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Sá Barreto Antonio

sabarre@purdue.edu

Department of Mathematics
Purdue University
West Lafayette, IN 47907-2067 – USA

Shub Michael

mshub@ccny.cuny.edu

Department of Mathematics
The City College of New York
New York – USA
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ABSTRACT

This work investigates the existence and uniqueness of a so-

lution to a discrete Robin boundary value problem involving

the anisotropic ωp-mean curvature operator. The existence re-

sult is established through variational methods, specifically

by applying the Mountain Pass Theorem of Ambrosetti and

Rabinowitz in combination with Ekeland’s Variational Prin-

ciple. Uniqueness is obtained under the assumption of Lips-

chitz continuity on the nonlinear term.

RESUMEN

Este trabajo investiga la existencia y unicidad de una solu-

ción a un problema discreto de valores en la frontera de Robin

que involucra el operador de ωp-curvatura media anisotrópico.

El resultado de existencia se establece a través de métodos

variacionales, específicamente aplicando el Teorema del Paso

de la Montaña de Ambrosetti y Rabinowitz en combinación

con el Principio Variacional de Ekeland. La unicidad se ob-

tiene bajo la hipótesis de continuidad Lipschitz del término

no-lineal.
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1 Introduction

In this article, we study the following nonlinear discrete Robin problem.






→↑
((
1 + ωp(k→1) (↑u(k → 1))

)
|↑u(k → 1)|p(k→1)→2↑u(k → 1)

)
= εf(k, u(k)), k ↓ Z [1, T ] ,

↑u(0) = u(T + 1) = 0,

(1.1)

where T ↔ 2 is a positive integer.

For fixed integers a, b such that a < b, we denote by Z [a, b] the discrete interval {a, a+1, . . . , b→1, b}.
The parameter ε is positive. The forward di!erence operator is given by ↑u(k→1) = u(k)→u(k→1).

The function ωp(k) : R ↗ R is defined by ωp(k)(s) =
|s|p(k)√

1 + |s|2p(k)
, for every s ↓ R. The functions

p and f will be defined precisely in the subsequent sections.

In problem (1.1), we consider two boundary conditions: a Neumann boundary condition (↑u(0) =

0) and a Dirichlet boundary condition (u(T + 1) = 0). In the literature, these are referred to as

mixed boundary conditions (see [25]).

Di!erence equations arise in many research fields as the discrete counterpart of partial di!erential

equations and are often studied via numerical analysis. In this context, the operator in problem

(1.1),

↑
((

1 +
|↑u(k → 1)|p(k→1)

√
1 + |↑u(k → 1)|2p(k→1)

)
|↑u(k → 1)|p(k→1)→2↑u(k → 1)

)

represents the discrete counterpart of the following ϑp-anisotropic operator

((
1 +

|u↑(t)|p(t)√
1 + |u↑(t)|2p(t)

)
|u↑(t)|p(t)→2

u
↑(t)

)↑

.

In recent years, equations involving the anisotropic ϑp-mean curvature operator, under various

boundary conditions, have become a significant and captivating research topic. Problem (1.1) has

been specifically analyzed in [4], where Dirichlet-type boundary conditions were applied through

the use of variational methods and critical point theory. In this framework, problem (1.1) also

serves as a discrete analogue of the following problem.






→
((

1 +
|u↑(t)|p(t)√

1 + |u↑(t)|2p(t)

)
|u↑(t)|p(t)→2

u
↑(t)

)↑

= εf(t, u(t)), t ↓ (0, 1),

u
↑(0) = u(1) = 0.

(1.2)

Problem (1.2) and its multi-dimensional variants arise in various applications, including elasticity

mechanics [38,41], electrorheological fluids [14,20,37,38], and image restoration [11]. In [11], Chen

et al. studied a functional with a variable exponent 1 ↘ p(t) ↘ 2, which serves as a model for
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image denoising, enhancement and restoration.

