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Weak solutions of a discrete Robin problem
involving the anisotropic p-mean curvature operator

1
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1 Introduction

In this article, we study the following nonlinear discrete Robin problem.

—A (L4 ¢p—1) (Du(k — 1)) |Au(k — 1)[PE-D=2Au(k — 1)) = Af(k,u(k)), ke Z[1,T],
Au(0) =u(T +1) =0,

where T' > 2 is a positive integer.

For fixed integers a, b such that a < b, we denote by Z [a, b] the discrete interval {a,a+1,...,b—1,b}.

The parameter A is positive. The forward difference operator is given by Au(k—1) = u(k)—u(k—1).
|s[P(F)

1+ |s]2®)

p and f will be defined precisely in the subsequent sections.

The function ¢y : R — R is defined by ¢, (s) = , for every s € R. The functions

In problem (1.1), we consider two boundary conditions: a Neumann boundary condition (Au(0) =
0) and a Dirichlet boundary condition (u(7 + 1) = 0). In the literature, these are referred to as

mixed boundary conditions (see [25]).

Difference equations arise in many research fields as the discrete counterpart of partial differential

equations and are often studied via numerical analysis. In this context, the operator in problem

(L.1),
wlk — 1)|p(k—=1)
A ((1 * V1 |f|A(]Z(kl_)1)|2p(k—1)> [Duk = DPED* Auk - U)

represents the discrete counterpart of the following p-anisotropic operator

OO\ -2 )
<<1+ 1+|u/(t)m))I () (t)).

In recent years, equations involving the anisotropic p-mean curvature operator, under various
boundary conditions, have become a significant and captivating research topic. Problem (1.1) has
been specifically analyzed in [4], where Dirichlet-type boundary conditions were applied through
the use of variational methods and critical point theory. In this framework, problem (1.1) also

serves as a discrete analogue of the following problem.

_ M u’ p(t)— u l_ ”
<<1+ 1+|u’(t)|2p(t)>| Ol (t)> = Af(tult), te(01),

' (0) = u(1) = 0.

(1.2)

Problem (1.2) and its multi-dimensional variants arise in various applications, including elasticity
mechanics [38,41], electrorheological fluids [14,20,37,38|, and image restoration [11]. In [11], Chen

et al. studied a functional with a variable exponent 1 < p(t) < 2, which serves as a model for
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image denoising, enhancement and restoration.

The existence of a solution to a nonlinear difference equation can be proved using fixed point
theory and the method of upper and lower solution techniques, as seen in [12,21] and the references
therein. It is well known that critical point theory is a crucial tool for addressing problems involving

differential equations.

Variational methods for difference equations were introduced by Guo and Yu [18]. The variational
methods have been employed to study various equations, yielding different results. We refer to
recent results involving anisotropic discrete boundary value problems [15-17,23,25,26,29,39] and
references therein. Discrete problems involving anisotropic exponents were firstly discussed in

[24,32].

In [32], by using the mountain pass theorem and Ekeland variational principle, the authors proved

the existence of a continuous spectrum of eigenvalues for the following problem

—A ((bp(k—l) (Au(k - 1))) = /\‘u(k)|q(k)_2ﬂ keZ [17T] ) (1 3)
w(0) = (T +1) = 0,

where ¢,)(s) = |s[P()72s, p: Z[0,T] — [2,00), ¢ : Z[1,T] — [2,00) and X is a positive constant.

In [24], Koné and Ouaro showed, by using the minimization method, the existence and uniqueness

of weak solutions to the following problem

—A(alk —1,0u(k = 1)) = f(k), keZ[1,T], (1.4)
u(0) =u(T +1)=0. .

We note that problem (1.4) is a generalization of (1.3). Indeed, in the particular case where
a(k,&) = |€P®=2¢ for all k € Z[0,T] and ¢ € R, the operator in (1.4) reduces to the p(k)-

Laplacian, i.e.,
Dpr—ryu(k — 1) := ¢pu_1y (Du(k — 1)) = [Au(k — D[PED"2Au(k - 1).
In [22], the authors studied the following Robin problem

ANu(k—1) = f(k,u(k), keZ[1,T], (1.5)
u(0) = Au(T) = 0.

Using the strongly monotone operator principle and critical point theory, the authors proved the

existence of nontrivial solutions for (1.5).
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In [10], Chen et al. considered the following Robin problem

A
v (“’“2> F \u(up)? =0, keZ[1,T),

1= (Auyg) (1.6)

A’U,O =Ur+4+1 = 0.

By combining the method of upper and lower solutions with Brouwer degree theory and Szulkin’s
critical point theory for convex, lower semicontinuous perturbations of C! functions, the authors
determined the ranges of the parameter A for which problem (1.6) admits zero, one, or two positive
solutions. In [28], by using critical point theory, the authors considered the existence of infinitely

many positive solutions of the following discrete Robin problem with ¢-Laplacian

—A(pp(Dug—1)) + qrpp(ur) = Af(k,u), keZ[1,T], )

Aug = ur41 =0,

plsP~2s
2¢/1+ |slP

In [19], by using variational methods, Hadjian and Bagheri established the existence of at least

where ¢, is a special ¢-Laplacian operator (see [31]) defined by ¢,(s) = with p > 2.

one nontrivial solution for the following problem

_A(d)C(Auk*l)) = )‘f(kauk)v kelZ [17T] )

Uug = ur41 =0,

S
V1+s2

For the study of the following Robin problem involving a second-order nonlinear difference equation

where ¢, is a special ¢-Laplacian operator (see [31]) defined by ¢.(s) =

v (A“’“> + M f(kup) =0, keZ[1,T),

1— (Auy)? (1.9)

A’U,() = Qu] = 0, Ur4+1 = 0,

we refer to [36]. In the particular case where f(k,t) = uxt? and o = 1, we obtain the problem
studied by Chen et al. [10]. The authors used different methods to obtain the existence and
multiplicity of solutions for a discrete boundary value problem in [1,2,5,7,9,34,40].

In this article, we use the Ambrosetti-Rabinowitz mountain pass theorem (see [3]), Ekeland’s
variational principle and a Lipschitz continuity condition on the nonlinear term. Using these tools,
we establish the existence and uniqueness of a nontrivial solution to a discrete Robin problem

involving equations with the anisotropic p-mean curvature operator.

The remainder of this article is organized as follows. In Section 2, we present some auxiliary
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results related to problem (1.1) and recall the abstract critical point theorem. Section 3 develops
the variational framework associated with problem (1.1) and introduces our main results. Finally,

we identify conditions under which problem (1.1) admits a unique nontrivial solution.

2 Preliminaries

Throughout this article, we denote

*= max p(k), p~ = min p(k), r*= max r(k) and r~ = min r(k).

keZ[o,T]p b k€Z[0,T) k€Ze(1,T) k€Z[1,T)
We consider the T-dimensional Banach space
H={u:7Z[0,T+1 —- R suchthat Au(0)=u(T+1)=0},

equipped with the norm

T 1/p~
Jlull = (Z Au(kﬂp‘) . (2.1)
k=1

However, we will use the following norm in H at times

lulloo = max |u(k)|, forall weH.
k€Z[0,7+1]

The space H will also be equipped with the following Luxemburg norm

p(’f)
<1,.

Since on H, all norms are equivalent, then there exist two constants 0 < K7 < K5 such that

KT u(
|l p.y = inf {u >0 Z o) ’
k=

I

Killullpey < llull < Kallullp.)- (2:2)

Next, let p,y: H — R be given by

T
1 (k)
Py (W) = p(k k)
k=1

Remark 2.1. Ifu € H, then the following properties hold.

lullpey > 1= llullyy < ppey(u) < HUII,?( Y (2.3)

) < ooy () < lullp - (2.4)

p()
¢
lullogy < 1= lullz,
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To establish our main result, we introduce the following quotient
G
> i (18uwp® 1HmMWMuQ

p(k)
T
1 p(k)
Z o7y A

Ay = inf A=
uwe H\{0}

We say that A is an eigenvalue of problem (1.1) whenever the problem admits a nontrivial solution.

It should be emphasized that A; represents the first eigenvalue of problem (1.1) in the particular

case where

Flk,u(k)) = |u(k)P® (k).

In addition, A; serves as a critical threshold parameter governing the existence of nontrivial solu-

tions to problem (1.1), thus guaranteeing the consistency of the analysis.

Let us also define the function
§
F(k,&) = / f(k,s)ds, forall (k,§)e€Z[1,T]xR.
0
We also make the following assumptions for the study of problem (1.1).

(Hy) For each k € Z[1,T], the mapping f(k,-) : R — R is continuous.

(Hz) There exist a constant C; > 0 and a function

r(-):Z[1,T] — [2,00)
such that:

(1) |f(k, &) < C1(1+ |¢"®~Y), vk € Z[1,T), V€ € R.

(i) liminf ——2~ Fik, §)

>0, for all k € Z[1,T).
gloo - [¢]r

In particular, assumption (Hz)(¢) implies that there exists a constant Cy > 0 such that

|F(k,&)] < Co(L+ [€"™), VEkeZ[1,T], VEeR.

(H3) liminf F(kr’F) >0, for all k € Z[1,T].

HESIS

(Hy) For every A € (0,A4),

limsup ——~—=— Af(, )

<Ay, forall keZ[1,T].
elso [€[PHRI=2¢ L]
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Example 2.2. The function

Fat) = [P =2 if 1t < 1
@72 if ] > 1,

with r~ > pT, satisfies assumptions (Hy), (Hz), (H3) and (Hy).

This example provides a concrete instance of the broader class of functions considered in problem

(1.1).
In the sequel, we will use the following auxiliary results.

Lemma 2.3 ([16,35]). (a) For allu € H with |Ju| > 1,
T
1 p(k) 1
> PT_T).
3 o 1Aur® 2 + (™ = 17)
(b) For alluw € H with |Jul| <1,

T 1 N
p(k) P
kE_ — \Au P > AT [[wll

(¢) For allu € H and for any m > 2,

M=

(k)™ < (7070 ).

e
Il

1

(d) For allu € H and all p™ > 2,

+
Z|Au ‘p <9r" (T(p’fl)/p’)p T”qu*.

(e) For allu € H and all p* > 2,
T +
1 T - -
§ ’ |Au(k‘)‘p(k) < [2P+ (T(P -1)/p )p HquJr + 1} )

The energy functional associated with problem (1.1) is defined by Jy : H — R as follows

ZT:{ (Au (k)P + 1+Au(k)|2p<k>1> AF(k,u(k))} (2.6)

k=1
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Definition 2.4. We say that u € H is a weak solution of the problem (1.1) if
T
> (1 dpiay (Bulk) | Dulk) PO =2 Aulk) Av(k) = Af (k, ulk))o (k)| =0, (2.7)
k=1

for any v € H and

T
> [(1+ Gy (Duk)) [Aulk)"® = Af (k,ulk)u(k)| = 0. (2.8)

k=1

We define the functionals ¢, ¥ : H — R by

T
=> Wlk) (|Au(k:)|p(k) + /1 + |Au(k)|2p) — 1>
k=1

and

:iF(k‘ukz

k=1

The functional is now written as: Jy(u) = ®(u) — AU (u).

Proposition 2.5. The functional Jy is well-defined on H and is of class C*(H,R) with the deriva-

tive given by

)= D7 [(1+ by (Bulh) | 8u() P02 A(k) Ao(l) = A, ulk)o(B)] - (29)

k=1

for all u,v € H.

The proof of Proposition 2.5 is a consequence of the proof of the following lemma.

Lemma 2.6. The functionals ® and ¥ are well-defined on H, and both belong to the class
CY(H,R). Moreover, their derivatives are given by

f(ksu(k))o(k),

M=

T
<<I>/(u), U> = Z (1 + qj)p(k)(Au(k))) ‘Au(kﬂp(k)_QAu(k)Av(k), <\I],(u)>v> =
k=1

x>
Il

1
for all u,v € H.

Furthermore, the critical points of the functional Jy in H coincide with the weak solutions of
problem (1.1).

Since the proof of Lemma 2.6 is very similar to that of Lemma 3.4 in [17] and Lemma 2.3 in [23],
it is omitted.

Owing to the finite-dimensional setting, every weak solution of problem (1.1) is a strong (i.e.,
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classical) solution. Consequently, solving problem (1.1) amounts to finding the critical points of

the functional J.

We now introduce the following results, which will be useful in the subsequent analysis.
Proposition 2.7 ([33]). Assume that the condition (Hs) holds. Then, Ay > 0.

Definition 2.8. Let E be a real Banach space and let J : E — R be a functional. We say that
J satisfies the Palais-Smale condition (abbreviated as (PS) condition) if every sequence {u,} C F

such that {J(uy,)} is bounded and J'(u,) — 0 as n — oo, admits a convergent subsequence in E.

Moreover, a sequence {u,} C E is said to satisfy the Palais-Smale condition at level ¢ € R, denoted
by (PS)e, if

J(up) = ¢ and J'(up,)—0 as n— oco.

Lemma 2.9 ([39]). Let E be a finite-dimensional Banach space and let J € C*(E,R) be an

anti-coercive functional. Then, J satisfies the (PS) condition.

Lemma 2.10 ([30, Mountain pass lemma]). Let E be a real Banach space. Assume that J €
CY(E,R) satisfies the (PS) condition. Suppose also that:

(#7) there exist p > 0 and o > 0 such that J(u) > « for all uw € E with |u|| = p;

(#91) there exists uy in E with ||uy] > p such that J(uy) < 0.
Then, J has a critical value ¢ > « which can be characterized by

= inf h
°T i )

where I' = {h € C ([0,1], E) : h(0) =0, h(1) = u1}.

Theorem 2.11 ([30]). Let E be a real Banach space and J : E — R. If J is weakly lower
semicontinuous and coercive, i.e. lim J(x) = oo, then there exists xo € E such that ing J(x) =
e

llz (| =00
J(.CC())
Moreover if J € CY(E,R), then zq is a critical point of J, i.e. J'(zo) = 0.

Theorem 2.12 ([13, Ekeland’s variational principle]). Let X be a complete metric space and
®: X — R a lower semicontinuous function bounded from below. Then, for everye >0 andu € X
be given such that

®(u) < inf ®(u)+e,

ueX

there exists u. € X such that
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(1) ®(ue) < @(u),
(i1) d(ue, ) < e,
(151) P(ue) < D(u) + ed(u,ue) for each u # ue.

Corollary 2.13 ([13]). Let X be a complete metric space and ® : X — R be a lower semicontinuous
function bounded below. Assume that ® € C1(X,R). Then, for every e > 0, there exists u. € X
such that

(i) ®(uc) < inf @(u) +e,

(#0) (19" (ue)ll <e.

3 Existence and uniqueness of weak nontrivial solutions

This section focuses on the existence and uniqueness of nontrivial weak solutions to problem (1.1).
We have the following result.

Theorem 3.1. Assume that the hypotheses (Hy)-(Hs) hold. If (r— > p™) or (r* < p~) or
(r= < p7), then there exist \*,p, A* > 0 such that for any X > \* and Ay — p € (A, A*), the

problem (1.1) has at least one weak nontrivial solution.

Proof. We can distinguish the following three cases:

Case 1: v~ > p*

In this instance, we will demonstrate that Jy possesses a “mountain pass geometry.”

Lemma 3.2. Assume that the hypotheses of Theorem 3.1 are satisfied, then.

(i) There exist a,p > 0 and p, A* > 0 such that for any X > 0 and Ay — p € (A, A*), one has

Ia(w) >a>0 forall we H with |ul=e.

(i) There exists e € H with ||e|]| > o such that
Jr(e) < 0.

Proof. (i) Using hypothesis (Hy), for any A € (0, A1), we can find p, § > 0 such that A < A; —p

and

Af(k,€) < (Ay —p) [€[PW=2¢, forall (k&) € Z[L,T] xR and [¢] <.
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In particular, if f is as in Example 2.2, then g = 1.

We deduce for £ € (0, 8], that

13 3
FUR) < (01— p) [ 5P 2sds = (=) [ 000 2sds =~ (0= ) P
0 0 p(k)
and for £ € [—f3,0), we infer that
0 0 1
AF() < (A =) [ s 2sds = (01— p) [ (=)0 2sds = = (A1 = ) €P®
¢ ¢ p(k)
Then, it follows that
AF(k, &) < % (Ay —p) [P forall keZ[1,T] and [¢] <p. (3.1)
p

Let w € H be such that |u(k)| < S for all k € Z[1,T]. Then, by relation (2.1), we have
Jul| < 28T"/7".
Now, let u € H be fixed such that ||u|| < 1. Define
K = min {2BT1/1’7, 1} .

Then, for any v € H satisfying ||u|| < &, it follows from relations (2.5), (3.1), and assertions

(b) and (¢) of Lemma 2.3 that

T T
p 1 p
JA(U) > ‘P(U) - (Al - P) I; ]T|U(k)| (k) (Al - P) 2:: m\u(/{” (k)
lu(k)|>1 Jlu(k)|>1
> 00)— (A1 - )Y ol ® - (84— )Y Lo
W 1 mhﬂﬂgu(” 1 mhﬂﬁau(
Ay — (A — AL —p) — .
R e Uy Y}

P o) o D= P) (e 1\ -
> _ 7 St S
ot Jul?” = B2 (20 0m7) "
= (Cw’#_f — (A1 — P)Cz) o,

where ¢y and ¢y are positive constants.

.
. co? 7" . -
Hence, choosing A* = L, then, for any A1 — p € (A, A*), there exist some positive

202
i
c10f

numbers 0 < p < k and a = > 0 such that Jy(u) > a > 0 for all uw € H with |Jul| = e.
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(#9) Fix A > 0. By (Hs), for any € > 0, there exists > 0 such that
F(k,&) >¢el¢]”, forall ke€Z[1,T] andall £€R, with [¢>n.
Since £ = F(k, &) —¢|¢|” is continuous on [—n, n], there is a constant C, > 0 such that
F(k, &) —el¢|” > —C,, forall keZ[1,T] andall &€ [—n,n.
Hence, we get
F(k,&) >¢el¢]” —C,, forall (k&) € Z[1,T] x R. (3.2)

So, from (3.2) and Lemma 2.3 (€), we obtain

T
tﬂm)zggpé)<AM@WW+w/L+Au%Wﬂm—1>—Ag;F@m%D
; T T B -
< =2 1BuRP =AY (culk) - ;)
k=1 k=1
o7 [ o o \P' + L -
gp_2p<Tp> ullP” +1 —Mg;m%ﬂ +ATC,,. (3.3)
As
— — T — —
el <27 =17 (uk+ DI + fu() ) <
k=1

which means that

p_—r_

u(B)" =27 T o " (3-4)

[M]=

k=1

Then, it follows from (3.3) and (3.4) that

.
T p=-1\P - pT-r” - 2T
A@<VTM%TP> Mw—mrwrf\wr+F+Mm. (3.5)

Since r~ > pT, Jx(u) — —o0 as |lul]| = oco. Thus, Jy is anti-coercive. Consequently, there

exists e € H with |le|| > o such that Jy(e) < 0. O
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Lemma 3.3. Assume that the hypotheses of Theorem 3.1 hold. Then, for any A > 0, the functional

J satisfies Palais-Smale condition.

Proof. By Lemma 3.2 (i), the functional Jy is anti-coercive. Therefore, by Lemma 2.3, the
functional J satisfies the Palais-Smale condition for any A > 0. Thus, our problem (1.1) has at

least one nontrivial solution. O

Case 2: r™ <p~

In the second case, we apply a direct variational approach. We verify that the functional Jy has a
critical point. Let A > 0 be fixed, since H is a finite-dimensional space and Jy, is of class C*(H,R),

it is sufficient to prove that Jy is coercive.

Let ||ul]| > 1. Then, by (2.5), (2.6), (a) and (¢) of Lemma 2.3, one has

T T
1
Iaw) > @) = (A —p) D —=[u®)PP = (A —p) D —=u(k)P®
2 ) 2 i)
lu(k)|>1 Ju(k)|>1
G A
> d(u) — (A — ——|u(k)|"®) — (A — ——|u(k)|PR)
> ®(u) — (A p)g:lp(k)l (%) (A p)g:lp(k)| (k)
A — (A1 — p) (A1 — p) — +
> R S A N T
> SR - S S )
Pt — A=) (om0 e —
> 5l (T ) Tl - K(T),
where K (T) is a positive constant. Therefore, choosing A* = P —, since r < p~,

Aq (T(p‘—l)/p‘)T T
one deduces that .J, is coercive.

Now, let u, € H be a global minimum of Jy, which is a critical point of Jy and, in turn, a weak

solution of the problem (1.1).

We now show that wu, is nontrivial for A large enough.

Let d € (0,1) be a fixed real and ko € Z[1,T], we define a function w € H by
d it k=ko,

w(k) =
0 if keZ[1,T)— {ko.
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Then, we deduce by (Hz)(ii) that

1 /
J)\(’LU) = m <|d|p(k0) + 1+ ‘d|2p(k0) - 1) - )\F(k(],'ll}(ko))

2 . 2 .
< |dP*o) — AF(ko,d) < —dP” — ACd"" .
p(ko) P
Thus, if we choose \* as
M= gt

=0
then for any A > A\* and r™ < p~, Jy(w) < 0. Since u, is a global minimum of Jy, it follows that

Jx(uy) < 0 for any A > A*; therefore u, is a weak nontrivial solution of problem (1.1).

Case 3: v~ <p~

In this case, we apply the Ekeland’s variational principle.

Lemma 3.4. Assume that (Hz)(ii) holds and r— < p~. Then, there is v € H such that Jx(v) < 0.

1
O\ 7o
Proof. Take d € (0, k), where & is as in the proof of Lemma 3.2 (i), such that d < <]920) .
Let ko € Z[1,T] with r(kg) = r~. Consider any fixed T € H such that T(ky) = d and T(k) = 0 for
any k € Z[1,T] \ {ko}. Using the condition (Hs)(#i), we have

2 2 _ -
I\ (T) < dptko) — \Cdrtko) < Zgp” — \Cd" .
p(ko) p
Then,
I (5) <0,
“AC\ T
for all d < (1)2> . The proof is thus complete. O

Relation (7) of Lemma 3.2 implies that

inf
uGH(%B,;, J)\(U) - 07
where B, = {u € H such that ||u|]| < k}. On the other hand, observe that Lemma 3.3 implies that

1
O\
there exists 7 € H such that Jy(7) < 0, for every d < <]920) . Recall that 7 € int B,.

Thus,
inf J,\(u) < 0.

u€int B,
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So, it follows

weittp, M < 2 D)

Let € > 0 be fixed, such that

0<e< infB Ja(uw) — inf  Jy(u).

u€dB, u€int By

Applying Ekeland’s variational principle to the functional Jy : B, — R, there exists u. € B,; such
that
In(ue) < inf Jy(uw) +e¢ and  Jy(ue) < Ja(u) +e€llu —ue| for all u # u..

u€EDB,
Moreover,

Ia(ue) < inf Ja(u)+e< inf  Jy(u) +e< eHalfB Ix(u),

u€EBy u€int B,

then, we infer that u. € int B,,. Next, we introduce the function ¥, : B, — R defined by
Ya(u) = Ia(u) +€||lu —u|| for all u # u,.

So, it follows that . is a minimum point of ¥, and thus

w)\(ue + 0’0) — 1/))\(UE)

>0 3.6
7 >0, (3.6)

for all v € B, and all > 0 small enough. Therefore, using relation (3.6), we deduce that

Ia(ue + 0v) — Ty (ue
e 200 = Ialte) 4 o > 0.
0
Letting # — 0%, we obtain

J\(ue,v) +€llv|| >0 forall ueH, (3.7)

where J4 (ue, v) is the directional derivative of the function Jy at u. in the direction of v. Since

Ta(ue, v) = (J3(ue),v) = Jx(ue)v,

we obtain from (3.7),
[ 73 (ue)ll < e.

Thus, we deduce that there exists a sequence {u,} C int B,; such that

Ia(up) = c= inf Jy(u) and Ji(u,) =0 as n— co.

u€EB,
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As the sequence {u,} is bounded in H, then there exists ug € H such that, up to a subsequence,

{un} converges to ug in H. Hence, the problem (1.1) has a nontrivial solution. O

Lemma 3.5. Let A > 0. Suppose that conditions (H1)-(Hs) are satisfied. If w € H is a solution

of problem (1.1), then there exist two positive constants k1 and ko such that k1 < ||lu]| < Ka.

Proof. The proof of this lemma is organized into two steps, as outlined below.

Step 1. Assume that u € H is a solution of (1.1) with [Jul[,.) < 1. Set ¢ = p

p_—1 p* '
AT ) TK?"

Since f satisfies (Hy), for any A € (0, A1), there exist p, 8 > 0 such that A < A; — p < ( and

M (k&) < (A —p) [€P®=2¢ forall ke Z[1,T] and £e€R with |¢]<g.
On the other hand, by (H2)(4), there exists a positive constant L such that
ANf(k, O < LI ™1 forall (k&) € Z[L,T] xR and [¢] > B,
where L = A\ (W + 1). Consequently, we get that
Mk, 6)] < (A —p) [€PP1 + Llg ™= forall keZ[1,T] and ¢eR.

Using the above inequality, (2.2), (2.4), (2.8) and Lemma 2.3 (c), we obtain

N KN 1 <&
lullyey < pocy @) = 37 —as 18ulk) O < o= 37 [ Au(k)
k:lp k=1
T
1
sp—,Z(uasp(m(Au(k))) | Au(k) [P = kau (k)
k=1
A ) o) 4 AL »
< — (M- )Z|( )l Z|U )|
p k=1
/\ T
< X - S+ 23t
p k=1
+ +
A p==1\P AL ’
< 2 (17 ) Tl +(T - ) Tl

+

+
A p==1\? AL pm=1\ " ot ot
< - (157) TRE g, + 25 (7)) TSl
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Therefore,
+ T
A p==1\P o
1= 2 (157) TRt
p
||u||p(- I o
— <T p > TK)
P
Set .
AP rt—pt
1—— (M )(T@‘) TK?Y
Kl = L s
p~—1
— (T » > TK;
p
and note that
0<ky<l1
Indeed, since
A< A — P

p”—1 pt +,
A(T - ) TK?

it follows that .

A p=-1\7? +
0<1l——(AL—p)(T » TKY < 1.
p

+

p_—1 r
Clearly, AL <T » > TKgJr > p~. Hence, 0 < k] < 1.

Step 2. Suppose that u € H is a solution of (1.1) such that [|ul|,.) > 1. Then, there exists a

constant k3 > 1 such that [jul|,.) < &3.

According to (2.6) and (2.8), one has

T T
r (J,\(u) +AY F(k, u(k))) — A f(k,u(k))u(k)
k=1

k=1
T T
=r" Z]ﬁ <|Au(k)|P(’f> + /1 + |Au(k)|2pk) — 1) > (14 bpy (Au(k))) [Auk)[P®)
k=1 k=1
_ T T _ T
> 1S I8uP® - Y lauip® = (2 -1) 3 sup®.
p k=1 k=1 p k=1

Recall the Ambrosetti-Rabinowitz condition:

for all (k,&) € Z[1,T) xR and for some 7~ >pt. (3.8)

€ = Flhe)

Integrating, we obtain that (3.2) holds (see [6, Remark 5.2] or [8, Remark 3.7]).
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Combining the above inequalities with (2.2), (3.5), (3.8) and Lemma 2.3, it follows that

- (uw A P, u<k>>) ATk ulk)u(k)
k=1 k=1

T T
1

<o Ia(w) 1T Ay fhu(k))u(k) = XY f (b u(k))u(k)

k=1 k=1
=r"Jy(u) =r" }1lr€1§ Sren[zgﬁ] Ix(h(s)) <r~ Slél[%}i] Iy (se) <r~ max I ( Tl )

P pr _ pT—r— r
<7~ max 1_2”++1 (T » ) + el — =277 T e s HGHT +£+)\TC
=P ez lelpey P~

+

T pT —1 p - p_—r— — - 2T

<r- max (_2” (T p- ) serKg+ —Ae27" T v " K +—+ )\TC'n> ,
82 p p

where e € H is given by Lemma 3.2 (i7). Hence from (2.3), we infer that

(;:r — 1) ||U||§E) < (; - 1) Pp(y(u) = (;1 - 1) ép(l) | Au(k)P®

p_—1

n
- T ——1\* B e Y
< " max <2p++1 (T P > SP+K§+ VS Sl K7 ++)\TC77>.
p

Let

+

T ot ” e 2T
o(s) = T2p++1 (T P ) SP+K§+ —Ae27" T v " K 4+ — 4+ ATC,
p

and %( s) = 0. Since r~ > pT, then o(s) — —oco as s — oco.

Therefore,

+

d T p=—1\? p_—r_ _
d—g(s) = T2p++1 (T P ) p+K§+s”+*1 A2 T ey TKy T T
s p

which implies that

T _ +11 p_—1 Pt +
——2r (T Pt Ky
§" P —

A2 T Ky
So,

+ —T
T pmo1\P T
Z?21’”1 (T " > ptEY

P N

S =
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Let
1/
r— (T _+.4 po1\ P + = - - 2 v
— —721’ + (T P ) Sp Kp _AE2_T T P ST K{ +T+)\TC7]
.|\ p
K/z == —
pj_

which is equivalent to saying

_ r _ r
T Omaz(s) > —2T + 1~ A\TC, > ]?2T > 2 o

3

Since r~ > pT and 2 < p~ < p(+) < p* < oo, we infer that k3 > 1 and by (2.2), there exist
some constants k1 = K1k}, ko = Kok} such that k1 < |Jul] < ka.
The proof of Lemma 3.5 is then complete. [

Next, we examine conditions under which our problem (1.1) has a unique non trivial solution.

Lemma 3.6. There exists a constant ¢ > 0 such that for all k € Z[1,T] and s > 0,

mmﬂume»wW%mwﬂﬁfwwwm—uu+%w@wm*ﬁZme%

where ¢ = min{1,p~ — 1}.

Proof. For all s > 0, we observe that

(1+ bpi(5)) sPR)=2 > op(k)=2 _ 1 op(k)=2

One also has
a(bp(k) §) = p(k)sp(k')_l

s (1 + st(k))3/2.

At more, one has

#0071 2908 () 4 (k) — 1) (14 0 (5)) 5702
() = 1) P04 () = DO

— ky—1 Sp(k)*Q +
(v (k) — 1) TN
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Hence, for all s > 0,

mind (14 Gy (5)) 772, s“’“”%(s) + (p(k) = 1) (1+ dpee(5)) 57972} >

min{1,p~ —1}s?®=2. O

As in [27], one has the following result.

Lemma 3.7. There exists a positive constant ¢ such that
((1 + Gp(i) () [EP 72 — (14 dpiay(m) \nlp(’“)’Qn) (§—n) > 4?7 PB g —ppp®),

for all §,n € R with (§,7) # (0,0).

Let us now introduce the following hypothesis.

—ed2 Pt
(Hg) There exist a constant 0 < § < p+ such that

p==1\P
A(T ) TKY (2637 7

1k, &) — f(k,n)| <5lE—nP" ™Y forall keZ[1,T] and &neR with &£

One has the following result.

Theorem 3.8. Under assumptions (Hy)-(Hs) and (Hg), there exists a unique nontrivial solution

of problem (1.1).

Proof. Let u and v be two non-trivial solutions to problem (1.1). Then, by (2.7), we have

T

,i (14 pgry (Du(k))) [ Aulk) PP =2 Auk) Alu - 0) (k) = A ]; f(k,u(k))(u—v)(k)  (3.9)
and
é (14 Gy (Av(K))) [ Av(k)PE 2 Av(k) A — v) (k) = /\if(k:, v(E))(u—v)(k).  (3.10)
Subtracting (3.9) and (3.10), we obtain
é { (1+ dpiy (Du(k)) [Aulk) PP =2 Au(k) = (1+ dpiiy (Av(k))) [20(k) P72 A0 (k) | Alu = v) (k)
AXT: Fl,v(k))] (uw —v)(k). (3.11)
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If [|u —v||p) <1, then using (2.4), Lemma 3.6, (3.11), (Hg) and Lemma 2.3 (c), we deduce from

(2.2) that

T
1
6427p+Hu—11||5:) < 42" Pp(y (U — ) —_2042 PR) | Au(k) —

\ /\

<_§j( (14 by (Du(k)) [ 2u(k) P2 Au(k)

o)™

— (1 + ¢py (Dv(k))) |Av(k)|p(k)‘2Av(k)) (Au(k) — Ao(k))

T
:7§§juwww»—ﬂhwmnm—ww>
k=1
A5 e N\ o+
< 32 S Iuth) ~ otb) <22 () Tl
A (NP o+
<) TR - ol

Therefore,

9—p* )\5 P ot
c4 - pe T »- TKS

pc42 "

Recall that the constant ¢ is such that § <

¥ p+ .
A (T = ) TKY"
Hence, |ju — v||§zr,) = 0, which implies that u = v.

Now, let [|u —v||,) > 1. Similarly, we can deduce that

.
lu ], <o.

+
ot - _pt Ao ——1\? + +
c4?~P ||u—v||§(.) < AP py(u—v) < = (T b ) TK? ||u—v||g(.).

p

Consequently,

— 42—pt
pfp> p AP

%) (T = ) TKL"

l[w =l

Which is equivalent to say

P+*P

pcd? "

p_—1 p* 4
M(Tv—) TK?

lu—vlpey >
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p~cd? —p"

It is then clear that if u, v are solutions to problem (1.1) and ¢ < ,

p——1

_ pt
)\(T - ) TKY" (2657 7

then
205 < [[u = vllpcy < lully + ooy < 265,

This contradicts the assumption that [[u — v||,.y > 1. Consequently, it follows that u = v. O
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ABSTRACT

The concept of metric dimension in graphs has the aim of
finding a set of vertices in a graph with the smallest size
that can be used as a reference to identify all vertices in the
graph uniquely. Formally, let G be a connected graph, and
let S = {s1,...,5x} € V(G) be an ordered set. For every
v € V(G), we define r(v|S) = (d(v, s1),...,d(v, sr)) where
d is the distance function of G. We call S a resolving set if
r(u|S) # r(v|S) for every u,v € V(G), u # v. The metric
dimension of G, denoted by dim(G), is the smallest inte-
ger k such that G has a resolving set of size k. Recently,
the authors have initiated research on the relation between
the metric dimension of a graph and its nullity (that is, the
multiplicity of 0 in its adjacency spectrum), and we have ob-
tained several results. In this paper, we present some new
relationships between the metric dimension and the spec-
trum of graphs. In detail, we present an inequality involving
the metric dimension and nullity of any bipartite or singu-
lar graph. Then, we give an infinite class of graphs having
equal metric dimension and nullity using the rooted product
of graphs. Finally, for any connected graph G other than
a path, we show that a submatrix of the distance matrix
of G, associated with a minimal resolving set of GG, has the
full-rank property.
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RESUMEN

El concepto de dimensiéon métrica en grafos tiene como
propésito encontrar un conjunto de vértices en un grafo con
el menor tamafo que puede usarse como referencia para iden-
tificar anicamente todos los vértices del grafo. Formalmente,
sea G un grafo conexo, y sea S = {s1,...,s.} C V(G)
un conjunto ordenado. Para todo v € V(G), definimos
r(v|S) = (d(v,$1),...,d(v,sr)) donde d es la funciéon de
distancia de G. Llamamos a S un conjunto resolvente si
r(ulS) # r(v|S) para todo u,v € V(G), u # v. La dimen-
sion métrica de G, denotada por dim(G), es el entero mas
pequeno k tal que G tiene un conjunto resolvente de tamano
k. Recientemente, los autores han comenzado a investigar
sobre la relacion entre la dimensién métrica de un grafo y
su nulidad (es decir, la multiplicidad de 0 en su espectro de
adyacencia), y hemos obtenido diversos resultados. En este
articulo, presentamos algunas relaciones nuevas entre la di-
mensiéon métrica y el espectro de grafos. En detalle, presen-
tamos una desigualdad que involucra la dimensién métrica
y la nulidad de cualquier grafo bipartito o singular. Luego,
entregamos una clase infinita de grafos con igual dimensién
métrica y nulidad usando el producto enraizado de grafos.
Finalmente, para todo grafo conexo G distinto de un camino,
mostramos que una submatriz de la matriz de distancia de
G, asociada a un conjunto resolvente minimo de G, tiene la

propiedad de rango completo.

Keywords and Phrases: Metric dimension, spectrum, nullity, distance matrix.
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1 Introduction

In the 1960s, Slater [14] and Harary and Melter [10] independently introduced the concept of metric
dimension of graphs. They introduced the term locating set or resolving set which refers to a set
of vertices used to identify each vertex in a graph uniquely. A resolving set with the smallest size
is called a basis, and its cardinality is referred to as the metric dimension of the graph. Since the
metric dimension of graphs and its variations have direct applicability to several real-world issues
like robot navigation [12] and chemistry [3], research on them has grown rapidly in the recent few
decades. See, for example, [15] and [13] for surveys on this topic. On the other hand, in 1972,
Cvetkovi¢, Gutman, and Trinajsti¢ [5], and then Cvetkovi¢ and Gutman [4], introduced the nullity
of a graph as a new invariant; it is the multiplicity of 0 as an eigenvalue of the graph’s adjacency
matrix. They further investigated the connection between graph nullity and chemical structures.

Excellent overviews of graph nullity can be found in [1] and [9].

Despite the growth of interest in the metric dimension of graphs, its connection to the graph’s
spectrum has not been studied further. Recently, the authors 7] have initiated research on the
relation between the metric dimension of a graph and its spectrum, and we have obtained several
results. This research was motivated by the observation that the equality dim(G) = n(G), where
dim(G) and 7n(G) respectively denote the metric dimension and nullity of the graph G, holds
for complete bipartite graphs K, s where r # s, paths P, where n is odd, and cycles C,, where
n = 0 (mod 4). This paper aims to provide further connections between the two concepts. In
detail, we first give an inequality involving dim(G) and 7(G) for any bipartite or singular graphs
G, generalizing our previous result for trees. Then, we give an infinite class of graphs G where
dim(G) = n(G) using the rooted product of graphs. Finally, we give another relation between the
metric dimension of a graph and its distance matrix. We show that for any connected graph G, a
submatrix of its distance matrix, associated with a minimal resolving set of Gz, has the full-rank
property.

All the graphs considered in this study are finite, simple, and undirected. We refer to Diestel [6]
for the basic definitions related to graphs. An empty graph () is the graph without any vertices
and edges. Let G = (V(G), E(G)) be a graph. We simply write V = V(G) and E = E(G) if the
graph is clear from context. Two vertices u,v € V are said to be adjacent if uwv € E. The open
neighborhood of a vertex u € V is the set Ng(u) := {v € V : wv € E}, and the closed neighborhood
of uis Nglu] := {u}UNg(u). The degree of a vertex u € V', denoted by deg(u), is the size of Ng(u).
A vertex is called pendant if it has degree one, and let p(G) denote the number of pendant vertices
of G. For two distinct vertices u, v in a graph G, the distance d(u,v) of u and v is the length of a
shortest path connecting v and v. We denote by P,, Cy,, Ky, », and K, for paths, cycles, complete
bipartite, and complete graphs. For two integers a < b, we define [a,b] :={z € Z:a < x < b}.

Let u,v € V, u # v. We say that a vertex s € V resolves u and v if d(u,s) # d(v,s). Let
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S = {s1,82,...,5k} CV be an ordered subset of V. The representation of v € V with respect to
S, denoted by r(v]S), is the vector r(v|S) = (d(v, s1),d(v, s2),d(v, 83),...,d(v,s;)). We call S a
resolving set of G if r(u|S) # r(v|S) for every distinct pair u,v € V, that is, if each vertex of G
has a unique representation with respect to S. In other words, S is a resolving set if and only if
every pair of distinct vertices u,v € V is resolved by an element of S. A resolving set of G with
minimum size is called a basis of G. The cardinality of a basis of G is called the metric dimension
of G which is denoted by dim(G). A resolving set of G is called minimal if for every Sy C S, Sy is

not a resolving set of G, that is, S does not contain a smaller resolving set of G.

Let G = (V, E) be a graph of order n with V' = {v1,vs,...,v,}. The adjacency matriz of G
is the n x n matrix A = A(G) = (a;;) whose entry a;; is equal to 1 if v; and v; are adjacent,
and 0 otherwise. The distance matriz of G is the matrix D = D(G) = (d;;), where d;; =
d(vi,vj). For M € {A,D}, the M-spectrum of G, denoted by specy;(G), is the set of eigenvalues
of M(G) together with their multiplicities. If the distinct eigenvalues of M(G) are Ay > Ay >

- > Mg, and their multiplicities are mq,mas,...,ms, respectively, then we write specy;(G) =
{AT, 252, ..., A=}, For an eigenvalue A, we may write mpi(A) to denote the multiplicity of A
in specy;(G). The nullity of G, denoted by n(G), is the multiplicity of eigenvalue 0 in specy (G),
that is, 7(G) = ma(0). We call a graph G singular if n(G) > 0. For the trivial case, we define

n(®) = o.

