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ABSTRACT

In this paper, we study the geometry of real flag manifolds
within complex flag manifolds, focusing on their Lagrangian
properties. We prove that the natural immersion of real
flag manifolds into their corresponding complex flag mani-
folds can be characterized as infinitesimally tight Lagrangian
submanifolds with respect to the Kirillov-Kostant-Souriau
(KKS) symplectic form. This property of tightness provides
a significant geometric constraint, indicating that the sub-
manifolds are locally minimal and cannot be deformed in-
finitesimally to reduce their volume further in the ambient
space. We further provide a comprehensive classification of
these immersions, detailing the conditions under which such
submanifolds exist across various symmetric pairs. This clas-
sification elucidates the relationship between the structure of
the real flags and the associated complex flags, contributing
to a deeper understanding of the interplay between symplec-

tic geometry and representation theory.
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RESUMEN

En este articulo, estudiamos la geometria de variedades ban-
dera reales dentro de variedades bandera complejas, con foco
en sus propiedades Lagrangianas. Demostramos que la in-
mersion natural de variedades bandera reales en sus corres-
pondientes variedades bandera complejas puede caracteri-
zarse como subvariedades Lagrangianas infinitesimalmente
estrechas con respecto a la forma simpléctica de Kirillov-
Kostant-Souriau (KKS). Esta propiedad de estrechez provee
una restriccion geométrica significativa, indicando que las
subvariedades son localmente minimas y no pueden defor-
marse infinitesimalmente para reducir ain mas su volumen
en el espacio ambiente. Ademas entregamos una clasificacion
completa de estas inmersiones, detallando las condiciones
bajo las cuales tales subvariedades existen entre varios pares
simétricos. Esta clasificacion aclara la relacion entre la es-
tructura de las banderas reales y las banderas complejas aso-
ciadas, contribuyendo a un entendimiento mas profundo de
la interaccion entre la geometria simpléctica y la teoria de

representaciones.

Keywords and Phrases: Flag manifolds, homogeneous space, Lagrangian submanifolds, infinitesimally tight

2020 AMS Mathematics Subject Classification: 14M15, 17Bxx, 22Bxx, 22Cxx, 22F30, 53D12
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1 Introduction

Lagrangian submanifolds in symplectic homogeneous spaces have been extensively studied, with
significant contributions to their classification in various contexts. For instance, compact symplec-
tic homogeneous manifolds have been classified in [24]. In this paper, we focus on the coadjoint
orbits of semisimple Lie groups, exploring the applications of semisimple Lie theory to symplectic
geometry, specifically in identifying Lagrangian submanifolds within adjoint orbits. Our motiva-
tion stems from the homological mirror symmetry conjecture and, in particular, from concepts
in Fukaya—Seidel categories, where objects and morphisms are generated by Lagrangian vanishing
cycles and their thimbles, exhibiting specific behaviors within symplectic fibrations (see [10] and
12]).

The primary objective of this paper is to investigate the locally, globally, and infinitesimally tight
Lagrangian submanifolds on adjoint orbits, a concept first introduced by Y.-G. Oh in 1991 (see

[17]). Oh defined tightness for closed Lagrangian submanifolds in compact Hermitian symmetric

spaces as follows:

Definition 1.1. Let (M,w,J) be a Hermitian symmetric space of compact type and L a closed
embedded Lagrangian submanifold of M. Then L is said to be globally tight (resp. locally
tight) if it satisfies

#(Lng-L)=SB(L,Zs)

for any isometry g € G (resp. sufficiently close to the identity) such that L intersects g- L trans-
versely. Here, SB(L,Z3) denotes the sum of the Zo-Betti numbers of L.

In the same work, Oh demonstrated that the standard RP" inside CP" is tight and minimizes
volume among all its Hamiltonian deformations (see [17]), linking tightness to Hamiltonian volume
minimization (see [18]). This concept is further connected to the Arnold-Givental conjecture,
which posits that the number of intersection points between a Lagrangian £ and its image under

a Hamiltonian flow ¢(L£) is bounded below by the sum of its Z,-Betti numbers:
#(LG(L)) 2D b (L5 Zs).

The study of tight Lagrangian submanifolds is therefore of significant interest in symplectic geom-

etry. Oh also posed the open problem:

Problem 1.2. Classify all possible tight Lagrangian submanifolds in other Hermitian symmetric

spaces.

By [17], Oh proposed the following conjecture:
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Conjecture 1.3. Are the real forms in these spaces the only possible tight Lagrangian submani-

folds?

While Oh’s conjecture suggests that real forms may be the only possible tight Lagrangian sub-
manifolds in Hermitian symmetric spaces, our study is restricted to the case of flag manifolds.
In particular, we examine the natural immersion of real flag manifolds into their corresponding
complex flag manifolds and demonstrate that they can be characterized as infinitesimally tight La-
grangian submanifolds with respect to the Kirillov-Kostant-Souriau (KKS) symplectic form. This
characterization provides a significant geometric constraint, indicating that these submanifolds
are locally minimal and cannot be deformed infinitesimally to further reduce their volume in the

ambient space.

Furthermore, we provide a comprehensive classification of these immersions, detailing the con-
ditions under which such submanifolds exist across various symmetric pairs. This classification
elucidates the relationship between the structure of real flags and their associated complex flag
manifolds, contributing to a deeper understanding of the interplay between symplectic geometry

and representation theory.

In a similar vein, Iriyeh and Sakai classified tight Lagrangian submanifolds in S x S? (see [15]),
showing that if £ is a closed, embedded, tight Lagrangian surface in S? x §2, then £ must be one

of the following:

o L={(x,~2)€S?x8%: xeS?} (global tight submanifold).

o £ =2S5%a)x S*(b) c §% x S?, where S'(a) is a round circle of radius 0 < a < 1 (locally tight

submanifold).

This classification forms a special case of tight submanifolds in products of flag manifolds, which
were studied in [13]. There, the authors demonstrated that a product of flag manifolds Fe, x Fe,
admits a Lagrangian orbit under the diagonal action (or shifted diagonal action) if and only if
O, = O, where Oy = 001 with ¢ being the symmetry of the Dynkin diagram, given by o = —wy,
and wp being the longest element of the Weyl group W. Such a Lagrangian orbit is described by
the graph of

—id: Ad(U)(iH) - Ad(U) (ic(H)),

or by the graph of — Ad(m), where m € U for the shifted diagonal action.

A significant contribution of [13] was the introduction of the concept of infinitesimally tight sub-
manifolds. The authors proved that Lagrangian orbits resulting from the diagonal (or shifted

diagonal) action are infinitesimally tight. This notion is formally defined as follows:
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Definition 1.4. Let £ be a submanifold of M = G/H. An element X € g = Lie(G) is called

transversal to L if it satisfies the following two conditions:

(1) For any z € L, if X(x) € T,L, then X (z) = 0.

(2) The set
fe(X)={zeL: 0=X(z)eT,L}

1s finite.
That is, X is tangent to L only at finitely many points where it vanishes.

A Lagrangian submanifold £ in M = G/H is called infinitesimally tight if

# (f(X)) =SB(L, Z2)

for any X e g such that X is transversal to £. Moreover, [13] presents the following theorem:

Theorem 1.5. Let M = G/H be a homogeneous space with a G-invariant symplectic form w. Then

a Lagrangian submanifold £ c M is infinitesimally tight if and only if it is locally tight.

As discussed in [6] and [13], isotropic submanifolds can be characterized through the moment
map of a Hamiltonian action. In particular, Gorodski and Podesta [6] classified compact tight
Lagrangian submanifolds in irreducible compact homogeneous Kéahler manifolds that have the Zo-
homology of a sphere. This classification is closely related to our study, as it provides structural
constraints on the existence of tight Lagrangian submanifolds within compact homogeneous spaces.
Our work builds upon these ideas by characterizing the complex flag manifolds that admit real

flag manifolds as Lagrangian submanifolds.

To establish this characterization, we equip the complex flag manifolds with the Kirillov-Kostant-
Souriau (KKS) symplectic form and consider the compact orbits of the real forms of the associated
complex Lie group. This approach aligns with recent developments related to the Ph.D. thesis of
Béez, where the author studied Lagrangian submanifolds of adjoint semisimple orbits. The results
from this thesis are directly related to the findings presented in this paper, further reinforcing the
connection between Lagrangian submanifolds and the geometry of adjoint orbits in semisimple Lie

theory.

Regarding the work of Gorodski and Podesta [6], although our conclusions share similarities, the
methodologies differ significantly. While their approach focuses on homogeneous Kéhler manifolds
with topological constraints on homology, our classification provides a systematic study of complex
flag manifolds and their real forms that possess compact Lagrangian orbits. This classification is
explicitly detailed in Table 1 at the end of Subsection 3.1, with a case-by-case proof given in

Appendix A.
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Specifically, in Section 4, we prove that real flag manifolds can be seen as infinitesimally tight
submanifolds of the corresponding complex flag manifolds. This result establishes a direct link
between the structure of flag manifolds, symplectic geometry, and representation theory, offering
a broader perspective on the classification of Lagrangian orbits within homogeneous symplectic

spaces.

2 Flag manifolds

Flag manifolds play a central role in the study of Lie groups and their geometric structures.
However, their treatment varies significantly depending on whether they are considered within
the framework of complex semisimple Lie groups or real semisimple Lie groups. This distinction
is crucial, as notation and conventions often diverge in the literature, with most works focusing
exclusively on either the real or the complex setting. To provide a unified perspective, this section
introduces both real and complex flag manifolds, along with fundamental concepts such as Weyl
chambers and Weyl groups. The goal is to establish a consistent notation and clarify potential

ambiguities, ensuring that the reader can navigate seamlessly through subsequent discussions.

There exist several equivalent definitions of flag manifolds, and they are sometimes referred to
as generalized flag manifolds. This terminology appears in various sources, with one of the most
well-known references being Alekseevsky’s work (see [1]), where these spaces are studied from a
broader geometric perspective. A fundamental definition, which serves as a starting point for our

discussion, is the following:

Definition 2.1. Let g be a semisimple non-compact Lie algebra, and let G be a connected Lie

group with Lie algebra g. The flag manifold Fyg is the homogeneous space
Fyg =G/Py,

where Py is a parabolic subgroup of G, determined by an element H € g, which can be chosen

within the closure of a positive Weyl chamber of g.

The construction of the parabolic subgroup Py depends on whether g is a real or complex Lie alge-
bra. In what follows, we shall present these constructions using fundamental tools from semisimple
Lie theory. Although different approaches provide valuable insights, in this work, we adopt the
perspective that complex flag manifolds are most naturally understood as adjoint orbits of compact
semi-simple Lie groups. This viewpoint not only highlights their intrinsic geometric structure but
also establishes a direct connection with symplectic geometry and representation theory, which will

be further explored in the subsequent discussion.
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To avoid confusion, let us denote the following:

e The notation g€ will be used to explicitly indicate that g is considered as a complex Lie
algebra, and similarly, G® will denote a complex Lie group when necessary. When this
notation is omitted, g and G should be understood in a general sense or as real structures,

depending on the context.

e The notation g¢ denotes the complexification of the Lie algebra g, which in this case is a real

Lie algebra.

For a more detailed study of these flag manifolds, we recommend referring to [1-3,19]. Additionally,

for further geometric insights, see [4, §].

2.1 Complex flag manifolds

Let g€ be a semisimple complex Lie algebra, and let h be a Cartan subalgebra of g¢. We define

the following:

e Il¢ is a root system, where for each o € I, there exists an element H, € h* such that
o(H) = (H,, H), VHehC,

where (-,-) denotes the Cartan-Killing form of g©.

e Y¢ is a simple root system, such that II{ denotes the set of positive roots in Il¢, and

{H,: aeXc} forms a basis of hC.

e a' is the corresponding positive Weyl chamber, given by

at={Heh®: a(H)>0, VaeXc}.

Thus, we have the root space decomposition:

=00 Y of,

OLGHC

where each root space is given by

gn ={X eg®: [H,X]=a(H)-X, VHeh"}.
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The Borel subalgebra b, which is the maximal solvable subalgebra, is defined as

b=h"a® > of.

aell?,
C

A subalgebra p of g€ is called parabolic if it contains a Borel subalgebra. The parabolic subalgebra

associated with an element H is defined as

pr=b%e > g5 (2.1)

a(H)>0

Remark 2.2. In some sources, the parabolic subalgebra defined in Equation (2.1) is denoted by

Po,, where Oy = {aeXc:a(H) =0}.

Let G€ be a connected Lie group with Lie algebra g®. The parabolic subgroup Py is the normalizer
of py in G©, given by
Py ={geG": Ad(9) -pu =pu}.

The complex flag manifold associated with H is then defined as the quotient space:
Fi = G/ Py.

Furthermore, we will see that the complex flag manifold can be seen as an adjoint orbit of a
compact Lie group. For instance, choosing a Weyl basis given by H, for a € ¥¢ and X, € gg for

«a € I, we have:

L4 [XomX—a] =H,,

o [Xo,Xpg] = mapXarp with mq g € R, where my g = 0 if o+ 5 is not a root and mq g =

—M_q,-8-
Defining A, = X, - X_o and S, =i(X, + X_o), we obtain the compact real form:

u=spang{iH, An, Sa : a € II{}.

Let U = expu be a compact real form of G*, and define

UHZPHOU.
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The adjoint action of U is transitive on Fgy with isotropy subgroup Uy at H, yielding

Fp ~U/Ug ~ Ad(U) - H.

Additionally, denoting by = 1-Up as the origin of Fy, its tangent space at by is given by

Ty, Fr =spang{Aq, Sa: a(H) >0} = > u,,
a(H)>0

where u, = (g5 @ ¢5,) nu = spang{Aq,, Sa}.

Remark 2.3. Given a complex semisimple Lie algebra g©, a real Lie algebra go is called a real
form of g if its complezification satisfies go ® C = g©. A real form of g€ can be either compact or

non-compact. Additionally, all compact semisimple Lie algebras are real.

2.2 Real flag manifolds

Let g be a semisimple, non-compact real Lie algebra. To construct real flag manifolds, we introduce

the following fundamental elements of real semisimple Lie theory:

e Let 0 be a Cartan involution, that is, an involutive automorphism such that the associated
bilinear form

Bo(X,Y)=—(X,0Y), X,Yeg

defines an inner product on g, where (-,-) denotes the Cartan—Killing form of g. The Cartan

involution induces a Cartan decomposition
g=taos,

where

E={Xeg:0X=X}, and s={Yeg:0Y =-Y}.

The subspaces ¢ and s are orthogonal with respect to both By and the Cartan—Killing form.
Notably, ¢ is often referred to as the compact component of the Cartan decomposition,
although it is not necessarily compact. Furthermore, we define the maps x : g — ¢ and
0:g— s, given by

X+0X X-0X

K(X) = 5 and o(X)= 5

which correspond to the parallel projections onto ¢ and s, respectively.
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e Let a c s be a maximal Abelian subalgebra. Then, there exists a Cartan subalgebra § of g

that contains a. Given a pair (6,a), we denote by IIg the set of roots associated with (6,a),

where each root is a linear functional « : a - R satisfying

By(Hu,H) = a(H), VHea.

These roots can be interpreted as restrictions of the roots of h®, the Cartan subalgebra of

the complexification of g, denoted as gc.

The Weyl group associated with a is the finitely generated group of reflections across the
hyperplanes defined by o = 0 in a, for « in the root system of a. The generators of the Weyl

group corresponding to these reflections are called simple reflections.
The Weyl chambers associated with (0, a) are the connected components of
{Hea: a(H)+0, Vaellg}.

Selecting one of these chambers as the positive Weyl chamber a*, we define the set of positive
roots as

I} = {a e Ilg : e+ >0}

Consequently, we define

n= Z ga, and n” = Z 9-a

+ +
aelly aelly

where g, = g-o and In = n~. Furthermore, there exists a simple root system ¥r associated

with a*, such that {H, € a: o e Xg} forms a basis of a.

Moreover, we obtain the Bg-orthogonal decomposition

s=ado(n).

The triplet (6,a,a") is called an admissible triple of g, and it gives rise to the decomposition

g=t®a®n,

known as the Twasawa decomposition. Let G be a connected Lie group with Lie algebra g. If K, A,

and N are the connected subgroups generated by £, a, and n, respectively, then G is diffeomorphic

to K x A x N. This leads to the global Iwasawa decomposition:

G =KAN.
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Remark 2.4. If H ea”, i.e., H is a regular element, then n = nj; and n~ =ny. In some literature,

nj; is denoted by n§, where © = {ov e Xp : a(H) = 0}.
Given an admissible triple (6, a,a*), the parabolic subalgebra associated with H € cl(a*) is

pH:EHGBCl@l‘L.

Let G be a connected Lie group with Lie algebra g. The parabolic subgroup associated with H is

defined as the normalizer of py in G. By the global Iwasawa decomposition of G, we obtain:

K= {keK: Ad(k)a, = ida, }

where ay = aoa(H) and a(H) be a subalgebra generated by { H,, : a(H) # 0}. Then, the parabolic
subgroup Py is given by:
Py=Kyg-A-N.

Consequently, we have the quotient structure:

K-A-N

G/Py = — 22
[P Kg-A-N

ZK/KH,

and it follows that:
K/Kg~Ad(K)-H

which represents the K-adjoint orbit passing through H, commonly known as the real flag man-

ifold.

Remark 2.5. Given H € s, we have that Ad(K)-Hncl(a*) # @. Since the action of K is transitive,

we can choose an element H € cl(a®) which determines the same manifold.

Remark 2.6. We denote by Fy the flag manifold passing through H € cl(a®) when there is no
ambiguity regarding the compact group acting on it. Otherwise, we will specify it as an adjoint
orbit. To maintain clarity, we will represent flag manifolds in terms of the adjoint action (as the

orbit of U in the complex case and K in the real case).
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3 Lagrangian immersion of real flags on complex flag

In this section, we investigate the conditions under which a given real flag manifold can be realized
as a Lagrangian submanifold within a complex flag manifold. Specifically, given an adjoint orbit
Ad(K) - H corresponding to a real flag manifold, we determine in which complex flag manifolds
it can be immersed as a Lagrangian submanifold. Importantly, this classification depends on the
choice of H, which we analyze using Satake diagrams, as well as the structural properties of K.
Contrary to a universal embedding, our approach highlights the interplay between the choice of H

and the ambient complex flag manifold.

As discussed in [3], given a compact semisimple Lie group U with Lie algebra u, the adjoint orbits
of U in u correspond to the flag manifolds of its complexified Lie group Uc, whose Lie algebra is
uc. These adjoint orbits naturally inherit a symplectic structure, providing a geometric foundation

for our analysis.

The Kostant—Kirillov-Souriau (KKS) symplectic form on an adjoint orbit Ad(U) - H is given by
we (X (2),Y(2)) = (2,[X, Y]}y, X,Y eu, (3.1)

where (-,-), denotes the Cartan-Killing form on u, and X = ad(X) represents the Hamiltonian
vector field associated with the Hamiltonian function Hx(z) = (z,X),. As a consequence, the

moment map g of the U-adjoint action is simply the identity map, which is inherently equivariant.

To identify specific isotropic submanifolds within Ad(U) - H, we rely on the following key result:

Proposition 3.1. Let (M,w) be a connected symplectic manifold equipped with a Hamiltonian
action of a Lie group G, given by G x M — M, along with an equivariant moment map p. Let

L c G be a Lie subgroup.

Then, the orbit L-x is isotropic if and only if p(x) belongs to the annihilator ([’)0 of the derived
algebra U of L.

This proposition was established in [13] and [14] using distinct methodologies.

3.1 Lagrangian immersion of real flags

Let U be a compact semisimple Lie group with Lie algebra u, and let £ c u be a Lie subalgebra.

The pair (u,t) is called a symmetric pair if
[e,8'] ct, and [&',E']cé,

where L denotes the orthogonal complement with respect to the Cartan—Killing form on u.
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For any symmetric pair (u,£), if we define K = (expt), then the quotient space U/K forms a
symmetric space. The dual symmetric pair is given by (g, £), where g is a non-compact semisimple

Lie algebra that serves as the real form of uc and admits a Cartan decomposition
g=t®s, where s=it"cuc.

By construction, the orbits of the K-isotropy representation on s (or equivalently on €*) correspond

to the flag manifolds of g.

Given H € ', the Lagrangian immersion of real flag manifolds into their corresponding complex
flag manifolds is constructed as follows: Let a c s be a maximal abelian subalgebra. Then, there
exists a Cartan subalgebra b of g such that a c b and h® is a Cartan subalgebra of gc. Consequently,
for H € a, we obtain

K/Ky=Ad(K)-H < Ad(U)-iH =U/Uy =Fy. (3.2)

Thus, the flag manifolds of g are determined by the adjoint action of K on H and are immersed
in the flag manifolds of g¢ (complexification), which are determined by the adjoint action of U on
1H. Moreover, since u is compact, the connected component of the identity of €+ corresponds to
the orthogonal complement of ¢ with respect to the invariant scalar product on u. Consequently,

we arrive at the following proposition:

Proposition 3.2. Given a symmetric pair (u,) and an element H € a c i€+, the real flag manifold
Ad(K)-H is a Lagrangian submanifold of F g with respect to the Kirillov-Kostant-Souriau (KKS)

symplectic form.

Proof. Since ¥ c ¢, then ¢ c (¢)* and Ad(K) - H c ¢* = is, then Ad(K)-Hn (¥)* # @ and by
Proposition 3.1, the adjoint K-orbit (real flag) is an isotropic submanifold.
Furthermore, if by =1- K, we have that

dim(TbHAd(K)~H):dim( > ga):#{aeﬂ(c: a(H) <0},
a(H)<0

and as the root spaces of gc are 1-dimensional complex spaces (i.e., 2-dimensional real spaces),
then

Hence Ad(K) - H is a Lagrangian submanifold of Fy. O
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Remark 3.3. Intuitively, one can observe that each complex root space effectively doubles its
dimension when considered as a real vector space. However, this identification is purely at the
level of vector spaces and does not yet take into account the underlying Lie algebraic or geometric
structure. In [16, 21, 23], the authors provide a detailed exposition of this vector space approach,

emphasizing how the real and complex structures relate in the context of flag manifolds.

Our focus now shifts to identifying the complex flag manifolds of g¢ (complexification of g real
non-compact semi-simple) that admit a real flag manifold, generated by the action of K = (exp€)
for the symmetric pair (u, £), as a Lagrangian submanifold. Consider a maximal abelian subalgebra
acs and a Cartan subalgebra h of g such that a c h. Let Tl be the set of roots of hc, where the

roots of a correspond to their restrictions on fhc.

If 6 is a Cartan involution associated with the Cartan decomposition g = €@ s, then there exists an
involutive extension of 8 to g¢, which we also denote by 6. As shown in [21], the restriction of ¢
to a is given by

1
P:§(1—0*), where 0" =ao6.

Define II;y, c Tlc as the set of imaginary roots, where « € Iy, if and only if P(a) = 0. Letting
IT., = Mg \ iy, the set of restricted roots is given by P(I1,).

Considering an appropriate ordering (such as the lexicographic order on a*), let ¥;,, denote the
system of imaginary simple roots, and let Y., be its complement. The projection of ¥, onto a*
forms a system of restricted roots ¥, with a* denoting the positive Weyl chamber of g determined
by 3.
For H ecl(a*), define

Oy ={BeX: B(H)=0}cX.

Next, define Oy c ¢ by
Oy =P 1(Ox) USin, (3.3)

which is determined by the Satake diagram of g (see [16,21]).

Remark 3.4. In general, we select H € cl(a*) because for any other choice H' € a such that the
orbits remain the same, there exists a Weyl conjugation o satisfying o- H = H'. Consequently, the

associated sets of admissible roots remain unchanged, i.e., O = O .
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Proposition 3.5. Oy = {a € Y¢: a(H) = 0}.
Proof. If H € a, then for all a € X¢
0*a(H)=aob(H) =-a(H), (3.4)

because 0|s = —id. Also, if @ € 3y, then 8*a = «, and by (3.4) we have that a(H) = 0, therefore it is
enough to see for roots in Xeo. If a € P71(Op), then (a—0*a)(H) = 0 implies that a(H) = 0*a(H),
and by (3.4) we have that o(H) = 0. Thus Oy ¢ {a € X¢: a(H) =0}. Conversely, if o € ¥, such
that a(H) = 0, then 0*«(H) = —a(H) = 0, thus P(a)(H) = 0 and implies that P(«) € O, i.e.
€ P_l(@H). O
Therefore,

Theorem 3.6. Given a symmetric pair (u,t), the complex flags of uc of type O c X¢ admit, as
Lagrangian submanifold, the real flag of g = €@ it* of type © c X if and only if

0 =P HO)UTin.

That is, © is determined by the Satake diagram of g.

In particular, we can conclude

Corollary 3.7. A maximal flag F of gc admits a real flag AA(K) - H as Lagrangian submanifold
if and only if X, =@ and @ =0Op.

Example 3.8. Let u = su(7), ¢ = s(u(2) ®u(b)) and g = su(2,5) that determine the symmetric
pair (u, ) and its respective dual symmetric pair (g,t). The Satake diagram of su(2,5) is

(651 (65) Q3
O O @
O O @
Qg (0% (&%}

By Theorem 3.6, the flags of type © c ¢ that admit as Lagrangian submanifold a real flag of type
©cX={p =P(a1) =P(ag), B2 = Plag) = P(as5)} are

o IfOy =0, then O = Dy, = {as,a4}.
L] If @1 = {Bl}, then ("“jl = {041704370[47046}.

[ ] [f @2 = {52}, then @2 = {042704370547055}.
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Analogously, this is equivalent to that given in the Table 1, form =17:

O

e Op=Xc\{ar, a2, 02,001},

O)

e O =Yc {2, an2},

o O3=c{ag, a1}

Hence, using the Satake diagrams we can determine which are the complex flags of type © c 3¢,

for which there exists © such that Theorem 3.6 is satisfied.

Corollary 3.9. The complex flags of type © c S¢ admits as Lagrangian submanifold a real flag
giwen by the K-adjoint orbit if and only Zf(:j appears in Table 1.

Remark 3.10. Corollary 3.9 states that given a complex flag manifold Fyg associated with the
semisimple complex Lie algebra g€, we can determine which real flag manifolds of go are Lagrangian

submanifolds of Fg by analyzing the Satake diagram of go. Here, go denotes a real form of g.

The proof of this result is given in the following subsection. For that we will use a convenient
notation of partitioning an integer, that is, we define h(n) for n € N, as the set of ordered I-tuples

of integers (nq,...,n;) such that 0 <mny <---<n; <n, for example:
b(3) ={(1),(2),(3),(1,2),(1,3),(2,3),(1,2,3)}.

Using this notation, we build the Table 1. The case-by-case analysis used to construct Table 1 is

detailed in Appendix A.

4 Infinitesimally tight

In this section, we establish the main result of this paper. Specifically, we demonstrate that the
Lagrangian submanifolds listed in Table 1 are infinitesimally tight. To achieve this, we compute
the sum of the Z,-Betti numbers of the real flag manifolds and identify the transversal elements.
To lay the groundwork for our proof, we first provide the necessary definitions to understand
Schubert cells, which play a fundamental role in computing the homology of real flag manifolds.

This exposition is based on [5] and [9].

Let g be a semisimple non-compact real Lie algebra, and let YW be the Weyl group associated with

a maximal abelian subalgebra a c g, with ¥ denoting the corresponding system of simple roots.
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Table 1: Complex flags that admit a Lagrangian immersion of the real flag determined by the

action of K =expt.
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e For © ¢ ¥, the subgroup We of W is generated by the roots in ©. This subgroup acts

transitively on the cosets of W.

e Given © ¢ X, the Bruhat decomposition of the real flag manifold Fg = G/Pg expresses it
as the disjoint union of N-orbits, where N is determined by the Iwasawa decomposition of
P@ = K@AN That iS,

IF@ = H N - wb@,
weW [/ We

where the equivalence relation N - w1bg = N - wabg if w1 - We = wso - We holds.

e FEach N-orbit passing through w € W is diffeomorphic to a Euclidean space, and the orbit

N - wbg is referred to as a Bruhat cell.
e Every Bruhat cell is open and dense in Fg.

e The Schubert cell associated with w € W/We is denoted by SO and defined as

SO = (N -wbe), weW/We.

Using the Schubert cells S9, the authors of [20] introduced a boundary map 9, which was employed
to compute the homology of the real flag manifold Fg. In particular, for any H € cl(a*), there
exists a subset Oy c X such that the Zs-homology of Fg,, = Ad(K) - H is freely generated by the
Schubert cells S, where w e W/ We,, .

Therefore,

That is, the cardinality of the quotient W/We.

Since Ad(K) - H c s =it', for x € Ad(K) - H we have:
T, (Ad(K)-H) ={ad(A)(x): Aect}.
Then,

o If X ¢ ¢', then X = ad(X) is a Hamiltonian field of the function Hx = (X,z). Thus the
singularities of X are the singularities of Hx, and their number is finite, if and only if X is

regular.

Therefore, the transversal elements are the regular elements X, and they satisfy
# (faao)n (X)) =# W/ We,,).

o If Y et then Y is tangent, thus it cannot be transversal.
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eIf Z=X+Y for X et and Y €&, then Z(x) ¢ T, Ad(K) - H if X(x) # 0, so for Z to have
singularity in z we need that X (z) = Y(z) = 0 in a finite quantity. But this only happens
for X regular, such that [X,Y] =0. Thus:

# (faaro)yu(2)) =#W/We,,).

Consequently,

Theorem 4.1. The real flags are infinitesimally tight submanifolds of their corresponding complex

flag manifolds, as listed in Table 1.

As a result of Theorem 1.5, we have:

Corollary 4.2. The real flags are locally tight submanifolds of their corresponding complex flag

manifolds.

A Appendix

In this appendix, we analyze each Satake diagram case by case to identify all complex flag manifolds
that permit the Lagrangian immersion of the corresponding real flag, as determined by the possible
symmetric pairs. This analysis culminates in the construction of Table 1, where for the classical

cases AI, CI, Go, Ful, E¢I, E7I, and Esl, all possible sets © c X¢ are admissible.

Type AIl

In this case, we have g = sl(n, H), with g¢ = s[(2n,C). The Satake diagram is represented as:

e—0—0—  —0—0—@

aq Q2 Qs Qp-3 Qp-2 0Onp_1

Here, i = {agj_1: 1<j<n}and ¥ ={f; = P(agj): 1<j<n-1}. The sets © that satisfy the

Theorem 3.6 are given by:

O =c~{aas,, .., a0t (51,...,8) €b(n—-1)}. (A1)
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Type AIIl
For g = su(k,n—-k)

o If k <n -k, the Satake diagram is

(o7} (oD (7% O+l
O O O ?
|
?
O O O ®
Qp-1 Qn-2 Ak Qp—k-1

As Zim =
satisfy the Theorem 3.6 are given by:

{aj : k<j<n—-k}and ¥ ={B; = P(oj) = P(an—j) : 1 <j <k}. The sets O that

O=Yc~ {Qsyyevy Qs Qpgyy oy Qg & (S1,..0,81) €b(K) e (A.2)

o If k =n -k, the Satake diagram is

(e 71 (6% Q-1
O O O\
O
/ o
O O O
-1 e 759 O+l

As Yim = @ and X = {B; = P(a;) = P(an_;), Bx = P(ag): 1 <j <k—1}. The sets © that

satisfy the Theorem 3.6 are given by:

O =3¢ {0y Qs Uy ey Oy (S15-..,8) €b(k-1)}, (A.3)

or

(A4)

@=Z(c\{asl,...,asl,ak,an,sl,...,an,sl D (81,.,8) €b(k-1)}.
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Type B

For g =so(k,2n + 1 - k), then the Satake diagram is

O— —0—0— —@&=0

aq g [07°F8} Op-2 Qp-1

As Yim={a;: k<j<n}and ¥ ={f; = P(cj): 1<j<k}. If k=n then g is normal, and the sets
O that satisfy the Theorem 3.6 are given by:

O =S¢~ {00t (51,...,8) eb(k)}. (A.5)

Type CI1
For g =sp(k,n—k).

o If k <n -k, the Satake diagram is

e—0—0—  —0—0—  —@=@

(€51 (&%) ag Qg (k41 Qp-1  Qp

As i = {agj 1,0, 1<j <k, ¢>2k} and ¥ = {B; = P(ay;): 1 <j <k}. The sets © that
satisfy the Theorem 3.6 are given by:

O =S¢ {aas,,. .. a0t (51,...,51) €b(k)}. (A.6)

e If n=2m and k = m, the Satake diagram is

e—0—0—  —O0—@<&0

g (&%) ag Qp-2 Qp-1 Qp

As Yim ={agj-1: 1<j<m} and ¥ = {5 = P(ag;): 1<j<m}. The sets © that satisfy the
Theorem 3.6 are given by:

O =3¢ {aas,, ... a0t (51,...,51) €b(k)}. (A.7)



544 J. Baez & L. A. B. San Martin

Type DI

For g =so(k,2n - k).

e If k =n then g is a normal form.

e If k <n—1 then the Satake diagram is

Q-1
(671 a Oyl Qp—2
@
Qp

As Yy ={aj: j>k}and ¥ ={B; = P(a;): 1<j<k}. The sets © that satisfy the Theorem
3.6 are given by:
O=Sc~{ag,. .., (51,...,8) eb(k)}. (A.8)

o If k =n—1 then the Satake diagram is

Q
Qg1

0—O—+—0— I

o Qg Q-2

« n

As Yip = @ and ¥ = {B; = P(;), Br = P(ag) = P(ay) : 1<j <k}. The sets © that satisfy
the Theorem 3.6 are given by:

O=Sc~{ag,. .ot (51,...,8) eb(k-1)}, (A.9)

or

O =%~ {,. s,y ant (s1,...,5) €b(k-1)}. (A.10)
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Type DII

For g =s0*(2n).

e If n is even, the Satake diagram is

Q-1
Q-2 .
e—0—0—  —O0—
aq Qo ok} On-3
O
Qp

As Sip = {aj : jisodd} and ¥ = {B; = P(ag;) : 1 <j <n}. The sets © that satisfy the

Theorem 3.6 are given by:

O =S¢~ {aas,, .., a0t (s1,...,5) €b(k)}. (A.11)

e If n is odd, the Satake diagram is

aq Q2 a3 On-3

O
e—0—e—  —0— I
O

As ¥ip, = {a; ¢ jisodd and j < n} and ¥ = {; = P(w;), Bk = P(an-1) = P(oy,) : 1 <5 <
k, k= (n-1)/2}. The sets © that satisfy the Theorem 3.6 are given by:

~ -3
(—):EC\{QQSI,...,OZQSI: (81,...,81) € b(nT)}, (A.12)

or

_ 3
6=%cn {agsl, ey Oyt (81,001 81) € b(nT)} (A.13)
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Exceptional cases
Type FAIT1

For g = F;?°, then the Satake diagram is

—0—>0—O

Q2 Qs Qg

Therefore the only non-trivial possibility of O that satisfy the Theorem 3.6 is

é = {041,042,043} = Eim- (A14)

Type E6I1

For g = EZ, then the Satake diagram is

Therefore the non-trivial possibilities for © that satisfy Theorem 3.6 are:

L] (:j:@, o 6:{a23a37a4}7
° @:{ag}, [} @:{al,ag,oz5},
o« &-{as), _
{013} [ ) @ = {041,052,044,045},

) (:j = {012,044}, —

~ e O= {a27a37a4aa6}7
e O= {041,045}7

—~ [ ] (:j: a1,Q03,05,06,
[} @ = {013,046}, { ! ° ° 6}

o 0 ={a, a4, a5, o O={o,an,a4,as5 06},

. (:):{041,045,06}, ° é:{()q,OéQ,(Jég,Oé4,0é5}.
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Type E6II]

For g = Eg'%, then the Satake diagram is

aq

Q2

Q4

Qs

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:

° C:):{ag,aga4}, ° (:):{a1,a2,a3,a4,oz5 }.

° (:j = {a27a37a47a6}7

Type E6IV

For g = E5?5, then the Satake diagram is

@ o

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:

° C:):{ag,aga4,a6}, ° C:):{ag,ag,a4,a5,oz6 }.