The existence of a solution to a nonlinear di!erence equation can be proved using fixed point

theory and the method of upper and lower solution techniques, as seen in [12,21] and the references

therein. It is well known that critical point theory is a crucial tool for addressing problems involving

di!erential equations.

Variational methods for di!erence equations were introduced by Guo and Yu [18]. The variational

methods have been employed to study various equations, yielding di!erent results. We refer to

recent results involving anisotropic discrete boundary value problems [15–17,23,25,26,29,39] and

references therein. Discrete problems involving anisotropic exponents were firstly discussed in

[24,32].

In [32], by using the mountain pass theorem and Ekeland variational principle, the authors proved

the existence of a continuous spectrum of eigenvalues for the following problem






→↑
(
ωp(k→1) (↑u(k → 1))

)
= ε|u(k)|q(k)→2

, k ↓ Z [1, T ] ,

u(0) = u(T + 1) = 0,
(1.3)

where ωp(·)(s) = |s|p(·)→2
s, p : Z [0, T ] ↗ [2,≃), q : Z [1, T ] ↗ [2,≃) and ε is a positive constant.

In [24], Koné and Ouaro showed, by using the minimization method, the existence and uniqueness

of weak solutions to the following problem






→↑ (a(k → 1,↑u(k → 1))) = f(k), k ↓ Z [1, T ] ,

u(0) = u(T + 1) = 0.
(1.4)

We note that problem (1.4) is a generalization of (1.3). Indeed, in the particular case where

a(k, ϖ) = |ϖ|p(k)→2
ϖ for all k ↓ Z [0, T ] and ϖ ↓ R, the operator in (1.4) reduces to the p(k)-

Laplacian, i.e.,

↑p(k→1)u(k → 1) := ωp(k→1) (↑u(k → 1)) = |↑u(k → 1)|p(k→1)→2↑u(k → 1).

In [22], the authors studied the following Robin problem






↑2
u(k → 1) = f(k, u(k)), k ↓ Z [1, T ] ,

u(0) = ↑u(T ) = 0.
(1.5)

Using the strongly monotone operator principle and critical point theory, the authors proved the

existence of nontrivial solutions for (1.5).
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In [10], Chen et al. considered the following Robin problem






⇐
(

↑uk√
1→ (↑uk)2

)
+ εµk(uk)q = 0, k ↓ Z [1, T ] ,

↑u0 = uT+1 = 0.

(1.6)

By combining the method of upper and lower solutions with Brouwer degree theory and Szulkin’s

critical point theory for convex, lower semicontinuous perturbations of C1 functions, the authors

determined the ranges of the parameter ε for which problem (1.6) admits zero, one, or two positive

solutions. In [28], by using critical point theory, the authors considered the existence of infinitely

many positive solutions of the following discrete Robin problem with ω-Laplacian






→↑(ϱp(↑uk→1)) + qkϱp(uk) = εf(k, uk), k ↓ Z [1, T ] ,

↑u0 = uT+1 = 0,
(1.7)

where ϱp is a special ω-Laplacian operator (see [31]) defined by ϱp(s) =
p|s|p→2

s

2
√

1 + |s|p
with p ↔ 2.

In [19], by using variational methods, Hadjian and Bagheri established the existence of at least

one nontrivial solution for the following problem






→↑(ωc(↑uk→1)) = εf(k, uk), k ↓ Z [1, T ] ,

u0 = uT+1 = 0,
(1.8)

where ωc is a special ω-Laplacian operator (see [31]) defined by ωc(s) =
s⇒

1 + s2
.

For the study of the following Robin problem involving a second-order nonlinear di!erence equation






⇐
(

↑uk√
1→ (↑uk)2

)
+ εf(k, uk) = 0, k ↓ Z [1, T ] ,

↑u0 = ςu1 = 0, uT+1 = 0,

(1.9)

we refer to [36]. In the particular case where f(k, t) = µkt
q and ς = 1, we obtain the problem

studied by Chen et al. [10]. The authors used di!erent methods to obtain the existence and

multiplicity of solutions for a discrete boundary value problem in [1, 2, 5, 7, 9, 34,40].