2 Preliminary Results

In this section, we provide some known results that are useful in our discussions.
Theorem 2.1 ([3,12]). A graph G has dim(G) =1 if and only if G is a path.

Theorem 2.2 ([15]). For every integer n > 3, dim(C,) = 2.

Let G and H be two graphs. The union G U H is the graph where V(GUH) = V(G)UV(H) and
E(GUH) =E(G)UE(H). The join GV H is the graph obtained by taking the two graphs and

connecting, by an edge, each vertex in G to each vertex in H. Furthermore, the complement G of

G has V(G) = V(G) and E(G) = {uv : w ¢ E(G),u,v € V(G)}.

Theorem 2.3 ([3]). Let G be a graph of order n > 4. Then, dim(G) = n — 2 if and only if
G=K,s (rns>1),G=K,VEK; (s>1,t>2), orG=K,V (K UKy) (s,t >1).

For the case of trees, we need the following definitions. A vertex of degree at least 3 in a graph G is
called a major vertex of G. A pendant vertex u of G is called a terminal vertex of a major vertex v
of G if d(u,v) < d(u,w) for every other major vertex w of G. In other words, a pendant vertex w is

a terminal vertex of v if v is the closest major vertex from u. The terminal degree ter(v) of a major
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vertex v is the number of terminal vertices of v. A major vertex v of G is called an exterior major
vertex of G if ter(v) > 0. Let o(G) denote the sum of the terminal degrees of all major vertices
of G, and let ex(G) denote the number of exterior major vertices of G. With these definitions, we

may calculate the metric dimension of trees other than a path by the following formula.

Theorem 2.4 ([3,12,14]). If T is a tree other than a path, then

dim(T) = o(T) —ex(T) = > (ter(v) — 1).
te;)(ig/;l

The proof of Theorem 2.4 utilizes the following general bound for any connected graphs.

Lemma 2.5 ([3]). If G is a connected graph, then dim(G) > o(G) — ex(G).

For an exterior major vertex v in G, a tail of v is a path connecting v to one of its terminal vertex,
excluding v. Thus, an exterior major vertex v has ter(v) tails. We call a tail odd or even if it has
an odd or even number of vertices, respectively. A branch B is a subgraph of G induced by an
exterior major vertex v in G and all its tails. In this case, we call v the stem vertexr of B. Thus,
a branch with n tails is a subdivision of the star graph K ,. We say a branch B is of Type I if it
has at least one odd tail and Type II otherwise. In Figure 1b, the branches of T" in Figure la are
the blocked subgraphs By, Bs, B3, and By. The vertex c is the stem of By. The branches Bs, Bs,
and By are of Type I, while the branch B, is of Type II. With these additional definitions, observe
that the second equality in Theorem 2.4 indicates that the metric dimension of a tree depends only

on the structure of its branches.

We now discuss the rooted and corona product of graphs. Let G be a graph where V(G) =
{v1,v9,...,v,}. Let H be a set of n graphs Hy, Ho, ..., H, where a vertex in H; is chosen as the
root of H;, i € [1,n]. The rooted product of G by H, denoted by G(H), is the graph obtained by
identifying the root of H; and v; for every i € [1,n] [8]. A special case of rooted product of graphs
is the caterpillar graph. A caterpillar is a tree such that the removal of its pendants produces
a path. For positive integers k and nq1,ng,...,nk, a caterpillar CP(nq,no,...,n) is the graph

Py({Kiny,---,K1n,}) by taking the center vertex of each Kj ,, as its root.

Let G and H be two graphs with |G| = n. The corona product G ® H is defined as the graph
obtained by taking one copy of G and n copies of H, and we connect (by an edge) every vertex
in the ith copy of H with the ith vertex of G [16]. For the case where H = K, for some positive
integer m, we have G ® K,,, = G(H) where H = {H1, Ha, ..., H,}, H; = K1 ,, for every i € [1,n].

Theorem 2.6 ([11]). If G is a connected graph of order n, and t € N, t > 2, then dim(G © K;) =
n(t—1)

Theorem 2.7 ([11]). If G is a connected graph of order n, and H = {K1m,, Ki.mss---»K1,m,
where m; > 2 for every i € [1,n], then dim(G(H)) = Y i, (m; — 1).
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(a) The tree T’ (b) The branches of T'

Figure 1: A tree and its branches

We now discuss the results related to the spectrum and nullity of graphs.

Theorem 2.8 ([2]).

(1) For every positive integers 1, s, specp (K, s) = {£+/rs,07 572}
(2) For every integer n > 2, specy (Cy) = {2cos(2nk/n) : k € [1,n]}.

(3) For every integer n > 1, specy (P,) = {2cos(wk/(n+ 1)) : k € [1,n]}.

We can see from Theorem 2.8 that n(K,s) = r+s—2; n(C,) =2 if n = 0 (mod 4), and 0 if
otherwise; and n(P,) = 1 if n is odd, and 0 if n is even. The following observation is immediate

from Theorems 2.8, 2.1, 2.2, and 2.3.

Observation 2.9. The condition dim(G) = n(G) holds if G is one of the following graphs:
(1) K, s wherer #s, or
(2) Cp, wheren =0 (mod 4), or
(3) P, where n is odd.

Lemma 2.10 ([9]). Let G be a graph order n. Then, n(G) = n if and only if G = K,,.

The following lemmas are very useful in many parts of our discussion.
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Lemma 2.11 ([4]). Let G be a bipartite graph containing a pendant vertex, say v, and H be the
graph obtained from G by deleting v and its neighbor. Then, n(G) = n(H).

Lemma 2.12 (|9]). Let G = U._, Gi, where Gy, ..., Gy are connected components of G. Then,
n(G) = iy 1(Go).

We now mention our previous result.

Theorem 2.13 ([7]). Let T be a tree other than a path. Let By and By be the sets of Type I and
Type II branches in T, respectively. Let es be the number of even tails in T. If T has an odd tail,
then

dim(T) = n(T) = n(T - By) — [Bul + e,

where T — By is the graph obtained from T by deleting all Type I branches in T .

3 Main results

3.1 The metric dimension and nullity of bipartite or singular graphs

We first present an inequality involving dim(G) and n(G) for any connected bipartite/singular
graph having an odd tail. The proof of this theorem is similar to the proof of Theorem 2.13.

However, for completeness, we present the proof.

Theorem 3.1. Let G be a connected bipartite or singular graph other than a path. Let By and B
be the sets of Type I and Type II branches in G, respectively. Let es be the number of even tails in
G. If G has an odd tail, then

dim(G) = n(G) —n(G — Br) — |Bu| + €2
where G — By is the graph obtained from G by deleting all Type I branches in G.

Proof. Let By, ..., By be the branches in G. Since G has at least one odd tail, there exists a Type I
branch in G. Suppose that |B;| = p > 1. Without loss of generality, let B; = {B1, Ba, ..., B,} and
Bit = {Bp+1, Bpt2, ..., Br}. Observe that we may construct a sequence of graphs Go,G1,...,G,
where Go: =G, G, =G —Bi,and Gj =Gj_1 — Bj =G — U{zl B; for j € [1,p]. So, the graph G;
is obtained from G' by deleting the branches By, B, ..., B; of G.

For an arbitrary j € [1,p|, consider the graph G,;_; and Type I branch B; with stem vertex c;.
Suppose that B; has e() tails, egj) odd tails, and eéj) even tails, hence e() = egj) + egj) and
ey = Zle egi). Let Poaq be the set of all odd tails of Bj, and let Peyven be the set of all even tails
of B;. Pick an arbitrary odd tail, say P;, and then delete P, and c¢; from G;_;. Since P; is an odd
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Figure 2: The grouping of the vertices in G;_1 and Gj_1 — P —¢;

tail, we have n(G;_1) = n(Gj-1 — P1 —¢;) by Lemma 2.11. Observe that the graph G;_1 — P, —¢;
has several connected components (see Figure 2): G, odd tails of B; except P;, and even tails of
Bj. By Lemma 2.11, we have
1, if P € Poaa,
n(P) =
0, if P € Peven,
since successively deleting a pendant vertex and its neighbor of a path yields a single vertex if it

has an odd order, and an empty graph if it has an even order.

Consequently, by Lemma 2.12; we have

N(Gi) =n(Gimr = PL—c)) =n(Gy)+ Y n(P)+ D n(P)=n(Gy)+ (e —1).

P&EPoaa P&EPeoven

Therefore, we have the relation n(G;) = n(G;-1) — (egj) — 1) for j € [1,p]. By applying this

relation successively, we obtain

(G = Bi) =n(Gp) =n(Go) = Y (eg’“ _ 1) —n(@) -3 (egw B 1) _

i=1 i=1

Finally, since dim(G) > 37 (¢ — 1) by Lemma 2.5, we have

0GBy = @) -3 (£ -1) + ¥ (- 1)
i=1 i=p+1
=1(G) - zk: (M —1-ef’)+ Xk: (0-1)
i=1 i=p+1
= n(G) — i (e“) - 1) + ieg“ —(k—p)
i=1 =1
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Example 3.2. Let G be the graph shown in Figure 3a. The graph G — By is the bold subgraph
shown in Figure 3c. With some calculations, we obtain n(G) = 4 (so G is singular), n(G—DBr) =1,
|Bi| = 2, and e3 = 5. Thus, by Theorem 3.1, we obtain dim(G) > n(G) —n(G — By) — |Bu| +e2 =
4-1-24+5=6.

(a) G (b) T

Figure 3: The graph G, spanning tree T of G, and G — B

3.2 The metric dimension and nullity of the rooted product of some

graphs

Next, we discuss some relationships between the metric dimension and nullity of the rooted product
of some graphs. For certain conditions, this product will establish an infinite class of graphs whose
metric dimension and nullity are equal. For that, we need a useful class of graph called branch
graph which is simply a subdivision of K ,, for some positive integer n. The number of subdivision
processes in each “leg” of K , is arbitrary. The following proposition gives the metric dimension
of G(H) for any set of branch graphs H (see Figure 4). Observe that this proposition generalizes
Theorems 2.6 and 2.7.

Proposition 3.3. Let H = {B1,Ba,...,B,} be a set of n > 1 branch graphs. For every i € [1,n],
the graph B; has e; > 2 tails, and the center of B; is chosen as the root of B;. For every connected

graph G of order n, dim(G(H)) = >, (e; — 1) = p(G(H)) — n.

Proof. Let G be a connected graph of order n. First, we show that dim(G(H)) > >, (e; — 1).
Let V(G) = {v1,...,vn}. The graph G(H) is obtained by identifying v; with the center of B;.
Consequently, the pendant vertices of all B;’s become the pendant vertices in G(H), so p(G(H)) =
> i, e;. Moreover, all vertices in G become the exterior major vertices in G(H), so ex(G(H)) = n.

Thus, by Lemma 2.5, we have

dim(G(H)) > p(G(H)) — ex(G(H)) =3 e —n =

i=1 %

(61‘ — 1)

n n
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Next, we show that dim(G(H)) < Y7 ,(e; — 1). For every v; € V(G) C V(G(H)), let T; :=
{v},v2, ..., v} be the set of all terminal vertices of v;, where vg is the terminal vertex of v; in the

Jth tail, j € [1,¢;]. Let S =, (T3 \ {v{"}). We will show that S is a resolving set of G(H). Let

z,y € V(G(H)) be two distinct vertices. There are some cases for z and y.

(1) Let z,y € V(B;), i € [1,n], that is,  and y are in the same branch.

(a) If z and y are in the same tail, say the jth tail, j € [1,¢;], then d(z,v}) # d(y,v}).

(b) Suppose that z and y are in different tails, say jith and joth tails, respectively. Observe

J1
7

Consequently, d(y, vfl) =d(y,v;) + d(vi,z) + d(:mvfl) > d(x,vfl) since d(y,v;) > 0.

that at least one of vfl and vfé must be in S; say v]' € S without loss of generality.

(c) Suppose that = = v; and y is in the jth tail. If j € [1,e; — 1], then d(y,v!) < d(z,v?).
If j = e;, then d(y,v}) = d(y,z) + d(z,v}) > d(z,v}) since d(y,x) > 0.

(2) Let z € V(Bs) and y € V(By), s # t € [1,n], that is, z and y are in different branches.
Consequently, d(vs,vs) > 0.

(a) If z is in the jth tail, j € [1,es — 1], then wherever y may be in B;, we have d(y,v) =
d(y,ve) + d(ve,vs) + d(vs, z) + d(z,v2) > d(x,v]). Similar argument also applies if y is
in the jth tail, j € [1, e, — 1], that is, d(x,v!) > d(y,v!) wherever 2 may be in B.

(b) If x = vs and y = vy, then d(y,v}) = d(y, vi) +d(ve, vs) +d(vs,v)) > d(vs,v}l) = d(z,v}).

(¢) For the last case, suppose that x and y are in the esth and e;th tails, respectively. If
d(z,v}) # d(y,v}l), then we are done. Now, let us assume that d(z,vl) = d(y,v}).

Observe that since d(v,vs) > 0, we have

d(z,vi) = d(w,vs) + d(vs,vs) + d(vg, v})
= (d(z,vs) + d(vs,v})) + d(vs, v;) + d(ve,v}) — d(vs, v])
= d(z,v}) + d(vs,ve) + d(ve,vp) — d(vs, v})
=d(y,v}) + d(vs,v;) + d(ve,v}) — d(vs, v})
= (d(y,vt) + d(ve, vs) + d(vs,v})) + d(vs,v1) + d(ve, vf) — d(vs, vE)
= (d(y,v¢) + d(vg,v})) + 2d(vs, vs)
= d(y,v}) + 2d(ve, vs)

> d(y,v}).

Thus, for every case of x and y, there is an element of S resolving them. Consequently, S is a
resolving set of G(H), and since S| = >_1"_; (e;—1), we have dim(G(H)) < Y7, (e;—1). Therefore,
dim(G(H)) = X7, (e; — 1). O
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Figure 4: The graph G(H)

Theorem 3.4. Let H = {B1,Ba,...,B,} be a set of n > 1 branch graphs whose tails are all odd
tails. For every i € [1,n], the graph B; has e; > 2 tails, and the center of B; is chosen as the root
of B;. For every connected bipartite graph G of order n,

dim(G(H)) = n(G(H)) = Z(ei —1).

Proof. From Proposition 3.3, dim(G(H)) = >, (e; — 1). We only need to show that n(G(H)) =
i (e; —1). Observe that G is bipartite implies G(H) is also bipartite. Consider an arbitrary
branch B; in G(H). By applying Lemma 2.11 consecutively, we may delete one tail from B;
together with the vertex v; without changing the nullity, that is, the nullity of the resulting graph
is the same as of G(#). Moreover, this deletion leaves only e; — 1 tails of B;. From Lemma 2.11
again, these e; — 1 tails leave e; — 1 isolated vertices (since every tail in B; is an odd tail) without
changing the nullity. Thus, the deletion process on the branch B; leaves the graph G(H) — B;
and e; — 1 isolated vertices with the same nullity as G(#H). By applying the same process to the

other branches, we get a graph consisting of Y ;" | (e; — 1) isolated vertices whose nullity equals the

nullity of G(#). Thus, n(G(H)) = >_1_,(e; — 1). Therefore, dim(G(H)) = n(G(H)). O

The following corollary is a consequence of Theorem 3.4 by observing that corona product of graphs

and caterpillar graphs are special cases of rooted product of graphs.
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Corollary 3.5. The condition dim(G) = n(G) holds if G is one of the following graphs:

(1) H @E for every connected bipartite graph H and positive integer p > 2, or

(2) CP(n1,na,...,ng) for every positive integers k and n; > 2, i € [1,k].

In contrast to Theorem 3.4, if all branch graphs in ‘H have only even tails, then the metric dimension

of G(H) is strictly greater than its nullity as we show in the following theorem.

Theorem 3.6. Let H be a set of n > 2 branch graphs with at least 2 tails whose tails are all
even tails, and for every B € H, the center of B is chosen as the root of B. For every connected

bipartite graph G of order n, dim(G(H)) > n(G(H)).

Proof. Let H = {Bx,..., By}, where every B; € H has e; > 2 tails. Assume to the contrary that
there exists a connected bipartite graph G of order n satisfying dim(G(H)) < n(G(H)). Since
G is connected and has an order n > 2, we have G # K,,, so 7(G) < n —1 from Lemma 2.10.
From Proposition 3.3, we have dim(G(H)) = Y_;_ e; — n, and by applying Lemma 2.11 on G(H)
consecutively, we obtain n(G(H)) = n(G). Therefore,

n=2n-n< iei —n=dim(G(H)) <n(GH)) =n(G) <n-—-1,

i=1

a contradiction. O

3.3 The metric dimension and distance matrix of graphs

Finally, we discuss a relationship between the metric dimension of a graph and its distance matrix.
For that, we need the following notations. For a connected graph G and § # S C V(G), the

distance matrix D of G can be partitioned into
D= [D[s| D[V\s]]

where D[S] € RIGIXISI and D[V\S] € RICIXIVASI are the submatrices obtained from D by taking
all the columns corresponding to the elements of S and V'\S, respectively. Observe that the vth
row of D[S] is r(v|S)T. Observation 3.7 is a direct consequence of this definition. Recall that a
resolving set S of G is called minimal if S does not contain a smaller resolving set of G. A basis

is a minimal resolving set, but the converse is not necessarily true.

Observation 3.7. Let G be a connected graph with distance matriz D and § # S C V(G).

(1) S is a resolving set of G if and only if D[S] has no two identical rows.
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(2) S is a minimal resolving set of G if and only if (1) D[S] has no two identical rows, and (2)
for every s € S, D[S\{s}] has two identical rows.

Theorem 3.8. Let G be a connected graph other than a path with distance matriz D. If S is a
minimal resolving set of G, then rank(D[S]) = |S|. Consequently, dim(G) < rank(D).

Proof. Let S be a minimal resolving set of G with |S| = k. Since G is not a path, we have k > 2
from Theorem 2.1. Let ¢ € [1,k] be arbitrary. According to Observation 3.7, there are two rows
dy = (du1,---,dy)" and dy = (dy1,...,dur) " (u # v) of D[S] such that dys = d,s for every
s € [1,k]\{¢}, but dy; > dy;, without loss of generality. Define ¢; := d,; — dy; > 0. Observe
that C%(du —d,) = e; where e; := (0,...,0,1,0,...,0)" with entry 1 is in the ith column. This
means that e; is in the row space of D[S]. Since i € [1, k] is arbitrary, the linearly independent set
{e1,ea,..., e} is contained in the row space of D[S], hence rank(D[S]) > |S|. By the property
of rank, we obtain rank(D[S]) < min{|G|,|S|} = |S|. Therefore, rank(D[S]) = |S|. Consequently,
dim (@) < |S| = rank(D[S]) < rank(D). O

The contrapositive of Theorem 3.8 and the fact that rank(D[S]) < |S| produce the following

corollary.

Corollary 3.9. Let G be a connected graph other than a path with distance matrix D. If S is a
resolving set of G and rank(D[S]) < |S|, then S contains a smaller resolving set of G.

4 Conclusion and open problems

In this paper, we gave a lower bound of the metric dimension dim(G) of any connected bipar-
tite/singular graph G in terms of its nullity 5(G). Then, we gave infinite examples of graphs
having equal metric dimension and nullity using the rooted product of graphs. We found that
dim(G(H)) = n(G(H)) if H is the set of branch graphs having only odd tails and having at least
two tails. It is still an open problem to characterize or list other graphs having equal metric

dimension and nullity.

Problem 4.1. Give other examples of graphs G with dim(G) = n(G).

Another interesting problem is to investigate dim(G(#)) when # is the set of complete graphs of
order at least 3. As a preliminary observation, it is known that for every integer n > 2, dim(K,,) =
n — 1. On the other hand, we also have mp x,)(—1) = n — 1, thus dim(K,,) = ma(x,)(—1).
We conjectured that there is a relationship between the metric dimension of a graph with the

multiplicity of eigenvalue —1 through the existence of a clique.

Problem 4.2. Investigate the relationships between the metric dimension of a graph having cliques

and the multiplicity of —1 in their spectrum. In particular, if F = G(H) where G is any connected
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bipartite graph and H is the set of complete graphs of order at least 3, then compare dim(F') and

mA(F)(_l)'

Lastly, we gave a relationship between the metric dimension of a graph and its distance matrix. We
showed that if S is a minimal resolving set of G having distance matrix D, then D[S] is full-rank.
Since the metric dimension of a graph is closely related to the graph distance, there may be more

relationships between the metric dimension and the distance matrix of a graph.

Problem 4.3. Find other relationships between the metric dimension of a graph and its distance

matriz.
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1 Introduction and motivation

The Euler-Mascheroni constant, represented by the symbol gamma -, is a key mathematical con-
stant that appears in numerous areas of number theory and analysis. Introduced by the Swiss
mathematician Leonhard Euler in 1734, this constant is defined as the limit of the difference be-
tween the harmonic series and the natural logarithm. Mathematically, it is defined as the limit of

the sequence:
=1 1
Yn = Z % +1In o
k=1
The approximate value of « is 0.57721 ..., although its precise nature —whether it is rational or
irrational— remains unresolved in the field of mathematics.

Throughout history, the Euler-Mascheroni constant has been extensively studied and computed.
Euler initially determined its value to six decimal places, and later mathematicians, including the

Italian mathematician Lorenzo Mascheroni, have worked to refine this calculation.

Despite its long-standing history, many aspects of 7 continue to captivate mathematicians, making

it a subject of ongoing research and investigation.

In particular, many researchers are focused on developing new, rapidly converging sequences to

approximate .

This interest stems from the hypothesis that the unresolved question of whether + is rational or

irrational may be attributed to the slow convergence rate of the classical sequence (7y,),,> -

Recent studies have introduced various sequences with faster convergence rates (but a sacrifice
of simplicity), aiming to shed light on the true nature of this enigmatic number. The methods
used range from modifying some terms from the harmonic series to changing the argument of the

logarithm to polynomial or rational functions. See, e.g., [2-5].

This paper aims to introduce some new faster convergences to -y, keeping a simple form.
2 The results

Along with the classical sequence (7,,),,~, (that converges to v decreasingly), the following sequence

"1 1
!
=) —+1
Tn ;k—’_nn—kl

converges increasingly to ~.

Both sequences (7y,),,s, and (v,),~, converge to 7 like n™!, since

1 1
lim n(y, —7v)== and lim n(y,—7)=—=.

n— 00 2 n— 00 2



CUBO

Modified convergences to the Euler-Mascheroni constant 45

28, 1 (2026)

We introduce in this paper new sequences by modifying the argument of the logarithm to
1(1 1 1 1
5 (ﬁ + rﬂ) s then to nZ + (n+1)2 .

For the sake of simplicity, we propose the sequence
n
1 1 1
= iln( =
=31 n(5+ i)

that converges (to v 4 In2) at a higher rate of convergence, as we can see from the following;:

Theorem 2.1. a) The sequence (un)n21 converges decreasingly to v+1n2, at a rate of conver-

gence n~2. More precisely,

lim n? (g, — (v +1n2)) = l

n— o0 24

b) The following inequalities hold true, for every integer n > 1 :

7 7

S R e AR e Ty mer e

Keeping in mind that the number % (% + "_1H

) , which appears in the expression of the sequence
n , is the arithmetic mean of + and —1—, we introduce the following sequence involving the
1% n>1 n n+1

i 1 1.
quadratic mean of > and - i

1+11 1+ 1
Mn = —4+-In|=+——=].
" ok 2 n?  (n+1)°

The sequence (7),),,~, converges (to ¥+ % In 2) with a rate of convergence n 2

, as we can see from

the following:

Theorem 2.2. a) The sequence (77,l)n21 converges decreasingly to v + %ln 2, at a rate of con-

vergence n~2. More precisely,

1 5
lim n? (7, — —In2) ) =—.
oo <77 (7+2 " >) 12

b) The following inequalities hold, for every integer n > 1 :

5 1 5
< — “m2)< 2
2n+1)(n+2) =" (7+2 " >—1zn(n+1)
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3 The proofs

A main tool for computing the speed of convergence is the following lemma, first stated in [6].

Lemma 3.1. If (2,),,~, s convergent to zero and

lim n* (z, —2p41) =1 € (—00,00),
n— oo

for some k > 1 and l # 0, then

l
li k—1 n=-—.
Jm e =

This lemma is useful especially when the sequence (z,),-, is defined as a sum and consequently,

the difference x,, — x,41 becomes of a simpler form.

Proof of Theorem 1.  a) We have pu, — ip+1 = f (n), where

f(2) L +1 1+ 1 1 1 + L
=— nl— —In|—4+ —— .
r+1 r x+1 r+1 x+4+2

This function f is decreasing on (0, 00), since

, 14z + 722 +6
ffx)=- 5 <0.
z(2x+3)2z+ 1) (x+2)(z+1)

As lim, o0 f () = 0, it follows that f > 0 on (0, 00) and consequently, the sequence (4in),,>,

is decreasing.

By standard calculations (or faster, using the Maple software) we get:

. 7
Jim (= ping) = 73

According to Lemma 3.1, we obtain:

lim n? (g, — (v +1n2)) = l

n— o0 24

b) First we prove the following inequalities, for every integer n > 1:

7 7 7

it D(n+2) dnmt)mt2)mtd) S nmt 1) (nt 2)

namely u (z) < 0 and v (z) > 0, for all = € (0,00), where

v@) =) - BT @Y
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and

7 7
v(z)=f(z) - (12x(x+1)(13+2) _4x(cc—|—1)(:z:+2)(x—|—3)>'

The function w is increasing, while the function v is decreasing, as

B 94z + ATx2 + 42
1222 (22 + 3) (22 + 1) (z 4 2)* (z + 1)*

u' (x)

>0, x>0,

and
43052 + 4748x2 4+ 213723 + 3362 + 1296

120 (22 +3) 2z + 1) (@ +3)% (z + 2) (z + 1)

v (x) =

0, z>0.
But limg 00 v (2) = limy 0o v (z) = 0, thus u(z) < 0 and v (z) > 0, for all x € (0,00), as
we have announced before. The inequality (3.1) is true.

Now we plan to sum the inequalities (3.1) from n to n+k—1, where k is any positive number:

+k—1 n+k—1

7" 1 7 1
12 ; ii+1)(+2) 4 ; i(i+1)(i+2)(i+3)

n+k—1 1
< fn — Pntk < 1 ; m (3.2)
These are telescopic sums, as
1 1 1 1
i(z’+1)(z’+2)_2<i(i+l)_(i+1)(i+2)> (3:3)
and
1 1 1 1
i+ G+2)(i+3) 3 (z’(i—i—l) (i+2) (z‘+1)(z‘+2)(z‘+3)>' (34)

The inequality (3.2) becomes:

7 1 1
24<n(n+1) a (n+k)(n+k+1)>

7 1 1
12(n(n+1)(n+2) a (n+k)(n+k+1)(n+k+2))

1 1
<“”_“”+k<24(n(n+1) N (n+k)(n+k+1))'
By taking the limit as k — oo, we obtain:

7 1 7 1

2n(n+1) 12n(n+1)(n+2)

7 1
< pn — In2) < ———,
S pn = (y+1n )*24n(n—|—1)

which is the conclusion. O
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Proof of Theorem 2.  a) We have 1,, — )41 = g (n) , where

g(x)=— ! —|—11n i—k; —}ln ! + !
z+1 2 \22 " @+r1)?) 2 \@+r1)? (@+2)?

This function g is decreasing on (0, o), since

38z + 5922 + 4023 4 10z* + 10

- < 0.
z(z+2) (22 + 222 4+ 1) (62 + 222 + 5) (x 4+ 1)°

g (x) =

As lim,—,o0 g (z) = 0, it follows that g > 0 on (0, 00) and consequently, the sequence (15),,>,

is decreasing.

By standard calculations (or faster, using the Maple software) we get:

5
1 3 — = —
nh—r>2<> n (nn Mn+1 ) 6

According to the Lemma 3.1, we obtain:
1 5
.“] 2 — - = —
Jm n <’7” (7 tah 2>) 12

b) First we prove the following inequalities, for every integer n > 1:

5 5 5
nintDn+2) 20t Dm+2)m+3) T S Gt ) (nr2)

(3.5)

namely s (z) < 0 and ¢ (z) > 0, for all x € (0,00), where

5
s<x>:9($)_6x(m+1)(m+2)
and
) = (x)—( g - 5 )
g 6r(z+1)(z+2) 22(@+1)(z+2)(x+3)/)"

The function s is increasing, while the function ¢ is decreasing, as

- 190z + 27922 + 1842® + 462" + 50
622 (22 + 222 + 1) (62 + 222 + 5) (z 4 2)* (z + 1)

S (x)

and

V() = — 5089z + 10460x2 + 11283z + 6620z* + 199425 + 2402° + 1080
62 (22 + 222 + 1) (6z + 222 + 5) (x + 3)° (z + 2)° (x + 1)°

But limy 00 s (2) = limy_ oo t (x) = 0, thus s(z) < 0 and ¢ (z) > 0, for all x € (0,00), as we

have announced before. The inequality (3.5) is true.
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Now we plan to sum the inequalities (3.5) from n to n+k—1, where k is any positive number:

n+k—1 n+k—1 1

5 1 5
6 2 ii+1)GE+2) 2 ;L i(i+1)(+2)(i+3)

i=n

n+k—1 1

<Mn — Nn+k < 6 Z m (36)

i=n

These are telescopic sums, as we can see from (3.3)-(3.4). The inequality (3.6) becomes:

5 1 1
12<n(n+1) +k)(n+k+1)>

“
5 1 1
_6<n(n+1)(n+2) - (n+k)(n+k+1)(n+k+2))

5 1 1
<”"_”"+k<12(n(n+1) - (n+k)(n+k+1))'

By taking the limit as kK — oo, we obtain:

> < (v+Iim2)<c—5 O
2n+)m+2 =" \772 = 12n(n+1)

4 Further remarks

We believe that the ideas in this paper could be of interest to other researchers to obtain new

generalizations, or results.

To be more precisely, recall that the harmonic sum is closely related to the digamma function 1,

i.e. the logaritmic derivative of the Euler-gamma function:

d (InT (x)).

T dr

¥ (x)

Here,
T (x) :/ t*te7tdt, x> 0.
0

We have 1 (1) = —v and for every integer n > 2,
n—1 1
Y (n)=-v+ ; %

Furthermore,

Y1) =9 (@) +

For proofs and other properties, please see [1, p. 258].
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Under these circumstances, the sequences we deal with in the above sections admit continuous

forms on (1,00), as follows:

Y (2) =7+ (z) +In— (4.1)
u(x)=v+1/}($)+ln(xll+i) (4.2)
1 1 1

for x > 1. We have: v, =y (n+1), g =pu(n+1), n, =n(n+1), for all integers n > 1.

Bounds for the functions ~, p, 1 given in (4.1)-(4.3) and consequently for the sequences (v5),,>1

(#n)p>15 (Mn),>, can be obtained by using the asymptotic series of the digamma function:

1 & By 1 1 1 1
~lnz— — — —lnp— — — _ oo, (4.4
(@)~ = o £ Qi NE o 1o T To0st  amags T T o (44)

Here, B; are the Bernoulli numbers given by the generating function:

(o}

t t
ot —1 Z Bj G
j=0
We have B; = —1/2 and Bgj4+1 = 0, for all positive integers j, while the first few Bernoulli numbers

are By =1/6, By = —1/30, Bg = 1/42... For detalis, see, e.g., [1, p. 804].

The above announced bounds can be obtained by truncation of the (4.4) series. More precisely,

under and upper approximations are given by alternatively truncate the (4.4) series:

2m—1 2n
1 B, 1 By;
nz— — — , nz— — — N
n 2z — 2% <¥(2) <lnz 2z ; 2422

In this way, along bounds, other monotonicity, even complete monotonicity properties can be

discovered.
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RESUMEN

En este articulo, estudiamos ecuaciones de Kirchhoff con

condiciones de restriccion

,(a =+ b/ |Vu1|2 dZE) Aul =S )\1'LL1
R3

+ g un [P g 4 Brfun | P [ue|™ en R,

_(a+b/ |Vu2|2 dx) Aus = \aus
RS P)

+ p2lua[P?"Pug + Brafua | uz|™ 2uz  en R,

/ |u1|2d9c:cl, / |uz|2dx:02,
R3 R3

u € H' (R*), wx€ H' (R?).

donde a, b, B, i, ci >0,r; > 1,2 < p; < % <r:=rit+re <
2% parai = 1,2,y A1, A2 € R aparecen como multiplicadores
de Lagrange. La existencia de soluciones normalizadas para
p1 Yy p2 en un rango especifico de (2, %) ha sido considerado
tanto el caso Sobolev subcritico (r < 2%) y el caso critico (r =
2*) a través del principio Minimax y métodos variacionales.
Este articulo entrega un refinamiento y una extensiéon de
los resultados para soluciones normalizadas de ecuaciones de
Kirchhoff.

Keywords and Phrases: Normalized solution, Kirchhoff equations, variational methods.
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1 Introduction and main results

In this paper, we are concerned with the existence of normalized solutions to following Kirchhoff

equations in H' (R?) x H' (R?),

T b/ \Vur|? dz ) Aug = Mug + pa fun [P 72wy + Bry Jua |2 g Jus ™,
RS

(L.1)
_ a—l—b/ |Vu2|2 dr ) Aug = Aoug + pio ‘u2‘p272 g + Brs |u1|rl |u2|T272 .
R3

under mass constraints,

/ lw|* dz = e, / us|* dz = ¢, (1.2)
R3 R3

where ¢y, co are prescribed positive constants.

The Kirchhoff-type problems, initially proposed by Kirchhoff in 1883 [18], extend the classical
d’Alembert wave equations. Following the foundational work by Lions [22], Kirchhoff-type equa-
tions have attracted significant interest, leading to extensive exploration of their steady-state mod-
els. Early classical studies on Kirchhoff equations can be found in [1,12,13,19,23] and the references

therein.

Currently, physicists are particularly interested in solutions that satisfy normalized conditions:
ng |ui|?dz = ¢;, for i = 1,2, due to their clear physical significance, particularly regarding mass.
For example, from a physical perspective, the normalized condition can represent the number of
particles in each component of Bose-Einstein condensates or the power supply in nonlinear optics.
In this context, \; appears as an unknown quantity in the Kirchhoff equations (1.1). It is therefore
natural to prescribe the value of the mass so that A; can be interpreted as Lagrange multipliers.
From this perspective, problem (P) can be addressed by studying certain constrained variational
problems, obtaining normalized solutions by identifying critical points of the energy functional

J:H' (R?*) x H' (R®) — R defined by

2 2 2
a b i i r r
J (u1,uz) = 3 > IVl + 1 Vil = :;H“i b —5/]1%3 [ur | uz|"™ d,
i=1 i=1 i=1

constrained on 8 := S (¢1) x S (cz2), where | - ||, denotes the standard norm in L? (R?) for p €
[1,400) and S(c) := {u € H' (R?) : ||[ul|3 = ¢} for any ¢ > 0.

When b = 0, the Kirchhoff equations (1.1) reduce to a nonlinear Schrédinger equations. In this
case, we note that the mass critical exponent %. If the problem (P) is purely mass subcritical, i.e.,
2<p1,pa, < %0, Gou and Jeanjean [10] searched for a critical point of J as a global minimizer
of J on §. In the purely mass supercritical case, i.e., 1—30 < p, q, r < 2% Bartsch et al. [3] first
considered the case of p = ¢ = r = 4. They obtained the existence of positive solutions to problem

(P) provided 0 < 8 < B1(c1,¢2) or B > Ba(cy, c2). Bartsch and Jeanjean [2] extended these results
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of [3] to % < p1, p2, r < 2*. Recently, Jeanjean et al. [17] focused on the coupled purely mass

supercritical case and proved the existence of solutions for all ¢, ¢, and without restrictions on
(. For the mixed cases such as 2 < p1, ps < % <r<22for2<r< % < p1, p2 < 2%, Gou and
Jeanjean [11] explored the multiplicity of solutions to problem (P). Later, Bartsch and Jeanjean
[2] used the mountain pass lemma and a compactness argument to show that problem (P) has a
positive solution for suitable ¢, co > 0 when 2 < p; < % < pg and 7 < 2*. In the Sobolev critical
case, Li and Zou [21] investigated the condition that 2 < py, r < 2%, py < 2*. Bartsch et al. [4]
also considered the Sobolev critical case with 2 < r < 2* = p; = po. When %0 < p1, p2 < 1T = 2%,
Liu and Fang [24] demonstrated that problem (P) has a mountain pass solution. Zhang and Han

[34] obtained a positive ground state solution of problem (P) with 2 < py, p; < 3 and r = 2*.

When b > 0, there are several results in the literature dealing with normalized solutions to problem

(P). Ye [32,33] considered this constrained problem for a single Kirchhoff equation

— (a +b |Vu2da:> Au = du+ plulP~2u  in R3,
R3

/ lu|?dz = c.
R3

Ye proved that p = % is a mass critical exponent for Kirchhoff equation. To be more precise, the

(1.3)

functional corresponding to problem (1.3) is
I(MIZQNVM@+QHVM6—£%MV
" 2 4 p P’

which is bounded from below on manifold S(¢) when 2 < p < %. However, when %4 < p <6, the
functional is not bounded from below on S(¢). By Ekeland’s variational principle and the strict
monotonicity of a energy function, Cao et al. [5] considered the existence of positive solutions to
problem (P) with the purely mass subcritical case 2 < py, pa, r < %. Recently, Yang [31] showed
the existence of positive solutions to problem (P) in the purely mass supercritical case % < p1,
P2, r < 2* and in the mixed case 2 < r < 13—4 < p1, p2 < 2*. Hu and Mao [15] further obtained the
existence of two solution (local minimizer and Mountain-Pass type) for the mixed cases 2 < py,
p2 < % and 1,—34 < r < 2*. More results about the normalized solutions, we refer the readers to

[8,14,29,30].

To provide clarity in the discussion, we summarize some of the results on normalized solutions to

problem (P) in Table 1.

Motivated by the aforementioned works, we study normalized solutions to problem (P) in three

distinct cases: (Hip): 1—30 < p1, p2 < % <r < 2% (Ha): 2<p < % < pg, T < 2% and

(H3): 2 < p1, p2 < 1,—30, r = 2*. To address compactness issues, we work within the radial space

S, =5, (c1) xSy (c2), where S, (c) := {u € H} (R?) : |[u|3 = c}, and H} (R?) denotes the space of
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Table 1

b P1,D2, T Types of solutions References
b=0 2 < p1,pa2, T < % a global minimizer (2,10]
b=0 % < p1,p2,7r <6 Mountain Pass solution [2,3]
b= 2<p < % < p2,7 <6 Mountain Pass solution [2]
b=0 2<r< % <p1,p2 <6 Mountain Pass solution, a local minimizer [11]
b=0 r=6orp,ps =06 Mountain Pass solution, ground state solution [4,21,24,34]
b>0 2 < pr,pa,r < i a global minimizer [5]
b>0 %4 < p1,p2,r<6; 2<r< 13—4 < p1,p2 <6 Mountain Pass solution, a local minimizer [31]
b>0 2<p1,p2 < %, % <r<6 Mountain Pass solution, a local minimizer [15]
b>0 1—30 < p1,p2 < 1—34, % <r<6 open problem
b>0 2<p1<%<p2,7“<6 open problem
b>0 2<p1,p2<%,7":6 open problem

radial functions on R3. By the principle of symmetric criticality, the critical points of J constrained

on S, are also critical points of J constrained on S.

It is known that critical points of J| stay in
P :={(ur,uz) €S, : P(u1,u2) =0},

as a consequence of Pohozaev identity, where

2 2 2
P (ug,ug) i=a »_||Vull3 + b 1Vulls = piyp, |5 = Broe /3 |t | [ug| " dz.
i=1 i=1 i=1 R

Moreover, we define for u € S(c) the map

3s
2

(sxu)(z):=ezu(e’x), seR,

which preserves the L? norm and plays a special role in the study of structures of J(uy,uz) and

P(uy,uz) on the constraint S,.. We introduce the fiber mapping for J(ug,us),

(I)ul,uz(s) c=J(s*ui, sxug) (1.4)
ae?s & bets & 2 puiePivmis ,
=5 > IVuall3 + - STIvVulls > /“THM Pl Berne /R || [ug|"2da,
i=1 i=1 i=1 v

for any (u1,us) € S,. It is easy to verify that (s*wu,s*v) € P if and ouly if s is a critical point of

Dy, 0y (8). In particular, (u,v) € P if only if s =0 is a critical point of @y, 4, (s).

