the

fundamental equality ω̃(A) = ϱ(A) + 1.

2.3 Groups Cn ↗DC3 and Cn ↗ A4

Theorems 2.1 and 2.4 suggest that Property (2.1) holds often. Also other families of groups satisfy

it. Consider the groups of order 12n, Cn↗DC3 and Cn↗A4. The real genus and symmetric crosscap

number of these groups were obtained in [5] and [9], respectively, and they are presented below
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Table 1

n ϱ(Cn ↗DC3) ω̃(Cn ↗DC3)

2 13 14

3 16 17

6 43 44

odd, (n, 6) = 1 8n↑ 2 8n↑ 1

odd, 3 | n, 9 ⊋ n 8n↑ 8 8n↑ 7

odd, 9 | n 8n↑ 2 8n↑ 1

even, 4 ⊋ n 9n↑ 11 9n↑ 10

even, 4 | n 8n+ 1 8n+ 2

Hence, for all n, ω̃(Cn ↗DC3) = ϱ(Cn ↗DC3) + 1.

For the groups Cn↗A4 with n divisible by 3 we have ϱ(Cn↗A4) = 8n↑11 and ω̃(Cn↗A4) = 8n↑10.

So there exist families of non-Abelian groups of even order satisfying Property (2.1).

2.4 Groups Cm ↗Dn

Now, we consider the groups Cm ↗ Dn. Their real genus and symmetric crosscap number were

obtained respectively in [10] and [7]. However, it is necessary to correct a mistake in [7]. In

Proposition 2.3 of that paper, it was stated that ω̃(Cm↗Dn) = 2+n(m↑2) if m is a multiple of 4

and n is odd. The proof included the claim that it is not possible to obtain a suitable epimorphism

ϖ : ” ↓ Cm ↗Dn for a group ” with signature (0,+, [↑], {(ε), (↑)}) for an ε → 2. As we will see

this is wrong, and the genus of a surface on which Cm ↗Dn acts can be lowered for those values

of m and n if 2n < m, as follows.

Proposition 2.6. Let m be a multiple of 4, n odd, and 2n < m. Then ω̃(Cm↗Dn) = 2+m(n↑1).

Proof. Let X be a generator of Cm, A and B generators of Dn of order 2, and ” be an NEC group

with signature (0,+, [↑], {(n), (↑)}). We define a homomorphism ϖ from ” to Cm ↗Dn by

ϖ(e1) = XAB, ϖ(e2) = X→1BA, ϖ(c1,0) = A, ϖ(c1,1) = BAB, ϖ(c2,0) = Xm/2.

Then, ϖ(c1,1c1,0) = (BA)2, and so ϖ((c1,1c1,0)(n+1)/2) = BA. Now, ϖ(e1(c1,1c1,0)(n+1)/2) = X; and

so, ϖ(c2,0(e1(c1,1c1,0)(n+1)/2)m/2c1,0) = Xm/2Xm/2A = A. Finally, since BA and A are images of

orientation-preserving elements of ”, so is B.

The reduced area of ” is 1
2 (1↑

1
n ) =

n→1
2n , and so ω̃(Cm↗Dn) ↘ 2+ n→1

2n 2mn = 2+m(n↑1). We are

going to see that this bound cannot be lowered. All possible signatures for the group ” were already

studied in the proof of Proposition 2.3 of [7], excepting those of the form (0,+, [↑], {(ε), (↑)}).
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We complete the work now, considering these signatures. Therefore, suppose that there exists

an epimorphism ϖ from an NEC group ” with signature (0,+, [↑], {(ε), (↑)}) for an ε → 2 onto

Cm ↗ Dn, and call ς the composition of ϖ with the projection of Cm ↗ Dn onto Dn. Since c1,0

has order 2 and n is odd, necessarily ς(c1,0) = (AB)tA for a certain t. Then, ς(e1) can have the

form (AB)r or (AB)rA. In any case those two images must generate Dn. If ς(e1) = (AB)r, then

ς(e1c1,0) = (AB)r+tA has order 2. So, in order to generate Dn, (AB)r must have order n. Besides,

ς(c1,1) = (BA)r(AB)tA(AB)r = (AB)t→2rA, and so, ς(c1,0c1,1) = (AB)tA(AB)t→2rA = (AB)2r

has also order n. Thus, ε = n. On the other hand, if ς(e1) = (AB)rA, then ς(e1c1,0) =

(AB)r→t, which must have order n. Since ς(c1,1) = (AB)rA(AB)tA(AB)rA = (AB)2t→tA, then

ς(c1,0c1,1) = (AB)tA(AB)2r→tA = (AB)2t→2r. Now, both ς(e1) and ς(c1,0) have order 2, and so

ς(e1c1,0) = (AB)r→t must have order n. But then also ς(c1,0c1,1) has order n, and again ε = n.

We have finished, and the inequality 2+m(n↑ 1) < 2+n(m↑ 2) holds if and only if 2n < m.

By results in [10] and [7], and Proposition 2.6, we have the following Theorem where for an abuse

of notation we write ϱ and ω̃ for ϱ(Cm ↗Dn) and ω̃(Cm ↗Dn).

Theorem 2.7. The real genus and the symmetric crosscap number of the groups Cm↗Dn are the

following

m odd, n even, n < 2m ϱ = 1 +m(n↑ 2) ω̃ = 2 +m(n↑ 2)

m odd, n even, n → 2m ϱ = 1 + n(m↑ 1) ω̃ = 2 + n(m↑ 1)

m, n odd, m > n ϱ = 1 +m(n↑ 1) ω̃ = 2 +mn↑m↑ n

m, n odd, m < n ϱ = 1 + n(m↑ 1) ω̃ = 2 +mn↑m↑ n

m = n odd ϱ = 1 +m(m↑ 2) ω̃ = 2 +m(m↑ 2)

m, n even ϱ = 1 +mn ω̃ = 2 +mn

m a multiple of 4, n odd, m < 2n ϱ = 1 + n(m↑ 2) ω̃ = 2 + n(m↑ 2)

m a multiple of 4, n odd, m > 2n ϱ = 1 +m(n↑ 1) ω̃ = 2 +m(n↑ 1)

Corollary 2.8. Observe that ω̃(Cm ↗Dn) = ϱ(Cm ↗Dn) + 1, except when m and n are di!erent

odd numbers. In such a case, for m > n, ω̃(Cm ↗ Dn) = ϱ(Cm ↗ Dn) + 1 ↑ n; and if n > m,

ω̃(Cm↗Dn) = ϱ(Cm↗Dn)+1↑m. Both results provide all even negative numbers for the di!erence

ω̃(G)↑ ϱ(G).

2.5 Groups Dm ↗Dn

Now we shall consider the groups Dm ↗ Dn. Their symmetric crosscap number was obtained in

[7], and the real genus in [5]. Observe that the real genus for m and n odd was calculated in

Proposition 2(a) of [5], and included with a misprint in Theorem 3 there. The result should be

read as follows: If m and n are odd, n < m, then ϱ(Dm ↗Dn) = 1 +m(n↑ 1).
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In turn, the mistake stated above on ω̃(Cm↗Dn) produced a couple of wrong results on ω̃(Dm↗Dn)

which we must correct here. For m odd and n even, Proposition 8 in [7] states that ω̃(Dm↗Dn) =

m(n↑ 2) + 2. This is correct for n ↘ 2m, but if 2m < n, then the symmetric crosscap number of

Dm ↗Dn is in fact smaller, as given by the forthcoming two results.

Proposition 2.9. Let m be an odd number, n an even number with n/2 odd and 2m < n. Then,

ω̃(Dm ↗Dn) = 2 + (m↑ 1)n.

Proof. Let A and B be generators of Dm of order 2, and C and D generators of Dn of order 2.

Take ” to be an NEC group with signature (0,+, [↑], {(2m, 2, 2, 2)}), and define a homomorphism

ϖ from ” to Dm ↗Dn by

ϖ(c1,0) = A, ϖ(c1,1) = BD, ϖ(c1,2) = B(CD)n/2, ϖ(c1,3) = (CD)n/2C, ϖ(c1,4) = A.

Then, ϖ(c1,0c1,1) = ABD, and so, ϖ((c1,0c1,1)m) = D, ϖ((c1,0c1,1)m+1) = AB. Now, ϖ(c1,1c1,3) =

B(DC)n/2+1. Since (DC)n/2+1 has order n/2 which is odd, ϖ((c1,1c1,3)n/2) = B. And so,

ϖ((c1,0c1,1)
m+1(c1,1c1,3)

n/2) = A.

Finally, ϖ(c1,2c1,3) = BC, and so, ϖ((c1,1c1,3)n/2c1,2c1,3) = C. So Dm ↗ Dn is generated by the

images of orientation-preserving elements of ”.

The reduced area of ” is 1
4 ↑

1
4m , and so ω̃(Dm ↗Dn) ↘ 2 + 4mn

(
1
4 ↑

1
4m

)
= 2 + (m↑ 1)n.

We now prove that this is in fact ω̃(Dm ↗Dn) by comparing with ω̃(Cm ↗Dn) as obtained in [7].

By Proposition 2.2.i) of that paper, for m odd, n even, with 2m < n, ω̃(Cm ↗Dn) = 2+n(m↑ 1).

Since ω̃(Dm ↗Dn) → ω̃(Cm ↗Dn), we have finished.

Proposition 2.10. Let m be an odd number, n a multiple of 4, and 2m < n. Then, ω̃(Dm↗Dn) =

2 + (m↑ 1)n.

Proof. Let A and B generators of Dm, and C and D generators of Dn, all of them of order 2. Take

” an NEC group of signature (0,+, [↑], {(2m, 2, 2, 2)}), and define a homomorphism ϖ from ” to

Dm ↗Dn by

ϖ(c1,0) = A, ϖ(c1,1) = BD, ϖ(c1,2) = (CD)n/2, ϖ(c1,3) = C, ϖ(c1,4) = A.

Then, ϖ(c1,0c1,1) = ABD. Since m is odd, ϖ((c1,0c1,1)m) = D, and ϖ((c1,0c1,1)m+1) = AB. Now,

ϖ(c1,3(c1,0c1,1)m) = CD, and so, ϖ((c1,3(c1,0c1,1)m)n/2) = (CD)n/2. So,

ϖ(c1,0c1,2(c1,3(c1,0c1,1)
m)n/2) = A and ϖ(c1,3c1,2(c1,3(c1,0c1,1)

m)n/2) = C.
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Finally, ϖ(c1,0c1,2(c1,3(c1,0c1,1)m)n/2(c1,0c1,1)m+1) = B. So, Dm ↗Dn is generated by the images

of orientation-preserving elements of ”.

The reduced area of ” is 1
4 ↑

1
4m , and so ω̃(Dm ↗ Dn) ↘ 2 + 4mn

(
1
4 ↑

1
4m

)
= 2 + (m ↑ 1)n =

ω̃(Cm ↗Dn). The proof is finished.

Hence, from [10] and [8] along with Propositions 2.8 and 2.9, we have the following Theorem.