In this article, we use the Ambrosetti-Rabinowitz mountain pass theorem (see [3]), Ekeland’s

variational principle and a Lipschitz continuity condition on the nonlinear term. Using these tools,

we establish the existence and uniqueness of a nontrivial solution to a discrete Robin problem

involving equations with the anisotropic ϑp-mean curvature operator.

The remainder of this article is organized as follows. In Section 2, we present some auxiliary
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results related to problem (1.1) and recall the abstract critical point theorem. Section 3 develops

the variational framework associated with problem (1.1) and introduces our main results. Finally,

we identify conditions under which problem (1.1) admits a unique nontrivial solution.

2 Preliminaries

Throughout this article, we denote

p
+ = max

k↓Z[0,T ]
p(k), p

→ = min
k↓Z[0,T ]

p(k), r
+ = max

k↓Z↓[1,T ]
r(k) and r

→ = min
k↓Z[1,T ]

r(k).

We consider the T -dimensional Banach space

H = {u : Z [0, T + 1] ↗ R such that ↑u(0) = u(T + 1) = 0} ,

equipped with the norm

⇑u⇑ =

(
T∑

k=1

|↑u(k)|p
→

)1/p→

. (2.1)

However, we will use the following norm in H at times

⇑u⇑↔ = max
k↓Z[0,T+1]

|u(k)|, for all u ↓ H.

The space H will also be equipped with the following Luxemburg norm

⇑u⇑p(·) = inf

{
µ > 0 :

T∑

k=1

1

p(k)

∣∣∣∣
↑u(k)

µ

∣∣∣∣
p(k)

↘ 1

}
.

Since on H, all norms are equivalent, then there exist two constants 0 < K1 < K2 such that

K1⇑u⇑p(·) ↘ ⇑u⇑ ↘ K2⇑u⇑p(·). (2.2)

Next, let φp(·) : H ↗ R be given by

φp(·)(u) =
T∑

k=1

1

p(k)
|↑u(k)|p(k) .

Remark 2.1. If u ↓ H, then the following properties hold.

⇑u⇑p(·) > 1 ⇓ ⇑u⇑p
→

p(·) ↘ φp(·)(u) ↘ ⇑u⇑p
+

p(·), (2.3)

⇑u⇑p(·) < 1 ⇓ ⇑u⇑p
+

p(·) ↘ φp(·)(u) ↘ ⇑u⇑p
→

p(·). (2.4)
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To establish our main result, we introduce the following quotient

!1 = inf
u↓H\{0}

T∑

k=1

1

p(k)

(
|↑u(k)|p(k) +

√
1 + |↑u(k)|2p(k) → 1



T∑

k=1

1

p(k)
|u(k)|p(k)

. (2.5)

We say that ε is an eigenvalue of problem (1.1) whenever the problem admits a nontrivial solution.

It should be emphasized that !1 represents the first eigenvalue of problem (1.1) in the particular

case where

f(k, u(k)) = |u(k)|p(k)→2
u(k).

In addition, !1 serves as a critical threshold parameter governing the existence of nontrivial solu-

tions to problem (1.1), thus guaranteeing the consistency of the analysis.

Let us also define the function

F (k, ϖ) =


ω

0
f(k, s) ds, for all (k, ϖ) ↓ Z [1, T ]⇔ R.

We also make the following assumptions for the study of problem (1.1).

(H1) For each k ↓ Z[1, T ], the mapping f(k, ·) : R ↗ R is continuous.

(H2) There exist a constant C1 > 0 and a function

r(·) : Z[1, T ] ↗ [2,≃)

such that:

(i) |f(k, ϖ)| ↘ C1

(
1 + |ϖ|r(k)→1

)
, ↖k ↓ Z[1, T ], ↖ϖ ↓ R.