We will require some preliminary results regarding problem (1.3). Let m(c, ) denote the ground

state level, defined as

m(c, ) := inf {Iu(u) :u € S(c) such that (IM|S(C))/ (u) = O} ,
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and introduce the Pohozaev set for the single Kirchhoff equation:
V(e) = {u€ S(c): 0=allVull3 +b]|Vullz — pyp b} -

Now, we state the first result about the mass sub-critical case as follows.

Theorem 1.1. Assume the following assumptions (Hy) holds,

10 14
(Hy) : §<p1, p2<§<7“<2*.

There exists By := Bolc1,c2) > 0, such that for 0 < 8 < By and ¢1,¢o < ¢*, problem (P) has a

positive normalized solution.

Inspired by [2], Bartsch and Jeanjean constructed a minimax level and proved the existence of a
positive normalized solution for Schrodinger equations with 2 < p; < % < pa, r < 2*. Our second

result deals with the case

14 10
(H2) : 2<p1<§<p2,7“<2*; 2<r2<§.

which we call it mix mass sup-critical case.

Theorem 1.2. Assume that (Hs) holds. For

(p) 2<p < 1—30 and c¢1 > 0, or % <p1 < 1—34 and c1 > ¢, where c, is positive constant only

depend on a,b, uy,
if m(cy, p1) +m(ce, p2) <0, problem (P) has a positive normalized solution.

As a corollary of Theorem 1.2, we obtain the following results.

Corollary 1.3. Assume that (Hs) holds.

(i) For any cy > 0, there exists €1, such that for ¢y > €1, problem (P) has a positive normalized

solution.

(i) For any c1 > cx, there exists Ca, such that for co > €, problem (P) has a positive normalized

solution.
Last, we consider the mass sub-critical and Sobolev critical case,

10 .
(H3): 2 <pu, pQSE, r=2"
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Theorem 1.4. Assume that (Hs) holds. There exist By := Bx(c1,¢c2) and pu., such that for 0 <
B < B« and py, p2 < pii, problem (P) has a ground state solution.

Remark 1.5. (i) Theorem 1.1 serves as a complement to the work of Hu and Mao [15], specif-
ically addressing the case of problem (P) with 2 < p1,pa < % and 1?4 <r < 2* Compared
with a single equation, the main difficulty for systems is how to exclude the semi-trivial so-
lutions. In [15], the authors heavily rely on p < 1—30 since that m(c,u) < 0 to excluding
sema-trivial solutions. However, we partially extend to the case that % < p1,p2 < 13—4 with

the mass constrained suitable small to overcome this difficulty.

(i4) Theorems 1.2 and 1.4 complement the results of Zhang and Han [34] and Bartsch and Jean-
jean [2], which extended the study from Schrodinger equations to Kirchhoff equations.

(#3i) Compared Kirchhoff equations with single Kirchhoff equation, the existence and types of so-

lutions to problem (P) are similar to the result of single equation,

- (a + b/ |Vu|2dx) Au = Au+ plul%u + |[u|P~u, in R3,
R? (1.5)
/ lu|?dz = c,
R3

where a, b, ¢ are positive constants and 2 < q < p < 2*. Feng et al. in [7] have proven
that under condition 2 < q < 1?70 < p = 2%, problem (1.5) has a second solution. It is an

interesting question whether problem (P) also has a second solution under condition (Hs)?

The rest of this paper is organized as follows. In Section 2, we present some preliminary results.

Sections 3-5 are devoted to the proofs of Theorems 1.1-1.4.

Notation: In this paper, we denote H := H! (Rs) x H! (RS) and H, := H} (R3) x H} (R3).
— and — denote the strong and weak convergence in the related function space, respectively.
H~1(R3) is the dual space of H!(R3). C, C(-),... denote positive constants. o,(1) represents
a real sequence with 0,(1) — 0 as n — +oo. D'? (R?) denotes the closure of the function
space C2° (R?) with the norm |u| pr2gs)y = ||[Vull2. The best Sobolev constant S is given by

2
S = infuepl,z(Ra)\{o} %

2 Preliminary results

Before we proceed further, let us first revisit the Gagliardo-Nirenberg inequality in [27,28|. For
2 < p < 2%, there exists a constant Cj, > 0 such that for any u € H*(R?),

1—
lullp < CpllVull3 [[ull,™ ™,
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3(p—2)
2p

where v, = . For 2 < ry + ry < 2% there exists ¢ > 1 such that

2 2 < ¢ <mi 2 2 (2.1)
max<{ —, <g<mmn{—,—— . .
T1 2% — ) q T1 (2 — T2)+

Set ¢’ := -4, 2 < riq, o' < 2%, by the Holder inequality, we have
q—1

[t e do < ez, < oo

which implies that the functional J is well defined. For % <r =ry+ry < 2% by the Holder

inequality and the Gagliardo-Nirenberg inequality, we know

/ " fua|™ da < Jlua |7 Juzl[7? < Ol Vua 27 [ Vuellg™™
R3

2
<c (Z ||wi|3>
=1

rayr
2

2 TIr
(Z ||Vui||§> < C(IVurl3 + [Vuall3) = . (2.2)
=1

1T
2

Specifically, for r = 2*, rv, = 2%, then C' = S—%. Next, we need a splitting lemma similar to

Brézis-Lieb Lemma as follows.

Lemma 2.1 ([11, Lemma 2.4], [6, Lemma 2.3]). Assume that ri, ro > 1, 2 <r; +19 <2*. If
(uf, uy) — (u1,ug) in H,

then up to a subsequence

[t s e = [l sl de+ [ =l g = el e+ on(1)

Moreover, a description of the PPS sequence is also needed as follows.

Lemma 2.2 ([15, Lemma 2.5, 2.6]). Assume that 2 < p1,ps < 2%, 2 <r < 2*. If {(u},ul)} is a
bounded Palais-Smale sequence for J on Sy, there exist (u1,u2) € H, and a sequence {(A},\5)} C

R?, such that up to a subsequence
(i) (up,uf) = (u1,u2) in Hy, (uf,uf) — (u1,u2) in LP (R?) x LP (R3) for p € (2,2%).
(i) (A, A) = (A1, A2) in R2.

(iii) J' (ul,uf) — AT (uf,0) — A5 (0,u3) — 0 in H ' (R?) x H' (R?).

ul — up in HY (R?) if \y < 0. Similarly, u§ — us in H' (R3) if Ay < 0.
1 r 2 T

(iv) (u1,u2) is a solution of equations (1.1) for Ay, As < 0 if P (uf,uy) — 0. In addition,
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Lemma 2.3 ([16]). Let p € (1,3]. Ifu € LP (R3)NC? (R?) is non-negative and satisfies —Au > 0
in R3, then u = 0.

Lemma 2.4. Let p; € (2,2*%), i = 1,2. If (u1,u2) € H, is a solution of Kirchhoff equations (1.1)
with uy > 0, uy # 0, and ug > 0, then Ay < 0. Similarly, if u; > 0, ug > 0, and uy # 0, then
Ao < 0.

Proof. Similar proofs can be referenced in [5, Lemma 2.4]. O

The following existing results concerning the single Kirchhoff equation is rather significant to the

main proof of Theorems.

Proposition 2.5. Assume that p € (2,2*) and > 0. Then

(7) [5, Lemma 2.2/, [26, Theorem 1.1, 1.4]: Assume that 2 < p < ?, the problem (1.3) has a

unique positive ground state solution for any ¢ > 0. If p = %, there exists ¢ such that the
problem (1.3) has a unique positive ground state solution for ¢ > ¢’. Moreover, m(c,u) < 0,

m(ec, 1) = —00 as ¢ — 0.

(ii) [5, Lemma 2.2], [26, Theorem 1.1], [25, Theorem 1.1]: Assume that p € (32, 1!), there exists
0 < ¢* < ¢y, such that the problem (1.3) admits exactly two positive normalized solutions w1,
wy if ¢ > ¢* and no solution if ¢ < c*. If ¢ > c«, one of the above positive solutions is the
unique normalized ground state solution. Without loss of generality, let wy be the normalized
ground state and wo be the high-energy, then there holds that I,,(w1) = m(c, p) < 0 < I,(w2),

and m(c, p) — —00 as ¢ — oo.

(ii1) [33], [31, Lemma 3.1]: If p € (L},2%) and problem (1.3) admits a unique solution u. for any

c>0, m(c,p) = I, (ue) = maxser Pu, (5) = mingey (o) Iu(u) > 0, where

ae

2s be4s Iuep'y
Va3 + ~- 1 Vul -

S
Ml

D, (s) :==Iu(s*u) =

Moreover, m(c, ) is strictly decreasing with respect to c.

3 The proof of Theorem 1.1

We shall investigate the mountain pass geometry of J (u1,ug) on S,.

Lemma 3.1. Assume that (H;) holds.

(i) There exist pg = po (c1,¢2) and By = Bo (c1,c2) > 0, such that for 0 < 8 < By,

inf J (u1,uz) >0,
A(2p0)\A(po)
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where A(po) := {(u1,u2) € Sy ¢ [|[Vur||3 + |Vusl3 < po} for po > 0.

(17) There exists (u1,uz2) € Sp\A (2p0), such that J (ui,us) < 0.

Proof. (i) Let p := ||[Vu1||3 + ||[Vuz||3. By (2.2) and the Gagliardo-Nirenberg inequality, for

(u1,us2) € Sy, we have:

2
a b i
J(Ul,’UQ = 5 Z E |VUZ||2 E

b .
57 = 2 CITuil ™~ 50sp™
Z

ajwwwwm

8"

=1

z Z“—

i=1

- /BC3P )

where C; := C(c1,¢2) for (i = 1,2,3). If (Hy) holds, then 2 < p;7y,, < 4 and 4 < rvy, < 2*.
Let pp > 0 be large enough such that

S o0 < (3.1)

and then choose 5y > 0 small enough such that

Tyr—

BoCs (2p0) 2 <

o
32°

Hence, for any 0 < 8 < By and (u1,us) € A (2p0) \A (po), i-€., po < p < 2pg, we have

z z’YP7 T"YT b PiYp; — ryr—4
J (ug,u2) > Zu —BCsp2 =p <—ZCp 2 —BCBp 3 )

=1

(ii) Let u'(z) := t3u(tz). Then,
[ull3 = llull3, V'3 = Vul3, [u'l} =t ulb, forall pe (2,27).

Fix (u1,us) € Sy, (ul,ub) € S;\A(2py) when ¢ is sufficiently large. Since

I
J(uy,uy) = t2Z||Vul||2 7542”V ills — Z lfp”“”“

1017 tT’Yr/ |U1|T1|u2|r2d£€

it is straightforward to check that 1y, u,)(t) := J (uf,ub) < 0 for ¢ large enough. O
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Thanks to Lemma 3.1, we introduce a minimax structure of the mountain pass type. Specifically,
there exists,

= inf
7 (c1,¢2) ;grtgl[gﬁ]J(g(t))v

where T' := {g € C([0,1],S;) : g(0) € 0A(po), 9(1) ¢ A(2pg), J(g(1)) < O}. This framework al-
lows us to search for a critical point of the mountain pass type at the level v (c1,¢2). It is clear

that v (c1,c2) = infuepa(py) J (U1, u2) > 0.

Lemma 3.2. Assume that (Hy) holds. There exists a Palais-Smale sequence {(uf,u3)} for J|s
at the level v (c1, c2), which satisfies {uy}~ — 0, {ul}~ — 0, and P (u},ul) — 0.

Proof. The proof of the theorem is standard, and we omit the detailed steps here. For a compre-
hensive explanation, refer to [15, Lemma 3.1], [2, Lemma 5.5], and [9, Theorem 4.1]. O
Lemma 3.3. Assume that (Hy) holds. There exists a pair of positive solution (u1,us) to equations

(1.1) for some (A1, \2), and J (u1,u2) = v (c1,c2) > 0.

Proof. By Lemma 3.2, there exists a Palais-Smale sequence {(u7,u%)} for J|s, at the level v (c1, ¢2).

We first prove that {(u},u%)} is bounded in H,. Since P (u},u}) — 0, we have

2 2 2
0 Y IE B+ 03 IVl =3 ol + 6o, [ I 41 do0,0). (32
i=1 i—1 i=1 R

Thus,

2
v(e1,e2) + 0n(1)
1

2 2

a b Hi

DA R DO N EED sl T
i=1 i=1 v

<1
=al| — —
2

2 1 1 2
ni|2 n|4
) Ivai e (G- ) Y vas
=1 1=1
- ; iy, S—
. T 1Pi Yy 7

PiVp;

2
11 b1 1 1 1\ riows
>afz- p+< >p2 Cmm( )f“ )
<2 r%) 2\4 ; "\ pivp

where p = [|[Vup||3 + [|[Vub||3, 4 < ry. < 2%, 2 < piyp, < 4. Hence, {(u},u%)} is bounded in H,.

= [l sl do

1
™

Di
Di

Then, for p, ¢ € (2,2*), we may assume that
(ul, ul) = (up,up) in He,  (uf,ul) — (u1,up) in LP(R3?) x LI(R3). (3.3)

By Lemmas 2.2, 3.2, there exists a sequence {(A},A%)} C R? such that (A7,\3) — (A1, A\2),

A1, A2 < 0. Consequently, (u1,uq) is a solution to equations (1.1) and satisfies P (uy,us) = 0.
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Since (u})” — 0, (uf)™ — 0, it follows that uy, ug > 0.

Now, we prove J (u1,us) = 7y (c1,¢2). By (3.3) and Lemma 2.1, the right hand side of (3.2)

converges to

2
=1

Combining this with P (uj,us) = 0, we have

ot B [ ol el e,

2 2 2 2
Jim a3 IV +0 DIVl = a IVl + 03 1l
1= 1= i= i=

Therefore, J (u},u) — J (u1,us), and hence, J (u1,uz) = v (c1, c2). O

Proof of Theorem 1.1. As known from Lemma 3.3, it is sufficient to prove that (u;,us2) € S,.. Using

the fact that (u1,us2) is a solution to equations (1.1), we deduce that

2 2 2
Alluall3 + Aalluzll3 = a Y [IVuills + 0> 1 Vuills = > pualluil B — 57’/3 [ur | Jug|"™ da.
i=1 i=1 i=1 R

Combining Pohozaev identity and the fact that v,,,v. < 1, we get

2
Alluall3 + Xelluzll3 = pi (v, — 1) [lus
=1

Pet Br(ye — 1) /RS lug ™ Jug|™ dx < 0.

Hence, at least one of A\; and A5 is negative. Without loss of generality, we may assume A; < 0.
By Lemma 2.2, we have u} — uy in H} (R?), and then u; € S, (¢1). For the sake of contradiction,

suppose that Ao > 0, then
- (a + b/ Vs dm) Aug = Aaug + po [uz P> 2 ug + Bro [ua|™ Juz| > ug > 0.
R3

It follows from Lemma 2.3 that ug = 0. Thus, J (u1,u2) = J (u1,0), and u; € S, (c1) satisfies the
equation
- (a + b/ [Vu|” dx) Au = M+ py Juf” 2w (3.4)
R3

However, this equation contradicts Proposition 2.5 (i4) that equation (3.4) admits no solution if
¢ < ¢*. Therefore, Aa < 0, and then, us € S, (¢c2). Finally, by the maximum principle, we deduce
that ui,us > 0 in R3. O
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4 The proof of Theorem 1.2
Inspired by [2], let p; and ps2 be in different ranges i.e., (Hs). For any K > 0, set
Ty = {uz € S (e): ||Vu2\|§ < K} and By = {ug € S(e): HVUQH% = ZK}.
Rewriting that Jy, (ug) := J (u1,us) for u; € S(c1) and
Tu (1) = 1y 0) + 519l + 31Vl = 2l =5 [l ol

Lemma 4.1. Assume that (Hz) holds. There exists a continuous function K from S (c1) to R,

uy — K (u1), such that

sup Jy, (u2) < inf Jy, (u2), for all uy € S(cy).

Tr(uy) Bk (uy)

The function K is bounded, and it is bounded away from 0 on bounded subsets of S (c1).

Proof. Fixing uy € S (c1), for ug € Tk, we have that,

n aKéul) bK(ul)Q.

a b
Tur (1) < 1y (0) + 2V} + 7| Fus [ < o, (0 28
For us € Bg, ' := w, where ¢’ is defined in (2.1). Using the Gagliardo-Nirenberg inequality

and (2.2), we obtain,

Juy (U2) > Ju, (0) + aK (ug) + bK (ug)? — %C”V“?Hgﬂm gl 520772 — CBlu |72, ua 72

r1q 2q’

P27pg

> Ju, (0) + aK(ul) + bK(U1)2 — C’lK(ul) 2 — CgHul‘lfqu(ul)

2
2

P27po

2 < 2K(w) if K(uy) > 0 is sufficiently small for 3?2 > 1. Similarly,

Observe that C1 K (uy

)
C’QHulHEqK(ul)% < §K(up) if K (up) > 01is sufficiently small for 77/ > 1, provided that ¢ < ﬁ.

We can choose ¢ satisfying this inequality and (2.1) because

6 S 2 2%
- - max<{d — ———
10—37“2 & 7‘1,2*—7’2 ’

which is a consequence of 71 + ro > 1—; and 2 < ry < 1?0. More precisely, let K : S (a;) — RT

a e a e
K (u1) <minq ( =5 N 7 . 4.1
(1) = {(8@) C } b

satisfy
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For ug € Bk (y,), we have
Juy (u2) 2 Ty, (0) + ak (wr) +bK? (w1) = TK (w) = TK (w)
b
> Ju, (0) + gK (un) + 7K ()= sup i, (u2). (4.2)

Tk (uy)

Clearly, we define a continuous function K : S (¢;) — R* that satisfies (4.1) and is bounded away
from 0 on bounded subsets of S (¢1). In fact, the right-hand side of (4.1) can serve as a definition.

By (4.1), K is also bounded from above. O

Now, we denote

T(ul) = TK(ul)a B (ul) = BK(ul)a

and

B = {(u1,u2) : u1 € S(c1),u2 € B(u1)}.

It follows from the assumption (p;) in Theorem 1.2 and Proposition 2.5 that there exists a ground

state solution u € S (¢;) for problem (1.3) satisfying

J(Ma 0) = m(clalu/l) = IM1 (@) = min J(U,O) < 0.
u€eS(c1)

Lemma 4.2. Assume that (Hz) holds. There exist v € T'(u) and w € S (c2) \Tox () such that

max{J(u, ), J(u, @)} < “ iilf)EBJ(ul,uQ).

Proof. Since J (u,uz) — J(u,0) as ||Vuz|l2 — 0, to obtain o € T'(u), we claim that J(u,0) <
inf J. The functional J(-,0) : S(c1) — R is coercive because 2 < p; < 4. Choose R > 0 such
that J(u1,0) > J(u,0)+11if |[Vuq||2 > R. It follows from (4.2) and (u1,us) € B with ||[Vuy|l2 > R
that

T(ur, us) > J(ur, 0) + ZK(ul) > J(u,0) + 1. (4.3)

For (u1,us) € B with ||Vuy||2 < R, there holds,
3 3
J(u,u2) > J(ug,0) + ZK(UI) > J(u,0) + 1 (4.4)

where ¢ := inf|jyy, |,<r K (u1) > 0 from Lemma 4.1. By (4.3) and (4.4), the claim holds.

To find w € S(c2)\Tox(u) as required, consider any u € S(cz). Clearly, t xu € S(cz) for every
t >0, and [|[V(t xu)||2 — oo as t — oco. Since pp > 4!, fixing an arbitrary u € S(cz), we see that

J(u, (t*xu)) = —o0 as t — oo. O
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As a result of Lemma 4.2, the set

ry:= {9’ € C([0,1],8;) : ¢'(0) = (v1,v2), ¢'(1) = (w1, wa), v2 € T (v1), w2 & Tag(w,),

max {J (v1,v2),J (w1, w2)} < i%f J},

is nonempty.

Lemma 4.3. 7 (c1,c2) := infyer, maxcpoq) J(g'(t)) > infp J.

Proof. Tt is sufficient to show that for each ¢'(t) := (g1(t), g5(t)) € T'1, there exists ¢t € [0,1] such
that ¢/(t) € B. Consider the map « : [0,1] — R defined by t — [|Vg4(t)||3 — 2K (g;(t)). This map
satisfies

a(0) = ||Vu||3 — 2K (v1) < K (v1) — 2K (v1) <0,

and a(1) = ||[Vws||3 — 2K (w1) > 0. Thus, there exists ¢ € [0, 1] such that a(t) = 0, which implies
that ¢'(t) € B. O

Lemma 4.4. Assume that the conditions of Theorem 1.2 hold. Then, we have
7 (e1,¢2) < mer, pa) + mocz, pa).
Proof. By Proposition 2.5 (i), there exists @ € V (c2) such that
uerr‘lfi(réz) I, (u) = max I, (t*a) =m(co, p2) = 1, (0x @) = I,,(a) = J(0,a). (4.5)
Next, we consider the path h: [0,1] — S, defined by h(t) = (u, hs(t)), where
he(t)(z) = 27 g (e5<2t*1>x) .
Here, s > 0 is chosen sufficiently large so that

—3s 3s

hs(0)(-)=e2 au (efs~) €T(u), hs(1)(-)=czu(e’) ¢ Tor(w),

and

max {J (u, hs(0)) , J (u, hy (1))} < inf .

Therefore, h belongs to I';. Utilizing (4.5) and 8 > 0, we get

max_ J(h(t)) < J(u,0) + max J (0, hs(t)) = m(cq, p1) + m(ce, p2).
te[0,1] te[0,1]

This completes the proof. O
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Lemma 4.5. Assume that (Hz) holds. There exists a Palais-Smale sequence {(uy,u})} C S, for
J at the level 7 (c1,c2) that satisfies {u?}~ — 0, {u}~ — 0 in H,, and the additional property

that P (u},uy) — 0. Moreover, the sequence {(u},u)} is bounded.

Proof. The existence of the sequence {(uf,u%)} can be referenced in Lemma 3.2. Here, we only

provide the proof of boundedness. Given that P (u},u%) = 0, for any € > 0, we have:

J (uy, uy) Z”V n||2 ZHV n||2 Z |

iy / | 2|72 dae

1+é€)a n €b " n n
_ Ut 1 ZHV 15+ ZHVU I3 + du(e)ut D} + da(e)|us |2
i=1 =1
n|ri|,, n|re (1_6) n o,n
+ Bd3(e€) . W | uz|™ dz + ——P(uf, uz),

where

5“@:%_&’ (5“@;%_@7 53(6):m

—1.
4 P 4 D2 4

Note that the coefficients satisfy d1(¢) < 0 and da(€), I3(e) > 0 for sufficiently small e > 0. Although
d1(e) < 0, the term |luf|[P? is controlled by Z?:l [Vu||3 because p; < 4. Hence, we conclude
that J is coercive. Consequently, the sequence {(u},u%)} C S, is bounded. O

Proof of Theorem 1.2. By Lemmas 2.2 and 4.5, we can assume that (u},ud) — (ui,us) in H,,
where u; > 0 and us > 0. As shown in Lemma 3.3, we have J(u1,us) = 7 (c1,c2). To establish

strong convergence, it suffices to show, according to Lemmas 2.4 and 2.2 (iv), that u; # 0 and
U2 75 0.
We first claim that: if 7 (c1,c2) < 0, then u; # 0 and ug # 0.

For contradiction, that at least one of u; or us is zero. Then, by Lemma 2.1,
(uf,u) = (u1,ug) in LP (R*) x L7 (R*) for p,q € (2,2*) and ,6’/ Juft|"™ |uy|™ dz — 0.
R3

For the sequence {(u},u%)} satisfying P (ul,u3) — 0, we deduce that

= o, (1).

az Vi3 + bz Vi llz - Z,Uﬁzn

Pi
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By the weak lower semi-continuity, we have

2 2 2

n .n a n b n i n

J (uf,uz) = 5 Z Vi3 + 1 Z V(|3 - Z p—||u7
i=1 i=1 ¢

i=1

2 2

a 1 1

ES IVl S (- 1)
=1 1=1

PiVp;

% - B/RS Ju " [uf |72 da

P40, (1) (4.6)

v

2
a
1 Z Vi[5 — CrllualB + Colluzl[22,
1=1

where C7 > 0 and C5 > 0. We now distinguish three cases.

Case 1. (u3 =uz =0): From (4.6), we obtain J (u},u}) > 0. Since we have assumed that

v (e1,c2) < 0, this case cannot occur.

Case 2. (u; =0 and us # 0): By Lemmas 2.2, 2.4, we have Ay < 0, and hence u§ — ug € S, (c2).
From (4.6), we get

0> (er,0) = J (uf,uf) = FIVuzllf + Callualfz >0, as m—oo.  (47)

This results in a contradiction.

Case 3. (u; # 0 and uy = 0): Since ug = 0 and J(u1,uz) =7 (¢1,¢2), we have

’7(61,62) = J(ul,u2) = J(ul,()) = Iﬂl (’U,l) .

We know u; satisfies
- (a + b/ |Vu|2da:) Au = Au + g [ulP 2.
R3

For2 < p; < 1—30, uq is a positive ground state solution by Propsition 2.5 (¢). Then m(cy, 1) =

I, (u1). From Lemmas 4.1, 4.3 and the definitions of B, I';, we know that
¥ (c1,c2) 2 i%fJ > J(u1,0) = I, (ur) = m(cy, pa), (4.8)
which contradicts 7 (¢1,c2) = m(c1, p1). When 13—0 <p < %4, u; can be characterized as

either a high energy solution or a ground state solution. If u; is ground state solution, we
can get a contradiction similar to (4.8). If uy is high energy solution, we have a contradiction

as 0 < I,(u1) = J(c1,c2) < 0. Thus, the claim holds.

In view of Lemmas 2.2, 4.4 and 4.5, to establish the theorem, it is enough to prove that m(cy, u1)+
m(ca, p2) < 0. Note also that uy > 0 and us > 0 follow directly from the strong maximum

principle. O
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Proof of Corollary 1.3. The Corollary is a straightforward consequence of Theorem 1.2 and Propo-

sition 2.5. O

5 The proof of Theorem 1.4

In this section, we first consider the case that (Hjz). Recalling Proposition 2.5 (i), for 2 < py,

p2 < %, there exist u! and w2 such that
m(cr, ) = I, (u')  and  m(eq, p2) = I, (u?).

Lemma 5.1. Assume that (H3) holds. There exist B1 := [1(c1,c2) and p. := p«(c1,c2) > [|[Vul|3+
|Vu?||3 such that
J(ui,uz) >0 on A(2p)\A(ps) for0<p<pfy,

where A(p.) = {(u1,u2) € S, : |Vur |3 + |[Vuall3 < ps} for ps > 0.
Proof. Recalling the proof of Lemma 3.1, we can take a sufficiently large p, such that

ps > | Vulll3 + [IVu?|3,

and )
; %ci (p) " < 3% (5.1)
Next, we choose ;1 > 0 to be sufficiently small, such that
24 b
B1C5 (2p.) 2 < 32" (5.2)
The lemma follows directly from (5.1) and (5.2). O

Now we can set
! = inf J .
7' (e1, ¢2) RoR (w1, u2)
The following lemma plays a crucial role in overcoming compactness.
Lemma 5.2. Assume that (Hs) holds. Then, for any 0 < 8 < [1, the following statements are
true:

(i) '(cr,e2) <mler, pr) +mlez, p2) < 0.

(13)  v'(c1,e2) <A}, ch), for all0 < ) < e, 0 <) < eo.
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Proof. (i) From Lemma 5.1, we know that (ul,uz) € A(p.). Furthermore, using Proposition

2.5 (7) and the fact that 8 > 0, we deduce that
v (c1,e0) < J(ut,u?) = Im(ul)—i-lw(uQ)—B/S |u1‘r1 ’uﬂm dx < m(er, p1)+m(ce, u2) < 0.
R

To prove this, we need to show that for any € > 0, 7/(c1,¢c2) <+/(c},ch)+e, forall0 < ¢} < g
and 0 < ¢} < ¢z Let p(z) € C° (RY) be a cut-off function such that

L fz| <1,
0, |z|>2.

0<¢(z) <1 and ¢(z)=
By the definition of 7/(c}, ¢5) and Lemma (5.1), there exists (u1,uz2) € A (ps) such that

3
Tunyu) <7/ (chyh) + 5. (53)

For any ¢ > 0, we define (ug, (z), us,(x)) := (u1¢(dz), ua¢(dx)). Since (us,,us,) — (u1,uz)

in H, as § — 0T, there exists a sufficiently small § such that
3 2 2 3
J (U51,U52) < J(ulﬂ u2) + Z and Hvu51 ”2 + ||VU§2 H2 < ip*' (54)

Let o(z) € C° (R?) such that supp(p) C {z € R3: 3 < |z| <1+ 3} and set

2 2
Ver—lus 2 yJer — lus,
®

llell2 ’ loll2

(@1, U2) =

Noting that, for any s <0,
supp (ug, ) Nsupp(sx 1) =0 and supp (us,) Nsupp(s * az) = 0.

As s — —o00, we have

I3

J(sxty,s*az) — 0 and ||Vs*ﬂ1||§+||Vs*ﬂ2||§§m.
Pr

(5.5)

It follows that
(ug, + 8% 11, us, +sxtz) € A(2p4),
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and by (5.3)-(5.5), for s < 0 large enough, we have

v (c1,c2) < J (us, + 8* 1, us, + 8 * Ua)

2
- . b -
= J (usy, us,) + J(s %y, 5% U2) + 5 D IVus, 15 1Vs %l
i=1
< J(ul,uz)—&—f—f— . <~(c},ch) +e.
4 8 8
The proof is completed. O

Lemma 5.3. Assume that (H3z) holds. For any 0 < 8 < (1, there exists

Ly 1= M*(a7b, 81,02’p1ap275ap)

such that for pyi,pa < ps and (u1,uz) € Sy, the function Oy, 4, (s), defined in (1.4) has two
critical points ty, u, < Tuyus 0N TWO 2708 Cyy oy < Quyus WK Ty s < Cuyus < Tugus < Quyus -

Moreover, for s € R,

(1) If (sxuy,s*ug) € P, then either s =ty, uy 0T S = Tuy us-
(i) |Vsxui|3+||Vs*uz||3 < p« for every s < cy, u, and

T (b ug * U1, by *u2) = min {J(s*ur, s xug) @ [Vsxui]|3 4+ Vs xug||3 < pu} <0.

(i7)  We have J (Tuy us * Uls Tuy up * U2) = max{J(sxu1,sxug) : s € R}.

Proof. (i) Since p;yp, < 2 for i = 1, 2, and r = 2%, it is evident that ®,,, ,,(—00) = 0~ and
Dy, uy(+00) = —o0. By Lemma 5.1, we know that @, .,(s) has at least two critical points
tuy s < Tuy,ugs Where ty, 4, is a local minimum point of @, ,,(s) at negative level and 7, 4, is a
global maximum point at positive level. On the other hand, it is standard to prove that @, ., (s)
has at most two critical points as in [20, Lemma 4.5]. The (i7) and (¢i¢) follow from Lemma 5.1

and (7). O

Proof of Theorem 1.4. Consider a minimizing sequence {(uf,u3)} C &, for J|,.,, ). By Lemma
5.3, we have || Viyr up * uT||3 + || Viur up * u3]|3 < ps, and the sequence {tur up * U, ty, up * uj }

remains a minimizing sequence for J| A(2p.)" According to [9, Theorem 4.1], there exists a new

minimizing sequence, still denoted by {(uf,u5)} C A (2p4), such that

J(uy,uy) = (c1,¢2), P(uy,uy) =0, J|g (ui,uy) =0, asn— oo. (5.6)
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Given that J'|g (uf,uy) — 0, there exist sequences {A\]} C R and {\3} C R such that

pi—2,n .
u; pidx

2 2 2
o [ Vurvede b3 IVl [ VurVeds =Y [ Jut
i=1/R® i=1 R3 i=1 /R
=By [ eade — Bra [ g pado
R R

= [ Otuter+ oo+ 0,(1), (1)
R3
for any (¢1,p2) € H,. Taking (u},0) and (0,u%) as test functions, we have

e+ on(1) = af Vui |3 + bl Vul 5 — mlluf |5,

Agea +on(1) = al Vug|[3 + bl[Vuz |3 — pafug ||}z

Since the sequence {uf',uy} C A(2p,) is bounded, we suppose that lim, s [zs |Vur|® de = A; >
0. Without loss of generality, let us assume that, up to a subsequence, (A7, A%) — (A1, A2) € R,
(ul, ud) — (u1,u2) € Hy and (u},ul) — (u1,us) in LP (R3) x L4 (R3) for any p, ¢ € (2,2*). Then,

we know that,

—(a+bA1)Auy = Ayuy + g Jun [P~ 2y + Brfun [P uug| "2,
—(a +bA2)Aug = Agug + pzlug|[P*?ug + Brofus [ ug |2 us.

From (5.8), we have

2 2 2
0= Pa (ur,u2) = a Y [Vall3+ 5> Ail|Vuills =Y iy,

i=1 i=1 =1

b —52*/ g™ Jug| ™ da.
; s

Usg
Let (uf,uy) := (u} — u1,uf —uz). Then 4} — 0 in LP* (R?), a4 — 0 in LP? (R?) and we have

2 2
P (uf,u) = Pa(ur,uz) +a)_ VA |3 +b)_ Aillvay|l; — p2° /]Rs |ay | [ug | de
=1 i=1

2 2
=a) [IVap|3+b) Aillvap|; - 2* /W |af|"™ uz [ dz + on(1). (5.9)
i=1 i=1

From (2.2), (5.9) and Lemma 2.1, we obtain

2 2 2
a |IVap|3 <a) |[Vap(ls+b> Aillvay|; = 52*/ [at|™ luy|™ dx + on(1)
i=1 i=1 i=1 R3

o*

2 2
<p2S~ = (Z ||Vu?|§> + on(1). (5.10)

i=1
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Up to a subsequence, we assume that Z?zl Va3 — 1 > 0. According to (5.10), we have [ = 0
1 1
orl > (ﬁz*) 2581t > (ﬁz*) 2 S%, then from (5.6), (5.10), and Lemma 2.1, we conclude

n—o0

2
b
v(ere2) = lim J(uf,ug) = J(ur,ug) + lim J (@, @3) + 5 Y || Vup 31 Va3
n—00 2 —

> J(ug,u2) + hm J (a},uy)

Mm

a
> (B JuB) + Jim (5

2
b e
IVar |3+ ) _IVatlla =5 [ |at™ |ay|™ de
1 s
i=1

|var|2 - B/I " 3|’”2da:>

2
: a n — = n
> (Jurl, Neal) + lim | 5|93 (1~ 2ps (Z |va; ||2>
i=1 i=1

Il
-

7

M

a
2

> (a2 ual2) +hm<

1

-
Il

no

Nl=

By ZZ IVaR||3 < p., there exists B, < 1 such that (2 S%) > p«. Then

B
2 o [ ’
]. - = S_QT v_i 2 > Oa
s (Yivait) ) =
when 3 < ., which contradicts with (ii) of Lemma 5.2. Thus, Y>_ [|[Va?||3 — 0, as n — oco.
Then (u},u}) — (u1,us) in DV2(R3) x DV2(R3) and (uy,us) is a solution to equations (1.1).

Finally, we will prove that (u},uy) — (u1,u2) in H,. Taking (u,u%) as the test function in (5.7),
we obtain

(J' (uf,up), (uf, uy)) = Aer + Ajea + on(1).

Given that P (uf,u}) — 0, (AT, \5) = (A1, A2), we have

Arer + Aaca = Afer + Njes + on(1 Zuz Voi — i <0

Since A\ic; 4+ A2ce < 0, at least one of A\; and Ag is negative. Next, we consider three possible

conditions.

Case 1. (A <0 and Ay < 0): Using the fact that
<JI (u?7ug) - >‘7ll (’U’Tllﬂ O) ) (u?70)> - <Jl (u17u2) - A\ (uh 0) ) (uh 0)> =0,

we have

Ml |3 + on(1) = al Vi 13 + bl Vui |3 — mllufllB:,
Mllurll3 = al Vel + bl Vu |3 — g [fua [}
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Since Lemma 2.1, A} — X\ < 0, [luf|5r — |lug |3}, and u} — w; in DV2(R?), we get

luf||3 — ||u1]|3, leading to strong convergence. The case where Ay < 0 is treated similarly.

Case 2. (A <0 and Xy > 0): Using the method of Case 1, it can be concluded that u} — u; in
H} (R?) and uy € S, (c1). Assume, by contradiction, that Ay > 0, then

— <a + b/ |VU2|2 daz) Aug = Aoug + fio \ug\pz_Q ug + PBra Jug|™ |u2|7'2_2 ug > 0.
RS

By Lemma 2.3, we deduce that us = 0. Thus, J (u1,us) = J (u1,0), u — wuy, and u; €

Sy (c1) satisfies the equation

— (a + b/ Vul? dx) Au = M+ py [ul” 2w
R3

Therefore, I,,, (u1) > m(cy, p1). On the other hand, by Hélder inequality,

T2
2% -

1 n
2+ (It

0 [l g™ do < up
R-?)
Using the fact uf — 0 in D12 (R?), we have

V(e e2) = lim J(uf, uy) = Iy, (ur)+ lim 1, (ug)—4 lim / up ] Juz | do > m(er, ),
n— 00 n— 00 n—oo Jp3

which contradicts Lemma 5.2 (%)
Case 3. (M2 <0 and )\, > 0): By similar arguments as in Case 2, we obtain a contradiction
v'(e1,¢2) > m(ca, p2). Therefore, we conclude that (uf, ul) — (u1,us) in H,.

By Lemma 5.3 and 7/(¢1, ¢c2) < 0, we have

"(e1,c2) = J(u1,us) =inf J = inf J < 0.
7' (a1 2) (1 2) n Al

This implies that (ug,us) is a ground state solution. The proof of Theorem 1.4 is completed. [
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1 Introduction

In this work, we investigate the following reaction-diffusion parabolic problem with singular po-

tential:
%“‘Z:O‘(” o = (2,1) € Q% (0,T).
W:O, 1=0,1,..., m—1, (x,t) € 00 x (0,T), (1.1)
v

2(2,0) =20 (x) € H () NLT(Q), z€Q,

here n > 1 and 2 C R™ is open and bounded with Lipschitz boundary, where T > 0, » > 1,
A=(-A)", m > 1 is an integer constant and a unit outer normal v, x = (z1,72,...,7,),

|z| = /23 + 23 + -+ -+ 22. The coefficient « (t) is chosen such that

a€C0,00), a(0)>0and o (t)>0 forallte0,00). (1.2)

Explosive phenomena commonly arise in solutions to reaction-diffusion partial differential equations
of various types (see e.g. [4,6,15] and references therein). Understanding the conditions under
which such phenomena occur is of practical interest. However, accurately computing the precise
blow-up time is often challenging. Despite this challenge, it is still possible to estimate the blow-
up time using various methods. Notable approaches for investigation include the first eigenvalue
method proposed by Kaplan in 1963, the potential well method developed by Levine and Payne in
1970, the comparison method, and other techniques involving integration. A recent comprehensive
overview of these methods can be found in the monograph by Hu [11], Al’shin et al. [2] and Pigkin
[17]. Additionally, readers may refer to the survey articles by Galaktionov [8] and Levine [13] for
insights into the blow-up properties of more general evolution problems. Specifically, sufficient
conditions for blow-up estimates are discussed in works of Philippin [16] and Han [9] provided

insights for the equation of the form:
2+ A2 =k(t) f(2).
In another study, Han [10] investigated the equation of the form

Az =k ()2,
2]

in which the author derived the lower and upper bounds on the blow-up time of weak solutions.

In [23], Thanh et al. considered the reaction-diffusion parabolic problem with time dependent
coefficients
2t

A=k
X
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They proved an upper and lower bound for blow-up time. Do et al. [5] investigated the existence
of a global weak solution to the problem together with the decaying and blow-up properties using

the potential well method.

Recently, Thanh et al. [24] proved the higher-order version A (|A|m72 A) of the p—Laplacian
and the function k (¢) non-Newtonian filtration equation and obtained the blow-up result with
lower and upper bounds. The reader is directed to [19-21] for a detailed discussion of higher-order

hyperbolic equations.