Theorem 2.11. The real genus and symmetric crosscap number of the groups Dm ↗Dn are the

following

m odd, n even, n < 2m ϱ = 1 +m(n↑ 2) ω̃ = 2 +m(n↑ 2)

m odd, n even, n → 2m ϱ = 1 + n(m↑ 1) ω̃ = 2 + n(m↑ 1)

m, n odd, m > n ϱ = 1 +m(n↑ 1) ω̃ = 1 + (m↑ 1)(n↑ 1)

m = n odd ϱ = 1 +m(m↑ 2) ω̃ = 2 +m(m↑ 2)

m, n even ϱ = 1 +mn ω̃ = 2 +mn

Remark 2.12. Thus, the groups Dm ↗ Dn satisfy Property (2.1), except when m and n are

di!erent odd numbers. In that case, ω̃(Dm ↗ Dn) ↑ ϱ(Dm ↗ Dn) = 1 ↑ n, and so this di!erence

provides again, as in Corollary 2.8, all even negative numbers.

3 Gaps in the symmetric crosscap spectrum

Our next results are inspired by [14, Theorem 6]. In that result, C. L. May studied the groups

Cn ↗Gpq.

Let p < q be two odd primes such that p | q ↑ 1. Then there exists a non-Abelian group of order

pq, denoted by Gpq. This group admits a presentation given by generators S and T , and relations

Sq = T p = 1, T→1ST = Sr, where rp ⇐ 1(mod q), r ↔⇐ 1(mod q). Then ST has order p, and so

X = T , Y = ST , are two generators of Gpq of order p. It follows that ϱ(Gpq) = q(p ↑ 2) + 1,

[13, Theorem 4], and, applying Theorem 2.1, we have:

Theorem 3.1. Let p < q be two odd primes such that p | q ↑ 1. Then ω̃(Gpq) = q(p↑ 2) + 2.

Now consider the groups G = Cn ↗Gpq. We are going to study the real genus and the symmetric

crosscap number of G. In the case when n is coprime with pq, the real genus of G is given by the

following theorem of May:

Theorem 3.2 ([14], Theorem 6). Let p < q be two odd primes such that p | q↑1, and n an integer

coprime with pq. Then ϱ(Cn ↗Gpq) = 1 + q(pn↑ n↑ 1).

Now we turn to the symmetric crosscap number of these groups.
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Theorem 3.3. Let p < q be two odd primes such that p | q ↑ 1, and n an integer coprime with

pq. Then ω̃(Cn ↗Gpq) = 2 + q(pn↑ n↑ 1).

Proof. If n is odd, then Cn ↗Gpq has odd order, and we apply Theorem 2.1 and Theorem 3.2.

Now, we show that these groups satisfy Property (2.1) also in the case when n is even. Let us

take X and Y to be the generators of Gpq of order p as above, and denote by A the generator of

Cn. Consider an NEC group ! with signature (0,+, [p, np], {(↑)}), and define the epimorphism ϖ

from ! onto Cn ↗ Gpq by ϖ(x1) = X, ϖ(x2) = AY , ϖ(e1) = (AXY )→1, ϖ(c1,0) = An/2. Since n

and p are coprime, there exist integers ε, φ, such that εn + φp = 1. Then, ϖ(xωn
2 ) = (AY )ωn =

Y ωn = Y 1→εp = Y , ϖ(xεp
2 ) = (AY )εp = Aεp = A1→ωn = A. Besides, ϖ

(
xεpn/2
2 c1,0

)
= 1, and so

the kernel contains an orientation reversing element. So, ω̃(Cn ↗Gpq) ↘ 2 + q(pn↑ n↑ 1).

Now we need to see that the area of ! is minimal. The only possibility to reduce the area is to

substitute n with one of its factors, say k, and take signature

(0,+, [p, kp], {(↑)}) or (1,↑, [p, kp], {↑}).

Then the image of x2 must be An/kY , and either the image of c1,0 is An/2 or the image of d1 is

A(n→n/k)/2(XY )(p→1)/2.

In the first case it is not possible to generate A as an image of an orientation preserving element,

because the image of any word with an even number of copies of c1,0 will have, as projection onto

Cn, a power of An/k. In the second case, the exponent n/k must be even, in order to get that the

image of d21x1x2 be 1. But then also the orientation preserving elements contain an even number

of copies of d1, and so only powers of A with even exponent can be obtained. Therefore, also in

this case the element A is not the image of an orientation preserving element.

Thus the area of ! is minimal, and we have that ω̃(Cn↗Gpq) = 2+q(pn↑n↑1), and these groups

satisfy Property (2.1).

We are now going to use the above results to eliminate many possible gaps in the symmetric

crosscap spectrum. This problem was studied in [1], and the main result was the following:

Theorem 3.4 ([1], Theorem 2). Let N > 3 be a gap of the symmetric crosscap spectrum. Then

N ⇐ 3, 51, 75 or 99 (mod 120), N ↔⇐ 651 (mod 660), N ↑ 2 is not a square, and N ↑ 2 has some

prime factor p ⇐ 5 (mod 6).

These conditions, necessary for a number to be a gap, are not su"cient. For N < 10000, they left

sixty-seven numbers which were possible gaps. Three of them are in fact the symmetric crosscap

number of a group, thanks to Theorems 2.3 and 3.1. We show them in the Table 2, where we

indicate N , its class (mod 120), the prime factors of N ↑ 2, and the group G such that ω̃(G) = N .
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Table 2

N N ⇐ (mod 120) N ↑ 2 G, ω̃(G) = N

1443 3 1441 = 11 · 131 G13·131

4875 15 4873 = 11 · 443 G13·443

6051 51 6049 = 23 · 263 C23 ↗ C276

This leaves sixty-four numbers which are candidates for being a gap, but forty of them are actually

ω̃(Cn↗Gpq) for some n, p, q as obtained in Theorem 3.3. We display the respective data in Table 3.

Table 3

N N ⇐ (mod 120) N ↑ 2 G, ω̃(G) = N

915 75 913 = 11 · 83 C21 ↗G5·11

1179 99 1177 = 11 · 107 C27 ↗G5·11

1539 99 1537 = 29 · 53 C9 ↗G7·29

1635 75 1633 = 23 · 71 C6 ↗G5·71

1923 3 1921 = 17 · 113 C3 ↗G7·113

2235 75 2233 = 7 · 11 · 29 C13 ↗G7·29

2499 99 2497 = 11 · 227 C57 ↗G5·11

2739 99 2737 = 7 · 17 · 23 C12 ↗G11·23

2763 3 2761 = 11 · 251 C3 ↗G5·251

3339 99 3337 = 47 · 71 C8 ↗G7·71

3555 75 3553 = 11 · 17 · 19 C81 ↗G5·11

3819 99 3817 = 11 · 347 C87 ↗G5·11

4083 3 4081 = 7 · 11 · 53 C93 ↗G5·11

4323 3 4321 = 29 · 149 C25 ↗G7·29

4395 75 4393 = 23 · 191 C6 ↗G5·191

4899 99 4897 = 59 · 83 C3 ↗G29·59

5139 99 5137 = 11 · 467 C117 ↗G5·11

5403 3 5401 = 11 · 491 C3 ↗G5·491

5499 99 5497 = 23 · 239 C4 ↗G7·239

5595 75 5593 = 7 · 17 · 47 C400 ↗G3·7
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N N ⇐ (mod 120) N ↑ 2 G, ω̃(G) = N

5715 75 5713 = 29 · 197 C5 ↗G7·197

6195 75 6193 = 11 · 563 C141 ↗G5·11

6411 51 6409 = 13 · 17 · 29 C37 ↗G7·29

6459 99 6457 = 11 · 587 C147 ↗G5·11

6723 3 6721 = 11 · 13 · 47 C259 ↗G3·13

7155 75 7153 = 23 · 311 C6 ↗G5·311

7515 75 7513 = 11 · 683 C171 ↗G5·11

7635 75 7633 = 17 · 449 C3 ↗G7·449

7731 51 7729 = 59 · 131 C5 ↗G13·131

7779 99 7777 = 7 · 11 · 101 C177 ↗G5·11

7803 3 7801 = 29 · 269 C45 ↗G7·29

8043 3 8041 = 11 · 17 · 43 C94 ↗G3·43

8259 99 8257 = 23 · 359 C36 ↗G11·23

8451 51 8449 = 7 · 17 · 71 C20 ↗G7·71

8835 75 8833 = 112 · 73 C61 ↗G3·73

8979 99 8977 = 47 · 191 C12 ↗G5·191

9099 99 9097 = 11 · 827 C207 ↗G5·11

9195 75 9193 = 29 · 317 C53 ↗G7·29

9363 3 9361 = 11 · 23 · 37 C127 ↗G3·37

9915 75 9913 = 23 · 431 C6 ↗G5·431

According to above results only twenty-four numbers N remain as potential gaps in the symmetric

crosscap spectrum, with 3 < N < 10000. They are shown in Table 4.

These results reinforce the conjecture that there is no other gap besides 3 in the spectrum of the

symmetric crosscap number.

Now, we are going to study the particular case N = 699, the smallest number for which it is

unknown whether it represents a gap in the spectrum. This will demonstrate how to use the

relationship between the real genus and symmetric crosscap number, and how Property (2.1) is

useful when it holds. Unfortunately, this is not the case for this value of N and the group G

already known to satisfy ϱ(G) = N ↑ 1.



674 A. Bacelo, J. J. Etayo & E. Martínez CUBO
27, 3 (2025)

Table 4: Table 4

N N ⇐ (mod 120) N ↑ 2

699 99 697 = 17 · 41

1083 3 1081 = 23 · 47

1515 75 1513 = 17 · 89

2331 51 2329 = 17 · 137

3651 51 3649 = 41 · 89

3843 3 3841 = 23 · 167

3963 3 3961 = 17 · 233

4371 51 4369 = 17 · 257

4635 75 4633 = 41 · 113

5019 99 5017 = 29 · 173

5355 75 5353 = 53 · 101

5619 99 5617 = 41 · 137

6003 3 6001 = 17 · 353

6315 75 6313 = 59 · 107

6819 99 6817 = 17 · 401

7851 51 7849 = 47 · 167

7899 99 7897 = 53 · 149

8499 99 8497 = 29 · 293

8811 51 8809 = 23 · 383

8859 99 8857 = 17 · 521

8883 3 8881 = 83 · 107

9171 51 9169 = 53 · 173

9555 75 9553 = 41 · 233

9675 75 9673 = 17 · 569

Since 41 ⇐ 1 (mod 4), there exists a semidirect product C4 ⫅̸ C41, with presentation

⇒X,Y | Y 4 = X41 = 1, XY = Y X9
⇑.