(ii) lim inf
|ω|↗0

F (k, ϖ)

|ϖ|r(k)
↔ 0, for all k ↓ Z[1, T ].

In particular, assumption (H2)(i) implies that there exists a constant C2 > 0 such that

|F (k, ϖ)| ↘ C2

(
1 + |ϖ|r(k)

)
, ↖k ↓ Z[1, T ], ↖ϖ ↓ R.

(H3) lim inf
|ω|↗↔

F (k, ϖ)

|ϖ|r→
↔ 0, for all k ↓ Z[1, T ].

(H4) For every ε ↓ (0,!1),

lim sup
|ω|↗0

εf(k, ϖ)

|ϖ|p(k)→2ϖ
< !1, for all k ↓ Z[1, T ].

(H5) p(·) : Z[0, T ] ↗ (2,≃).
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Example 2.2. The function

f(x, t) :=






|t|p(x)→2
t, if |t| < 1

|t|r(x)→2
t, if |t| ↔ 1,

with r
→
> p

+
, satisfies assumptions (H1), (H2), (H3) and (H4).

This example provides a concrete instance of the broader class of functions considered in problem

(1.1).

In the sequel, we will use the following auxiliary results.

Lemma 2.3 ([16,35]). (a) For all u ↓ H with ⇑u⇑ > 1,

T∑

k=1

1

p(k)
|↑u(k)|p(k) ↔ 1

p+


⇑u⇑p

→
→ T


.

(b) For all u ↓ H with ⇑u⇑ < 1,

T∑

k=1

1

p(k)
|↑u(k)|p(k) ↔ 1

p+T (p+→p→)/p→ ⇑u⇑p
+

.

(c) For all u ↓ H and for any m ↔ 2,

T∑

k=1

|u(k)|m ↘

T

(p→→1)/p→
m

T⇑u⇑m.

(d) For all u ↓ H and all p
+ ↔ 2,

T∑

k=1

|↑u(k)|p
+

↘ 2p
+

T

(p→→1)/p→
p

+

T⇑u⇑p
+

.

(e) For all u ↓ H and all p
+ ↔ 2,

T∑

k=1

1

p(k)
|↑u(k)|p(k) ↘ T

p→


2p

+

T

(p→→1)/p→
p

+

⇑u⇑p
+

+ 1


.

The energy functional associated with problem (1.1) is defined by Jε : H ↗ R as follows

Jε(u) =
T∑

k=1


1

p(k)

(
|↑u(k)|p(k) +

√
1 + |↑u(k)|2p(k) → 1


→ εF (k, u(k))


. (2.6)
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Definition 2.4. We say that u ↓ H is a weak solution of the problem (1.1) if

T∑

k=1

(
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k)→2↑u(k)↑v(k)→ εf(k, u(k))v(k)


= 0, (2.7)

for any v ↓ H and

T∑

k=1

(
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k) → εf(k, u(k))u(k)


= 0. (2.8)

We define the functionals ”,# : H ↗ R by

”(u) =
T∑

k=1

1

p(k)

(
|↑u(k)|p(k) +

√
1 + |↑u(k)|2p(k) → 1



and

#(u) =
T∑

k=1

F (k, u(k)).

The functional is now written as: Jε(u) = ”(u)→ ε#(u).

Proposition 2.5. The functional Jε is well-defined on H and is of class C
1(H,R) with the deriva-

tive given by

↙J ↑
ε
(u), v∝ =

T∑

k=1

(
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k)→2↑u(k)↑v(k)→ εf(k, u(k))v(k)


, (2.9)

for all u, v ↓ H.

The proof of Proposition 2.5 is a consequence of the proof of the following lemma.