In our research, we employed various types of Dirichlet-Neumann boundary conditions in conjunc-
tion with a general nonlinear term. Additionally, we derived the primary outcomes of this paper
using a methodology distinct from those discussed in prior works. While some of the literature
has addressed blow-up solutions for higher-order parabolic equation, to the best of our knowledge,
there is currently no article available that specifically explores the finite-time blow-up solutions for
a higher-order parabolic equation with a variable coefficient term « (¢). Consequently, we endeav-
ored to investigate and present new and noteworthy findings in this regard. For a more in-depth
exploration of blow-up phenomena in higher-order parabolic equation, readers are encouraged to

consult the book by Galaktionov [7].

Motivated by above-mentioned papers, in this paper, we investigate to prove the upper and lower
bounds for the blow-up time of solutions for problem (1.1), which was not previously studied, where

we study higher-order parabolic equation with time dependent coefficient source terms a (£) |2|" ™" 2.

The rest of the work is as follows: In Section 2, we give some assumptions needed in this work. In
Section 3, under suitable conditions, we obtain an upper bound for the blow-up time. In Section
4, we obtain a lower bound for the blow-up time. In Section 5, under suitable conditions, we

investigate the existence of a global weak solution to the problem.

2 Preliminaries

In this part, we present certain lemmas and assumptions required for the formulation and proof of
our results. Let ||.[, [|.||, and |[.[[yym.»(q) indicate the typical L?(Q), L™ (Q) and W™ (Q) norms
(see [1,18]).

Now, we consider some energy estimates: Let n > 1 and 2 C R™ be open bounded with Lipschitz
boundary. For each z € HF* () N L™ 1 (Q) and ¢ € [0, 00) define the following functionals of the
problem (1.1):

e Energy functional is as follows:

1 1 2 O[(t) r—+1
J (1) = 5 |4k G
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e and Nehari functional is as follows:
1 2 r+1
I(zt) = Ak = a@

We strive to establish both upper and lower bounds for the blow-up time of a weak solution to

equation (1.1), the precise definitions of which are provided in the following.

Definition 2.1. A function z is termed a weak solution to equation (1.1) if =z €

L2 (0,T; H* (Q) N L™ (Q)) and lx’lzgm € L?(0,T; L* () where z satisfies the following equation:

(;;m,@) + Ak, A¥) = alt) (1212 0) (2.1)
for all p € H* (Q) N L™ (Q) and t € [0,00) .

When 2 C R"™ is an open and bounded set with a Lipschitz boundary, the existence of a local weak
solution can be established using standard Ordinary Differential Equation (ODE) theory, coupled

with the Faedo-Galerkin approximation technique, as is well-known in the literature.

Definition 2.2. Assume that z(t) is a weak solution to (1.1). If z(t) exists for allt in the interval
[0,T*), and the limit as to blow up at a finite time T* if z(t) exists for all t € [0,T*) and

2
2l = . (2.2)

t—=T* || ||

Such a T* is called the mazimal existence time as well as the blow up time for z(t). If (2.2) does
not happen for any finite time T*, then z(t) is called a global solution and the mazimal existence

time of z(t) is co.
We are able to define the stable and unstable sets as follows for each ¢ > 0:

e Stable set:
() ={2€ H"(Q) : J(2,t) <ne and I(zt)>0}.

e Unstable set:
S00)={2€ HJ" (Q) : J (2,t) <ne and I(zt)<O0}.

% (t) and X (¢) are crucial to our paper. Where
Noo = tgnolon (t).

Note that J,I,Cpy,n,%; and X5 are all time-dependent, as indicated by the presence of « (t) in
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(1.1). The introduction of this time-dependent factor introduces additional technical complexity
into our analysis.

m

Because of the presence of the inverse coefficient 1/ |z|*™, it is important to highlight the distinction
between the two cases when 0 € Q and 0 ¢ Q. If 0 € Q then 1/ |z|*™ develops a singularity. This
requires the application of Rellich’s inequality, which is valid for n > 2m 4+ 1, in the proofs of our
main results. However, if 0 ¢ 2 then there is no singularity and (1.1) can be considered as a slight
extension of the model in [10]. In this case our results are valid for all n > 1. To deal with these

two cases at the same time, we use the notation

2m+1, if0e 0, if n < 2m,
and 2% =
1, if 0¢ 0 I —94 2Im_ ifp>929m 4+ 1.

n—2m n—2m?’

no

Let us start with the following Rellich inequality Lemma.

Lemma 2.3. Assume that n > 2m + 1 and  C R™ be open bounded. Let z € HJ" (). Then
\w\%m € L?(Q) and

|Z‘2d m? 2 e =c P
< 2 — 2 .
/n|x|2m v= <n<m—1><n—2m>> /Q‘““ o da /Q‘““ o da

Proof. Let z € Hi* () and 2 be its zero extension to R™. Then Z € H™ (R") by [1, Lemma 3.27],

it [ < (soam) i
2 2
= (n(m— S(n—Qm)) /n ’2

here we used [3, Corollary 6.3.5], in the second step of the argument. This provides the justification

and

Az z| dr, (2.3)

for the claim. O

The next result below is the Gagliardo-Nirenberg inequality.

Lemma 2.4. Let n > 2m + 1 and Q be open and bounded subset of R™, 1 <r <1+ nng Then
there exists Co = Co (2, n,7) > 0 so that

B(r+1)

2l < Co |42z 1T vz e (@)

)

where

8= %;1) €(0,1). (2.4)
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Proof. Let z € HJ* (Q) . It follows from Gagliardo-Nirenberg inequality that

, 1 | Blr+1) _B)(r
i < C@nr) AT 200,

|21

where used

HVZZH <C(Q,n) HA%Z

by [22, Chapter 3, Proposition 3]. O
Lemma 2.5. Assume that n > 1 and Q C R"™ be open and bounded with Lipschitz boundary.

Suppose « is defined by (1.2). Let z be a weak solution to equation (1.1) with T > 0. Then the
following identities hold:

(H1)
s+ [ ( £ \ -2 ||z||zti1(m> ds = J (20,0),
and
(H2)
. (; = ) - (H(hrl <h>> = (=),

for a.e. h€[0,T).

Proof. For (H1), first assume that z; € L? (0, T; Hy" (2) N L™ (©2)) . Then, utilizing z; as a test

function in (2.1) we have

Moreover, direct calculations provide

2

+ (A%Z,A%zt> =al(t) <|z|’“71 z,zt> .

2t
=™

D700 = (Abz Abz) —a() (127 ) - ij(tl) 2|

r+1
Lr+1(Q)»

as a function of ¢ in the interval [0, 7). Combining these two identities together results in

d
7 0.1 = =

Zt
=™

Poad®
r+1

2]

r+1
LJ7F'+1(Q) ’ (25)

as a function of ¢ in the interval [0,T).
Now (H1) follows by integrating both sides of (2.5) with respect to ¢t over (0, h), where h € (0,T).

To conclude, with an approximation argument we examine that (2.5) holds without the assumption

that z, € L2 (0, T; Hi" () N L™ (Q)) .
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The proof of (H2) is the same way and is omitted. O

The result we give below is obtained directly from Lemma 2.4 and the Friedrichs inequality (cf.

[14, Theorem 1.10]).

Lemma 2.6. Letn > 1, z € H" () and 2 < r+ 1 < 2*. Then there exists a constant S, =
Sy (n,7) >0 so that
12l Lr1 () < Skl Az

In addition, we note that the constant S, may be made explicit and sharp when n > 2m + 1.

Our next result is known as the concavity argument, which is widely used in the literature and is

used for the sufficient condition of blow-up.

Lemma 2.7 ([12,13]). Suppose that a positive, twice-differentiable on (0,00) function i (t) satisfies

the inequality
2

()P () = (1+0) (¢ (1)

>0

)

where 8 > 0. If 1 (0) > 0 and ¢’ (0) > 0 for all t € (0,00). Then there exists T > 0 such that

. _ ¥ (0)
tgr%l_w(t) =00, and T < 60 (0)

3 Upper bound for blow-up time

In this part, we are going to obtain the upper bounds for the finite time blow-up results. For

simplicity, we shall write
2

z (t)

m
||

)

L=y

for each t € [0,7).

We start with the proof of Theorem 3.1. This is related to the upper limit on the explosion time

of the weak solution when the initial energy functional is negative (1.1) .

Theorem 3.1. Assume thatn > 2m+1 and Q C R™ be open and bounded with Lipschitz boundary.
Let r > 1 and « be given by (1.2). Such that 0 # zo € HF* (Q) N L™ (Q) and

a (0)
r+1

l20l5H s ) <.

L. 2
J(ZO,O):EHAEZOH _

Suppose that z (t) is a weak solution to (1.1) with T > 0. Then z blows up at a finite time T which

satisfies
2

20
[z|™

"< —r

~ (1 —=7r2)J(20,0)
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Proof. Here we set T* < oo, where T* > 0 is the maximum existence time of z, and then we aim

to provide an upper bound for 7.

Set for this purpose

for every t € [0,T*). According to the hypothesis £ (0) > 0 and K (0) > 0.

We can also write from Lemma 2.5:

2 ’
o' (s)
+ 2]
r+1

K 0) =~ (0.0 |

2t
|=™

r+1
i) >0, (3.1)

for each t € [0,77), so K increases over [0,7*). Consequently, K (¢) > K (0) > 0 for all t € [0,T7).

Assume that t € [0,77). Same way,

r—1

L(t) = (m?n,zt>:—l(z(t),t): . HA%z

[ renen.nzerEn. 62)

Thus,

1 2

2

z

2™

Zt
|=™

2 2
LK (1) > > (W> = o= mKw.  63)

From (3.1), (3.2) and (3.3), we get

(K () £=0072 (1)) = £0+972 (1 (zc’ (ew-"7 Y e (t)) > 0.

This means that KL~ "+1/2 strictly increases over [0,7*), which follows:

0<& =K (0)L~THD/20) < K (t) £~T+D/2 (1)
1 2
<

< ().
T -Tr

El (t) E—(r+1)/2 (t) _

here we used (3.2).

Integrating this last representation with respect to t over (0, 7), where 7 € (0,7*), we obtain:

2
<
S 1_,2

(5(1—r>/2 (r) — L)/ (0)) .
Since this inequality only holds for a finite period of time, we deduce T* < co. Moreover,

(7‘2 — 1) &o

0< E(lfr)/Q (7_) < E(lfr)/2 (0) - 5

7,
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for all 7 € [0, 7). This reveals that

2
< 1=1)/2 () —
smopet 0

2L (0)
(1 —7r2)J(20,0)"

The proof is complete. O

Next we state and prove Theorem 3.2. Here it provides an upper bound on the explosion time for

a weak solution to (1.1) when the initial energy functional is positive.

Theorem 3.2. Suppose thatn > 2m—+1 and 2 C R™ be open and bounded with Lipschitz boundary.
Let r > 1 and « be given by (1.2). Assume that 0 # 29 € HJ* (Q) N L™ (Q) and

2

= L(0),

20
™

1
0< Clj(Z0,0) < 5

where )
_(r+1)C _ m?
C1= r—1 and € = n(m-—1)(n—2m)/)

Suppose that z (t) be a weak solution to (1.1) with T > 0. Then z blows up at a finite time T*

which satisfies
47“01[: (0)

T* < :
T (=17 (r 1) (£(0) - C1J (20,0))

Proof. Here we set T* < oo , where T > 0 is the maximum existence time of z, and then we aim

to provide an upper bound for T*.

From (3.2)

[Z’(t)zr;1 2f(r+1)J(z(t),t)2r71

=) - O (), 0] = Tt M),

HA%Z

for each ¢ € (0,7*), where in the second step we used Lemma 2.3.

Observe from the inequality above:

r—1
C

M) =L (t)—01%,](z(t),t) > L (t) > M (),

for each ¢t € (0,7*), here we used (3.1) in the second step.

Moreover,

M (0) = L£(0) — C1J (20,0) >0,
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by assumption. Consequently, an application of Gronwall’s inequality gives

M () > M (0) exp <Tglt) > 0.

This means that £’ (¢) > 0 for every t € (0,7*). That is, £ increases strictly over [0,7*) and hence
L(t)> L(0), (3.4)

for every ¢t € [0,T).

And by C; and C given in the statement of this theorem. Fix 7 € [0,7™*) and

e (o%ﬁ) MO) and o€ ((f_%,oo). (3.5)

The choices of 8 and o are justified below with (3.8) and (3.9) respectively. Define non-negative
functional

h
\I!(h):/o L(s)ds+ (t—h)L(0)+ B8(h+0)°,

where h € [0,7]. Then

Py AN EI0
\If(h)—ﬁ(h)—£(0)+25(h+a)—2/0 <|x|m72t(s)>d8+25(h+a),
and
U () =2 (T;’”zt (h)) 128 =—21(z(h),h) +28
> —2(r 1) (2 () h) + (r— 1) 422|428
Mz )P o (s il 112
> 2(r41) J(zo,())—/o ( |x|(m) +r+(1)||z|;+l(m> ds +(r—1)HAzz‘ +28
Pz (s)|]P o (s 1 r—
> =20+ |7 (o) - | ( e ifnznﬁﬂ(m> ds| + 20 ey 408,

(3.6)

for each h € [0,7), where we used Lemmas 2.5 and 2.3 in the third and fourth lines, respectively.

In what follows it is convenient to denote
2
2t (s)

h h
e(h)=<2 £(s)ds+6(h+o)2> (/ o ds+6>
0 o Il |zl L2(Q)

_ (/Oh <|z(i?,zt<s)) ds+,8(h+a)>220, (3.7)
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for every h € [0, 7], where in the last step of (3.7) we used the Cauchy-Schwarz inequality.
From Lemma 2.7, (3.6) and (3.4), we obtain

2

W (h)W" (h) - (W' (h))” =W (h) W (h) —2(r+1)

Ah (|Zx(|s")zt (S)> ds + B (h+ o)

2
ds+ﬁ>

2t (8)
|z|™

=W (h)U" (h)+2(r+1)

h
6(h) — (¥ (h) — (7 — h) £(0)) (/

2
ds+5>

) -

‘ ds-i—ﬁ)

2t (8)
|$|77L

h
> (h) ¥ (h) —2(r+1)¥(h) (/
0

zt (8)
™

> W (h) [P (h)—2(r+1) (/’
0

> ) |20+ 1) (0,0) + 20D

2(r—

> U (h) -—2 (r+1)J(20,0) +

(1)U (R {—Juo,owc{lc(o) - } >0, (3.8)

for all h € [0,7].
Then observe this
U (0) =7L£(0)+ Bo* >0, and ¥ (0)=280>0.

Consequently, from Lemma 2.7:

20 (0) 2 (7L (0) + Bo?) L (0) o

TS Dv ) 20 —1)fo r—Dfs Tr-1

This is as a result

or equivalently, we can write

r<2 (1o £O = po . (3.9)
r—1 (r—1)po (r—1)po—L(0)
Reducing the expression mentioned in (3.5) across the range of o results in

AL (0)

S ATt (3.10)

Next, we aim to minimize the expression referenced by (3.10) within the specified range of 5 as
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outlined in (3.5). This leads to the following inequality:

47"01£ (0)
T =12 (r+1)M(0)

(3.11)

Finally, the inequality stated in reference (3.11) remains valid for all 7 € (0,7*). From this, we

can conclude that

(r—=1"(r+1)M(0)
as needed. O

b

4 Lower bound for blow-up time

In this section we consider with the lower bound for the finite time blow-up results. This is the

content of Theorem 4.1. For simplicity, we shall write

2

z (t)

=™

E(t):%

)

for each t € [0,T).

We start with the proof of Theorem 4.1. This is related to the lower limit on the explosion time

of the weak solution when the initial energy functional is negative (1.1) .

Theorem 4.1. Assume that n > 2m + 1 and Q C R™ be open bounded with Lipschitz boundary.
Let «v is given by (1.2) which enjoys a further property that

oo = tlggoa(t) < 0.

Suppose that 1 < r < 1+ 42, Let z (t) be a weak solution to (1.1) with T > 0 and 0 # zo € HF" ().
Assume that z (t) blows up at T*. Then

.o L'77(0)
T ~ 7
SR
where ( ) ( Y )
_nlr—1 _(1-8)(r+1
P=tvn <OV =5 5ern
and
. 2 B(r+1) 9 —B(r+1)/(2—B(r+1)) 4y
“ (aooCoﬁ <r+1>> (f}éSx') ’

with Co = Co (Q,m,r) > 0.
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Proof. By assumption 1 <r <1+ 477” this leads to

0<ﬁ(r+1)=(r%)"<m.

This allows us to apply Young’s inequality below.

Based on the constants defined in the expression of this theorem and utilizing the Lemma 2.4 and

Young’s inequality. We get

£ = (S e ) = =16 0.0 = a el o~ [t
< Coarns HA%ZHB(TH)
2 B(rt1) ( 5 >—ﬂ<r+1>/<2—ﬂ<r+1>>
2 aoCofB (r+1)
2 Bt 1) ( 5 >ﬁ(r+1>/<2ﬁ<r+1)>
axCoB (r+1)

92— ﬁ r 4+ 1) ( 9 )B(T+1)/(25(T+1)) (
aooCOB (T + 1)

2
”Z”(lfﬁ)(TﬂLl) . HA%ZH

IN

2 2
42|+ =47~ 42

2
121

IA

4y
suplel) £

z€eN
=C*L(t)7,

for all h € (0,7*) . Equivalency one has

where do we get it

ﬁ (L7 (1) — £ (0)) < C*t.

Lastly, since v > 1 and lim;_,p+ £ (t) = oo, allowing t — T™* in the above inequality, we have
1—ry
T > L0 )
C*(v-1)

as required. O

5 Global existence

In this Section, we establish the existence of a global weak solution to the equation referenced
as (1.1), which corresponds to Theorem 5.2. While the proof follows the conventional arguments
of Faedo-Galerkin approximation, the presence of the fourth-order operator in (1.1) requires a
thorough justification, particularly when the initial datum zy belongs to the stable set 3. For the

sake of simplicity in notation, we utilize the dot notation in this part
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0
2, = (), = azk'

Hereafter

aANb=min{a,b} and aVb=max{a,b}.

Remember we set

2m+1, if0eQ 00, if n < 2m,
ng = and 2% =
1, if 0 ¢ Q 20— ifn>2m+1,
with
5,)={2€ HJ' (Q) : J (2,1) <ne and I(zt) >0},
and

So(t)={2z€ HJ" (Q) : J(2,t) <ne and I(zt) >0},
for every t > 0.
We begin with a problem of approximation.

Lemma 5.1 ([5]). Assume that n > ng and 2 < r+ 1 < 2*. Suppose that k € N, T > 0 and
zro € C° (). Then the problem

Pk (z) Z;C + Az = Bk (21) (z,t) € Qx (0,77,

azgi({c’t):o,i:(),l,...,mfl, (z,t) € Q2 x (0,77, (5.1)
Vl

2k (Z‘,O) = 2k0, T €€,

accepts a global solution z, € C ([0,T]; HY* (Q)) so that 2z}, € L? (0, T; HJ* (Q)) , where

pr(@) = e[ An and B () = at) (k) v (I ) AR
Finally, we present the existence of a global weak solution to (1.1) when the initial datum zg
belongs to the stable set 3.

Theorem 5.2. Suppose that n > ng and  C R"™ be open bounded with Lipschitz boundary.
Assume that 2 < r +1 < 2*. Let z9 € Y., (0). Suppose a € C*[0,00) satisfies a(0) > 0 and
o (t) > 0 for all t € [0,00). Morever suppose that lim;_, o a(t) = 1. Then there exists a global

weak solution to (1.1).
Proof. Since zy € X1 (0), there exists a constant ¢y > 0 so that

J (ug,0) + €9 < Moo



CUBO

Blow-up and global existence of solutions for a higher-order... 93

28, 1 (2026)

From Lemma 5.1 for every k € N there exists a weak solution z, € C ([0,7]; Hi" (2)) with
z, € L*(0,T; Hy* (2)) to the problem (5.1), here 2o € C2° () is so that

hm zro = 2o in H ().
k—o0
By choosing a sufficiently large k € N, we can also assume that

J(Zko,()) < J(Z(),O) + €0 < Noo- (52)

Using z;, as a test function in (5.1), we get

/Ot/ﬂpizfc (s)zdxds—s—/ot/ﬂAzk (5) 20 (s) da ds
:/Ot/526k(Zk)Z]/€(S)d$d8S/Ot/ﬂ|Zk'(8)|T_1Zk(5)21/€(8)dajd5_

d (1 2
/QAZka v=o (2 A A4z || dx
/IZkI ' pzpde = <r+1/ [EN s dx)'

We can rewrite the above inequality as follows:

When you realize this

and

/0 /kaz,g ()2 dads + (25 (1) 1) < T (250, 0) < 11oe, (5.3)

here we used (5.2) in the last step. This implies z (t) € 31 for every ¢t € [0,T]. Indeed, let us
express the opposite statement by way of contradiction. Let t* denote the minimal time at which
zi (t*) ¢ 3. Utilizing the fact that z; € C ([0, T]; HJ* () we deduce that zj (t*) € 0X1. In other
words, either J (zg (t*),t*) = no or I (zx (t*),t*) = 0. The former is impossible due to (5.3).

As a result, it is necessary to satisfy I (z (t*),t*) = 0 or equivalently,

Atz |

= a(t") [l () 0y

which implies

. r—1 2 r—1 y
J(Zk: (t ),t ): m HA Zk; ) 2 WSTQ HZk (t )Hi"‘*'l(ﬂ)
TN (N
ro1 L, (@) AR )

2r+1) " 20 e )
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r—1

#\2/(1=7) g—2(r+1)/(r—1) *
> t S =n(t") > .
=30 1)Oé( ) ., n(t*) > neo

This statement contradicts the information provided in inequality (5.3). Therefore, z (t) belongs

to the set ¥ for each ¢ in the interval [0, T, as asserted.

For ¢t € [0, 7], if zx (¢) € X1, it implies

1 2 r41
422 )] = a @l Ol 0 -

By utilizing equation (5.3) we can derive the following inequality:

t 1 a(t)
/ 2 -
/0 /szk(s) d$d8+(2 r 1

There is one in particular

> HA%zk (t)H2 < T (210, 0) < Tioe. (5.4)

(3-57) [at 0] = (G- 2 ) s
< (; _ f‘fi) (e (t)H2 < J (240,0), (5.5)

here oo = limy_, o, @ (t) = 1 by hypothesis. Utilizing the Lemma 2.6, (5.5) and (5.2), we get

1 L o\ (r+1)/2 ) o\ (r+1)/2-1 ) 9
[rta<se (ataal) =se (Jakao]) [z 0
_ (r+1)/2-1
gt (Lot 1J(z 0 HA%Z (t)Hz
v 2 r+1 k0> k
r+1)/2—1
e [ (J (20,0) + €0) o HA%Z (t)H2
T 2 r4 1 05 0 k
1 2
:6HA5zk (t)H . (5.6)
Note that
_ (r+1)/2—-1 _1 (r—1)/2
1 1 ! 1 1 r—1
r+1 - _ L B
0<o<5 [(2 r+1> d“] l<2 7~+1) 2(r+1) L

Next, we employ zj as a test function in (5.1) to obtain

1 t 2 t 1
f/pkzﬁder/ / ‘A%zk (s)’ dx ds g/ /|zk (s)|r+1dzds+f/pkz,%0dx
2 Jo 0 Jo 0 Jo 2 Ja

t 2 1
<6/ /‘A%zk (s)’ dxds—i—f/ PRz da,
0o Jo 2 Ja
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where we utilized reference (5.6) in the second step.

It can be deduced that

1 ¢ | 2 1
f/ przidr + (1 — 5)/ / ‘Afzk (8)‘ drds < f/ przigdr < C, (5.7)
2 Ja 0 Jao 2 Ja

here C > 0 is independent of k and 7. As a result, the sequence {z}, .y is uniformly bounded in
L?(0,T; HY* ().

By (5.4) and (5.7), the following properties are satisfied:

2p — 2 a.e. in (0,7) x Q,

o P S Ee i L2 (0,75 L% (),
A2z, % A2z in L2 (0,T;L2 (%)),
in L? (0, T; L™ (Q))
in L? (O,T; L+t (Q)) ,

for all T' > 0. The theorem now follows by taking limits as k — oo in (5.1). Since T' > 0 is arbitrary,
the solution is global. O
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1 Introduction

The Aoki’s function A(x),

A(z) = <1+i>m+ (131) (1.1)

the sum of two strictly monotonic functions, increasing and decreasing respectively, has been

estimated in [1, Theorem 1] as

e(2z¢ — 1)
z¢ —1

e(2z? — 1)

= Ai(z) < A(z) < Ag(x) := 22 1

(x> 1). (1.2)

Figure 1 (left), showing® the graphs of the functions A;(z), A(z) and As(z), discloses that the
double inequality (1.2) is relatively rough. This fact has encouraged us to give more accurate
approximations, which are illustrated in Figure 1 (right), where there are plotted the graphs of the
functions Aj(x), A(x) and Aj(x) from Example 3.5.

6.2
6.0 |
581

5.6

3 4 5 6 7 8 3 4 5 6 7 8 9
Figure 1: Left there are the graphs of the functions A;(x), A(z) and As(x). Right are illustrated
the inequalities (3.1)—(3.2) in Example 3.5.

The main purpose of this article is to provide a sharp estimate of the function A(x). The emphasis
is on its brevity, a simple approach and its concrete sharpness (double inequalities), which is also

important in some numerical treatments.

LAll graphics in this paper are made using Mathematica [4].
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2 Background — an expansion of the function (1 + y)l/ Y

According to [3, (20) and Theorem and Corollaries 1-2 on p. 105| there holds the following lemma.
Lemma 2.1. For every real y > —1, we have the expansion
Uy 90 & y \%
(I+y) "7 = m;Bm‘ : (y—|—2> ) (2.1)

where the sequence Bay, is strictly monotonically decreasing, bounded as

5 7 8
= B, = = — i — > .
By = B3 5 and 10 < nh_)rrolan < B, < 10’ forn >4, (2.2)

and is given recursively as

m

1 &4 +1
By =By =1, Boyii =By, = — L Bom o, > 1. 2.3
0 1 ; 2m+1 2 m;4j+2 om—24, form (2.3)

Lemma 2.1 implies the next lemma.
Lemma 2.2. The equation (2.1) holds for any real y such that |y| < 1.

Remark 2.3. Instead of Lemma 2.1, we could also use the results of the paper [2], which provides
the expansion (1 + z)'/* = eZ;CZO(—l)jbja?j (bj € RT, =1 < z < 1). However, in this expan-
sion, the convergence of the series is slower than the convergence of the series in the erpansion

. j
(1+ :Z:)l/m =e- > 0o(=1)B;- (ﬁ) (B e RT, =1 <z #0), given in the paper [3].

3 Expansion of the Aoki’s function

Using y = :I:% in Lemma 2.2, we get the following theorem.

Theorem 3.1. The expansion

- 1 1
A(z) = 265520321 : ((Qx T 1)zt + (22 — 1)21+1>

holds true for any x > 1.

Proof. For x > 1, we have | + %‘ < 1. Consequently, using Lemma 2.2, the equation (2.1) holds

for y = < and also for y = —1 . Therefore we obtain

1" 22 & 1\
14-) = Bo; - [ ———
<+m> 1+2x; 2 <1+2x>
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—x oo 21
1 2ex 1
(1_:1:) _293—1;32“(2@—1) ’ -

and

Corollary 3.2. For any integer m > 0 and every real x > 1, we have

A(z) = A7, (2) + 6 (),

where A () = 26@2% B ((2x TP (- 1)2"“)

d « L €B2m+2 €
an 0 < Om(z) <6y, () = (@ —1)(2z — )2 < (z —1)(2z — 1)2m+1

Proof. Referring to Theorem 3.1 and (2.2) in Lemma 2.1, we have

00 oo

2 .

0< 6m(x) =2ex- E By; - W <dex- B277l+2 . (2.23 — 1)7(27n+3) E (233 _ 1)721
=0

1=m-+1
1 _ € Bom 2
1 — (@212 (z_1)@2c_ 17"

=4dex - Bopmyo - (22 — 1)*(2””3) .

Hence, referring to the estimates (2.2), we prove Corollary 3.2. O
Remark 3.3. In Corollary 3.2, m is a parameter that affect the error term J,,(x).
Example 3.4 (zero approximation). Setting m = 0 in Corollary 3.2 and using (2.2), we estimate

1 1 5e
2 (14— ) < Az) < 2¢ (1 1
e( +4x2—1)< (@) < e( +4x2—1)+6(x—1)(2x—1)’ vz

<21+ 3 > 29
e - —— X —_—.
- 42 —-1)° — 14

Example 3.5. Putting m = 1 in Corollary 3.2 and considering the equality By = %, given by

(2.3), we obtain the following inequalities

1 1022 (422 + 3)

A(z) > 2e (1 1t S o1 ) (3.1)
1 1022 (422 + 3) 287e

Alz) <2 (1 T 1T a1 ) 360(z — 1)(2z — 1)3 (32)

Corollary 3.6. For an integer m > 0 and a real x > 1, the relative error

of the approzimation A(x) = A%, () satisfies the double inequality

Bam42 < 1
2(x — 1)(2z — 1)2m+1 " 2(x — 1)(20 — 1)2m+1

0 < pm(z) < prp(a) =
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Proof. According to Example 3.4, we have A(x) > 2e. Therefore, using Corollary 3.2, we get

_ (A5 @) (@) — A (2)  Sn(x) Bom
pm(@) = A(2) S T2 T 20— 1)(;z+f1)2m+1 ' -

Example 3.7. Thanks to Lemma 2.1 and Corollary 3.6, we have

) 287

P@) = B Dea—n ™ M0 G D

x> 1.

Figure 2 shows the graphs of the errors p;(z) and pi(x) on the left and the graphs of the quotient
pi(x)/p1(z) on the right respectively.

s 12

6.x1070 | 3

S.XIO_G \ 1.20

4.x1076 ¢ 1.15
-6

3107 1.10

2.x107 |

1.x1070} 105

12 14 16 18 20 20 40 60 80 100
Figure 2: On the left are the graphs of the errors p;(x) and pi(z); on the right is the graph of the
quotient g3 (z)/ 1 ()

Remark 3.8. A reviewer of this article suggested that the author rewrite the article following
reviewer’s suggestions, which, in his opinion, also include a better and much simpler approach to

the problem at hand. The result of reviewer’s intervention is his expansion

o0 m
a_2n a_2n
A(I‘) = Z r2n = Z xr2n + Em(l'),
n=0 n=0
2e . .
where a_g, = (2n)'D2" with D, defined recursively as
iy (m—1)! m-—
Dy:=1, Dy =Y (=1)™7 . D, m>1
— 4! m+1—j
7=0
and estimated as
2€|l)2n1+2| &

m!
Dm o 0 Em )
‘ | < 9 | (m)| < (2m + 2)! - (22m+2 — p2miT) < (z — 1)z2m+1

for m > 1. However, the sequence (Dy)n>0 s not simple. Additionally, the crucial fact is that the

a—_2n

series y o = converges more slowly than the series Y.~ Ba; - ((zzﬁ)ziﬂ + (217})21;“) , see

Corollary 3.2.
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ABSTRACT

Among the class of generalized Fourier transformations, the
linear canonical transform is of pivotal importance mainly
due to its higher degrees of freedom in lieu of the conven-
tional Fourier and fractional Fourier transforms. This ar-
ticle is a continuation of our recent work “Linear canonical
deformed Hankel transform and the associated uncertainty
Appl.(2023), 14:29”.
Building upon this, we formulate the generalized transla-

principles, J. Pseudo-Differ. Oper.
tion and convolution operators associated with this newly
proposed transformation. Besides, the obtained results are
invoked to examine and obtain an analytical solution of the
generalized heat equation. Finally, we study the heat semi-

group pertaining to the generalized heat equation.

RESUMEN

Entre la clase de transformaciones de Fourier generalizadas,
la transformada lineal canénica es de importancia central,
mayormente debido a sus grados de libertad maéas altos en
lugar de las transformadas convencionales de Fourier y de
Fourier fraccionaria. Este articulo es una continuacién de
nuestro trabajo reciente “Linear canonical deformed Han-
kel transform and the associated uncertainty principles, J.
Pseudo-Differ. Oper. Appl.(2023), 14:29”. Construyendo a
partir de esto, formulamos los operadores de traslacién y con-
volucién generalizados asociados a esta nueva transformacion
propuesta. Ademas, los resultados obtenidos se utilizan para
examinar y obtener una solucién analitica de la ecuacién de
calor generalizada. Finalmente, estudiamos el semigrupo de

calor pertinente a la ecuacion de calor generalizada.

Keywords and Phrases: Deformed Hankel transform, linear canonical deformed Hankel transform, generalized

translation, generalized convolution, heat semigroup, heat equation.
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1 Introduction

The Fourier transform is regarded as one of the remarkable discoveries in mathematical sciences
as it profoundly influenced diverse branches of science and engineering. In the realm of harmonic
analysis, the Fourier transform plays a pivotal role in analyzing signals wherein the characteristics
are statistically invariant over time [6]. In the higher-dimensional scenario, there are several ways
to arrive at the definition of the Fourier transform. The most basic formulation in R? is given by

the integral transform

1 —i{\,x
F(HN) = W/R fx)e ™) dg. (1.1)
Alternatively, one can rewrite the transform as
1
FHA) = @ Jo f@) KA, x) d, (1.2)

where IC(A, x) is the unique solution to the system of partial differential equations

0p, KO\, 2) = —iN;K(\2), j=1,....d,
K(A,0) =1, A €R?

Yet another mathematical description of the higher-dimensional Fourier transform was proposed

by Howe [44] via the Laplace operator A on R? as follows:

F =exp (izd) exp (ZZ (A - ||x||2)> : (1.3)

It is pertinent to mention that each of the above alternative representations has its specific use
cases, and a detailed description regarding different ramifications of the Fourier transform can
be found in [10]. Many generalizations of the Fourier transform can be attributed to a deeper
understanding of the fundamental operators in Harmonic analysis. In the d-dimensional Euclidean
space, the three elementary operators are the Laplace operator A, norm ||-||, and the Euler operator

E, respectively defined as follows:
d d d
A= "02 al? =) a3 E:=>) 0.,
j=1 j=1 j=1

As observed in [44], the operators

2 A d
:7”952”7 F:_E’ and H=F+

E
2

are invariant under O(d) and generate the Lie algebra sly:

[H,E]=2E, [H F|=-2F, [E,F]=H.
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Recently, there has been a lot of interest in other differential or difference operator realizations of
sly or other Lie (super) algebras. The focus is in particular on the generalized Fourier transforms
that subsequently arise from these operator theoretic notions including the Dunkl transform [13],
various discrete Fourier transforms in R? [23], Fourier transforms in Clifford algebras [11] and many
more. However, the hard problem in this context is to find explicit closed formulas for the integral
kernel of the associated Fourier transforms. For further useful details regarding the generalized

Fourier transforms and their implications, we refer the interested reader to [10].

Very recently, Ben Said et al. [3] have given a foundation for the deformation theory of the
classical case, by constructing a generalization Fj, , of the Fourier transform, and the holomorphic

semigroup Zj, , with infinitesimal generator
Liad:= ||:rH2_aAk — ||x||a, a>0, (1.4)

acting on a concrete Hilbert space deforming L?(R%), where A is the Dunkl Laplace operator.
The authors have analyzed Fj , and Zy (%) in the context of integral operators as well as rep-
resentation theory. The deformation parameters consist of a real parameter a coming from the
interpolation of the minimal unitary representations of two different reductive groups by keeping
smaller symmetries, and a parameter k& coming from Dunkl’s theory of differential-difference oper-
ators associated with a finite Coxeter group (see [3]). In case a = %, n € N and d =1, we call the

generalized Fourier transform Fy, 2, the deformed Hankel transform and will be denoted by Fj .

As of now, the deformed Hankel transform Fy, ,, has witnessed an ample amount of research in the
realm of harmonic analysis, which includes the study of kernel of the deformed Hankel transform
[9], the generalized translation operator [2,5,30], the generalized maximal function [2], the Flett
potentials [4], the deformed wavelet packets [19], uncertainty principles [25], the (k,n)-generalized
wavelet multipliers [26], the (k, n)-generalized wavelet transform [27,29], the localization operators
[34], the (k,n)-generalized Gabor transform [28], the (k,n)-generalized Stockwell transform [30],

the (k, n)-generalized Wigner transform [32] and many more.

This paper is a continuation of the recent work carried out in the article Linear canonical deformed
Hankel transform and the associated uncertainty principles [33]. Nonetheless, in [33], we have
introduced and studied the linear canonical transform in the deformed Hankel frame (i.e. special
case a = 2, n € N and d = 1). Recall that the classical linear canonical transform (LCT) was
independently introduced by Collins [8] in paraxial optics, and Moshinsky, and Quesne [35] in
quantum mechanics, to study the conservation of information and uncertainty under linear maps
of phase space. The LCT is an integral transformation associated with a general homogeneous
lossless linear mapping in phase space endowed with a total of three free parameters. The involved

parameters constitute a 2 x 2 uni-modular matrix mapping the position x and the wave number y
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into

where ad — bc = 1. The transformation maps any convex body into another convex body while
preserving the area of the body. Such transformations constitute the homogeneous special group
SL(2,R). The linear canonical transform of any signal f with respect to a real matrix M =

(a,b;c,d) € SL(2,R) with b # 0 is defined by

FM ()] (y) = % / F(@) KM (2, y) dy, (15)

where

KM (2, y) exp{i (CMM>} (1.6)
2 b
It is important to emphasize that the LCT provides a unified treatment of many generalized Fourier
transforms in the sense that it is an embodiment of several well-known integral transforms including
the Fourier transform [6,42], the fractional Fourier transform [1], the Fresnel transform [24], scaling
operations and so on [7,21]. Due to the extra degrees of freedom and simple geometrical manifes-
tation, the LCT is more flexible than other transforms and is as such suitable as well as a powerful
tool for investigating deep problems in optics, quantum physics and signal processing [7,21]. In-
deed, over a couple of decades, the application areas for LCT have been growing at an exponential
rate and is as such befitting for investigating deep problems in signal analysis, filter design, phase
retrieval problems, pattern recognition, radar analysis, holographic three-dimensional television,
quantum physics, and many more. Apart from applications, the theoretical framework of LCT has
likewise been extensively studied and investigated which has led to the formulation of convolution
theorems [40], sampling theorems [22], Poisson summation formulae [45] and uncertainty principles

[41]. For more about LCT and their applications, we allude to [7,21,37-39].

The main goal of this article is twofold. First, by employing the fundamental tools associated
with the linear canonical deformed Hankel transform (LCDHT) [33], we introduce and investigate
a generalized translation operator corresponding to the LCDHT. This operator is then utilized to
define a convolution product, and several of its essential properties are examined. Subsequently, we
establish the main theorems pertaining to the harmonic analysis in the framework of the LCDHT.
Recognizing that the LCDHT represents a recent addition to the class of integral transforms,
offering several additional degrees of freedom, we are further motivated to apply it to the heat
equation. Therefore, the second objective of this paper is to study the generalized heat equation
and the corresponding heat semigroup within the LCDHT setting. Thus, we can conclude that
the principal contribution of this work lies in developing the harmonic analysis and exploring the
generalized heat equation associated with a family of integral transforms such as the Dunkl, Bessel,

and linear canonical Bessel (LCB) transforms [12,15-17]. Besides, our analysis extends to other
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integral transforms that have not yet been studied in this context, including the Dunkl fractional

transform, the Dunkl Fresnel transform, and the LCD transform.

The remainder of this paper is organized as follows. Section 2 recalls the main results of the har-
monic analysis associated with the deformed Hankel transform and the linear canonical deformed
Hankel transform (LCDHT). Section 3 introduces and investigates the generalized translation op-
erator corresponding to the LCDHT, along with an examination of its fundamental properties,
including symmetry, commutativity, and continuity on certain functional spaces. Section 4 is
devoted to the development and analysis of the generalized convolution product. In Section 5,
we consider the generalized heat equation and the associated heat semigroup operator within the
LCDHT framework. Finally, Section 6 presents the concluding remarks, summarizing the principal

findings and outlining possible directions for future research.