° (:j = {0[1,042,(13,&47626},

Type ETII

For g = E75, then the Satake diagram is

@ r
@—O O—0O—O0O
a1 2 as oy (6% Qg

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:
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b é:{a13a3?a7}7 L4 é:{alaa3va4va57a7}~

o O={ai,as,as,ar}, o 8= {a1,as a0 a6 a7},

L] (:j: 1,03, 06,0 ~
{ 1,63, 06, 7}7 o @:{al’OJS’Q{5’a67a7},

L @:{a17a37a47a7}7 -
e O= {011,0627043,04470657(17},

°
D

= {al,a3,a5,a7},

o @ = {alaa27a37a47a67a7};

.
D

= {011,042,043,044,047},

e O= {01,043,0[4704570167047},

e O={a1,as, 03,05, 07},

e O={ay,q,a3,a4,ar}, e O={ay,qs,a3,as,qs,ar}.

Type ETII]

For g = E7?° then the Satake diagram is

o—0—@
o

851 as Oy

Q
o

&7

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:

hd 63{03,044,&57047}, hd é:{al,OéQ,Oég,Oé47Oé57O[7},

.
D

= {Oll,Oég,Oé4,Oé57a7}, .
~ e O= {a1,a3,a4,0¢5,a67a7},
e O= {027053’&470‘57047};

e O={as3,aq,as a6,a7}, o O={ay, a3,04,05,06,07}.

Type ESII

For g = Eg 24 then the Satake diagram is

@ s
O—0O0—0—@
(€3] Q2 as Qg Qs (€73 (%4

Therefore the non-trivial possibilities for © that satisfy the Theorem 3.6 are:
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= {ay, a5, a6, a8},
={a1,a4,05,06, 08},

= {ag, a4, 05,06, 08},
={a3,a4,a5,06, 03},
={ay,as5,a6,07,08},
={a1,a2,a4, 05,06, as},

= {O[l,a3704470457066,018},

e O= {(X2,063,a4,04570467058},

L] é = {OZQ,OC470457Q67047’C¥8}3
e ©={a1,a4,as,a ar,as},
° C:) = {043,064,045704670477048}7
° E:) = {al,ag,ag,a4,a57a6,a8}7
o é = {al,a27a47a57a67a77a8}7
° @ = {ozl,oeg,a4,04570467047»0é8}a

o O={a, a3, 04,05, 06,07,08}.
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ABSTRACT

It is well known that every cubic polynomial with complex
coefficients has three not necessarily distinct complex zeros.
In this paper, zeros of cubic polynomials over complex zeons
are considered. In particular, a monic cubic polynomial with
zeon coefficients may have three spectrally simple zeros, un-
countably many zeros, or no zeros at all. A classification of
zeros is developed based on an extension of the cubic discrim-
inant to zeon polynomials. In indeterminate cases, sufficient
conditions are provided for existence of spectrally nonsim-
ple zeon zeros. We also show that when considering zeros of
cubic polynomials over the finite-dimensional complex zeon

algebra C32, there are no indeterminate cases.
RESUMEN

Es bien sabido que todo polinomio cubico con coeficientes
complejos tiene tres ceros complejos no necesariamente dis-
tintos. En este articulo consideramos los ceros de polinomios
ctbicos sobre los complejos zeones. En particular, un poli-
nomio cibico moénico con coeficientes zeones puede tener tres
ceros espectralmente simples, una cantidad no numerable
de ceros, o no tener ceros. Desarrollamos una clasificacién
de ceros en base a una extension del discriminante ctbico
a polinomios zeones. En casos indeterminados, entregamos
condiciones suficientes para la existencia de ceros zeones es-
pectralmente no simples. También mostramos que cuando
consideramos ceros de polinomios cubicos sobre el algebra
de complejos zeones finito-dimensional C33, no hay casos in-

determinados.
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1 Introduction

The n-particle (real) zeon algebra is a commutative R-algebra generated by a fixed collection
{¢giy 1 £ < n} and the scalar identity 1 = (5, whose generators satisfy the zeon commutation
relations

20y Cry 1 F I

otherwise.

CyCiy + Syl =

We denote this algebra by Z,,. Like fermions the algebra has null-square generators; like bosons,

the generators commute. Hence the name “zeon algebra”, first suggested by Feinsilver [2].

Combinatorial properties of zeons have proven useful in problems ranging from enumerating paths
and cycles in finite graphs to routing problems in communication networks. Where classical ap-
proaches to routing problems require construction of trees and the use of heuristics to prevent
combinatorial explosion, the zeon algebraic approach avoids tree constructions and heuristics.
Much of the essential background on algebraic and combinatorial properties and applications of
zeons is summarized in the books [9] and [13]. Other works involving zeons include combinatorial
identities developed by Neto [5-8] and first and second order differential equations considered by
Mansour and Schork [4].

Polynomials over the n-particle complex zeon algebra, denoted by C3,,, were first considered in [11].
We extend the finite-dimensional zeon algebras to the infinite-dimensional complex zeon algebra
C3 and focus on zeros of cubic polynomials over C3. Our study is restricted to monic polynomials
of the form op(u) = u® + au?® + pu + v € C3[u], which generalize naturally to non-monic cubic

polynomials with invertible leading coefficients. Observing that

ap(u—%) = u® + 3qu — 2r,

3

where ¢ = %ﬁ — %aQ and r = %(ﬁa —3y) — 2—17a , our work is further simplified by focusing on

solutions of the depressed cubic equation u® + 3qu — 2r = 0.

Traditionally, the cubic discriminant Ay = 18abc — 4a3b + a®b? — 4b® — 27¢% is used to classify the
zeros of the real monic cubic function f(z) = 2% + ax? + bz + ¢ € R[z]. In particular, Ay = 0
implies that the polynomial has a repeated zero, Ay < 0 implies distinct real zeros, and Ay > 0

indicates that the polynomial has one real zero and a conjugate pair of complex zeros.

To classify the zeon zeros of monic zeon cubic function ¢(u), we define the zeon cubic discriminant
by A, = ¢* +r% When A, is invertible, the zeon cubic ¢ has three spectrally simple zeon
zeros. If ¢ is also invertible, the zeros can be obtained from the depressed zeon cubic formula (or
general extension thereof). If ¢ is nilpotent, zeros can be obtained using the spectrally simple zeros

algorithm recalled in Section 2. By contrast, when A, is not invertible, the zeon cubic ¢ either
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has no zeros or uncountably many of them. Some examples and special cases are considered in

detail in Section 4.

We proceed as follows. Terminology, notational conventions, and essential results on kth roots of
complex zeons are established in Subsections 1.1 and 1.4. Essential background on zeon polynomials

is recalled in Section 2.

Main results appear in Sections 3 and 4, where depressed and general cubic formulas are presented
and a classification of zeros based on the cubic discriminant is established. Beginning with Theorem
3.2, we show that a depressed cubic ¢(u) = u? + 3qu — 2r € C3[u] with invertible ¢ has zeon zeros
given by u = A3 — gA=1/3 for the cube roots of A = r & /3 + r2 with either choice of sign,
provided ¢ + 72 has square roots. The restrictions are relaxed to allow nilpotent ¢ in Theorem
3.5, where we find that if r is invertible, then ¢(u) has three spectrally simple zeros, while if r is
nilpotent, then ¢ has either no zeros or uncountably many nilpotent zeros. Section 3 concludes

with the establishment of a general cubic formula for zeon polynomials in Theorem 3.16.

In Section 4, our attention turns to classification via the cubic discriminant. In Theorem 4.1, we
consider zeon cubic p(u) = u® 4+ au? + fu+ v € C3[u], and define the discriminant A, = ¢* + r?,
where ¢ = 18 — $02, and r = (Ba — 37) — 3=a®. We show that if A, is invertible, then ¢ has
three spectrally simple zeros. On the other hand, if A, is nilpotent, then ¢ either has no zeros
or has uncountably many zeros. Section 4 concludes with a discussion of classification of cubic

polynomials over the finite-dimensional zeon algebra C3s.

Examples appearing throughout the paper have been computed using Mathematica with the “Zeon
Essentials” package freely available online via the “Research” link at https://www.siue.edu/

“sstaple.

1.1 Preliminaries

Throughout the paper N, R, and C represent the natural numbers (i.e., positive integers), real

numbers, and complex numbers, respectively.

Let C3 denote the infinite-dimensional complex Abelian algebra generated by a fixed collection

{¢gy 17 € N} along with the scalar 1 = (g subject to the zeon commutation relation (ZCR):

{Char St = Carly + S = 2065¢a ¢y = 2060051

where we employ multi-index notation for the final equality. For each finite subset I of N, define

(r = H ¢,. Letting the finite subsets of positive integers be denoted by [N]<%, the algebra C3 has

el
a canonical basis of the form {{; : I € [N]<“}. Elements of this basis are referred to as the basis

blades of C3. The algebra C3 is called the (complezx) zeon algebra.
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While nonzero scalar multiples of generators also generate the algebra C3, nontrivial linear combi-
nations of generators are not generators. For example, i # j and a,b # 0 imply (alg;y + bg{j})2 =
2abCy; 53, which is not a generator of the algebra. Hence, the representation is unique up to

generator labeling and scaling.

By the null-square property of the generators {(; : ¢ € N}, the basis blade product satisfies

InJ=g,
Gy = o (1.1)

0 otherwise.

An element u € C3 has canonical expansion u = ), u;(r, where each I is a finite subset of N,
uy; € C, and only finitely many of the coefficients u; are nonzero. Two elements u,v are equal if

and only if u; = vy for every multi-index in the canonical expansions.

We note that C3 is graded. For non-negative integer k, the grade-k part of element u = >, ur(s

is defined as

(uhp = Z urCr. (1.2)

(I 1=k}

The mapping (-); : C3 — C3 is clearly a projection onto the subspace of C3 spanned by {(; :
1] = k}.

Given z € C3 we write €z = (z)g for the complex (scalar) part of z, and Dz = z — €z for the
dual part of z. Here, the term “dual” is motivated by regarding zeons as higher-dimensional dual

numbers.

Remark 1.1. The algebra C3 can be regarded as the algebra of polynomials in commuting null-
square variables Cr1y,Cray, - .. Equivalently, C3 = Clzy, 22, . . /{12, 292, . ), the quotient of the
algebra of complex polynomials in commuting variables z; by the ideal generated by squares of

variables. The basis blades of C3 correspond to basis monomials of the polynomial algebra.

Definition 1.2. The minimal grade of u € C3 is defined by

= min {k € N: (Du)y, # 0} Du#0, (1.3)
0 u = Cu.

We emphasize that ju = 0 if and only if u is a scalar, in which case u is said to be trivial. As
it is often useful to refer to the minimal grade part of an element u € C3, we further define the

following notation:

Uy = (UWpy.-
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Example 1.3. Let u = 3 — (g2 + 5C(3y — 12((1,2,33- We are looking for the minimal grade and
the minimal grade part of u. Appealing to (1.2), we see that w has nonzero grade-k parts for

k €{0,1,3}. In particular,

(u)o = 3,
(u)1 = —Cqay + 5¢33,

(u)z = —12((1 2,3} -

Hence, by Definition 1.8, the minimal grade of u is hu = 1 and the minimal grade part of u is

up = (u)1 = —Cg2y + 5(3)-

Finally, we note that the nilpotent elements of C3 form a maximal ideal, which we denote by
C3° ={ueC3:C¢u=0}.

The invertible elements form a multiplicative abelian group denoted by

C3* =C3\C3° = {ueC3: Cu#0}.

1.2 Finite-dimensional complex zeon algebras

Letting [n] denote the n-set {1,...,n}, the complex zeon algebra generated by {(f;y : i € [n]}

along with the unit scalar 1 is denoted by C3,,. As a vector space over C, C3,, has dimension 2".

Given any zeon u € C3, we define the maximum index of u to be the least positive integer n such
that
uw€C3, CC341 CClryaC---.

Equivalently, we have the following definition.

Definition 1.4. The maximum index of u € C3 is the unique positive integer n such that u € C3,

and u ¢ C3,_1.

For example, if u =1+ 3((1 43 — 2({1,3,5), the maximum index of u is n = 5.

1.3 Multiplicative properties of zeons

The elements of C3 form a multiplicative semigroup, and it is not difficult to establish convenient
formulas for expanding products of zeons. Moreover, u € C3 is invertible if and only if €u # 0.

The following result is recalled from [1] for reference.
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Proposition 1.5. Let u € C3, and let k denote the index of nilpotency' of Du. It follows that u
is uniquely invertible if and only if €u # 0, and the inverse is given by

k—1

> (1) (€u) ™ (D). (1.4)

Jj=0

_1:L
Cu

u
One way to see Proposition 1.5 is to first recall that if the geometric series Z;io 27 converges, its
limit is ﬁ Again letting a = €u # 0 and writing v = a + Du, we see that
1 k—1
-1 —1 1 1 . .
uw o =((a+Du) =a  ———=a -1 a7 (Du),
(a+Du) g~ L@
where nilpotency of ®wu reduces the infinite series to a finite sum, eliminating any concern about

lack of convergence.

1.3.1 Products and partitions

For convenience, we recall without proof the multinomial theorem. Let {1, ..., 2} be a collection

of commuting variables. For any positive integer m and any nonnegative integer n, one has

n m
(z1+zo 4o )" = Z (lﬁ ko k > Hw}w, )
) A m E:1

ki+-dkm=n
ky,kg,.. km >0

where

" o
kl,k2;~-~7knl o kl'k2|km|
is a multinomial coefficient. We further take 2° = 1 even when 2 = 0.

When n = 2, (1.5) reduces to the more commonly seen binomial theorem. The importance of the
multinomial theorem when considering powers of zeons becomes evident when one realizes that
the nonnegative integers k1, ..., k,, are restricted to values 0 or 1 when x1,...,x,, are zeon basis

blades.

For an immediate consequence, let u,v € C3, write v = ) ;us{; and v = > ;vr(s, and let

the product w = uwv be written w = Zun( 7- Then for fixed multi-index I, the corresponding
I

wr = E quI\K.

KCI

coefficient of {; in w is given by

Extending to powers of zeons, let u = Zw([ € C3. For positive integer k, let w = u* be written
I

Hn particular, » is the least positive integer such that (Du)” = 0.
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w = Z wy(r. For any fixed multi-index I, the corresponding coefficient of {; in w is given by
I

PR
wy = g f‘ugj g T
=0 reP ()
Im=k—j

Here, P(I) denotes the collection of partitions of the multi-index I. When = € P(I) is a partition,
|7| denotes the number of blocks (nonempty subsets of I) in the partition 7 and uy := [],c, us;
i.e., the product of coefficients u; in the expansion of u corresponding to blocks b in the partition

7. Note that the scalar part of u is €u = ugy. By convention, we define ug? = 1 when uy = 0.

1.4 Complex zeon roots: Existence and recursive formulations

Invertible zeons have roots of all positive integer orders. Generalizing the result established in [1]

for Z,,, their existence is established recursively as follows.

Theorem 1.6. Let w € C3*, and let k € N. Then, there exists some z € C3* such that 2k = w.

Further, writing w = u + v(y,y, where u,v € C3,,_1, 2 is computed recursively by

1
1/k 1/k k—1)/k
z=wl/k =Y/ —|—Eu (k=1)/ V{n}-

Proof. Proof is by induction on the maximum index n of w. When n = 1, let w = wg + b({13,
where wy = Cw # 0 and b € C. Applying the binomial theorem and null-square properties of zeon

generators, one finds

b g b
1/k _ k—1)/k —
(wg * 4 kng(k—l)/k’g{l}) = wy + kwg *~V/ WCU} = Wy + by

Next, suppose the result holds for some n—1 > 1 and let w € C3,, be written w = u+v(y,}, where
u,v € C3,_1. In particular, this implies u € C3,*. Let o = v'/*, and let z = o + %ﬁ{n}a_(k_l)v.
Then
1 b 1
2k = (a + kOé_(k_l)UC{n}> =u-+ k‘a(k_l)ga_(k_l)’UC{n} =u+ ’UC{n} = w. O

Theorem 1.6 establishes the existence of kth roots of invertible zeons. The following corollary

shows that for each kth root of €w, there exists exactly one zeon kth root of w.



560 B. Do & C. S. Staples CUBO

27, 3 (2025)

Corollary 1.7. Let w € C3*, and let k € N. Then, w has exactly k distinct kth roots; i.e.,
Hu:uF =w} =k.

Proof. Given any invertible zeon w, the nonzero scalar part €w has precisely k distinct kth roots

in C. We claim that for each of these scalars A, there is precisely one zeon z satisfying €z = X and
k

Z¢ =w.

k

To see this, suppose u* = w = v¥, where €u = €v = X and observe that « — v is nilpotent because

u=A+Duand v =\ 4+ Dv. Note that the product wd of invertible w and nilpotent ¢, is zero if
and only if § = 0, since 0 = w10 = §. With the assumption u* = v*, we then have
uk _ ’Uk — (’LL _ ,U)(uk—l +uk—2,u N _’_vk—l)
= (u—0) [N +61) + (W14 80) + -+ (N7 +6,)]
= (u—v) [kA*1 4 4],

where § = §; + - - - + 65, is nilpotent because C3° is an ideal. It is clear that kA*~1 +§ is invertible,
so (u — v)(kA*=1 +§) = 0 implies (u — v) = 0. O

Given invertible v € C3 and positive integer k, the principal kth root of u is defined to be the zeon
kth root of u whose scalar part is the principal kth root of €u € C.

1.4.1 Roots of nilpotent zeons

Generally, for positive integer £ > 2, a nilpotent zeon has either no kth roots or uncountably many
of them. We restrict our attention to square roots and cube roots here because these are the only

roots of interest when dealing with cubic polynomials.

An element u = Z{IeNSw} ur(r has a square root w = ) ;w;(; if for each coefficient u; in the

expansion of u, the coefficients of w satisfy

Z WKWK = U (1.6)
KCI

For each nonempty multi index I, (1.6) is an equation in 2111 — 1 variables. Letting n denote
the smallest positive integer such that u € C3,,°, and observing that squares of elements in the
maximal ideal C3° always have minimal grade greater than 1, it follows that there are 2" —n — 1
such equations to consider. The resulting underdetermined system of 2 —n — 1 equations in 2" — 2

variables then has either no solution or uncountably many solutions.
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Example 1.8. Consider the nilpotent zeon u = 4(g1 2y — 5C(1,3) — 10(g2,3y — 5¢1,2,3)- A square

root w =Y, wi(r of u must satisfy the following system of equations:

wiywigy =2,
w{i1yw{z}y = _ia
U){Q}’(U{g} = —5’
5
W3 W12y T W{2yW13) T WyWi23) = ~5-

One such solution is
5
w = —C{1y — 2C0y + 5@{3} + Cq1,2y + Cq1,3y + 3C2,3)-

Similarly, a nilpotent zeon of minimal grade 3 or more having expansion u = Z{IeNgw:ng} urCr

has cube root w = ; w;(s if for each coefficient us, the coefficients of w satisfy

E WKWLWI\(KUL) = UI-
{K,LCI:KNL=2}

This leads to an underdetermined system of 2" — (;‘) —n — 1 equations in 2" — 2 variables with

either no solution or uncountably many solutions.

We turn now to a simple special case for which symbolic computation is straightforward.

1.4.2 Fundamental roots of nonzero null monomials

In this section we consider kth roots of a(; for a € C* and nonempty I C N. Such elements are

referred to as nonzero null monomials® of C3.

Remark 1.9. Nonzero null monomials are square roots of zero. It follows that every kth root of

a nonzero null monomial is a 2kth root of zero.

Definition 1.10. Given a nonzero null monomial w = a(; and a k-block partition @ of I, a

fundamental kth root of w is any nilpotent zeon of the form

Un =3 sy, (1.7)

Jem

satisfying (u;)¥ = w.

2In particular, aCs is a zero of the monomial ¢(u) = u? for any I # @.
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For purposes of symbolic computation, two forms of roots are particularly convenient. Roots of
the form (1.8) are referred to as flat form fundamental kth roots of u, while roots of the form (1.9)

will be referred to as spike form fundamental kth roots of wu.

Lemma 1.11. Given a nonzero null monomial w = aly, a nilpotent zeon of the form

up = & %ZQ, (1.8)

Jerm
satisfies u;"* = w for any k-block partition 7 of the multi index I and any complex kth root of -
Moreover,
a
Up M = Z Cr+ HCM (1.9)
Jem\M

satisfies ur® = w for any fized block M of the k-block partition © of the multi index I.

Proof. By direct computation via the multinomial theorem,

k k
(ﬁZCJ> I:!k!el_[@a@ Z CJ+%<M . a
=1

Jer\M
Hence, the result.

Example 1.12. The flat form fundamental square roots of aCy1,2,3) are

a a

Uj23 = :t\/g(C{l} + Cr2,31), Ug|13 = i\/g(C{z} + Cq1,3});5
a

ugj2 = =+ §(C{3} + Cf1,2}),

and the spike form fundamental square roots are

a a

U1)23,{2,3} = (C{1} + 54{2,3}) ; U2|13,{1,3} = (C{z} + §C{1,3}) )
a a

Ug|12,{1,2} = (C{s} + 5({1,2}) » U1)23,{1} = (§C{1} + 4{2,3}) ,
a a

Ug(13,{2) = (§<{2} + 4{1,3}) ; u3|12,{(3} = (§C{3} + C{1,2}> .

Notation. The numbers of k-block partitions of sets containing m elements are given by Stirling

numbers of the second kind, denoted {1;:}
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Lemma 1.13. The number of fundamental kth roots of a null monomial of grade m > k is k{’,?},

Proof. Each partition of I into k nonempty subsets {I, : 1 < ¢ < {"}'}} gives a principal kth root
of a(y since

k
(a5 ¢r,)* = k(a5 T ¢r, = acr.
(=1

Each a € C* has k distinct complex kth roots, so there are k zeon kth roots of the form seen in

(1.8) for each k-block partition 7 of I. O

2 Zeon polynomials

Let f(2) = amz™ 4+ -+ + a12 + ag (@, # 0) be a polynomial function with complex coefficients,
and recall that by the Fundamental Theorem of Algebra, f(z) has exactly m complex zeros. If
f(2) can be written in the form f(z) = (z —r)‘g(2), where £ € N and g(r) # 0, then 7 is said to be
a zero of multiplicity £ of f(z). For convenience, () will denote the multiplicity of r as a zero
of f(2).

On the other hand, if p(u) = @pu™+---+aru+ap € C3[u] is a polynomial with zeon coefficients,
it is not obvious how many zeros this polynomial may have in C3. For example, p(u) = u? — Cr1y

has no zeon zeros because (;1} has no square root.

2.1 Spectrally simple zeros of zeon polynomials

Given a complex zeon polynomial ¢(u) = apmu™+---+a1u+ag, a complex polynomial f, : C — C

is induced by
It follows that

so that f,oC =Co.

We restrict our attention to zeon polynomials with invertible leading coefficients because when «,,

is nilpotent, the induced polynomial f,(z) is of lower degree than ¢(u). Moreover, as a matter of

1

convenience the zeros of p(u) are exactly the zeros of the monic polynomial o, ‘¢ (u).

The zeon extension of the Fundamental Theorem of Algebra developed in [11] shows that ¢(u) has

a simple zeon zero if the complex polynomial f,(z) has a simple complex zero.
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Let ¢(u) be a nonconstant monic zeon polynomial. A zeon A € C3 is said to be a simple zero of

@ if p(u) = (u— A)g(u) for some zeon polynomial g satisfying g(\) # 0.

The spectrum of an element u in a unital algebra is the collection of scalars A for which v — A is
not invertible. Hence, the spectrum of u € C3 is the singleton {A = €u}, motivating the next

definition.

Definition 2.1. A simple zero \g € C3 of o(u) is said to be a spectrally simple if €\g is a simple

zero of the complex polynomial f,(z).

2.1.1 Fundamental theorem of zeon algebra

The Fundamental Theorem of Zeon Algebra presented in [11] for the finite dimensional zeon algebra
C3,, shows that a zeon polynomial p(u) € C3,[u] has a spectrally simple zero A = X\g + D\
whenever the complex polynomial f,(z) € C[z] has a simple zero Ao € C. The theorem also holds
also for a polynomial over C3 by first defining the mazimum indezx of a zeon polynomial ¢ to be
the least positive integer n such that ¢(u) € C3,[u] and proceeding as in the finite-dimensional

zeon algebra.

For reference, the theorem is recalled here without proof. We note that it also provides a method

for calculating spectrally simple zeros of any zeon polynomial.

Theorem 2.2 (Fundamental Theorem of Zeon Algebra). Let o(u) € C3[u] be a monic zeon
polynomial of degree m and having mazimum index n, and let f,(z) € C[z] be induced by p. If
Xo € C is a simple zero of f,(z), let g be the unique complex polynomial such that f,(€u) =
(Cu — Xo)g(€(u)). Then @(u) has a simple zero A such that €\ = Xg. Letting n denote the
mazimum index of p(u), for 1 < k < n, the grade-k part of X (denoted \y) is given by

1 k—1
<>< (Z&Ai»k'

Moreover, such a zero A is unique.

The idea behind the proof is that when )¢ is a simple zero of f,(z), the remainder ¢(Ag) of p(u)
when divided by u — Ag has zero scalar part. The minimal grade part of the remainder w = ¢(\g)
can then be utilized to construct a new zeon element Ao+ Ay, having the property that o(Ag+ Agw)
has higher minimal grade than ¢(XAo). Grades of all remainders will be at most n (the maximum

index of ¢(u)), so the process terminates in a finite number of steps.

Of particular significance, Theorem 2.2 provides an algorithm by which a spectrally simple zeon
zero can be calculated. Algorithm 1 returns the spectrally simple zeon zero A\ of ¢ whose scalar

part g satisfies f,(Ag) = 0.
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Algorithm 1: Compute spectrally simple zeon zero.

input : Zeon polynomial p(u) over C3,, and a simple nonzero root Ao of the associated
complex polynomial €(p(u)).
output: Zeon zero A of p(u) with €X = Ao.

Initialize complex polynomial g(Cu).

C(p(u))
Cu — )\()7
Note g(Cu) satisfies €(p(u)) = (Cu — Ag)g(€u), where g(Ag) # 0.

£+ ©(Xo)y/9(Xo);
A — &

while 0 < ¢ < n do
£ o(N)g/9(Mo);
A= (A=)

return J;

g(Cu) +

When ¢(u) € C3[u] is of degree m > 1 and the zeros of f,(z) are all simple, we see that ¢(u) has
exactly m complex zeon zeros. For example, when o € C3*, ¢(u) = u* + o has exactly k distinct

complex zeon zeros.

2.2 Spectrally nonsimple zeon zeros

Algorithm 1 is useful for computing spectrally simple zeros of ¢(u), but it is not applicable to any
zero w whose scalar part €w is a multiple zero of the induced complex polynomial f,, satisfying

C(p(u)) = fo(€u). These spectrally nonsimple zeros are considered next.

A zero Mg € C3 of p(u) € C3[u] is said to be spectrally nonsimple if €\ is a multiple zero of
the induced complex polynomial f,. We note that zeon zeros of multiplicity greater than one are

included among spectrally nonsimple zeros.

It was shown in [11] that if a monic polynomial p(u) € C3[u] has distinct complex zeon zeros wy, wa
satisfying €w; = €wy = wy, then ¢(u) has uncountably many zeros of the form w = wg + Dw.
As a consequence, if ¢ € C3[u] has a zero z € C3 of multiplicity two or greater, then ¢ has

uncountably many zeros w € C3 satisfying €w = €z .

Lacking an algorithm for computing spectrally nonsimple zeros of zeon polynomials, our attention

turns to zeon extensions of well-known special cases: quadratic and cubic polynomials.

2.2.1 The zeon quadratic formula

We close this review of zeon polynomials by recalling a basic result concerning zeros of quadratic

zeon polynomials. A zeon quadratic polynomial has solutions if and only if its discriminant has a
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square root [3].

Theorem 2.3 (Zeon Quadratic Formula). Let ¢(u) = au?® + Bu + v be a quadratic function with
zeon coefficients from C3, where €a # 0. Let A, = % — 4ary denote the zeon discriminant of .

The zeros of ¢ are given by

In particular,

(1) When A, = 0, the zeros of ¢ are given by u = —a~'3/2 +n for any n € C3 satisfying
2
n* = 0.

(2) When €A, #0, ¢(u) =0 has two distinct solutions.

(3) If A, # 0 is nilpotent and p(u) =0 has a solution, then it has uncountably many solutions.

To see the result, begin by writing au? + Bu + v = %((Qau + B)? — (8% — 4ay)) and expand.
This reduces the problem to seeking square roots of the zeon discriminant. We are now ready to

turn our attention to cubic polynomials over C3.

3 Cubic polynomials with zeon coefficients

Beginning with the general zeon cubic equation 23 + az? + Bz + v = 0, where o, 8,7 € C3 and

a # 0, the depressed cubic equation is obtained via the substitution z = v — /3. In particular,

0= (u-2) 40 (u-2) +8(u-2) tr=u s (5-L)usr 2Py

3 3 3 27 3
2 3
3 B« — af v 3
“+(3 9)” (27+6 2) WS A
where ¢ = % — %aQ and r = %(Ba —3v)— %ag’. It follows that depressed cubics are sufficient for

our purposes.

We note that any monic cubic polynomial having a spectrally simple zero A can be reduced via
polynomial division to the product ¢(u) = (u — A9 (u), where ¥(A) # 0 is a quadratic polynomial
over C3. The remaining zeros of ¢(u) can then be classified by the zeon quadratic formula of

Theorem 2.3.



Zeros of cubic polynomials in zeon algebra 567

Example 3.1. To motivate our discussion, consider the depressed zeon cubic equation ¢(u) = 0

where

o(u) = u® +u (—18({1 2,31 — 6¢[1y + 92y — 9) — 101,23 — 6((1,2,3}- (3.1)

The induced scalar cubic polynomial is f,(z) = z3 — 9z, which has simple zeros {—3,0,3}. Con-

sequently, o(u) has three spectrally simple zeon zeros, each of which can be found by applying

Algorithm 1. Applying the algorithm with simple zero \g = —3 of f,(z), we obtain the first zero:
3¢z

1 8
up = —3+ TSC{I’Q} - gC{Lz,s} —Cuy + 5

At this point, we may either repeat the algorithm with the other two zeros of f,(z) or we may
perform polynomial division to write p(u) = (u —uy)¥(u) and apply the zeon quadratic formula to
Y(u) to obtain the remaining zeros. In the latter method, we apply the quadratic formula to

1 8 3¢ 10
Y(u) = v’ +u (ISC{LQ} - gC{1,2,3} - C{l} + ;2} - 3> - §C{1,2} - 2({1,2,3}7

which yields the remaining zeros:

10 2
Uz = _HC{M} - g({1,2,3}7

19 10 3
us = 3+ 1202y + 5 ¢z — 56

We point out that the approach taken in Example 3.1 involves the application of Algorithm 1 once,
followed by polynomial division and an application of the zeon quadratic formula. Alternatively,

since the zeros of ¢(u) were all spectrally simple, we could have applied Algorithm 1 three times.

We further point out that when the scalar polynomial f,(z) has a single zero of multiplicity three,

the approach taken in Example 3.1 fails completely.

To treat such cases as well as to gain deeper insight on zeros of zeon cubics for all cases, we
now consider a zeon extension of the cubic formula. The complex zeon result below is based on

Cardano’s approach to cubic polynomials with real coefficients, as presented in [10].

Theorem 3.2 (Depressed Zeon Cubic Formula). Let p(u) = u® + 3qu — 2r € C3[u], where
€q # 0 and square roots of ¢> + r? are assumed to exist. The zeon zeros of p(u) are given by

u=AY3 —qA1/3, for the cube roots of A =1+ +\/q3 + r2 with either choice of sign.

Proof. Note that A is invertible if and only if €¢ # 0, since €A = 0 if and only if €r =
FC (x/q3 + ’I“2>. Squaring both sides yields €¢3 = 0. Proof is then by direct substitution, where
all necessary cube roots, square roots, and inverses exist. Assuming A = r + /g3 + 72, it follows

that
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P(AS — gAT5) = (A5 — gA™5)" 4 3g(A5 —qA™5) — 2
= A—3A5qAT5 +3ATPATS — PAT 4+ 3945 —3¢PA75 — 20
— A —3¢A% +37A7F — PA 4 3¢AS — 32A — 2
= A— q3A—1 — 9
= (P +2rV/@ P =P+ VP )T =2

=2r(r+ V@R +r)r+ V@ +r2)7 = 2r =2r —2r = 0.
Similar calculations establish the result for A = r — /¢ + r2. O

Since A is assumed to be invertible in Theorem 3.2, there are three distinct zeon cube roots of A

for any square root of ¢> + r2.

Example 3.3 (€q # 0, ¢> + r? invertible). Consider the zeon cubic ¢(u) = u® + 3qu — 2r defined
by
p(u) = v’ +u (6¢.2y = 12C(2,3) — 3C(ay — 36) +6C(2y — 4((5)-

We note that €q # 0, since
q=—12+42(( 2y — 4Cq2,31 — (433

Further, ¢3 + r? is invertible since r is clearly nilpotent. The zeros of p(u) are then found via
Theorem 3.2:
1 215 5 Croy 7
up = —6+ 5{{1,2} - %C{z,s} - @4{1,2,3} T~ %Cm}a

G2 Sq3y

1 1
uz = —ﬁf{m} - 52({1,2,3} + 9

1 109 13 1 11
uz =6 — §C{1,2} + @C{z,g} + @4{1,2,3} - EC{Q} + %C{3}~

When ¢* 4+ r? € C3 is nilpotent and has a square root, uncountably many square roots exist. In
this case, the associated cubic equation has infinitely many solutions.
Example 3.4 (€q # 0, ¢3 + 1% € C3°). Consider the depressed zeon cubic p(u) = u® + 3qu — 2r,

where

q=—C1,2y + 3y + (a3 +2¢0y — 2¢qy — 1,
r = —3Cq1y + 3¢y + 1.
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The nilpotent element ¢* + r? = 3Cq1,2) + 3C(1,3) + 3C(2,3) has uncountably many square roots;

3
for example, p = \/; (C{l} + (o + C{3}). It follows that p(u) has uncountably many zeros of the
form (1 + p)'/% — q(r + p)~/3. In particular,

10 2 2
ug =2 —2(p1y + 2((2y + ?C{LQ} - gC{1,3} - 5C{2,3}

satisfies p(up) = 0.

Next we consider the depressed cubic p(u) = u® + 3qu — 2r, where €q = 0. It follows that the
complex polynomial induced by ¢ is f,(z) = 2% — 2€r. If € = 0, then f,(z) = 2z* has one zero 0
of multiplicity three. Hence, if ¢ has zeros, there are uncountably many and they are all nilpotent.
On the other hand, if €r # 0, then f,(z) has exactly three distinct complex zeros, so that ¢ has

three spectrally simple zeros. Thus, we have derived the following theorem.

Theorem 3.5 (Depressed Cubic Zeros I1). Let ¢(u) = u® +3qu—2r € C3[u], where €g = 0. Then

the following are true.

(1) If €&r #£ 0, then w(u) has three spectrally simple zeros.

(2) If €r =0, then @ has either no zeros or uncountably many nilpotent zeros.

We illustrate Theorem 3.5 with the following example.

Example 3.6. The case €q = 0 is illustrated by the zeon cubic polynomial
2 4 4 8 8
3
o(u) =u’ + <—3C{1,2} + g({1,3} + gC{m} - 3C{1,273}) u— §C{172,3}~

In this example r = %C{1,273}, so that @(u) either has no zeros or uncountably many. Letting

s = Cu1y + 2y — Gy + Cqu2y — (.35 it is seen that o(s) = 0. Moreover, p(s + alf123y) =0 for
any a € C.

3.1 Special case: ¢(u) = u® + 3qu

Note that if r = 0, the zeros of p(u) include {0, 4++/—3q}, provided the square roots exist. When
q is invertible (i.e., €q # 0), these are the three distinct zeros of ¢(u). When €q = 0, p(u) =0

has uncountably many solutions.
Our goal in this subsection is to describe some of the zeros of u® + 3qu when ¢ is nilpotent.
Definition 3.7. Let ¢ =, qi(;r € C3. The index support of q is defined to be

b= J I (3.2)

{I:q1#0}
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The index support of a nilpotent ¢ is used to obtain a null monomial that “annihilates” ¢; i.e.,
qCq) = 0. For this reason, (|, will be referred to as an annihilator of ¢ € C3°. More generally,

qClq = (€q)(jq for arbitrary ¢ € C3, so that (|4 is an annihilator of Dgq.