Lemma 2.6. The functionals ” and # are well-defined on H, and both belong to the class

C
1(H,R). Moreover, their derivatives are given by

↙”↑(u), v∝ =
T∑

k=1

(
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k)→2↑u(k)↑v(k), ↙#↑(u), v∝ =

T∑

k=1

f(k, u(k))v(k),

for all u, v ↓ H.

Furthermore, the critical points of the functional Jε in H coincide with the weak solutions of

problem (1.1).

Since the proof of Lemma 2.6 is very similar to that of Lemma 3.4 in [17] and Lemma 2.3 in [23],

it is omitted.

Owing to the finite-dimensional setting, every weak solution of problem (1.1) is a strong (i.e.,
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classical) solution. Consequently, solving problem (1.1) amounts to finding the critical points of

the functional J .

We now introduce the following results, which will be useful in the subsequent analysis.

Proposition 2.7 ([33]). Assume that the condition (H5) holds. Then, !1 > 0.

Definition 2.8. Let E be a real Banach space and let J : E ↗ R be a functional. We say that

J satisfies the Palais-Smale condition (abbreviated as (PS) condition) if every sequence {un} ′ E

such that {J(un)} is bounded and J
↑(un) ↗ 0 as n ↗ ≃, admits a convergent subsequence in E.

Moreover, a sequence {un} ′ E is said to satisfy the Palais-Smale condition at level c ↓ R, denoted

by (PS)c, if

J(un) ↗ c and J
↑(un) ↗ 0 as n ↗ ≃.

Lemma 2.9 ([39]). Let E be a finite-dimensional Banach space and let J ↓ C
1(E,R) be an

anti-coercive functional. Then, J satisfies the (PS) condition.

Lemma 2.10 ([30, Mountain pass lemma]). Let E be a real Banach space. Assume that J ↓
C

1(E,R) satisfies the (PS) condition. Suppose also that:

(i) J(0) = 0;

(ii) there exist φ > 0 and ς > 0 such that J(u) ↔ ς for all u ↓ E with ⇑u⇑ = φ;

(iii) there exists u1 in E with ⇑u1⇑ ↔ φ such that J(u1) < 0.

Then, J has a critical value c ↔ ς which can be characterized by

c = inf
h↓!

max
s↓[0,1]

J (h(s)) ,

where $ = {h ↓ C ([0, 1], E) : h(0) = 0, h(1) = u1}.

Theorem 2.11 ([30]). Let E be a real Banach space and J : E ↗ R. If J is weakly lower

semicontinuous and coercive, i.e. lim
↘x↘↗↔

J(x) = ≃, then there exists x0 ↓ E such that inf
x↓E

J(x) =

J(x0).

Moreover if J ↓ C
1(E,R), then x0 is a critical point of J , i.e. J

↑(x0) = 0.

Theorem 2.12 ([13, Ekeland’s variational principle]). Let X be a complete metric space and

” : X ↗ R a lower semicontinuous function bounded from below. Then, for every ↼ > 0 and u ↓ X

be given such that

”(u) ↘ inf
u↓X

”(u) + ↼,

there exists uϑ ↓ X such that
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(i) ”(uϑ) ↘ ”(u),

(ii) d(uϑ, u) < ↼,

(iii) ”(uϑ) < ”(u) + ↼d(u, uϑ) for each u ∞= uϑ.

Corollary 2.13 ([13]). Let X be a complete metric space and ” : X ↗ R be a lower semicontinuous

function bounded below. Assume that ” ↓ C
1(X,R). Then, for every ↽ > 0, there exists uϖ ↓ X

such that

(i) ”(uϖ) ↘ inf
u↓X

”(u) + ↽,

(ii) ⇑”↑(uϖ)⇑ ↘ ↽.

3 Existence and uniqueness of weak nontrivial solutions

This section focuses on the existence and uniqueness of nontrivial weak solutions to problem (1.1).

We have the following result.