2 Deformed Hankel transforms, translation and convolutions

In this section, we shall present the prerequisites concerning the deformed Hankel transform which
shall be frequently used in formulating the main results. More precisely, we shall briefly review the
conventional translation operators, deformed Hankel transform and the corresponding generalized
translation and convolutions. For a detailed perspective, we refer to the articles [3,5,30] and the

references therein.

2.1 Deformed Hankel transform

Let L7, (R),1 < p < o0, be the space of measurable functions on R such that

1/p
£l = ([ @ (e < o0 it 15 p<ox,

151 ey = 55 sup ] (0)] < o

where

n(2k—1
(2k—2)n+2 TL¥

V(7)) = Mypla| " dz, My = g Rk Vb2 1 (4”(2k71)+2,)’ . n

2

For p = 2, the space is equipped with the scalar product:

(.95 = [ @@ (o)
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To facilitate our narrative, we set some notations as under:

e (4(R) the space of bounded continuous functions on R.
e (} (R) the space of even bounded continuous functions on R.

e Cy(R) the space of continuous functions on R and vanishing at infinity. We provide Cy(R)

with the topology of uniform convergence.
e C.(R) the space of continuous functions on R and with compact support.
e CP(R) the space of functions of class C? on R.
e S(R) the Schwartz space of rapidly decreasing functions on R.

o Sp »(R) the space of all functions f € C°°(R*) such that

sup |(|Jz|7 )7 (Jo*~% Ag)* (2™ ™) (2))] < 00,  for all j,s,m € No.
TER*
e SL(2,R) the group of 2 x 2 real matrices with determinant one.

We are now in a position to recall the notion of Dunkl operator. In this direction, we have the

following definition:

For any f € C*(R), the Dunkl operator T} on R is defined by
T f(z) == f'(z) + 2k W, (2.1)

where as the corresponding Dunkl-Laplace operator Ay, for any f € C?(R), is given by

Anf(@) = T2f(x) = f"(x) + 2k (f f") _J@) - “”) . (2.2)
Consider the operator
App = ‘xf—;Ak - ’a:|; (2.3)

In the following, we recall some spectral properties of the differential-difference operator Ay ,,.

o Ay is an essentially self-adjoint operator on L}, (R).
e There is no continuous spectrum of Ay, .

o The discrete spectrum of —Ay ,, is {477” + 2k + % +1:me N}.
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n—1

Definition 2.1. For any f € L}Cvn(R) and k > , n €N, the deformed Hankel transform is

denoted by Fi.n(f) and is given as

Frn(f)(&) = /Rf(m) B n(\ ) dykn(x), for all X € R, (2.4)

where By n (A, z) is the deformed Hankel kernel given by

1 3 n”l_‘(nkfﬂqu) 1
BN\ 2) = gnk—n Az ) + (=0)" (5 ———2 S\ n (n|Az| ). (2.5)
( ) (2) T (nk+2+1) * ( )
Observe that
u\ —o © (_1)"’” w\ 2m
m=0 '

denotes the normalized Bessel function of index «.

Example 2.2. The function oy, t > 0, defined on R by

satisfies

2
Fin(a)(€) =e ™" veeR.
Here, we list some important properties of the deformed Hankel kernel and transform:

(i) Bin(z,t) = Bpn(t, 2), Brn(2,0) =1, Brn(z,t) = Brn((—1)"2,1),

By n(A2,t) = Bin(2,At), Vz,t,A € R.

(ii) Bg,n(.,.) solves the following differential-difference equations on R x R

A2 % AXBr (N ) = —|2|% Ben (M, ),
|27 % AZ By (N, ) = —|Al% Ben(\, ).

where the superscript in Af denotes the relevant variable.

(iii) For k > 1/2, By (., .) satisfies the following inequality

|Ben(z,y)| <1, Va,yeR (2.7)
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(iv) Bgn(.,.) is bounded if and only if
n—1

k> .
- 2n

(2.8)

(v) Under the bounded condition (2.8), there always exists a finite positive constant C' depending
on n and k such that

’Bk,n(az,y)‘ <C, Vz,yeR (2.9)

(vi) ([31]). For z,y € R and § € C with Red > 0, we have

—(n?/48)(|2|*/ "+ |y[*/™)
_ 2/n € € N
/e O Bl (2,€) Bron (1, €) dryien (€) = @k—Dn+z B’“"( 2y (1) y)
R 26
()

(vii) Under the bounded condition (2.8), the deformed Hankel transform Fj , is bounded on
L,lc’n(R). In particular, if & > 1/2,

(2.10)

1B e < 1 e 2.1)

(viii) The deformed Hankel transform Fj ,, provides a natural generalization of the conventional

Hankel transform. For instance, if we set

even 1 . 1
Bite(@,y) = 5 (Ben(@,y) + Bun(@,—9)) = jui—s (nlayl ¥ ). (212)

2

Then, F, of an even function f on R specializes to a Hankel type transform on R;. In

fact, when f(x) = F(|z]) is an even function on R and belongs to Ly ,,(R), then

an n

]:k;n(f)(g) = 2nk+2 n F ]znk = ( (T

)%)r7(2k7§r>n+2dr, VEER.  (2.13)

(ix) The deformed Hankel transform f — Fj »(f) is an isometric isomorphism on L%R(R) and

satisfies [3]

/ | Fn (DO Pdren () = / |F(@)Pdyin (). (2.14)
R R

(x) For all f,g € L} ,(R), we have
[ P DNF @ ) = [ f@al@) i (o) (2.15)

(xi) The deformed Hankel transform Fj ,, is an involutive unitary operator on L,lcyn(R), that is;

Fol (@) = FunlH(=)"2), weR. (2.16)
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(xii) For any f € L}  (R),1 < p <2, the deformed Hankel transform Fj (f) belongs to Liln(R)

and satisfies the following inequality:

IFrkn (N gy < ||f||L§,n(R), (2.17)
where p’ denotes the conjugate exponent of p.
(xiil) Frn(S(R)) C C*(R) if and only if n = 1.
(xiv) Frn(S(R)) = S(R) if and only if n = 1.
(xv) For any f € S(R), we have
Finl D) = Fr (o7 ) + P (Iy1*) (2.18)
where the even functions Fi, Fy € S(R).

(xvi) The space 6, (R) satisfies the following properties: (see [14]).

® Fin(Gkn(R)) =&k n(R).
e The embedding &, (R) = L} ,(R), 1 < p < o0, is continuous.

o &, (R) is a dense subset of L}  (R), 1 <p < o0.

(xvii) The unitary operator Fj , satisfies the following intertwining relations on a dense subspace

of Li,n(R):

2 2 _2 2
Fiom o |x|™ = —\1:|2 nAgoFin, FknoO |az:|2 nAp = —|z|™ o Fin. (2.19)

2.2 Generalized translation and convolution operators

Definition 2.3 ([27]). The generalized translation operator f v+ 75 f on L7 . (R) is defined by

Frn(1e™ f) = Bin (o 2) Fin(f)- (2.20)

It is fruitful to have a class of functions in which (2.20) holds pointwise. One such class is the

generalized Wigner space Wj, ,,(R) given by
Wen(R) = { € Li o(R) : Fin(f) € L}, (R)}.

Following, we give several properties of the generalized translation operator [27].
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(i) For any f € Li,n(R)v we have
’|Tolc€7nf”L§w(R) < HfHLg,n(R)’ Vz ER. (2.21)
(ii) For any f € Wy »(R), we have
W) = [ Bl Bn(C) R OFalDO b, Yoy R (222
(iii) For any f € Wy ,(R), we have
" fy) = 1)), Va,y e R. (2.23)
(iv) For all f in Wy, »,(R) and g € L;1€7n(R) N L, (R), we have

[ A1 i) = [ 17 a0 dal), VeeR (22)
R R

(v) ([31]). For every 6 > 0, the (k,n)-generalized translation of the generalized Gaussian function

,n2\s|% 7n2|m|%+\y\% T n
Tf’n (e 13 ) (y) —e 15 Bi.n <(25)n7 (’L) y) . (2.25)

Recently, an explicit formula for the generalized translation operator 75" has been reported in [5]:

is given by

-1
Theorem 2.4. For any f € Cp(R) and k > L, the generalized translation operator 5™ is
n
given by
Tf’"f(y):/f(z)dCf:g(z), (2.26)
R

where

’Ck,n<x7y7 z)d7k7n(2)7 Zf zy 7’é 0,

dCyy (2) = 4 o, (=), ify =0, (2.27)
déy(z), zfx =0,
nk—2 1 1 1
Kk}n(.%‘,y,Z) :KB 2(‘x|n7|y‘na|Z‘n)vk,n(£7yaz)7 (228)
having support on the set {Z eER: ||z & — ly v < |z w < |z w4 ly %},
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My n nisgn(ry) nk—2 2z 2
Vion(o009) = 2952 {14 (1P I I (g 1)

nlsgn(xz) nk—n 2 2 2 nlsgn(yz) nmk—z 2 2 2
w———Cn (A ) ) " o Cn (A ) ) " ’
etk (Al el i) + G Lot (A i )
(2.29)
1
Au,v,w) = 2\/l%(u—l—v—w), u,v,w € R, (2.30)
C’gki% the Gegenbauer polynomials and ngi% is the positive kernel given by

KR % (u,0,w) =

[(nk—2+1) { [(u+v)2_u;2} [w2—(u—v)2]} 2

22nk—n—1p(nk7 ";1)1_‘(%) (uvw)znk—n

iflu—v <w<u+w,

0 elsewhere.

Remark 2.5. (i) For all z,y, A € R, we have the following product formula:

Tf’an,n()Hy) = Bk,n(Aax)Bk,n(Aay) (231)

(ii) For all z,y € R*, we have
[ Kraep)ntz) = 1. (2.32)
R

(#ii) For all x,y,z € R*, we have

Kkm(,y,2) = Kin(y, 2, 2). (2.33)

(iv) For all z,y,z € R*, we have
Kin(z,y,2) = K n((—1)"z, 2,y). (2.34)

(v) For all z,y,z € R*, we have
Krn(z, (=1)"y, 2) = Kgn(2, (=1)"2,9). (2.35)

(vi) For any z,y € R, we have
[ Wanlo. 2l dntz) < 0 (2:36)
R
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On what follows we will recall the “trigonometric” form of the generalized translation operator

proved in [30].

Theorem 2.6. (i) For f € Cy(R) write f = fo + fo as a sum of even and odd functions. Then

M.” g n I's nk—% . nk—n
Tf,nf(y) — ﬁ /0 fe(<<$7y>>¢,n) {1 + (-1 ank 2 (cos¢)} (S1n¢)2 Fn g
" nlsgn(x) _ak-z [ |27 —|y|= cos¢
) (o) § G .
nlsgn(y) nk-y [ |ylm = lelweosd | | oy
T semy) omk—g [ 1Y T 12 €059 do| 2.37
(2kn —n), (2,905, (ine) g (237
where .
(@ = (2l + Iyl — 2oyl cos )™ (2.38)
(i1) For every f € Cp(R), we have
M n 4 ! nk—% . —
1) = 5 [ ) {1 1 G s | (s
(2.39)
(i1i) For every A > 0, we have
o (c8 ) ) = Mo malif o) 1), 20

where

™ 1 | n
. = 2X\|zy|n cos ¢ 1 —1)" n sgn(zy) Zk7§ . an,nd )
Vnhizg) = [ e { ()" Gt cos ) (sin ) o

(iv) ([30]). Using (2.40), properties of the Gegenbauer polynomials and by simple calculations,

we obtain

2 M 1 132
n
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Theorem 2.7 ([5]). Let 75" be the generalized translation operation as defined in (2.19). Then,

(i) For any f € L (dvyk.n) and k > nT—17 we have
T () = Ty (@), " =]
(it) For any f € Ly ,,(R),1 < p < oo, we have
72" flly ey < 4N ey
(iii) For every f € Ly ,(R), we have
Fra(me " X)) = Bea((=1)" X, 2) Frn f(A), A €R.

() For any f € L} ,(R),1 < p <2, we have

Fim (T )N = Br((=1)" A\, 2)Fu(F)(N),  a.e. A €R.

(v) For all f € Cy(R) or belongs in Ly, ,,(R),1 < p < oo, we have

() = b ).

Proposition 2.8. If f € Cy(R), then we have

lim T
|z]| =00

2" ()y) =0.

Proof. For f € Cy(R), y € R and ¢ € [0, 7], we have

lim f6(<<x7y>>¢,n) = le\iinoc f0(<<x7y>>¢,n) =0.

|z| =00

(2.42)

(2.43)

(2.44)

Using Theorem 2.6 (i), the properties of the Gegenbauer polynomials, an application of dominated

convergence theorem give the desired result.

O
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Theorem 2.9 (|30]). Let L}

k,n,e

R) be the space of even functions in LY (R). Then,
k,n

(i) For every bounded and non-negative function f € Lkne(R), we have TF"f >0, TR f €
L;.,(R), Vz € R, and

[ 10 ) = [ 16 Bty (245)

(ii) For any f € Ly, .(R), we have
s < Ifls e (240

(ii) For every f € Ly ,(R), we have

[ttt = [ @) (2.47)
R
() If f1 and fo are two suitable functions, we have

/Tl}f’”fl((—1)”t)f2(t)d'yk7n(t) :/Tﬁ’"fz((—l)"t)fl(t)d’yk,n(t), yeR. (2.48)
R R

Definition 2.10. The generalized convolution product of two suitable functions f,g € L,c o (R) is
defined by

f e gla) = / (1)) 9(y) din (9). (2.49)

It is pertinent to mention that the convolution product (2.49) is both commutative and associative.

We culminate this subsection by giving the following important results.

Proposition 2.11 ([5]). Let f %y, g(z) be the generalized convolution as defined in (2.49). Then,

(i) For any f € L} ,(R) and g € Lj. ,(R), we have
frrm g(x) = ATf’"f((—l)”y)g(y) Ak (y)- (2.50)

(i1) For every f € Li’n(R) and g € Lz}n(R) with 1 < p,q,r < 00, % + % —-1= %, the convolution

product f *j , g belongs to L};’n(R) and satisfies the inequality:

17 *tm ol ey < AFlLg

kn

)”gHLZ‘n(R)- (2.51)
(iii) For every f € L ,(R) and g € L}, (R), we have
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(iv) For f,g € Lz)n(R), the convolution f+p g € L%H(R) if and only if Fin(f)Frn(g) € Li)n(R)
and satisfies [27]
Fin(f #hn 9) = Frn(f) Fien(9)- (2.53)

(v) For every f,g € L} ,,(R), we have
[ 18500 9@ (@) = [ | FenDOF Fenl@)@Pdmnte). 250
R R

2.3 Deformed Hankel transform in linear canonical domain

In this section, we recall some results proved in [33].

Definition 2.12. The deformed linear canonical Hankel transform of any function f € L}“n(R),
with respect to the uni-modular matriz M = (a,b;c,d) € SL(2,R) is defined by

F (@) = — e / KM (2,9) £ () din (). (2.55)
(b)) = JR
where

Ké\j[n(x,y) = e%(%zbr%y?)Bkm (%,y) . (2.56)
Definition 2.12 allows us to make the followings comments:

(i) For M = (1,b,0,1), the deformed linear canonical Hankel transform (2.55) coincides with

the Fresnel transform associated with the deformed Hankel transform:

S S
W () = (i) B /REk,n(x,y)f(y) dyen(y), b0,

f(x)a b: 0,

where E,l;}n(x, y) = eﬁ(IZerz)Bk,n (%a y) .

(ii) For M = (cosh(b),sinh(b);sinh(b), cosh(b)), b € R, the deformed linear canonical Hankel

transform (2.55) boils down to the following integral transform

1
Vi f(x) = { (isinh(b))
f(fﬂ), b=0,

— /R R (2, 9) f(y) dyn(y)s D0,

where Rz’n(;c’y) — % coth(b)(z®+y )Bk,n (Smww,y) )
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(iii) For M = (cos a,sin a; —sina, cos ), @ € R, the deformed linear canonical Hankel transform

(2.55) coincides with the fractional deformed Hankel transform ', :

e

((” 2”“)((1 2nm)—Gr/2)
. (2k—1)nt2 /lck n\T y d'Yk n( ) (2.7 - 1)7T <a< (2.7 + 1)71—’
sin ()| 22

f(.iL‘)7 a=2jm,

f(=z), a=(2j+ ),
where & = sgn(sin(a)), Kf ,,(2,y) = e? COt(o‘)(IQ'Hﬁ)Bk,n (Sm“ﬁ,y) :

Definition 2.13. For any uni-modular matrizc M € SL(2,R), the differential-difference operator
Aﬁ/fn 1s defined by

1 d? 2k d d d? d k
AM g2 D (2 %) & (D % +1)i + —(1— 2.
ko = 2] {dm2+<x sz> o <b2x + (2k + )zb x2( 3))}, (2.57)

where s(u(x)) := u(—x).
Definition 2.13 allows us to make the following comments:

(i) For M = (0,1;—-1,0), A%n boils down to the deformed Laplace operator Ay ,, whereas ]—'é‘f[n

coincides with the deformed Hankel transform Fj, ,, (except for a constant unimodular factor

(61%) (2k—2112n+2 )
(ii) A, is related to the deformed Laplace operator Ay, via

2

i d g :Ak,n+|$

ol

. (2.58)

(iii) For any f,g € S(R), we have
/ AM, F(@)g(@) dn / @) DI g(@) dyin (2). (2.59)

(iv) For each y € R, the kernel K ,i‘/[n(, y) of the linear canonical deformed Hankel transform ]-',ﬁ”n
satisfy the following:

AN KM = —|YEKM (., y),
K (by) = =151 K () (2.60)

2

K,%L(O, y) = ez 5V

(v) For each z,y € R, we have
K (2, y)] < 1. (2.61)
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Theorem 2.14. Let M = (a,b;c,d) € SL(2,R). Then,

(i) For any f € Li,n(R% ]—',%L(f) belongs to Cy(R) and satisfies the following inequality:

(2k—1)n+2

M _(@k-Untz
T sl V. 2e)
(ii) For every f € Ly ,(R) with F} (f) € L}, ,(R), we have

(P 0 7)) = (F o ) () = swia () ace, (2.63)

where s;(f)(x) == f((=1)iz), Vo €R, j €N,
(iii) F}, is a topological isomorphism from L . (R) into itself.
(iv) f,ﬁ‘/fn is a topological isomorphism from &y, »(R) into itself.

(v) For any f,g € Ly ,,(R), we have
[ A D@ dnle) = [ ) FE @)@ drn (o)
(vi) If f € L}, ,(R) N L{ ,(R), then FM (f) € L} ,(R) and
1y =112z ey (264

vii) For any f,g € L? (R), we have
kn

(Finl):9) s @ = (.74, 1g> (2.65)

k n(R)
(viii) (Operational formulas). Let M € SL(2,R) and f € S(R). Then we have
Al £)] = o1t o2, |70 (2.66)

and

[ = FR () = —[b]®

ErAIS ] (2.67)
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Definition 2.15. The deformed linear canonical Hankel transform of any function f € L?TL(R),
1 <p < 2 with respect to the uni-modular matriv M = (a,b;c,d) € SL(2,R) is defined by

(2k—1)n+2

FM(f) = e () 5 5m0) (L% 0 Ay © Fign 0 L%) (f), (2.68)

where F.p : Ly, ,(R) — Lz:”(R) is the deformed Hankel transformation on Ly, (R), Ly, and Ay

are the chirp multiplication and dilation operators, defined respectively, by

L.f(x) = e%sy?f(x), seER and Asf(x)= ;f (f) , s € R*. (2.69)

(2k—1)n+2
s

Theorem 2.16 (Young’s inequality). For any uni-modular matric M = (a,b;c¢,d) € SL(2,R) and
1<p<2 ‘7:,?’4” satisfies the following inequality:

2k—1)n+2\( 2
[Z4 DNy ey < W) (2.70)

1712

3 Generalized translations associated with LCDHT

Definition 3.1. Let M = (a,b;c,d) € SL(2,R), b # 0, a given uni-modular matriz. For suitable

function f, we define the generalized translation operator associated with the operator A%n by

Wl

Tfy’k’”f(y) — 6%%(3”24_3/2)7-5’" {6_

’ f(S)} (), (3.1)
where 75" is the (k,n)-generalized translation operator associated with Ay, .
We will rely on this definition for each function on the following spaces:

o 17 ,(R),1<p<oo
o (h(R).
Some important properties of the generalized translation operator TM*" are assembled in the
following theorem.
Theorem 3.2. Let M = (a,b;c,d) € SL(2,R), b # 0, then the generalized translation operator
TMEn a5 defined in (3.1) satisfies the following properties:
(i) Linearity: T}PR" [af + Bg] (y) = oT 200" f(y) + BT} " g(y), o, B € R.

(11) Symmetry: Téw’k’" = Id, TM+*7n f(y) = T;VI”“”f(x), V,y€R.
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(iii) Product Formula: For every x,,y,z € R, we have

2

Tk (KM (Ly)] (2) = e 289 KM (2,9) KM (2,y). (3.2)

(iv) Commutative: We have

M,k Mk _ Mkn Mk, M Mk _ Mk A M
T, oT, =T, oT, and Ay, 0T, =T, o Ay, (3.3)

(v) Let f € Sy n(R). The function u(zx,y) = TMF" f(y) is a solution of the problem

u(z,0) = f(x).
(vi) For all z,y € R, we have
T2 1) = [ 8 1) Wi 0.9 2) dn2), (35)
where
W,%L(:c,y, z) = 3§ (@ +2%) Kin(z,y, 2). (3.6)

(vii) The generalized translation operator TMK" js continuous from Cy(R) into itself. Moreover,
the operator is also continuous from LZ’H(R), 1 < p < o0, into itself and satisfies the following
inequality:

M, k,n
viii) For any f € L} (R) and g € Cy(R), we have
k,n

(=87 1) [125g((—1)"8)] drin).

A[Tf[’k’"f((—l)’Ly>} {e_i%yzg(y)} d'Wc,n(y):/
(3.8)

R

(iz) For any f € LLH(RL we have

F TR g () = e 8 KL OVe) FEL (D), AER. (3.9)

(v) For every f € Ly, ,(R), 1 < p <2, we have

FL [T ke g] ) = e KOV FL(DO),  ae (3.10)

x
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(zi) If f € Co(R), then we have
Jim T3 TRnf(y) =0, yeR.

Proof. Using (3.1), we establish the proof of (i) and (ii).

(iii) Invoking Definition 3.1 and (2.31), we observe that

2

—e 2%V K,ﬁV[n(m,y)K,%l(z,y)

(iv) For any f € Ly ,(R), 1 <p < oo (or f € Cy(R)), (3.1) and Theorem 2.7 imply that

[T;\/I,k,n oTyILI,k,n] f(z) = b £ @4y +2%) [Tg]f" o T;cn] [e—g

i d 2 2 2 id 2
e3 b (@ +y?+27) [7—5,” 07—9’;7"] [6—533

[t o TR ().
Moreover, for any f € &y ,(R), identities (2.58) and (2.19) imply that

x

[AY, o TR f(y) = e84 [la-h g o rhn] o287
= ez (@ +Y") {T!f” o |x|2*%Ak} [e’%

= [ o ARL] F ().
(v) Since system (3.4) is equivalent to

2% A () = [yP~F Dy, v),

i 2

a(z,0) = e~ 257 f(x),

(3.11)

where @(z,y) = e_%%(‘”z‘*‘yz)u(x, y). Therefore, by invoking the transmutation property

together with the identity (2.19) and 75" A) = Ap75", we obtain that the function

ie,y) = k" 5 f(s)] (o)



CUBO

Generalized translation and convolution operators... 125

28, 1 (2026)

is a solution of the previous system. Consequently, we get

is a solution of (3.4).
(vi) This is a direct consequence of (3.1) and (2.26).

(vii) The continuous property of TM-*" follows directly from the fact that

T f=|La oLy

T

Tk"oL_% f

where La, L_a, 75" are continuous from C,(R) into itself and L} (R) into itself, respec-
b b V)

tively. Moreover, for any f € Lz’n(R), the operator TM+*: f belongs to Li,n(R) and satisfies

il

(viii) For any f € L; ,(R) and g € Cy(R), (3.1) and (2.49) yield

HTaﬁw’k’anLgm(R) -

<4y

=4[ fllzp  w-

LY .(R) LY,

[ (-1 [ o 0)] donn )
R

(ix) For any f € Ly, (R), (2.55), (2.56), (3.1) and Theorem 2.7 imply that

(ib) @

A2_ag,? n | i%s? A
b )/T’ |:€2b f 5) (y)Bk,n <bay> d")/k,n(y)
R
2_a,2 ia,2 n A "
_62( A b )/62 v Y f k |:3'_> Bk,n (b,8>:| ((_1) y) drykvn(y)
R

M}Fk 1 [TMfl,k,nf] (\)

2 2
s (N ¢ )Bk,n

>l m
| >/
]
—
®
SIS
S
<

[V
~
—
o
oy}
ol
3
N
| >
~_
IS
)
>
3
—~
S~—

(2k—1)n+2 i
7} ok

(Gl R O 2) FML ().
(x) For any f € L,lcyn(R) N Ly ,(R), the result follows directly by virtue of property (ix) while
as Young inequality (2.70) and relation (3.7) show that the mappings f ~— F, [Ti” “hkn f}

and f — FM (f) are continuous from L} (R) into LZIH(R) As such, the result follows



126 H. Mejjaoli, F. A. Shah & N. Sraieb CUBO

28, 1 (2026)

immediately by the density of Lj , (R) N L} (R) in L}  (R).
(xi) Using the relation (3.1) and Proposition 2.8, we derive the result. O

Corollary 3.3. For any f € S(R), we have

-1 pn 1 _dia,2 n/\ <
T ) = e [ B (=105 0) RED A i )
—1 2n

(3.12)

Proof. For any f € S(R), inequality (3.7) implies that y ~ [TM “hkn f1(y) is continuous function
of Ly, (R). Therefore, as a consequence of (3.9) and the inversion formula of the deformed linear

canonical Hankel transform, the result follows immediately. O

We conclude this section with the following important result.
Theorem 3.4. Let TyMJ“’n be the generalized translation operator associated with the uni-modular

matric M = (a,b;c,d), b# 0. Then,

(i) For all f € Co(R), we have
lim ||, f — f||__ =0. (3.13)

y—0

(ii) For any f € L} ,(R), 1 < p < oo, we have

lim ||T)"%" f — fHLz,n(R) =0. (3.14)

y—0
Proof. (i) First step: We shall prove the result for any f € C.(R). Using the fact that

My,

/ ﬂ(sin $)2""dp =1 and / " onkd (cos @) (sin )2~ "d¢ = 0,
2n 0 0

the generalized translation operator TyM +*m we can be expressed

TMENf () — f(2) = ay (@) + by () + ¢y (x) + dy(2), (3.15)
where
ay(w) = 252 £ (2) /O et ) {1 + (—D"%cﬁ’“’%(cw ¢>)} (sin 6)2"" " dg,
i) = 5t / o 36 (707~ (4 el cone) ) [ (@ 9),0) = fol@)] (sin @)™ "dg
co(a) = S ola) /0 |13 @50 1] Ry, y, 6) (sin )™ "do
@) = Mo [7 (B o)) [ () 0] B0 00,
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3

0 cos ¢

1 1 1
nisgn(@) nk-3 [ |z]» —lyl~cos¢ | = nlsen(y) kg [ |yl» — |z

(2kn =) (@i, ) Ghnomat (@905

Rk,n(xa Y, ¢) =

Invoking the properties of the Gegenbauer polynomials, we observe that there exists a

positive constant €(k,n) such that

ei%(gﬁ‘“/zf«way»im) -1 (Sin ¢>2nk—nd¢

wﬂm<e%m>mméw

Therefore, we have

lin}) B @ (i) 1 =0, |t @ lmuli) g <2,
Yy—r

and

" : 2nk—n n
sin do = < 00.
| oy = S

Then, an application of dominated convergence theorem implies that
s

lim
y—0 0

ci @y = ()2 ) _ 1’ (sin ¢)>"*~"dg = 0.

So, we derive that

tim o, = 0.

As limy ¢ fe (((x, y) ¢7n) = fe(z), we derive from the uniform continuity of f, that for
given € > 0, there exists § > 0 such that |y| < ¢ and

|y ()] < e /o7T

o e (((x,y>>¢n> - fe(m)’ (sin )2 "dp < e.

Hence

3}1_% byl = 0.
Similarly, one can prove that
lim ey, = lim 4], = 0.
Thus, we conclude that for any f € C.(R), we have

lim [T — g =0,
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Second step: Assume that f € Cyo(R). Using the fact that C.(R) is dense in Cy(R), there
exists a function g € C.(R) such that ||f — glloc < 15 so that

17757 =l < 1T = D)l + 1T = gl + 1S = 9ll

S [ N e

From the first step, for sufficiently small values of y, the quantity HT;” ko

g— gHOO can

be made less than €/2. As such, we shall get the desired result.

(ii) Let f € C.(R) such that supp f C [-R, R] and y € [—1, 1]. Involving Theorem 3.2 of [4], we
derive that the functions Tyj\/[ ko oare also supported in a common compact set

[—(R* + |y|=)", (R% + |y|=)"] € [-2"(R +1),2"(R +1)]. Consequently, we have

[ i < /T(RH) dVen(z) | |TMF"f = f|| =0, asy—0
Yy Li,n(R) ~ _an(RA1) k,n Yy o] ) .

Therefore, the general case follows immediately by the density of C.(R) in LZ’H(R). This
completes the proof of the theorem. O

4 Generalized convolutions product associated with LCDHT
Definition 4.1. For a given uni-modular matric M = (a,b; ¢, d) € SL(2,R), b # 0, the generalized
convolution product, associated with .7:,%“ for two suitable functions f and g is defined by

d

f @ng(x):A[Ty’k’"f] ((=1)™y) {6”'3"’29(31)} AV (y)- (4.1)

M.k
Some elementary properties of convolution (4.1) are summarized below:

(i) An application of Fubini’s theorem together with (2.35), (3.5) and (3.6), we have

£ 0= [ [ rami e 0 )| [ )] dwat

M.k

-/ [ [t gt (<172 dvk,n(y)} [t 1) dwn() =g @ .

k,n

(ii) Using Fubini’s theorem, we have

T (f o g) <y>=/R€‘i%22 (fM,%,ng) (W (.. 2) dyien ()

M,k

_ /Re—i%zz [/R [TMkn f((~1)7s)] {e—i%ﬁg(s)} d'}/k:,n(s):| Wit (@,y, 2) dyen(2)
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_ /R { /R e TS F(2) | Wik (2,0, 2) d%n(z)] |7 g(5)| din(s)
= [z [ ) o [ 000 drin (o

= [T e g (1) [ )] don o)

= ([TQEM”“’”J‘] ki g) (v)-

The following proposition contain the basic facts about convolutions of Lj  (R), 1 < p < oco.

Proposition 4.2 (Young’s Inequality). Let1 < p,q,r < oo withp 14+q~ ' =r~1+1. If f € Ly .(R)
and g € L} (R), then f © ge L (R) and satisfies the following inequality:
? M,k,n ?

‘Lz,n(ﬂ%) = HfHL’é,AR) ||9|\Lz,n<m>' (4.2)

Proof. Using Holder’s inequality, we obtain

n —idq?
TR f(=1)" e g ()|
1/r 1/p—1/r

= (T2 p (=0 gle) (T p((=1))|") (o))"

Moreover, we have

J

1/r

TR (1) e g () < ([ 1T gl )

r—

(/]R R F (=1 d%,n(y)> N (/R lg(y)|? d’7k,n(1/)> o

which leads us to

(2,9

< ([lmeen syl nam) " ol

;n

/R T F (1)) 19(0)]? dn ().

By invoking (3.7), we observe that

<TG o Mol o) [ T2 H" ) Lo )
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After multiply both sides by dvi »(z) and integrating over R, we get

AP Il o [ |12 S0 a1 )] 0
Li () e Le

®
M,k

=4I o 9l ) | l90) { [z s d%,n@)} e n(0)

<A flze @ llalze | @

Or equivalently,
|

ey L ey e 0

Theorem 4.3. Let © be the generalized convolution as defined by (4.1) associated with uni-

M, k,n

modular matric M = (a,b;c,d) € SL(2,R), b # 0. Then,

(i) For any f,g € Lllc,nGR)’ we have
.y ) (2k—1)n+2 _ i ng M M
]:k,n (f M*@k g) (l‘) = ((’Lb) 2n ) e 2t fk,n(f)(x)fk,n(g)(x)’ for all z € R.
(4.3)

(ii) For any f € L}C,n(R) and g € Ly, ,(R), 1 < p <2, we have

FM (f © g> (2) = () “7 ) e B (N @) FL(9)@), e w R (44)

M~1kmn

(iii) For f,g,h € Lj , (R), we have

(f © g) ®© h=f © (g ® h). (4.5)

M, k,n M,k,n M, k,n M, k,n

Proof. (i) Using the definition of ]-' ", along with (3.9), it follows that

e (f ° g) (x)

M~1kn
= (2k 1)n+2 /Kkn (E y |:/ Ty]\/[717k7nf((_1)nz) [ei%z2g(2):| d’\/k,n('z)] d’yk,n(y)

ey

(Zb) o (k—Lnt2 1)n+2 / v |:/ Kk ,n 17 y (le)"k nf(y) dfyk,n(y):| drYk,n(Z)
'8 g(2)] |7, T{Kf;),;’;"f) (2)] dyin(2)

]R
(2k—D)n+2 1)n+2 _idg?

((zb ) HIRLG @ FL9)(@).
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It is pertinent to mention that Fubini theorem has been used in the second line as

2

/Rz K ()T (<) 2)e 8 g(2) | dn (1) den(2)

<C [ |TM R p(-1)"2)

19()| dven(y) dyin(2) < AC|fll gy lloll s gy < oo
R2 k,n k,n

(i) The result is true for g € Ly ,,(R) N L} ,(R) by virtue of (i). On the other hand, the Young’s
inequality (2.70) for the deformed linear canonical Hankel transform and Proposition 4.2 show

that the mappings g — .7-",?}4” (f * g> and g — .F,i‘a(f) }‘,i\fn(g) are continuous from

M~1kmn
Ly ,(R) into Li:n(R). Finally, the result follows directly from density of Lj , (R) N L} , (R)
in Lj . (R).
(iii) The result follows immediately by an application of result (i). O

5 Generalized heat equation and the associated operators

In this section, we shall illustrate our proposed theory developed in previous sections to the fol-

lowing generalized heat equation associated with the operator A,]XIT; '

ML) _ =ty 0, (1,2) € (0,00) B 5
u(0,z) = f(x),

where f is defined on the Banach space B8 which could be either Lg’n(R), 1<p<oo, (Cp(R),]loo)
or (Co(R), ||.|lsc)s & > 0 is the coefficient of heat conductivity and the initial data u(0,z) = f(z)
means that u(t,z) — f(z) as ¢ — 0 in the norm of B.

5.1 Generalized heat kernel associated with oA}~ '

Given a uni-modular matrix M = (a,b;¢,d) € SL(2,R), b # 0 and o,t > 0, we define

—1 1 iay®>  ny?
P () :=exp{——a , yeR (5.2)

(Ut) (2k7;)n+2

Using the relations (2.55), (2.56), (5.2) and Example 2.2, we obtain

, 2
M M1t N idx? _ £
Fien (Pt ) (z) = exp {Qb t0<b|) } , Vt>0, xzeR. (5.3)
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Definition 5.1. Given a uni-modular matric M = (a,b;c,d) € SL(2,R), b # 0, the generalized

heat kernel associated with A%;l is denoted as G,{”fl and defined by
G () =T P (), wyeR, >0, (5.4)

We collect some basic properties of the generalized heat kernel Gi‘rl in the following proposition.

Proposition 5.2. The generalized heat kernel Givrl as defined in (5.4) satisfies the following

properties:

(i) Fort >0, we have

- 1 —ia(e® +y%)  n(lzl* + |y|7) T
Giu (:r,y) = @h—Dntz SXP - By ,(77,) Yyl
(1)

2b 20t (ot)m
(5.5)
(it) Fort > 0, there exists a positive constant C(k,n) such that
<IwI%—\y\%)2
ML e T2t
‘Gt ({E, y)’ S C(k, ’fL) (2k—1)n+2 (56)
(o)
(i11) Fort >0, we have
[ A G @) drn() = 1. (5.7)
R
(iv) For s,t >0, we have
G () = [ GH7 @) G (1) ¢ e, (58)
R

(v) For fized t > 0 and y € R, we have

£

b

} . (5.9)

(vi) For a fixzedy € R, u(t,z) = Gi\rl(%y) is the solution of the generalized heat equation (5.1).

F (G () (©) = R (€ y) exp {—w

Proof. (i) Using the Definition 3.1, we observe that

- 1 ia nls|m
GM 7 (2,y) = —grmmre FEETTIE (o | (y). (5.10)
(ot) *

Therefore, by simple application of (2.25), we derive the desired assertion.
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(ii) The assertion follows directly from the relation (5.10) and inequality (2.41).

(iii) An application of (5.10) leads us to

ia (g2 2 1 1 o [ _nlsl
/Re2 P@ TGN (2, ) dyen(y) = (f)(%ﬁ /RT;?’ (6 27t ) (v) dve,n(y)-
o 2

Thus, we obtain the desired result by applying (2.47) and simple calculations.

(iv) Using the identity (5.5), we obtain

2 2
1 -1 ja,2 1 ;i%($2+y2)_ l:”%"""%}
/Giw (2,2) GY (y,2) €87 dyen(2) = ———g—5mz €
R ((o)%ts) 2
sl Jolw
| Zer t20s :| x N Yy 7
/Re { By n ((at)"’(_l) z) B <(08)n7(—z) z) dV,n(2).

From the relation (2.10), we deduce that

3

2
[z]n | |=]

7"|: 20t T 20
e
R

o

Bin ((a‘:) (i)"z) Bin <(Oi)n (i)”z) i (2)

@k—ln+2 sl tuln
ots 2 ™| Sot(ets) T Zos (i) x o
= e Bin| —————,(@)"2 ),
t+s T\ (o(s+t))"

which leads to the given desired result.

(v) Involving the relations (5.4), (3.9) and (5.3), we get the desired result.

(vi) For fixed y € R and t > 0, we put v(x,t) := Gi\rl(x,y). Using (5.4) and Corollary 3.3, we
deduce that

n

AVen ().
b %,()

(5.11)
By taking differentiations under integral, the identities (2.66), (2.60) and by standard anal-

—1 1 S d )2 n)\ =7 T
Géw (l',y) = L (2k—1)nt2 /ele Bk,n ((_1) bay) Kﬁ?ﬂ(Avm) eXp —to
(=ib)™ = JR

ysis, we see that
0 -1 —1
L’?t — aﬁﬂffn ] Gi\/f (z,y) =0.

This completes the proof of the Proposition 5.2. O
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Theorem 5.3. Assume that M = (a,b;c,d) € SL(2,R) such that b # 0. Let B be one of the
Banach spaces Ly, (R) (1 <p < 00), (C(R), [|.[loc) 07 (Co(R), [|-[lec) - Then:

(i) For each f € X, the function u(t,z) = (PtMl ) f) (x) satisfies the generalized heat
M-1kmn
equation

ou(t, )

o =AM Cu(t,x), (t2) € (0,00) X R, (5.12)

1/q
4 (20 (=02 0y, )

Ly (R) < (o) GE=Dn+2 ||f||L§,n(R)’

and

[|u(t, )| (5.13)

ce 11 1
where p,q,r € [1,00] satisfying ste=1++
m
ia, .2 .
(i1) Let f(x) =e 237 p (|x\%> with p(s) = g c;s’.
j=0

We define the function u as u(t,x) = <77,5M1 ® f) (z). We have
M-1kn

2
n

n J _
—lag? . 20t w n|a:
u(t,w) = e 257N jle; <n> i )<_ 20t ) (5.14)

=0

((Zkfl)n)

where L; * denote the Laguerre functions of degree j [43]. Moreover,
t _
a“ét’x) — o AM u(t,x),  (tx) € (0,00) xR, with u(0,z) = f(x).

Proof. (i) In view of (5.11) and Fubini’s theorem, the function u(¢,z) can be expressed as

n

1 PR R vy
u(t,z) = (—ib) (2k—Lnt 2 /]Re B Kéwn()\’x) exp{—ta
—1 on

b

}fk,n(f)(k)d%,n()\). (5.15)

Moreover, as above take again differentiation under the integral in (5.15) and (2.66), we

derive the result.