Now call G = C9 ↗ (C4 ⫅̸ C41), and Z a generator of C9. This group G has real genus 698, see

Corollary 6 of [14]. So, if it satisfies Property (2.1), we have a group with symmetric crosscap

number 699. Let us study G. Its elements of order 2 lie in C4 ⫅̸ C41, and they have the form

XkY 2. For, (XkY 2)2 = XkY 2XkY 2 = Y X9kY XkY 2 = Y 2X81kXkY 2 = Y 2X82kY 2 = 1, and it

is clear that no other element has order 2.

Now, consider an NEC group ” with signature (0,+, [2, 36], {(↑)}) and an epimorphism ϖ : ” ↓ G

defined by

ϖ(x1) = XY 2, ϖ(x2) = Y Z, ϖ(e1) = Y X→1Z→1, ϖ(c1,0) = X10Y 2.



CUBO
27, 3 (2025)

Real genus and symmetric crosscap number of a group 675

The kernel of this epimorphism is a non-orientable unbordered surface group, because o(XY 2) = 2,

o(Y Z) = 36, and

ϖ(x1x2e1) = XY 2Y ZY X→1Z→1 = XY 4X→1 = 1,

ϖ(e→1
1 c1,0e1c1,0) = XY 3ZX10Y 2Y X→1Z→1X10Y 2 = XY 3X10Y 3X9Y 2

= Y 3X729X10Y 3X9Y 2 = Y 3X739Y 3X9Y 2 = Y 6X739·729+9Y 2 = Y 8 = 1.

Besides, ϖ(”+) = G, because

ϖ(x9
2) = (Y Z)9 = Y ϖ(x28

2 ) = (Y Z)28 = Z ϖ(x1x
18
2 ) = (XY 2)Y 2 = X

The genus of the corresponding surface is

(9 · 4 · 41)

(
1↑

1

2
+ 1↑

1

36
↑ 1

)
+ 2 = 9 · 4 · 41 ·

17

36
+ 2 = 17 · 41 + 2 = 699.

It only remains to prove that this is the minimum genus of a non-orientable unbordered surface on

which G acts. But this is not the case. Consider an NEC group ! with signature (0,+, [36], {(41)})

and an epimorphism ϖ : ! ↓ G defined by

ϖ(x1) = Y Z, ϖ(e1) = Y →1Z→1, ϖ(c1,0) = XY 2, ϖ(c1,1) = X32Y 2.

Then,

ϖ(e→1
1 c1,0e1c1,1) = Y ZXY 2Y →1Z→1X32Y 2 = Y XY X32Y 2 = Y Y X9X32Y 2 = 1.

Besides, ϖ(!+) = G, because

ϖ(x28
1 ) = Z,

ϖ(x9
1) = Y,

ϖ(c1,0c1,1) = XY 2X32Y 2 = Y 2X81X32Y 2 = Y 2X31Y 2 = Y 4X31·81 = X10.

So that, ϖ((c1,0c1,1)37) = X370 = X. Now, we compute the genus, and it is

(9 ·4 ·41)

((
1↑

1

36

)
+

1

2

(
1↑

1

41

)
↑ 1

)
+2 = 9 ·4 ·41 ·

(
20

41
↑

1

36

)
+2 = 20 ·9 ·4↑41+2 = 681.

Hence ω̃(G) ↘ 681, in fact it equals 681, and so the group G does not satisfy Property (2.1), and

no group with symmetric crosscap number 699 is known yet.
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4 Gaps in the real genus spectrum

All odd numbers belong to the real genus spectrum, since C. L. May proved in [12] that the dicyclic

group DCn of order 4n has real genus 2n+ 1. So the problem of determining the spectrum of the

real genus restricts to even numbers. It is known that 2, 12, 24 and 72 are not the real genus of

any group. In his paper [14], C. L. May obtained families of groups whose real genera cover most

of the even numbers. For instance, for N < 10000, his results leave 328 numbers for which it is

unknown whether they belong to the real genus spectrum. M. Pires has calculated explicitly those

numbers in [17]. Most of them are multiple of 12, but there are also numbers N ⇐ 2, 6, 8 (mod 12).

Unfortunately, the groups G for which we know that ω̃(G) ⇐ 1, 7, 9 (mod 12) do not satisfy

Property (2.1) and cannot be used to eliminate gaps in the real genus spectrum. The situation

is very di!erent for N ⇐ 2 (mod 12). According to [17], the numbers N ⇐ 2 (mod 12) with

N < 10000, which are not yet known to belong to the real genus spectrum are 1082, 3842, 6266,

7850, 8810 and 8882. Let us pay attention to 6266 ⇐ 26 (mod 60). In [1] it was proved that for

each k → 0, a semidirect product Gk = C5 ⫅̸ C8+16k satisfies ω̃(Gk) = 60k + 27. We are going to

show that these groups satisfy Property (2.1), and so ϱ(Gk) = 60k + 26.

Proposition 4.1. Let k → 0, and Gk = C5 ⫅̸ C8+16k, with presentation ⇒A,B | B5 = A8+16k =

1, BA = AB2
⇑. Then, ϱ(Gk) = 60k + 26.

Proof. One can see in [1] or [17] that the element BA2+4k has order 4, and A4+8k is the unique

element of Gk of order 2. Since BA2+4k and A generate Gk, take an NEC group ” with signature

(0,+, [4, 8 + 16k], {(↑)}), and define ϖ : ” ↓ Gk by

ϖ(x1) = BA2+4k, ϖ(x2) = A, ϖ(e1) = A5+12kB→1, ϖ(c1,0) = 1.

Then, ϖ is an epimorphism, the reduced area of ” is |”| = 5+12k
8+16k , and ϱ(Gk) ↘ 1 + o(Gk)|”| =

1+(40+80k) 5+12k
8+16k = 60k+26. In order to see that this is in fact ϱ(Gk), recall that the signature of

the suitable group ” must have a period-cycle with two consecutive link-periods equal to 2, or an

empty period-cycle, see [3]. Since Gk has a unique element of order 2, the first possibility does not

hold. So, ” must have an empty period-cycle, and for getting a smaller reduced area, its signature

must have the form (0,+, [m1,m2], {(↑)}). Then, by using the same arguments as in Proposition 7

of [1], it follows that the minimal area is indeed attained for the signature (0,+, [4, 8+16k], {(↑)}).

Thus, ϱ(Gk) = 60k + 26. Observe that in particular ϱ(G104) = 6266.

On the contrary, for the five other values of N , namely 1082, 3842, 7850, 8810 and 8882, it is not

known whether N+1 belongs to the symmetric crosscap spectrum, see Table 4. Hence, these pairs

(N,N + 1) seem to be a convenient target for identifying possible gaps in both spectra.
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ABSTRACT

We study uncertainty principles for a generalized Fourier

transform Fω, associated with the pair of partial di!erential

operators (D,Dω) originally introduced by Flensted-Jensen

and later extended by Trimèche. This transform, is defined

via the Jacobi kernel and an appropriate weighted measure.

We establish an Lp → Lq
version of Miyachi’s theorem, from

which we deduce Cowling-Price-type results. Additionally,

we establish a local uncertainty principle in the sense of Faris

and provide related numerical estimates.

RESUMEN

Estudiamos principios de incertidumbre para una trans-

formada de Fourier generalizada Fω, asociada al par de

operadores diferenciales parciales (D,Dω) originalmente in-

troducidos por Flensted-Jensen y luego extendidos por

Trimèche. Esta transformada está definida a través del nú-

cleo de Jacobi y una medida pesada apropiada. Establece-

mos una versión Lp→Lq
del teorema de Miyachi, a partir del

cual deducimos resultados de tipo Cowling-Price. Adicional-
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1 Introduction

In the context of harmonic analysis on symmetric spaces, Flensted-Jensen [7] introduced a pair of

partial di"erential operators fundamental to the study of spherical functions on simply connected

semisimple Lie groups:

D =
ω

ωε
and Dn =

ω2

ωy2
+ [(2n→ 1) coth y + tanh y]

ω

ωy
→ 1

cosh2 y

ω2

ωε2
,

where n is a positive integer. Trimèche [16] extended these operators by generalizing the integer
parameter n → 1 to a positive real parameter ϑ > 0, thereby developing an associated harmonic

analysis framework centered around a generalized Fourier transform Fω. For suitable functions,

this transform is given by

Fωf(ϖ, µ) =

∫∫

R+→R
f(y, ε)ϱ↑ε,µ(y, ε) dmω(y, ε),

where ϱ↑ε,µ is constructed from the classical Jacobi kernel ϱω,ε
µ via the formula:

ϱε,µ(y, ε) = eiεϑ(cosh y)εϱω,ε
µ (y)

and the measure

dmω(y, ε) = 22(ω+1)(sinh y)2ω+1 cosh y dy dε

reflects the intrinsic non-Euclidean geometry of the underlying space. Unlike classical Jacobi

transforms, where ϖ is fixed, Fω treats ϖ as a spectral variable. This key innovation makes Fω a

natural and powerful tool for analyzing radial functions on the universal covering group of U(n, 1).

Although significant work has been done to explore various aspects of this transform [7, 9, 12, 16],

its potential within the framework of uncertainty principles remains largely unexplored. This

paper aims to address this gap by establishing several uncertainty principles for Fω(f). We begin

by recalling that classical examples of such principles include decay-based results like Hardy’s

theorem [8], which states that if

|f(x)| ↑ ce↑ax2

and |f̂(y)| ↑ ce↑by2

,

then f = 0 when ab > 1
4 , and f is Gaussian otherwise. Cowling-Price [2] extended this to

Lp→Lq integrability conditions, while Miyachi [13] introduced logarithmic integrability conditions,

requiring

eax
2

f ↓ L1(R) + L↓(R),
∫

R
log+

(
|f̂(y)|eby2

ς

)
dy < ↔,

where log+ x = max(log x, 0). Miyachi extended Hardy’s theorem by replacing pointwise decay

with logarithmic integrability conditions, thereby enlarging the class of admissible functions.
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This work establishes an analogue of Miyachi’s theorem for the generalized Fourier transform Fω,

associated with the operator pair (D,Dω). Our approach, which leverages sharp estimates of the

generalized Jacobi kernel, distinguishes itself from previous techniques. These include methods re-

liant on Bessel operators and the Dunkl setting [1,10], Laguerre polynomials for Riemann-Liouville

operators [10], or Abel transforms and heat kernels in Jacobi analysis [3]. This builds upon several

related studies on uncertainty principles found in [4, 9, 12,14].

Alongside these decay-based principles, a distinct, support-based perspective was developed by

Faris and Price. This approach quantifies uncertainty not through rates of decay, but through the

spatial concentration of a function and the frequency dispersion of its transform. The Faris-Price

[5, 15] expresses this idea via measurable sets: for f ↓ L2(Rn) and a measurable set E ↗ Rn, one

has ∫

E
|f̂(φ)|2dφ ↑ Kω|E| 2ωn ↘|x|ωf↘22, 0 < ϑ <

n

2
.

Such support-based principles provide explicit constants that govern the trade-o" between spatial

localization and spectral dispersion.