Theorem 3.1. Assume that the hypotheses (H1)-(H5) hold. If (r→ > p
+) or (r+ < p

→) or

(r→ < p
→), then there exist ε

≃
, φ,!≃

> 0 such that for any ε > ε
≃

and !1 → φ ↓ (ε,!≃), the

problem (1.1) has at least one weak nontrivial solution.

Proof. We can distinguish the following three cases:

Case 1: r
→
> p

+

In this instance, we will demonstrate that Jε possesses a “mountain pass geometry.”

Lemma 3.2. Assume that the hypotheses of Theorem 3.1 are satisfied, then.

(i) There exist a, ⇀ > 0 and φ,!≃
> 0 such that for any ε > 0 and !1 → φ ↓ (ε,!≃), one has

Jε(u) ↔ a > 0 for all u ↓ H with ⇑u⇑ = ⇀.

(ii) There exists e ↓ H with ⇑e⇑ > ⇀ such that

Jε(e) < 0.

Proof. (i) Using hypothesis (H4), for any ε ↓ (0,!1), we can find φ,⇁ > 0 such that ε ↘ !1 → φ

and

εf(k, ϖ) ↘ (!1 → φ) |ϖ|p(k)→2
ϖ, for all (k, ϖ) ↓ Z [1, T ]⇔ R and |ϖ| ↘ ⇁.
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In particular, if f is as in Example 2.2, then ⇁ = 1.

We deduce for ϖ ↓ (0,⇁], that

εF (k, ϖ) ↘ (!1 → φ)


ω

0
|s|p(k)→2

s ds = (!1 → φ)


ω

0
s
p(k)→2

s ds =
1

p(k)
(!1 → φ) |ϖ|p(k)

and for ϖ ↓ [→⇁, 0), we infer that

εF (k, ϖ) ↘ (!1 → φ)

 0

ω

|s|p(k)→2
s ds = (!1 → φ)

 0

ω

(→s)p(k)→2
s ds =

1

p(k)
(!1 → φ) |ϖ|p(k).

Then, it follows that

εF (k, ϖ) ↘ 1

p(k)
(!1 → φ) |ϖ|p(k), for all k ↓ Z [1, T ] and |ϖ| ↘ ⇁. (3.1)

Let u ↓ H be such that |u(k)| ↘ ⇁ for all k ↓ Z[1, T ]. Then, by relation (2.1), we have

⇑u⇑ ↘ 2⇁T 1/p→
.

Now, let u ↓ H be fixed such that ⇑u⇑ ↘ 1. Define

κ = min

2⇁T 1/p→

, 1

.

Then, for any u ↓ H satisfying ⇑u⇑ ↘ κ, it follows from relations (2.5), (3.1), and assertions

(b) and (c) of Lemma 2.3 that

Jε(u) ↔ ”(u)→ (!1 → φ)
T∑

k=1
|u(k)|>1

1

p(k)
|u(k)|p(k) → (!1 → φ)

T∑

k=1
|u(k)|>1

1

p(k)
|u(k)|p(k)

↔ ”(u)→ (!1 → φ)
T∑

k=1

1

p(k)
|u(k)|r(k) → (!1 → φ)

T∑

k=1

1

p(k)
|u(k)|p(k)

↔ !1 → (!1 → φ)

!1
”(u)→ (!1 → φ)

p+

T∑

k=1

|u(k)|r
→

↔ φ

!1p
+
T

(p→→p
+)/p→

⇑u⇑p
+

→ (!1 → φ)

p+


T

(p→→1)/p→
r

→

T⇑u⇑r
→

=

c1⇀

p
+→r

→
→ (!1 → φ)c2


⇀
r
→
,

where c1 and c2 are positive constants.

Hence, choosing !≃ =
c1⇀

p
+→r

→

2c2
, then, for any !1 → φ ↓ (ε,!≃), there exist some positive

numbers 0 < ⇀ < κ and a =
c1⇀

p
+

2
> 0 such that Jε(u) ↔ a > 0 for all u ↓ H with ⇑u⇑ = ⇀.
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(ii) Fix ε > 0. By (H3), for any ↽ > 0, there exists η > 0 such that

F (k, ϖ) ↔ ↽|ϖ|r
→
, for all k ↓ Z [1, T ] and all ϖ ↓ R, with |ϖ| > η.