Furthermore, the Young’s inequality (4.2) implies that

M-t
P

e, )|

R
M

Lo

<4|
Lz,n(]R)

L;m(R

k,n Ly, (R)
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Using (5.16) and the fact that

2%k — )n +2 1/a
1 2 1/q <2F (( n)n aa ) Mkn>
</ e~ gk lyln d’Yk,n(y)) 4
R

(2k—Dnt2 = (2k—Lnt2 ’
2 (a't) 2

LLL®) (gt)

we obtain the desired inequality (5.12).
(ii) Firstly, it is easy to see that
2

uta) = [ G (<19 487 (o) ) (5.17)

m
Now, if we write p (\y|%) = ch|y|27], then using (5.5) and by the change of variables
j=1

Y

uz( t)ﬂ,we obtain
ot)2
M1 n ia,? 2
G (@, (<)) et p (1) dyen(y)
R
o
iag2 nlel™ m 2
My pe”25% 7 201 / n=luln x . (2k—2)n+242;
= 2 - . 20t B , n T |
(o) B g e e ( o @7 ) 1o y
m 1 2
2 t J ia x|
:ch <J> 67§§$2€,n|21’t It(l'), (518)
i=1 "
where

2 —u? 2| v u _ :
I — u o (2k—1)n+1+2j du.
(@) F((Qk—l)n—l—Q) /Re Jere | A v
2 n

Using the identity (6.631(10) in [20]), we get
i y F ]. 22 2
/ 67u2ja(uz)u2j+2a+ldu — #j!efTL? (Z> , z>0.
0

Further, by simple calculations, we see that

. w2 ((2k=Dn n|x|2/"
L) = il - 8a?nisl  (B5528) R. 5.19
H(x)=jle e ; ( 901 > y T E (5.19)

Substituting (5.19) in (5.18), we get the desired identity:

n i . 2
_ia . 20t (Gaghm) nlx|n»
— x2 . 2 _
u(t,z) =e" 2% g Jle; ( - ) L; 5o |-

J=0
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Finally, using (i) we observe that the function u solves (5.12). Moreover using the identity,

(e 193], | )
(2015) L (_nle/") _Jal¥
n J 20t =0 ]'
we derive that u(0,2) = f(z). This completes the proof of the Theorem 5.3. O

5.2 Heat semi-groups associated with UA%ZI

We begin this subsection by recalling the necessary tools on semigroups.

Definition 5.4 ([36]). Let X be a Banach space. A one-parameter family S = {S(t); t > 0} of

bounded linear operators on X is called a strongly continuous semigroup if it satisfies:
(i) S(0) = Idx.
(i) S(t+s) = S(t)S(s) for allt,s > 0.
(ii) The mapping t — S(t)u is continuous on [0,00) for all u € X. A strongly continuous semi-
group s called a contraction semigroup, if ||S(t)|| <1 for allt > 0.
Let S = (S(t));>q be a strongly continuous semigroup. The generator O of S is defined by the
formula

Ou = lim Su=u = iS(t)u ,

the domain D(D) of O being the set of all w € X for which the limit defined above exists.

In this subsection, we shall denote B as one of the Banach spaces L} ,(R) (1 < p < o0) or
(Co(R), [I-llso)-

Definition 5.5. Let M = (a,b;¢,d) € SL(2,R) be a uni-modular matriz such that b # 0. Then,
for eacht >0 and f € X, we define a family of operators

1] .

Z Pt ® f Zf t > O,

M-1kmn

SM()f = (5.20)

f if t=0.

The family of operators (5.20) is often called the heat semigroup associated with aA,i‘ﬁ: "
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Theorem 5.6. The family of operators {S,i\f[nfl(t) it > O} is strongly continuous contraction on
B.

Proof. We shall divide the proof of the theorem into two steps.

First step: (i) Assume that B = Cy(R). Then, the result is trivial when ¢ = 0. For any
f € Co(R) and t > 0, (3.8) and (5.2), implies that

(st )@ = [ [P | (1) [ 1) dnn)

4
1 1 ia,?2 —nly\% 1k n
— e [ F PR [T (217 )
=

(at)
(2k—1)n+2
2

-2 (2) /Re%(%"ef\vl% 2 ] <(1)n <2’n”’f) v) B (0).

(5.21)

Clearly the mapping (z,v) — [Té‘/lflvk’”f] ((fl)" (M)Ev) is continuous on RZ.
Moreover, using (3.11) and (3.7), we have

s o o (2)') -

and

<A|f|le* e L (R).

ei%(2gt)n6_‘vlw [Té\/lilvklnf] ((_1)" <M> ’U)
n

Therefore, it follows by the dominated convergence theorem that S%nfl(t) f € Co(R)

and satisfies the inequality:

(2k—1)n+42
2

[stws| < (B) T Lottt p 17l = 1]l
0o R

By taking supremum over all f € Cy(R) and noting that ||f|l« < 1, we obtain
Jsts" ] <1
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(ii) For allt,s > 0 and f € Cp(R), from (5.8) we have
St () (St (0f) @)
- 1/0%1(33@)&%* (/ GM ™ (y, 2)e " f(y) d%,n(y)> din(2)
-1/, (/ GM 7 (o, 2)GY T (y,2) € d (= >> e F(y) dyn ()

/Gﬁtl 2,9)e Y f(y) drn(y)

= S,m (8 +t)f(z).

(iii) Using the fact

(2k—1)n+2

(721)2/]R vl AV (y) =1,

identity (5.21) gives the freedom to write

(SM‘ (t) f) (2) — f(2) = as(x) + bi(z) (5.22)
where
(2k=Dynt2 ,
ay(z) = %/Re*lvﬁ (a‘%(%) ol _ 1) F(z) dyn (v), (5.23)
(2k—1)nt2
be(z) =
[ et <{T.i”_l”“’”f} ((1)” () ) - f<x>> B (0).
(5.24)

Using the fact that

T

M~ k,n
RS I

together as above with an application of the dominated convergence theorem, we get

the desired result as

5 (2k—1)n+2
( ) 2
n 2| o fameyn
||at”oo < nf [/ e lvlm elﬁ(%t) [v]2 1‘ d’Yk,n(v):| Ifll.o — 0, ast—0,
R
(2k—1)n+2
2

IN
A~
S
~—

el e

o]
o2
1 /Re

T(Afl) (201 f fH d’yk n ) 0, ast — 0.
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Second step: (i) Assume that X = L}, (R), 1 < p < oo. For any f € L (R), Young’s
inequality (4.2) yields

1 1
st o], ‘PM o f <| Ml
H k, (]R) 4 t M-1kn Ly (R kn(]R) H HLk,n(R)
Since ,
‘PM’I 1 /6_ nlyln dyen(y) = 1
= T (Gk—Dntz 7 kn\Y) = 1.
ol e (o e

Thus, we obtain

Jsts" o1

S

Ly (®)

By taking supremum over all f € L¥ (R) and noting that ||fHL£ ®) < 1, we obtain
for each ¢t > 0, S,%;l (t) is a bounded linear operator on L  (R) and ||S,i‘f[,,;1 <1

(ii) Since S(R) C Cy(R), we derive that
SM (s +1)=SM " (s)SM (1) on S(R).
On the other hand, S,]C‘f[n_l(s), S,i\f[n_l(t) and S%;l(s + 1) are continuous from Lj  (R)
into itself. Therefore, the result follows immediately by the density of S(R) in L}, , (R).
(iii) Firstly, we show that if f € C.(R), then

. M1 .
lim HSk (t) — 0. (5.25)

By virtue of the relation (5.22), it follows that

HSM - f‘ L ® HatHLim/(R) + HthLgm(Ry
with
(2k—1)n+2
( 2
||atHL§ _® < nf {/Revln i35 (28) Il _ 1’d’)/kn ] ||f||Lp L (R) —0,

ast — 0,

whereas the Minkowski’s inequality yields that

(2k—1)n+2
2

(=)
n ol
HthLg,n(R) < 4 /Re

TJ\/Iil,kZ,’I’L f _ f

(—1)"(@)%1; Ay (v) — 0,

Lin(R)

ast — 0.
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Implementation of the dominated convergence theorem implies that

<50l (o 37

H k: n
20t v P
(- (2et)® L7 (R)

lim |[TM
(71)7;(%)%1)

=0, (see Theorem 3.4),
t—0

Ly (R)

2
and v e I" € L} (R).

Since C¢(R) is dense in Lj  (R), therefore, for any f € L} , (R), there exists g € Cc(R)

such that
€
Hf _QHLQH(R) = 3

and

M-t

HS%,_ f*f‘ Set, (t)g — g’

O

<| +]
L (@) L, (®)

+ Hf - gHLim/(R)

LY . (R)

< 2Hf - QHL;TL(R) + Hsl]c\f[nil(t)

2¢ —1
<2 s g -,

Ly ®)

Further the relation (5.25) implies that, for sufficiently small values of ¢, we have

Subsequently, we obtain

hmHSk ) f — f’ —0.

L (R)
This completes the proof of Theorem 5.6. O

We close this section by the following statement for the semigroup (S k)n_l (t),t > 0) acting on the
Banach spaces B = L} (R) (1 <p < 00) or (Co(R), ||-]lec)-

Proposition 5.7. The operator Aﬁ{;l is closable and its closure generates the semigroup

(S%Jl(t),t > 0) acting on the Banach spaces B.

Proof. Let f € & »(R). Involving the relations (5.20) and (5.15), we observe that

SM () Id etol 31T
i, ("(t)f) )= AL,
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Thus, we derive that

t—0 b

M=ty 2
iy, (S ) )< <o 3 00 (00 ) ),

Using the injectivity of ]-",i”n on & ,(R), we infer that the generator of the semigroup
(S,i‘?n_1 (t),t> O), denoted by Oy, ,,, satisfies

SM™N (1) — Id

. k,n -1
Opnf = lim —H——— [ = oA, f.

As & »(R) is invariant under Fy ,,, we derive that &y, (R) is invariant under (S%gl(t),t > 0)
which is a strongly continuous semigroup of contractions on B. So, we observe that &y ,(R) is
subset of Oy ,. Moreover since &y, (R) is dense in B, Then by [36, Corollary 1.2.2], it follows
that Sy, (R) is a core for the generator Oy, , and the desired result is proved. O

6 Potential applications and simulation perspectives

The theoretical framework developed in this article admits several potential applications in diverse
areas of harmonic analysis, signal processing, and mathematical physics. Owing to the additional
degrees of freedom offered by the parameters of the linear canonical deformed Hankel transform
(LCDHT), the corresponding generalized translation and convolution operators introduced here

extend the analytical and practical scope of existing transform methods.

6.1 Uncertainty principles

The LCDHT provides a natural platform for establishing new variants of classical uncertainty
relations, including the Heisenberg, Donoho-Stark, and Hardy-type inequalities. By incorporating
linear canonical and deformed Hankel parameters, the LCDHT allows sharper localization bounds
in both the time and transform domains. Such results are expected to find applications in quantum
mechanics, optical tomography, and time—frequency localization theory, where precise phase—space

characterizations are essential.

6.2 Signal reconstruction

The generalized translation and convolution structures developed in this work constitute the foun-
dation for signal reconstruction and sampling theorems in the LCDHT domain. These results
facilitate the recovery of signals that are bandlimited with respect to the LCDHT rather than the

classical Fourier transform, offering significant advantages in nonuniform sampling, filter design,
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and inverse problems. Potential applications include optical field recovery, radar and sonar imag-

ing, seismic data interpretation, and medical image reconstruction, where signals often exhibit

Hankel-type or radial symmetries.

6.3 Simulation and error analysis perspectives

Although the present work is primarily theoretical, the proposed framework can be extended toward
numerical validation and simulation studies. A theoretical error analysis may focus on the stability
and convergence of the generalized translation and convolution operators under discretization or
kernel truncation. Synthetic test signals, such as Gaussian—Bessel or chirp-type functions, may be
used to verify reconstruction accuracy and energy preservation. Quantitative measures like mean
square error (MSE) and signal-to-noise ratio (SNR) would help assess computational fidelity. Such
experiments would not only corroborate the analytical findings but also demonstrate the robustness

and applicability of the LCDHT in signal reconstruction and time—frequency localization problems.

7 Conclusion and future work

In this paper, we have investigated the generalized translation and convolution operators within
the framework of the linear canonical deformed Hankel transform (LCDHT). Although the results
presented here are primarily theoretical, they have been effectively applied to the analysis of the
generalized heat equation and the associated heat semigroup. It is pertinent to mention that the
proposed transform not only unifies several existing integral transforms such as the classical and
fractional Fourier transforms, as well as the linear canonical transform in the Dunkl and Hankel
settings but also leads to the formulation of new integral transforms, including the fractional
(k,n)-generalized Fourier transform and the generalized Fresnel transform. Furthermore, building
upon the harmonic analysis developed in the earlier sections, we have explored the Gabor, wavelet,
Wigner, and wavelet multiplier transforms in the context of the LCDHT framework [18]. For future
research, we plan to extend this work by investigating additional applications in time-frequency
analysis and by developing the reproducing kernel theory associated with the LCDHT. These
directions are expected to further enrich the theoretical foundations and broaden the applicability

of this new class of integral transforms.
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RESUMEN

Este articulo presenta dos algoritmos extrapolados de tipo
Mann con viscosidad inercial para encontrar una soluciéon
comun al problema de desigualdad variacional que involucra
un operador continuo, monétono y Lipschitz y al problema
de punto fijo para una aplicaciéon semicontractiva en espacios
de Hilbert reales. Los algoritmos propuestos presentan una
estrategia de tamafnio de paso adaptativo, calculado iterati-
vamente, que evita la necesidad del conocimiento previo de
la constante de Lipschitz del operador. Bajo hipotesis apro-
piadas, establecemos dos teoremas de convergencia fuertes
que garantizan la robustez de los métodos. Més aun, entre-
gamos un analisis comparativo del desempeinio de los algorit-
mos propuestos contra algunos esquemas existentes fuerte-
mente convergentes, sobre la base de experimentos numéri-

cos con ilustraciones graficas basadas en MATLAB.

Keywords and Phrases: Subgradient extragradient method, extragradient method, Mann-like method, inertial

method, viscosity method.
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1 Introduction

Consider a real Hilbert space D equipped with the inner product (., .), and the corresponding norm
Ill, and & # E be a closed, convex subset of D. This study is devoted to the pursuit of a common
solution to problems involving variational inequalities and fixed point theory within the framework
of real Hilbert spaces. The impetus for this investigation arises from the significant role these
problems play in numerous mathematical models, where constraints are naturally formulated as
variational inequalities and/or fixed point conditions. This situation occurs especially in practical
problems, such as signal processing, composite minimization problems, optimal control problems,
and image restoration. The relevance and applicability of this framework have been well-established

in prior works [3,17,20,23,32|. Let us recall the involved problems.

The variational inequality problem associated with the operator F : D — D over the set E seeks

to determine a point v € E such that the following condition is satisfied:
(Fv,s—v) >0, VseE. (VIP)

The solution set of the (VIP) is denoted by VI(E,F). Variational inequality problems provide
a useful and indispensable tool for investigating various interesting issues emerging in many ar-
eas, such as social, physics, engineering, economics, network analysis, medical imaging, inverse
problems, transportation and much more; see, e.g., [4,12,23]. Variational inequality theory has
been proven to provide a simple, universal, and consistent structure to deal with possible prob-
lems. In the past few decades, researchers have shown tremendous interest in exploring different
extensions of variational inequality problems. Recent advancements, as evidenced in works such
as [1,10,24,28,29] underscore a growing emphasis on the development of efficient and practically
implementable numerical algorithms for addressing variational inequalities. Under fairly general
conditions, two prominent strategies have emerged for solving monotone variational inequalities:
projection-type methods and regularization-based approaches. In this study, we concentrate on
projection-type methods, with particular attention to the projection gradient method, arguably

the most straightforward among them for solving (VIP) given as:
Sn+1 = PE(Sn - 77\7'.571,);

where Pg, denotes the metric projection onto the set E and n > 0 is an appropriately chosen step

size.

It is worth emphasizing that the projected gradient method necessitates only a single projection
onto the feasible set per iteration, making it computationally appealing. However, its convergence
typically hinges on relatively strong assumptions, most notably, that the underlying operator is

either strongly monotone or inverse strongly monotone. To relax these stringent conditions, Kor-



152 Z. A. Rather & R. Ahmad CUBO

28, 1 (2026)

pelevich [15] proposed the extragradient method, originally designed to solve saddle point problems
in Euclidean spaces. The method introduces an additional intermediate step to enhance conver-
gence properties under weaker assumptions. The iterative scheme of the extragradient method is
given by:

tn = Pr(sn — nFsn),
" " ) (1.1)
Sn+1 = Pr(sn — nFty),
where operator F is assumed to be monotone and L-Lipschitz continuous, Pg represents the metric

projection from D onto F, and n € (0,1/L). It is established that the sequence {s,,} produced by
the process (1.1) converges to an element in VI(E,F).

It is essential to recognize that solving the shortest distance problem is equivalent to computing
the metric projection onto a closed convex set E. As previously noted, the extragradient method
involves two projections onto F in each iteration. While effective, this requirement can pose sig-
nificant computational challenges, particularly when FE is a general closed and convex set with
a complex structure. To mitigate this issue, Censor et al. [9] introduced the subgradient extra-
gradient method as a refinement of the original extragradient algorithm. The key innovation in
this approach lies in replacing the second projection onto E with a projection onto a carefully
constructed half-space. This modification is advantageous because projecting onto a half-space is

computationally explicit and significantly simpler. The modified algorithm is formulated as follows:

tn, = Pr(sn —nFsn),
T, = {s € D|{sy, — nF sy — tn,s — t,) <0}, (1.2)
Sn+1 = PT,L <Sn - 77~7:tn)7
The sequence {s,} produced by (1.2) converges weakly to a solution of the variational inequality
in this case where VI(E, F) # @.

On the other hand, the fixed point problem plays a pivotal role in the theory and solution of
variational inequalities. Let S : E — E be a nonlinear mapping. A point s € D is called a fixed
point of the mapping S if it satisfies the condition Ss = s. The set of all fixed points of S is
denoted as Fiz(S). The fixed point problem is formulated as follows:

find v € E'such that Sv = v. (FPP)

The principal objective of this paper is to determine a common solution to both the (VIP) and

the (FPP). Specifically, the goal is to find a point v such that

v € VI(E,F) N Fiz(S). (VIFPP)
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A wide range of numerical algorithms have been developed to tackle the combined variational
inequality and fixed point problem (VIFPP) in infinite-dimensional spaces as documented in [6,
7,11, 36], and the references therein. Notably, Takahashi and Toyoda [26] proposed an iterative

scheme for approximating a solution to the (VIFPP) which is described as follows:

Sp+1 = (1 - Cn)sn + CnSPE(Sn - 7771]:511)’ (1'3)

where F : E — D is p-inverse strongly monotone, S : E — E is nonexpansive, ¢, € (0,1) is a
control sequence, 1, > 0 is a stepsize parameter, Pg denotes the metric projection onto the convex
set E. They proved {s,} generated by (1.3) converges weakly to a solution of (VIFPP) under
certain conditions. More recently, Censor et al. [8] established the following iterative scheme and

proved its weak convergence to the solution of the (VIFPP),

tn = PE(Sn - 77]:511)’
T, = {s € D|{sy, — nFsy —tn,s — tn) <0}, (1.4)
Sp+1 = Cnsn + (1 - Cn)SPTn (Sn - 77]:tn)

In the context of infinite-dimensional Hilbert spaces, strong (norm) convergence is generally more
desirable than weak convergence, particularly for practical applications. To ensure strong conver-
gence when solving the combined (VIFPP), Kraikaew and Saejung [16] introduced the Halpern Sub-
gradient Extragradient Method (HSEGM). This method integrates the Halpern iteration scheme
with the subgradient extragradient framework, providing a robust approach for approximating

common solutions to variational inequality and fixed point problems, which is described as:

ly = PE(STL - 77]:571)7
T, = {3 € D|<sn —NFSsy —ln,s— tn> < 0},

Up = Cuso + (1 = Go)Pr, (50 — nFty),

(HSEGM)

Snt1 = Tndn + (1 — 7)) Sty

They proved that the sequence {s,} generated by the (HSEGM) converges strongly to
Pvinriz(s)(S0), the metric projection of the initial point sy onto the set of common solutions of

the variational inequality and fixed point problems.

Recently, Thong and Hieu [34] proposed the Modified Subgradient Extragradient Method (MSEGM)
by integrating the subgradient extragradient technique with the Mann-type iteration scheme. The
primary objective of this algorithm is to identify common solution elements belonging to both the

solution set of the variational inequality problem (VIP) and the fixed point set of a demicontractive
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mapping. The algorithm is formally outlined as follows:

tn = Pr(sn —nFsn),

T = {5 € D|(sn — nFsn — tn, s — tn) <0}, (MSEGM)

Up = ,PTn,(Sn - U]:tn)7

Sn4+1 = (]- - Cn - Tn)un + Tnsun»

They proved its strong convergence to an element v € VI(E, F) N Fixz(S), where ||v]| = min{||u] :
ue VI(E,F)n Fiz(S)}.

A notable limitation of both the (HSEGM) and (MSEGM) algorithms is their reliance on prior
knowledge of the Lipschitz constant of the mapping F. However, in many practical situations, this
information is either unavailable or difficult to estimate accurately. To address this issue, Thong
and Hieu [35] proposed two extragradient-viscosity algorithms, designed to solve the combined
(VIFPP) without requiring the Lipschitz constant. Their approach incorporates an adaptive step-

size rule, allowing automatic updates at each iteration. The algorithms are formulated as follows:

tn = PE(Sn - nnfsn)a
T, =1{s € D|(sp, — M FS$n —tn,s —tn) <0},
{ [($n =7 ) < 0} (VSEGM)
Up = PT,L(Sn - nnftn)v
8n+1 - an(sn) + (1 - Cn)[(l - Tn)un + Tnsun]v
and
tn == PE'(Sn - nnfsn)a
tn = tn — T (Flo — Fsn), (VTEGM)

Snt1 = (T (8n) + (1 = C)[(1 — m)un + 7 Sunl,

where algorithms (VSEGM) and (VTEGM) update the step size {n,} by the following rule:

min{ V||sn — tal
N1 = [ Fsn = Ftull

Mns otherwise,

The sequences produced by (VTEGM) and (VTEGM) converges strongly under mild assumptions
to ¢ € Fix(S)NVI(E,F), where ¢ = Priys)nvie,r) (T (q))-

In recent years, fast iterative algorithms have attracted considerable interest, especially those
employing inertial techniques inspired by discrete analogues of second-order dissipative dynamical
systems [2,19]. These inertial methods accelerate convergence by incorporating momentum-like

terms into the iterative process. Leveraging this framework, Tan et al. [33] proposed the following
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inertial algorithm for solving the combined variational inequality and fixed point problem (VIFPP)

Wy, = Sp 4+ Kn(Sn — Sn—1),

tn, = Pr(w, — npFwy),

T, = {s € D|(wy, — MFwy — tn,s —t,) <0}, (IVSEGM)
Un, = Pr, (W, — 0 Fin),

Snt1 = G (5n) + (1 = G)[(1 — 7)) upn + 7o Suy),

where the step size {K,} and {n,} are updated by the following rules:

min {6" IC} , if sp # Sp_1,
ICn = Hsn

- 5n71||7
K, otherwise,
and
—t
min {Vsnnlmn} , if Fs, — Ft, #0,
i1 = [ Fsn — Ftall

s otherwise.

Recently, Mewomo et al. [18] integrated the inertial, viscosity, and Tseng’s approaches and intro-
duced two Generalized Viscosity Inertial Tseng Methods (GVITMs) for solving pseudomonotone

variational inequalities with fixed point constraints, formulated as follows:

Wy, = Sp + 6n(3n - 37L—1)7
tn - PC(wn - ’Ynfwn)a
Zn =ty — Yn(Ftn — Fwy,), (GVITM)

m
Up = ﬁn,Ozn + Eizl ﬁn,ivn,iy Uni € Siz’m

Sn+1 = an")/j(wn) + (I - anG)Una
where §,, and ~,, are updated by (1.5) and (1.6), respectively.

min{ena6}7 if 5n7é8n—17
Op = [0 — sn—1l| (1.5)

6, otherwise,

min{ Pllwn — tn ||
I | Fw, — Ftn|

Yn + On,s otherwise,

ﬁn—l—(;ﬁn}, if Fw,, — Ft, #0,
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and

Wp, = Sp, + (Sn(sn - Snfl)y
th = PC(wn - anwwn),

m
Up = Bn,OZn + Zi:l ﬁn,ivn,h Un,,i S Sizna

Sp+1 = anfyj(wn) + (I - anG)una

where §,, and ~,, are updated by (1.5) and (1.7), respectively.

. { Bllwn — tal
s [Vwn — Vit

Tn + Pns otherwise.

» In + ¢n} ) if wan - van 7& 0,
(1.7)

where § > 0, 71 > 0, ¢, is a nonnegative sequence such that Y -, ¢, < +oo, and ¢ € (0,1).
The authors established strong convergence results for the sequences generated by (GVITM;) and
(GVITMyp) without imposing the sequential weak continuity of the pseudomonotone operator and

without requiring prior knowledge of the Lipschitz constants.

Recently, Kesornprom et al. [14] proposed a new variant of the proximal gradient algorithm
incorporating double inertial extrapolation for solving constrained convex minimization problems

in Hilbert spaces, formulated as follows:

2" =5" 0, (s" — s 4 (s =", n>1,

s"H = Pp(proza, (2" — a,Vf(z"))),

where
in [ o A P I )
IVf(zn) = V(proza, (z" —a V)" )
Qnt1 = it Vf(z") = Vf(proza, (z" — a,Vf(z"))) # 0,

Qn, otherwise.
where 6,, > 0, n, > 0, aqg > 0 and ¢ € (0, %) They established the weak convergence of the
proposed method to a point in argmin(f + ¢g) N E. For an extensive discussion on fast iterative al-
gorithms and their recent advancements, the reader may consult [21,25,31,38,39] and the references

therein.

Motivated and inspired by existing studies in this area, the purpose of this paper is to develop two
inertial extragradient algorithms that combine the Mann iteration, viscosity approximation, and
subgradient extragradient methods with a new step size for discovering a common solution of a

monotone and Lipschitz variational inequality problem and of the fixed point problem involving a
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demicontractive mapping in real Hilbert spaces. The suggested algorithms need to calculate the
projection on the feasible set only once per iteration, which makes them faster. Strong convergence
theorems of the algorithms are established without the prior information of the Lipschitz constant
of the operator. Lastly, some computational tests appearing in finite and infinite dimensions are

proposed to support the theoretical results.

The organizational structure of our paper is built up as follows. In Section 2, we recall some
preliminary results and lemmas that need to be used in the next section. In Section 3, we propose
the algorithms and analyse their convergence. Some numerical experiments to verify our theoretical
results are presented in Section 4. At last, the paper ends with a brief summary in Section 5, the

final section.

2 Preliminaries

Consider @ # E (closed, convex) subset of a real Hilbert space D. The weak convergence and
strong convergence of the sequence {s,} to s are denoted as s,, — s and s,, — s, respectively. For

any s,t € D and ¢ € R the following statements hold:
(@) s+l = lIsl* + 2(s, ) + [I]|*.
(i) fls+¢ll* < lIsll* +2(t, s + 1)

(i) [I¢s + (1= Otl* = Cllsl* + (1 = Ollt* = ¢ = )l s — ¢

For any point s € D, there exists a distinct nearest point in the closed and convex subset F identified
as Pp(s) satisfying Pg(s) = argmin{||s — t||,t € E}. Pg is termed as the metric projection of
D onto E. It is established that Pg is a nonexpansive mapping and it possesses the following

fundamental properties:

(i) (s —Pg(s),t —Pg(s)) <0,Vt € E.
(ii) |Pe(s) — Pe(t)||> < (Pr(s) — Pr(t),s —t), ¥t € D.

Definition 2.1 ([27]). A mapping A: D — D is said to be:

(i) L-Lipschitz continuous with £ > 0 if

| As — At|| < L||s —t||, Vs,te€D.

(ii) C-strongly monotone if there exists ¢ > 0 such that

(As — At,s —t) > (s — t||*, Vs, t€D.
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(iii) C-inverse strongly monotone if there exists ¢ > 0 such that

(As — At,s — t) > (|| As — At|?, Vs, t€D.

CUBO

28, 1 (2026)

Remark 2.2 ([5]). if A: D — D be an injective operator so that A~' is well defined, then:

(a) If A is C-strongly monotone, then its inverse A~1 is (-inverse strongly monotone.

(b) If A is C-inverse strongly monotone, then its inverse A~1 is (-strongly monotone.

(iv) monotone if

(As — At,s —t) >0, Vs, teD.
(v) quasi-nonexpansive if

|As —ul| < ||s—tll, Yu€ Fiz(A), seD.

(vi) p-strictly pseudocontractive with 0 < p < 1 if

[ As — At <[|s — t]]* + ul|(I = A)s — (I — A)t||*, Vs, t€D.

(vii) T-demicontractive with 0 < 7 < 1 4f

| As —ul|® < ||ls —ul]® +7||(I — A)s||?, VYue€ Fiz(A), seD.

or equivalently

T—1
2

(As —s,8 —u) < s — As||?, Vue Fiz(A), secD.

(2.1)

(2.2)

Definition 2.3 ([37]). If A: D — D is a nonlinear operator with Fix(A) # &. Then, I — A is

said to be demiclosed at zero if for any {s,} in D, the following implications holds:

sp = s and (I — A)s, =0 = s e Fiz(A).

Lemma 2.4 ([33]). Consider S : D — D as a T-demicontractive operator with Fiz(S) # @. Let

Sy =1 —p)I+ uS, where p € (0,1 —71). Then:
(i) Fiz(S) = Fiz(S,).
(i) |Sus —ull® < |ls —ull*> = u(l =7 — p)||(I = S)s||?, Vs € D, u € Fiz(S).

(i) Fix(S) is a closed convex subset of D.
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Lemma 2.5 ([16]). Consider F : D — D as a monotone and L-Lipschitz continuous mapping on
E. Let S = Pg(I—vF), wherev > 0. If s, is a sequence in D such that s, — q and s, —Ss, — 0,
then it follows that ¢ € VI(E,F) = Fiz(S).

Lemma 2.6 ([22]). Consider a positive sequence {r,}, a sequence of real numbers {b,} and a

sequence {ay,} in the interval (0,1) such that > > | a, = oo. Assuming
Tl < apby, + (L —ap)rp, Yn>1

If limsupb,, < 0 for every subsequence {ryn,} of {rn} satisfying Uminf(r,,+1 — rn,) > 0, then
k—o0 ) k—o0 ’

lim r, = 0.

n—oo

3 Main result

This section presents two inertial extragradient algorithms that are specifically designed to solve
(VIFPP), and provides a convergence analysis of them. We first assume that the following condi-

tions are met by the suggested algorithms.

(A1) Fiz(S)NVI(E,F) # @.
(A2) F:D — D is monotone and L£-Lipschitz continuous.
(A3) §:D — D is p-demicontractive such that (I — S) is demiclosed at zero.

(A4) J : D — D is Q-contraction with constant Q € [0, 1).

3.1 Algorithm-I

Algorithm 3.1 Algorithm-I

Initialization: Choose K >0, n; > 0, and v € (0,1).
Select arbitrary sg and s; from D.

Iterative step:

Step 1. Given the iterates s,—1 and s, (for n > 1), set

Wy = Sp + ICn(Sn - Sn71)>

where 5

min {|S—7;1’K} y if sp # sp—1;
n n—

K, otherwise.

Kn =

Step 2. Compute
tn = PE'(wn - nnfwn)-
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Algorithm 3.1 Algorithm-I
Step 3. Compute

Up = PTn (wn - nnftn)v
where the half-space T;, is defined by
Tn:={s €D | {(wy — pFwn —tn,s —t,) <0}

Step 4. Compute

$nt1 = GuJ (s8n) + (1 = Cn) [(1 —In — Tn)un —+ Tnsun}

and update
vijw, —ta|

mny ——— 0, ¢, if Fw, — Ft 0;
41 = { H]:w’ﬂ - ]:tn” n”} " " 7&
s otherwise.

(3.2)

Set n:=mn+1 and go to Step 1.

The subsequent lemmas prove to be valuable for analyzing the convergence of the algorithm.

Lemma 3.1 ([33]). The sequence {n,} produced by (3.2) is a nonincreasing sequence and

. . v
lim n, =7 > mln{nhz}.

n—oo

Lemma 3.2 ([30]). Assume that condition (A2) holds. Let {u,} be a sequence produced by
Algorithm 8.1, then

ltm = ]2 < [l — ol - (1u o )|tnwn||2 <1u i )nuntnn? (3.3)
n Mn+1

n+1 n+
forallve VI(E,F).

Theorem 3.3. Under the fulfillment of Conditions (A1)-(A4), {0,} be a positive sequence such
that lim,, o % =0, where ¢, C (0,1) satisfies fozl (n = 00 and limy, o (, = 0. Furthermore,
for some a > 0, b > 0, v, € (0,1), lim, y007n = 0, and Zf;oﬁyn = oo, let 7, € (a,b) C
(0,(1 — u)(1 — vn)), then the sequence {sn} produced by Algorithm 3.1 converges in norm to v €
Fix(S)NVI(E,F), where v = Priys)nvie,r) (T (v)).

Proof. Since VI(E,F) is a closed convex subset, and by Lemma 2.4, Fiz(S) is also a closed convex
subset. Therefore, the mapping Prizs)nvi(e,7)(J) : D — D forms a contraction. By applying the
Banach contraction principle, there exists a unique point v € D such that v = Ppizs)nvie,F) (T)-
Specifically, v € Fiz(S)NVI(E,F), and

(JW) —v,u—v) <0, VYu€ Fiz(S)NVI(E,F).

The proof is split up into four sections.



Inertial viscosity Mann-type subgradient extragradient algorithms... 161

Claim 1. {s,} is a bounded sequence. Put, ¢, = (1 — v, — 7 )up, + 7Sy, we have

ltn — vl = [[(1 = Y0 — T)tUn + TuSun — 0|
= |(1 = vn = 7n) (un — v) + 70 (Sun — v) — 10|

= [|(1 = vn — ) (Un — ) + T (Stn — V)[| + [[7n0]|- (3.4)
Additionally, it can be deduced from (2.1), (2.2), and Lemma 3.2 that

(1= vn — 7)(un — v) + 7o (Sun — v)H2 == Tn)QH(Un - U)||2
+2(1 — v — )T (Sup, — v, u, — ) + TﬁHSun - vH2
e R Tn)2||(un - U)”Q

+2(1 =y — T)Tn ”Un*UHz* ”Un*SUnH2

I—p
2
+ 70 [llun = of* + pllun — Sun?]

=(1- 'Yn)QHUn - U”2 + 7o (Tn — (1= v0) (1 — ) [Jun — SunHz

<(1- ’Yn)QHUn - 'U||2 <(1- 77L>2||wn - UH2
signifying that

1= = )t = 0) + 7St — ) < (1= 7)1 — o] (3.5)
By the definition of w,,, we obtain

n

Cn

[wn = vl = lIsn + Kn(sn — sn—1) = v[| < |80 — 0| + a [0 — sn—1]l-

From (3.1), it can be deduced that

lim —|/s, — $n—1] = 0.
n—o0 (p,

This result holds true, since Iy, ||, — $p—1]] < d,, for all n > 1. Moreover, considering the

limit lim g—" =0, it follows that
n—00 5n

lim ||s,, — sp_1]| < lim = = 0.
n—00 n—o0 (;,

Therefore, there exists a constant M, > 0 such that

%Ilsn —sn_1l| S M., Vn>1. (3.6)
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Thus utilizing above, we get
[wn =l < llsn — vl + (uM.. (3.7)
which in turn implies
[ =9 = 70) (un = v) + 70 (Stn — V)| < [|sn — v]| + M.

Referring to (3.4), we obtain

’YﬂJ

ltw = 0]l < 15 — vl + G [M* i
Cn

o] < = ol + G0, (3.5)
where | M, + Z—:HUH} < M for some M > 0. Now,

[$n1 = vll < 6T (50) + (1 = Ca)nin — ||
< GllT (5n) = T @) + Gall T (0) = vl + (1 = Ga)[tn — 0|
< G Qllsn — vl + Gl T (v) = vll + (1 = G)llsn — vl + ¢ M
= (1 =Gl = Q)llsn — vl + CulllT (v) = v[| + M)

_ M - M
MO < - o, =AY,

< max{sn — ||
This implies that the sequence {s,} is bounded. Consequently, the sequences {wy,}, J(sy),
{tn}, and {u,} are also bounded.

Claim 2.

(1-¢) (1 - ”) = wall? + (1= o) (1 - ”) ot — £
TNn+1 Nn+1

n n

+ (1 - Cn)rn[(l — ) — Tnmun — Suy,||
< Hsn - 'UHQ - ||3n+1 - U”2 + (n”j(sn) - UH2 + Mk + (1 - Cn)'YnM***

Since from (3.7),

”wn*v”2 < (||5n7vH+<n./\/l*)2 = ||5n*v||2+<n (QM*”SH - U” + CnMi) < ||5n*vH2+CnM**v
(3.9)
for some M,, > 0.

Isns1 = vll* = 16 (T (50) =) +(1=Ca) (ta =0)I* < CullT (30) =v]|*+ (1= ) [t —v]|*. (3.10)
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Now,

[tn — v”? = |(1 = vn — Tn)un + 7 Supn — U”2 = |[(un — v) + T (Sun — un) — 'Ynun||2
< [ (un = v) + 7o (Sun — “n)”2 = 29 (Un, N — V)
= |Jt, — v||? + T2SUn — un||* + 270 (Stpn — Un, Un — V) + 275 (U, 0 — M)

It follows from Lemma(2.4),

[tn =0l < llun =0l + 72 1Sun = un|* = 70 (1 = ) [t — Stunl|* + 275 (tn, v = 1)

< Jlwn — U||2 + Talmn — (1= w)]llun — SUnH2 + T Mois. (3.11)
for some M. > 0, from (3.10)

8011 = ol|* < Gall T (s0) — ]|
(1—¢n) [”wn - UH2 + Tl — (1 = p)]flun — Sun”2 + VHM***]
< GullT (sn _U||2+||5n _UHQ"'CH

)
=) (1—u )nt Cwal? (1= G (1—u o )lun—tnw
Tin+1

By a straightforward manipulation, we attain the desired result.
Claim 3.

(1 - Cn)CnN + 2<~7(U) — U, Sn41 — v>

Isns1—vl* = (1= (1= Q)¢a)lIsn —vl* +Ca(1- Q) -0

Since by (3.8),
e = lI* < [llsn = ol + M) = [lsn = 0] + GEM? + 26 (M, 50 — ) < [lsn — 0> + G,
where M? + %<M,Sn —v) <N for some N > 0.

Isn+1 = vll* = 16T (50) + (1 = Ca)tn — v||®
= 6T (sn) = T (v)) + (1 = ) (tn = v) + Ca(T (v) = V) |I?
<16 (T (30) = T (0)) + (1 = Ca)(tn = 0)[I* + 26 (T (v) = v, 841 — )
< GnQlisn — vl® + (1= Ga)lltn = v]|* + 26T (v) = v, 5041 — V)
< GnQlisn = ol* + (1= Ga) [llsn = 01> + GNT + 26 (T (v) = v, 8041 — 0)

(1= Cn)CaN +2(T(v) — v, 8p11 — V)

=1~ (1= Q)llsn —vl* + ¢l - Q) -0
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Claim 4. The sequence ||s,, — v||?> converges to zero. In fact, using Lemma 2.6, it is sufficient to
show that for each subsequence ||s,, — v|| of ||s,, — v|| satisfying lim sup(J (v) —v, $p+1—v) <
k—o0
0 with

lim inf(||sp,+1 — v|| = ||Sn, — v]|) > 0. (3.12)
k— o0

We assume that ||s,, — v|| is a subsequence of ||s, —v||, such that (3.12) holds, for the

purposes of this analysis. Next,

timinf (|lsn, 1= 02 = s, = 0])

= liminf [([|sn+1 =l = lIsn. = v)(lsn.+1 = vll + [lsne —vl))] 2 0.