Example 3.8. Let ¢ = 3 + 4(9y — 5Cq1,3,4). Then [q] = {1,2,3,4} and
qClq) = (3 +4Cq2y — 5C41,3,43)Cq1,2,3,4) = 3C[1,2,3,4}-

While it is clear that when ¢ is nilpotent, ¢(; = 0 for all I D [g], a nilpotent ¢ may also be
annihilated by a basis blade ¢; for one or more I C [q]. Letting N, = {I C [¢] : ¢¢; = 0}, it follows

that w
¢ ar(r=0
IEN,

for any linear combination of basis blades indexed by A;. The resulting subspace of C3 is denoted

by Anns(q).

It is clear that Annsz(u) N Anns(v) C Annz(u + v) because z € Annsz(u) N Anns(v) implies
z(u+v) = zu+ zv = 0. However, the reverse inclusion need not hold, as illustrated in Example

3.9.

Example 3.9. Let u = ({1} + (23, v = —(qoy € C3°. Letting z = ({1, we see that
2(u+v) = ¢y Sy + Gy — Gy) = ¢y =0,

so that z € Annz(u + v) even though z ¢ Anns(u) and z ¢ Annsz(v).

With the concept of zeon annihilators in hand, we are ready to present our result on zeros of

o(u) = u® + 3qu when ¢ is nilpotent.

Theorem 3.10 (Zeros of p(u) = u? + 3qu when €q = 0). Let ¢(u) = u® + 3qu € C3[u], where
q# 0 and €q=0. Then,

(1) @(z) =0 for any z € Anns(q) satisfying k(z) < 3; and
(2) if q has square roots, then p(z) =0 for any z € {+/—3q}.

In particular, v(alq) =0 for a € C.

Proof. First, for any z € Anns(q) satisfying x(z) < 3,

0(2) =2 +3¢z=0+0=0.
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Second, let (—3¢)'/? = {z € C3: 22 = —3¢} and recall that this set has infinite cardinality when

it is nonempty. It follows that for each z € (—3q)'/2,

©(z) = 2(22 +3q) = 2(=3¢ + 3¢) = 0.
Finally, ([q € Ann3(q) satisfies x((jq) = 2, s0 p(a(jq) = 0 for all a € C. O

Theorem 3.10 does not characterize all zeros of the cubic ¢(u) = u3+3qu, as illustrated by Example
3.11.

Example 3.11. Consider the cubic p(u) = u® + 3qu, where
1 2 2 2
q= §<{1,2,3} - 54{1,2} - gC{l,:&} - §4{2,3}~

Letting z = Cg1y + Cp2y + (3}, one finds that 22 = 2(Cp101 + Cr1,3y +C2.31)s 2° + 3¢ = ((1,2,33, and
2% = 6((1,9,3), so that k(z) >3 and z ¢ (—3q)'/?. Further, z ¢ Annz(q) because

1
qz = g(({l,z,s} —2¢(1,23 — 2Cq1,3) — 2¢2,33) (Cpay + Coy +Cqay) = —2C(,2,3)-

Clearly, z fails to satisfy the sufficient conditions described in Theorem 3.10. However, z € ¢~ *(0)

since

p(z) = 2° +3qz = 6((1 231 — 6({1,2,3) = 0.

Corollary 3.12. Let ¢(u) = u® — alru € C3[u], where a # 0 and |I| > 2. Then ¢(u) = 0 has
{IQ} flat form solutions of the form
a
Ur = \/gz CJ»

where ™ ranges over the 2-block partitions of the multi index I.

Proof. Note that u? — al;u = u(u® — al;) = 0. Let m be a 2-block partition of I. Let K be one
block of the partition. It follows that

Up = \/E(CK +{nK),
0(ur) = ur(ur? — aly) = ug <<\/§(CK + C]\K))2 - ag})

= Uﬂ%@aﬁl —a(r) = ur(alr — acr) = 0.

so that
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The number of two block partitions 7 of I is {'él}, so the result follows from Lemma 1.13. O

3.2 Special case: ¢ =0

Lemma 3.13 (Depressed cubics: ¢ = 0). Let ¢(u) = u® — 2r € C3[u]. Then the following are

true.

(1) If r =0, then ¢='(0) = {n € C3° : x(n) < 3}.
(2) If €r # 0, then @ has three spectrally simple zeros: ¢~ (0) = (2r)'/3.

(3) If r # 0 and €r = 0, then ¢ has either no zeros or uncountably many zeros; in particular,

0 H0) = {w: w? = 2r}.
Proof. Consider the zeon cubic ¢(u) = u? — 2r.

(1) Clearly ¢(n) =73 = 0 if and only if 7 is nilpotent of index 3 or less.

(2) If r is invertible, then u3 — 2r = 0 if and only if u is a cube root of 2r. There are three such

zeros, one for each complex cube root of €2r.

(3) When r is nonzero and nilpotent, the zeros of ¢(u) are precisely the nilpotent cube roots of

2r. As seen in Section 1.4.1, 2r has either no cube roots or uncountably many of them. [

Corollary 3.14. Let p(u) = u® — al; € C3[u], where a # 0 and |I| > 3. It follows that ¢(u) = 0
has {lél} flat form solutions of the form

Ur = \S/gzgh

Jemw

where ™ ranges over the 3-block partitions of the multi index I.

Proof. Proceeding as in the proof of Corollary 3.12, let m be a 3-block partition of I. Let J, K, L
be the blocks of partition 7. It follows that

Ur = \3/5(@1 +Cx +Cr),

so that

3
p(ur) = (f/g(CJ +Cx + CL)> —a(y = %GCJCKCL —ar = alr — alr = 0.

The number of three block partitions 7 of I is {lél}, so the result follows from Lemma 1.13. O
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Example 3.15. Consider the cubic polynomial

p(u) =u® +u® (3—Cay) +u(—Cuoy —2¢uy +3) +1—Cay — (e

Writing p(u) = u® + au? + Bu + 7, let ¢ = (g — %2) and let r = %(ﬁa —-3y) — 717a3, so that
o(u) = u + 3qu — 2r. It follows that Clq) = Cq1,2y and that q has spike form fundamental square

roots (1y — %<{2} and ({2y — %C{l}, the (uncountably many) zeros of p(u) include the following:
1
up=—-1+ gC{1} + 1,23

4 3
ug = -1+ gf{l} - §C{2}’

7
ug = —1— 6({1} + ((23-

These zeros are easily confirmed by evaluating the polynomial.

3.3 A general cubic formula

For convenience in symbolic computation, a general cubic formula is now obtained as a corollary

of Theorem 3.2.

Theorem 3.16 (General Zeon Cubic Formula). Let p(u) = u? + au® + Bu + v € C3[u], let

q= %B — %aQ and let r = %(ﬁa —3y) — %as. Suppose €q # 0 and set A, = ¢ + r2. Suppose

A, has a square root 8. Letting s1 € (r+ 0)Y/% and sy € (r — 8)'/3, it follows that (u) has zeros
given by

«
up = (81+82)—§»

ai\/§

1
uy = —5(81 +82) — 5 + —— (51— s2),

3 2
1 a Z\/§
us = _5(31 +32) — g — 7(81 — 82).

Proof. First, the general cubic equation ¢(u) = u® + au? + fu + v = 0 is depressed by the

substitution u — z — a/3 as follows

p(z—a/3) = (z—a/3) + alz — a/3)* + Bz — a/3) +

2 3
_ .3 _ o 200 af
=z +(ﬂ 3>z+ o7 3+'y

_ .3 o? _ @_&3_1
_Z“L(ﬂ_:s)Z 2(6 27 2)'
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Since €q # 0, the zeros of p(z — «/3) are given by the depressed cubic formula of Theorem 3.2. In

particular, the zeros are given by
Z:Al/?)_ é_iz A*l/S
3 9 ’
corresponding to the cube roots of

A:(aﬁ_v_a?))iw_a?):(aﬁ_&_v)f
6 2 27 3 9 6 27 2

Letting ¢ = 8/3 — a?/9 and r = (a3 — 37)/6 — /27, we have z = A3 — gA=1/3 where

A=r=E/¢3+1r2

Letting § be a square root of A, = ¢+ r?, we have A = r £ 4. Next, observe that (r+4)(r —4) =
r? — 6% = —¢>, so that

(r+0)~ =—(r—08)q"

It follows that gA~'/3 = —(r — §)*/3. Hence, the first zero of the depressed cubic is z; = s1 + 52,
where 51 = (r 4 §)'/3 and sy = (r — §)Y/3. Letting x( be a fixed cube root of A, it follows that

0i27/3 iam/3

zo and e o are the remaining cube roots, where e*4™/3 = (¢?27/3)=1, Thus, the remaining

zeros of the depressed cubic are

- . 1 3 1 3 1 3
2y = 61271'/381 _|_ez47r/3s2 — <_ +Z\[> 51+ (_2 — Z{) So = —5(51 + 52) +@§(31 — 32)

2 2
and
23 = 4/3g; 4 €2™/3gy = (2 — 12> s1+ (2 +z2> Sg = *5(51 +52) — 17(51 — 82).
Translating by «/3 gives the zeros u; = z; — /3 of the general cubic for j =1,2,3. O

4 Classification

As we have seen since beginning with Example 3.1, there can be multiple possible approaches to
finding solutions of zeon cubic equations. It would be helpful to have a method for determining
which methods are appropriate for a given zeon cubic. For that, we turn to a zeon extension of

the cubic discriminant.
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We recall that given a monic cubic polynomial (with real coefficients) f(z) = 23+ax?+br+c € Rz],

the cubic discriminant of f(x) is defined to be
Ay = 18abc — 4a®b + a®b* — 4b° — 27¢%. (4.1)

Letting q = g — % and r = (ab— 3c) — ;—;, the discriminant is given by

Ay = —4(39)% — 27(2r)* = —108(¢® + r?).

Traditionally, the cubic discriminant is used to characterize the zeros of f(z). In particular, the

following properties are well known.

e When Ay = 0, the cubic has a repeated root.
e When Ay <0, the cubic has three distinct real roots.

e When A > 0, the cubic has one real root and a conjugate pair of complex roots.

We extend the cubic discriminant to zeon cubic polynomials by defining A, = ¢ +72. In view of

Theorems 3.2, and 3.5, the following classification is sensible for cubic polynomials over C3.
Theorem 4.1 (Classification). Let p(u) = u® + au® + Bu + v € C3[u]. Let A, = ¢ + r?, where

1, 1, 1 1,
¢=3h—-ga, r=g(fa—3y) - a”

Then the following hold.

(1) If €A, # 0, then ¢ has three spectrally simple zeros. When €q # 0, the zeros are given by
the cubic formula of Theorem 3.16. When €q = 0, the zeros are obtained from Algorithm 1

using the scalar zeros of f.

(2) If €A, =0, then ¢ either has no zeros or has uncountably many zeros.

Proof. Observing that Ay, = —108€A,, we see that the scalar polynomial f, has three distinct
complex zeros when the discriminant is nonzero. Hence, ¢ has three spectrally simple zeon zeros
when €A, # 0.

It is clear that €A, = 0 implies €q # 0 < €r # 0. It follows that the induced complex polynomial
Jo(z — €a/3) = 23 + 3€qz — 2€r has a repeated root, A\g. Thus, ¢ has no zeros or uncountably
many zeros. If the repeated root Ay has multiplicity 2, there exists a spectrally simple zero p of
©(u) and uncountably many other zeros having common scalar part A\g — €a/3. If \g is a zero of

multiplicity three and ¢ has zeros, then all zeros of ¢(u) have common scalar part A\g — €a/3. O
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Example 4.2. Consider the zeon cubic polynomial o(u) = u® + Cri2yu — (1 +3¢q2y). The zeon
cubic discriminant of ¢ is A, = i+c{273}, which s invertible. Hence, ¢ has three spectrally simple

zeros. However, since ¢ = %C{LQ} is nilpotent, the cubic formula of Theorem 3.2 fails.

1 3 1 3
The scalar zeros of f,(z) = 23 —1 are {1, —3 + gi, —5~ gi . Applying Algorithm 1, rational

approximations of the spectrally simple zeros are as follows:

1 2

Ar=1- §C{1,2} + gf{z,s},

o (L 181 1+125i< 1 153@'C
2772 " 209 6 ' 433 ) >1H% T\ 3 965 ) {23

w1181 (1 153 i 1, 153 ¢
7\72 7 209 6 530 ) tH2 T \3 " 965 ) {23k

4.1 Cubic polynomials over C3,

In this section, the special case of cubic polynomials over C35 are considered. When ¢ is a cubic

polynomial in C35[u], there are no indeterminate cases.
Proposition 4.3. Let ¢(u) = u® + 3qu — 2r € C3z[u]. Let A, = ¢ + %, where

1, 1, 1 1,
¢=3h—-ga’, r=g(fa=3y)-a”

(1) If A, is invertible, then ¢(u) has three spectrally simple zeon zeros. The zeros are given by

the cubic formula of Theorem 3.2 if €q # 0. Otherwise, the zeros are obtained from Algorithm

1 using the scalar zeros of f,.
(2) If A, is a nonzero null monomial of grade 2, then

(a) o(u) has one spectrally simple zero and a set of spectrally non-simple zeros if q is

invertible;

(b) (u) has no zeros if q is a nonzero nilpotent in C3z.
(3) If A, is a nonzero nilpotent of minimal grade 1, then ¢(u) has no zeros.
(4) If A, =0, then

(a) o(u) has a spectrally simple zeon zero and a set of spectrally non-simple zeon zeros if r
is invertible;
(b) p(u) has a set of spectrally non-simple zeros if r = a(jy) for a € C;

(c) p(u) has no zeros if r # 0 is nilpotent and not a null monomial of grade 2.
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Proof. The results follow from Theorems 3.2 and 3.5 along with the following observations.

(1) Nilpotent cube roots do not exist in C3s.

(2) In C32, nilpotent square roots only exist for null monomials a(jy).

To prove 2(b), suppose A, = a(jy for nonzero a € C. If ¢ is a nonzero nilpotent in C33, then
¢® = 0so that A, = r2. It follows that r = bC{1} +cCq2y for nonzero b,c € C. Any zeros of ¢ must

also be nilpotent. Hence, any zero z € C35 must satisfy
o(z) = 2%+ 3¢z — 2r = 3¢z — 2(bCq1y + cCray) =0,

where the minimal grade of ¢z is either 0 or 2. In either case, we have a contradiction.
Part 3 follows from the fact that a nilpotent of minimal grade 1 has no square roots.

Next, 4(b) is established as follows. If r = a(js) and A, = 0, then €¢q = 0 so that ¢ =0.If g = s

for any nonzero s, then

3
2a 2a 2a
v (384[2]\{2'}> = <3C[21\{i}) +35C(3 (354[21\{1‘}> — 2a(p2) = 0+ 2a¢p3) — 2a(p) = 0.

Turning to 4(c), suppose r = aCy1y + b(2y where a,b € C are not both zero. If a and b are both
nonzero, then r? = 2ab(p. Thus A, = 0 requires ¢° = —r?, which is impossible in C35. We
conclude that r = a(y;; for nonzero a € C and i € {1,2}; further, we see that ¢ is nilpotent.

Hence, if z € C32 is a zero of ¢, it follows that
o(2) = 2> +3qz — 2r = 3¢z — 2a((;y = 0,

where the minimal grade of ¢z is either 0 or 2. Again, we have a contradiction. O

5 Conclusion & avenues for further research

Zeros of cubic polynomials over C3 have been classified up to two indeterminate cases. In those
indeterminate cases, sufficient conditions have been provided for existence of spectrally nonsimple
zeon zeros. In the special case of cubic polynomials over C3s, the zeros have been completely

classified.

One obvious goal of future work is the consideration of zeros of quartic zeon polynomials over C3,
particularly since the quartic is the highest order polynomial equation that can be solved by radicals
in the general case. Based on existing results, a quartic polynomial ¢(u) = u* +au® + Bu? +yu+4

having one spectrally simple zeon zero w can be reduced by polynomial division to the product
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(v — w)(u), where 1(u) is a monic cubic polynomial in C3[u]. The classification of cubic zeros
established here can then be applied to t(u). If p(u) has two simple zeros, the zeon quadratic
formula can be applied to the remaining factor. If ¢(u) splits, all zeros can be found using
Algorithm 1. If all zeros of ¢(u) are spectrally nonsimple, additional tools are needed: either an
effective algorithm for computing spectrally nonsimple zeros or a zeon extension of the quartic

formula.

More broadly, zeros of zeon polynomials are essential for considering spectral properties of zeon
matrices. Letting ¥ denote an m X m matrix with entries from C3, eigenvalues of ¥ are spectrally
simple zeon zeros of the characteristic polynomial of W. Here V¥ is appropriately regarded as a C3-
linear operator on the module C3™. The zeon combinatorial Laplacian has recently been shown
to enumerate paths and cycles in finite graphs, so its spectral properties are of particular interest
[12]. With zeon eigenvalues in hand Putzer’s theorem can also be useful for computing zeon matrix

exponentials.
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ABSTRACT

In this paper, we introduce two sets of linear fractional or-
der h-difference equations and derive their solutions. These
solutions, referred to as trigonometric functions of fractional
h-discrete calculus, are proven to have properties similar to
sine and cosine functions on R. The illustrated graphs con-

firm these similarities.
RESUMEN

En este articulo, introducimos dos conjuntos de ecuaciones
de h-diferencias lineales de orden fraccionario y derivamos
sus soluciones. Probamos que estas soluciones, referidas
como funciones trigonométricas del calculo fraccionario h-
discreto, tienen propiedades similares a las funciones seno y
coseno en R. Las graficas ilustradas confirman estas similar-
idades.
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1 Introduction

The linear second order differential equation
y" () +w?y(t) =0,

where t € R and w is a nonzero real number, produces two linearly independent solutions.

o] _1\n, 2n+1 g2t
n—o(—1)"w 2nt1)!

Yo o (=) W (32:), Picard’s iteration method is one of the fundamental methods in applied

They are well-known trigonometric functions, sin(wt) = 3 and cos(wt) =

mathematics to construct these infinite series. Motivated by this construction technique, we will
use calculus on the discrete time domain AN, = {a,a + h,a + 2h, ...}, where a € R and h € RT,
to derive corresponding sum representations for sine and cosine functions of h-discrete fractional

calculus.

Discrete fractional calculus, also known as non-integer order calculus on a discrete domain, has
garnered significant attention from mathematicians over the past decade. It offers a novel approach
to analyzing differences (derivatives) and sums (integrals) of arbitrary (non-integer) orders within
discrete settings. A recent book by Goodrich and Peterson [6] provides a comprehensive collection
of pioneering results for discrete fractional calculus, with a particular focus on the case where h = 1.
In particular, the results obtained on the domain AN, extend the findings of fractional discrete
calculus on N,. This generalization provides a more comprehensive framework for understanding
and applying fractional calculus within discrete settings. For further reading on this generalized

domain, we refer the reader to the following papers [1-3,7-15].

In this article, our goal is to introduce and derive solutions for the following two sets of linear

fractional order h-difference equations
Vf(f,ay(t) + w2y(t - h’) = 07 (11)

and

Vi ay(t) +w?y(t) = 0, (1.2)

where t € hN,, 1 < a < 2. The equation (1.1) includes a time delay, while the equation (1.2) is
formulated without a time delay. We also note that in [1] the authors proved that Vy(t) is getting
close to y”(t) when o — 2 and h — 0. Hence in the limit position, the Eq. (1.2) is approximating

to the second order differential equation, y” (¢) + w?y(t) = 0.

The following theorem, found in [3], presents the solution to the fractional h-difference equation
in terms of Mittag-Leffler type functions. A natural question arises: Do sine and cosine functions
appear in this solution when k = 27 To explore this, we apply Picard’s iteration method to derive

the sine and cosine functions of fractional hA-discrete calculus.
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Theorem 1.1 ([3]). Let A € R, h > 0, k € N, and a € (k — 1,k). The general solution of the

following problem

Vioy(t) = Ay(t —h), t € ANk, (1.3)
is given by
y(t) = ClEf\L,a,afl(tv 0) + CQEf,a,a72(ta 0) et CkE;\l,a,afk(t 0)7
where C1,Cs, ..., Cy are constants.

This paper is organized by following the outline given below. In order to make our calculations
easy to follow, we provide basic definitions in h-discrete fractional calculus and related results in
the preliminary section. We use Riemann-Liouville definition for the fractional derivative. Addi-
tionally, we develop techniques to convert Egs. (1.1) and (1.2) into sum equations to apply Picard’s
iteration. Section 3 focuses on Eq. (1.1), where we define a iteration formula and derive two finite
sums as solutions, illustrating their graphs for various values of a between one and two. Building
on Section 3, we define two infinite series and state a theorem that outlines their properties and

shows them as solutions to Eq. (1.2) in Section 4. Finally, we give a short concluding remark.

2 Preliminaries

Let h be any positive real number and a be any real number. We define hN, to be the set

{a,a+ h,a+2h,...}. Suppose F : hN, — R is a function.
Definition 2.1 ([5]). The forward and the backward h-difference operator are defined by

ARF(t) = w’ t € hN,,

and
Fit)—F(t—h
VhF(t): () h( )7 tEhNa-i-ha

respectively.

Remark 2.2. Throughout this paper, we suggest that the reader considers the following:
(i) if h =1, we have the backward difference operator, or nabla operator (V)

VF({t)=F(t)—F(t—1), te€Ng;

(ii) if lim

exists, then we have lim V,F(t) = F'(t).
h—0 h ho0
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Definition 2.3 ([3]). For anyt, r € R, the h-rising factorial function is defined by

7 LG+
h="h B

S|
+

—
SC

whenever the quotient is well-defined. Here T'(-) denotes the Euler gamma function.

Definition 2.4 ([3]). Let a € R and o € RT. The nabla h-fractional sum of order « is defined by
t/h

VioF(t) = ﬁ > (t=p(sh)i ' F(sh)h, t € hN,,
s=a/h

where h € RY and p(t) =t — h.

Definition 2.5 ([3]). The nabla h-fractional difference of order o in the sense of Riemann—
Liouville is defined by
L F(t) = Vv, PR, t e MNo o,

where a e R, n—1<a<n, andn € N.

Lemma 2.6 ([3]). Let « € RT and 8 € R such that Ffﬁ(iz}f)l) and F(Fg(fz.l&) are defined. Then we

have that

(i) Vit = ()}, = ripfay (t = p(a)R"", ¢ € hN,.

(1) Vialt = pl@)y = alarny (t = (@), ¢ € hNa.

In the following sections, we use Lemma 2.6 as one of the main tools to obtain some important

identities. We want to note that for n € Ny is considered as zero. The proof of the next

1
I'(—n)
lemma is elementary. We omit the proof.

Lemma 2.7. Let b € hN,. The following is valid:

Vilb—t)y = —Bb—pt))y ", €N,

The following equality is known as Leibniz’s rule for the nabla difference operator. The proof can

be adapted from its proof in time scales calculus [5].

Lemma 2.8. For a function G : hN, x N — R, the following is valid:

=

A i G(t,sh)h = > ViG(t,sh)h+ G(p(t),1),

where t € hN,.
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Next, we demonstrate how Vj and V;  commute in a theorem.

Theorem 2.9. For any positive real number «, the following equality holds:

B a1
Vit Vf () = ViVt - S fa)

Proof. Using Lemma 2.7 and the summation by parts formula in A-discrete calculus, we have

ViVl ()= gy 0 (= el Vas ()
(L= p(sh)F T, (=) —
= T+ 32 (o h plah) Sl
" (t—a+h)2 T i —
h lf(t)r(a)hf(a)JrF(a_l)s_Zz(tP(Sh))h f(sh)h
(t—a+hp™ 1

i v e (OB T roue s D DG COVRCOL

s=

=le

VAV Wf(a). O

This result can be generalized for the operator V' using the principle of mathematical induction.

Theorem 2.10. Let a € RT and n € N. The following equality holds.

n—1
1

- n _ uvnyu—o _ n—k—1/4, _ a—1wk
Viltaun VI = VAVLSO — iy S VI 6=k pa)TVRAC)

Proof. The proof of the equality follows from Theorem 2.9 for n = 1 and the induction assumption

forn>1

n—1
—« n nyy—o 1 n—k— o
Vo ainn Vi () = ViV, o f(t) — (@) Z Vi EHE = kb= p(a)i T V() t—atkh
k=0

For n + 1, we have

V;Iﬁ+(n+1)hvﬁ“f(t) =V} atnhin VeV (L)

—nh— a=l
= ViV arnn Vi f(t) = o F(Of)(a))h Vil () t=a+nh

=1
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Next we use the induction assumption on the quantity V;V, % ‘atnh V7 f(t) to obtain

n—1
_ 1 —k— -
I =V |ViVLaf(t) — —— > Vit — kh— p(a))f ' V£ (1) t_a+kh]

() k=0
(t— nhr—(of)(a))z_l VEF(#) A
- R0 - gy S k- AT,
B a—1
(t nhr(o,?; ) VEF(t) i
- VZHV;}(;f(t) - ﬁ kzn:_o ViRt — kh — p(a))?fjviif(t) t=atkh
This completes the proof. -

We close the preliminary section with the following lemma. The identities we have in this lemma

will be used in the following sections to shortened the quantities in our calculations.

Lemma 2.11. Let 1 < a < 2. The following are valid.
(Z) v (2 a) ( )‘ . _ h2—af(a)’

(i) ViV, C~ (1)) = h'=[f(a+h)+ (1 - a)f(a)].

t=a-+h

Proof. The proof of the part (i) follows from the definition of the fractional h-difference operator.

Indeed we have,

=~

Vil 0], =m0 o)
- s 3@ s S6h)
- T~ A @) = 2w

For the proof of the part (i), we use Lemma 2.8 as a tool. Hence we have

ViV, T f()

t=a-+h t=a+h

= Vi [y X = el ]

S:H
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iy 2 Sl o]+
(¢~ h—peDE 0]
g+ _
= ?E; = 3 2 (ath = plsh))” fsh)
h(l — Oé) “a @
~ Frm [ @) + (W (e + 1)
=L [f(a+h) + (1 — @) f(a)] =

3 A fractional order h-difference equation with delay
Here we consider the following a-th order linear fractional h-difference equation
Vey(t) +w?y(t —h) =0, (3.1)

where 1 < o < 2 and w € R.

Apply the operator V,:";Hh to each side of the equation (3.1) to obtain
_ —(2— _
vh,3+2hvivh,(a y(t) + vh,3+2hw2y(t —h)=0.

Apply Theorem 2.10 to obtain

1
ViV, e, By -3

k=0

ViR —kh—p(a)? " o .
- T(a) O G () s+ Vi gyt~ h) = 0.

Hence we have

e —(2—a t—p(a)¥ 2% __ (o n t—h—pa)2t (2-a
ViV (0 = L ey ER DA g, g )

- w2vl:,3+2hy(t —h).

It follows from Lemma 2.11 and the composition property for the fractional sum operators (Lemma

2 in [2]), we have

ylt) = 2y (o) o LR A e (1~ ayy(a) + yla -+ )

— WV any(t = h). (3.2)
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Conversely, assume that y has the representation (3.2). We first note that

O ony(t) = ViSy(t) ﬁ(t — pla+ W) Ty(a+ h)h - ﬁ(f — p(@)F Ty(a)h.

In addition to the above equality, we use the power rule (Lemma 2.6) and the composition property
for the fractional sum operators (Lemma 2 in [2]) to derive from (3.2) by applying the operator

V¢ to the each side of the equation to obtain

patt) =9 | ey + e~ (o) + o+ )

- WQV;;Jrzh?/(t - h)]

(a2 - p(an T
=i | eyt + CEE DA 1 agyta) + o+ )
~ WAV Wiyt = ) = s (0= b= pla W) (e 4+ )

gt p(a))irly(a)h] — Ryl ).

Thus, we have proved the following lemma.

Lemma 3.1. y is a solution of the problem (3.1), if and only if, y has the representation (3.2).

Next, for the simplicity in our calculations, we consider a = 0. We define a sequence of functions

on hNj as follows:

Ohe

(t + h)ffﬁ 2—«
" I(a)

Yn(t) = =W’V S ym—1(t — h),

y(0) + R (1 = a)y(0) +y(h)],

for n € Ny.
oo
Using this iteration formula along with the power rule (Lemma 2.6), we observe that Z Yn(t)
n=0

truncates to the following finite sum

n on(—(n— 1)h)m
(—1)"w (O 1)ah_ 5

NES

h*~*y(0)

n=0

. nh)é’n—i—l)a—l

D i 1)

NEE

+ R [(1 - a)y(0) + y(h)]

3
Il
<
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To convince the reader, we present a few elements in the sequence < y,(t) > and explain why we

have finite sum instead of infinite sum at the end of this process.

ni(t) =~V St — b)
= V%, [%m—ay@) + “F(’Q;h [(1 - a)y(0) + y(h)]]

_ —UJ2 [Fig)aha: 1) h2—ay(0) + (t F(f;)ofj(;_ hl—a

(1 —a)y(0) + y(h)]l -
We repeat this calculation for ys to obtain the general term y,, of the sequence. Our main tool is

the power rule (Lemma 2.6).

yi(t) = —w*V; 501t — h)

2 l(t ) A O Gl i

2«
= "W Vaan T'(2a—1) I'(20)

R = a)y(0) + y(h)]H

— w4 [(t — h)iaﬁhgfa (O) + (t — 2h>§:aj

F(?)O[ o 1) I‘(3a) hlia [(1 - Oé)y(O) + y(h)}‘| :

From this, the general term y, (¢) follows.

(t _ (n _ 1)h)§;ﬂ+1)a72 (t _ nh)gn+1)al‘|

yn(t) = (=1)"w?" [’1“@/@) T R S OOl v yry

o0

When we consider the infinite sum Z yn(t), the terms with h-rising factorial powers become zero
n=0

for n > f. Hence we obtain

—(n—u)Ie?
I'((n+1)a—1)

(_1)nw2n (t

M S

h*~%y(0)

n=0

-« % n, 2n (t — nh);n“ﬁ
R = y(0) + (W] Y ()" m
n=0

If we look closely at this sum which is the general solution of the fractional difference equation
(3.1), we observe that there are two linearly independent solutions. Hence we define these two

linearly independent solutions as sine and cosine functions.

We define

I (n+1)a—2
_ _\n on (E+ R —nh)y
Ch(tvavw) - Z( 1) w F((n+l)a—1)

n=0
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and )
n L nh)(nqtl)afl
S t _ -1 n 2n+1( h
h( 70&,0}) nz:%( ) w F(('I’L + 1)0[) ;
t € hNg. It turns out that Eﬁwz,a,a—Q(t + h,0) = Ch(t,a,w) and Eﬁwz’a,a_l(t,O) = Sp(t, o, w)

when we compare the above solutions with the solution representation in Theorem 1.1.

Next we list some properties of these functions.

Theorem 3.2. The following equalities are valid.

(i) ApSu(t, a,w) = wCi(t, o, w).
(ii) h2=2Cy(0,,w) =1,  Sp(0,a,w) = 0.
(ii) Vi ,On(t, a,w) + w*Ch(t — h,a,w) = 0.

() V5 oSh(t, a,w) + w?Sy(t — h,a,w) = 0.

Proof. The proofs of (i) and (i¢) are straightforward from the definitions of the functions C}, and
Sh. The proofs of (ii4) and (iv) can be found at Theorem 3.6 in [3]. O

Remark 3.3. In Figure 1, we illustrate the graphs of Ch(t, o, w) and Sp(t, o, w) for a small value

of h and for several o values between one and two.

Figure 1: Family of graphs of S 5(¢,«,.5) and C5(t, «, .5).

Ss(t.a,.5)

1.0F A

— a=1.80
a=1.84

~— a=1.88

— a=192

— a=1.96

051

0.0

— Continuous

— a=1.80

a=184
— a=1.88
— a=192
- a=1.96

— Continuous
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4 A fractional order h-difference equation without delay
Here we consider the following a-th order linear fractional hA-difference equation

hay(t) +w?y(t) =0, (4.1)

where 1 < o < 2 and w € R. We assume that w?h® < 1.

Here we define

0 + h)(n+1)a72
\ 1 21 n 2n (
Cosp(t,a,w) = (1 +w=h®) Z: Tt a1
and
) S _— (t) (n+1)a—1
Sing(t,a,w) = (1 + wh® D)t

t € hNy. These series are convergent when w?h® < 1.

Next we list some properties of these functions. We omit their proof since they are mainly relying

on the power rule (Lemma 2.6).

Theorem 4.1. The following equalities are valid.

(i) ApSing(t, o, w) = wCosp(t, o, w).

(ii) h>=*Cosp(0,a,w) =1,  Siny(0,a,w) = 0.
(iii) Vi ,Cosn(t, o, w) + w*Cosy(t, a,w) = 0.
(iv) Vi Sing(t, a,w) + w2Siny(t, a,w) = 0.

Remark 4.2. In Figure 2, we illustrate the graphs of Cosp(t, a,w) and Sing(t,o,w) for a small

value of h and for several o values between one and two.

5 A concluding remark

The development of fractional calculus on the set AN, = {a,a + h,a + 2h, ...} has shown promis-
ing results. In a recent paper [4], the pharmacokinetic (PK)-pharmacodynamic (PD) model was
formulated on this time domain, with the PK component defined on an hourly basis and the PD
component on a daily basis. h-discrete calculus offers the flexibility to select the right h values,
enabling the construction of such an advanced model. Continuous improvement in existing mod-
els, whether in science, technology, or any other field, often hinges on the development of new
theories and the refinement of analytical methods. Such a development of the theory starts with

construction of the basic functions.
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Figure 2: Family of graphs of Sin 5(¢, a,.5) and Cos 5(t, a, .5).

Sins(t,.5)
10
— a=1.80
a=184

— a=1.88
— a=192
— a=1.96

0.5F

0.0

-05f .
— Continuous

(a) Sins(t, a,.5)

— a=1.80

a=1.84
— a=1.88
— a=192
— a=196

— Continuous

(b) Cos.s(t, a,.5)

In this article, we employed the widely recognized applied mathematics technique, Picard’s itera-
tion, to develop sine and cosine like functions within the framework of h-discrete fractional calculus.
We constructed these functions as solutions to some linear fractional h-difference equations and
illustrated their graphs. Sine and cosine functions as infinite sums can be calculated using a similar
matrix method as in [2]. All these functions are potential candidates for application in various
areas of mathematics. Deriving their analytical properties is just one of many open problems to

explore.
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ABSTRACT

In this work, we study the Nehari manifold and its application
to the following sub-elliptic system involving strongly coupled

critical terms and concave nonlinearities:

—Acu = T2 [uf* 1ol ru + B2 |l o)y
+ A g(2) Ju|? %y, z €9,
~Agy =TI ey P2y 4 B ey a2,
+ wh(z) v %, z €Q,
u=v=0, z € 09,

where (2 is an open bounded subset of G with smooth bound-
ary, —Ag is the sub-Laplacian on a Carnot group G; 711,72,
A, i, are positive, a1 + 1 = 2, ae + B2 = 2", 1 < g < 2,
= Qz—% is the critical Sobolev exponent, and @ is the homo-
geneous dimension of G. By exploiting the Nehari manifold
and variational methods, we prove that the system has at

least two positive solutions.
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RESUMEN

En este trabajo, estudiamos la variedad de Nehari y su apli-
cacion al siguiente sistema sub-eliptico que involucra términos

criticos fuertemente acoplados y nolinealidades concavas:

—Agu = T ul ol B (]2l
+Ag(2) [ul"*u, z€Q,
—Agv = 7];?1 || *t \v|51_2v e 77;,*52 |u|a2|v|’82_2v
+ puh(z) |v]* %, z€Q,
u=v=0, z € 09,

donde 2 es un conjunto abierto acotado de G con frontera
suave, —Ag es el sub-Laplaciano en un grupo de Carnot G;
N1,7M2, A, [, son positivas, a1 + 1 = 2, az + 2 = 2", 1 <
qg<2 2= QQ—?Q es el exponente critico de Sobolev, y Q es
la dimensién homogénea de G. Usando la variedad de Nehari
y métodos variacionales, demostramos que el sistema tiene al

menos dos soluciones positivas.