Since ϖ ↗ F (k, ϖ)→ ↽|ϖ|r→ is continuous on [→η, η], there is a constant Cϱ > 0 such that

F (k, ϖ)→ ↽|ϖ|r
→
↔ →Cϱ, for all k ↓ Z [1, T ] and all ϖ ↓ [→η, η] .

Hence, we get

F (k, ϖ) ↔ ↽|ϖ|r
→
→ Cϱ, for all (k, ϖ) ↓ Z [1, T ]⇔ R. (3.2)

So, from (3.2) and Lemma 2.3 (e), we obtain

Jε(u) =
T∑

k=1

1

p(k)

(
|↑u(k)|p(k) +

√
1 + |↑u(k)|2p(k) → 1


→ ε

T∑

k=1

F (k, u(k))

↘ 2

p→

T∑

k=1

|↑u(k)|p(k) → ε

T∑

k=1


↽|u(k)|r

→
→ Cϱ



↘ 2T

p→


2p

+

(
T

p→→1

p→

p
+

⇑u⇑p
+

+ 1


→ ε↽

T∑

k=1

|u(k)|r
→
+ εTCϱ. (3.3)

As

⇑u⇑p
→
↘ 2p

→→1
T∑

k=1


|u(k + 1)|p

→
+ |u(k)|p

→

↘

2p
→

T∑

k=1

|u(k)|p
→
↘ 2p

→
T

r→→p→

r→

(
T∑

k=1

|u(k)|r
→

) p→

r→

,

which means that
T∑

k=1

|u(k)|r
→
↔ 2→r

→
T

p→→r→

p→ ⇑u⇑r
→
. (3.4)

Then, it follows from (3.3) and (3.4) that

Jε(u) ↘
T

p→
2p

++1

(
T

p→→1

p→

p
+

⇑u⇑p
+

→ ε↽2→r
→
T

p→→r→

p→ ⇑u⇑r
→
+

2T

p→
+ εTCϱ. (3.5)

Since r
→

> p
+, Jε(u) ↗ →≃ as ⇑u⇑ ↗ ≃. Thus, Jε is anti-coercive. Consequently, there

exists e ↓ H with ⇑e⇑ > ⇀ such that Jε(e) < 0.
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Lemma 3.3. Assume that the hypotheses of Theorem 3.1 hold. Then, for any ε > 0, the functional

Jε satisfies Palais-Smale condition.

Proof. By Lemma 3.2 (ii), the functional Jε is anti-coercive. Therefore, by Lemma 2.3, the

functional Jε satisfies the Palais-Smale condition for any ε > 0. Thus, our problem (1.1) has at

least one nontrivial solution.

Case 2: r
+
< p

→

In the second case, we apply a direct variational approach. We verify that the functional Jε has a

critical point. Let ε > 0 be fixed, since H is a finite-dimensional space and Jε is of class C1(H,R),
it is su"cient to prove that Jε is coercive.

Let ⇑u⇑ > 1. Then, by (2.5), (2.6), (a) and (c) of Lemma 2.3, one has

Jε(u) ↔ ”(u)→ (!1 → φ)
T∑

k=1
|u(k)|>1

1

p(k)
|u(k)|p(k) → (!1 → φ)

T∑

k=1
|u(k)|>1

1

p(k)
|u(k)|p(k)

↔ ”(u)→ (!1 → φ)
T∑

k=1

1

p(k)
|u(k)|r(k) → (!1 → φ)

T∑

k=1

1

p(k)
|u(k)|p(k)

↔ !1 → (!1 → φ)

!1
”(u)→ (!1 → φ)

p+

T∑

k=1

|u(k)|r
+

↔ φ

!1p
+
⇑u⇑p

→
→ (!1 → φ)

p+


T

(p→→1)/p→
r

+

T⇑u⇑r
+

→K(T ),

where K(T ) is a positive constant. Therefore, choosing !≃ =
φ

!1

(
T (p→→1)/p→)r+

T

, since r
+
< p

→,

one deduces that Jε is coercive.