Based on Claim 2, we have,

limsup(l — Cuy) (1 - ”) e — w2 4 (1= o) (1 - ”) ety — te |2

k—o0 Nne+1 Mg +1
+ (1 - an)Tnk[(]‘ - H’) - Tnk]Hunk - Sunk ”

< limsup [[[sn, — vl = [snp+1 = v1* + Gap 1T (50,) — 0l
k—o0

= —liminf [[lsn, 41— v[* = [[sn, —v]?]
k— o0
signifying that
lim f[wn, —tp[| = 0, lim [jup, — St || =0, [[un, = tn ]| = 0. (3.13)
k— o0 k— o0
Therefore, we can infer that klim [|ttn,, —wn, || = 0. Referring to the definition of w,,, we have
—00
— — IC”A k
”Snk — Wn,, ” - ]an ||8nk — Snpa ” - an (: Hsnk — Snpa ” —+0as k — oo. (314)
ng
This in conjunction with lim ||u,, — w,, || =0, implies that
k—o00
lim ||tn, — S, || = 0. (3.15)
k—o00

Considering t,,, = (1 — Vn,, — Tny, )Un, + Tny, Stn,, it is evident that

”tmc — Uny, | < TnH(SUn - u"k)” + 'Vn”unk [

Hence, we obtain

[ty — tn, |l = 0. (3.16)
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By using (3.15) and (3.16), we can deduce that

||8nk+1 - snk” < chkj(snk) + (1 - an)tnk - snkH
< an”j(snk) - snk” + (1 - an)thk - Snk”

< C"k”j(snk) - SnkH + ||t"k - unkH + ||u"k - Snk” —0as k — oo. (317>

Given that the sequence {s,, } is bounded, it can be inferred that there exists a subsequence

{snk]‘} of {sp, } such that $n,, — u. This further implies that

lim sup(J (v) — v, 8, — v) = lim (T (v) — v, Sy, — v) = (T (v) —v,u —v). (3.18)

k—o0 J—roo

From (3.14), it follows that w,, — w. Combining (3.13), nan;Onn =7 and Lemma 2.5, one
can conclude that v € VI(E, F). Utilizing (3.15), we have u,, — u. By the demiclosedness
of (I —S8), we obtain u € Fiz(S). Consequently, u € Fiz(S)NVI(E,F). Combining (3.18),
the definition of v and w € Fiz(S) N VI(E, F), we obtain

lim sup(J (v) — v, 8, — v) = (T (v) —v,u —v) <0, (3.19)

k—o0

which in conjunction with (3.19) and (3.18), implies that

lim sup(J (v) — v, Sp,.+1 — v) < limsup(T (v) — v, Sp,+1 — Sn,) + limsup(J (v) — v, s, — V)
k— o0 k—o0 k—o0

=(J(w) —v,u—v) <0 (3.20)

Therefore (3.20) and Claim 3 in the light of Lemma 2.6 indicates that s, — v as n — oco. Thus,
completes the proof. O

Specifically, we may design a new algorithm for (VIP) if § = I (identity operator) in Algorithm

3.1. To be more exact, we have the corollary that follows:

Corollary 3.4. If F : D — D is Lipschitz continuous, monotone and J : D — D is a Q-
contraction with Q € [0,1). If the sequences ¥n, Cn, and 7, be same as in Theorem 3.3 and if

VI(E,F) #+ @, let so,s1 € D and let the sequence {s,} be generated by

Wy, = Sn + Kn(Sn — Sn—1),

tn, = Pe(wy, — nnFwy),

Uy = Pr, (Wy, — N Ftn), where the half-space Ty, is defined by (3.21)
T, = {s € D|{(wy, — N Fwy, — tn,s — tn,) <0},

snt1 = Cnd (sn) + (1= Gu) (1 =y )un),
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where ICp, and n, are defined by (3.1) and (3.2), respectively. Then the iterative sequence {sp}
generated by (3.21) converges to v € VI(E, F) in norm, where v = Py g 7 (T (v)).

3.2 Algorithm-11

Algorithm 3.2 Algorithm-II

Initialization: Choose K > 0,7 > 0,v € (0,1). Let sg, s1 € D be arbitrary.

Iterative step: Calculate s, 41 as follows:

Step 1. Given the iterates s,_1 and s,(n > 1). Set w, = s, + Kn(sn — $Sp—1), where K, is
defined by (3.1).

Step 2. Compute t, = Pg(w, — npFwy).

Step 3. Compute u,, = Pr, (w, — npFty,), where the half-space T;, is defined by

T, :={s€D|(wy — Fwy —tyn,s—t,) <0}

Step 4. Compute sp11 = (T () + (1 — G)[(1 — 7)) (Ynun) + ThSuy], and update 7,41 by
(3.2).
Set n:=mn+1 and go to Step 1.

Theorem 3.5. Let conditions (A1)-(A4) holds and {0,,} be a positive sequence with limy, % =
0, where ¢, C (0,1) satisfies > > | = 00 and limy,_,oo (, = 0. Furthermore, for some a > 0,

€ (0,1), limyoovn =1, and 307 (1 —v,) = 00, let 7, € (a,%) C (a,1 — ), then

the sequence {s,} produced by Algorithm 3.2 converges in norm to v € Fix(S)NVI(E,F), where

v = Priz(s)nvie,r)J (V).

Proof. Claim 1. The sequence s,, is bounded. Define t, = (1 — 7,) (Yntn) + 70 Sty.

[t — vl = (1 = 7o) (yntn) + TaSun — |
<A =)y (un = v) + 70 (Sup —v)[[ + (1 = 7) (1 = 7) |0 (3.22)

On the other hand,

11 = )7 (tn, = 0) + T (Sun = )2 (1 = 7)) ?[lun — ol + 73 [ Sup — v]|?

(
2(1 = 7)Y Tn (Stty, — v, Uy, — v)

IN +

(1 = 7)Y + 70)” [Jtin — v]|?
Tn (/”—" - (1 - :u)(l - Tn)'Yn) ||Sun - un||2
(1 = 7)Y + 70) Jun — | (3.23)

IN +

we obtained the above inequality because 7, < ————.
2+ p+Tn
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Thus it is implied from (3.23) that

(1 = 7))y (un — v) + 70 (Sun — V)| < (1 = 70)¥n + 70) [[un — 0|
<@ =1=7)d =) lun — vl
<1 =1 =7)1 =) lwn =2

< (]- - (1 - Tn)(]- - P)/n)) [Hsn - UH + CnM*] . (324)
From (3.22), we have
[tn — ol < (1 =1 =70)(X =) [llsn = vl + M) + (1 = 7) (1 = ) [0

S (@ =@=7)d =) lIsn = vl + M + (1 = 7)) (1 = 7)) |||
=1 =1 =7)1 =) llsn — 2|

=m0 [ + el
M. il
< max {5, = ol S ol | = M

for some M* > 0, hence

Isn41 —vll = [|GoT (50) + (1 = Cp)tn — ||
< GllT(5n) = T @) + Gl T (v) = vl + (1 = Ga) [t — 0]
< G Qllsn — vl + Gl T (v) — vl + (1 = Cu)M™

T f"gn MOE v||]

17(0) o]l Qs —v||}

= CnQHSn _UH + (1 - Cn) M* +

Cn
<. < maX{M*, QHSO _'UH}'

gmaX{M*—i—

Which ensures the boundedness of {s,}, so the sequences {w,}, {J(sn)}, {tn}, and {u,}

are also bounded.

Claim 2.

1-¢) (1—y fin >||tn—wn||+(1—Cn) <1—1/ fin >||un—tn|
Tin+1

Nn+1 n
+ (1= G)mn(l —p — Tn)HS“n - un”2
<lsn = 0ll* = llsns1 — oll* + Gl T (sn) = vl + (1 = ) M** + ¢ M**.

ltn — U”2 = (1 = 7)) (Ynun) + T0Sun — U”2
= [[(un = v) + T (Sun — un) — (1 = 7,)(1 = 'Yn)un”Q

< [(un —v) + 7o (Sun — un)H2 = 2(1 = 7)) (1 = 7 ) Uy M — )
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= |lwn — v||* + 72||Stpn — un||* + 270 (St — Un, Uy — V) —
2(1 = 7) (1 = ) (tt, . — 0)
< lun = 0] + 2 l1Sun = wnll* = (1 = 1) | St —
= 2(1 = 7)1 = ¥ ) (tom; M — )
= Jlup — 0l = 70 (L = = 7) [ St — |
=201 = 7)1 = 0 ) (U, 0 — v)
< lun = v)|* = 70 (1 = = 1) [Stun — wp||* + (1 = ) M**
for some M** > (0. Now,
Isn+1 = vlI* = 1Ga(T (s0) = v) + (1 = Ca)(tn — v)|1?
< Gall T (sn) = vl + (1 = Ga)lltn — vl
< Gall T (sn) = vl* + s — ol + GuM***

. . . n _ _ _ B Mn _
a <n>(1 - )m ol - (1 <n>(1 - +1)un bl

n+1 n

— (1= )1 — pp— 7)) || S — un||2 + (1 =) M™.

Hence, by simple deformation, we obtain the desired result.

Claim 3.

[$n41 = ol* = (1 = (1 = Q)Ga)llsn — v]?
(1 B <77,)<71,M* + 2<\7(U) —U,Spn+1 — U>
1-9

+ Cn(l - Q)

By using the identical reasons as in Claim 3 of Theorem 3.3, the required result can be

produced.

Claim 4. Sequence {||s, — v||?*} converges to zero. We do not include the proof here because it is

comparable to Claim 4 of Theorem 3.3. O

The following Corollary will be obtained if we put S = I in Algorithm 3.2.

Corollary 3.6. Consider F,J as in Corollary 3.4 and let (p,, Vn, Tn be same as in Theorem 3.5.
Then the sequence {sy} with so,s1 € D generated by (3.25)

Wy, = 5 + Kn(Sp — 8n-1),

tn, = Pe(wy, — nnFwy),

Uy, = Pr, (W, — nnFty), where the half-space T, is defined by (3.25)
Ty = {s € Dl {wn — npFwy —tn,s —t,) < 0},

Sn+1 = an(Sn) + (1 - Cn)('—)/nun + Tn(l - 'Yn)un)y
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converges to v € VI(E, F) in norm, where v = Py g ) (T (v)). where KC,, and n, are defined by
(3.1) and (3.2), respectively.

4 Numerical example

In this section, we provide a numerical example to illustrate the behavior of the proposed algorithms

and compare them with some existing strongly convergent algorithms. The parameters are set as

follows: ¢, = %H’ Tn = 2051 Tn = s0ng1 = 1, v = 0.5, J(s) =0.5s, K =0.3, 4, = (nlf%z.
The solution s* is known, so we use D,, = ||s, — s*|| to measure the n-th iteration error and

convergence of D,, to 0 indicates that {s,} converges to the problem’s solution.

Example 4.1. We take the nonlinear operator F : R?> — R? defined by F(s,t) = (s+t-+sins, —s+
t +sins), feasible set E = [—1,1] x [-1,1]. Clearly F is monotone and Lipschitz continuous with
1 0
0 2

Su = ||F||"' Fu, where u = (s,t)T. It is obvious to see that S is 0-demicontractive and thus T = 0.

constant L = 3 and let the matrix F = We consider the mapping S : R?> = R? by

The solution of the problem is s* = (0,0)T. The initial values s = s1 are randomly generated by
kxrand(2,1) in MATLAB. The numerical results of all the algorithms with different initial values
are described in Figures (Figure 1, Figure 2, Figure 3, Figure /).

56 Numerical Result of Algorithms Numerical Result of Algorithms

—#—alg1 —#—alg1
18} —¥—alg2 | ot —¥—alg2 ]
—¥— |VSEGM —¥—|VSEGM
—#— VSEGM —#— VSEGM
16+ —%— HSEGM | 8t —#— HSEGM | -

=8|

n

D, =lls

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Iteration Iteration(n)

Figure 1: The convergence graphs of {D,, = ||s,, — s*||} vs iteration (n = 40).
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Numerical Result of Algorithms Numerical Result of Algorithms

25 T 25 v
—#—alg1 *—alg1
—¥—alg2 —¥—alg2
—%— [VSEGM —*— IVSEGM
—%— VSEGM —%— VSEGM
20+ —#—HSEGM | - 20+ —#—HSEGM | -
= 151 1 — 15} :
‘o )
I: ‘r:
2 2
n n
c c
[a) o 4ot ]
5t ]
0 B
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration(n)
Figure 2: The convergence graphs of {D,, = ||s,, — s*||} vs iteration (n = 30).
= Numerical Result of Algorithms - Numerical Result of Algorithms
10 T T T T 10 T T T T
—#—alg1 *—alg1
—¥—alg2 —¥—alg2
100+ —*—VSEGM| | 100f —*— VSEGM| |
—%— VSEGM —%— VSEGM
—#— HSEGM —#— HSEGM
10-50 - 4 10-50 L 4
— 10-100 F 4 — 10-100 t 4
‘o ‘o
‘: Ic
2 2
I 10~150 k- 4 M 10—1511 2 4
- -
o o
10-200 F 4 10-200 = 4
10'250 F 4 107250 - 4
10730 - 1 107300 1
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Elapsed Time [sec] Elapsed Time [sec]

Figure 3: The Elapsed time graph of the sequence {D,, = ||s,, — s*||} with initial values so = 1 =
30rand(2,1) and n = 300



CUBO

e T 20200 Inertial viscosity Mann-type subgradient extragradient algorithms... 171
. Numerical Result of Algorithms - Numerical Result of Algorithms
10 T T T T T 10 T T T T T
—#—alg1 —#—alg1
—*—alg2 —%—alg2
100+ —%—IVSEGM| | 100f —%—IVSEGM
—%— VSEGM —#%— VSEGM
—#— HSEGM —#— HSEGM
10—50 - 4 10—50 =
= 10~100 . 4 = 10-100 L
[} %]
Iy @
'E' 10~150 T 10—1’0
o a
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10-300 - 4 10»300 -
0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5

Elapsed Time [sec] Elapsed Time [sec]

Figure 4: The Elapsed time graph of the sequence {D,, = ||s, — s*||} with initial values so = s1 =
40rand(2,1) and n = 250.

Example 4.2. Consider the linear operator F : R™ — R™ (m = 50,100,150,200) in the form
F(s) = Ms+q, whereq € R™ and M = NNT +Q+D, N is a m xm matriz, Q is a m x m skew-
symmetric matriz, and D is a m X m diagonal matrixz with its diagonal entries being nonnegative
(hence M is positive symmetric definite). The feasible set E is given by E = {s € R™ : -2 < s; <
5,6 =1,...,m}. It is clear that F is monotone and Lipschitz continuous with constant L = ||M]||.
In this experiment, all entries of N, D are generated randomly in [0,2], Q is generated randomly
n[—2,2] and g =0. Let S : D — D be given by Ss = 0.5s. It is easy to see that the solution of the
problem in this case is s* = {0}. The initial values sy = s1 are randomly generated by kxrand(2,1)
in MATLAB. Figure 5 shows the numerical behavior of all the algorithms in different dimensions

(m =50, m = 100, m = 150, m = 200).

Example 4.3. Finally, we consider our problem in the infinite-dimensional Hilbert space D =

L2([0,1]) with inner product (s, y) fo t)dt and norm ||s|| = (fo th) ,Vs,y € D. Let
the feasible set be the unit ball E = {s € D : ||sH < 1}. Define an operator F : E — D by

(]—'s)(t):/o (s(t) — G(t, w)g(s(u)du + h(t)), te[0,1], scE,

where,

2 t+u Qtt
Gltou) = 22 g(s) = cos(s), h(t) = —mt

eve? —1 eve? —1
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Numerical Result of Algorithms

0 Dimension m = 50 40 Dimension m = 100
—#— |[VSEGM —#+— |VSEGM
—#— VSEGM —+— VSEGM
—#— HSEGM 30 —+— HSEGM
20 *—alg1 —*—alg1
= —*— alg2 ‘7 —*—alg2
v 20
c c
n 3.
= 0 =
10 i
0 0
0 50 100 150 200 0 50 100 150 200
Iteration Iteration
& Dimension m = 150 &5 Dimension m = 200
—#— |[VSEGM —#— |VSEGM
—*— VSEGM —*— VSEGM
40 —s— HSEGM —*— HSEGM
—+—alg1 40 —+—alg1
.; 30 —*— alg2 «; —*— alg2
= ) (]
2 20 0
— 20
10
0 0
0 50 100 150 200 0 50 100 150 200
Iteration Iteration

Figure 5: The convergence graphs of {D,, = ||s,, — s*||} vs iteration(n = 200).

It is known that F is monotone and L-Lipschitz continuous with L = 2 ([13]). The projection on
FE is inherently explicit, that is,

S .
[k if Isl > 1;
PE(S) =

s, if ||s|| < 1.

The mapping S : L?([0,1]) — L*([0,1]) is of the form

(Ss)(t) = /0 1 ts(u)du, te0,1].

A straightforward computation implies that S is 0-demicontractive. The solution of the problem
is s*(t) = 0. The mazimum number of iterations 50 is used as a common stopping criterion for all
algorithms. Figure 6 shows the behaviors of Dy, = ||s,(t) — s*(t)|| generated by all the algorithms

with four starting points.
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Comparison of Algorithms for Different Initial Functions
sy(t)=s, (t)=e' s,(t)=s, (t)= sin(t)

98 —+— IVSEGM 9.5 —+— IVSEGM
—#— VSEGM —#— VSEGM
—#— HSEGM 04 —#— HSEGM
o, 0.6 —*—aig1 o, —+— aig1
= e alg2 = - alg2
(2] 2] 03
' '
o= 04 o
N w02
= -
o (=]
0.2
0.1
0 . 0
0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration
s,(t)=s, (t)= log(1+) sy(t)=s ()=
—#— VSEGM —#— [VSEGM
—— VSEGM —#— VSEGM
—*— HSEGM —#— HSEGM
—+—alg1 ——alg1
—— alg2 —#— alg2
30 40 50 30 40 50

Iteration Iteration

Figure 6: The convergence graphs of {D,, = ||s,, — s*||} vs iteration (n = 50).

5 Conclusion

In this study, we investigated two self-adaptive iterative schemes for seeking a common solution
to the variational inequality problem involving a monotone and Lipschitz continuous mapping
and the fixed point problem with a demicontractive mapping. We proposed two new inertial
extragradient methods with a new step size to compute the approximate solutions of problems in a
real Hilbert space. The strong convergence of the suggested methods is established under standard
and suitable conditions. Finally, some computational tests are given to explain our convergent
results. The algorithms obtained in this paper improved and summarized some of the recent

results in the literature.
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RESUMEN
En el presente ariculo, introducimos el operador de Sturm-
Liouville canénico L™ := % + (’:((;)) —2i%$) 4

(‘;—;wQ—l—i%m‘j((;)) —i—i%)7 donde A es una funcién no-

negativa que satisface ciertas condiciones. Demostramos el
acotamiento de los operadores Hausdorff de Sturm-Liouville
canonicos en el espacio LP(Ry, A(z)dz), p € [1,00). In-
vestigamos la transformada de ondeletas de Sturm-Liouville
canoénica y obtenemos algunos resultados utiles. También se
establece la relacion entre la transformada de ondeletas de
Sturm-Liouville canénica y el operador Hausdorff de Sturm-
Liouville canénico. Se discuten las propiedades de los ad-
juntos a operadores Hausdorff de Sturm-Liouville canénicos.
El analisis arménico asociado al operador L™ juega un rol

importante para establecer los resultados de este articulo.

Keywords and Phrases: Canonical Sturm-Liouville transform, canonical Sturm-Liouville convolution, canonical

Sturm-Liouville Hausdorff operators, canonical Sturm-Liouville wavelet transform.
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1 Introduction

The study of Hausdorff operators, which originated from some classical summation methods, has a
long history in real and complex analysis. In the one-dimensional setting, Hausdorff operators on
the real line were introduced in [10] and studied on the Hardy space in [18]. The natural generaliza-
tion in several dimensions was introduced and studied in [3,5,16]. Particularly, Hausdorff operators
are interesting operators in harmonic analysis [19]. It contains some important operators, such as
Hardy operator, adjoint Hardy operator [6,15], and the Cesaro operator [14] in one dimension. The
Hardy-Littlewood-Poélya operator and the Riemann-Liouville fractional integral operator can also
be derived from the Hausdorff operator [1,25]. The modern study of general Hausdorff operators
on L'(R) and the real Hardy space H*(RR) over the real line was pioneered by Liflyand and Méricz
in [18]. Many research papers have addressed the boundedness of the Hausdorff operator on Hardy
spaces. For instance, Liflyand and his collaborators in [16,17] proved, by more effective ways, that
the Hausdorff operator has the same behavior on the Hardy space H'(R) as that in the Lebesgue
space L'(R). Recently, Daher and Saadi in [7, 8| investigated the Dunkl Hausdorff operator on
the Lebesgue space L!(R) and on the Hardy space HL(R). Subsequently, Mondal and Poria [22]
studied Hausdorff operators associated with the Opdam-Cherednik operator. Furthermore, Tyr
[35] studied the boundedness of ¢-Hausdorff operators on ¢-Hardy spaces. Another fundamental
tool in harmonic analysis is the canonical Sturm-Liouville Hausdorff operators, which is the main

object of study in this paper.

b
Here, we denote by M = “ p an arbitary matrix in SL(2,R) such that b > 0. We define the
c

canonical Sturm-Liouville operator L on R* by

d? A'(x) a d a? a Ax)  a
M .= = i) S (L2l 4
dx2+(A(:v) be) dz <b2x T AW +Zb>’

where A is a nonnegative function satisfying certain conditions.

0 1
Note that if M = , the operator LM is reduced to the Sturm-Liouville operator L:
0

-1

2 Al(x) d
L= T Aw) &

The classical Sturm-Liouville operator L plays an important role in analysis [2,39]. In particular,
the two references [4,33] investigate standard constructions of harmonic analysis, such as translation

operators, convolution product, and Fourier transform, in connection with the operator L.
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Using the Sturm-Liouville harmonic analysis [4,33], for all A € C, the system

/\2
LMy = b—zu,
w(0) = %A, W/ (0) =0,

admits a unique solution, denoted by goﬁ/f and given by
PN (@) = NI (), e Ry,

where ¢, (z) is the Sturm-Liouville kernel [29, 30].

In this paper, we introduce the canonical Sturm-Liouville transform %M :

FM()(N) = / oA (@) (@) A(x)dz, A€ R,
Ry

The canonical Sturm-Liouville transform %M

Liouville transform & (see [20,27-32|):

can be regarded as a generalization of the Sturm-

FOW = [ @ @A AeR,.

Ry

Let ¢ € L'(Ry). We define the Hausdorff operator H, associated with the canonical Sturm-
Liouville operator LM for f € L'(R, A(z)dx) by

Hyf(x) = A fi(z)o(t) dt,

where f; is the dilation of f given by

file) = S (D) wemy,

The main purpose of this paper is to extend some results of the classical Hausdorff operator given in
[38] to the framework of canonical Sturm-Liouville theory, and to investigate the canonical Sturm-
Liouville wavelet transform. We prove the boundedness of canonical Sturm-Liouville Hausdorff
operator in space LP (R, A(z) dz), p € [1,00). The relation between the canonical Sturm-Liouville
wavelet transform and the canonical Sturm-Liouville Hausdorff operator is also established. Next,

we introduce the adjoint operator Hj on L*(Ry, A(x)dx) by
Hif(x):= A fx)p(t)dt, =xe€R,.
+

We present the properties of the adjoint operator Hj, including its boundedness on LP (R, A(z) dz),
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p € [1,00). We also establish a relation between the canonical Sturm-Liouville wavelet transform

and the adjoint operator Hj.

Note that if A(z) = 22t o > —1/2, the operator L is reduced to the canonical Bessel operator

M.
d? 200+ 1 a d a? a
M. . 2 .
' +( T _2Zb)dx_(b2 +22(a+1)b>'

In this case o (z) = apﬁ\”a (x) = e%(%/\2+%w2)ja(%ﬂ), where j, is the normalized Bessel function of

M

the first kind and order aw. The canonical transform % is the canonical Fourier-Bessel transform

g M.
Fo

FM(F)N) = / AL (@) f(@)z? de, A e R,

Recently, the canonical Fourier-Bessel transform FM is the goal of many applications in the

«
harmonic analysis (see [9,11,12,21,26]).

This paper is organized as follows. In Section 2, we recall some results about the Sturm-Liouville
transform %, the Sturm-Liouville translation 7, and the Sturm-Liouville convolution *. In Section
3, we introduce the canonical Sturm-Liouville operator L™, and we investigate the properties of

the canonical Sturm-Liouville transform %™, the canonical Sturm-Liouville translation 7 and

Yy
the canonical Sturm-Liouville convolution *™ associated with this operator. In Section 4, we
introduce the canonical Sturm-Liouville Hausdorff operators H4 and we establish their properties.
In the last section, we investigate the canonical Sturm-Liouville wavelet transform and derive its

relation with the operators Hy and HJ.

2 Sturm-Liouville harmonic analysis

In this section we recall some results about the harmonic analysis associated with the Sturm-
Liouville operator (Sturm-Liouville transform, Sturm-Liouville translation and Sturm-Liouville

convolution).

We consider the second-order differential operator L defined on R* by

a2 Al(x) d
L:=— —
a2 " A(z) da’

where

A(z) = 2" B(z), a>-1/2,

for B a positive, even, infinitely differentiable function on R such that B(0) = 1. Moreover we

assume that A satisfies the following conditions:
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(i) A is increasing and lim A(x) = co.

T—r 00
o A . . Alr)
(ii) I decreasing and 1ll>nolc @) 0.

(iii) There exists a constant 6 > 0 such that

Al(x)  2a+1 N

e %" D(x .
= D) (21)

where D is an infinitely differentiable function on R* , bounded and with bounded derivatives

on all intervals [z, 00), for 2o > 0.

This operator was studied in [4,33], and the following results have been established:

(I) For all A € C, the equation

admits a unique solution, denoted by @y, with the following properties:

o for x € Ry, the function A — @, () is analytic on C.

e For A\ € C, the function x — @) (x) is even and infinitely differentiable on R.

(IT) For nonzero A € C, the equation

Lu = —\2u,
has a solution ®) satisfying N
@5(r) = ;%vu, \),
with
z11_>Ir010 Viz,\) =1.

Consequently there exists a function (spectral function) A — ¢(A), such that
ox(2) = cN)BA(@) + c(-N@_A(1), @Ry,

for nonzero \ € C.

Moreover there exist positive constants ki, ko, k, such that
k1|)\‘2a+1 < ‘C()\)‘_Q < k2|)\|2a+1’

for all A such that Im A < 0 and |A\| > k.
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(III) The Sturm-Liouville kernel ¢ (x) possesses the following integral representation of Mehler-
type

x
oa(z) = / K(z,y)cos(Ay)dy, x>0, (2.2)
0
where K(z,.) is an even positive continuous function on (—z,z) and supported in [—z, z].

Using the Mehler integral representation formula (2.2), we obtain
—IS()D)\(.I‘)S:L )‘7'TER+'
We denote by

e 1 the measure defined on R, by

and by LP(p), p € [1,00], the space of measurable functions f on R, such that

1/p
[fllzeuy = VR If(:v)lpdu(af)] <00, pEll,00),

| fllLoe(uy = ess sup |f(z)| < oo.
I€R+

e v the measure defined on Ry by

dA
dv()\) = S EOVIER

and by LP(v), p € [1,00], the space of measurable functions f on Ry, such that
Ifll ey < oo.

The Sturm-Liouville transform is the Fourier transform associated with the operator L and is
defined for f € L'(u) by

F(HN) = / ox(@)f(@)dp(z), A€ Ry (2.4)

Some of the properties of the Sturm-Liouville transform % are collected bellow.
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Theorem 2.1 ([2,4,33,39]). (i) Plancherel theorem. The Sturm—Liouville transform F ex-

tends uniquely to an isometric isomorphism of L?(u) onto L?(v). In particular,

1 £z = 1F (Hll2)-

(ii) Imversion theorem. Let f € L'(u), such that F(f) € L'(v). Then

f@):/}R A@F (NN V), ae € Ry

The Sturm-Liouville kernel ¢, satisfies the product formula [4, 33]

ox(@)oa(y) = / ox(2w(z,y,2) du(z) for 2,y € Ry; (2.5)

where w(x,y,.) is a measurable positive function on R, with support in [|z — y|, z + y], satisfying

/ w(z,y,2) dp(z) = 1,
Ry

w(z,y,z) =w(y,z,z) for zeRy, (2.6)

w(z,y,z) =w(x,z,y) for z>0. (2.7

We now define the generalized translation operator induced by (2.5). For f € L!(u), the linear

operator

Tyf(x) = e f(z)w(x,y, Z) dlu(z)7 T,y € R-‘r? (28)

will be called Sturm-Liouville translation [4, 33].

As a first remark, we note that the relation (2.6) means that
Ty f(2) =T f(y), @y € Ry,
Theorem 2.2 ([23,29,30]). (i) For ally >0 and f € LP(u), p € [1,00], we have
7y fllLe gy < f 2w (-
(ii) For f € L?(u) and y € R, we have

F(ry /)N =ex()F(f)(A), A eR,.
Let f,g € L*(p). The Sturm-Liouville convolution f % g of f and g is defined by

fgle) = /R W) duy), € Ry (2.9)
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The convolution * is commutative, associative and satisfies the Young inequality (see [23]). Let

p,q,7 € [1,00] such that % + % =1+ 1. Then for f € LP(u) and g € L9(p) we have

1 gllLry < NF e llgllzag-

Theorem 2.3 (|23,34]). (i) For f,g € L*(u), the function f * g belongs to L>(u), and

fglx) = / ox (@) F(HNF ()N dv(Y), z € Ry

(ii) Let f,g € L?(u). Then

/ 1+ g(@)? du) = / FM (N 15 () (N du (A,
Ry

Ry
where both sides are finite or infinite.

Example 2.4 ([13,24]). Note that if A(z) = 2***, with a > —1/2, the operator L is reduced to
the Bessel operator L, :
d? 2a+1d

Ly = — .
@ dz? xz dzx

In this case o) () = jo(Ax), where j, is the normalized Bessel function of the first kind and order

a. We denote by p,, the measure defined by dug(x) == 2?*H1dz.

The Fourier-Bessel transform F,, is defined for f € L' (ua) by
FANO = [ a0 (@) (@), A€ Ry
+
The Fourier-Bessel translation operators are defined for f € L'(ja) by
Ty f(x) = . f(Dwa(z,y,2) dpa(z), ,y € Ry,

being wy(x,y,.) the kernel given by

R e I
’LUoz(xa Y, Z) = Qq [ QQLl(Lyz)m ] X(|z—y|,z+y) (Z), (210)

where a, = % and X(|z—y|,a+y) 95 the characteristic function of the interval (|x —y|,z+y).

Let f,g € L*(ja). The Fourier-Bessel convolution f o g of f and g is defined by

f o g(a) = /R o f(0)g() dualy), x € Ry
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3 Canonical Sturm-Liouville operator

a b
Throughout this paper, we denote by M = an arbitary matrix in SL(2,R) such that
c d

b > 0. We define the canonical Sturm-Liouville operator L on R% by

d? A(x) a d a? a A(z) .a
M. 2 _9; 2 22 - iz
L™= dx2+(A(x) 2be) dz <b2m T AW +Zb>’

where A is the nonnegative function given in Section 2.

1
Note that if M = , the operator LM is reduced to the Sturm-Liouville operator L:

-1 0

&P Al d

Coda? T A(z) da”
For all A € C, the equation

/\2
LMy = —b—zu,

w(0) = eHN* W/ (0) =0,

admits a unique solution, denoted by goﬁ/[ and given by

oA (2) = e3EX T80, (2), 2Ry

For f € L'(u), we define the canonical Sturm-Liouville transform #(f) by

FM(F)(N) = / A (2) f(x) du(z), AeR,.

Ry

This transform can be written as

where F is the Sturm-Liouville transform given by (2.4).

We denote by vy, b > 0, the measure defined on Ry by

A
An(\) = —2
v(A) 2mblc(2)]2

and by LP(1), p € [1, 00], the space of measurable functions f on R, such that || f||zr@,) < co.
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Theorem 3.1. (i) Let f € L*(p), such that FM(f) € L' (). Then

f(a) = /}R A @FV(HN) AN, ae xRy,

—-a b
c —d

where N is the matriz given by N =

(ii) For f € L*(u) we have
1F M (Ae2 ) = 1F 122 0)-

Proof. (i) follows from Theorem 2.1 (ii) and relation (3.1). (ii) follows from Theorem 2.1 (i) and
relation (3.1). O

For f € L'(u), we define the canonical Sturm-Liouville translation operators by

TN f(a) = e BEH [ f)eB e,y 2) dp(z), 2y € Ry (3.2)
Ry

It is easy to prove the following results.

Theorem 3.2. The operators T?jv, y € Ry, satisfy:

(i) T f(x) =N f(y), x,y € Ry.

ia

(it) 7 f(z) = e‘%(xQ‘*‘yQ)Ty (f(z)eﬁzz) (x), where 1, is the Sturm-Liouville translation given by

(2.8).
(iii) TM M (z) = e BN M (2) o} (y).

Theorem 3.3. (i) For ally € Ry and f € LP(p), p € [1, 00|, we have
HTgﬁfoLP(u) < ”fHLP(u)'

(ii) For f € L*(u) and y € R, we have
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Proof. (i) follows from Theorem 2.2 (i) and Theorem 3.2 (ii).
(i) Let f € L*(p) N L%(p). Then

FH ) = [ el @) duta)
R+
-/ [e%‘é“”ﬁ (et w(z,y.2) du(Z)] oY (@) du(a)

By using Fubini’s theorem, (2.6) and (2.7) we obtain

FMEN ) = e 8 [ fz)est V A (e w(z, y, 2) du(w)] dp(2).
Ry

And by Theorem 3.2 (iii) we deduce that

FHE N =B X )F (N, AeRy. (3:3)
Since L'(p) N L?(p) is dense in L?(u), the formula (3.3) remains valid for f € L?(u). O

Let f,g € L?(p1). The canonical Sturm-Liouville convolution f ¥ g of f and g is defined by

ia 2

£ gta) o= [ ) [eB7 )] dut). v eRe (3.4)
Then we can write
N g(z) = e T (eﬁzzf) * (e%z2g) (), zeRy, (3.5)

where * is the Sturm-Liouville convolution given by (2.9).

N

The canonical Sturm-Liouville convolution *" is commutative, associative and satisfies the Young

inequality. Let p,q,r € [1,00] such that %—i—% =1+ % Then for f € LP(u) and g € L(u) we have
I1f =N gllr ) < 1 FlzegollgllLage-

Theorem 3.4. (i) For f,g € L?(u), the function f ™ g belongs to L>=(u), and

f N g(a) = / e N N (@) FM(FNFM (g) () dn(N), = € Ry

(ii) Let f,g € L?>(u). Then

/R £+ g(o) dpu(er) = / FH (O PIFM ()N du(N),

Ry

where both sides are finite or infinite.
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Proof. (i) follows from (3.5), Theorem 2.3 (i) and (3.1). (ii) follows from (3.5), Theorem 2.3 (ii)
and (3.1). O

Example 3.5 ([9,11,12,21,26]). Note that if A(x) = 22**! o > —1/2, the operator LM is reduced

to the canonical Bessel operator LM :
g Lo (2l e )4 “—2x2+2z’(a+1)9
7 da? x b)) da b? b))’

In this case o} () = o} (2) = e%(%/\z-ir%fﬂz)ja()\%)_

The canonical Fourier-Bessel transform FM is defined for f € L'(ja) by
FUON = [ @@ o). AR
+

Recently, the canonical Fourier-Bessel transform FM is the goal of many applications in the har-

monic analysis.

The canonical Fourier-Bessel translation operators are defined for f € L'(jq) by

ToN f(z) = e BEH [ p)e B wy (2,y,2) dua(z), .y € Ry,
Ry

being wq(x,y,.) the kernel given by (2.10).
Let f,g € L*(jia). The canonical Fourier-Bessel convolution f xY g of f and g is defined by

2

[l g(x) = /]R+ N f(y) [e%y g(y)] dpaly), = €Ry.

4 Canonical Sturm-Liouville Hausdorff operator

In this section we define and study the Hausdorff operator associated with the canonical Sturm-

Liouville operator L.

Let f € LP(u), p € [1,00) and ¢t > 0. We define the dilation function f; by

A(F) (=
fil@) =y (7)) (4.1)
and satisfies s
k P
i < (2] 1l (42)

where

o= s (53)-
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From (2.1), there exist two constants C7,C2 > 0, such that
Ozt < A(z) < Cox?otl, e RZ.

Therefore,

where C' = %
1

Let ¢ € L'(Ry). We define the Hausdorff operator H, associated with the canonical Sturm-
Liouville operator LM for f € L'(u) by

Hy f(x) := A fr(z)o(t) dt. (4.3)

If we choose ¢(t) = B(1 —t)"~'x(0,1)(t), B > 0, we obtain the canonical Sturm-Liouville Cesaro
operator of order 3 denoted by Cs and given by

Csf(z) =B / filo)(1— 1) dt,

A Drief history of the study of Cesaro operator can be found in [14].

If we choose ¢(t) = % X(1,00)(t), we obtain the canonical Sturm-Liouville Hardy operator denoted
by H and given by
e dt
i@ = [ 5o G
1

It is well known that Hardy operators are important operators in harmonic analysis, for instance,

see [6,15].

If we choose ¢(t) = we obtain the canonical Sturm-Liouville Hardy-Littlewood-Polya

1
max(1,t)?
operator denoted by P and given by

Pi(z) = /O1 Fulw)dt + /100 () %.

The study of Hardy-Littlewood-Polya operators can be found in [1].

—1
If we choose ¢(t) = ﬁ % X(1,00)(t), 1 > 0 we obtain the canonical Sturm-Liouville Riemann-

Liouville fractional integral operator denoted by Z and given by

O I 1) @

The study of Riemann-Liouville fractional integral operators can be found in [25].
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Theorem 4.1. Let ¢ € L*(Ry). Then for f € L*(u), we have

FUHSN) = [ FA NS A, AR

Proof. Let ¢ € LY(R,), and let f € L'(x). Then by (4.3) we have

FM(H, () = / Hy f () () dpu() = / [ ﬁ(x)qb(t)dt] oA () dula).

Since

/Rz [fe(@)[e@Olld" (2) dt du(z) < [I@ll syl Fllzr ) < o0,

by Fubini’s theorem we obtain

FM(H, () = /

Ry

[ fe(@)p () du(%)] (t) dt:/ FM(f)(N(t) dt.
Ry Ry

The theorem is proved.

Theorem 4.2. Let ¢ be a measurable function on Ry such that

Con= | (k(f)) B(0)] dt < oo. (1.4)

Then the Hausdorff operator Hy is bounded on LP(u), p € [1,00) with

IHg fllLe () < Copll fllLru)-

Proof. By using Minkowski’s inequality for integrals, we have
1/p
fe(@)o(t) dt

P 1/p P
|H¢pr<,L>=[/R [ du(w)] <[/ (/ |ft<x>||¢<t>|dt) du(x)]

1/p
S/R+ (/}R+ Ift(x)lw(t)l”du(x)) dt:/R+ I fell 2oyl B(2)] dt.

Then by (4.2) we obtain

I HpfllLeuy < Copll flle (-

Going back to the definition of

1/p

[/ (/ ft<x>|¢<t>|dt> dw)] ,
Ry \JR,
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we deduce that the integral
Hyf(x) = A fe(x)o(t) dt,
+

is absolutely convergent for almost all x € Ry, and defines a function H,f € LP(Ry). O

Let f,g € L%(u), and let ¢ be a measurable function on R satisfying the condition

Coar= | + (kff)) 6(1)]dt < oo. (45)

We define the adjoint operator HJ by the relation

[ Hi @) du(@) = | F@)Hog(w) dua).

Theorem 4.3. Let f € L?*(u), and let ¢ be a measurable function on Ry satisfying the condition

(4.5). Then
Hyfe) = [ fleotn (4.6)

Proof. Let f,g € L?(u), and let ¢ be a measurable function on R satisfying the condition (4.5).

From (4.3) and Fubini’s theorem we have
f@) Hag(@) du(e) = [ f@) l | dt] e
Ry Ry Ry
= / [ f(@)ge(x) du(m)] o(t)dt = / [ f(tz)g(x) du(w)l ¢(t) dt.
Ry /R, Ry |JR,
Using (4.2), this calculation is justified by the fact that

/Rz [f(@)]lg: (@) dp(@)|¢@)] dt < Co 2|12 ll9ll L2y < 00
2
Then according to Fubini’s theorem we obtain

f(x)ang(x)du(x):/l f(tx)aﬁ(t)dt] g(@)du(z) = [ Hif(z)g(z)du(z),
Ry Ry |JR,

R+

where

Hyf(x) = [ [f(tx)o(t)dt.