A second main contribution is the establishment of a local uncertainty principle of Faris-type for

Fω. The theoretical result guarantees the existence of an optimal constant Kω,a,q(↼ω(F )) but does

not provide its explicit form. To bridge this gap, we employ numerical optimization techniques to

compute this constant, quantifying the precise trade-o" between spatial and spectral localization.

The paper is organized as follows. Section 2 develops the harmonic analysis framework for Fω and

provides the necessary kernel bounds. Section 3 proves Miyachi- and Cowling-Price-type theorems.

Section 4 establishes the Faris-type principle and conducts a numerical investigation to compute

the associated optimal constants.

2 Mathematical framework

2.1 Generalized Jacobi Kernel

Let ϑ be a positive real number and let K = [0,+↔[≃R. Following [16], we consider the di"erential

operators:






D =
ω

ωε
,

Dω =
ω2

ωy2
+ [(2ϑ+ 1) coth y + tanh y]

ω

ωy
→ 1

cosh2 y

ω2

ωε2
+ (ϑ+ 1)2.

(2.1)
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For complex parameters ϖ, µ ↓ C, the system






Du = iϖu,

Dωu = →µ2u,

u(0, 0) = 1, ϖu
ϖy (0, ε) = 0 for ε ↓ R

(2.2)

has a unique solution given by the generalized Jacobi kernel:

ϱε,µ(y, ε) = eiεϑ(cosh y)εϱω,ε
µ (y), (2.3)

where ϱω,ε
µ is the Jacobi kernel [6]:

ϱω,ε
µ (y) = 2F1

(
ϑ+ ϖ+ 1 + iµ

2
,
ϑ+ ϖ+ 1→ iµ

2
;ϑ+ 1;→ sinh2 y

)
, (2.4)

expressed in terms of the Gaussian hypergeometric function 2F1.

For y > 0 and ε ↓ R, the kernel admits the integral representation [16]:

ϱε,µ(y, ε) =
2ωϑ

↽
(sinh y)↑2ω

∫ y

0

∫ ϱ

↑ϱ
(cosh y cos⇀ → cosh s)ω↑1 cos(µs)eiε(ϑ+ς)d⇀ ds, (2.5)

where ⇁ = ⇁(s, y) = arccos(cosh s/ cosh y). When y = 0, the kernel simplifies to ϱε,µ(0, ε) = eiεϑ.

The spectral space K̂ = L ⇐ ! consists of:

L = R≃ [0,+↔[, ! =
⋃

m↔N
(D+

m ⇐D↑
m),

where:

D+
m = {(ϑ+ 2m+ 1 + η, iη) | η > 0} and D↑

m = {(→ϑ→ 2m→ 1→ η, iη) | η > 0}.

The kernel satisfies the uniform bound [16]:

⇒(ϖ, µ) ↓ K̂, sup
(y,ϑ)↔K

|ϱε,µ(y, ε)| = 1. (2.6)

The kernel relates to the generalized Riemann-Liouville transform Xω through:

ϱε,µ(y, ε) = Xω

(
cos(µ·)eiε·

)
(y, ε),

where

Xωf(y, ε) =

∫

K
f(x, t)K(x, t, y, ε)dx dt

with kernel

K(x, t, y, ε) =
2ωϑ

↽
χ[0,y](x)χ[↑ϱ,ϱ](t→ ε)(cosh y cos(t→ ε)→ coshx)ω↑1(sinh y)↑2ω.



CUBO
27, 3 (2025)

Some inequalities associated with a partial di"erential operator 685

For the constant function 1, we have the bound:

Xω(1)(y, ε) =

∫

K
K(x, t, y, ε)dx dt ↑ 1. (2.7)

2.2 Generalized Fourier transform

For p ↓ [1,+↔], we define the weighted Lebesgue spaces as follows:

• For 1 ↑ p < ↔, the space Lp
ω(K) consists of measurable functions f : K ⇑ C satisfying

↘f↘p,mω =

(∫

K
|f(y, ε)|pdmω(y, ε)

)1/p

< ↔,

where the measure is given by

dmω(y, ε) = 22(ω+1)(sinh y)2ω+1 cosh y dy dε. (2.8)

• For p = ↔, the space L↓
ω (K) consists of measurable functions with finite essential supremum

norm

↘f↘↓,mω = ess sup
(y,ϑ)↔K

|f(y, ε)|.

The generalized Fourier transform Fω on L1
ω(K) is defined by:

Fωf(ϖ, µ) =

∫

K
f(y, ε)ϱ↑ε,µ(y, ε)dmω(y, ε),

satisfying the following inequality:

⇒(ϖ, µ) ↓ K̂, |Fωf(ϖ, µ)| ↑ ↘f↘1,mω . (2.9)

The Plancherel measure d↼ω combines continuous and discrete parts:

∫

K̂
g(ϖ, µ)d↼ω(ϖ, µ) =

1

(2↽)2

∫

R→[0,+↓[
g(ϖ, µ)

dϖ dµ

|C1(ϖ, µ)|2

+
1

(2↽)2

↓∑

m=0

{∫ ↓

0
g(▷+ η, iη)C2(▷+ η, iη)dη +

∫ ↓

0
g(→▷→ η, iη)C2(→▷→ η, iη)dη


,

where ▷ = ϑ+ 2m+ 1 and:

C1(ϖ, µ) =
2ω+1↑iµ”(ϑ+ 1)”(iµ)

”


ω+ε+1+iµ
2


”


ω↑ε+1+iµ
2

 , C2(ϖ, µ) = →2i↽Res
z=µ

[C1(ϖ, z)C1(ϖ,→z)]↑1.
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The weight functions satisfy [16]:

K1|µ|2 ↑ |C1(ϖ, µ)|↑2 ↑ K2(1 + |ϖ|2 + |µ|2)2[ω+ 1
2 ]+1. (2.10)

|C2(ϖ, µ)| ↑ K3(1 + |ϖ|2 + |µ|2)2[ω+ 1
2 ]+1. (2.11)

The transform Fω satisfies the Plancherel identity

↘Fω(f)↘2,φω = ↘f↘2,mω .

For 1 ↑ p ↑ 2, the Hausdor"-Young inequality holds:

↘Fω(f)↘q,φω ↑ ↘f↘p,mω , (2.12)

where q is the conjugate of p. The inversion formula is given by:

f(y, ε) =

∫

K̂
Fω(f)(ϖ, µ)ϱε,µ(y, ε)d↼ω(ϖ, µ) (2.13)

The heat kernel relates to Gaussians via:

Eω
a (y, ε) =

∫

K̂
e↑a(ε2+µ2+(ω+1)2)ϱε,µ(y, ε)d↼ω(ϖ, µ), (2.14)

with more general heat functions:

Wω
k,j(a, (y, ε)) = ik

∫

K̂
ϖk(→µ)2je↑a(ε2+µ2+(ω+1)2)ϱε,µ(y, ε)d↼ω(ϖ, µ). (2.15)

3 Miyachi-type theorem for the generalized Fourier trans-

form

To establish our main result, we first derive kernel estimates on C2.

Proposition 3.1. For all (ϖ, µ) ↓ C2
and (y, ε) ↓ K,

|ϱε,µ(y, ε)| ↑ C(1 + y)e(|↗µ|↑(ω+1))ye|↗ε|(|ϑ|+↼), (3.1)

where C > 0. Moreover, since y ⇓ 0,

|ϱε,µ(y, ε)| ↑ Ce|↗µ|y+|↗ε|(|ϑ|+↼). (3.2)
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Proof. By [11, Lemma 2.3], for ϖ = µ = 0,

ϱ0,0(y, ε) ↑ C(1 + y)e↑(ω+1)y.

Using |cos(µs)| ↑ e|↗µ|s and the integral representation (2.5),

|ϱε,µ(y, ε)| ↑ Ce|↗µ|y+|↗ε|(|ϑ|+↼)ϱ0,0(y, ε),

since ⇁ ↓ [→↽,↽]. This proves (3.1). Inequality (3.2) follows by analyzing the decay of f(y) =

(1 + y)e↑(ω+1)y on [0,+↔[.

We now state a Phragmén-Lindelöf-type lemma su!cient for our needs:

Lemma 3.2 ([10]). Let h be entire on C2
. Suppose there exist constants C,B > 0 such that

|h(z1, z2)| ↑ CeB((↘z1)
2+(↘z2)

2)
and

∫

R2

log+|h(x, y)|dx dy < ↔.

Then h is constant.

Lemma 3.3. Let p, q ↓ [1,+↔] and f be measurable on K satisfying

ea(y
2+(|ϑ|+↼)2)+2(ω+1)yf ↓ Lp

ω(K) + Lq
ω(K), a > 0. (3.3)

Then Fω(f) is well-defined and entire on C2
. Moreover, for all (ϖ, µ) ↓ C2

,

|Fω(f)(ϖ, µ)| ↑ Ce
|→ε|2+|→µ|2

4a . (3.4)

Proof. The function (ϖ, µ) ⇔⇑ ϱ↑ε,µ(y, ε) is entire by (2.3) and (2.4). Using Proposition 3.1,

|f(y, ε)ϱ↑ε,µ(y, ε)mω(y, ε)| ↑ Ce|↗ε|(|ϑ|+↼)+|↗µ|y|f(y, ε)|mω(y, ε).

By (3.3), there exist f1 ↓ Lp
ω(K) and f2 ↓ Lq

ω(K) such that

|fϱ↑ε,µmω| ↑
2∑

k=1

gk(ϖ, µ, y, ε),

where

gk(ϖ, µ, y, ε) = Ce|↗ε|(|ϑ|+↼)+|↗µ|ye↑a(y2+(|ϑ|+↼)2)↑2(ω+1)y|fk(y, ε)|mω(y, ε).

Observe that

|↖ϖ|(|ε|+ ↽) + |↖µ|y → a(y2 + (|ε|+ ↽)2) = →#ε,µ(y, ε) +
|↖ϖ|2 + |↖µ|2

4a
,
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where

#ε,µ(y, ε) =

(↙
ay → |↖µ|

2
↙
a

)2

+

(↙
a(|ε|+ ↽)→ |↖ϖ|

2
↙
a

)2

⇓ 0.

Thus,

gk(ϖ, µ, y, ε) ↑ Ce
|→ε|2+|→µ|2

4a e↑!ε,µ(y,ϑ)|fk(y, ε)|e↑2(ω+1)ymω(y, ε).

For a compact K ↗ C2, there exists (ϖ0, µ0) ↓ K such that

min
(ε,µ)↔K

#ε,µ(y, ε) = #ε0,µ0(y, ε).

Since e
|→ε|2+|→µ|2

4a is bounded on K,

gk(ϖ, µ, y, ε) ↑ Gk(y, ε) = Ce↑!ε0,µ0 (y,ϑ)|fk(y, ε)|e↑2(ω+1)ymω(y, ε).

To show Fωf is entire, it su!ces to prove Gk ↓ L1
ω(K). By Hölder’s inequality,

∫

K
|G1(y, ε)|dy dε ↑ C

f1e↑
2(ω+1)y

p


p,mω

(∫

K
e↑!ε0,µ0 (y,ϑ)p

↑
e↑2(ω+1)ymω(y, ε)dy dε

) 1
p↑

.