Keywords and Phrases: Sub-Laplacian, concave-convex nonlinearities, strongly coupled critical terms, Nehari

manifold.

2020 AMS Mathematics Subject Classification: 35J60, 47J30.
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1 Introduction

In this paper, we are concerned with the sub-Laplacian system involving strongly coupled critical

terms and concave nonlinearities on the Carnot group G given below

g = o2+ B2 e 2oy 4 dg ()l R, 2 € 0,

7A(G, 771ﬁ1|

% o] 12 +n2ﬁ2\ 22072720 + ph(2) 0] %0, 2 €9, (1.1)

u=uv=0, z € 092,

where 2 is an open bounded subset of G with smooth boundary, —Ag is the sub-Laplacian on

a Carnot group G. A, pu, are positive, 2* = QQ—% is the critical Sobolev exponent, and @ is the

homogeneous dimension of G. We consider the following conditions:
(Ag) Q>4,1<q<2,0<m <o0, a;,B; >1and o + B; = 2* (i = 1,2),
and we give the following assumptions on the weight functions g and h:

(A1) g,h e L%(Q), g%t = max{+g,0} # 0 in Q and h* = max{+h,0} # 0 in .

(Az2) There exist ag,ro > 0 such that B4(0,ro) C Q and g(z), h(z) > ag for all z € B4(0, o).

Here By(z,r) denotes the quasi-ball with center at z and radius r with respect to the gauge d.

@i=2y|y|% and |u|®|v|#~2v, i = 1,2 are called strongly coupled terms. We now recall some

|u

known results concerning the elliptic system involving the strongly coupled critical terms. When G
is the ordinary Euclidean space (RN, —I—), m=n=1lLa=aw=a f=pFp=Fandg=h=1,

problem (1.1) becomes the following Laplacian elliptic system:

A= 2 2ol + Nult%u,  in O
“Av = m|u|a\v\572v + plv|? %0,  in Q, (1.2)
u=v=0, on 0.

The authors in [10] proved that the system (1.2) admits at least two positive solutions. Later,
Hsu [9] obtained the same results for the p-Laplacian elliptic system. There are other multiplicity
results or critical elliptic equations involving concave—convex nonlinearities, see for example [1,
2]. Contrary to the nonlinear elliptic problem with the Laplacian or p-Laplacian in Euclidean
space that have been widely investigated, the situation seems to be in a developing state for
the sub-Laplacian problem on Carnot groups. Recently, great attention has been devoted to
nonlinear elliptic problems involving critical nonlinearities, in the context of Carnot group, see

for example [11,13,20] and references therein. To the best of our knowledge, there is no result



598 R. Echarghaoui, A. Hatimi & M. Hatimi

so far concerning sub-elliptic system involving strongly coupled critical terms nonlinearities with

sign-changing weight functions on Carnot group.

We look for weak solutions of (1.1) in the product space H := S} () x S3(Q), endowed with the

norm
1

2
)l = (luly o + I013yey) s ¥lwv) € H,
where the Folland-Stein space Sj(€2) = {u € L*(Q) : [, |Vgu|?*dz < oo}, is defined as the comple-

tion of C§°(Q2) with respect to the norm

(lulsyo) = ([ WeuPaz) ", vue si)

By using the Nehari manifold and fibering map analysis, we establish the existence of at least two
positive solutions for a sub-elliptic system (1.1) when (A, 1) belongs to certain subset of Ri. Since
the embedding S (2) < L2 () is not compact, then the corresponding energy functional does not
satisfy the Palais-Smale condition in general. Therefore, it is difficult to obtain the critical points
of energy functional by simple arguments, which are based on the compactness of the Sobolev
embedding. To overcome this difficulty, we extract a Palais-Smale sequence in the Nehari manifold
and show that the weak limit of this sequence is the required solution of problem (1.1). The best
constant of the Sobolev inequality was studied on graded groups in [15]. But in that paper, the

best constant was expressed in variational form.

We consider the following scalar critical equation:
—Agu=|ul> "2u  inG. (1.3)

For equation (1.3), it is well known (see e.g. [3,11]) that positive solutions have the following
decay:
¢ 4
U(z) ~ a)a? as d(z) — oo, (1.4)
where d is the gauge norm on G. This result applies, in particular, to the extremals of the Sobolev
inequality on Carnot groups (whose existence was proved in [8,17], i.e., to the functions U that
achieve the best constant for the embedding S}(G) < L?" (G), that is,

S e inf Jo |Veul?dz _ Jo IVeUPdz

WESSENOY ([ ufd2) T ([ U dz)

We underline that the knowledge of the exact asymptotic behavior of Sobolev minimizers turns out
to be a crucial ingredient in order to obtain existence results for Brézis-Nirenberg type problems,
whenever the explicit form of Sobolev minimizers is not known, as in the present Carnot case. The

knowledge of the behavior of Sobolev minimizers turns out to be crucial also for the system, due
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to the relation between the extremals for the best constant S, g associated to the system and

the Sobolev constant Sg (see Theorem 2.1 below).

The energy functional I,, o g : H — R associated to (1.1) is given by

1 1
— K, (u,v) — 6\I’>\,#(U,U), V(u,v) € H,

1
Iy,3(,0) = 5 (0, 0) B, = -

where
Kn(uyv)Z/ (el ol + m2|ul* [v]2) dz, ‘I’m(u’v)Z/ (Ag(2)[u]? + ph(z)[v|?) d=.
Q Q

It is easy to check that I, o3 € C*(H,R) and the critical point of I, o 5 is the weak solution of

(1.1). We call a solution (u, v) positive if both u and v are positive, (u, v) is nontrivial if u # 0 or
v # 0.

Definition 1.1. A pair of functions (u,v) € H is said to be a weak solution of problem (1.1) if

+

/Q(vuvgb+vvvw) dx:A(n1a1| |a1 2|U|Blud)+ 772 2| |a2 2|,U|ﬂ2u¢) dm
S (2l w+”252| ol 200 ) do (1.5

2

+/ (Ag(x)|u|q*2u¢ + uh(:c)|v|q*2m/)) dx  for all (p,00) € H

2

Define the set

Dy e

{Ovw) eRT XRA[0,0}:0 < pllgl e +pllbl] 2 <o}, and
(1.6)

2 2 2 27 2t
A== ( 1 ) ST
2% —q \(m +m2) (2* — q)

So, the main result of this paper can be included in the following theorem.

Theorem 1.2. Let G be a Carnot group. Assume that (Ay), (A1) and (Az) hold. Then, we have

the following results:

(i) If (\, ) € Dy, then (1.1) has at least one positive solution in H.

(ii) There exists a constant A, > 0 such that system (1.1) has at least two distinct positive

solutions in H for all (A, p) € D, .

The paper is organized into three sections. In Section 2, we recall some basic definitions of Sobolev
space on Carnot groups and we give some useful auxiliary lemmas. In Section 3, we investigate
the Palais-Smale condition for the energy functional I, , g. Finally, the proof of Theorem 1.2 is

given in Sections 4 and 5.
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2 Preliminaries

In this section we recall some basic facts on the Carnot groups. For a complete treatment, we refer

to the classical papers [6,7]. We also quote for an overview on general homogeneous Lie group.

Let G = (RN,O) be a homogeneous group, i.e., a Lie group equipped with a family {57}v>0 of

dilations, acting on z € RN as follows

0y (2(1), R Z(T)) = ('ylz(l),nyz(2), e ,'yrz(r)> ,

where z(*) ¢ RN* for every k € {1,...,7} and N = > i—1 Ni. Then, the structure G :=

(RN ,0, {57}7>0) is called a homogeneous group with homogeneous dimension

Q=) k- Ny
k=1

Note that the number @ is naturally associated to the family {5’v}~,>o since, for every v > 0, the
Jacobian of the map z — 0,(z) equals +®@. From now on, we shall assume throughout that @ > 3.

We remark that, if @ < 3, then G is necessarily the ordinary Euclidean space G = (RQ, +).

Let g be the Lie algebra of left invariant vector fields on G and assume that g is stratified, i.e.,
9=@,_, Vi with [V;,Vj] = Vi, for 1 <k <r—1and [V}, V,] = {0}. Under these assumptions,
we call G a Carnot group. Here the integer r is called the step of G, dim (V}) = Nj and the
symbol [V1, V%] denotes the subspace of g generated by the commutators [X, Y], where X € V; and
Y eV Let X ={X;,Xs,...,X,,} be a basis of V; with m = dim (V;). From Proposition 1.2.29

of [14], the left invariant vector field X; (kK =1,...,m) has an explicit form as follows:
ko dim(Vi)
9 (ONONG! -1 9
X; = + aw(a:()7...,x( ))—,
a5 7

where al(-? is a homogeneous (with respect to ¢.,) polynomial function of degree I — 1. Then, once
a basis Xi, Xo,...,X,, of the horizontal layer is fixed, we define, for any function v : G — R
for which the partial derivatives X;u exist, the horizontal gradient of u, denoted by Vgu, as the
horizontal section

Veu = (Xju, Xou, ..., Xpu).

Moreover, if ¢ = (¢1,¢2,...,¢m) is an horizontal section such that X;¢; € L} (G) for j =

1,...,m, we define divg ¢ as the real-valued function

dive(¢) := =Y X5, => X;¢;.
j=1 j=1



A sub-elliptic system with strongly coupled critical terms... 601

From the above results, the second-order differential operator

Ag = in
j=1

is called the (canonical) sub-Laplacian on G. The sub-Laplacian Ag is a left invariant homogeneous
hypoelliptic differential operator, thanks to Hérmander’s theorem, and Agu = divg (Vgu). In
addition, we can check that Vg and Ag are left-translation invariant with respect to the group
action 7, and d,-homogeneous, respectively, of degree one and two, that is, Vg (vo7,) = Vguo
7, Vg (uod,) =yVguod,, and Ag (uoT,) = AguoT,, Ag (uod,) =~?Aguod,, where the left

translation 7, : G — G is defined as

r—T1,x:=zo0x, Vr,z€G.

Moreover, there exists a homogeneous norm d on G such that

C

['(z) = Wﬂ

Vz € G,
is a fundamental solution of —Ag with pole at 0, for a suitable constant C' > 0. By definition,
the homogeneous norm d on G is a continuous smooth function, away from the origin, such that

d(6,(z)) = vd(z) for every v > 0 and z € G,d (27!) = d(z) and d(z) = 0 iff z = 0.

We will give some results which will be used to prove the existence in multiple critical cases. Let

U be a fixed positive minimizer for the best constant Sg and define the family

Uc(z) = 23U (6;(z)) , Ye>0. (2.1)

€

The functions U, are also minimizers for Sg and, up to a normalization, they satisfy
Q

VeU.|%dz = U.(z 2 dz =52, Ve>0.
G
G G

For any 0 < m; < o0 (i =1,2), ey, B; > 1 with «o; + 8; = 2*, by the Young inequality, the following
best Sobolev-type constants are well defined and crucial for the study of (1.1):

V 2 v 2 d
Spa,p 1= inf fG (| cul® + |V ) 2
() SO0 ([ (mfulor[v]Pr + nalul@z|v]2) dx)

—2/2*
[ (u,v)||? (/@, (| [v] Pt + nau) @2 |v]2) d:z:) .

2/2%
(2.2)

= inf
(u,0)EH\{(0,0)}
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For any ¢ > 0, we define the function

1+
h(t) == - (2.3)
(mtPr + matP2) 2"
Since b is continuous on (0, co) such that lim+ h(t) = . ligrn h(t) = 400, then there exists tp > 0 a
t—0 — oo
minimal point of function b, that is,
b (to) = minh(¢) > 0. (2.4)

t>0
Summarizing, we have the following relationship between Sg and Sy o 3.

Theorem 2.1. Assume that (Ag) hold, then

(i) Sn.a.8 = b(to) Sc-

(i) Sy,a,s has the minimizers (U.(z), toUs(2)), for € > 0, where U:(2) are defined as in (2.1).

Proof. Suppose x € S}(G). Choosing (u,v) = (k,tok) in (2.2) we have

\Ver|*dz
1+t5 /@ S

5 5 = 2/2% = Sh,a8- (2.5)
(nlto1 + 772t02) (/ |/{|2*dz)
G
Taking the infimum as xk € S§(G) in (2.5), we have
b(tO)SG > Sn,a,ﬁ~ (26)

Let {(un,vn)} C H be a minimizing sequence of S, o s and define w,, = s,v,, where

-1 7
Sp 1= (/ v dz) /|un|2 dz .
G G

/|wn|2* dz:/ Jun|? dz. (2.7)
G G

From the Young inequality and (2.6) it follows that

[
G

Then

(623

Wn

Bi dzg%/|un|2* dz_i_&/ |wn|2* dz
2* Jg 2* Jg

z/ |tn)? dz:/ jwn | dz, i=1,2.
G G
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Consequently,

() [

2/2r =
(/ (71| on] P+ 12|22 0] *2) dx)
G

/ Veun|2dz 57 / Vew, *d
G G

((77185’81 +7728562) I |un|2*> ((m&?ﬂl +nzs77ﬁ2) Jg lwn

+ = 2 h(s;,)Sg = h(to) Se.

2" dz) :

2
o

As n — oo we have

S’r],a,ﬂ > h(tO)SG7
which together with (2.6) implies that
Sn,a,ﬁ = h(t())SG~
By (2.2) and (2.1), Sy,a,3 has the minimizers (Us(x), toUe(z)). O

Let R > 0 be such that Bg(0,R) C Q (we can suppose 0 € Q, due to the group translation
invariance) and let a cut-off function ¢ € C§° (B4(0,R)), 0< ¢ <1, ¢ =1in By (0, %) and ¢ =0
in G\B4(0, R). Set

Then, from [11, Lemma 3.3], we obtain the required results.

Lemma 2.2. The functions u. satisfy the following estimates, as e — 0:
2 ¢ Q-2 2* 2 Q
|Vgue?dz = S¢ + 0 (e977), ue|® dz =S¢ + 0 (e9),
Q Q

and
) Ce? +0 (e972), if Q > 4,
lue|“dz =
Q Ce?|lne[+ O (%), ifQ=4.
Moreover, similarly as the proof of [12, Lemma 6.1], we get the following results.

Lemma 2.3. The following estimates hold as ¢ — 0:
o) (SQ+—(2‘§”) , if o2 <q<2,

(2=Q) .
/Qluslqdzz 0(5Q+ 2 q\ln(5)|), if 4= o2,

O(s(Q_Q)), ifl1<q< 2

Q-2"
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3 The Palais-Smale condition

In this section, we use the second concentration-compactness principle and concentration-compactness

principle at infinity to prove that the (PS). condition holds.

Definition 3.1. Let c € R and I, o 5 € C'(H,R).

(i) A sequence {(Un,vn)}nen C H is called a Palais-Smale sequence at the level ¢ (PS),-

sequence, in short, for the functional Ip o if Inapg(tun,vn) — ¢ and I} | 5(tup,vn) — 0

n,a,B
as n — 00.

(i) We say that I, o p satisfies the (PS). condition if any (PS).-sequence {(tn,vn)}nen C H

for I, o.p has a convergent subsequence in F.

Since g, h € L%(Q)7 we obtain from the Holder and Sobolev inequalities that, for all u € S§(€2),

[ stetuea < [ 1ac2 d) () Sl e s e, G

Similarly, one can get
W
2

/h(z)|v|qdz§ (/ Ih(2) dz) (/ |U|z*dz) <Ihl o Sl (32)
Q Q Q LZ=a

Hence, in view of (3.1) and (3.2), we can obtain

Ur(w,0) < (Mgl z- ) Sa )14 (33)

Moreover, the Young inequality and (3.1), (3.2) imply that

2%q

Uy u(u,v) < %

NVl

+ﬂs (;_g)[(A sz*q)ﬁ’+(u||hmfn)224]. (3.4)

Lemma 3.2. Let {(un,vn)},eny C H be a (PS)c-sequence of Iy o g with (un,v,) — (u,v) weakly
inH. Then I , 5(u,v) =0 and

q

(2" —q)(2—q) 5% (2" —q\* ¢ = 725
st 2 - E B 5 (20 (g ) )
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Proof. Since {(tn,vn)},c

it is easy to check that I} , s(u,v) =0, and then <I7/7,a,[3

ny C H is a (PS).-sequence of I, o g with (up,v,) = (u,v) weakly in H,
(u,v), (u,v)> =0, that is,

H(u’ U)HH = Kﬁ(uvv) + \IIA,M(ua v).

Then from (3.4), we have

1 2% —
Iy () = Gl 0) e = =5 F 0w 0)
(2 -q)(2—q) 5% (2" —q\T" 5 =
S LA U (» =) (el e )7
2q2* G 2% _ 9 ||g||L23—‘1 + /’LH ||L2*2—‘1
This ends the proof of lemma. O

Lemma 3.3. Assume that {(un,vn)},cn C H is a (PS)c-sequence of I o5 and the condition

(A1) holds. Then {(un,vn)},cn @5 bounded in H.

ne

Proof. Assume by contradiction that ||(un, vs)|l;; — +00. Set

(ﬂn;ﬁn) = ( o ) on > .
[ (s v )3 (s vn) [l
Then, ||(ﬂna7~1n)”7-¢ =1, and

(@ weakly in H,
(@ strongly in (L"(Q))%,Vr € [1,2%), (3.5)

(U (2),0n(2)) = (u(2),v(2)) a.e. in Q.

ns On) = (u,0)
n7’6n )

(
) = (u,v

Set 4, := Uy — u, U, := Uy — v, there exists a positive constant C' > 0 such that

/ | dz < C, / (.2 dz < C, (3.6)
Q Q

and by (3.5), one has that for any e > 0, there exists ro > 0 such that

/ |2 dz < e, / 152" dz < e, (3.7)
Bd(O,’r‘Q) Bd(O,To)

for n large enough, where By (0,r9) = {z € G : d(0,2) < ro} is a ball with center at 0 and radius

ro with respect to the gauge d. Moreover, since g, h € L7 (Q), for the above constant rg, we

/ l9(2)| 7w dz < e, / Ih(z)
Q\Bd(o,’l‘o) Q\Bd(o,’l"g)

have

*

Tadz < e. (3.8)
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Then, by (3.6), (3.7), (3.8) and Holder inequality, we get

U (i, i) = / (G| n|? + uh(2)[5a]) dz + / (G| n|? + h(2)[Balg?) d
Q\Ba(0,70) Bq(0,r0)

2*—¢q

<A / 9|75 dz / 1| dz
Q\Bd(o,’l‘o) SZ\Bd(O,To)

ot i - *
+p / |h|Z"=adz / |vn]? dz
Q\B4(0,70) Q\B4(0,u0)
2;
_2* _2*
+ A / lg|7=adz / |t | dz
B4(0,r0) Ba(0,r0)
2% _g a
+ / |h
Bq(0,r0)

e = o S
¥ —adz |Un]® dz
Ba(0,u0)
< 018% + Cy2e27

a_
which yields that Wy ,, (4n,0,) — 0 as n — oo. Consequently,

‘»n

£

|

lim Wy, (G, 0p) = lim Wy, (tUn, 0n) + Ui u(u,v) = ¥y ,(uw,v). (3.9)

n—oo n—roo

On the other hand, since {(tn, vn)}, cn C His a (PS)c-sequence of I o g and uy, = ||(tn, vn)| 5 Un,

U = ||(tn, Vn) |5 - Un, we deduce that
1 77 Pt 2% ~ ~
5 ||(unaU7L)HH H(unvvn)HH = 27* H(U’TL?U")”’H KVI (u,HUn)
1 (3.10)
+ 6 ||(U", UH)H;I{ \I//\,u (ﬂ’na f}n) + 0n(1)7
and
1t 0) g | iy By = [ty v 3, Ky (i, B)
b " . (3.11)

+ (s vi) 13, ©n,pe (T B) + 05 (1).
From (3.9), (3.10), (3.11), 1 < ¢ < 2 and |[(un,vn)|;; = 400, one has

lim (@, 5 = 22 =9 iy Yo (nsn)
oo I IIH T (9% —9) nShoo H(unvvn)”i_q

)

which contradicts ||(@n, )|, = 1. Therefore, {(un,vn)}, oy is bounded in H. O
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Lemma 3.4. T, o s satisfies the (PS). condition in H, with ¢ satisfying

_2

1 Q 2—q 2%‘I
= =57 — * 2% .
0<c<cow:=557,5— Co [(x\||g||L23q) + (,uHhHLz*iq) } (3.12)

q

* -1 * g
where Cy = Cy(q, Q) := mS’G 2ma (2 7‘1) ™" is a positive constant depending only on g,

2¢2* 272
Q and Sg.

Proof. Let {(un,vn)}

Lemma 3.3 that {(un,vn)},cy is bounded in H. Then, there exists a subsequence still denoted by

nen C H be a (PS).-sequence for I o 5 with ¢ € (0,c). It follows from

{(un,vn)}, ey and (u,v) € H such that (u,v,) = (u,v) weakly in H, and

Up — u, v, — v weakly in L (Q),
Up = U, U, — v strongly in L"(Q), V1 <r < 2% (3.13)

un(2) = u(z), wvp(z) = v(z) ae. in Q.
Hence, from (3.13), it is easy to verify that I} , 5(u,v) =0 and

lim Wy, (un,vn) = ¥ u(u,v). (3.14)

n—0o0
Set U, = u, — u, U, = v, — v. By Brézis-Lieb lemma [18], we get

[ (s vn)llgg = 1w, 0) 1o + 1@, 005, + 0n (1), (3.15)

/|un|2*dz:/ |u\2*dz+/ |iin|? dz + 0, (1), (3.16)
Q Q Q

/|vn|2*dz:/ |v|2*dz+/ 16522 dz + on (1), (3.17)
Q Q Q

/\un\ai|vn|’37‘dz:/ \u|""'|v|ﬂidz+/ i |45 Pz + 0n (1), (3.18)
Q Q Q

So, (3.16), (3.17) and (3.18) yield

and

Ky (un,vpn) = Ky (u,v) + Ky (Un, On) + 0n(1). (3.19)

Then, using (3.14), (3.15) and (3.19), we have

1., 1 o
c=3 | (s On)|lqy — 2—*1(}7 (Un, On) + Ina,p(u,v) + 0, (1), (3.20)

S

and

0n(1) = || (tn, On) |3y — Ky (Un, 0p) - (3.21)
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We may assume that

|(tn, On)llyy — 1, Ky (G, Op) = 1>0  asn — oo.

If | = 0, the proof is completed. Assume that [ > 0, then from (3.21), we have
2

2 . N . S
Sn.a.pl? =850, (nhﬁnolo K, (un,vn)) < nl;rrgo | (T, )|l = 1,

Q
which implies that [ > 5,° ;. Hence, from (3.20) and Lemma 3.2, we have

1 1
¢ =1 a8Un,vn) +0,(1) = <2 - 2*> U+ 1 0.8(u,v) +0,(1)

1 e =7 E=r]
> G500~ Co | (Ml Lz, ) 7+ (ulll ez )7

which contradicts ¢ < co,. The proof is completed.

4  Nehari manifold

(3.22)

Now we focus our attention on Problem (1.1) by using the Nehari manifold approach. For this

reason, we introduce the Nehari manifold

Niap = {w € H\{0} : (I}, , s(w),w) =0} .

where w = (u,v) and ||w|y = ||(u,v)||%. Note that N, o g contains all nonzero solution of (1.1),

and w € N, o 3 if and only if
[wll3 = Ky(w) + Wy, (w).

Lemma 4.1. I, , 3 is coercive and bounded below on N, o 5.

Proof. Let w € N, o 5 by (3.3) and (4.1). We find

2% —2 2% —2
Iy p00) = S = ol = == )
2" — 2 2 — g T
> Sl = = (Ml o+ wlpl e ) S5 ol

(4.1)

(4.2)

Since 1 < ¢ < 2, we see that I, o g is coercive and bounded below on N, o 3. This achieves the

proof of the lemma.

O
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pw), w>, then for all w = (u,v) € NV, 4,3, we have

(@' (w), w) = 2|lwlly — 2" Ky(w) — q¥x ,(w)
= (2= q)llwllx — (2% = q) Ky(w) (4.3)
= (2-2") lwlly + (2" — q) U p(w).

Now, similar to the method used in [16], we split N, o s into three disjoint parts:

ana’ﬁ ={w € Ny ap: (®(w),w) >0},
Ny s ={w € Nyap: (®(w),w) =0}, (4.4)
Nopas = 1w € N p 1 (' (w),w) <0}

Note that NV, 3 contains every nonzero solution of problem (1.1). In order to study the properties

of Nehari manifolds. We now present some properties of N

e Ny o and N o to state our

main results.

Lemma 4.2. Assume that wo = (ug, vo) is a local minimizer for I, o g on the set Ny o p \Ngﬂﬁ

Then I;,,%B (wo) = 0 in H=L, where H~' denotes the dual space of the space H.

Proof. The proof is similar as that of [21, Lemma 3.4] and the details are omitted. O

Lemma 4.3. N}, 5 =0 for all (A, ) € R* x R with

0 <Allgll, yo= +pllll | e <A

where A is given in (1.6).

Proof. We argue by contradiction. Assume that there exist A, € (0, +00) with

0 <Allgll, oy +pllpll = <A

PEd

such that N0 , 5 # 0. Then, for w € N}, 5, by (4.3), we have

2% —q
ol = 2 =2, ) (45)
and
2% —¢q
= —U . 4.
el = 52 (w) (16)

From the Young inequality, we have that

Ky(w) < (m +m2) Sg

X
Z,2
H s

[[w
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and (4.5) yields

2—q 2*> 73
> S . 4.7
b > (Gt o

On the other hand, from (3.3) and (4.6), it follows that

1

2% q %q 2—q
ol < (2 (Ml oo, + il e, )57 ) (4.9

9k 3 T+

Therefore, in view of (4.7) and (4.8), we obtain

2" —2 2—g =2 2oy
Mol 2o 4+ pllh] o > ( ) ST = A,
loll zoe + 00l e 2 5\ o= S8

which is a contradiction. This completes the proof of Lemma. O

By Lemmas 4.2 and 4.3 , for (A, ) € D, we can write N, o 5 = N.© UN, 5 and define

0,8
c = inf I (w); ¢t ,= inf I, .p(w); ¢ . 5= inf I (w).
n,a,f3 WEN, a.p n,0,03 ’ n,o,B wG/\/’Iaﬁ n,0,f3 ’ n,o,B ’LUGNTZQVB n,a,8

Lemma 4.4. Assume that (Ap), hold. Then, we have the following results:

(i) cnap < c;a’ﬁ < 0 for all (A, p) € Dy.

(il) There exists a constant Cy = Co(A,¢q,Q,Sg,A) > 0 such that ¢

B 2 Coy > 0, for all
(Aau) EQ%A'

Proof. (i) For w e N;f, 5 C Ny as, by (4.3), we have

*

qKW(w)a

wl|y >
fulle > 5

and so

() = (5= ) b= (5 = ) #w)

-2 2f—q 2- 2—q)(2* -2
< (122,22 -a2-q lelyz—( Q)(* )
2q 2*q 2* —q 22*q

[[w]l3 < 0.

+

Thus, from the definition of ¢ 4,5 and ¢, 5,

+
we can deduce that ¢;a5 < ¢, , 5 <0.

(ii) For w € N, 5, similar to (4.7), we have

2—gq 2% 3
> S.2 . 4.9
ol ((771 +m2) (2t —q) C ) (4.9)
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In view of (4.2) and (4.9), we get

2% —¢q 2% —q

~£=9q *(2—g
> Jully, | 522 2o0 )T gini
220 \(m ) (2F —q) G
2* —q _g
L (Ml + sl ) 55F).

22 L, . 2y _g
Typ(w) 2 ol (220l = 222 (Ml o, 4l e, ) 557

So, if namely,

2—gq

q2" -2 2—q g
0< Ml o, +alil o=, < $222 ) sEE =t

= = 22 —q \(m+m2) (2" —¢q 2
we get
2oq  a\TE(r_2)  a-g \E% _ze
s 2 (G (=5 ) < = (roeg)
f*q;*q (Mgl e+ sllpll =) S5 ) = Co (A 4,Q. S5, A) >0,
and this completes the proof. O

For each w € H\{0}, we have K, (w) > 0 and let

(2= gluwlx \T
e (G im) 0

So, we get the following result.

Lemma 4.5. Let (A, 1) € Da. For every w € H with K,(w) > 0, the following results hold:
(i) If Wxu(w) <0, then there is a unique t~ > tmax such that (t”w) € N, 5 and

Lyap(t”w) =sup I, o p(tw).
t>0

(ii) If Wy ,(w) > 0, then there exist unique t+ and t= with 0 < 7 < typax < t~ such that
(ttw) € ./\f;ra 5 and (t"w) € N, 5. Moreover,

Iap(ttw) = iof Inap(tw), Ipast w)=suplyas(tw).

Proof. The proof is similar to [5, Lemma 2.6], and is omitted here. O
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5 Proof of the main results

In this section, we provide the proofs of the main results of this work. Before giving the proof of

Theorem 1.2, we need the following lemma.

Lemma 5.1. Assume that (Ag), hold. Then, we have the following results:

(i) If (\, ) € Da, then there exists a (PS)., . ,-sequence {(tn, vn)fnen C Nya,p for I a.s.

(i) If (A, 1) € Dan, then there exists a (PS) -sequence {(tn,vn)}tnen C N, 5 for Inap.

=
o,

Proof. The proof is almost the same as Proposition 9 in [19]. O

Now we establish the existence of a local minimizer of I,, , g on ./\/;;"a 5

Theorem 5.2. Assume that (Ag), hold. If (A\,p) € Dp, then I, o p has a minimizer (uy,v1) €

Nr;fa’ﬁsuch that (u1,v1) is a nonnegative solution of (1.1) and
In,a,ﬁ (ulavl) = Cp,a,p = C;a,ﬁ <0.

Proof. In view of the Lemma 5.1 (i), there exists a minimizing sequence {(un,vn)},cn € Nya,s
such that

lim Iy g (Un,0n) = Cpap and  lim I 5 (Up,v,) = 0. (5.1)

n—oo n— oo n

Since I, q,p is coercive on N, o3, we get that {(un,vn)},cy is bounded in H. Passing to a

subsequence, still denoted by {(uy,v,)} we can assume that there exists (up,v1) € H such

neN?
that (wn,v,) — (u1,v1) weakly in H and

Uy — U1, U, — v; weakly in LQ*(Q)7
Up —> U1, Uy — v strongly in L™(Q), Vr € [1,2%), (5.2)

un(2) = u1(2), wvn(z) = v1(2) a.e. in Q.

By the proof of Lemma 3.3 and (5.2), we get

lm Uy, (un,vs) = ¥y, (ur,v1). (5.3)

n—oo

From (5.1), (5.2) and (5.3), it is easy to prove that (u1,v1) is a weak solution of (1.1). Moreover,
the fact that (un,v,) € N; a,p implies that

q(2* -2

) q2*
2(2* — q) ”(Umvn)HH -

mITha,ﬂ (Un7’l}n) . (54)

\Ij)\,/t (Un7 Un) =

Let n — oo in (5.4), by (5.3) and ¢, < 0, we deduce that

*

U (w1, v1) > Ton g Cmas >0,
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which implies that (u1,v1) € H is a nontrivial solution of (1.1).

Now, we prove that (uy,v,) — (u1,v1) strongly in H and that I, o s (u1,v1) = ¢p.a,5. By applying

Fatou’s lemma and (ug,v1) € N, 5, one has

11 2* _g
o < Ty 1n00) = (5 = 52 ) o)l = 2200, ()
. 1 1 2% —q
< - 2 49 < -
<mint | (5= 50 ) o)l = 220000 0| € 10 Ty ) = 0

This yields I, o5 (t1,v1) = ¢y,a,p and limy, o0 ||(tn, vn)[l5, = [|(uw1,v1)||;,- The standard argument
shows that (un,v,) — (u1,v1) strongly in H.

Next, we claim that (uq,v1) € N g In fact, if (u1,v1) € N, 5, by Lemma 4.5 (ii), there are
unique #and ¢; > 0 such that ( ul,tfvl) € N 0,3 (tTur, t7v1) € N ma,p and th <ty =1
Since %In a.B (tl U1, ] vl) =0 and <& el In,aﬁ (t1 uy,t] vl) > 0, there exists ] € (tf,tl )such that
Lyas (tTur, tf o) < Ipap (tiur, tjor). By Lemma 4.5, it follows that

Inas (tTur, t701) < Ipas (Gus, o) < Inyap (w1, 6701) = Iyap (u1,01),

which contradicts I, o, (u1,v1) = €ya,8. Moreover, since I, o g (u1,v1) = Iyap (Juil, |v1]) and
url], |v1]) € NF_ ., we may assume that (u;,v1) is a nonnegative nontrivial solution of system
n,0,f3

(1.1). By means of Bony’s maximum principle [4], such solution turn out to be strictly positive. [

Now we establish the existence of a local minimizer of I,, , g3 on ./V'n_a 3

Lemma 5.3. Assume that (Ag) hold. Then, there exist (up,vo) € H\{(0,0)} and A5 > 0 such
that for all (A, 1) € Dp,, the following holds:

sup Iy o (tuo, tvo) < Coo, (5.5)
>0

where ¢ s a constant given in (3.12). In particular, Cpap < Coo for all (A1) € Dy,

Proof. Without loss of generality, we assume that 0 € Q. Let R € (0,7¢) be such that the quasi-
ball B4(0,R) C Q, and let a cut-off function ¢ € C§° (B4(0, R)) satisfying 0 < ¢ < 1, ¢ = 1in
Bq (0,4) and ¢ = 0 in G\By(0, R). Here rg is given in (As). Now, let u.(z) = ¢(2)U.(2) and

consider the function

2 2%

t t
T(0) = 5 (U 8) [l 3y = 5 (n™ +mt™) [ fucl a (5.6)
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where ¢y be given in Theorem 2.1. By Lemma 2.2 and the definition of S, o g, we obtain that

o*

(Y (14 £3) ey o
sup J,, (t) < 5~ o . -
t>0 (nltﬁl + 772tﬁ2)2* (fQ ‘UE 2% dZ) 5%
Q
2 5 o 2
<1 b (to) M _ 1 b (to) S¢ ++0(e972) (5.7)
T Q 2+ 1.\ 3" Q o 2
U el d2) (sg +O(5Q))
1 g 1 <
- @ (h (to) SG) * cng_Q - @Sn%a,ﬁ + C1EQ_2a

where c¢; is a positive constant and the following fact has been used:

Q

12 2" 1 A :
sup(—=A——B|)==|——1] , VA B>0.

(54 505) = g ()

Choosing A1 > 0 such that 0 < A||g|| 2+—4 + p|lh]] 2= < Ay, by the definitions of I, , g, there
25 s e,
exists ¢, € (0,1) such that

t2
Ly, (tte, thoue) < o (14 23) luell§s o) < Coor Yt < tm,

and one has

sup I a3 (tue, ttous) < Coo, (5.8)
0<t<tm

for all A, p € (0, +00) with

0 < Algll, p2e, +ullPll 2 <Ar.

PR

Moreover, by the definitions of I, o and (ue,touc), using the condition (As), Lemma 2.3 and
(5.7), we have

sup Ip o3 (tue, ttoue)

sup (0= 2 [ 0(z) + el lulva: )

>t t>tm
< ésﬁaﬁ bere@ 2 - %ao (\ +,utg)/Q e |7d
= %577%@, + 1697 (5.9)
CQaQ’@, if g > &,
— %ao A+ ptd) { eyeQ- 952 |Ing|, ifg= &,
045@, if ¢ < %,

where co, c3, ¢4 are positive constants.
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()If1<q<Q 5

enough, we can choose As > 0 such that

then by @ > 4 one can get that qQ— % < @ — 2. Thus, for ¢ > 0 small

td (Q=2)q

ts;a Iy a5 (tue, ttous) < QSnQa 5+ 16972 — an0045 2 < Coo,
for all A\, u € (0,400), == < As.
(ii) If 575 < ¢ <2, wehave Q >4 and ¢ > & > ﬁ, which implies that
4
(Q —2)q (Q-2q 4-(Q-2)q (Q—Q)(m—q)
— — —N=92— = = 0.