R

This calculation is justified by the fact that

[, 17(e)lata)] du@)loto) @t < Coalflzzgolallizgn < .

+

This completes the proof of the theorem. O
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Remark 4.4. From Theorem 4.2, the operator H is bounded on LP(u), p € [1,00), with

IHEf ey < Co, 2 1l Le ()
where Cy , is the constant given by (4.4).

As in the same of Theorem 4.1, we obtain the following result.

Theorem 4.5. Let ¢ be a measurable function on Ry satisfying the condition

k(t
Cproo = /R (t)|<z>(t)|dt < 0. (4.7)
Then for f € L*(u), we have

FM(H3F)(N) = / FM(FNG(E) A, AR,

where fi(x) = f(tz).

Proof. Let ¢ be a measurable function on R, satisfying the condition (4.7), and let f € L'(u).
Then by (4.6) we have

FM(HE () = / H (@) (2) dpu() = / [ f(tx)qb(t)dt] oA () du(a).
Ry Ry |JRy

Since

/u@ |f(ta)llo()]l@ ()] dt du(z) < Cp,ocll fll1 ) < 00,

+

by Fubini’s theorem we obtain

FM(HEF)(N) = /

Ry R,

l A f(tz)pd! (x) du(x)] o(t)ydt = | FY(f)(Ne(t) dt.

The theorem is proved. O

Example 4.6. Note that if A(z) = 2%*T1, o > —1/2, we have

1 z 1 [0]
fi(z) = t2a+2f (;) k() = {2a+1” Cop :/]R (2042)(1-1) dt.
+
Therefore,

e the canonical Bessel-Hausdorff operator is given by

Hof) = [ 1(5) fit
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The canonical Bessel-Cesaro operator of order [ is given by

(1—¢)5-1
Cof(z ﬂ/ tzaJ)rz d.

The canonical Bessel-Hardy operator is given by
Yy dt
wiw = [ 1 (3) e

The canonical Bessel-Hardy-Littlewood-Pdlya operator is given by

P = [ 1(3) s [ 1(5)

o The canonical Bessel-Riemann-Liouville fractional integral operator is given by

=gy 1) (7)o

5 Canonical Sturm-Liouville wavelet transform

In this section, we first recall some fundamental results on the canonical Sturm-Liouville wavelet
transform. The classical Sturm-Liouville wavelet transform has been studied extensively in [23,34]
where detailed definitions, illustrative examples, and comprehensive discussions of its properties
can be found. In the following we establish a relation between the canonical Sturm-Liouville

wavelet transform and the canonical Sturm-Liouville Hausdorff operator.

As in the same of [23,34] and by using Theorem 3.1 (ii), we prove following lemma.

Theorem 5.1. Let g € L?(u), and t > 0. Then there exists a function g& in L*(u), such that
Mg\ = FM(g)(rX), A€ Ry, (5.1)

and satisfies

2
1ol < }) 9l 220 (5.2)

where

()

x>0 le()1

fb(T) =

We say that a function g € L?(u) is a canonical Sturm-Liouville wavelet, if it satisfies the admis-
sibility condition
, dA
0 <wy:= / FM(g)(N)]? == < o0. (5.3)
R, A
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Example 5.2. The function g given by
so)i= [ RN @dn(), ce ke,
Ry

is a canonical Sturm-Liowville wavelet and wy = . Note that if A(z) = 22T, o > —1/2, we have
. 22
A e 2(ba+2?)

9) = et D dt | Gd s 28|
t=0

r e Ry,

For a function g € L?(u) and for (r,s) € R} x Ry we denote by g, ; the function defined on R} by

gk () =T gk (y),

where 72 are the generalized translation operators given by (3.2).

S

From Theorem 3.3 (i) and (5.2), the function gf , satisfies

T,

éb(r)
9%, slz2o < =2 lgllzeo- (5.4)

Let g € L?(u1) be a canonical Sturm-Liouville wavelet. We define for regular functions on R, the

canonical Sturm-Liouville wavelet transform by
ia, 2
Y (1)) i= [ FF w0 dulw). (55)
Ry
which can also be written in the form

' (f)(rs) = f *" gh(s), (5.6)

where !V is the generalized convolution product given by (3.4).

From (5.4) and (5.5) with Holder’s inequality, we have
(1)
125" (£)(r, M=) < r 1112w llgll 22 gy -
From (5.6), Theorem 3.4 (i) and (5.1), we have

@ (f)(r,5) = /]R BN () FM(HNF M (9)(rA) dm(N). (5.7)
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We denote by v the measure defined on Ri by

dr

d (1) i= dp(s) <,

and by L?() the space of measurable functions f on Ri, such that

£y = [/

+

d 1/2
|f<r,s>|2du<s>:] < .

Theorem 5.3. Let g € L*(p) be a canonical Sturm-Liouville wavelet.

(i) Plancherel formula for ®). For f € L*(u) we have
1912 = 125 (DI
L2(p) — w9 L2(v)"

(it) Parseval formula for ®Y. For f,h € L?(u) we have

1
(f, h>L2(u) = ;<‘I>év(f)>‘1>f,v(h)>1;2(y)-

g

Proof. (i) Using Fubini’s theorem, Theorem 3.4 (ii), and the relation (5.6), we obtain

wlgncb?V( IS —f/ gh(o) " dn(s)
= [ OPFM GNP i)

(Ug ]R2

- [ P (: / |9M<g><m>2i’"> an ()
R, g JR,

|2%:1.
,

By relation (5.3) we have

o |7 (g)(rX)

Ry

Then we deduce the desired result from Theorem 3.1 (ii).

(ii) The result is easily deduced from (i). O

We obtain a relation between the canonical Sturm-Liouville wavelet transform and the canonical

Sturm-Liouville Hausdorff operator.
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Theorem 5.4. Let g € L?(u) be a canonical Sturm-Liouville wavelet, and let ¢ € L' (R ) satisfying
the condition (4.5). Then for f € L'(u) N L*(p) we have

SN (Hyf)(r. ) = / BN (£,)(r, 5)6(t) dt,

Ry

where fy is the dilation of [ given by (4.1).

Proof. Let g € L?(u) be a canonical Sturm-Liouville wavelet, and let f € L*(u) N L?(u). From
Theorem 4.2 we have Hyf € L?(u). Then by (5.7) and Theorem 4.1, we get

®) (Hyf)(r,5) = / e BN FM(Hy NFM (9)(rA)oh (5) duy(A)

- / Y [ / FM (1) (No() dt] FM () (rA)gl (s) duy(N)
R, Ry

:/R+

- / BN (f)(r, $)(t) dt.

Ry

id

/]R e BNFM(F)NF M () (N (s) dVb(A)l o(t) dt

Using (4.2), this calculation is justified by the fact that

/R / FM () OIFM (g8) )] iy NS At < Cop ol L2 ] 2y < 00

This ends the proof of the theorem. O

As in the same of Theorem 5.4, we obtain the following result.

Theorem 5.5. Let g € L?(u) be a canonical Sturm-Liouville wavelet, and Let ¢ be a measurable

function on Ry satisfying the conditions (4.5) and (4.7). Then for f € L*(u) N L?(1) we have

BN (H 1)) = [ @ (st

Ry

where fi(x) = f(tz).

Proof. Let g € L*(u) be a canonical Sturm-Liouville wavelet, and let f € L'(u) N L?(u). From
Remark 4.4 we have Hj f € L?(u). Then by (5.7) and Theorem 4.5, we get

SN (H3f)(r,s) = / e ENGM (1 1) (NFM (9)(r ) () diy (V)

- / e HN V %M(f:xx)w)dt] FM () (rA) oY (5) iy (M)
R4 R4
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/R e HEXFM (Y NF Y (g) (rN )Y (5) () | o)t

/R / FM (D FM (g8 ()] den(NIB(0)] dt < Copall Fll 200 198 220 < o0

This ends the proof of the theorem.

Conclusion

In this work we have succeeded in generalizing the results of Moricz for the classical Hausdorff

operator [38], Upadhyay et al. for the Hankel Hausdorff operator [36,37] and Daher et al. for the

Dunkl Hausdorff operator [7,8] to the setting of canonical Sturm-Liouville theory. In this paper,

we have studied the canonical Sturm-Liouville Hausdorff operator on the Lebesgue space LP(u),

0

1
p € [1,00). Note that if M = , we obtain the results of the classical Sturm-Liouville
0

-1
case.
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1 Introduction

Polyharmonic functions with respect to the familiar Laplace operator are a natural extension of
harmonic functions [7]. The latter have been extensively studied in the literature [7,11,28] and
have played a crucial role in different areas of mathematics and physics, including the theory of
holomorphic functions, the study of elliptic partial differential equations, minimal surfaces, digital
processing and electrical engineering. Recall that a 2m times continuously differentiable complex-
valued function f in the n-dimensional Euclidean space R™ is said to be polyharmonic of order m
in a domain Q C R™, if it satisfies A™ f(z) = 0 for x € §, where A™ is the m-th iterate of the

Laplace operator

A—<++"‘+)7 x = (z122,...,Tp).
X Xz

For m = 2, they are the so-called biharmonic functions, intervening in elasticity theory. We should
point out that polyharmonic functions have been studied by the end of the nineteenth century by
the classical paper [4] by Almansi. His main result states that for every polyharmonic function f
of order m on a star domain €, there exist some harmonic functions hy, k = 0,...,m, on € such
that

F(@) = Py (@) + 22D b1 (2) 4 - + hola).

This extends in fact the Gauss decomposition of a polynomial [3,26]. The development of their
theory is due to Nicolesco [30] and Aronszajn [6] works. Recently, they have been the subject
of many investigations in a variety of mathematical and engineering fields, including numerical
analysis, approximation of functions, wavelet analysis, the construction of multivariate splines and
image processing. For a broader overview of these matters and its various applications see, e.g.

[5,8,22,26,29] and the references therein.

On the other hand, the analysis within the bicomplex numbers generalizing complex numbers is
currently a fully developed field of study. Its introduction goes back to Segre [39]. Next, they have
been elaborated by the Italian school in the early twentieth century [14,40]. Comprehensive studies
were later carried out in [32,34,41]. In the last decades, they have been rediscovered, developed,
and have attracted growing attention with some intriguing new advances with wide applications
[2,9,12,13,18,19,21,31,37,38,42]. In fact, they have been used to discuss different aspects of the
bicomplex neural networks [25,43|, and furthermore serve as an appropriate model for representing
color image encoding in image processing [3,17]. Bicomplex analysis was also investigated in the
finite element method with a significant improvement when compared to the real and complex
cases [33]. Moreover, they are an ideal context to extend the classical results concerning signal

processing and time-frequency analysis using tools from frame theory [15].
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One of the well-developed axes in bicomplex analysis is the theory of holomorphic functions of a
bicomplex variable. In fact, it was widely studied in [32] (see also [14,36,40]) with a close connection
with functional calculus, theory of function spaces and integral transforms [15,19,21]. Contrary
to this theory, harmonic and potential theories are new areas of research that emerge within the
framework of bicomplex numbers. For some of their fundamentals, one refers for instance to [1,16].
Notice that different bicomplex analogs of the classical mean value theorems (MVT) have been
obtained in [1] for be-harmonic and strongly be-harmonic functions, as well as their analytical
and geometrical converses, including the bicomplex analog of Hansen and Nadirashvili’s result
[23]. While a complete characterization of hyperbolic-valued be-harmonic functions, in terms of
the bicomplex holomorphic functions, has been provided in [16]. It is proved in particular that a
real-valued bicomplex harmonic function is not necessarily the hyperbolic real part of a bicomplex
holomorphic function, but of a bicomplex polyholomorphic one. A result that was next extended

to the bicomplex polyharmonic functions.

In the present paper, we intend to pursue such investigation of extending to bicomplex context
the fecund theory of harmonic and polyharmonic functions of complex variable. In fact, we are
concerned with the bicomplex versions of some known results satisfied by the classical harmonic
functions on the complex plane C. Namely, we establish a concrete characterization of the strongly
be-harmonic functions (Theorem 3.1), as well as different bicomplex analogs of the additive de-
composition theorem for be-harmonic and strongly be-harmonic functions. The initial motivation
for the second task is a classical fact in complex analysis asserting that harmonic functions are
exactly those that can be rewritten as H + G for certain holomorphic functions H and G, which
usually is proved using the characterization of holomorphic functions in terms of the Wirtinger
operators. The proof of “only if” can also be handled starting from the fact that a real-valued
harmonic function is the real part of a holomorphic function, which fails when dealing with bc-
harmonic functions as pointed out in [16]. Accordingly, it seems to be natural and interesting
to know whether be-harmonic (or be-polyharmonic in general) functions can still have a similar
additive decomposition. This paper contains then an answer to this question. To this end, one
makes use of the expected characterization of an hyperbolic-valued be-harmonic function F' being
the hyperbolic real part of a be-holomorphic function if and only if F' belongs to the kernels of some
bicomplex first order differential operators. We also show that a bicomplex-valued function F' on
BC in ker(0z) Nker(9z1) is be-harmonic if and only if there exist certain bicomplex holomorphic
functions H and G such that F' = H + G*, where % denotes the complex conjugation in BC with
respect to the bicomplex ij. More generally, we derive an additional decomposition without as-
suming the condition of belonging to ker(dz)Nker(dy+ ), see Theorem 3.7. Similar characterization
for be-polyharmonic functions of finite order in terms of special subclass of be-polyholomorphic
functions is also obtained in Theorem 3.3. The main tool in its proof relies on [16, Proposition

3.8]. However, for a formal proof, see Remark 3.4, where one makes use of Proposition 4.4 in
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[16], giving a bicomplex analog of Almansi’s theorem for the representation of be-polyharmonic in

terms of be-harmonic functions. An explicit characterization of the so-called strongly bce-harmonic
is also provided (Theorem 3.1). This result is then employed to give a precise description of the
be-harmonic functions arising as Hy + HY + H; + }ng, for some bc-holomorphic functions Hy,
¢ =0,1,2,3. See Theorem 3.5 for an exact statement. The motivation for considering strongly
be-harmonic functions lies in the fact that an explicit and complete description of some spectral
aspects of the bc-harmonic functions needs in general an additional harmonicity condition with
respect to the x-conjugation, see for example [1,2]. This phenomena will be confirmed in the

present investigation.

We anticipate that the findings will be helpful for ulterior uses and applications. In fact, we
claim that they can be employed to give the explicit formula for special bicomplex Bergman and
Bargmann spaces of be-harmonic functions as well as the integral representation for their elements
by Bargmann type transform. We also anticipate extending the obtained results to the bicomplex
analog of the so-called (o, 8)-harmonic functions (see e.g. [10,20,24] and the references therein),
which are defined as those that are twice continuously differentiable functions w solutions of the
homogeneous equation Lg su = 0 on the complex plane (¢ = 0) or the hyperbolic unit disc
(e = 4+1), where
ap = 1- elz?) {(1 —¢l2[*)A + azd. + Bz0z — aB} .

Notice that for @« = —f, it has been initiated and implicitly investigated in [2], by considering a

pair of bicomplex magnetic Laplacians on BC and the disc.

The paper is outlined as follows. In Section 2, we fix the notations, including those announced
above and related to the bicomplex numbers. We also define the bicomplex Laplace type operator
and different notions of be-harmonicity that we will work with. Section 3 deals with the proof
of Theorem 3.1, giving a complete description of strongly bc-harmonic functions, as well as the
additive decomposition theorems characterizing the be-harmonic (Theorems 3.2 and 3.7) and be-
polyharmonic (Theorem 3.3) functions. The last section deals with some concluding remarks
to answer the question how can the obtained conclusions be properly adapted to product-type

domains.

2 Preliminaries

In this section, we briefly review some basic and needed notions from bicomplex analysis, we fix
notations, and we introduce the different notions of harmonicity in the bicomplex setting that we

will consider in this paper.
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2.1 Bicomplex numbers

Bicomplex numbers are defined by complexifying the complex numbers z = z + iy € C (z,y € R).
Their 4-dimensional real algebra is then defined as BC = {Z = 21 + jzo; 21,22 € C}, where j is
an imaginary unit, j2 = —1, independent of i and satisfying ij = ji =: k. This turns k into what
is known as hyperbolic unit, leading to the particular subset D of hyperbolic numbers, which is
constituted of the bi-reals = + ky. The computation rules in BC extend, in a natural way, those
in C, giving rise to similar algebraic properties, except for division. More precisely, the null cone

coincides with N'C = {A(1 £ij); A € C, X\ # 0}. The particular elements

(1 +1j) (1 —1j)
ey = and e_ =
* 2 2
are idempotent and satisfy e;e_ = 0. Moreover, they yield the idempotent decomposition ae +
Be_ = Z of every Z = z1 + jzo € BC, with unique complex components

a =z —izg = Projt(z1 +jz) and B =2z +iz=: Proj (2 + jz).
Thus, the map P = (Proj*, Proj™),
P21+ jz2) i= (21 —ize, 21 +i22) = (o, B), (2.1)

realizes the algebra isomorphism BC ~ C & C. Given such decomposition, the set D reads equiv-
alently as the set of all ze, + ye_ with x,y € R, leading to the partial order < (zey + ye_ =<
2'ey+y'e_ifx <z’ andy <y’ in R). A particular exception in the theory of bicomplex numbers is
the attribution of three complex conjugates Zt = 21 —jz = Bey +ae_, 7= i +i7 = Bey +ae_,
7* = 7] — jZ5 = aey + PBe_, to each bicomplex number Z = z; + jz,. By means of the above

projection operators, one defines
QF := Proj*(Q) = {21 Fizn € C, 21 + jz € Q}, (2.2)

for given Q C BC. We will write Q = Q%e, + Q e_, whenever ) is a generic product-type set
in BC, i.e. those for which there exists a one-to-one correspondence from € onto Qte, + Q7 e_.
By Theorem 8.6 in [32, p. 37], such product-type sets are exactly those subsets in BC such that
P(Q) = QF x Q7, where P is as in (2.1). It should be pointed out that the openness of the
components Q% in C follows from the openness of Q in BC, which is seen as the four-dimensional
Euclidean space (see Riley’s notes [34] or [32, Theorem 8.7]). For further details on the different

topological considerations related to BC, one refers to [32, 34].
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2.2 Bicomplex holomorphy

Recall that a bicomplex-valued function
F(Z) = Fi(z1,22) + jFa(z1, 22),
on a given open set ) C BC, is said in [32] to be bicomplex holomorphic (bc-holomorphic for short)
in Q, if for every Zy € 2, the bicomplex limit
i F(Zo+ H) - F(Z)

H—0 H
H¢NC

is finite. Another interesting characterization of the bc-holomorphicity is the Ringleb decompo-
sition theorem [35] (see also [32, Theorem 15.5]), asserting that a bicomplex-valued function f is

be-holomorphic if and only if it is of the form
f(Z) = flaeq + Be-) = ¢ (a)es + ¢~ (B)e-, (2.3)

where ¢* : C — C are holomorphic C-valued functions on C. For a product-type domain this
remains equivalent to Fj, Fy be holomorphic in the complex variables (z1,22) € QT x Q= and

satisfying in addition the complex Cauchy-Riemann equations [36, Theorem 1]

OF _OF, . OF O
0z, Oz 0z Oz

Analogously to the classical complex derivatives 0, = /9% and its complex conjugate dz = 9/0z,

there are the first order differential operators with respect to the different bicomplex conjugates
o0 (0 0N 0 1[0 .0
20z " 2\0m Yon) T oz 2\om om)

g, 90 _1(0 0N 5 _0 _1(0 .0
2=zt T 9\os o) 927 57 T o\on om )

which can be used to provide a special realization of the so-called bicomplex holomorphic functions

as solutions of a system of linear differential equations with constant coefficients. Namely, a real
differentiable bicomplex-valued function F' on an open set in BC is be-holomorphic if and only if

it is solution of (see [13, Theorem 2.7] or also [27, p. 159])

OF oF  OF

o0zZ* 0Zt 9z
The system provided in (2.4) is a central tool in the theory of be-holomorphic functions, and can
be used to extend the be-holomorphy to polyanalytic setting, so that the discussed be-holomorphic

functions appear as the (1,1, 1)-bc holomorphic functions in the definition below.
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Definition 2.1 ([21]). A bicomplez—valued function F' having continuous partial derivatives on an

open set Q0 C BC, up to order 2max(m,n, k), and satisfying the system

O3 F = 04F = 0 F =0 (2.5)

is said to be (m,n, k)-bc-polyholomorphic on ).

An explicit characterization of these functions has been obtained in [16, Proposition 3.8].
Proposition 2.2. The bicomplex-valued (m,n, k)-be-polyholomorphic functions on BC are exactly

those that can be expanded as

F(Z) = z_:
£1=0

E

—1
7z ,ZVZZZTZSH&,@%% (Z) (26)
0

n

~1
£2=O Kd
for given bc-holomorphic functions Hy, ¢, 0,

This result leads to an immediate extension of the Ringleb result (2.3) to these class of functions,

which reads simply for the (m,1,1) case as

F(Z =aey + fe_) = <z_: ak¢k(a)> e+ + (Z_: ﬁkwk(ﬁ)> €—,

k=0 k=0

for certain be-holomorphic functions ¢ and .

2.3 Bicomplex harmonicity

The existence of the different types of conjugates in the set of bicomplex numbers leads to different
natural analogs of the classical Laplace operator

1/ 02 0? 0? .
A:=7 (ax M ay> T oo CTETW @1)

see [16] for details. The so-called be-Laplacian Ap. as well as its {-conjugate AZC given by

2 2
JAVIRS 4 and AZC = g —.
0Zt0Z

T 0207

are examples of such Laplacians. Their action on a given sufficiently real differential bicomplex-
valued function is well-defined and to be understood in the sense of Remark 2.5 in [16]. Thus,
for a twice continuously differentiable function F = FTe, + F~e_, we have the idempotent
decomposition Ay, = Aqey +Age_ and AZC = Age; +Aye_. By considering the complex-valued

component functions h*(a, 8) := F*(Z) with Z = ae; + Be_, this action reads

[AueF)(Z) = ([Aah™](a, B))es + ((Aph~](e, B))e—. (2.8)
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Being indeed, since both dz and 0z« are seen as BC-linear operators and ey - e_ = 0, we have
oF 0 0 _ ont oh~
570 = (Gmes + a5e- ) (@ s +1 (0 B)e-) = Gl Bles + Gz (Bl

and moreover

20512) = [ 7 (22 )| @) = (s + e ) (Gtasres + o e )

O%ht O%*h~
= aaaa(aaﬁ)evL + W(aaﬂ)ef

Accordingly, one suggests the following definition.

Definition 2.3 ([16]). Let F be a bicomplex-valued function on an open set Q C BC.

(i) F is said to be bicomplex harmonic (be-harmonic) if it is twice continuously real differentiable

and satisfies the be-Laplace equation Ap. = 0 on Q. We denote their set by BHarm().

(ii) F is said to be be-polyharmonic of order m if it is continuously real differentiable up to order

2m and satisfies the m-th be-Laplace equation Ay =0 on (.

It should be noticed here that the be-polyharmonic functions are closely connected to a special class
of be-polyholomorphic functions as expected in [16]. Their representations in terms of be-harmonic
functions were obtained in [16, Proposition 4.4], which itself is a bicomplex extension of Almansi’s
result [4] for the classical polyharmonic complex-valued functions. For its exact statement, we let

|Z|2F .= ZFZ** for every Z € BC and k = 0,1,2,...

Proposition 2.4. For every be-polyharmonic function F on BC of order m, there are certain

bc-harmonic functions Hi, k =0,1,...,m — 1, such that

,_.

|Z|§"’Hk (2.9)
k=0

Remark 2.5. The component functions Hy, in Proposition 2.4 are be-harmonic and they implicitly

depend on Z1 and Z. More precisely, identity (2.9) reads equivalently
F(Z) = (Z”*’“Z*’“AM(Z, ZY + 282 B, (2, Z*)) , (2.10)

for given bicomplex-valued functions Ay, and By, i belonging to ker(dz) Nker(dz-).
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Definition 2.6. Let F' be a bicomplez-valued function on an open set Q C BC.

(i) It is said to be strongly bicomplex harmonic if F and F' are both bc-harmonic.

(i1) It is said to be strongly be-polyharmonic of bi-order (m,n), if it has continuous partial deriva-

tives up to order 2max(m,n) and verifies AI'F =0 and AL FT =0 on Q.

We conclude this section by providing explicit examples for the different classes of bicomplex
holomorphic, polyholomorphic, harmonic and polyharmonic functions, in the i, j,ij = k represen-
tation as well as in the idempotent representation, which can easily constructed making use of the

obtained characterizations. Thus, the functions
(Z"+Z")+ k(Z™ - Z") =2a"er +20%e_
are the elementary bc-holomorphic functions on BC, while
(ZmZ* + Z"ZN) + k(Z™Z* — Z"ZT) = 20 ey + 208"
is an example of a (2,2, 1)-polyholomorphic function. The following
ho(Z) = 22T+ 22 + Z*Z + Z*Z = 2R (a(B + B))

is a fundamental example of bc-harmonic function which can not be the real part of any bec-

harmonic function. An example of polyharmonic function is given by the the biharmonic function

Z°Ztho(Z) + ho(Z) = 2{(@B+ 1) ey + (aB+ 1) e_} R (a(B+ B)) -

3 Main results

3.1 Characterization of strongly bc-harmonic functions

The following result provides an explicit characterization of the strongly bc-harmonic functions.

Theorem 3.1. Let F be a bicomplex-valued function on BC. Then, the function F is strongly
be-harmonic if and only if there are some sequences (Gmn)m.n, (bm.n)mn; (Cmn)mn @A (dm.n)mn
of bicomplex numbers such that F' has a power series expansion of the form

+o0o +oo

F(Z)=> ) (am,anZT” b Z" 2" + om0 22T 4 dm,nz*mZ") . (3.0

m=0n=0

converging absolutely and uniformly on any compact set of BC.
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Proof. The “if” follows by direct computation. However, the strongly be-harmonicity of F in (3.1)
in the sense of Definition 2.6 can be handled by observing that the uniformly convergent series in

(3.1) can be rewritten as F' = H + G*, with some functions H and G that can expanded as

fZ%meQ@
m=0

for given bc-holomorphic functions v and ¢, and next employing using the useful facts 0z (¢7) =
(92(6))", 92-(9) = 921(9), (") = (9z-(8))", and 9z1(9) = 9z-(G) as well as 92(G*) =
(02+(G))" and 951 (G*) = (95(G))".

For the proof of the “only if”, let F'(cves + fe—) = F*(a,B)er + F~(a,B)e— be a strongly be-
harmonic function, with F+, F~ : BC — C. Thus, from Ay.F = 0 and Ay FT = 0, and in par-
ticular A, F*(-,8) =0 and A,F~ (-, 8) = 0, for every fixed complex number 3, one observes that
both the partial components o — F*(a, ) and o — F~(a, 3) are complex-valued harmonic
functions in the complex plane, for every fixed § € C. Therefore, there exist some complex-valued
holomorphic functions H+#, H=#, G+# and G=# on C with power series expansions centered at

the origin such that

“+o0

F*(a,8) = H"P(a) + GFF(a) = Y ap(B)a™ + by (B)a™ (3-2)

m=0

and
—+oo

F(a,B)=H P(a)+GF(a) = Y a,(B)a™ + b, (B)a™, (3.3)

m=0

for all @ € C. However, since the partial functions 8 — F*(a, 3) being harmonic, the involved

coefficients N
1 OmF
+ = — =
a,(B) = 1 Dam (0,8), m=0,1,2,...,
and N
1 0™F
b (B) = ——=(0,8), m=0,1,2,...,

m! da™
which are independent of o and @ and seen as functions in the -variable, become C*° and moreover

harmonic on the complex plane. Thus, we write

Hli'ln J’_ Hi and b’l:”ll?L(ﬁ) G%:'HL

+ Gy,

2,m>

for certain holomorphic functions Hi, G5, Hi Gi and G;m on C. Returning back to

1,m> 2m7

(3.2)-(3.3) and using the expansion series of the involved holomorphic functions, we get
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+oo . .
F(a,8) = HE(8) + Ga (B) + Y (HE,(8) + H3,o () o™ + (GE,,(8) + G, (8)) a”
m=1
= —-n —-n
= 3 (@B + k) @ (08" B A
m,n=0
which gives rise to (3.1). O

3.2 Additive decomposition theorems

We begin with the following.

Theorem 3.2. A bicomplex-valued function F is of the form F = H+G*, for some bc-holomorphic
functions H and G, if and only if it is be-harmonic on BC such that 0zF = 07+ F = 0.

Proof. For given F' = H+4G* such that H and G are be-holomorphic, the function F is be-harmonic

for the smooth function F' satisfies

*F 9 8H+8 oG *—o
8787+ 9Z \9zZ* 07+ \\ 9Z* e

Moreover, using the facts 9;(G*) = (07:(G))" and 071 (G*) = (82(6'))*, and keeping in mind

(2.8) it becomes clear that

9zF = 07(H) + 07(G*) = 07(H) + (0+(G))" =0

and

071 F = 071 (H) + 021 (G") = 971 (H) + (03(G))" =0
hold.

For the proof of the converse, we proceed into two steps.

Step 1: Assume that F : BC — D is a hyperbolic-valued bc-harmonic function belonging to
ker(0z) N ker(0zt). Next, observe that by means of [16, Theorem 1.1] there exists a bc-
holomorphic function 7" such that F' = Rep,, (T') := (T + T*)/2, which infers F = H + G*
with H=G =T/2.

Step 2: For the general case when F' does not take values in D, we rewrite it as F' = Fy + iFy,

with
F+ F* F — F*
= 5 and F5 = 5

Fy
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Both F; and Fy are hyperbolic-valued functions on BC. From this, it becomes clear that F'

is a be-harmonic if and only if F} and F5 are be-harmonic. Moreover, we necessarily have

232F1 — _21'32}7‘1 = aZF* = (3sz)* =0,

and

205 F) = —2i0z1 Fy = 0,1 F* = (0zF)" = 0.

This implies that the functions F; and F; belong to ker(9z) Nker(dz+). However, from the
first step, we easily conclude that Fy = H1 + G5 and Fy = Ha+ G3, for some be-holomorphic

functions Hy; and Gy, £ = 1,2. Now, since i* = —1, it follows

F=(H +Gy)+i(H+G3) = H+ G,

with H = Hy +iHs and G = G; — iGs. O

The following result extends the previous one to the bc-polyharmonic functions of arbitrary finite
order. The argument in the presented proof is completely different from the one provided for
Theorem 3.2.

Theorem 3.3. Let F be a bicomplex-valued be-polyharmonic function of order m on BC. Then,
there exist certain (m,1,1)-be-polyholomorphic functions H and G such that F = H + G* if and
only if Oz F = 04+ F = 0.

Proof. In the sense of Definition 2.1, the function H 4+ G* is clearly be-polyharmonic, whenever
H and G are be-polyholomorphic of order (m,1,1) and (n,1,1), respectively. Indeed, by setting

¢ = max(m,n), we have

4 14 14 12 *
Ab(H +G*) = 0 <8H>+ 0 <8G> =0.

YV ARACYAL Y ARANCYAL

To prove the converse, let F' be a bc-polyharmonic function of order m. Then, 0. (0% F) =
ApF = 0. But, under the assumption 0z F = 0zt F' = 0, the function 97’ F' becomes (m, 1, 1)-bc-
polyholomorphic. Accordingly, it can be expanded as

m—1
o F = Z 7"y,
=0

by means of Proposition 2.2 (with n = k = 1). The involved functions ¢y, £ =0,1,...,m — 1, are
be-holomorphic and can always be rewritten as ¢, = 07}y, for certain be-holomorphic functions
wg¢. Thus, by considering the function

m—1

G=> 7",

£=0
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we get 7. (F* — G*) = 0. But, using again the assumption 9z F = Jz+F = 0, it becomes clear

that F'* — G* = H is a (m, 1, 1)-bc-polyholomorphic function. O

Remark 3.4. The proof of Theorem 8.3 can be handled using Almansi’s theorem for be-polyharmonic
functions (see Proposition 2.4 or Remark 2.5) and by viewing Z and Z' as independent variables.
In fact, for F being a be-polyharmonic function of order m, there exist some be-harmonic functions

Fy, k=0,1,...,m —1, such that
2(m—1)
F(Z)=Fo+|Z|pcFL + -+ |Z],. " ' Fn-1.

Accordingly, the assumption OzF = 04+ F = 0 becomes equivalent to 0z Fy, = 0z Fy = 0 for every
k=0,1,...,m — 1. Therefore, making appeal to the discussion provided in the proof of Theorem
3.2 for each Fy,, there exist some be-holomorphic functions Hy and Gy, such that Fy, = Hy, + G5,.

Hence, one derives F = H + G*, where

m—1 m—1
H=)> |Z|}FH, and G =Y |Z|}FGy.
k=0 k=0

Given such result (Theorem 3.3), the next one provides a sufficient condition to decompose a given
strongly be-harmonic function F' as F' = Hy + Hf + H2T + PNI3 for certain bc-holomorphic function
H. Notice, that the converse is clear since the different bicomplex conjugates H*, HT, H of a be-
holomorphic function H are obviously bc-harmonic, and moreover they are strongly be-harmonic,
which shows that the functions Hy+ Hy JrH;f +ﬁ3, arising as the sum of the different conjugates of
be-holomorphic functions for some bicomplex holomorphic functions Hy, £ = 0,1, 2, 3, are strongly

bc-harmonic.

Theorem 3.5. A bicomplez-valued strongly be-harmonic function F in BC is of the form F =
Ho+ Hf + H;r + F~I3, for some be-holomorphic functions Hy, £ =0,1,2,3, if

gmtntitkp
dZm Zxn 7t Z
holds, for every non-negative integers m,n,j and k such that mn = jk = 0.

Proof. The key observation is contained in the characterization provided by Theorem 3.1. In fact,

the involved bicomplex constants in (3.1) are given by

L o 0 _ 1 o
T mInl 9Zmzin 0 T mIn) ggmgn
1 8m+nF 1 am—&-nF

A )))

m.n — 0 5 m,n ~
cm, mlnl dZ*mZin ) ’ mln! §zxmgn
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Accordingly, under the assumption (3.4), which reads equivalently as

am+jF 8m+jF 3k+”F ak+nF

YA a7z 0 = s 0= s (0 =0, (3.5)

we get amp = dmpy = 0, for every n > 1, and by, , = Cm,p = 0, for any m > 1. Thus, the
expansion series of F' reduces further to F' = Hy + H; + H2T + f[g, where Hy, Hi, Hy and H3 are

the be-holomorphic functions given by

+oo +oo +oo —+oo _
Hy:= > anZ™, Hyw=>» dy"Z™, Hy:=Y chZ" and Hs=Y b,2",
m=0 m=0 n=0 n=0
where we have set ay, := ay 0, di := dgock := cor and by 1= b . O

Remark 3.6. Theorem 3.5 can be reproved by considering an equivalent sufficient condition, lead-

ing to Gpm,p = dpm,n =0 for every m > 1 and by, 5, = ¢pyn =0 for any n > 1.

Below, we give an additional additive decomposition theorem, which is specific for the bc-harmonic

functions.

Theorem 3.7. We have BHarm(BC) = (ker (9z+) + ker (03)) N C>(BC). More precisely, H is

a be-harmonic function if and only if it can be expanded as

“+o0
H(Z)=Y_ ZFA(Z',Z) + ZVBi(Z,Z), (3.6)
k=0

for some Ay, € ker (9z) Nker (9z+) and By, € ker (0z1) Nker (93).

Proof. Let H be a bc-harmonic function and write H(Z) = lf\IJr(oz,B)eJr +H- (a, B)e—. Hence,
the functions H+(-,b) : C — C and H~(a,-) : C —» C are harmonic on C. Thus, for every
fixed a,b € C, the involved functions can be decomposed as H* (a,b) = h;’l(a) + h;"Q(&) and
H~(a,8) = hy ' (8) + hy2(B) for some holmorphic functions hy"', h? : C — C and h; ', h;? :
C — C, thanks to the additive decomposition theorem for classical harmonic functions. Therefore,
by setting
HY(Z|a,b) .= hi (@)es + hy(B)e

and

H®(Z|a,b) := b *@)es + h;*(B)e_,
we have 0z (HM (-|a, b)) = 3§(H(2)<'|a7 b))) and

H(Z)=HY(Z|a,B) + H?(Z|o, B), Z =aey + fe_. (3.7)

The functions H®) and H®) belong clearly to ker (z-) and ker (82)7 respectively. The inverse

inclusion is immediate. O
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In Proposition 3.10 below, it is proved that the involved H(), H() A} and By in (3.7) and (3.6)
are connected to each other by some additive separate bc-holomorphic function, which extends
the notion of separate holomorphy to the bicomplex setting. Let F' be a given bicomplex-valued
function on BC, identified to ﬁ(a,ﬂ) = F(aey + Be_) on C2. Define the partial functions
F,:C — BC and F? : C — BC given by

~

Fo(B) = FP(a) = F(a, B).

Definition 3.8. A bicomplez-valued function F' on BC is said to be separately holomorphic if F,
and FP are both holomorphic in C.

Accordingly, we have the following characterization.

Proposition 3.9. Let F' be a bicomplez-valued function on BC. Then, the following assertions

are equivalent.

(i) F is separate holomorphic on ).

(it) F satisfies

or  OF
7 95 (3.8)
(ii) F has the expansion
“+o0
F(Z)= Y CpnnZ™Z™, Cpn€BC. (3.9)
m,n=0
Proof. The separate holomorphy of F' reads OF /0a = OF /03 =0, and therefore
Ft  9F~ OFt OF-
OFT _oF” _oFT _or _, (3.10)

oa oa 0B as
This is in fact also equivalent to

8(ﬁ+e++ﬁ’e,) a(ﬁ’e++ﬁ+e,) 8(ﬁ+e++ﬁ*e,) '

oz* 0Z* YA

be identically zero on BC, which infers (3.8). Next, by means of (3.10), the functions in (ii) are

those for which we have
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and therefore

+oo
F(Z)= Y CunZ™Z™, with Cpn=a, eq+a, e .
m,n=0
The converse (#i7) implies (i¢) is clearly immediate. O

Proposition 3.10. Keep the notations of HY, H®) | A, and By, as above. Then, for any H €
BHarm(BC), there exists a separate be-holomorphic function G such that

+oo +oo
HY(Z|a,8) =Y Z¥A(Z2Y,2)+ G(Z) and HP(Z|o, )= 2" B(2,2") - G(Z).
k=0 k=0

Proof. For every Z = aey + fe_, set

+oo too
GM(2) =HY(Z|a,8) = > 2"An(Z",Z) and GP(Z):= HD(Z|a,B) - 2"Bi(Z,27).
k=0 k=0

Then, from (3.7) and (3.6), we conclude that G(Y) = —G?). However, since 0z (A,) = 02+ (Ax) = 0,
dz1(By) = 03(By) = 0 and 0z- (HW(|a,b)) = 0z(HP(-|a,b)) = 0, we get 07:G = 9z-G1) =0
and 0;G = 8ZG(1) = 0. This completes the proof by setting G := G = —G?) € ker(dz-) N
ker(05). O

4 Concluding remarks

The conclusions of Theorems 3.2, 3.3, and 3.7 remain valid for arbitrary generic product-type
domains in BC without additional assumptions, while Theorems 3.1 and 3.5 remain correct on
special product-type domains in BC. In fact, the statements of Theorems 3.5 and 3.7 are both

valid on a given D(0,rq, ), where
D(Zy,r1,1r2) :={Z € BC; ZZ* < rie4 +rqe_},

for given nonnegative reals 1 and 5. Assertion of Theorem 3.5 also holds for arbitrary D(Zy,r1,72)

by imposing e
omTnTITER

ogmzzize =0 -y
for every positive integers m,n, j and k, as a sufficient condition for a given strongly bc-harmonic
bicomplex-valued function F' on D(Zy,r1,72) to be of the form F' = Hy+ Hf + H;r + ﬁg, for some
be-holomorphic functions Hy, £ = 0,1,2,3, on D(Zy,r1,72). Analogously to Theorem 3.1, one

asserts that a given bicomplex-valued function F' is strongly bc-harmonic on a product domain {2
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if and only if for any Zy € Q and any 71,72 > 0 such that D(Zy,r1,7m2) C Q, F can be expanded as

+oo _— n
F(Z)= > amn(Z = Z0)™(Z = Z0)" + bmn(Z — Z0)™(Z — Zo)
m,n=0

n

+ emn(Z — Zp)"™(Z — Zo)™ + A (Z — Z0)"™(Z — Zy)

on D(Zy,r1,72).
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