Using (2.8), e↑2(ω+1)ymω(y, ε) ↑ C, so

∫

K
|G1(y, ε)|dy dε ↑ C ↘f1↘p,mω

(∫

K
e↑!ε0,µ0 (y,ϑ)p

↑
dy dε

) 1
p↑

< ↔.

Similarly, for q≃ conjugate to q, ∫

K
|G2(y, ε)|dy dε < ↔.

Thus Fωf is entire.

To prove (3.4), apply Hölder’s inequality to g1 and g2:

|Fωf(ϖ, µ)| ↑ Ce
|→ε|2+|→µ|2

4a

(
↘f1↘p,mω

(∫

K
e↑!ε,µ(y,ϑ)p

↑
dy dε

) 1
p↑

+ ↘f2↘q,mω

(∫

K
e↑!ε,µ(y,ϑ)q

↑
dy dε

) 1
q↑
)

↑ Ce
|→ε|2+|→µ|2

4a (↘f1↘p,mω + ↘f2↘q,mω) .

Remark 3.4. Condition (3.3) implies f ↓ L1
ω(K). Indeed, by (2.8) and Hölder’s inequality,

∫

K
|f(y, ε)|dmω(y, ε) ↑

f1e↑
2(ω+1)y

p


p,mω

(∫

K
e↑ap↑(y2+(|ϑ|+↼)2)e↑2(ω+1)ydmω

) 1
p↑

+
f2e↑

2(ω+1)y
q


q,mω

(∫

K
e↑aq↑(y2+(|ϑ|+↼)2)e↑2(ω+1)ydmω

) 1
q↑

↭ ↘f1↘p,mω + ↘f2↘q,mω < ↔.
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Theorem 3.5. Let a, b,ς > 0, p, q ↓ [1,↔], and f be measurable on R2
, even in the first variable,

satisfying

ea(y
2+(|ϑ|+↼)2)+2(ω+1)yf ↓ Lp

ω(K) + Lq
ω(K)

and ∫

R2

log+
|Fωf(ϖ, µ)|eb(µ

2+ε2)

ς
dϖ dµ < ↔. (3.5)

Then:

• If ab > 1
4 , then f = 0 a.e.

• If ab = 1
4 , then f = CEω

1
4a

with |C| ↑ ς, where Eω
1
4a

is the heat kernel (2.14).

Proof. Define h(ϖ, µ) = e
ε2+µ2

4a Fωf(ϖ, µ). By Lemma 3.3, h is entire and satisfies

|h(ϖ, µ)| ↑ Ce
(↓ε)2+(↓µ)2

4a .

Now consider

∫

R2

log+|h(ϖ, µ)|dϖ dµ =

∫

R2

log+

|Fωf(ϖ, µ)|eb(µ

2+ε2)e(
1
4a↑b)(ε2+µ2)


dϖ dµ.

• Case ab > 1
4 : Since e(

1
4a↑b)(ε2+µ2) ↑ 1 and


R2 e(

1
4a↑b)(ε2+µ2)dϖ dµ < ↔,

∫

R2

log+|h(ϖ, µ)|dϖ dµ < ↔.

Lemma 3.2 implies h is constant, so Fωf = Ce↑
ε2+µ2

4a . Condition (3.5) forces C = 0 when

ab > 1
4 , so f = 0 by injectivity of Fω.

• Case ab = 1
4 : Then

∫

R2

log+|h(ϖ, µ)|dϖ dµ ↑
∫

R2

log+
|Fωf(ϖ, µ)|eb(µ

2+ε2)

ς
dϖ dµ < ↔.

Lemma 3.2 gives Fωf = Ce↑
ε2+µ2

4a , and (3.5) implies |C| ↑ ς. Inverting Fω yields f =

CEω
1
4a

.

Corollary 3.6. Let a, b > 0, p, q ↓ [1,↔], 1 ↑ r < ↔, and f measurable on R2
, even in the first

variable, satisfying

ea(y
2+(|ϑ|+↼)2)+2(ω+1)yf ↓ Lp

ω(K) + Lq
ω(K)

and ∫

R2

ebr(µ
2+ε2)|Fωf(ϖ, µ)|rdϖ dµ < ↔. (3.6)

If ab ⇓ 1
4 , then f = 0 a.e.
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Proof. Since log+ x ↑ x for x > 0,

log+
|Fωf(ϖ, µ)|eb(µ

2+ε2)

ς
↑

(
|Fωf(ϖ, µ)|eb(µ

2+ε2)

ς

)r

.

Choosing ς = 1, (3.6) implies

∫

R2

log+|Fωf(ϖ, µ)|eb(µ
2+ε2)dϖ dµ < ↔.

By Theorem 3.5, f = 0 if ab > 1
4 . If ab = 1

4 , f = CEω
1
4a

with |C| ↑ 1, but (3.6) holds only if

C = 0.

Theorem 3.7 (Cowling-Price Type). Let f be measurable on R2
, even in the first variable, with

a, b > 0, 1 ↑ p, q < ↔, satisfying

ea(y
2+(|ϑ|+↼)2)+2(ω+1)yf ↓ Lp

ω(K)

and

eb(µ
2+ε2)|Fωf(ϖ, µ)| ↓ Lq

ω(K̂). (3.7)

If ab ⇓ 1
4 , then f = 0 a.e.

Proof. Since Lp(K) ↗ Lp(K) + Lq(K), (3.3) holds. From (3.7) and (2.10),

∫

L
ebq(µ

2+ε2)|Fωf(ϖ, µ)|q|C1(ϖ, µ)|↑2dϖ dµ < ↔

implies ∫

R2

ebq(µ
2+ε2)|Fωf(ϖ, µ)|qdϖ dµ < ↔

by the evenness of Fωf in µ. Corollary 3.6 with r = q completes the proof.

Remark 3.8. This work establishes a Cowling-Price-type uncertainty principle (Theorem 3.7)

within the Miyachi framework. It is instructive to compare this result with those derived from the

Beurling-Hörmander framework, such as the one found in [12]. The two approaches are distinct

in their hypotheses and their conclusions, particularly at the critical exponent ab = 1/4.

(1) Comparison of hypotheses:

• In the Miyachi framework requires strict exponential decay without polynomial weights:

ea(y
2+(|ϑ|+↼)2)+2(ω+1)yf ↓ Lp

ω(K), eb(ε
2+µ2)|Fωf | ↓ Lq

ω(K̂).
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• In the Beurling-Hörmander framework [12] permits a tempered decay, allowing polyno-

mial weights:

∫

K

|f |ea|y+↼,ϑ|2

(1 + |y, ε|)N dmω < ↔,

∫

K̂

|Fωf |eb|ε,µ|
2

(1 + |ϖ, µ|)N d↼ω < ↔.

(2) Comparison of conclusions at ab = 1/4:

• Under the Miyachi hypotheses, the conclusion is a sharp uniqueness result: f = 0 is the

only function that satisfies the conditions.

• Under the Beurling-Hörmander hypotheses, the conclusion is a characterization result:

the function f must be a finite linear combination of heat kernel modes:

f(y, ε) =
∑

k+j<N↑1

ak,jWω
k,j(y, ε),

where Wω
k,j are defined by relation (2.15).

4 Local uncertainty principle and numerical study

In this section, we provide a local uncertainty principle of Faris-type for the generalized Fourier

transform Fω. This result quantifies the impossibility of a function f and its transform Fω(f)

being simultaneously concentrated on sets of finite measure. We derive an inequality bounding the

concentration of Fω(f) on a set F by the spatial dispersion of f . We then compute the optimal

constant numerically, quantifying the precise trade-o" between spatial and spectral localization.

4.1 Faris-type local uncertainty principle

Faris local uncertainty theorem for the generalized Fourier Fω states

Theorem 4.1. If 1 < p ↑ 2, q = p
p↑1 and 0 < a < 2

q then for all f ↓ Lp
ω(K) and all measurable

subset F ↗ K̂ satisfying 0 < ↼ω(F ) < +↔,

(∫

F
|Fωf(ϖ, µ)|q d↼ω(ϖ, µ)

) 1
q

↑ Kω,a,q (↼ω(F ))

(∫

K
|(y, ε)|p |f(y, ε)|p dmω(y, ε)

) 1
p

, (4.1)

where Kω,a,q is a constant which depend on the measure of the subset F , ↼ω(F ).

Proof. Let F be a measurable subset of K̂. Let us denote B the Euclidean ball of radius r > 0.

B =

(y, ε) ↓ K, |(y, ε)| =


y2 + ε2 < r


.
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We get

↘Fω(f) χF ↘q,φω
↑ ↘Fω(fχB ) χF ↘q,φω

+ ↘Fω(fχBc ) χF ↘q,φω
.

On the other hand

↘Fω(fχB ) χF ↘
q
q,φω

=

∫

K̂
|Fω(fχB )(ϖ, µ) χF (ϖ, µ)|

q d↼ω(ϖ, µ)

↑ ↘Fω(fχB )↘q↓,φω

∫

K̂
χF (ϖ, µ) d↼ω(ϖ, µ).

Then

↘Fω(fχB ) χF ↘q,φω
↑ (↼ω(F ))

1
q ↘Fω(fχB )↘↓,φω . (4.2)

Moreover

↘Fω(fχBc ) χF ↘q,φω
↑ ↘Fω(fχBc )↘q,φω

. (4.3)

According to relations (4.2) and (4.3), we obtain

↘Fω(f) χF ↘q,φω
↑ (↼ω(F ))

1
q ↘Fω(fχB )↘↓,φω + ↘Fω(fχBc )↘q,φω

.

Therefore (2.9) and (2.12) yield to

↘FωfχF ↘q,φω
↑ (↼ω(F ))

1
q ↘fχB↘1,mω + ↘fχ

Bc ↘p,mω
. (4.4)

Using Hölder inequality, we get

↘fχB↘1,mω ↑
(∫

K
|f(y, ε)|p |(y, ε)|ap dmω(y, ε)

) 1
p
(∫

K
|(y, ε)|↑aq χB (y, ε)dmω(y, ε)

) 1
q

.

Applying polar coordinates we get

∫

K

χB (y, ε)

↘(y, ε)↘aq dy dε =
↽

2→ qa
r2↑qa.