Then for £ small enough, by a similar argument in (i), we can choose Az > 0 such that

sup I a8 (tue, ttote) < Coo,

tZt”n
for all A, p € (0,+00) 2+ + MHhHL% < As.
Set A4 = min {As, A3}, from cases (i) and (ii), for all A\, u € (0, +oc) with

0 < sup I o, (tue, ttous) < Coo- (5.10)

t>tm

Thus, taking As = min {A1, A4}, (5.8) and (5.10) induce that sup,~ Iy« (fue, ttoue) < oo holds
for all A, p € (0,+00)

2% < A5.
L2 —q

Finally, we prove that ¢, , 5 < ¢ for all A, u € (0, +00) with (A, 1) € Dp,. Recall that (ug, vo) =
(ue, toue). It is easy to see that K, (ue,tous) > 0. Then, combining (5.5) with Lemma 4.5, and
using the definition of c;a’ﬁ, we obtain that there exists t; > 0 such that (t;uo, t;vo) IS /\/’77 o8
and

Crop < Inas (t3 uo, t5 vg) < supIn a8 (tug, tvg) < €0,
for all A, € (0, +00) with (A, ) € Da.. The proof is now complete. O
Theorem 5.4. Under the assumptions of Theorem 1.2. If (A, 1) € D, then the functional I, o g

has a minimizer (ug,vs) € J\f 0B and it satisfies I o p (u2,v2) = ¢

solution of (1.1), where A, = min {As, ZA}.

g and (uz,v2) is a positive

Proof. By Lemma 5.1 (i), there exists a minimizing sequence {(un,v,)} C N, ", 5 in H for I, o g,

for all (A, ) € RT x Rtsatisfying

q
a4y
=2
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In the light of Lemmas 5.3, 3.4 and 5.1 (ii), for 0 < )\||g||L 2+ u||hHL

2 < A, the func-
tional I, o g satisfies (PS)

-
g
CV—Wﬂ(:ondition for Crap > 0. Since I, q,p is coercive on N, o 3, we
can deduce that {(un,vn)},cy is bounded in N, o 3 and H. So, there exists a subsequence still
denoted by {(un,vn)}, ey and (uz,v2) € N, 5 such that (un,v,) — (uz,v2) strongly in H, and
Iya,p (ug,v2) =, 5> 0,1} 5 (u,v2) =0 for all (A, u) € R x RY with

0<Algll 2 +ullhll e <A

%
2% —q

Finally, arguing as in the proof of Theorem 5.2, we have that (us,v2) is a positive solution of the

system (1.1). O

Proof of Theorem 1.2. By Theorem 5.2, we obtain that for all (A, u) € D, Problem (1.1) has a
positive solution (ui,v1) € /\f;ra - By Theorem 5.4, we obtain a second positive solution (ug,v2) €

/\/;;a’ﬁ for all (A, ) € Dy, C Dy Since /\/;;fa_ﬂ ﬂ/\/;;aﬁ = (), this implies that (u1,v1) and (uz, v2)

are distinct.
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1 Preliminaries

Suppose that P is a property which a Banach space A might possess. A reasonable question to
ask about P is of the sort “What constructions on Banach spaces preserve P?” To clarify this, we
take a specific example: Let A be a complex Banach algebra and suppose that we are interested
in amenability. It is then well known that P, the property of being amenable, is preserved by
quotients: If A is an amenable Banach algebra, and I C A is a closed ideal, then A/I is also
amenable. It is also well-known that amenability is preserved by projective tensor products: if A
and B are both amenable, then so is AQB. (See e.g. the survey paper [15, Prop. 2.3.2].) Loosely
speaking, we can ask whether P is preserved “downwards” (through quotients), or “sideways”
(through tensor products); amenability is preserved in both of these directions. We could also ask
whether P is preserved by actions in two directions: e.g. if for a closed ideal I of a Banach algebra

A, both I and A/I satisfy P, does A also satisfy P? (This is the 3-space problem.)

This short discussion leads us to ask the following: Can a property P be preserved “upwards”?
We make this airy question more explicit: Let X be a set (usually, a topological space), and let
{A; : x € X} be a collection of Banach spaces indexed by X, over a common scalar field K, either
R or C. Suppose that A, possesses property P for each z € X. Let A C [[{Az : z € X} be a
Banach space of functions under the pointwise operations, and let o € A, so that o(z) € A, for
all x € X. What conditions on X, A, and the A, (aside from possessing P) might be sufficient to
insure that A also has P? Again using amenability as an example, we see that if X is an infinite
compact Hausdorff space, then A = ¢1(X), the space of absolutely summable complex-valued
functions on X under the pointwise operations, is not amenable: The amenability of each A, = C
is not passed on to A, since A does not have a bounded approximate identity. On the other hand,
A = ¢o(X), the closure in the sup-norm of the space of C-valued functions with finite support, is
amenable. This suggests that, at the very least, A should have some conditions on it, and perhaps
also that the collection {A, : € X} should satisfy some additional unifying property, aside from

just having all A, possess P. We might also want X to satisfy some reasonable conditions.

Obviously, there are many ways in which it might be possible to go “up” in this sense. In this
paper, we focus on one type of vector-valued function space A. We will assume unless otherwise
specified that X is a compact Hausdorff space and that {A, : € X} is a collection of complex
Banach spaces; we take A C [[{As : * € X} to be a Banach space of functions under the pointwise

operations which satisfies the conditions:

Cl) For each x € X, A, = p.(A) = {o(z) : 0 € A}, that is, A is said to be full; p, is the

evaluation map at z, so that p, (o) = o(z).
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C2) For each ¢ € A, the norm map x — |o(z)| is upper semicontinuous on X; hence o is

bounded and norm-attaining, with

loll = sup{llo()]| : © € X} = [lo (o)l

for some x¢ € X.
C3) Ais a C(X)-module under the pointwise operations.

C4) A is complete in the sup-norm.

We will call a space A which satisfies C1) - C4) an upper semicontinuous function space with fibers

A,, and abbreviate it to “function space”.

If in addition to C1) - C4) it is also the case that

C5) Each A, is a Banach algebra, and A is closed under pointwise multiplication (so that A is a
Banach algebra). We call such an A a function algebra. Evidently, a function algebra A is

commutative if and only if each fiber A, is commutative.

Examples of such function spaces (algebras) can be found in [11, Section 2], and also (using the
language of section spaces of bundles of Banach spaces and Banach algebras) in [5] and [14].
In particular, if A is a Banach algebra and {4, : © € X} is a collection of Banach algebras,
such function algebras include C(X, A), the space of continuous A-valued functions on X, and
co(X,{As}), the closure in the sup norm of the functions ¢ € [[{A; : © € X} with finite support.
A brief, and quite incomplete, bibliographical note on such function spaces can be found at the

end of [11, Section 2.

For a more general setting, the reader may also wish to consult [1]. Using slightly different language,
that paper studies algebras A of vector-valued functions over a completely regular Hausdorff space
X. These functions take their values in associative topological algebras {4, : © € X}, and the
algebra A is assumed to satisfy C1) and C3) above, without the completeness or norm conditions

of C2), C4), or C5).

Heritability has been explored previously (using either the language of function spaces or section
spaces of bundles of Banach spaces), for example in [4] (where A is simply a function space), [7],
and [8]. Of particular interest here are papers concerned with how some variants of amenability can
be inherited by function algebras A, e.g. amenability itself ([9]), module amenability ([11]), and
character amenability ([12]); in all these papers, appropriate uniform boundedness conditions were
shown sufficient to guarantee that the property under consideration was preserved by A. By using
the existence of certain conditions intrinsic to Banach algebras sufficient to establish the various

properties P of interest, it was possible to avoid the homological definitions of the properties. In
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this paper we will investigate the preservation to A of weak amenability in the A, by employing
a similar work-around. We will also investigate the preservation to A of pseudo-amenability; the

results in this case are not so satisfying.

We note several important properties of function spaces (algebras) A.

I) The evaluation map o — o(z) from A to A, is a quotient map. Indeed, we have A, ~ A/I, A,
where I, C C(X) is the maximal ideal of functions f such that f(z) = 0, and I,.A is the
closed span in A of elements of the form fo (¢ € A, f € I,)). The correspondence is given

by o(z) <> o + L, A.

IT) Let B be a function subspace of A, i.e. a closed subspace of A which is also a C'(X )-module,
and set B, = p,(B) = {o(z) : ¢ € B} C A,. Then B, C A, is a closed subspace, and
B, = {0 € A:o(x) € By} is a function subspace (necessarily full) of A; B, has fibers B,
and A, (if y # x). Moreover, (*) B=({B,:x € X} ={oc € A:0(z) € B, for all z € X}
and p,(B) = B,. In particular, if B and C are function subspaces of A such that B, = C,
for all z, then B = C. [Two caveats: 1) We need B and C to be subspaces of a common
function space A; it is not enough to have function spaces B and C over X which have fibers
B, = C, for all x € X, as the example B = C(X) and C = ¢o(X) shows. 2) In order for (*)
to hold, we also need to specify B, and hence both its fibers B, and the function subspaces
B, C A. Merely specifying some subspaces B, C A, is insufficient if we wish the fibers of
B =(\{B;: 2z € X} to be the B,. For example, consider the case X = [0,1], B = C(X),
and B, = 0 if z is rational, and B, = C otherwise. Then B, = {f € B: f(z) =0} if z is
rational, and B, = B otherwise. But (\{B, : x € X} = {0} C B]

IIT) Let A be a function algebra with fibers A,. Then A is a C(X)-(bi)module, and we let
J = Ja4 C A®A be the closed span of elements of the form (fo ® 1) — (0 @ f1) = [(f ®
1) - (1® f)](c ® 7), where 1 € C(X) is the identity, i.e. the function with constant
value 1. We call J the C(X)-balanced kernel in ARA. It is easy to check that J is both
an ideal and a C(X)®C(X) submodule in A®.A. Then there is a function algebra A ®x A
with fibers A4,®A4, and a C(X)-isometric isomorphism ¢ : (A®A)/J — A ®@x A, where
[qle@ T+ I))|(z) =(c ©7)(z) = o(z) ® 7(x). The isometry is given by

= sup
zeX

deQTk
k

Z or(z) ® 11 ()
k

Zak®7'k—|—,]
k

A®x A A A, (ABA)/J

Of these properties, I) and II) can be found in various locations in [5, Chap. 9]; and III) is
[16, Thm. 1.2 and Prop. 1.5].

We now proceed to our studies of weak amenability and pseudo-amenability.
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2 Weak amenability and heritability

Recall that if A is a Banach algebra and M is a Banach A-bimodule, then M* can be made into

Banach A-bimodule in a standard fashion via the actions
(m*a,m) = (m*,am) and (am*,m)=(m*,ma),

where a € A,;m € M, and m* € M*. A derivation D : A — M is a continuous linear map such

that D(ab) = aD(b) + D(a)b. The derivation D : A — M is said to be inner if

for some m € M.

Definition 2.1. Let A be a complex Banach algebra. Say that A is weakly amenable if each

derivation D : A — A* is inner.

Recalling that A is said to be amenable if, for any Banach A-bimodule M, each derivation D : A —
M* is inner [13], it is clear that an amenable algebra is also weakly amenable. If A is commutative,
then Fla = aF for each a € A and F € A*, so for a commutative algebra A to be weakly amenable

is to say that A has no non-zero derivations to A*.

Note that amenability and weak amenability can also be expressed in homological terms, the
details of which are not necessary here. In the event that A is commutative there are, however,
conditions intrinsic to A which are equivalent to its weak amenability. For the remainder of this
section we will assume (at the possible loss of some unnecessary generality) that all algebras are
commutative, and employ these conditions to investigate the heritability of weak amenability for

function algebras A.

We first note a necessary condition for A to be weakly amenable.

Proposition 2.2. Suppose that the function algebra A, defined over X, is weakly amenable. Then

each fiber A, is weakly amenable.

Proof. Recall that A, ~ A/I,A, and use the fact that quotients of weakly amenable algebras by
closed ideals are themselves weakly amenable. (See [6, Prop. 2.1] or [15, Prop. 2.5.3].) O

To exhibit conditions on the fibers A, sufficient to make the function algebra A weakly amenable,
we start with some notation modified from [6]: If A is a complex commutative Banach algebra,
then we take A% to be A with its standard adjunction of identity. (So, A% = A @ C1, with the
¢-norm, and multiplication (a ® A1)(b® ul) = (ab+ b+ pa) ® Aul. We will abuse notation only
slightly and write a + A = a + A1 € A%.) Let Kjé C A#®A# be the closed ideal which is the
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kernel of the multiplication map 7# : A#QA# — A# (a+ \) @ (b4 p) — ab + \b + pa + A, and
let 7: A®A — A be the restriction of 7# to ARA C A#RA#. We set K = Kf N (A®A); note
that this makes sense since A is complemented in A# by a projection of norm 1, and hence A®A
is an actual subset of A#@A# ([17, Prop. 2.4]). Since A®A is an ideal in A#®A# | we have K9
C A®A is also a closed ideal. In particular, for u = 3, (ax + M) @ (bg + px) € ARA, we have
u € Kﬁ if and only if

Z(akbk + Agbi + prar + Agpr) =0 € A7,
k

Especially, we have >, A\gup = 0 € C. Likewise, an element u € K9 is of the form Y, ax ® by,
with Zk arbr, =0 € A.

For later use, we note the following:

Lemma 2.3. Let A be a Banach algebra. Then (K%)2 C K% (ARA).

Proof. By definition, K is a subset of both Kﬁ and A®A, so that if 2,2’ € K9, we consider that
ze€ K% and 2 € ARA, so that 22/ € (K%)Q C K% (A®A); now use linearity and density. O

The following result characterizes the weak amenability of a commutative Banach algebra A. Recall

that a Banach algebra is said to be essential provided that A% = span{ab : a,b € A} is dense in A.

Theorem 2.4 ([6, Thm. 3.2]). Let A be a commutative compler Banach algebra. Then the

following are equivalent:

1) A is weakly amenable;

2) A is essential and (K9)2 = K% (ARA).

Note that there are other equivalences established in the cited theorem; the one here is sufficient

for our purpose.

Suppose now that A is a function algebra such that each A, is weakly amenable. We will show

that A is also weakly amenable. The first task is to show that A is essential.

Proposition 2.5. Let A be a function algebra over X, and suppose that each A, is essential.

Then A is essential, and conversely.

Proof. This result (a Stone-Weierstrass theorem for function algebras) is a variant of [5, Cor. 4.3],

and can also be found in [11]. However, it is worth looking at a proof, using our current language.

Let 0 € A, and let ¢ > 0. For each z € X, we can find t, = Z?;l az kb x € A2 such that

|o(x) = tz]| < e. From condition C1), above, we can choose 7, k, 7, ) € A such that 7, () = az,

Mg

7o k(€)= by g Set vy = Y0 T gL, € A2 Since [lo(x) — v () < €, it follows from C2) that
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there is a neighborhood V, of x such that whenever y € V,, we have ||o(y) — v, (y)|| < €. Take a
finite subcover {V;} = {V,, : j = 1,...,n} of the V,,, and let {f; : j = 1,...,n} C C(X) be a
partition of unity subordinate to the Vj, so that for each j =1,...,n, we have: 0 < f; <1, f; is
supported on Vj, and 3, f; = 1.

For any y € X, we then have

U(y)*ij(y)Vj(y) = ij(y)[g(y)*'/j(y)] < Y fwllew) -yl <e,

js.t. yeV;

so that HO’ —>_; [ivj|| <&, and therefore o is in the closure of A2

The converse is an immediate consequence of C1). O

This shows, in particular, that the property of being essential is preserved by function algebras.
Especially, if each A, has an approximate identity, so also does A; if the approximate identities in
the fibers A, of A are uniformly bounded, then the approximate identity in A is bounded. (See
[9] and [12].)

It is straightforward to check that both (K9 )? and Kﬁ (A®A) are closed C(X)®C(X)-submodules
of, and ideals in, ARA.

Lemma 2.6. Let A be a function algebra such that each A, is weakly amenable, and let J € AQA
be the C(X)-balanced kernel. Then J C (K9)2.

Proof. Note that since each A, is weakly amenable, we have each A2 is dense in A, so that A2
is dense in A. By definition, J is the closed span in A®.A of elements of the form [(1® f) —
(f ®1)](0 @ 7). But since A? is dense in A, 0 ® 7 can be written as a limit of elements of form
ool ® (Z] TJ{TJI/) =k Ok OTT] =3k (0, ® TJ,) (o ® TJ/»/) . Restricting ourselves for
the moment to elements of the form ¢ ® 7 = 102 @ 7172 = (01 @ 71 ) (02 @ T2) € A®A, and noting
that (T® f) — (f ®1) is in the kernel of the multiplication map f ® g + fg from C(X)®C(X) to

C(X), we can write

(TefH-(fel)](caT)= lil{n (T®f)— (f®T1)] (01 @T1)hu(o2 @ T2),

where {h,} is a bounded approximate identity for ker mo(x). (Such an {h,} exists because C(X)
is amenable, so that the above-mentioned kernel J has a bounded approximate identity; see [10, p.
254].)

It is evident that both [(I® f)— (f®1)] (o1 ® 1) € KY, and h,(02 ® 72) € KY, so that

[(T@f) = (f®1)] (01 ® 71)hyu(o2 @ T2) € (KY)?. The rest follows by linearity, density, and the
boundedness of {h,,}. O
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It follows from Lemma 2.3 that we also have J C Kﬁ (ABA).

We obtain from the above that G = (K%)2/J and H = Kj(A@.A)/J are function subalgebras of
A®x A, with fibers G, H, C A,®A,, respectively.

Now, consider H = Kﬁ (A®.A)/J. Recalling the discussion preceding Lemma 2.3 about the mul-
tiplication maps 7# and 7, we see that a typical element u € Kﬁ(A@A) is a limit of sums of

elements of the form

Y a8 | € ABA,

J

[Z(Uk + ) @ (75 + )

k

(where the first sum is in Kﬁ and the second is in A®A), with 7% (u) = w(u) = 0 € A. If u is
such a limit, the image of u in K ﬁ(A@A) /J under the quotient map is therefore a (uniform) limit

of sums of functions of the type

Zaj © 85| = (ona; + Ay © (1B + uiy) € ABx A,

k,j

lZ(mc + X)) O (7% + k)

k

where
™ ( [Z(Ukaj + Aka) © (785 + Mkﬂj)] (33)) = (Z[Ok(l’)aj (@) + A (2)] @ [k (2) B () + 1B (%‘)])

k.j kg
D (on() +Ae) @ (ri(@) + pur) {Zag ) ® Bi(x D

for each = € X. Thus, (u+ J)(z) € KI (A,®A,), for each 2 € X, where K# = Ki7 and so the
fibers H, = po(K¥ (4,84,)/J) C ps(A@x A) of H are subspaces of the K7 (A,®A,) for each
zc X.

On the other hand, an element v € K (AI@)AI) is the limit in A,®A, of sums of elements of the

form

> (ak + k) @ (b + ) ch ®d;| = (anc; + ecy) @ (brd; + ppd;) € KF (A, 8A,).
k k.j

For each such element v, we can choose oy j,Bk; € ARA such that ag,j(z) = arej + ey,

llok 5| = llare; + Aecsll, and By j(x) = brd; + prdy, [|Bk;ll = lord; + prd;l| (see [14, Prop. 1.1]).
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Note that by the definition of the norm in projective tensor products, we have

> (ax + M) @ (b + pux)
k

< llak + Mell g + pll < o,
k

and similarly for

2256 ®de . Then

D ;@ Br|| < Y sl 1Bl = lare; + Awcs | 1brdy + pdy|
kg kg kg

< Nk + Axll sl 10x + gl N1y
k,j

=<Z(ak+>\;@ (br. + px) ||> ZH%@MH < oo
k

and so we have 3, s ag; ® By, € A®A. Moreover,

Zak’j QB +J| (x)=m Zak’j O Br,i| (z)
k,j j
=T Z(akcj + )\ij) ® (bkdj + ,Ltkdj) =0€ A,
|

so that Zk’j ok, © Pr; € My Thus, p,(H,) = Hy is dense in Kf(Az(@AI); coupled with the
preceding, we have H, = K (Az@)Am).

By similar arguments, we have p,(G) = G, = (K9)2, so that G = (K9)2/J = N, {z € (ABA) +J
2(z) € (K92 =G} =N{G.: 2z € X}.

KY%)?/J c A®x A and H, of
)2/J C Awx A.

But now, since A, is weakly amenable for each z, the fibers G,

K% (ABA)/J C A®x A are identical, so that K% (ARA)/J = (

We have shown:

Lemma 2.7. Let A be a commutative function algebra such that each fiber A, is weakly amenable.

Then the quotient algebras Kﬁ(.A@A)/J CA®x Aand (KY)?/J C A®x A are identical.

Corollary 2.8. Let A be a commutative function algebra with weakly amenable fibers A,. Then
K (ABA) = (K9)2.

Proof. Elementary algebra: Let z € K #(A®A) Then from the preceding Lemma, there exists
w € (K9)? such that z +.J = w + J. Hence z —w € J C (K9)2, so that z € (K9)? +w = (K9)2.
Similarly, (K%)2 € K% (A®A). O
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Theorem 2.9. Suppose that A is a commutative function algebra such that each fiber A, is weakly

amenable. Then A is weakly amenable.

Proof. Apply Theorem 2.4 to the preceding results. O

Corollary 2.10. Suppose that X is a compact Hausdorff space, and that A and {A, : x € X} are
commutative and weakly amenable. Then so are C(X, A) and co(X,{Az}). If X is locally compact
and Hausdorff, and A is commutative and weakly amenable, then so is Co(X,A), the space of

continuous A-valued functions disappearing at infinity.

Proof. We need only address the last assertion. Let Xo, = X U{oo} be the one-point compactifica-
tion of X. Then Cy(X, A) is C(X)-isometrically isomorphic to the function algebra I.,C(X, A),
where I, is the ideal in C(X ) of functions which disappear at oco; and it is easily checked that

I.C (X, A) is a function algebra with fibers A, = A, if z # oo, A, = {0}. O

Corollary 2.11. Let A be a function algebra all of whose fibers are commutative C*-algebras.

Then A is weakly amenable.
Proof. A C*-algebra is weakly amenable [2, Thm. 5.6.77]. O

To the authors’ knowledge, it is an open question as to whether a function algebra A with fibers that
are all C*-algebras is itself a C*-algebra. That is easily seen to be the case if A is adjoint-closed,

but the conclusion is not apparent if A is not assumed to be adjoint-closed.

We note that, in say [9], and similarly in [11] and [12], in order to induce amenability of its fibers A,
upward to a function algebra A, we had to find someway of spreading the necessary boundedness
conditions on each A, across X to all of A. In [9], for instance, we accomplished this by assuming
that the bounded approximate identities on each A, were uniformly bounded across the A,. In the
present situation, a necessary (and sufficient) condition for weak amenability of the fibers A, of A
is that each fiber be essential and that K (A,®A,) = (K9)2. And, as it turns out, Proposition
2.5 and the passing from A®A to the quotient A ®x A are the tools which spread that property
across X to all of A.

3 Pseudo-amenability and heritability

In the preceding section we mentioned the presence of conditions involving boundedness or essen-
tialness of fibers which were sufficient to induce the heritability of the relevant conditions from
fibers upward to function algebras. What happens if we eliminate boundedness conditions from
the fibers? The answer, as we see in the following, is not nearly so satisfactory, at least as far as

we are able to demonstrate. In this section, we make no assumptions about commutativity.
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Recall the definition:

Definition 3.1 ([3]). A (complex) Banach algebra A is said to be pseudo-amenable if there is a net
{ux} C ARA (called an approzimate diagonal) such that for each a € A we have ||uxa — auy|| — 0
(in ARA) and ||w(uy)a —al| — 0 (in A), where 7 : ARA — A is the multiplication map.

As an immediate consequence of this definition, we note:

Proposition 3.2. Let A be a pseudo-amenable function algebra. Then each fiber A, is pseudo-

amenable.

Proof. Note that A, ~ A/I,A and that pseudo-amenability is preserved by quotients (see [3, Prop.
2.2]). O

If {A, :x € X} is a collection of pseudo-amenable algebras over the compact Hausdorff space X,
it is shown in [3, Prop. 2.1] that each of the algebras co(X, {A;}) and ¢P(X,{A,}), 1 < p < o0,
is pseudo-amenable, where ¢P(X,{A,}) C [[{As : * € X} is the space of choice functions o over
X such that ||of| = (3, Ho(gc)Hp)l/p < 0o. While all of these are algebras and C'(X)-modules, of
course, only ¢o(X, {Az}) is a function algebra in our sense. Can we extend the pseudo-amenability

result for ¢o(X, {A,}) to arbitrary function algebras with values in the A,?

We obtain a partial answer. Recall that an elementary member of A ® x A is of the form z —
(0 ©71)(x) = o(z) ® 7(x), where 0,7 € A. Recall also that J C ker 7, where 7 : ARA — A is the
multiplication map; thus (again abusing notation only slightly) 7 : A ®x A — A is well-defined.

Definition 3.3. Let A be a function algebra over the compact Hausdorff space X with fibers A,.
Say that A is quotient pseudo-amenable if there exists a net {vy} C ARA such that for any o € A

we have both
[(wx + J)o —a(vr+ I 4ga = sup [[a(z)o(z) — o(z)va(z)]| — 0

and
[w(va+ J)o =0l 4= sup [[[m(v2)](z)o(z) — o(z)| — 0.

There is a slightly stronger version of Proposition 3.2:

Proposition 3.4. Suppose that the function algebra A is quotient pseudo-amenable. Then each

fiber A, is pseudo-amenable.

Proof. Let {v\} € A®.A be a net which makes A pseudo-amenable. For any 2o € X and o € A,

we have

[(vx + J)o —o(wa + J)|| = sup [va(@)lo(2) — o(@)[pa(@)]]l = [[[va(zo)]o(x0) — o(zo)[va(o)]| = 0

and similarly for the other necessary convergence. O
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Before we proceed to the next result, we gather some notation. Suppose that A is a function algebra
with pseudo-amenable fibers {A, : © € X} and respective approximate diagonals {ux, : Ay € A, }.
Set A = [[{A: : z € X}, and write A(z) = A, (to avoid having subscripts be nested too deeply).
Order A pointwise, i.e. A’ > X if and only if X' (z) > A(x) for each z € X. Given A € A, for
each x € X we can choose and fix vy(,) € A ®x A such that vy(,)(z) = uy) and such that
Hl/)\(x) (w)H = ||u>\(_,,3)H ; again, the existence of such vy, is guaranteed by Prop. 1.1 of [14]. Then
by the definition of pseudo-amenability, for each z € X and o € A, we have

|vA@) (@)o(2) — o (2)va@) (2)]| = ||ur@)o (@) — o(@)ur@) || — 0
and
|7 (a@)(@)o(z) — o(z)|| = |7 (ur@))o(z) — o(z)|| =0,

both as A(z) increases in A,.

Theorem 3.5. Let A be a function algebra over the compact Hausdorff space X with fibers A,

and suppose that each A, is pseudo-amenable. Then A is quotient pseudo-amenable.

Proof. We use the methods of Lemma 4 and Cor. 3 of [11]. Let F = {0y :k=1,...,n} € A and
m € N be given. Fix 0 = 03 € F' and € X. Choose vy, as above, and choose A, r(z) € Ay
such that if A(z) > Ay, x(z), then both

||Vx(x)($)0($) - U(x)VA(x)(fU)H = ||Ux(x)0($) - U(»"U)UA(x)H <1/m
and
I re)l@)o (@) = o(@)]| = |m(urw)o(@) = o(@)]| < 1/m.

Then if A, € A is such that A\, > max{\,; : k= 1,...,n} (i.e. Ap(x) > max{\, x(z): k =
1,...,n} for each z € X)), the above inequalities hold (for A,,) for each 0 € F' and z € X.

We now employ the upper semicontinuity of the norm functions in both A and A®x A. For z € X,
choose a neighborhood V. (F,m) such that if y € V,(F, m) then both

HV)\(x) (x)a(x) - J(x)yz\(m)(x)n < 1/m
and
[[r(a@)](@)o(z) = o(z)]| < 1/m
for all o € F.

Now, X is compact, so we can choose {x; : j = 1,...,s} such that {V;} = {V,,(F,m):j=1,...,s}

also covers X. As in Proposition 2.5, let {f; : j =1,...,s} a partition of unity subordinate to the
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V;, and define { = £(F,m) by § = ijl fiVa(z;) € A®x A. Then for y € X and o € F), and
setting p = [(y)o(y) — o (y)§(y)| . we have

p=| D W) @) = o@)va, @) ®)]

j s.t. yeV;
< Y O ey @) —o@van@) W < DY fily) - 1/m < 1/m,
j s.t. yeV; j s.t. yeV;

so that ||{o — €| = sup,, ||V, (z;) W) (¥) — o)A, @) @)|| < 1/m (in A®x A).
Similarly, we have ||7(§)o — o] = sup, ||[7(§)](y)o(y) —o(y)|| < 1/m (in A).

Finally, set ¥ = {(F,m) : F C A is finite and m € N}, and order ¥ by (F',m’) > (F,m)if ' D F
and m’ > m. By the preceding, for each (F,m) € ¥ there exists £ = £(F,m) € A®x A such that
for each o € F' we have both ||€o — o€|| < 1/m and ||7(§)o — o] < 1/m. In particular, for a given
oo € A and mgy € N, there exists (Fy,mg) € U, with o9 € Fy, such that if (F',m’) > (Fy,mo)
then both [|¢'og — oo’|| < 1/m’ < 1/my and ||7(§)og — ool < 1/m/, where &' = &'(F/,m’) is
constructed as above. Therefore {¢ = £(F,m) : F C A is finite and m € N} is an approximate
diagonal for A. O

Thus, A is quotient pseudo-amenable if and only if each A, is itself pseudo-amenable.

Proposition 3.6. Suppose that A is a function algebra over X, and that each fiber A, is abelian

and pseudo-amenable. Then A is weakly amenable.

Proof. An abelian pseudo-amenable algebra is weakly amenable [3, Cor. 3.7]. Therefore A is

weakly amenable; see Theorem 2.9. O

Naturally, Theorem 3.5 is a weaker result than we would like, especially given other amenability
results on function algebras. We suspect that the main obstacle in general is that for pseudo-
amenability we can not employ any boundedness conditions. (Indeed, in [15], pseudo-amenability
is introduced as “amenability without boundedness.”) The reader will note that in the proof of
pseudo-amenability of ¢o(X,{A,}) (and the other spaces ¢(X, {A;})) in [3], crucial use is made of
the facts that elements o € ¢o(X, {A,}) with finite support are dense in the space and that there
are projections from co(X,{A,}) into its subspaces consisting of functions with finite support.

This of course need not be the case for general function algebras.
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RESUMEN
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1 Introduction

The realm of g-calculus, also known as quantum calculus, offers a fascinating extension of classical
calculus, operating without the conventional concept of limits. Its genesis can be traced back
to the early twentieth century with the pioneering work of F. H. Jackson [21]. This framework
provides a robust mathematical toolkit for analyzing functions that may exhibit non-smooth behav-
ior. Subsequent developments by numerous researchers have significantly enriched the theoretical

underpinnings of g-calculus and broadened its applicability [5,17-20].

In recent decades, the intersection of g-calculus with fractional calculus has given rise to the vi-
brant field of g-fractional calculus, leading to the study of g-fractional difference equations. These
equations have garnered considerable attention due to their capacity to model complex systems
with memory and hereditary properties [2,8-10,17,22-24,30|. Fixed point theorems have emerged
as indispensable tools in the analysis of g-fractional difference equations, instrumental not only in
establishing the existence and uniqueness of solutions but also in examining crucial stability prop-
erties [6,12-16,25-28]. The work of Mesmouli, Ardjouni, and collaborators [25-28] is particularly
relevant, addressing various forms of nonlinear neutral Caputo g-fractional difference equations.
The Caputo g-fractional derivative, introduced by Abdeljawad and Baleanu [3], alongside support-

ing theoretical work [1,7], provides essential tools for such investigations.

For 0 < ¢ < 1, define the time scale T, = {¢",n € Z} U {0}, where Z is the set of integers. For
a = ¢"™ and ngy € Z, denote T, = [a,0), = {¢’a,i = 0,1,2,...}. Let R™ be the m-dimensional
Euclidean space and define I, = {ra,q 'ra,q %7a,...,a} and T,, = [ra,00)q = {q¢ 7a,i =
0,1,2,...}, where 7 = ¢? € T,, d € Ng = {0,1,2,...} and I, = {a} with d = 0, is the non-delay

case.

Recently, Abdeljawad, Alzabut and Zhou in [2] studied the existence of solutions for the g-fractional

difference equation
chéx(t) = f(t,l‘(t),ﬂ?(’?’t)), tETa,
2(t) = o(t), tel,

(1.1)

where f: T, x RxR — R and ,C¢ represents Caputo’s g-fractional difference of order o € (0,1).

By employing the Krasnoselskii fixed point theorem, the authors obtained existence results.

Moreover, Mesmouli and Ardjouni in [25] studied the existence, uniqueness and stability of solutions

for nonlinear neutral g-fractional difference equation

qcctzx(x(t) - g(tvx(Tt)) = f(t,:l?(t),l‘(Tt)), t €T,
z(t) =), tel,

(1.2)

where f: Ty xRxR -+ Rand g: T, xR = R, 9 : I, = Rand ;CZ represents Caputo’s g-fractional
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difference of order a € (0,1). To establish the results, the authors applied Krasnoselskii’s and

Banach’s fixed point theorems, as well as Arzela—Ascoli’s theorem.

Motivated by [2] and [25], we study the existence and stability of solutions for the totally nonlinear

neutral g-fractional difference equation

oCa (M(z(t)) — g(t, x(1))) = f(t, x(t), x(7t)), t €T,
a(t) =9(t), tel,

(1.3)

where h : R = R, f: Ty xRxR =+ Rand g: Ty xR =R, ¢ : 1, = R and ;C¢ represents
Caputo’s g-fractional difference of order « € (0,1). To prove our main results, we employ the

Krasnoselskii-Burton fixed point theorem.

The paper is structured as follows: Section 2 provides essential preliminaries, including definitions
and lemmas from g-calculus and fractional difference calculus, the inversion of Equation (1.3) to
its integral form, and the statement of the Krasnoselskii-Burton fixed point theorem. Section 3
is dedicated to proving the existence of solutions for Equation (1.3) under derived conditions.
Section 4 presents results on the stability of these solutions. Section 5 offers an illustrative example.

Finally, Section 6 presents concluding remarks.

2 Preliminaries

In this section, we give some basic notations, definitions, and properties of g-calculus and fractional

difference calculus, which are used throughout this paper; see [2] and [25].

Definition 2.1 ([3]). For a function f:T, — R, its nabla g-derivative of f is defined as
Vi) =TT e gy, (2.1)

Definition 2.2 ([3]). For a function f: T, — R, the nabla g-integral of f is defined as
t o . .
[ 19V =a-ar>dr @), (22)
0

=0

Fora €Ty, (2.2) becomes

/a )V /O ) Vs - /0 ")V (2.3)
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Definition 2.3 ([1,3]). The g-factorial function for n € N is given by
n—1 )
(t—s)y = H (t—q's). (2.4)

i=0

In case « is a mon-positive integer, the g-factorial function is given by

_Sa_aoo (l—fqi)
(t—s)2 =t 1}) EEEE (2.5)

In the following Lemma, we present some properties of g-factorial functions.

Lemma 2.4 ([9]). For «,8,a € R, we have

(i) (t— 5)3 = (¢ — )2(t — g*s)5.
(i) (at —as)g = a®(t — s)g.

(iii) The nabla g-derivative of the g-factorial function with respect to t is

Vo(t— )2 = 11__‘1; (t— )L, (2.6)

(iv) The nabla g-derivative of the g-factorial function with respect to s is

@

1—gq
1—g¢

Vy(t —s)g =

q

(t—qs)> L. (2.7

q

Definition 2.5 ([3,7]). For a function f : T, — R, the left g-fractional integral NV, of order
a#0,-1,-2,... and starting at a = ¢"° € Tq,ng € Z, is defined by

Va0 = [ @ = i S @ ) @), @)

where
_1-q

Iy(a+1) -

I,(a), T,1)=1 a>1. (2.9)

Remark 2.6. The left g-fractional integral (V¢ maps functions defined on Ty to functions defined

on Ty.