Since ∫

K
|(y, ε)|↑aq χB (y, ε)dmω(y, ε) ↑ 22(ω+1)e2(ω+1)r

∫

K

χB (y, ε)

|(y, ε)|aq
dy dε

then we deduce that

↘fχB↘1,mω ↑ Cω,a,qe
2
q (ω+1)r r

2
q↑a ↘ |(y, ε)|a f↘p,mω , (4.5)

where

Cω,a,q =

(
↽ 22(ω+1)

2→ qa

) 1
q

. (4.6)
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According to relations (4.5) and (4.4) and the fact that

↘fχ
Bc ↘pp,mω

↑ ↘ |(y, ε)|a f↘pp,mω
↘ |(y, ε)|↑ap χc

B
↘↓,mω ↑ r↑ap↘ |(y, ε)|a f↘pp,mω

we conclude that

↘FωfχF ↘q,φω
↑ g(r)↘ |(y, ε)|a f↘p,mω , (4.7)

where g is a function from ]0,+↔[ into R, given by

g(r) = Aebrrc + r↑a, (4.8)

where

A = Cω,a,q

(
↼ω(F )

) 1
q > 0, b =

2

q
(ϑ+ 1) > 0, c =

2

q
→ a > 0. (4.9)

The function g is continuous and coercive on ]0,+↔[ since

lim
r⇐0+

g(r) = +↔ and lim
r⇐+↓

g(r) = +↔.

Thus, g attains a minimum. Di"erentiating, we get

g≃(r) = Aebrrc↑1(br + c)→ ar↑a↑1. (4.10)

Setting g≃(r) = 0 is equivalent to solving

h(r) := Aebrrc+a(br + c)→ a.

Since c+ a = 2
q > 0, the function h is continuous and strictly increasing on ]0,+↔[, with

lim
r⇐0+

h(r) = →a < 0, lim
r⇐+↓

h(r) = +↔.

Therefore, there exists a unique r⇒ > 0 such that h(r⇒) = a, so g≃(r⇒) = 0. Since g is coercive, this

critical point is the unique global minimum of g. Let us denote this unique minimum of g by

Kω,a,q

(
↼ω(F )

)
:= min

r>0
g(r). (4.11)

Finally, relation (4.7) yields (4.1), completing the proof.
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4.2 Numerical study of the optimal constant

This section presents a comprehensive numerical investigation of the function g(r) defined in Equa-

tion (4.7), which determines the optimal constant Kω,a,q(↼ω(F )) in Theorem 4.1. We recall that

g(r) = Aebrrc + r↑a,

where the parameters are defined in relation (4.9).

To find the global minimizer r⇒ > 0 of g(r), we implement the Newton-Raphson method to solve

the equation g≃(r) = 0. The first and second derivatives of g(r) are:

g≃(r) = Aebrrc↑1(br + c)→ ar↑a↑1,

g≃≃(r) = Aebrrc↑2

(br + c)2 + (c→ 1)(br + c)→ c


+ a(a+ 1)r↑a↑2.

The Newton-Raphson iteration scheme is given by:

rn+1 = rn → g≃(rn)

g≃≃(rn)
.

We initialize the algorithm with r0 = 0.1 and use a convergence criterion of

|rn+1 → rn| < 10↑6.

• Numerical computation. We choose specific parameter values:






p = 1.5 ⇑ so q = 3,

ϑ = 0.5,

a = 0.5 ⇑ satisfies a < 2
q ,

↼ω(F ) = 1 ⇑ for simplicity.

Now compute the constants:






A = Cω,a,q ·
(
↼ω(F )

)1/3
=


↼·22(0.5+1)

2↑3·0.5

1/3
=


↼·23
0.5

1/3
∝ (50.265)1/3 ∝ 3.691,

b = 2
3 (0.5 + 1) = 1,

c = 2
3 → 0.5 ∝ 0.1667.

Thus, the function simplifies to

g(r) ∝ 3.691 · er · r0.1667 + r↑0.5.
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The Newton-Raphson method converges rapidly to the solution, as demonstrated in Table 1.

Table 1: Newton-Raphson iterations.

Iteration (n) rn g≃(rn)

0 0.100000 -12.456
1 0.157832 -2.891
2 0.180214 -0.327
3 0.183105 -0.006
4 0.183127 -0.000012
5 0.183127 ∝ 0

The algorithm converges in 5 iterations to r⇒ ∝ 0.1831, yielding the minimum value g(r⇒) ∝
5.677. The following Figure 1 illustrates the behavior of g(r), confirming the existence of a

unique minimum where the term r↑a dominates as r ⇑ 0+ and the term Aebrrc dominates

as r ⇑ +↔.

Figure 1: Behavior of g(r) for p = 1.5, ϑ = 0.5, a = 0.5.

4.3 Asymptotic behavior of Kω,a,q(ωω(F ))

In the previous numerical study, the measure of the frequency set was fixed at ↼ω(F ) = 1 to

compute a specific value for the optimal constant. We now analyze the behavior of Kω,a,q(↼ω(F ))

over the full range of its domain, particularly in the asymptotic regimes where ↼ω(F ) ⇑ 0+ or

↼ω(F ) ⇑ +↔. This analysis reveals the intrinsic scaling properties of the uncertainty principle and

provides practical insight into the trade-o" between spatial and frequency localization governed by

the parameters ϑ, a, p.



696 R. La! CUBO
27, 3 (2025)

• Behavior as ↼ω(F ) ⇑ 0+

When ↼ω(F ) ⇑ 0+, by relation (4.9) we have A ⇑ 0+. From (4.8), the dominant term in

g(r) becomes r↑a, so we expect the minimizing r⇒ to grow. We have

g≃(r) = 0 ′∞ Aebrrc↑1(br + c)→ ar↑a↑1 = 0 ′∞ Aebrrc↑1(br + c) = ar↑a↑1.

Applying logarithms, we get

lnA+ br + (c+ a) ln r + ln(br + c) = ln a.

For small A, the term br dominates, so we approximate:

br⇒ ∝ ln
 a

A


=∞ r⇒ ∝ 1

b
ln
 a

A


.

By substituting into g(r⇒), we obtain

g(r⇒) ∝ Aebr
↔
(r⇒)c + (r⇒)↑a ∝ a(r⇒)↑a ∝ a

(
b

ln(a/A)

)a

.

Since A is proportional to
(
↼ω(F )

) 1
q , we derive

Kω,a,q(↼ω(F )) ∈ a



 b

ln


a
Cω,a,qφω(F )1/q






a

as ↼ω(F ) ⇑ 0+,

where Cω,a,q is given by (4.6).

• Behavior as ↼ω(F ) ⇑ +↔

Since ↼ω(F ) ⇑ +↔, then A ⇑ +↔. On the other hand, the dominant term in g(r) is Aebrrc,

so we expect the minimizing r⇒ to shrink. The equation g≃(r) = 0 gives us

Aebrrc↑1(br + c) = ar↑a↑1.

For large A, the left hand side dominates, so we balance terms by taking r⇒ ⇑ 0+. Assume

r⇒ is small and expand ebr ∝ 1 + br. Then

A(1 + br⇒)(r⇒)c↑1(br⇒ + c) ∝ a(r⇒)↑a↑1.

Yields to

Ac(r⇒)c↑1 ∝ a(r⇒)↑a↑1 =∞ (r⇒)c+a ∝ a

Ac
.
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Thus:

r⇒ ∝
 a

Ac

 1
c+a

=

(
a

Cω,a,qc↼ω(F )1/q

) 1
c+a

.

Substituting into g(r⇒):

g(r⇒) ∝ Aebr
↔
(r⇒)c + (r⇒)↑a ∝ A(r⇒)c + (r⇒)↑a.

Since r⇒ ⇑ 0+, the second term dominates:

Kω,a,q(↼ω(F )) ∝ (r⇒)↑a ∝
(
Cω,a,qc↼ω(F )1/q

a

) a
c+a

.

This contrasting behavior is illustrated in Figure 2, which shows the function g(r) for extreme

values of ↼ω(F ). The left panel shows the slow logarithmic decay for ↼ω(F ) ⇑ 0+, while the

right panel demonstrates the power-law growth for ↼ω(F ) ⇑ +↔. The vertical dashed lines

indicate the minimizing radius r⇒ in each case.

(a) Behavior of g(r) for small ωω(F ). (b) Behavior of g(r) for large ωω(F ).

Figure 2

• Numerical computation The following table presents numerical values of the minimizing

radius r0 and the optimal constant Kω,a,q(↼ω(F )) for di"erent values of ↼ω(F ), using the

parameters:

p = 1.5, ϑ = 0.5, a = 0.5.
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Table 2: Numerical values of the optimal radius r⇒ and constant Kω,a,q.

ωω(F ) A r→ Kω,a,q

10↑6 0.037 13.12 0.276
10↑5 0.079 11.72 0.295
10↑4 0.171 10.32 0.316
10↑3 0.369 8.92 0.341
10↑2 0.795 7.52 0.372
10↑1 1.713 6.12 0.404

1 3.691 0.183 5.677
10 7.937 0.089 12.309
102 17.088 0.042 24.891
103 36.913 0.020 48.712
104 79.370 0.009 94.868
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ABSTRACT

We will provide a new proof of the Birman-Krein theorem for

unitary operators multiplicatively perturbed by finite-rank

operators, which is nothing more than the Kato-Rosenblum

theorem, but instead of self-adjoint operators. In other

words, U is a unitary operator and X is a unitary opera-

tor given by a finite rank perturbation of the identity, i.e.,
X = 1 + W with W finite rank. We show that U and its

perturbed version UX (or XU) are unitarily equivalent on

their absolutely continuous subspaces.

RESUMEN

Entregamos una nueva demostración del teorema de Birman-

Krein para operadores unitarios perturbados multiplicativa-

mente por operadores de rango finito, que no es más que el

teorema de Kato-Rosenblum, pero en lugar de operadores

autoadjuntos. En otras palabras, U es un operador unitario

y X es un operador unitario dado por una perturbación de

rango finito de la identidad, i.e., X = 1 + W con W de

rango finito. Mostramos que U y su versión perturbada UX

(o XU) son unitariamente equivalentes en sus subspacios ab-

solutamente continuos.
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1 Introduction

One of the great theorems in spectral theory is the famous Kato-Rosenblum theorem [4]:

Theorem 1.1. If A and T are self-adjoint operators, and A is trace class, then the absolutely

continuous parts of T and T +A are unitarily equivalent.

This theorem tells us that T and T +A have the same absolutely continuous spectrum.

Our motivation is to provide an alternative proof of the Birman-Krein theorem [1], which serves as

the unitary counterpart to the Kato-Rosenblum theorem, for the case of unitary operators under

multiplicative finite-rank perturbations (hence trace-class operators). Specifically, we are interested

in the preservation of absolutely continuous spectrum under transformations of the form U →↑ UX

(or XU), where U and X unitary operator. It is worth mentioning here that X is a unitary

operator, but not of finite rank, however, it can be expressed as X = 1 +W , where W = X ↓ 1

is indeed a finite-rank operator. This ensures that X di!ers from the identity only on a finite-

dimensional subspace. While Birman and Krein mention how the proof would proceed if X were

of rank 1 or finite rank, they do not provide a detailed demonstration. Our work fills this gap by

presenting a novel proof of this theorem.

In this proof, we avoid the use of scattering theory, which has been the traditional approach to

this problem. Notably, L. de Branges and L. Shulman previously addressed similar in [5,6] and [2]

where they employed scattering theory (wave operator limits). In contrast our approach is more

restrictive than the general case, as it applies only when X is a unitary operator perturbed by a

finite rank operator.