Definition 2.7 ([3]). Let 0 < a ¢ N. Then

(i) the left Caputo q-fractional derivative of order a of a function f defined on T, is defined by

t
JCEf(t) = Vi v f(t) = F(nl_a) / (t— )"V F(5)V s (2.10)
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where n = [a] + 1. In case a € N, then ,Cg f(t) = Vi f(1).
(1t) The left Riemann g-fractional derivative is defined by (Vo f) (t) = (V v, e f) (t).

(#i) In virtue of [3], the Riemann and Caputo g-fractional derivatives are related by

Lo (1) = (V1) (1)~ Mf(a)- (2.11)

Lemma 2.8 ([3]). Let o > 0 and f be defined in a suitable domain. Then

Vo (O ( Z ,H‘;vk() (2.12)

and if 0 < a <1 we have

aVa " (Caf) () = f(t) - f(a). (2.13)
The following identity is crucial in solving the linear g-fractional equations

qv;a(x _ a)u — Fq(lu‘ + 1)

A\ T (g — g
p F(a—s—u—i—l)(m a)hT (0<a<z<b), (2.14)

q

where o € R* and p € (-1, 00).

We give the equivalence of Equation (1.3). So, the solvability of this equivalent equation implies

the existence and stability of solutions to Equation (1.3).
Lemma 2.9. z(t) is a solution of (1.3) if and only if it admits the following representation
z(t) = ¥(a) — H(P(a)) — g(a,y(ra)) + H(z(t)) + g(t, z(71))
1 t
+ Fq(a)/a (t— qs)g‘_lf(s,x(s), x(78))Vys, teT, (2.15)

where

H(x(t)) = x(t) — h(x(t)). (2.16)
Proof. Let
Then, we can write (3) as

qCaz(t) = f(t, (1), z(71)).

By the same way used in [2] and [25], we obtain for ¢t € T,,, the initial value problem for Equa-
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tion (1.3) is equivalent to the following equation

z(t) = z(a) +

Fq(a)/a(t—qs)?_ f(s,z(s),z(15))Vys. (2.17)

The proof is complete. O

The space [, denotes the set of real bounded sequences with respect to the usual supremum norm.

We recall that [, is a Banach space.

Definition 2.10. A set M of sequences in lo, is uniformly Cauchy if for every e > 0, there exists
an integer N* such that |z(t) — z(s)| < € whenever t,s > N* for any x = {x(n)} in M.

The following discrete version of Arzela—Ascoli’s theorem has a crucial role in the proof of our

main theorem.

Definition 2.11 ([29, Arzela-Ascoli]). A bounded, uniformly Cauchy subset M of 1o (Tqy) (all

bounded real-valued sequences with domain T, ) is relatively compact.

Definition 2.12 (|11, Large contraction|). Let (M, d) be a metric space and B : M — M. B is
said to be a large contraction if for each pair x,y € M with x # y then d(Bx, By) < d(x,y) and if
for each € > 0 there exists 6 < 1 such that

[z,y € M,d(z,y) > €] = d(Bz, By) < dd(z,y).

Theorem 2.13 (|11, Krasnoselskii-Burton]). Let M be a closed conver non-empty subset of a

Banach space (S, || - ||). Suppose that A and B map M into M such that

(i) for all x,y € M, implies Ax + By € M,
(ii) A is continuous and AM is contained in a compact subset of M,

(iti) B is a large contraction.
Then there is a z € M with z = Az + Bz.

We will use the next theorem to show the existence of solutions for Equation (1.3).
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Theorem 2.14 ([4]). Let || - || be the supremum norm, M = {z € C(T,R) : ||z|| < R}, where R is

a positive constant. Suppose that h is satisfying the following conditions
(H1) h is continuous on Ur = [—R, R].

(H2) h is strictly increasing on Ug.

(H3) sup.ep,nr, «Cah(s) < 1.

(H4) (s =1){ sbcvrpr, «C2h(0) } = h(s)=h(r) = (s=1){ inficunnir, oCEh(i)} = 0 for s,r € Up
with s > r.

Then, the mapping H defined by Equation (2.16) is a large contraction on M.

Let T = [ra,Th], = {¢"ra,i = 0,1,...,n1 + d} where Ty = ¢~™ ~%ra with ny € [d + 3,00) N Z,
and C(T,R) be the set of all real bounded sequences. C(T,R) is a Banach space endowed with the

norm

[ = sup |2(£)]-
teT

Define the set
M= {z € C(T,R) : 2(t) = ¢(¢t) for t € I and ||z|| < R}, (2.18)

a non-empty bounded closed and convex subset of C(T,R).

3 Existence of solutions

We prove our main results under the following assumptions:

e There exists a constant Ly > 0 such that for all ¢ € T,, and for all z,y, z,w € R,
|f(t, 2, 2) = f(ty,w)| < Le([le = yll + |z = wl). (3.1)
o There exists a constant L, > 0 such that for all ¢ € T,, and for all =,y € R,
l9(t,2) = g(t,y)| < Lyz =yl (3-2)

e There exists a constant R > 0, satisfying the inequality,

(QRLf + O'f)C(Oz)

e <R,  (33)

J| (@) + [H(¥(a)| + |g(a, P(ra))| + RLg + 0 +

where C(a) = 7(1_2(,7;@_)(1)3

supser, |f(t,0,0)[, oy = sup;er, |9(¢,0)| and J > 3 is a constant.

is a positive constant depending on o and Tp, with oy =



642 A.-P. Afful, E. Yankson & A. Adom-Konadu

Define a mapping S : M — C by

(Sz)(t) = ¢(a) — H(¢(a)) — g(a,¥(7a)) + H(z(t) + g(t, x(7t))

+ / (t— qs)?*lf(s, x(s),x(7rs))Vgs. (34)

[y(a)

We express (3.4) as
(S2)(t) = (Az)(t) + (Bz)(1),

where the operators A, B : M — C are defined by

(Az)(t) = ¢(a) — H(y(a)) — g(a,¥(Ta)) + g(t, z(11))
‘o 991 (s 2(s). 2(rs\V 5. (3.
Ly(a) /a (t—q )q f(s,2(s),2(75))Vys, (3.5)

and

(Bz)(t) = H(x(t))- (3.6)

Lemma 3.1. Assume that conditions (3.1), (3.2) and (3.3) hold. Then, the operator A : M — M

defined in Equation (3.5) is compact and continuous.

Proof. Let A be defined by Equation (3.5). In view of conditions (3.1) and (3.2), we arrive at

[f(t,2(8), 2(rt)| = |f(t, 2(2), 2(7t)) — f(¢,0,0) + (£, 0,0)|
< |f(t2(t), 2(t)) = f(£,0,0)[ + [ f(2,0,0)] < 2Lgll2[ + oy

and
lg(t, z(rt))] = [g(t, z(71)) — g(¢,0) + g(t,0)| < |g(t, 2(7t)) — g(t,0)] + |g(¢, 0)| < Lg|lz[| + 0.

We have

(Az(8))| = |¢(a) = H(¥(a)) — g(a, ¥ (7a)) + g(t, z(71)) + / (t—as)g™ ' f(s,2(s),2(75)) Vs

[y(a)
< [W(a)| + [H((a)] + [g(a, ¥(ra))| + |g(t, x(71))| + Dja)/ (t—gs)g 7 | f(s,2(s),2(7s))| Vys

2Ly||z|| + oy /t -1
—————— | (t—q8)3 Vs
FQ(a) a I !

2RLs + oy /t .
(t—gqs)d " Vys.
Tyla)  Ja v

< [¥(a)l + [H((a)) + lg(a, ¥ (Ta))| + Lyllxl| + o +

< [¥(a)l + [H($(a))] + g(a, ¢ (ra))| + RLy + 04 +
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By the relations (2.9), (2.14) and the fact that (t —a)) = 1, we have

1 ! a—1 _ « _ Fq(l)(t*a)?
rq(a)/ (1= a9y = )}V =, Vit -y =
(T —a)y (1—q)(T1 —a)y

< = L t<Ty.
Ta+1)  (1-¢*)0(a) !

Then

(ZRLf + Uf)C(Oz)'

[(Az())] < |(a)| + [H(¢(a))| + |g(a, p(Ta))| + RLg + 0 + Ty ()

Thus
R
Azl < = < R.
la] < 5 <

Hence, A : M — M which implies A(M) is uniformly bounded.
To prove the continuity of A, we consider a sequence (z,) which converges to = such that
|(Azy)(t) — (Az) ()] < lg(t, n(Tt)) — g(t, z(71))]
1 t
i [ (= 0957162060, (r8) = £(5.2(9), )| Vs
Fq (Ol) a

Ly ! 1
< Lyllan —all + ==L~ [ (t—qs)27 |z — 2|V
< Lol =l + s [ 0= a0l - Vs

2L:C() 2L;C(a)
< Lyllwn — ol + L2 |2, — 2] < (Lg + 22 |z, — 2.

Ly(a) Iy(a)

From the above analysis, it implies that

I42,)(0) = (40O < (Eo-+ 205 e ~ .

Hence whenever x,, — x, Ax, — Ax. This shows the continuity of A.

To prove that A is compact. We will prove that A(M) is equicontinuous. Let z € M, then for any

ty,to € T, with 0 < t; <ty < Ty, we have

|(Az)(t2) — (Az)(t1)] < [g(tz, z(7t2))| + [g(t1, 2(T1))]

1 t2 o
+ m‘ /a (ta — qs)q lf(Sax(s)ax(TS))Vqs

- / (b — g5)2 " f (s, 2(s), 2(7$)) Vs
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< lg(ta, x(Tt2))| + lg(tr, 2(rt1))]

1 h . .
+rqm>/a (tz — )3 " — (t1 — g8)5 " |If (5. 2(5), 2(79)) Vs
+/t2(t2*qs)g‘*1|f(s,x(s),x(Ts))|Vqs,

By the assumptions (3.1), (3.3), and Lemma 2.9, we obtain

|(Az)(t2) — (Az)(t1)] < [g(tz, z(t2))| + [g(t1, 2(T1))]

1 t2 L
—— [ Tty —qs)™
T / (2 = qs)y ™ Vo

+ (2RLf + O'f) (ta —qs)2t — (t1 — q5)2 71| Vys

q q

By using (2.8), we obtain

[(Az)(t2) — (Ax)(t1)| < lg(ta, x(Tt2))| + [g(tr, z(7t1))]|

+ (2RLys +05) [(Vo* ((t2 — a)) — (t1 — a)y) +4 Vi, (t2 — t1)y] -

From (2.14), it follows that

[(Az)(t2) — (Az)(t1)] < |g(t2, 2(Tt2))| + |g(t1, x(Tt1))]
(QRLf + Uf)

Ly(a+1) [(tQ —a)g — (b —a)g + (t2 — tl)?]]

Hence it follows that |(Az)(t2) — (Az)(t1)| — 0 as t; — to. Thus that A(M) is equicontinuous. So,

the compactness of A follows by the Ascoli-Arzela theorem. O

The next Lemma, gives a relationship between the mappings H and B in the sense of large

contraction.

Lemma 3.2. Let B be defined by (3.6). Suppose that

(/-1

max (|H(-R)|,[H(R)|) <

R, (3.7)

and all conditions of Theorem 2.14 hold. Then B : M — M is a large contraction.

Proof. We will first show that B maps M into itself. Let € M, then by (3.7) we have

(Ba)()] = |(Ha)(0)] < max {|H(—R)| | (R) } < L=

R <R.
=7 <
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Thus

|Bz| < R.

That is Bx € M and consequently, we have B : Ml — M.

We next show that B is a large contraction. By Theorem 2.14, if H is a large contraction on M,

then for any z,y € M with x # y, we have |[Hz — Hy| < || — y||. This implies that

[(Bz)(t) = (By) (1) = |(Hz)(t) = (Hy) ()] < [l = y]|

Thus
|Bz — Byl < [lz —yl|.

In a similar manner, one could also show that
1Bz — Byl < 6|z —yl|,
holds if we know the existence of a § € (0,1) and that for all € > 0,
[z,y €M, [z —y| > 0] = [Hz — Hy| < bz —y].

The proof is complete. O

Theorem 3.3. Suppose the hypotheses of Lemmas 3.1 and 3.2 hold. Let M defined by (2.18).
Then Equation (1.3) has a solution in M.

Proof. By Lemma 3.1, A : M — M is continuous and compact. Also, from Lemma 3.2, the mapping
B :M — M is a large contraction. Next, we prove that if z,y € M, we have ||Az + By|| < R. Let
x,y € M with ||z||, |ly| < R. By (3.3) and (3.7), we obtain

Az + Byl < ||Az|| + || Byl
(2RL; +0,)C(e)] , (J - DR

< |9(a)| + [H(¥()| + lg(a, ¥ (ra))| + RLy + 04 + Ty(a) J
- ? N ﬂ _R

Clearly, all the hypotheses of the Krasnoselskii-Burton theorem are satisfied. Thus there exists a
fixed point z € M such that z = Az+ Bz. By Lemma 2.9, this fixed point is a solution of Equation
(1.3). Hence Equation (1.3) has a solution. This completes the proof. O
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4 Stability

Now, we show that the solutions of Equation (1.3) are stable by giving sufficient conditions.

Theorem 4.1. Assume that conditions (3.1) and (3.2) hold. Also, suppose that

N QLfC(OZ)
= <k+Lg + 71“,1(04) ) <1, (4.1)

and all conditions of Theorem 2.14 hold. Moreover, for € > 0, there exists

1—c¢
= — ¢
1+k+ L,

Then, the solutions of Equation (1.3) are stable.

Proof. Let x be a solution of Equation (1.3) and Z be a solution of Equation (1.3) satisfying the
initial function Z(t) = 77/[1\(75) on I.. For t € T,, applying conditions (3.1), (3.2), (4.1) and all
conditions of Theorem 2.14, yields
2(t) = #(0)] < @) = d(@)| + | H (@) = H(@)| + |[H(x(®) - HE@()]
+|gta,w(ra)) - gla, Bra))| + gl a(rt)) - g(t,3(r1))
I PO
b [ (= a9 (5000, a(7) - £, 5051, 5(5) | Vo
FQ(a) a
~ 2L+C ~
<@kt e =3+ (b4 L+ 200 o - )

Ty(e)
< (U +k+ Lyl — ] +cllz — 2.

Hence
~ 1+k+L
o 3 < HE Ly )
Then, for any € > 0, let 6 = me so for ||1p — ¥|| < & there is ||z — Z|| < e. Therefore, the

solutions of Equation (1.3) are stable. The proof is complete. O
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5 Illustrative example

In this section we provide an example. Specifically, we apply Theorems 3.3 and 4.1 to the equation

2C4 (( sin(z(t)) + 5(t)) — 25 cos(t) arctan (:c(%))) = 1&s (sin(x(t)) + cos (:r(%)))e_t,
te [L9/4];, (5.1)

z(t) = 0.02cos(nt), te {2/3,1}.

It follows from the equation that ¢ = 2/3, « = 3/4, a =1, 7 = 2/3, h(z) = 5 sin(z) + 5z, which
yields H(x) = & (z — sin(z)).

10

Also,
1 1

g(t,x) = = cos(t) arctan(z), f(t,x,2) = o0 ——(sin(z) + cos(2))e ",

and
¥(t) = 0.02 cos(rt).
We define the set M = {z € C: ||z|| < R} with R = 0.5.
Now on the domain Mg = [—0.5,0.5], h(x) is strictly increasing since
h'(z) = icos( )+ LS icos(05)—&—09 0.987 > 0.
10 10 = 10 ~

It can be verified that conditions (H3)-(H4) also hold, making H(x) a large contraction.

The Lipschitz constant for H(x) is

1
k= sup |H'(z)| = sup ‘— (1 —cos(x))| < —(l—cos(O 5)) = 0.001224.
z€UR x€UR 0
Also,
1
— < —|x — — < _ _
olt2) — gt)| < e 3l F(t2.2) ~ F(ty.w)] < sy |2~ w)

Thus, L, = 0.02 and Ly =1/100 = 0.01.

It must also be noted that o4 = sup|g(t,0)| = 0 and oy = sup|f(£,0,0)| = t55¢~' ~ 0.00368,
$(1) = —0.02 = H(¥(1)) ~ 0 and g(1,4(2/3)) ~ —0.000108.

To verify the main conditions, we must select an endpoint 77 for the time scale. Let us choose
Ty = 9/4. A rigorous numerical calculation using the definitions of the g-Gamma function and

g-power function yields the g-integral bound

(T, -2 (9/4=1)3),

Ka= Ty (a+1)  Tys(7/4)

~ 1.4331.
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It must also be noted that |H(0.5)| ~ 0.00206 and with J =5

J—1_ 4
“_"R=—(05)=0.4.
R =2(05)=0

Hence, showing that Lemma 3.2 holds. Moreover, to verify condition (3.3), we have

[W(a)| + [H(¥(a))| + |g(a, ¢(a))| + RLg + 04 + (2RLy + 07)Ka
= 0.02 4 0+ 0.000108 + (0.5)(0.02) + 0 + (2(0.5)(0.01) + 0.003679)(1.4331) = 0.0497
<0.1.

Thus, condition (3.3) hold. It therefore follows from Theorem 3.3 that Equation (5.1) has at least

one solution in M.

To verify the stability of solutions we verify condition (4.1). Thus,
k+ Ly + 2L K4 = 0.01224 + 0.02 + 2(0.01)(1.4331) = 0.03224 + 0.02866 < 1.

Thus, by Theorem 4.1 the solutions of Equation (5.1) are stable.

6 Conclusion

This paper has established sufficient conditions for the existence and stability of solutions to a class
of totally nonlinear neutral Caputo g-fractional difference equations. The Krasnoselskii-Burton
fixed point theorem was a key tool in proving existence, by decomposing the solution operator
into a compact part and a large contraction. The stability analysis provides criteria based on
the Lipschitz constants of the involved functions and the bound on the g-integral operator. The
presented theoretical framework generalizes existing results by considering a more comprehensive
nonlinear and neutral structure. The illustrative example demonstrates the method of verifying the
derived conditions. Future work could explore specific applications of these equations or investigate

uniqueness conditions and other qualitative properties.
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1 Introduction and results

The main pourpose of this paper is to prove a generalization of Krein and Milman Theorem (The-

orem 1.14). We start with some definitions and properties which will be useful for our pourpose.

Definition 1.1. Let X be a topological space. We say that a family F = {14, : [0,1] = X :

x,y € X} introduces a conver structure on X if:

1. The functions (., are continuous.
2. Tz (0) = 2, T3y (1) = y.

The space X with the a such family F we call a space with convex structure.

Definition 1.2. Let X be a space with a convez structure. A subset A of X is said to be F—convex

if for all x,y € A we have that 7(, ,([0,1]) C A.

It is easy to see that the space X, the empty and the intersection of two F—convex sets is an

F—convex set. Also the union of a monotone family of F—convex sets is again an F—convex set.

Example 1.3. Let X = 52 be a two dimensional sphere and let Ty © 10,1] — S2 be a
parametrization of the geodesic line which joins the points x and y on this sphere. Then the
family F = {1(z,) : [0,1] = X : 2,y € X} introduces a convex structure on S2. Particulary the

spherical triangles are F—convez sets.

Example 1.4. Let X be a topological vector space or an abstract topological cone. Then the family
Fp = ATy * Ta@ayt) =ty + (1 — tp)%x, t €[0,1], z,y € X} introduces a convex structure on X
for allp > 0.

Definition 1.5. Let X be space with a convex structure and A be a subset of X. We say that
B C A is an extremal subset of A if the condition 7(, () € B for some x,y € A and t € (0,1)
implies that x,y € B.

Lemma 1.6. Let X be a topological space with a convex structure F. Then every compact F — convex

subset A of X contains an F—convex extreme B which is minimal with respect to inclusion.

Proof. Let M be the family of all F—convex closed extreme subsets of A ordered by inclusion. It
is easy to observe that M is nonempty since A € M and the intersection of any chain of elements
of M also belongs to M. Hence by the Kuratowski-Zorn Lemma there exists an minimal element

of M. O
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Similarly we can prove the following:

Definition 1.7. Let X be a topological space. We say that the family G = {g: : X - R:t € T}
separates points of the space X, if for all x,y € X, x # y there exists t € T such that g;(x) # g+(y).

Definition 1.8. We say that a family G = {g: : X — R :t € T} exposes faces of a compact
F—convex subset A if for any g € G the set

;= {o €. g(o) = supatt)

teA

is an extremal subset of A.

Definition 1.9. Let A be an F—convex subset of X. We say that x € A is an extreme point of A

if the set {x} is an extreme subset of A. The set of all extreme points of the set A is denoted by
Ext(A).

Definition 1.10. Let X be a topological space with a convex structure F and the family G of
functions which separates points of X. We say that the family G is compatible with the family F on
the class of F—compact convex sets if for any compact F—convex set A the set H;1 is F—convex

forall g € G.

Proposition 1.11. Let X be a topological space with a conver structure F. Assume that there exists
a family G compatible with the family F on the class of F—compact convexr sets which separates
points of X and exposes faces of compact F—convex sets. Then every compact F—convex subset

A of X has extreme point.

Proof. By Lemma 1.6 there exists a minimal extreme F—convex subset B of the set A. Suppose
that 2,y € B then there exists g € G such that g(z) # g(y) but in this case the set H? is also
extreme F—convex subset of A which is included in B and at least one of z,y does not belong to

B. Contradiction. O

Definition 1.12. Let X be a topological space with the convex structure F. We say that the family
G of real functions defined on X separates compact F—convex sets from points if for any compact

F—convex set A and any b & A there exists g € G such that g(x) < g(b) for all x € A.

Definition 1.13. Let A be a subset of a topological space X with the convex structure F. The
F—convex hull of the set A is defined as the intersection of all F—convex subsets of X which

contain the set A and we denote it by convr(A).

Analogously the closed F—convex hull of the set A is defined as the intersection of all F—convex

closed subsets of X which contains the set A and we denote it by convz(A).
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Clearly the F—convex hull of any subset is F—convex set and the closed F—convex hull of any
subset is closed and F—convex set. Now we are prove theorem which generalizes the classical

Krein-Milman theore.

Theorem 1.14. Let X be a topological space with a convex structure F on X. Suppose that there
exists a family G on X which is compatible with F on F—compact convex subsets of X such that
separates F— convex compact subsets of X from points of X and exposes faces of compact F —convex
sets. Then every F—conver compact subset A of X is equal to closed F—convex hull of its extremal
points. Symbolically

A = conug(Eat (A)).

Proof. From Proposition 1.11 we have that the set Ext(A) is not empty. Obviously
K =convr(Ext(A)) C A.

Assume that A\ K # 0 and let z € A\ K. Since the set K is a closed F—convex subset of the
compact set A it is also compact. Now since the family G separates points from compact F—convex
sets then there exists g € G such that sup,cx g(t) < g(z). Since the family exposes faces of compact
F —convex sets therefore the set H ;‘ is extreme subset of A. From the compatibility of the family G
with F on the compact F—convex subsets we obtain that the set H, ;]4 is itself a compact F—convex

set and hence the set Ext(H, ;;‘) is not empty. Hence
Ext(H;') C Ext(A) C K,

but this gives a contradiction since for y € Ext(HZ

') we have

g(y) =supg(t) > g(x) > sup g(t) > g(y)
tecA teK

which ends the proof. O
Extremal points play an important role in mathematics and its applications. As was shown in [4]
it plays an crucial role in proving continuity of convex functions. Hence the above theorem may

be a possible tool for examining the continuty of some wider class of convex functions (i.e. convex

functions defined by using abstract convex structure).

Remark 1.15. If X is a locally convex topological vector space then the family
F={lpy:00,1] > X : L,(t) =1 —t)z +ty, z,y € X}

defines a convex structure on X. It is clear that F—conver sets are usual convex sets in this

case. Denote by X' the topological dual of X i.e. the space of all real continous linear functionals
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defined on X. From the geometric form of Hahn-Banach theorem [1] it follows that the family
G = X' separates points from compact convex subsets of X. Moreover it is easy that the family G is
compatible with F on conver subsets of X and the family G exposes faces of compact conver sets.
Hence the assumptions of Theorem 1.14 are satisfied and from this theorem we obtain a classical

version of Krein-Milman Theorem ([2,3]) i.e.

Theorem 1.16 (Krein-Milman theorem). Let X be a locally convex topological vector space and
let A be a compact convex subset of X. Then A is equal to the closed convex envelope of the set of

its extreme points. Symbolically,
A = conv(Ext(A)).
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ABSTRACT

Given a finite group G, there exist Klein surfaces, bordered
X and unbordered non-orientable S, such that G acts as an
automorphism group of X and of S. The minimum alge-
braic genus p(G) of the surfaces X is called the real genus of
G, and the minimal topological genus &(G) of the surfaces
S is the symmetric crosscap number of G. In this work we
study the relation between the real genus and the symmetric
crosscap number of a group G and how both parameters can
be compared. For instance, we see that there exist groups G
such that the difference 6(G) — p(G) = t for all even negative
numbers t. In order to get it, we correct some inaccuracies in
previous works, on these parameters for the groups C., X D,
and D, X D;,. On the other hand, for some important fam-
ilies of groups, we prove that 6(G) = p(G) + 1. We use it to
eliminate possible gaps in the symmetric crosscap spectrum,

enforcing the conjecture that 3 is in fact the unique gap.
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RESUMEN

Dado un grupo finito G, existen superficies de Klein, con
borde X y sin borde no-orientables S, tales que G actua
como un grupo de automorfismos de X y de S. El género al-
gebraico minimo p(G) de las superficies X se llama el género
real de G, y el género topologico minimo 6(G) de las su-
perficies S es el “symmetric crosscap number” de G, que lla-
maremos género imaginario aunque no es una denominacién
estandar. En este trabajo, estudiamos la relaciéon entre el
género real y el imaginario de un grupo G y como se pueden
comparar ambos parametros. Por ejemplo, vemos que exis-
ten grupos G tales que la diferencia 6(G) — p(G) = t para
todos los niimeros negativos pares t. Para ello, corregimos al-
gunas inexactitudes en trabajos previos sobre estos paramet-
ros para los grupos Cy, X Dy y Dy, X D,,. Por otra parte,
para algunas familias importantes de grupos, demostramos
que 6(G) = p(G) + 1. Esto lo utilizamos para eliminar posi-
bles huecos en el espectro simétrico imaginario, dando evi-
dencia adicional a la conjetura de que 3 es, de hecho, el tnico

hueco posible.

Keywords and Phrases: Real genus, symmetric crosscap number, Klein surfaces.
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1 Introduction and preliminaries

A Klein surface X is a compact surface endowed with a dianalytic structure. Klein surfaces may
be seen as a generalization of Riemann surfaces, including bordered and non-orientable surfaces.

An orientable unbordered Klein surface is a Riemann surface.

In the study of Klein surfaces and their automorphism groups, the non-Euclidean crystallographic
groups (NEC groups, in short) play an essential role. An NEC group I is a discrete subgroup of
the group of isometries of the hyperbolic plane H with compact quotient H/T.

For the convenience of the reader we give a minimum of preliminaries about NEC groups and Klein

surfaces (for details see [4]).

An NEC group I' is a discrete subgroup of isometries of the hyperbolic plane H, including orien-
tation reversing elements, with compact quotient X = H/I". Every NEC group I' has associated

the following symbol called signature:

U(F) = (gaiv [mlv- .. 7m7’]a {(ni,h ce. 7”1’,3,‘,)7 1=1,.. -ak})7 (11)

where the numbers g, r, k and s; are non-negative integers, m;, n; ; are integers such that m;,n; ; >

2. The number g is the topological genus of X, and the sign determines the orientability of X.

The numbers m; are the proper periods corresponding to cone points in X. The
brackets (1,1, ...,n; s, ) are the period-cycles. The number & of period-cycles is equal to the number
of boundary components of X. Numbers n; ; are the periods of the period-cycle (n; 1, ...,n;s,) also
called link-periods, corresponding to corner points in the boundary of X. The number p = ag+k—1,

where a = 2 or 1 according to the sign be “+” or “—”, respectively, is called the algebraic genus of
X.

An NEC group with the above signature is generated by z;, (i =1,...,7); e;, (i =1,...,k); ¢ j,
(i=1,...,k;j=0,...,8);and a;, b; (i=1,...,9) if 0 has sign “+” or d; (i =1,...,¢) if o has

sign “—”, and relations
= 1; 1=1,...,7;
2 _ 2 _ nij — 1. L . i = )
i1 =c¢ij=(cij-1cij)" =1 1=1,...k j=1,...,8;
-1 A =1: =1 k-
€, Ci,0€iCis; = 13 1=1,...,K;

T, i T, e 112, (aibia tb7 ) = 1;  (if o has sign “+7);

T, = Hle e [19_, d? = 1; (if o has sign “ —"7).

The isometries x; are elliptic, e;, a;, b; are hyperbolic, ¢; are reflections and d; are glide reflections.

They are called canonical generators.



662 A. Bacelo, J. J. Etayo & E. Martinez

Every NEC group I" with signature (1.1) has associated a fundamental region whose area pu(I),

called the area of the group, is

T ks
1 1 - 1
=2 -2 1—— = 1-—
u() =2m [ ag +k +§ ( mi)+2§ E ( ng) :
i=1 i=1 j=1 >
with o = 2 or 1 according to the sign being “+4” or “—”. The group given by the presentation above

can be represented as an NEC group with signature (1.1) if and only if its area is greater than 0.

We denote by |T'| the expression p(I")/27 and call it the reduced area of T.

If T is a subgroup of an NEC group I" of finite index N, then T is also an NEC group and the

following Riemann-Hurwitz formula holds:
u(T) = Nu(T").

If the group has neither proper periods nor link-periods, it is called a surface group and has the

following signature

U(F) - (ga +, [7}7 {(7)7 kﬂ (7)}%

For a Klein surface X with p > 2, there exists a NEC surface group T' such that X = H/T. A
finite group G of order N is an automorphism group of X = H/T" if and only if there exists an
NEC group A such that I" is a normal subgroup of A with index N and G = A/T". Since I is a
surface group, it does not contain elements of finite order other than reflections. Therefore, there
must be an epimorphism 0 : A — G with kernel I", such that the relations defining A are preserved
by 6.

Given a finite group G there exist bordered Klein surfaces X such that G acts as an automorphism
group of X, and also unbordered non-orientable surfaces S, such that G acts on S. The minimum
algebraic genus of the surfaces X is called the real genus of G, p(G), and the minimal topological
genus of the surfaces S is the symmetric crosscap number of G, 5(G). In order to obtain these

parameters we need to study NEC groups A with minimal area such that G = A/T.

An extensive study has been made on both parameters p(G) and 6(G). The numbers which are
p(G) for some G form the real genus spectrum, whilst those which are 6(G) form the symmetric
crosscap spectrum. None of these spectra is still completely known, and the relationship between
both parameters is a tool for that study. When an integer does not belong to either spectrum, it

is called a gap of that spectrum.

Regarding the real genus, there is no group with real genus 2, 12 or 24 [14]. No other gap was
currently known to exist, but in the very recent paper [6], it is proved that 72 is also a gap.

Therefore, the first number for which it is not known whether it belongs to the spectrum is 84.
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For the symmetric crosscap spectrum, the present knowledge is based on [1]. May proved that
there does not exist any group G such that 6(G) = 3. For N > 3, if N is a gap of the symmetric
crosscap spectrum then N lies in four congruence classes mod 120, namely 3, 51, 75 and 99, and
it satisfies additional conditions. The present result will be given below in Theorem 3.4. However,
many numbers satisfying those necessary conditions actually belong to the spectrum. In fact, no

gap apart from 3 is currently known.

2 Results on real genus and symmetric crosscap number

The goal of the present work is to compare both parameters p(G) and ¢(G). It is worth noting
that very often
o(GQ) = p(G) + 1. (2.1)

This property holds for important classes of groups, but it is not true in general. When it holds

for a group G, we say that G satisfies Property (2.1).

2.1 Groups of odd order

First, the authors proved in [1] that the Property (2.1) holds for all groups of odd order.

Theorem 2.1 ([1, Corollary 1]). If G has odd order, then 6(G) = p(G) + 1.

2.2 Abelian groups

Property (2.1) is also true for Abelian groups. In [18] J. Rodriguez mentions in Remark 6.2 that
“the crosscap number of an Abelian group relates with its real genus straightforwardly: 6(G) =
p(G) + 17. However, as far as we know this result has not appeared anywhere, and we are now
providing its proof, taking into account that both parameters are already known in the case of

Abelian groups, obtained by McCullough and Gromadzki in [16] and [11] respectively.

First, we quote the result on real genus.

Theorem 2.2 ([16]). Let G be a non-cyclic Abelian group of order N, G # Cy x Cy x Cs,
CQ X Cgk- (k’ > 1) Write

G=0C¢ x---xC

€m

X Cg, X -+-x Cq, x Cg,
e; multiple of 4, d; odd, eiy1les, dilem, dj+1|d;. Then p(G) is

A) 1+N(n—|—2£1 (1—6%)4-2221 (1—dij>—1>,n<m.
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B) 1+N(m+t+(1—ﬁ)+2§:t+l (1—%)—2), fm<n<m+2l-1,n—m=2t—1.
C) 1+N(m+t+Z;:t+1 (1—%)—1), fm<n<m+2,n—m=2t

D) 14 MEmEEn=3) iy > om 420 41

On the other hand, for the symmetric crosscap number the result is the following

Theorem 2.3 ([11]). Let G be a non-cyclic Abelian group of order N, G # Cy x Cy x Cs,
Cy x Cop, (k> 1). If G has non-cyclic 2-Sylow subgroup, write G = Cp,y X -+ X Cp, X C5, where

my,...,my are odd, myyq ..., mg are even, m;|m;y1, and s is as large as possible. Then ¢(Q) is

i) 2+N(k—1—2§;f%>, ifs—(k—1) <0.

i) 2+ N(k—1), if s — (k—1) = 2l.

i) 24 N (k— 14 =EHE) if s — (k—1) > 2.

iv) 2+N(k7172§§“5>/2 7%) FO<s—(k—1)<2l,s—(k—1) even.
V) 2+N(k717m fzgiﬁl*“”/?m%), fO<s—(k—1)<2l,s—(k—1) odd.

And if N is odd, or G has cyclic 2-Sylow subgroup write G = Cyy, X -+ X Cp, ., my|lmiqr1 and then
5(G) is

a2 (2 (10 ),

Since in both Theorems the group G has been described in a different way, it is not too easy to

compare p(G) and 6(G). We shall do it now, by proving

Theorem 2.4. Let G be a non-cyclic Abelian group G # Cy x Cy x Co, Cy X Coy, (k > 1). Then
7(G) = p(G) + 1.

Proof. We start with each of the four possibilities for p(G), namely A, B, C and D.

The translation of the parameters between both Theorems is as follows. In [16], m is the number
of factors that are multiples of 4, [ is the number of odd factors and n is the number of factors 2.
Instead, in [11], & — [ is the number of factors multiple of 4, [ is the number of odd factors and s

is the number of factors 2.

We start with case A. Then n < m in [16] is equivalent to s < k—1, what implies that s— (k—1) <0,

and we are in case ¢) in [11]. Hence
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translates to

l m+1
1 1
p(G)=1+N|s+i+(k—1—3s)— Zdi Z -
=1 j=l+s+1
l 1 m—+1 1 k—sl
=1+N|k—-1-) —— — = —1=) —|=0G)-1L
+N (k-1 ,Zdi .Z - 1+N<k 1 Zm> 5(G)—1
=1 Jj=l+s+1 i=1

Now, we consider the case B. Then m < n < m+2l —1, n —m = 2t — 1 odd. This implies
k—l<s<k—-Il+21—-1=k+1-1,s—(k—1)odd,and so 0 < s — (k—1) < 20— 1 with s — (k—1)
odd. We are in case v) in [11]. Then

p(G)_1+N<m+t+(121dt)+_zl: (1;)2)

translates to

1
s—k+1+1 ( 1 ) ( 1)
G)=1+N|k—1+2=PT T2 (o 2 )4 1- - ) -2
p(Q) ( 2 2d(s—kt141)/2 ) Z d;

i=(s—k+1+3)/2

l
:1+N k_l+m_~_1+l_w+l_2_;_ Z i
2 2 2d(s—+1+1)/2 i=(s—k+1+3)/2 di
1 (I—s+k—1)/2 1
=1+N|k-|l—————— — | =6(G)—1.
2M(1—sk+1) /2 ; mq ©)

We move to case D, where n > m+2[+1. This implies s > (k—1)+2l+1, and so s—(k—1) > 2{+1.

Hence s — (k — 1) > 2I, and this corresponds to the case 7). In this case

1+ N@Bm+2l+n-3)
4

p(G) =

corresponds to

— 2 _ _ _
p(G):l—l—NSk 3l—|—4l+5 3:1+N3k li—s 3

:1+N<k—1+s_k4_l+1>=&(6‘)—1.

Finally, we must deal with the case C, where m < n < m + 2I, n —m = 2t is even. This means

that k — 1 < s < k+1, with s — (k — I) = 2t. This possibility splits into three subcases.

If s — (k—1) =0, we are in case 7), and

p(G)=1+N(m+t+ El: (1-5))

i=t+1
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means that

1 k—s
p(G)zl-i—N(k—l—i—l— > ;—1>:1+N<k—1—zm

i=t4+1 " i=1

Now, if s—(k—1) = 2I, we are in case i) and s—(k—[) = 2l implies t = (n—m)/2 = (s—(k=1))/2 =,

and so

l
p(G):1+N<m+t+ 3 (1—3)) =1+ N(k—1+1-1)=1+N(k-1)=5(G) — 1.

i=t+1

For the remaining values of s — (k — [) we go to case iv). Then

p(G):1+N<m+t— zl: (1_;)_1)

i=t+1
Lo
—1+N<m+t+(l—t)—1—z>
i=t+1
L
+N<m+l 1 'Z dz-)
1=t+1
Sincel —t=1—(s—(k—1))/2=(k—s+1)/2, we have
(k=s+D)/2
=14+N|k—-1- — | =0 -1 O
p(G) =1+ Zj | =@

Remark 2.5. Theorem 2.4 enables a comparison of the results from both papers [2] and [15]. Call
8¢, the set of numbers in the symmetric crosscap spectrum which are 6(A) for some Abelian group
A, and S, the set of numbers in the real genus spectrum which are p(A) for some Abelian group A.
The set S5, was studied in [2], and the set ST, in [15]. Since we have proved that 5(A) = p(A)+1
for each Abelian group A, the results in both papers imply each other. For instance, if n is even,
then n € 8, if and only if n =2 (mod 4) (Theorem 2 of [2]), and if n is odd, then n € SI, if and
only if n =1 (mod 4) (Theorem 1 in [15]). In the same way, all partial results on the structure of
each of both sets obtained in those two papers can be translated in terms of the other, by using the

fundamental equality 6(A) = p(A) + 1.

2.3 Groups C, x DC3 and C,, x Ay

Theorems 2.1 and 2.4 suggest that Property (2.1) holds often. Also other families of groups satisfy
it. Consider the groups of order 12n, C,, x DC5 and C), x A4. The real genus and symmetric crosscap

number of these groups were obtained in [5] and [9], respectively, and they are presented below
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Table 1

n p(Cp x DC3)  &(C,, x DC3)
2 13 14

3 16 17

6 43 44

odd, (n,6) =1 8n — 2 8n —1
odd, 3|n, 9tn 8n — 8 8n — 7
odd, 9| n 8n — 2 8n—1
even, 41 n 9n — 11 9n — 10
even, 4 | n 8n+1 8n + 2

Hence, for all n, 6(C,, x DC3) = p(C,, x DC3) + 1.

For the groups C,, x A4 with n divisible by 3 we have p(C,, x A4) = 8n—11 and 6(C,, x A4) = 8n—10.

So there exist families of non-Abelian groups of even order satisfying Property (2.1).

2.4 Groups C,, x D,

Now, we consider the groups C,, x D,,. Their real genus and symmetric crosscap number were
obtained respectively in [10] and [7]. However, it is necessary to correct a mistake in [7]. In
Proposition 2.3 of that paper, it was stated that 6(Cy, X D,,) = 2+n(m —2) if m is a multiple of 4
and n is odd. The proof included the claim that it is not possible to obtain a suitable epimorphism
0: A — Cp, x Dy, for a group A with signature (0, +, [—], {(«), (—)}) for an a > 2. As we will see
this is wrong, and the genus of a surface on which C,, x D,, acts can be lowered for those values

of m and n if 2n < m, as follows.

Proposition 2.6. Let m be a multiple of 4, n odd, and 2n < m. Then 6(Cy, x D) = 24+m(n—1).

Proof. Let X be a generator of C,,,, A and B generators of D,, of order 2, and A be an NEC group
with signature (0,4, [—],{(n), (—)}). We define a homomorphism 6 from A to C,, x D,, by

0(61) = XAB, 9(62) = X_IBA, 9(01,0) = A, 9(6171) = BAB, 9(0270) = Xm/2

Then, 0(c1.1¢1,0) = (BA)?, and s0 0((c1.1¢1,0)"1/2) = BA. Now, 0(ey(c1.1¢1,0)™T/2) = X; and
S0, Q(CQ’O(el(Cl’101’0)(n+1)/2)m/201’0) = X™m/2X™m/2A = A. Finally, since BA and A are images of

orientation-preserving elements of A, so is B.

The reduced area of A is (1— 1) = 221 ‘and so 6(C,, x D,,) < 2+ %12mn = 24+m(n—1). We are

n

going to see that this bound cannot be lowered. All possible signatures for the group A were already

studied in the proof of Proposition 2.3 of [7], excepting those of the form (0,4, [—], {(a), (=)}).



668 A. Bacelo, J. J. Etayo & E. Martinez

We complete the work now, considering these signatures. Therefore, suppose that there exists
an epimorphism 6 from an NEC group A with signature (0, +, [—], {(«), (—)}) for an a > 2 onto
Cp X Dy, and call ¢ the composition of § with the projection of C,, x D,, onto D,,. Since c; g
has order 2 and n is odd, necessarily v (c1,0) = (AB)'A for a certain ¢. Then, ¢(e;) can have the
form (AB)" or (AB)"A. In any case those two images must generate D,,. If ¥(e;) = (AB)", then
Y(erc1o) = (AB)" Tt A has order 2. So, in order to generate D,,, (AB)" must have order n. Besides,
Y(e11) = (BA)"(AB)'A(AB)" = (AB)'™%" A, and so, ¥(c10c1,1) = (AB)'A(AB)"=?" A = (AB)*"
has also order n. Thus, & = n. On the other hand, if ¢(e1) = (AB)"A, then ¥(eic19) =
(AB)"~t, which must have order n. Since ¥(c11) = (AB)"A(AB)!A(AB)"A = (AB)?'" A, then
Y(erocr1) = (AB)TA(AB)?"~tA = (AB)*=2". Now, both 1(e1) and 1(c1,0) have order 2, and so
P(ercr,o) = (AB)"~" must have order n. But then also ¢(c1 0c1,1) has order n, and again o = n.

We have finished, and the inequality 2 +m(n — 1) < 2+ n(m — 2) holds if and only if 2n < m. O

By results in [10] and [7], and Proposition 2.6, we have the following Theorem where for an abuse

of notation we write p and & for p(Cy, x D,,) and 6(C), x Dy,).

Theorem 2.7. The real genus and the symmetric crosscap number of the groups C,, X Dy, are the

following

m odd, n even, n < 2m p=1+m(n—2) cg=2+m(n—2)
m odd, n even, n > 2m p=14+n(m-1) cg=2+n(m-1)
m, n odd, m >n p=1+m(n—1) F=24+mn—m-—n
m, n odd, m <n p=1+n(m-—1) Fg=24+mn—m-—n
m=n odd p=1+m(m—2) dg=2+m(m—2)
m, n even p=1+mn o=2+mn

m a multiple of 4, n odd, m < 2n p=14+n(m-2) d=2+n(m-2)

m a multiple of 4, n odd, m > 2n p=1+m(n-1) dg=2+m(n—1)

Corollary 2.8. Observe that 5(Cy, X Dy,) = p(Cp, X Dy) 4+ 1, except when m and n are different
odd numbers. In such a case, for m > n, 6(Cy, x Dy,) = p(Cp, X D) +1 —n; and if n > m,
6(CrxDy) = p(Cp X Dy)+1—m. Both results provide all even negative numbers for the difference
5(G) - p(@).

2.5 Groups D,, x D,

Now we shall consider the groups D,, X D,,. Their symmetric crosscap number was obtained in
[7], and the real genus in [5]. Observe that the real genus for m and n odd was calculated in
Proposition 2(a) of [5], and included with a misprint in Theorem 3 there. The result should be
read as follows: If m and n are odd, n < m, then p(D,, x D,) =1+ m(n —1).
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In turn, the mistake stated above on 6(C,,, x D,,) produced a couple of wrong results on (D,, x D,,)
which we must correct here. For m odd and n even, Proposition 8 in [7] states that (D, x D,,) =
m(n — 2) 4+ 2. This is correct for n < 2m, but if 2m < n, then the symmetric crosscap number of

D,, x D, is in fact smaller, as given by the forthcoming two results.

Proposition 2.9. Let m be an odd number, n an even number with n/2 odd and 2m < n. Then,

(D x D) =2+ (m — D)n.

Proof. Let A and B be generators of D,, of order 2, and C' and D generators of D,, of order 2.
Take A to be an NEC group with signature (0, 4+, [—],{(2m, 2,2,2)}), and define a homomorphism
0 from A to D,, x D, by

9(01,0) = A, 9(6171) = BD, 9(6172) = B(CD)H/Q, 9(01,3) = (CD)n/QC, 9(01)4) = A.

Then, 9(01,001,1) = ABZ)7 and SO0, (9((01,001,1)1%) = l)7 9((01,001,1)m+1) = AB. NOW, 9(617161,3) =
B(DC)™/?*1, Since (DC)™?*! has order n/2 which is odd, 6((c1.1¢1.3)"/?) = B. And so,

9((01,001,1)7”“(01,101,3)n/2) = A

Finally, 6(c1 2¢1,3) = BC, and so, 9((01’101’3)"/201’20173) = (C. So D,, x D, is generated by the

images of orientation-preserving elements of A.

The reduced area of A is + — =, and so 6(Dy, x Dy,) <2+ 4mn (3 — L) =2+ (m— 1)n.

T 4m
We now prove that this is in fact §(D,, x D,,) by comparing with 6(C,, x D,,) as obtained in [7].
By Proposition 2.2.i) of that paper, for m odd, n even, with 2m < n, 6(C,, x D,,) = 2+n(m —1).
Since 6 (D, x Dy,) > 6(Cy, X Dy,), we have finished. O

Proposition 2.10. Let m be an odd number, n a multiple of 4, and 2m < n. Then, &5(Dy, X Dy,) =
2+ (m—1)n.

Proof. Let A and B generators of D,,,, and C and D generators of D,,, all of them of order 2. Take
A an NEC group of signature (0,4, [—], {(2m, 2,2,2)}), and define a homomorphism € from A to
D,, x D,, by

0(cio) = A, 6(ci1)=BD, 6(ci2)=(CD)? O(ci3)=0C, 6(c14)=A.

Then, §(c1 0c11) = ABD. Since m is odd, 8((c10c11)™) = D, and ((c10c11)™ ") = AB. Now,
9(01’3(01’001,1)7”) = CD, and SO, 9((0173(01700171)7%)”/2) = (CD)n/Q. SO7

f(c1oc12(cia(cioe1)™™?) =A and 6(cizc12(c13(croc1)™)™?) = C.
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Finally, 9(01700172(0113(cl_rocl_’l)m)”/Q(cLocLl)m“) = B. So, D,, x D,, is generated by the images

of orientation-preserving elements of A.

The reduced area of A is 3 — 4, and so 6(Dy, x D,,) < 24+4mn (3 — &) =2+ (m—1)n =

(Cp, X Dy,). The proof is finished. O

Hence, from [10] and [8] along with Propositions 2.8 and 2.9, we have the following Theorem.

Theorem 2.11. The real genus and symmetric crosscap number of the groups D,, x D, are the

following
m odd, n even, n < 2m p=1+m(n—2) d=2+m(n—2)
m odd, n even, n > 2m p=14+n(m-1) c=24+n(m-1)
m, n odd, m >n p=1+m(n—1) g=1+(m—-1)(n—1)
m=mn odd p=1+m(m—2) d=2+m(m—2)
m, n even p=1+mn c=2+mn

Remark 2.12. Thus, the groups Dy, x D, satisfy Property (2.1), except when m and n are
different odd numbers. In that case, G(Dy, X Dy) — p(Dy X D) = 1 —n, and so this difference

provides again, as in Corollary 2.8, all even negative numbers.

3 Gaps in the symmetric crosscap spectrum

Our next results are inspired by [14, Theorem 6]. In that result, C. L. May studied the groups
Chn X Gpq.

Let p < ¢ be two odd primes such that p | ¢ — 1. Then there exists a non-Abelian group of order
pq, denoted by G,,. This group admits a presentation given by generators S and 7', and relations
89 =TP =1, T71ST = 8", where 7P = 1(mod q), » # 1(mod ¢). Then ST has order p, and so
X =T,Y = ST, are two generators of G,, of order p. It follows that p(Gpe) = q(p — 2) + 1,
[13, Theorem 4|, and, applying Theorem 2.1, we have:

Theorem 3.1. Let p < ¢ be two odd primes such that p | ¢ — 1. Then 6(Gpq) = q(p — 2) + 2.

Now consider the groups G = Cj, x Gpq. We are going to study the real genus and the symmetric
crosscap number of G. In the case when n is coprime with pgq, the real genus of G is given by the

following theorem of May:

Theorem 3.2 ([14], Theorem 6). Let p < q be two odd primes such that p | g—1, and n an integer
coprime with pq. Then p(Cp, X Gpq) =14 g(pn —n — 1).

Now we turn to the symmetric crosscap number of these groups.
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Theorem 3.3. Let p < q be two odd primes such that p | ¢ — 1, and n an integer coprime with
pq. Then 6(Cp X Gpg) =2+ g(pn —n —1).

Proof. If n is odd, then C,, x Gy has odd order, and we apply Theorem 2.1 and Theorem 3.2.

Now, we show that these groups satisfy Property (2.1) also in the case when n is even. Let us
take X and Y to be the generators of G4 of order p as above, and denote by A the generator of
C,,. Consider an NEC group I' with signature (0, +, [p, np], {(—)}), and define the epimorphism 6
from T onto C,, x Gy by 0(z1) = X, 0(x2) = AY, 0(e1) = (AXY)™L, 0(c10) = A2, Since n
and p are coprime, there exist integers a, 0, such that an + 8p = 1. Then, §(z§") = (AY)*" =
yen — y1=8p — v g(z5P) = (AY)PP = APP — Al=on — A, Besides, 0 (mgm/zclyo) =1, and so

the kernel contains an orientation reversing element. So, 6(C,, X Gpq) <24 ¢g(pn —n —1).

Now we need to see that the area of I' is minimal. The only possibility to reduce the area is to

substitute n with one of its factors, say k, and take signature

(07 +, [pu kp], {<_)}) or (17 _7 [pu kp], {_})

Then the image of zo must be A”/*Y, and either the image of 1,0 is A"/? or the image of d; is
A(n—n/k)/Z(Xy)(p—l)/Q_

In the first case it is not possible to generate A as an image of an orientation preserving element,
because the image of any word with an even number of copies of ¢; o will have, as projection onto
C,,, a power of A% In the second case, the exponent n/k must be even, in order to get that the
image of d?x1x5 be 1. But then also the orientation preserving elements contain an even number
of copies of di, and so only powers of A with even exponent can be obtained. Therefore, also in

this case the element A is not the image of an orientation preserving element.

Thus the area of I' is minimal, and we have that §(C,, x Gpq) = 2+¢(pn—n—1), and these groups
satisfy Property (2.1). O

We are now going to use the above results to eliminate many possible gaps in the symmetric

crosscap spectrum. This problem was studied in [1], and the main result was the following:

Theorem 3.4 ([1], Theorem 2). Let N > 3 be a gap of the symmetric crosscap spectrum. Then
N =3, 51, 75 or 99 (mod 120), N # 651 (mod 660), N — 2 is not a square, and N — 2 has some
prime factor p =5 (mod 6).

These conditions, necessary for a number to be a gap, are not sufficient. For N < 10000, they left
sixty-seven numbers which were possible gaps. Three of them are in fact the symmetric crosscap
number of a group, thanks to Theorems 2.3 and 3.1. We show them in the Table 2, where we
indicate N, its class (mod 120), the prime factors of N — 2, and the group G such that 5(G) = N.
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Table 2
N N = (mod 120) N -2 G, 6(G)=N
1443 3 1441 =11-131 G13.131
4875 15 4873 =11 -443 G13.443
6051 51 6049 = 23-263  Caz x Cayrg

This leaves sixty-four numbers which are candidates for being a gap, but forty of them are actually

6 (C, x Gpq) for some n, p, ¢ as obtained in Theorem 3.3. We display the respective data in Table 3.

Table 3

N N = (mod 120) N -2 G, 6(G)=N
915 (0] 913 =11-83 Ca1 X Gs.11
1179 99 1177 =11 - 107 Cor X G5.11
1539 99 1537 =29 - 53 Co X Gr7.29
1635 (0] 1633 =23-71 Cs X Gs.71
1923 3 1921 =17-113 Cs3 x Gr.113
2235 [0) 2233="7-11-29  Ci3 x Gr.a9
2499 99 2497 =11 - 227 Cs7 X Gs.11
2739 99 2737 =7-17-23 Ci2 x G11.23
2763 3 2761 =11-251 Cs x Gs.251
3339 99 3337 =47-71 Cs x Gr.71
3555 (0] 3553 =11-17-19 (g1 x Gs.11
3819 99 3817 =11 - 347 Cs7 X G5.11
4083 3 4081 =7-11-53  Coy3 x Gs.11
4323 3 4321 =29 - 149 Cos x Gr.99
4395 (0] 4393 =23 - 191 Cs x Gs.101
4899 99 4897 =59 - 83 Cs x Gag.59
5139 99 5137 =11 - 467 Chii7r X Gs.11
5403 3 5401 = 11 - 491 Cs X G5.491
5499 99 5497 = 23 - 239 Cy x Gr.239
5595 (0] 5593 =7-17-47  Cyoo x Ga.7
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N N = (mod 120) N -2 G, 6(G)=N
5715 75 5713 =29 -197 Cs x Gr.197
6195 75 6193 = 11 - 563 Cia1 X Gs.11
6411 51 6409 =13-17-29  Cs7 x Gr.29
6459 99 6457 = 11 - 587 Cha7r X Gs.11
6723 3 6721 =11-13-47 Casg X G3.13
7155 75 7153 = 23 - 311 Cs X G5.311
7515 75 7513 = 11- 683 Cir1 X Gs.11
7635 75 7633 = 17 - 449 Cs X G7.449
7731 51 7729 =59 - 131 Cs X G13.131
7779 99 777 ="7-11-101 Ch77r X Gs.11
7803 3 7801 = 29 - 269 Cys X Gr.29
8043 3 8041 =11-17-43 Cys X G3.43
8259 99 8257 =23 - 359 Cs6 X G11.23
8451 51 8449 =7-17-71  Cy x G771
8835 75 8833 =11%2-73 Ce1 X G3.73
8979 99 8977 = 47-191 Ci2 X Gs.101
9099 99 9097 = 11 - 827 Cao7r X Gs.11
9195 75 9193 =29 - 317 Cs3 % Gr.29
9363 3 9361 =11-23-37 Cha7 X G3.37
9915 75 9913 = 23 - 431 Cs X G5.431

According to above results only twenty-four numbers N remain as potential gaps in the symmetric

crosscap spectrum, with 3 < N < 10000. They are shown in Table 4.

These results reinforce the conjecture that there is no other gap besides 3 in the spectrum of the

symmetric crosscap number.

Now, we are going to study the particular case N = 699, the smallest number for which it is
unknown whether it represents a gap in the spectrum. This will demonstrate how to use the
relationship between the real genus and symmetric crosscap number, and how Property (2.1) is
useful when it holds. Unfortunately, this is not the case for this value of N and the group G
already known to satisfy p(G) = N — 1.
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Table 4: Table 4

N N = (mod 120) N -2

699 99 697 =17 - 41

1083 3 1081 = 23 - 47
1515 () 1513 =17-89
2331 o1 2329 =17-137
3651 51 3649 = 41 -89
3843 3 3841 = 23 - 167
3963 3 3961 = 17 - 233
4371 o1 4369 = 17 - 257
4635 (0] 4633 = 41 -113
5019 99 5017 =29 - 173
5355 75 5353 = 53 - 101
5619 99 5617 = 41-137
6003 3 6001 =17 - 353
6315 75 6313 = 59 - 107
6819 99 6817 = 17 -401
7851 51 7849 = 47 - 167
7899 99 7897 = 53 - 149
8499 99 8497 = 29 - 293
8811 51 8809 = 23 - 383
8859 99 8857 = 17- 521
8883 3 8881 = 83 - 107
9171 o1 9169 = 53 - 173
9555 75 9553 = 41 - 233
9675 75 9673 = 17 - 569

Since 41 =1 (mod 4), there exists a semidirect product Cy x Cyq, with presentation
(X,V | Y*=X"=1,XY =YX?).

Now call G = Cy x (Cy x Cy1), and Z a generator of Cy. This group G has real genus 698, see
Corollary 6 of [14]. So, if it satisfies Property (2.1), we have a group with symmetric crosscap
number 699. Let us study G. Its elements of order 2 lie in Cy x Cy1, and they have the form
X*Y2, For, (XFY?)? = XFY2XFY? = Y XY XFY?2 = Y2XBIhXFY?2 = Y2X826Y2 = 1, and it

is clear that no other element has order 2.

Now, consider an NEC group A with signature (0, +, [2, 36], {(—)}) and an epimorphism 6 : A — G
defined by

0(z1) = XY?, O(x2)=YZ, 0(er) =YX 'Z7 Ocro) = XPY2
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The kernel of this epimorphism is a non-orientable unbordered surface group, because o(XY?) = 2,

o(YZ) = 36, and

O(x1m0e)) = XY?YZY X177 = Xyix—1t =1,
ey terpercio) = XYPZXPOY2Y X 1771 X 10v? = XY3 X0V x9y2
_ Y3X729X10Y3X9Y2 _ Y3X739y3ng2 — Y6X739-729+9y2 _ YS —1.

Besides, (AT) = G, because
0(29) = (YZ2)? =Y 0=3)=Y2)* =2 0x123°) = (XY*)Y*=X
The genus of the corresponding surface is
1 1

17
9. 4-41) (1—-+41———1)+2=9-4-41- — +2=17-41+2 = 699.
( )( 5" 36 >+ 36 M

It only remains to prove that this is the minimum genus of a non-orientable unbordered surface on
which G acts. But this is not the case. Consider an NEC group I" with signature (0, +, [36], {(41)})
and an epimorphism 6 : I' — G defined by

0(x1) =YZ, O(er) =Y 'Z7 B(cr0) = XY?, O(c1n) = XPV2
Then,

O(eyteroercin) = YZXY2Y 1 Z71X32Y? = Y XY X®2Y? =YY XOX¥Y?2 = 1.

Besides, (I'") = G, because

e(x%8) =7,
0(z) =Y,
9(01,001,1) _ XY2X32Y2 _ Y2X81X32Y2 _ Y2X31Y2 _ Y4X31-81 _ XlO.

So that, 6((c1,0c1,1)%") = X3 = X. Now, we compute the genus, and it is

1 1 1 20 1
4-41 1—— —(1-—=]-1)4+2=9441-( — - = | +2=20-9-4—41+2 = 681.
(9 )(( 36>+2( 41> >+ 9 <41 36)+ 0-9 + 68

Hence 5(G) < 681, in fact it equals 681, and so the group G does not satisfy Property (2.1), and

no group with symmetric crosscap number 699 is known yet.
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4 Gaps in the real genus spectrum

All odd numbers belong to the real genus spectrum, since C. L. May proved in [12] that the dicyclic
group DC,, of order 4n has real genus 2n + 1. So the problem of determining the spectrum of the
real genus restricts to even numbers. It is known that 2, 12, 24 and 72 are not the real genus of
any group. In his paper [14], C. L. May obtained families of groups whose real genera cover most
of the even numbers. For instance, for NV < 10000, his results leave 328 numbers for which it is
unknown whether they belong to the real genus spectrum. M. Pires has calculated explicitly those

numbers in [17]. Most of them are multiple of 12, but there are also numbers N = 2,6, 8 (mod 12).

Unfortunately, the groups G for which we know that 6(G) = 1,7,9 (mod 12) do not satisfy
Property (2.1) and cannot be used to eliminate gaps in the real genus spectrum. The situation
is very different for N = 2 (mod 12). According to [17], the numbers N = 2 (mod 12) with
N < 10000, which are not yet known to belong to the real genus spectrum are 1082, 3842, 6266,
7850, 8810 and 8882. Let us pay attention to 6266 = 26 (mod 60). In [1] it was proved that for
each k > 0, a semidirect product G = C5 x Csi16x satisfies 6(Gy) = 60k + 27. We are going to
show that these groups satisfy Property (2.1), and so p(Gy) = 60k + 26.

Proposition 4.1. Let k > 0, and Gj, = Cs x Csy 16k, with presentation (A, B | B> = AST16k =
1, BA = AB?). Then, p(G}) = 60k + 26.

Proof. One can see in [1] or [17] that the element BA%*** has order 4, and AT is the unique
element of G}, of order 2. Since BA?>*** and A generate G, take an NEC group A with signature
(0,4, 4,8 4+ 16k],{(—)}), and define  : A — G, by

0(z1) = BA™T*, O(z0) = A, 0(er) = AT B7Y 6(c1o) = 1.

Then, 6 is an epimorphism, the reduced area of A is |A| = gﬁgz, and p(Gr) < 14 o(Gi)|A| =

14 (40+80k) gﬁé’; = 60k+26. In order to see that this is in fact p(Gy,), recall that the signature of

the suitable group A must have a period-cycle with two consecutive link-periods equal to 2, or an
empty period-cycle, see [3]. Since G}, has a unique element of order 2, the first possibility does not
hold. So, A must have an empty period-cycle, and for getting a smaller reduced area, its signature
must have the form (0, +, [m1,mo], {(—)}). Then, by using the same arguments as in Proposition 7
of [1], it follows that the minimal area is indeed attained for the signature (0, +, [4, 84 16k], {(—)}).
Thus, p(Gy) = 60k + 26. Observe that in particular p(G1o4) = 6266. O

On the contrary, for the five other values of N, namely 1082, 3842, 7850, 8810 and 8882, it is not
known whether N + 1 belongs to the symmetric crosscap spectrum, see Table 4. Hence, these pairs

(N, N + 1) seem to be a convenient target for identifying possible gaps in both spectra.
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ABSTRACT

We study uncertainty principles for a generalized Fourier
transform F,, associated with the pair of partial differential
operators (D, D) originally introduced by Flensted-Jensen
and later extended by Triméche. This transform, is defined
via the Jacobi kernel and an appropriate weighted measure.
We establish an LP? — L? version of Miyachi’s theorem, from
which we deduce Cowling-Price-type results. Additionally,
we establish a local uncertainty principle in the sense of Faris

and provide related numerical estimates.
RESUMEN

Estudiamos principios de incertidumbre para una trans-
formada de Fourier generalizada F,, asociada al par de
operadores diferenciales parciales (D, Do) originalmente in-
troducidos por Flensted-Jensen y luego extendidos por
Triméche. Esta transformada esté definida a través del nu-
cleo de Jacobi y una medida pesada apropiada. Establece-
mos una version L? — L4 del teorema de Miyachi, a partir del
cual deducimos resultados de tipo Cowling-Price. Adicional-
mente, establecemos un principio de incertidumbre local en
el sentido de Faris y entregamos estimaciones numéricas rela-

cionadas.
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1 Introduction

In the context of harmonic analysis on symmetric spaces, Flensted-Jensen [7] introduced a pair of
partial differential operators fundamental to the study of spherical functions on simply connected
semisimple Lie groups:

0? 0 1 0?

0
D=2 and D,=-2 4[(2n—1)cothy+ tanhy] — — —— 2
55 o 9 +[(2n — 1) cothy 4 tanh y] By coshy 00

where n is a positive integer. Triméche [16] extended these operators by generalizing the integer
parameter n — 1 to a positive real parameter a > 0, thereby developing an associated harmonic
analysis framework centered around a generalized Fourier transform F,. For suitable functions,

this transform is given by

FafNp) = //R . (Y, ).y, 0) dmal(y,0),

where p_» , is constructed from the classical Jacobi kernel wﬁ’)‘ via the formula:

i)\O(

oA u(y,0) = €% (cosh y)A‘Pﬁ’/\(y)

and the measure

dme(y,0) = 92(at+l) (sinh y)?**! coshy dy df

reflects the intrinsic non-Euclidean geometry of the underlying space. Unlike classical Jacobi
transforms, where X is fixed, F, treats A as a spectral variable. This key innovation makes F, a
natural and powerful tool for analyzing radial functions on the universal covering group of U(n, 1).
Although significant work has been done to explore various aspects of this transform [7,9,12,16],
its potential within the framework of uncertainty principles remains largely unexplored. This
paper aims to address this gap by establishing several uncertainty principles for F,(f). We begin
by recalling that classical examples of such principles include decay-based results like Hardy’s

theorem [8], which states that if

2

f(z)| < ce™ ™ and |f(y)] < e,

then f = 0 when ab > %, and f is Gaussian otherwise. Cowling-Price [2]| extended this to

L? — L7 integrability conditions, while Miyachi [13] introduced logarithmic integrability conditions,

requiring

e‘”Qf € LY(R) + L®(R), / log™ (W) dy < o0,
R

where log™ z = max(log,0). Miyachi extended Hardy’s theorem by replacing pointwise decay

with logarithmic integrability conditions, thereby enlarging the class of admissible functions.
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This work establishes an analogue of Miyachi’s theorem for the generalized Fourier transform F,,
associated with the operator pair (D, D,). Our approach, which leverages sharp estimates of the
generalized Jacobi kernel, distinguishes itself from previous techniques. These include methods re-
liant on Bessel operators and the Dunkl setting [1,10], Laguerre polynomials for Riemann-Liouville
operators [10], or Abel transforms and heat kernels in Jacobi analysis [3]. This builds upon several

related studies on uncertainty principles found in [4,9,12,14].

Alongside these decay-based principles, a distinct, support-based perspective was developed by
Faris and Price. This approach quantifies uncertainty not through rates of decay, but through the
spatial concentration of a function and the frequency dispersion of its transform. The Faris-Price
[5,15] expresses this idea via measurable sets: for f € L?(R") and a measurable set E C R", one

has

~ 2a a n
[ 1F@)Pde < Ko B el 13 0<a <

Such support-based principles provide explicit constants that govern the trade-off between spatial

localization and spectral dispersion.

A second main contribution is the establishment of a local uncertainty principle of Faris-type for
Fu- The theoretical result guarantees the existence of an optimal constant Ky 4 (7o (F)) but does
not provide its explicit form. To bridge this gap, we employ numerical optimization techniques to

compute this constant, quantifying the precise trade-off between spatial and spectral localization.

The paper is organized as follows. Section 2 develops the harmonic analysis framework for F, and
provides the necessary kernel bounds. Section 3 proves Miyachi- and Cowling-Price-type theorems.
Section 4 establishes the Faris-type principle and conducts a numerical investigation to compute

the associated optimal constants.

2 Mathematical framework

2.1 Generalized Jacobi Kernel

Let « be a positive real number and let K = [0, +oo[xR. Following [16], we consider the differential

operators:
p=2
Do =% 4 (20 + 1) cothy + tanhy) L 1)2 21
a—aiy2+[(04+ )CO y+ an y]aiy—m@—f—(a-i—)
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For complex parameters A\, u € C, the system

Du = idu,
Dou = —p?u, (2.2)
u(0,0) = 1, %(0,9):0&)1«961@

has a unique solution given by the generalized Jacobi kernel:

Pau(y,0) = € (coshy) o (y), (2.3)
where % is the Jacobi kernel [6]:
1 1-—-
e My) = 27 (OHN\J; +w,a+/\; w, ;o + 1; — sinh? ) (2.4)

expressed in terms of the Gaussian hypergeometric function oF.

For y > 0 and 0 € R, the kernel admits the integral representation [16]:

2
oy, 8) = smhy / / (coshy cos ) — cosh )™t cos(us)e 0T dyp ds, (2.5)

where w = w(s,y) = arccos(cosh s/ coshy). When y = 0, the kernel simplifies to ¢y ,(0,0) = e™*’.

The spectral space K =L UQ consists of:

]L:RX[O7+OO[3 Q: U(D+UD77L)
meN

where:
D ={(a+2m+1+mn,in) |n>0} and D, ={(—a—2m—1-mn,in)|n>0}.

The kernel satisfies the uniform bound [16]:

YO p) €K, sup loanu(y,0)] = 1. (2.6)
(y,0)€eK

The kernel relates to the generalized Riemann-Liouville transform X, through:

(Y, 0) = Xo (cos(p)e™) (y,0),

where

Xof(y,0) /fxt (2, t,y,6)dz di

with kernel

K(z,t,y,0) = —aX[O,y] (2)X[—ww] (t — 0)(coshy cos(t — ) — coshz)* ! (sinh y) .
7r
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For the constant function 1, we have the bound:

Xa(1)(y,0) = /KK(x,t,y,Q)dx dt <1. (2.7)

2.2 Generalized Fourier transform

For p € [1,400], we define the weighted Lebesgue spaces as follows:

e For 1 < p < oo, the space L (K) consists of measurable functions f : K — C satisfying

1/p
1l = ( / f(yﬂ)l”dma(yﬂ)) <o,

where the measure is given by

dme(y, 0) = 22T (sinh )22+ cosh y dy db. (2.8)

e For p = oo, the space L (K) consists of measurable functions with finite essential supremum

norm

||fH<>o,ma = esssup|f(y,0)].
(y,0)€K

The generalized Fourier transform JF, on L} (K) is defined by:

Faf ) = /K F(.0) 0 (4, 0)dima(y,6),

satisfying the following inequality:

V) €K Faf )l < I fllme- (2.9)
The Plancherel measure dv, combines continuous and discrete parts:

1 d\du

/}K 90 (M) = (53 /RX[O,M[Q(A’“)W

1 [ [ : : > , :
* @ > {/ gk +n,in)Ca (s + n,in)dn + / g(—k —mn,in)Ca(—K — n, m)dn} :
m=0 0 0

where Kk = o + 2m + 1 and:

0 1=inT (o + 1)T(igs)

Ol(}\,/t) =
atA+1414 a—A+1+4
T ( +A+14 /4) T ( +1+ M)

, Cy(\, ) = —2im Res[C1 (N, 2)Cr (N, —2)] 7L
Z=[
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The weight functions satisfy [16]:

K |uf? <G O )72 < Ko (14 (AP + [pf?)2let It (2.10)
Ca(\ )] < Ks(1+ A2+ |uf?)2etsl+t, (2.11)

The transform F, satisfies the Plancherel identity

1Fa(l27a = I fll2ma-

For 1 < p < 2, the Hausdorff-Young inequality holds:

1FaMara < 1 Fllpma: (2.12)

where g is the conjugate of p. The inversion formula is given by:
£00) = [ FalD)Ondon (0. O ) (213)
The heat kernel relates to Gaussians via:
B(0) = [ O, 4 0)dva 0 (214)

with more general heat functions:

. AN 2
Wi i(a, (y,0)) = lk/ﬂzkk(—u)%e e AN o) Ly, 0)dva (N, ). (2.15)

3 Miyachi-type theorem for the generalized Fourier trans-

form

To establish our main result, we first derive kernel estimates on C2.