In Section 2, we introduce the general framework for multiplicatively perturbed unitary operators.

In Section 3, to illustrate our general result, we examine the case where the perturbation is of rank

1. Finally, in Section 4, we present our main result.

2 Multiplicative perturbations

It is often convenient to express the unitary operator X as X = eiY , where Y is a self-adjoint and

bounded operator. If Y is of trace class, it can be written as

Y =
→∑

j=1

ωjPωj ,

where Pωj = ↔εj , ·↗εj , {εj}j↑N is an orthonormal sequence, and
∑

j |ωj | < ↘.

Consider the perturbation

U →↑ UX.
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Then, UX = U(1+W ) = U +UW , where W =
∑→

j=1
(iY )j

j! . Since PωjPωk = 0 for j ≃= k, we have

ei(ε1Pω1+ε2Pω2 ) = eiε1Pω1 eiε2Pω2 .

Let Xn = ei
∑n

j=1 εjPωj . Then, the commutator [Xn, Xm] = 0 for all n,m ⇐ N, meaning the

operators commute. Thus,

Xn+k = ei
∑n+k

j=1 εjPωj = ei
∑n

i=1 εiPωi ei
∑n+k

j=n+1 εjPωj .

Formally, the unitary operator X can be expressed as

eiY = eiε1Pω1 · eiε2Pω2 · · · eiεkPωk · · · = · · · eiεkPωk · · · eiε2Pω2 · eiε1Pω1 . (2.1)

Remark 2.1. (1) If Y is of rank 1 and 1 is the identity operator, then

eiεPω =
∑

j↓0

(iωPω)j

j!
= 1+

∑

j↓1

(iωPω)j

j!
= 1+

∑

j↓1

(iω)jPω

j!
= 1+ (eiε ↓ 1)Pω.

(2) Let ϑj = (eiεj ↓ 1) ⇐ C. Since Pωj is a projection operator for all j ⇐ N, we have

(1+ ϑjPωj )(1+ ϑkPωk) = 1+ ϑjPωj + ϑkPωk , for j ≃= k.

(3) For ωj ⇐ R,

|ϑj | = |eiεj ↓ 1| ⇒ |ωj |,

for all j ⇐ N.

To justify equality (2.1), we present the following lemma.

Lemma 2.2. Let Xn = ei
∑n

j=1 εjPωj , then {Xn}n↑N is a Cauchy sequence in B(H).

Proof. Using Remark 2.1, we have:

||Xn+k ↓Xn|| =
∣∣∣
∣∣∣Xne

i
∑n+k

j=n+1 εjPωj ↓Xn

∣∣∣
∣∣∣

=
∣∣∣
∣∣∣Xn

[
eiεn+1Pωn+1 · eiεn+2Pωn+2 · · · eiεn+kPωn+k ↓ 1

]∣∣∣
∣∣∣

=
∣∣∣∣Xn

[(
1+

(
eiεn+1 ↓ 1

)
Pωn+1

)
· · ·

(
1+

(
eiεn+k ↓ 1

)
Pωn+k

)
↓ 1

]∣∣∣∣

=
∣∣∣∣Xn

[(
1+ ϑn+1Pωn+1

)
·
(
1+ ϑn+2Pωn+2

)
· · ·

(
1+ ϑn+kPωn+k

)
↓ 1

]∣∣∣∣

⇒ ||Xn|| ·
∣∣∣∣(1+ ϑn+1Pωn+1

)
·
(
1+ ϑn+2Pωn+2

)
· · ·

(
1+ ϑn+kPωn+k

)
↓ 1

∣∣∣∣

=
∣∣∣∣(1+ ϑn+1Pωn+1

)
·
(
1+ ϑn+2Pωn+2

)
· · ·

(
1+ ϑn+kPωn+k

)
↓ 1

∣∣∣∣

=
∣∣∣∣(1+ ϑn+1Pωn+1 + ϑn+2Pωn+2

)
· · ·

(
1+ ϑn+k↔1Pωn+k→1 + ϑn+kPωn+k

)
↓ 1

∣∣∣∣
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⇒ |ϑn+1| ·
∣∣∣∣Pωn+1

∣∣∣∣+ |ϑn+2| ·
∣∣∣∣Pωn+2

∣∣∣∣+ · · ·+ |ϑn+k| ·
∣∣∣∣Pωn+k

∣∣∣∣

=
∣∣∣∣1+ ϑn+1Pωn+1 + ϑn+2Pωn+2 + · · ·+ ϑn+kPωn+k ↓ 1

∣∣∣∣

=
∣∣∣∣ϑn+1Pωn+1 + ϑn+2Pωn+2 + · · ·+ ϑn+kPωn+k

∣∣∣∣

= |ϑn+1|+ |ϑn+2|+ · · ·+ |ϑn+k|

=
∣∣eiεn+1 ↓ 1

∣∣+
∣∣eiεn+2 ↓ 1

∣∣+ · · ·+
∣∣eiεn+k ↓ 1

∣∣

⇒ |ωn+1|+ |ωn+2|+ · · ·+ |ωn+k|

=
n+k∑

j=n+1

|ωj | ↑ 0,

for n ↑ ↘, since it is of trace class, that is, {ωj}j↑N ⇐ l1.

As an immediate result, we have:

Corollary 2.3. Let U be another unitary operator, then {UXn}n↑N is a Cauchy sequence in B(H).

Lemma 2.4. ⇑UXn ↓ UX⇑ ↑ 0, when n ↑ ↘.

Proof. Analogous to Lemma 2.2 and Corollary 2.3, if we have that Y =
→∑

j=1

ωjPωj , then

||Xn ↓X|| =
∣∣∣∣Xn ↓ eiY

∣∣∣∣ =
∣∣∣
∣∣∣ei

∑n
j=1 εjPωj ↓ ei

∑n
j=1 εjPωj · ei

∑
j>n εjPωj

∣∣∣
∣∣∣

=
∣∣∣
∣∣∣ei

∑n
i=1 εjPωj

(
1↓ ei

∑
j>n εjPωj

)∣∣∣
∣∣∣ ⇒

∣∣∣
∣∣∣1↓ ei

∑
j>n εjPωj

∣∣∣
∣∣∣ ⇒

∑

j>n

|ωj | ↑ 0,

when n ↑ ↘, and therefore ||UXn ↓ UX|| ↑ 0.

For unitary operators, the Cauchy and Borel transforms of a Borel measure µ on the unit circle

T = {z ⇐ C | |z| = 1} are given by

Fµ(z) =

∫ 2ϑ

0

eit + z

eit ↓ z
dµ(t), |z| < 1, Rµ(z) =

∫ 2ϑ

0

dµ(t)

eit ↓ z
, |z| < 1,

respectively. Here Fµ and Rµ are related by:

Fµ(z) = 1 + 2zRµ(z). (2.2)

Here we are interested in the properties of Fµ; for this, we have the following theorem [7].
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Theorem 2.5. Let µ be a Borel measure on the unit circle T, then

(1) lim
r↗1

Fµ

(
reit

)
exists for almost every t, and if

dµ(t) = f(t)
dt

2ϖ
+ dµs(t)

defines f(t), then f(t) = ⇓Fµ

(
eit

)
.

(2) t0 is a pure point of µ if and only if lim
r↗1

(1↓ r)⇓Fµ

(
reit0

)
≃= 0 and in general

lim
r↗1

(1↓ r)⇓Fµ

(
reit0

)
= µ ({t0}) .

(3) dµs is supported in
{
t | lim

r↗1
Fµ

(
reit

)
= ↘

}
.

Remark 2.6. This last theorem relates nontangential limits of this transform to the singular dµs

and absolutely continuous parts of dµ.

3 Rank 1 case

Now, let us consider the case of a rank 1 perturbation:

Uε = UXε = U
(
1+

(
eiε ↓ 1

)
Pω

)
.

Note that the intensity parameter ω exhibits periodicity, and it su"ces to consider 0 ⇒ ω < 2ϖ.

Here, ε is a normalized vector in the Hilbert space H that is cyclic for the unitary operator U ,

meaning that the closure

Lin {U jε | j ⇐ Z} = H,

with U0 = 1. Since ε is cyclic for U , it is also cyclic for Uε, for all ω ⇐ R.

To simplify the notation, let µε denote the spectral measure of the pair (Uε,ε), U0 = U , µ0 = µ,

Fε = Fµε and Rε = Rµε . Clearly, F0(z) = Fµ(z) and R0(z) = Rµ(z), where the Cauchy and

Borel transforms are respectively given by

Fε(z) =
〈
ε, (Uε + z1) (Uε ↓ z1)↔1 ε


, Rε(z) = ↔ε, Rz (Uε)ε↗ ,

where Rz(Uε) = (Uε ↓ z1)↔1 is the resolvent operator.

Our goal is to prove that the measures µε
ac and µac are equivalent, which implies that their Radon-

Nikodym derivatives are equal almost everywhere with respect to the Lebesgue measure (up to a

non-vanishing factor, which in this case is 1 due to the specific form of the transformation). This
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equivalence of the measures implies the unitary equivalence of the absolutely continuous parts of

Uε and U .

Lemma 3.1. Rz(U)(Uε) = (1+ zRz(U))ε.

Proof. In fact,

Rz(U)(Uε)↓ zRz(U)(ε) = Rz(U) [U(ε)↓ zε]

= Rz(U) [U ↓ z1] (ε) = (U ↓ z1)↔1(U ↓ z1)ε = ε.

Remark 3.2. By the previous lemma, we then have that:

↔ε, Rz(U)(Uε)↗ = ↔ε, (1+ zRz(U))ε↗

= ↔ε,1ε↗+ z ↔ε, Rz(U)ε↗ = ↔ε,ε↗+ z ↔ε, Rz(U)ε↗ = 1 + zRµ(z).

Lemma 3.3. For |z| ≃= 1

Rε(z) =
R0(z)

eiε + z(eiε ↓ 1)R0(z)
and Fε(z) =

(eiε ↓ 1) + (eiε + 1)F0(z)

(eiε + 1) + (eiε ↓ 1)F0(z)
.

Proof. By the second resolvent identity, we have that

Rz(U)↓Rz(Uε) = Rz(U)(Uε ↓ U)Rz(Uε) = Rz(U)((eiε ↓ 1)UPω)Rz(Uε),

then

↔ε, Rz(U)ε↗ ↓ ↔ε, Rz(Uε)ε↗ =

ε, Rz(U)((eiε ↓ 1)UPω)Rz(Uε)ε



= (eiε ↓ 1) ↔ε, Rz(U)U (↔ε, RZ(Uε)ε↗ε)↗

= (eiε ↓ 1) ↔ε, Rz(Uε)ε↗ ↔ε, Rz(U)Uε↗

= (eiε ↓ 1) ↔ε, Rz(Uε)ε↗ [1 + z ↔ε, Rz(U)ε↗] ,

that is, R0(z)↓Rε(z) = (eiε ↓ 1)Rε(z) [1 + zR0(z)], therefore,

Rε(z) =
R0(z)

eiε + z(eiε ↓ 1)R0(z)
.