Proposition 3.1. For all (\,p) € C? and (y,0) € K,
loa (Y, 0)] < C(1+ y)e(lﬁul—(aﬂ))ye\m\(|0|+7r)’ (3.1)
where C' > 0. Moreover, since y > 0,

loa,u(y, 0)] < CelSrlyHISAI8+m) (3.2)
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Proof. By [11, Lemma 2.3], for A = p =0,
0.0(y,0) < C(1+y)e (@+D,
Using |cos(us)| < e/S#I5 and the integral representation (2.5),
loau(y,0)] < CeI%ulyH%AI(IﬁHW)@070<y’9)’

since w € [—m,w]. This proves (3.1). Inequality (3.2) follows by analyzing the decay of f(y) =
(1 +y)e (@tDY on [0, +o0]. O
We now state a Phragmén-Lindel6f-type lemma sufficient for our needs:

Lemma 3.2 ([10]). Let h be entire on C2. Suppose there exist constants C, B > 0 such that

|h(z1,22)] < CeB((R=)"+(R=2)") g g / log™t|h(z,y)|dz dy < occ.
R2
Then h is constant.

Lemma 3.3. Let p,q € [1,+00] and f be measurable on K satisfying
W +(101+m)*) +2(at Dy ¢ L?(K) + LL(K), a > 0. (3.3)

Then Fo(f) is well-defined and entire on C2. Moreover, for all (A, u) € C2,

[SA12+|Su(?

|Fa(f)Ap)| < Ce a7, (3.4)
Proof. The function (A, p) — ¢_x .(y,0) is entire by (2.3) and (2.4). Using Proposition 3.1,

|F (W, 0)p—nu(y, 0)ma(y, 0)] < CelSNUIFFISuly| £y 0) g (y, 0).

By (3.3), there exist f1 € L?(K) and f; € LZ(K) such that

2

‘f@—)\7uma| S Z gk(Aa ,U/v y’ 6),
k=1

where
2

gk (\ 11,1y, 8) = OISO+ uly o =al*+(01+m*) =2+ Dy £ (4 0)mq (y, 6).
Observe that

| 1922 ]3P

ISM(6] + ) +Suly — aly? + (18] + 7)) = ~Bau(y,6) +
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where )
B0 = (vay ) & (vager+m - B0) 5 0
e 2\/a 2va) —
Thus,
9212 +18ul? o
g\, y,0) < Ce ArnwO)| £ (y, 0) e 2T m (y, 0).

For a compact K C C?, there exists (g, 10) € K such that

(A%EK Axu(y,0) = Axg o (4, 0).

. ISA2+|sp?
Since e 1a is bounded on K,

9O\ 11,9,0) < Gi(y, 0) = Cem om0 f(y 0)|e 2D (y,0).

To show F, f is entire, it suffices to prove Gy € L!(K). By Hélder’s inequality,

1
Y

2(atly

/|G1(y,9)|dyd9 < CHﬁe_ v ) (/ e Bxoum0 (40P o= 2(at Dy, (v, 9)dyd0>
K ma \JK

Using (2.8), e=2(@+Dym(y,0) < C, so

-

/|G1(y,9)|dy do < C Hf1||p,mw (/ —Axg.uo (U,0)P’ dy d0> < 0.
K K

Similarly, for ¢’ conjugate to g,
[ 1Ga(w.6)ldy dt < .
K
Thus F, f is entire.
To prove (3.4), apply Holder’s inequality to g; and go:

1
7/

Faf O )] < Ce55 <||f1||p,m (/ A”(”’“”dyde)
K

+ [ f2

Remark 3.4. Condition (3.3) implies f € LL(K). Indeed, by (2.8) and Hélder’s inequality,

1

(/ e—ap’<y2+(|e+w)2)e—2<a+1>ydma) v
p,mMeo K

1
7

</ 6aq'<y2+<|e+w>2>e2(a+1>ydma) ‘
q,Ma K

S Millpma + [1f2llgma < oo

2(a+)y

L1 0)ldma(y.6) < £

2(atly

+ Hfze_ a

1
_ / a’ |22 +\JH|
lame (/K St dyde) ) < O (| e + o llgm)

O
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Theorem 3.5. Let a,b,3> 0, p,q € [1,00], and f be measurable on R?, even in the first variable,

satisfying
ea(y2+(|9\+ﬂ)2)+2(a+1)yf € L?(K) 4 L4 (K)
and 5 s
/ log™ [Fof A, e > )d)\ dp < oo. (3.5)
R? B
Then:

o [fab> %, then f =0 a.e.

o Ifab= 1, then f = CEY with |C| < B, where E% is the heat kernel (2.14).
4 4a da

A24p2

Proof. Define h(\, p) = e e Fof(A, ). By Lemma 3.3, h is entire and satisfies

@024 (Rp)?

[h(Ap)| < Ce e

Now consider
/Rz log ™ |h(X, 1) |dA dp = /R log™ (|faf(A,M)|eb<#2+*2>e<ﬁ—b>(”+#2>) d\dy.
e Case ab > %: Since e(as V)M +4%) < 1 and Jge e(Fa =D +1%) g\ dp < oo,
/R2 log™ |R(\, ) |dX dp < .

2 2
Lemma 3.2 implies h is constant, so Fof = Ce~ " ic . Condition (3.5) forces C' = 0 when

ab> 1,50 f = 0 by injectivity of F,.

e Case ab = i: Then

F(\ b(p®+A%)
/ log ™[ h(A, ) |dA dp S/ log™ Faf s r)le dhdp < co.
R2 R2 B8
2 2
Lemma 3.2 gives F,f = 067%7 and (3.5) implies |C] < 3. Inverting F, yields f =
CE% . O

4a
Corollary 3.6. Let a,b >0, p,q € [1,00], 1 <7 < 00, and f measurable on R?, even in the first
variable, satisfying

ea(y2+(|9\+w)2)+2(a+1)yf c LZ(K) + Lg(K)

and

[ e o FL O dnd < o, (3.6)
R2

If ab > %, then f =0 a.e.
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Proof. Since log™ x < z for x > 0,

togrt Pl Qom0 (1 Faf Qo070 )
B - g
Choosing 8 = 1, (3.6) implies
/ log ™| Fa f (A, ) |e2# A dN dp < .
R2

By Theorem 3.5, f = 0 if ab > ;. If ab = §, f = CE% with |C| < 1, but (3.6) holds only if
4a
C =0. O

Theorem 3.7 (Cowling-Price Type). Let f be measurable on R?, even in the first variable, with
a,b>0,1<p,q< oo, satisfying

ea(y2+(\9|+ﬂ)2)+2(a+1)yf € L2(K)

and

SR FL FO )| € L(K). (3.7)

If ab > i, then f =0 a.e.
Proof. Since LP(K) C L?(K) + L4(K), (3.3) holds. From (3.7) and (2.10),

/ebQ(#2+>\2)‘]:af(/\,u)|‘1|c‘1(/\’lu)|_2d)\ dp < 0o
L

implies
[ IIE O dp < o0
R?

by the evenness of F, f in u. Corollary 3.6 with » = ¢ completes the proof. O

Remark 3.8. This work establishes a Cowling-Price-type uncertainty principle (Theorem 3.7)
within the Miyachi framework. It is instructive to compare this result with those derived from the
Beurling-Hormander framework, such as the one found in [12]. The two approaches are distinct

in their hypotheses and their conclusions, particularly at the critical exponent ab = 1/4.

(1) Comparison of hypotheses:
e In the Miyachi framework requires strict exponential decay without polynomial weights:

et WMty p  [p(K) SN F, £ € LE(K).
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e In the Beurling-Hormander framework [12] permits a tempered decay, allowing polyno-

mial weights:

| flealy ol / | Fofle?MHl?
S dmg < oo, Zalll iy, < oo
/K<1+|y,e>N M =20 A+ oy e s

(2) Comparison of conclusions at ab = 1/4:

e Under the Miyachi hypotheses, the conclusion is a sharp uniqueness result: f =0 is the

only function that satisfies the conditions.

e Under the Beurling-Hormander hypotheses, the conclusion is a characterization result:

the function f must be a finite linear combination of heat kernel modes:
f(yv 9) = Z ak,le?,j (ya 9),
k+j<N—1

where Wy ; are defined by relation (2.15).

4 Local uncertainty principle and numerical study

In this section, we provide a local uncertainty principle of Faris-type for the generalized Fourier
transform F,. This result quantifies the impossibility of a function f and its transform F,(f)
being simultaneously concentrated on sets of finite measure. We derive an inequality bounding the
concentration of F,(f) on a set F' by the spatial dispersion of f. We then compute the optimal

constant numerically, quantifying the precise trade-off between spatial and spectral localization.
4.1 Faris-type local uncertainty principle
Faris local uncertainty theorem for the generalized Fourier F, states

Theorem 4.1. If 1 <p <2, q= p’%l and 0 < a < % then for all f € L2(K) and all measurable

subset ' C K satisfying 0 < Yo (F) < o0,

([ 17t )" < Kana GatE) ( [ I(yﬁ)lpIf(yﬂ)pdma(yﬁ));7 (4.1

where Kq q,4 15 @ constant which depend on the measure of the subset F, v (F').

Proof. Let F be a measurable subset of K. Let us denote B the Euclidean ball of radius r > 0.

B={(y.0) €K, |(y,0)l = Vi?+0 <r}.
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We get
1Fa(f) Xellgra < IFalfxa) Xellgq, T 1FalfXae) Xellgn, -

On the other hand

1Fa(fxs) Xl = /ﬁmumw) xe o )|* dra(h )

< I Fa (o)l s /me,u) e (M 1).

Then
1Fa(fxe) Xellgn, < GalENT 1Fa(fxa) loome- (4.2)

Moreover
[FalfXpe) Xellgqn < NFalfXpe)llyn, - (4.3)

According to relations (4.2) and (4.3), we obtain

1Falf) Xellgn < alENT 1Falfxs) oo + 1 FalFXoe)llg -

Therefore (2.9) and (2.12) yield to

1
[FafXrllgq, < (alF))7 [1fXs + 1 X se llp,m,, - (4.4)

Using Holder inequality, we get

xaliom, < [ 0P |<y,e>|“”dma<y,e>); ([ 1600 o 0 ma.0))

Applying polar coordinates we get

/ By’ XpW0) fog T oa,
Il (y, 0)]|*2 2—-qa

Since
)dm 0 92(a+ a+1) B 0
/ ‘ y’ yv ) a(y, ) < 2(at1) 2( Dr / y’)dydﬂ

then we deduce that

2 (03 T g7(1 a
1 X ltma < Caage @D ra= | (y,0)|" fllpmas (4.5)

where

1
22(a+1) q
Ca,a,q = (ﬂ— ) . (46)

2 —qa
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According to relations (4.5) and (4.4) and the fact that

15X e < @O IR @ 01 X, looima < 771 1(y, 01 £I7 .,

we conclude that

1FafXpllgq, < 9O Fllpma, (4.7)

where g is a function from ]0, 00| into R, given by
g(r) = Ae’re 47 (4.8)

where

1 2 2
A=Caaq(1a(F))* >0, bz;(a—|—1)>0, c:g—a>0. (4.9)

The function g is continuous and coercive on |0, 4+o0[ since

lim g(r) =400 and lim g(r) = +oo.

r—0+ r—+o00

Thus, g attains a minimum. Differentiating, we get
g (r) = Aetr " (bor +¢) —ar L. (4.10)
Setting ¢'(r) = 0 is equivalent to solving
h(r) == A’ rte(br + ¢) — a.
Since c+a = % > 0, the function h is continuous and strictly increasing on |0, +oo[, with

lim h(r)=—a <0, lim h(r)=+oo.

r—0+ r—+o00

Therefore, there exists a unique 7* > 0 such that h(r*) = a, so ¢'(r*) = 0. Since g is coercive, this

critical point is the unique global minimum of g. Let us denote this unique minimum of g by

Kaa,0(7a(F)) = min g(r). (4.11)

Finally, relation (4.7) yields (4.1), completing the proof. O
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4.2 Numerical study of the optimal constant

This section presents a comprehensive numerical investigation of the function g(r) defined in Equa-

tion (4.7), which determines the optimal constant Ky ¢ (7o (F)) in Theorem 4.1. We recall that
g(r) = AeP"r¢ 4 r=a,

where the parameters are defined in relation (4.9).

To find the global minimizer »* > 0 of ¢g(r), we implement the Newton-Raphson method to solve

the equation ¢’(r) = 0. The first and second derivatives of g(r) are:

g (r) = A" r L (br 4 ¢) —ar—27 1,

g"(r) = Ae" 172 [(br + ¢)* + (c = 1)(br + ¢) — ¢| + ala+ 1)r*"2.

The Newton-Raphson iteration scheme is given by:

Tn+l = Thn —
We initialize the algorithm with ro = 0.1 and use a convergence criterion of
|71 — 7| < 107C,
e Numerical computation. We choose specific parameter values:

p=15 — 80 q =3,
a = 0.5,
a=0.5 — satisfies a < %,

Yo(F)=1 — for simplicity.

Now compute the constants:

. 1/3 1/3
A= Caug- (1a(F)"* = (%) = (75%3) ~ (50.265)1/3 ~ 3.691,

b=2(05+1)=1,

2
3
c=2-0.5~0.1667.

Thus, the function simplifies to

g(r) ~ 3.601 - ¢ - 701667 | =05,
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The Newton-Raphson method converges rapidly to the solution, as demonstrated in Table 1.

Table 1: Newton-Raphson iterations.

Iteration (n) on g (rn)
0 0.100000 -12.456
1 0.157832 -2.891
2 0.180214 -0.327
3 0.183105 -0.006
4 0.183127 -0.000012
5 0.183127 ~ 0

The algorithm converges in 5 iterations to r* a2 0.1831, yielding the minimum value g(r*) ~

5.677. The following Figure 1 illustrates the behavior of g(r), confirming the existence of a

unique minimum where the term r~% dominates as » — 07 and the term Ae’"r¢ dominates

as r — +oQ.

30

25 A

)

(0.183, 5.67

—— g(r) = 3.69110r0-1667 4 -0.5
=== Minimum at r=0.183
----- g(rmin) =5.677

Figure 1: Behavior of g(r) for p = 1.5, « = 0.5, a = 0.5.

4.3 Asymptotic behavior of K, ,,(7.(F))

In the previous numerical study, the measure of the frequency set was fixed at v,(F) = 1 to

compute a specific value for the optimal constant. We now analyze the behavior of K, o.4(7a(F))

over the full range of its domain, particularly in the asymptotic regimes where v, (F) — 07 or

Yo (F) — +00. This analysis reveals the intrinsic scaling properties of the uncertainty principle and

provides practical insight into the trade-off between spatial and frequency localization governed by

the parameters a, a, p.
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Behavior as 7, (F) — 0"

When 7, (F) — 07, by relation (4.9) we have A — 07. From (4.8), the dominant term in

a

g(r) becomes r~%, so we expect the minimizing r* to grow. We have

g(r) =0 Ae""r* Ybor +¢) —ar ' =0 <= A" Hbr +¢) = ar 7L,

Applying logarithms, we get
InA+br+ (c+a)lnr+1n(br 4+ ¢) =Ina.

For small A, the term br dominates, so we approximate:

br*%ln(%) = r*%%ln(%).

By substituting into g(r*), we obtain

<A
=
Q
@
BN
=
i)
=
o
i)
[}
=
=
[}
=
I
=
=+
o
2
Q
—
B
~—"
N—
Qe
=
@
oL
@
=)
<
@

where Cy 4 4 is given by (4.6).

Behavior as 7, (F) — +oo

Since 74 (F) — +00, then A — +00. On the other hand, the dominant term in g(r) is Ae®"r¢,

so we expect the minimizing 7* to shrink. The equation ¢'(r) = 0 gives us
AP (br + ¢) = ar™7 L.

For large A, the left hand side dominates, so we balance terms by taking r* — 0%. Assume

r* is small and expand e ~ 1 + br. Then
A+ br*) () br* +¢) = a(r*) "L

Yields to
A *\c—1 ~ *\—a—1 *ycta o i
(') ma(rt) T = ()~
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(a) Behavior of g(r) for small v (F).
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Thus:

Since 7* — 0T, the second term dominates:

a

*\—a Ca,a, CYa F a ﬁ
Kowa(ra(F)) ~ () ~(” .

This contrasting behavior is illustrated in Figure 2, which shows the function g(r) for extreme

values of 7, (F). The left panel shows the slow logarithmic decay for v, (F) — 0", while the

right panel demonstrates the power-law growth for v, (F) — +oo. The vertical dashed lines

indicate the minimizing radius r* in each case.

YalF)=0.01 ] YalF) =100.0
——- 1=0475 ] ——- ©=0047
3000 {1 K=15.398

2500

2000

1500

1000 -

500 1

[ 1 2 3 4 5 [ 1 2 3

Figure 2

(b) Behavior of g(r) for large vo (F).

e Numerical computation The following table presents numerical values of the minimizing

radius ro and the optimal constant K 4 q(7a(F)) for different values of v, (F), using the

parameters:
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Table 2: Numerical values of the optimal radius 7* and constant K g 4.

’YQ(F) A ’I"* Ka"%q
10~ 0.037 13.12 0.276
107° 0.079 11.72 0.295
10~4 0.171 10.32 0.316
1073 0.369 8.92 0.341
1072 0.795 7.52 0.372
1071 1.713 6.12 0.404

1 3.691 0.183 5.677
10 7.937 0.089 12.309
102 17.088 0.042 24.891
103 36.913 0.020 48.712
10* 79.370 0.009 94.868
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ABSTRACT

We will provide a new proof of the Birman-Krein theorem for
unitary operators multiplicatively perturbed by finite-rank
operators, which is nothing more than the Kato-Rosenblum
theorem, but instead of self-adjoint operators. In other
words, U is a unitary operator and X is a unitary opera-
tor given by a finite rank perturbation of the identity, i.e.,
X =1+ W with W finite rank. We show that U and its
perturbed version UX (or XU) are unitarily equivalent on

their absolutely continuous subspaces.
RESUMEN

Entregamos una nueva demostracion del teorema de Birman-
Krein para operadores unitarios perturbados multiplicativa-
mente por operadores de rango finito, que no es méas que el
teorema de Kato-Rosenblum, pero en lugar de operadores
autoadjuntos. En otras palabras, U es un operador unitario
y X es un operador unitario dado por una perturbacién de
rango finito de la identidad, i.e., X = 1 + W con W de
rango finito. Mostramos que U y su version perturbada UX
(o XU) son unitariamente equivalentes en sus subspacios ab-

solutamente continuos.

Keywords and Phrases: Absolutely continuous measure, finite rank perturbations, multiplicative perturbation,

unitary operators.
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1 Introduction

One of the great theorems in spectral theory is the famous Kato-Rosenblum theorem [4]:

Theorem 1.1. If A and T are self-adjoint operators, and A is trace class, then the absolutely

continuous parts of T and T + A are unitarily equivalent.

This theorem tells us that 7" and T'+ A have the same absolutely continuous spectrum.

Our motivation is to provide an alternative proof of the Birman-Krein theorem [1], which serves as
the unitary counterpart to the Kato-Rosenblum theorem, for the case of unitary operators under
multiplicative finite-rank perturbations (hence trace-class operators). Specifically, we are interested
in the preservation of absolutely continuous spectrum under transformations of the form U — UX
(or XU), where U and X unitary operator. It is worth mentioning here that X is a unitary
operator, but not of finite rank, however, it can be expressed as X =1+ W, where W = X — 1
is indeed a finite-rank operator. This ensures that X differs from the identity only on a finite-
dimensional subspace. While Birman and Krein mention how the proof would proceed if X were
of rank 1 or finite rank, they do not provide a detailed demonstration. Our work fills this gap by

presenting a novel proof of this theorem.

In this proof, we avoid the use of scattering theory, which has been the traditional approach to
this problem. Notably, L. de Branges and L. Shulman previously addressed similar in [5,6] and [2]
where they employed scattering theory (wave operator limits). In contrast our approach is more
restrictive than the general case, as it applies only when X is a unitary operator perturbed by a

finite rank operator.

In Section 2, we introduce the general framework for multiplicatively perturbed unitary operators.
In Section 3, to illustrate our general result, we examine the case where the perturbation is of rank

1. Finally, in Section 4, we present our main result.

2 Multiplicative perturbations

It is often convenient to express the unitary operator X as X = e?¥', where Y is a self-adjoint and

bounded operator. If Y is of trace class, it can be written as

o0
Yy = ijpw,
j=1

where P, = (j,)¢j, {¢;}jen is an orthonormal sequence, and > |w;| < oo.

Consider the perturbation

U—UX.
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Then, UX =U(1+ W) =U+UW, where W = Z;’;l @)’ Since P,,P,, =0 for j # k, we have

Fii

ei(wl Pw1+w2P¢2) w1 Py eiw2P¢2

=€

Let X,, = et 2= wile; Then, the commutator [X,,X,;] = 0 for all n,m € N, meaning the

operators commute. Thus,

. ~ntk . g . —n+tk
Xpak = 612_7:1 wiPe; _ i3y wiPe; i 2t @il

Formally, the unitary operator X can be expressed as

WY _ w1 Py,

e —e iWQ P‘p2 .

twr Py twi Pyy |

.e ..e L=... ..elw?PSPQ.eu’JlP‘Pl. (21)

Remark 2.1. (1) IfY is of rank 1 and 1 is the identity operator, then

e P‘Pzzi_'w :1+27'LP :1+27'<p:1+(6 _].)ng.
720 ' j=1 ' Jj=1 '

(2) Let Bj = (e™i —1) € C. Since P, is a projection operator for all j € N, we have
(L4 B Py, )X+ BrPy,) = 14 B Py, + PPy, forj#k.

(3) Forw; € R,

1851 = le™ = 1] < |wjl,

for all j € N.

To justify equality (2.1), we present the following lemma.

Lemma 2.2. Let X, = ¢' == “T% then {Xn}nen s a Cauchy sequence in B(H).
Proof. Using Remark 2.1, we have:

(| Xntr — Xnl| = HXnei R WP X,

= HX" {eiwn+1P¢n+1 . eiwn+2P¢n+2 . eiw"+kP‘Pn+k . 1} H

=1 Xa (L4 (e = 1) Py ) oo (T4 (e = 1) Py, ) — 1]
=||Xn [(1+ Bus1Ppoys) - (L4 Bug2Pyp,ys) - (14 BugiPy,.,) —1]]
<IXnll ||+ Busr Poui) - (14 BusaPens) -+ (14 BuiiPo,,) — 1]
=[|(1+ Bns1Ppnis) - (W4 Bus2Po, ) - (1 + BugiPo,.y) — 1]

= ||(1 + 57L+1P<pn+1 + ﬂn+2p¢n+2) e (1 + /B'rl—&—k—lpap,,LJrk,l + /B7L+kp<pn+k) - 1|’
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<1Bntal - ||Powin || + 1Bnsal - || Ponia| | + -+ 1Bntrl - [|Ponyil|
= [[1+ Bus1 Pons + Brs2Ponys + -+ + Bt Py — 1|
=|[Bui1Pp s+ BrsaPo, s+ + BuskPo, |

=|Bn+1] + |Bn2l + - + |Bnskl

= [ei it — 1| 4 [elnt2 — 1| 4 oo 4 [eionir — 1

Swny1| + lwnta| + - + |wntkl
n+k
= Z |wj| =0,

j=n+1

for n — oo, since it is of trace class, that is, {w;} el O

jEN
As an immediate result, we have:

Corollary 2.3. Let U be another unitary operator, then {UX,}, cy is a Cauchy sequence in B(H).

Lemma 2.4. |[UX,, —UX]| — 0, when n — .

Proof. Analogous to Lemma 2.2 and Corollary 2.3, if we have that Y = ijP%, then
j=1

. . n X - n . . .
1 X, — X|| = HX,” _elYH = ‘ i wile; 10 wiPe; | 13 Wil

when n — oo, and therefore ||UX,, — UX|| — 0. O

eizglzl“’jpwj (1 _ei2j>nwjpsoj>H < Hl _ei2j>nw1P‘Pj

< Z ‘wj| -0,
ji>n

For unitary operators, the Cauchy and Borel transforms of a Borel measure p on the unit circle

T ={z€C||z| =1} are given by

27 it 27
e’ +z du(t)
R = | dult), <1 R = [ G <

et — z

respectively. Here F, and R, are related by:

F.(2) =1+4+2zR,(2). (2.2)

Here we are interested in the properties of F),; for this, we have the following theorem [7].
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Theorem 2.5. Let p be a Borel measure on the unit circle T, then
(1) lim F, (reit) exists for almost every t, and if
r—1

dult) = £ L + dpy(t)

27
defines f(t), then f(t) = RF, (e').

(2) to is a pure point of u if and only if lirri (I1—-r)RE, (re”o) # 0 and in general
r—

lim (1 — ) RE, (re') = pu({to})-

r—1

(3) dus is supported in {t | lim F), (re”) = oo}.
r—1

Remark 2.6. This last theorem relates nontangential limits of this transform to the singular du

and absolutely continuous parts of d.

3 Rank 1 case
Now, let us consider the case of a rank 1 perturbation:
Uy=UX,=U 1+ (e“-1)P,).

Note that the intensity parameter w exhibits periodicity, and it suffices to consider 0 < w < 27.
Here, ¢ is a normalized vector in the Hilbert space H that is cyclic for the unitary operator U,

meaning that the closure

Lin{Uip|j€Z} =H,
with U® = 1. Since ¢ is cyclic for U, it is also cyclic for U,,, for all w € R.

To simplify the notation, let u* denote the spectral measure of the pair (U, ), Uy = U, u° = u,
F, = Fy» and R, = Ry~. Clearly, Fy(z) = F,(2) and Ro(z) = R,(z), where the Cauchy and

Borel transforms are respectively given by

F,(z)= <L,0, (U, +21) (U, — zl)_1 g0> , Ru(z)={p,R. (U,) ),

where R, (U,,) = (U, — 2'1)_1 is the resolvent operator.

Our goal is to prove that the measures p%, and p,. are equivalent, which implies that their Radon-
Nikodym derivatives are equal almost everywhere with respect to the Lebesgue measure (up to a

non-vanishing factor, which in this case is 1 due to the specific form of the transformation). This
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equivalence of the measures implies the unitary equivalence of the absolutely continuous parts of

U, and U.

Lemma 3.1. R.(U)({Up) = (1 + zR.(U))ep.

Proof. In fact,

R.(U)(Uyp) = 2R.(U)(p) = R.(U) [U(p) — 2¢]
=R.(U)[U - 21](p) = (U —21) (U — 21)p = . O

Remark 3.2. By the previous lemma, we then have that:

(0, R=(U)(U)) = (¢, (1 + 2R.(U))y)
= (¢ 1) + 2 (¢, R:(U)p) = (¢, ) + 2 {p, R (U)p) = 1+ 2Ryu(2).
Lemma 3.3. For |z| #1

Ro(z)
e + z(e™ — 1)Ry(z)

(e —1) 4 (e + 1) Fo(2)

Ro(z) = (e +1) + (eiw — 1) Fy(z)

and F,(z)=

Proof. By the second resolvent identity, we have that

then
(0, R.(U)g) — (@, R(Usy) ) = (@, R(U)((e" — 1)UP,)R.(Us)gp)
= (" —1) (¢, R-(U)U ({¢, Rz (U.,) ) ©))
= (" —1) (¢, R.(U,)p) (¢, R.(U)Usp)
= (" —1) (¢, R-(Uu)@) [1 + 2 (¢, R(U) )] ,

that is, Ro(z) — Ru(2) = (e — 1)R,(2) [1 + 2Ro(2)], therefore,

Ro(2)

Rw(z) = elw + Z(eiw — 1)R0(2) .

Now, by (2.2), we have

Ro(Z)
ew + z(e — 1)Ro(2)
e+ z(e™ —1)Ro(z) +22Ro(2) €™ 4 z(e" +1)Ro(2)

e + z(e™ — 1)Ry(z) e 4 z(ew — 1)Ry(2)

Fo(z) =2zR,(2)+1=22 +1
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2e' 4 2ze™ Ry(z) 4+ 22Ro(z) € — 1+ €™ + 2¢“2Ry(2) + 1+ 22Ro(2)

T 2e 1 2z€iw Ry (2) — 22Ro(2) e + 1+ e + 2w 2Ry(2) — 1 — 22Ry(2)
_ (e 1)+ (e +1)(1+22Ro(2)) _ (e —1) + (e +1)Fo(2)

= : = O
(e 4+ 1) + (e — 1)(1 +22Rg(2)) (e + 1)+ (ew — 1)Fy(2)
Remark 3.4. From the previous lemma, we can express Fy(z) in terms of F,, (z) as follows:
iwi 1 Fw _ (plwr 1
Ry(s) - (€ £ D) = (¢~ 1) o)

~( ~ D Fy () + (e + 1)

for wy in [0,27). Now, if wy € [0,27) with w1 # wa, we can express F,,(z) in terms of Fy(z).

Using (3.1), we can establish a relationship between F,,, and F,, as follows:

eiw? — @iwl + (eiw1 + eiwz) le (Z) and RF (Z) w
w2

F,(2)=— ; ; i -
2( ) eiwz 4 eiw1 4 (eiw2 — eiwn) F, (2) |1 +iyF,, (2:)|2

th . eiUJQ _ eiwl
wih 1Yy = ————.
y esz + ezwl

Remark 3.5. By Theorem 2.5, we know that the singular part of the measure us is supported on
S = {t | lim F(re') = oo}
r—1
Let us define the sets
S = {t | lim F, (re't) = oo} and Sy = {t | lim F,, (re') = oo} .
r—1 r—1

These sets are mutually disjoint. Indeed, since wy # we, and using Remark 3.4, it follows that if
t €Sy, then
eiUJQ _|_eiwl

lim F,(re") = ——— # o0

r—1 ez — et

Therefore, t ¢ Sa, which implies Sy N Sy = 0. Thus, the measures p<* and p%? are mutually
singular. This last result could be considered the equivalent of Donoghue’s Theorem, but for unitary

operators [3].

Theorem 3.6. For all wy # wa, the absolutely continuous parts of Uy, and U,, are unitarily

equivalent.

Proof. Since Uy, = U, + (™" — ¢™2) UP,, let us define the sets

. i . p) . i et + et
L, = {t | 71.1_>H%le(re =00 or iﬂTh_Ingl(re t)}, Ly = {t | Th_Ingl(re t = ,,},

ezwl — etw2

moreover, by Theorem 2.5, the measures of these sets are zero. If we define G = L1 U Lo, then the
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measure of G is also zero. From Remark 3.4, we obtain:
{t €T\G | lim Fl, (re”) = o} = {t € T\G | lim Fl, (re") = o} ,

thus, for almost every ¢t € T\G, we have: lim,_,1 R, (re®) # 0 if and only if lim,_,; R,,, (ret’) # 0.
By Theorem 2.5, the Radon-Nikodym derivative of the absolutely continuous part of the spectral
measure is given by the real part of the boundary value of the Cauchy transform. Therefore, the
above equivalence implies that the set of points ¢ where the density of (du“?),. is zero (or non-
zero) coincides, up to a set of Lebesgue measure zero, with the set where the density of (du“?)q. is
zero (or non-zero). This means that the measures (du®?)q. and (du®?),. are mutually absolutely
continuous with respect to each other (and with respect to Lebesgue measure), hence equivalent.
The unitary equivalence of the absolutely continuous parts of U,, and U,, then follows from the

spectral theorem. O]

Remark 3.7. From this theorem, under the specific choices wo = w and w; = 0, establishes the
equality 1%, = pqc of the absolutely continuous spectral measures. Consequently, the absolutely

continuous parts of the operators U, and Uy are unitarily equivalent, proving our original claim.

4 Finite rank case

We consider the perturbation of the unitary operator Uy by another unitary operator X, defined
as:

U=UpX = Uy(1+W) = U+ UsW,

where W is an operator given by:

W= Zﬁjpww
j=1

with 3; = (e — 1) and w; € [0,27) for j =1,2,...,n.

Using the second resolvent identity, we have:
R.(Ug) — R.(U) = R.(Uo)(U — Uo)R.(U),
substituting U — Uy = UyW, we obtain:
R.(Uo) — R.(U) = R-(Uo)(UoW)R-(U).
Furthermore, we observe that:

R.(Up) — R.(U) = WR.(U) + 2R.(Uy)WR.(U).
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To simplify the notations, as in the rank 1 case, we will use that Ry, = Ro, RE"™(2) = ¢k, R.(Uo)@m)
and lej’m(z) = (pg, R.(U)pm) for any k,m € {1,2,...,n}, and viewing these as matrix elements,

we have

Re™(2) = R™(2) = BeRy™(2) + 2 > Ro” (2) B R (2),
j=1

which means

Ro(z) — Ry(z) = MRy (z) + 2Ro(2) M Ry (2),

where

B 0 0 0 et 0 0 0
0 B, 0 -+ 0 0 elw2 0 0

M=|0 0 B --- 0|, Q=10 0 e« ... 0 |=M+1I,
Lo 0 0 - Bn_ | O 0 0 ei‘“"_

with I the n x n identity matrix, then
Ry(2) = (M + 1+ 2Ro(2)M) 'Ry (2) = (2 + 2Ro(2)(Q — I)) ' Ry(2).
And since Fy(z) = I + 2zRy(z), we have that
Fy(2) = (2 + M + Fy(2) M)~ (M + Fo(2)(M + 2I)),

or

Fy(2) =[(Q4 1)+ Fo(2)(Q= D] " (Q=1) + Fo(2)(Q+ 1)).

and if we separate the matrix 2 in the following way

cos(wy) + i sin(wy) 0 0 - 0
0 cos(wg) + isin(wg) 0 --- 0
Q= ) ) L ) =C+1iS,
0 0 0 - cos(wy)+isin(wy)

then 4+ Q* = 2C and MM* = 2(I — C), with M™* is the conjugate matrix of M, therefore
2REY (2) = Fu(2) + Fy(2) = 2((Q+ 1) + Fo(2)(Q — 1)) " RE(2) (2 + 1) + (2 — ) Fy(2))

REy(2) = (Q+1) + Fo(2)(Q = 1)) " RE(2) (" + 1) + (2" = ) F5 (2) 7, (4.1)
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or

REo(2) = ((Q+ 1) + Fo(2)(Q2 — D))RFy (2) (2" + 1) + (" = ) F§ (2)), (4.2)
for |z] < 1.
Remark 4.1. By the second resolvent identity,
let
A =1+ R.(Up)(UoW) = R.(Uo)(U — z) = I + W + zR.(Uo)W,

1 w1
and since R,(Up) = E(FZ(UO) —1I), then A=1+ 5 + §FZ(UO)W, and given that A is bounded

with a bounded inverse, we have A = R,(Up)(U — 2) and A= = R,(U)(Uy — 2). Then, if 2A =
T=2I+W + F.(Uy)W and since A is invertible, T is invertible

T = SAT = SRAU)Ws - 2) = () DUy - 2).

Therefore (21 + M + Fo(2)M)~1 is invertible.

Let us consider the sets

Lo (Up) ::{t € [0,27) |

. m,k ity . m,k it
lrl%lFO (re")| =00 or P lrl%lllFO (re )}
Ny (Up) = {t € [0,27) | li%rlngn’”(re“)(wm -1)=-Q- I} ,
where liglmegn’"(re“) is an element of li%rll QF""(re). Then, the measures of I,, x(Up) and

N, (Up) are zero, by Theorem 2.5, for all m, k and a.e. t € [0,27). Now, let us consider the union

of these two sets, this is

Gi= U (NalU0) U Nu(U) U L (U0) U L0,

m,k=1

then the measure of G is also zero a.e. t € [0,27) and from the equations (4.1) and (4.2), we have
{t € [0,2m)\G | 11%111§RFU(7“6”) = O} C {t € [0,2m)\G | ligl RE(re't) = 0}

and

{t € [0,2m)\G | 11%1 RFy(re') = 0} C {t € [0,2m)\G | 11%1 RFy (re't) = 0} ,

therefore, for almost every ¢ € [0, 27)\G, we have: lim1 REy(re't) # 0 if and only if linﬁ RFy (re't) #
T— r—
0. Applying Theorem 2.5 again, we conclude that the absolutely continuous parts of the spectral
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measures for Uy and U are mutually absolutely continuous. This equivalence of measures implies

the unitary equivalence of the absolutely continuous parts of the operators U and Uj.

Remark 4.2. In the same way, we can obtain this result for a perturbation U — XU.
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