Now, by (2.2), we have

Fε(z) = 2zRε(z) + 1 = 2z
R0(z)

eiε + z(eiε ↓ 1)R0(z)
+ 1

=
eiε + z(eiε ↓ 1)R0(z) + 2zR0(z)

eiε + z(eiε ↓ 1)R0(z)
=

eiε + z(eiε + 1)R0(z)

eiε + z(eiε ↓ 1)R0(z)
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=
2eiε + 2zeiεR0(z) + 2zR0(z)

2eiε + 2zeiεR0(z)↓ 2zR0(z)
=

eiε ↓ 1 + eiε + 2eiεzR0(z) + 1 + 2zR0(z)

eiε + 1 + eiε + 2eiεzR0(z)↓ 1↓ 2zR0(z)

=
(eiε ↓ 1) + (eiε + 1)(1 + 2zR0(z))

(eiε + 1) + (eiε ↓ 1)(1 + 2zR0(z))
=

(eiε ↓ 1) + (eiε + 1)F0(z)

(eiε + 1) + (eiε ↓ 1)F0(z)
.

Remark 3.4. From the previous lemma, we can express F0(z) in terms of Fε1(z) as follows:

F0(z) =
(eiε1 + 1)Fε1(z)↓ (eiε1 ↓ 1)

↓(eiε1 ↓ 1)Fε1(z) + (eiε1 + 1)
, (3.1)

for ω1 in [0, 2ϖ). Now, if ω2 ⇐ [0, 2ϖ) with ω1 ≃= ω2, we can express Fε2(z) in terms of F0(z).

Using (3.1), we can establish a relationship between Fε2 and Fε1 as follows:

Fε2(z) =
eiε2 ↓ eiε1 +

(
eiε1 + eiε2

)
Fε1(z)

eiε2 + eiε1 + (eiε2 ↓ eiε1)Fε1(z)
and ⇓Fε2(z) =

(1 + y2)⇓Fε1(z)

|1 + iyFε1(z)|
2 ,

with iy =
eiε2 ↓ eiε1

eiε2 + eiε1
.

Remark 3.5. By Theorem 2.5, we know that the singular part of the measure µs is supported on

S =
{
t | lim

r↗1
F (reit) = ↘

}
.

Let us define the sets

S1 =
{
t | lim

r↗1
Fε1(re

it) = ↘

}
and S2 =

{
t | lim

r↗1
Fε2(re

it) = ↘

}
.

These sets are mutually disjoint. Indeed, since ω1 ≃= ω2, and using Remark 3.4, it follows that if

t ⇐ S1, then

lim
r↗1

Fε2(re
it) =

eiε2 + eiε1

eiε2 ↓ eiε1
≃= ↘.

Therefore, t /⇐ S2, which implies S1 ⇔ S2 = ↖. Thus, the measures µε1
s and µε2

s are mutually

singular. This last result could be considered the equivalent of Donoghue’s Theorem, but for unitary

operators [3].

Theorem 3.6. For all ω1 ≃= ω2, the absolutely continuous parts of Uε1 and Uε2 are unitarily

equivalent.

Proof. Since Uε1 = Uε2 +
(
eiε1 ↓ eiε2

)
UPω, let us define the sets

L1 =
{
t | lim

r↗1
Fε1(re

it) = ↘ or ⊋ lim
r↗1

Fε1(re
it)

}
, L2 =


t | lim

r↗1
Fε1(re

it) =
eiε2 + eiε1

eiε1 ↓ eiε2


,

moreover, by Theorem 2.5, the measures of these sets are zero. If we define G = L1 ↙L2, then the
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measure of G is also zero. From Remark 3.4, we obtain:

{
t ⇐ T\G | lim

r↗1
Fε1(re

it) = 0
}
=

{
t ⇐ T\G | lim

r↗1
Fε2(re

it) = 0
}
,

thus, for almost every t ⇐ T\G, we have: limr↗1 ⇓ε1(re
it) ≃= 0 if and only if limr↗1 ⇓ε2(re

it) ≃= 0.

By Theorem 2.5, the Radon-Nikodym derivative of the absolutely continuous part of the spectral

measure is given by the real part of the boundary value of the Cauchy transform. Therefore, the

above equivalence implies that the set of points t where the density of (dµε1)ac is zero (or non-

zero) coincides, up to a set of Lebesgue measure zero, with the set where the density of (dµε2)ac is

zero (or non-zero). This means that the measures (dµε1)ac and (dµε2)ac are mutually absolutely

continuous with respect to each other (and with respect to Lebesgue measure), hence equivalent.

The unitary equivalence of the absolutely continuous parts of Uε1 and Uε2 then follows from the

spectral theorem.

Remark 3.7. From this theorem, under the specific choices ω2 = ω and ω1 = 0, establishes the

equality µε
ac = µac of the absolutely continuous spectral measures. Consequently, the absolutely

continuous parts of the operators Uε and U0 are unitarily equivalent, proving our original claim.

4 Finite rank case

We consider the perturbation of the unitary operator U0 by another unitary operator X, defined

as:

U = U0X = U0(1+W ) = U0 + U0W,

where W is an operator given by:

W =
n∑

j=1

ϑjPωj ,

with ϑj = (eiεj ↓ 1) and ωj ⇐ [0, 2ϖ) for j = 1, 2, . . . , n.

Using the second resolvent identity, we have:

Rz(U0)↓Rz(U) = Rz(U0)(U ↓ U0)Rz(U),

substituting U ↓ U0 = U0W , we obtain:

Rz(U0)↓Rz(U) = Rz(U0)(U0W )Rz(U).

Furthermore, we observe that:

Rz(U0)↓Rz(U) = WRz(U) + zRz(U0)WRz(U).
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To simplify the notations, as in the rank 1 case, we will use that RU0 = R0, Rk,m
0 (z) = ↔εk, Rz(U0)εm↗

and Rk,m
U (z) = ↔εk, Rz(U)εm↗ for any k,m ⇐ {1, 2, . . . , n}, and viewing these as matrix elements,

we have

Rk,m
0 (z)↓Rk,m

U (z) = ϑkR
k,m
U (z) + z

n∑

j=1

Rk,j
0 (z)ϑjR

j,k
U (z),

which means

R0(z)↓RU (z) = MRU (z) + zR0(z)MRU (z),

where

M =





ϑ1 0 0 · · · 0

0 ϑ2 0 · · · 0

0 0 ϑ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · ϑn





, ! =





eiε1 0 0 · · · 0

0 eiε2 0 · · · 0

0 0 eiε3 · · · 0
...

...
...

. . .
...

0 0 0 · · · eiεn





= M + I,

with I the n∝ n identity matrix, then

RU (z) = (M + I + zR0(z)M)↔1R0(z) = (!+ zR0(z)(!↓ I))↔1R0(z).

And since FU (z) = I + 2zRU (z), we have that

FU (z) = (2I +M + F0(z)M)↔1(M + F0(z)(M + 2I)),

or

FU (z) = [(!+ I) + F0(z)(!↓ I)]↔1 ((!↓ I) + F0(z)(!+ I)).

and if we separate the matrix ! in the following way

! =





cos(ω1) + i sin(ω1) 0 0 · · · 0

0 cos(ω2) + i sin(ω2) 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · cos(ωn) + i sin(ωn)




:= C + iS,

then !+ !↘ = 2C and MM↘ = 2(I ↓ C), with M↘ is the conjugate matrix of M , therefore

2⇓FU (z) = FU (z) + FU (z) = 2((!+ I) + F0(z)(!↓ I))↔1
⇓F0(z)((! + I) + (! ↓ I)F0(z))

↔1,

⇓FU (z) = ((!+ I) + F0(z)(!↓ I))↔1
⇓F0(z)((!

↘ + I) + (!↘
↓ I)F ↘

0 (z))
↔1, (4.1)
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or

⇓F0(z) = ((!+ I) + F0(z)(!↓ I))⇓FU (z)((!
↘ + I) + (!↘

↓ I)F ↘
0 (z)), (4.2)

for |z| < 1.

Remark 4.1. By the second resolvent identity,

Rz(U0) = Rz(U) +Rz(U0)(U0W )Rz(U) = (I +Rz(U0)(U0W ))Rz(U),

let

A = I +Rz(U0)(U0W ) = Rz(U0)(U ↓ z) = I +W + zRz(U0)W,

and since Rz(U0) =
1

2z
(Fz(U0)↓ I), then A = I +

W

2
+

1

2
Fz(U0)W , and given that A is bounded

with a bounded inverse, we have A = Rz(U0)(U ↓ z) and A↔1 = Rz(U)(U0 ↓ z). Then, if 2A =

T = 2I +W + Fz(U0)W and since A is invertible, T is invertible

T↔1 =
1

2
A↔1 =

1

2
Rz(U)(U0 ↓ z) =

1

4z
(Fz(U)↓ I)(U0 ↓ z).

Therefore (2I +M + F0(z)M)↔1 is invertible.

Let us consider the sets

Im,k(U0) :=
{
t ⇐ [0, 2ϖ) |

∣∣∣ lim
r≃1

Fm,k
0 (reit)

∣∣∣ = ↘ or ⊋ lim
r≃1

Fm,k
0 (reit)

}

Nm(U0) :=


t ⇐ [0, 2ϖ) | lim

r≃1
Fm,n
0 (reit)(ωm ↓ 1) = ↓!↓ I


,

where lim
r≃1

ωmFm,n
0 (reit) is an element of lim

r≃1
!Fm,n

0 (reit). Then, the measures of Im,k(U0) and

Nm(U0) are zero, by Theorem 2.5, for all m, k and a.e. t ⇐ [0, 2ϖ). Now, let us consider the union

of these two sets, this is

G :=
n

m,k=1

(
Nm(U0) ↙Nm(U) ↙ Im,k(U0) ↙ Im,k(U)

)
,

then the measure of G is also zero a.e. t ⇐ [0, 2ϖ) and from the equations (4.1) and (4.2), we have


t ⇐ [0, 2ϖ)\G | lim

r≃1
⇓FU (re

it) = 0


′


t ⇐ [0, 2ϖ)\G | lim

r≃1
⇓F0(re

it) = 0



and 
t ⇐ [0, 2ϖ)\G | lim

r≃1
⇓F0(re

it) = 0


′


t ⇐ [0, 2ϖ)\G | lim

r≃1
⇓FU (re

it) = 0


,

therefore, for almost every t ⇐ [0, 2ϖ)\G, we have: lim
r↗1

⇓F0(re
it) ≃= 0 if and only if lim

r↗1
⇓FU (re

it) ≃=

0. Applying Theorem 2.5 again, we conclude that the absolutely continuous parts of the spectral
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measures for U0 and U are mutually absolutely continuous. This equivalence of measures implies

the unitary equivalence of the absolutely continuous parts of the operators U and U0.

Remark 4.2. In the same way, we can obtain this result for a perturbation U →↑ XU .
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