Now, let u≃ ↓ H be a global minimum of Jε, which is a critical point of Jε and, in turn, a weak

solution of the problem (1.1).

We now show that u≃ is nontrivial for ε large enough.

Let d ↓ (0, 1) be a fixed real and k0 ↓ Z [1, T ], we define a function w ↓ H by

w(k) =






d if k = k0,

0 if k ↓ Z [1, T ]→ {k0}.
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Then, we deduce by (H2)(ii) that

Jε(w) =
1

p(k0)

(
|d|p(k0) +

√
1 + |d|2p(k0) → 1


→ εF (k0, w(k0))

↘ 2

p(k0)
|d|p(k0) → εF (k0, d) ↘

2

p→
d
p
→
→ εCd

r
+

.

Thus, if we choose ε
≃ as

ε
≃ =

2

p→C
d
p
→→r

+

,

then for any ε > ε
≃ and r

+
< p

→, Jε(w) < 0. Since u≃ is a global minimum of Jε, it follows that

Jε(u≃) < 0 for any ε > ε
≃; therefore u≃ is a weak nontrivial solution of problem (1.1).

Case 3: r
→
< p

→

In this case, we apply the Ekeland’s variational principle.

Lemma 3.4. Assume that (H2)(ii) holds and r
→
< p

→
. Then, there is v ↓ H such that Jε(v) < 0.

Proof. Take d ↓ (0,κ), where κ is as in the proof of Lemma 3.2 (ii), such that d <

(
p
→
εC

2

 1
p→→r→

.

Let k0 ↓ Z [1, T ] with r(k0) = r
→. Consider any fixed v ↓ H such that v(k0) = d and v(k) = 0 for

any k ↓ Z [1, T ] \ {k0}. Using the condition (H2)(ii), we have

Jε(v) ↘
2

p(k0)
d
p(k0) → εCd

r(k0) ↘ 2

p→
d
p
→
→ εCd

r
→
.

Then,

Jε(v) < 0,

for all d <

(
p
→
εC

2

 1
p→→r→

. The proof is thus complete.

Relation (i) of Lemma 3.2 implies that

inf
u↓ςBω

Jε(u) > 0,

where Bφ = {u ↓ H such that ⇑u⇑ ↘ κ}. On the other hand, observe that Lemma 3.3 implies that

there exists v ↓ H such that Jε(v) < 0, for every d <

(
p
→
εC

2

 1
p→→r→

. Recall that v ↓ intBφ.

Thus,

inf
u↓intBω

Jε(u) < 0.
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So, it follows

inf
u↓intBω

Jε(u) < inf
u↓ςBω

Jε(u).

Let ↼ > 0 be fixed, such that

0 < ↼ < inf
u↓ςBω

Jε(u)→ inf
u↓intBω

Jε(u).

Applying Ekeland’s variational principle to the functional Jε : Bφ ↗ R, there exists uϑ ↓ Bφ such

that

Jε(uϑ) < inf
u↓Bω

Jε(u) + ↼ and Jε(uϑ) < Jε(u) + ↼⇑u→ uϑ⇑ for all u ∞= uϑ.

Moreover,

Jε(uϑ) < inf
u↓Bω

Jε(u) + ↼ ↘ inf
u↓intBω

Jε(u) + ↼ < inf
u↓ςBω

Jε(u),

then, we infer that uϑ ↓ intBφ. Next, we introduce the function ▷ε : Bφ ↗ R defined by

▷ε(u) = Jε(u) + ↼⇑u→ uϑ⇑ for all u ∞= uϑ.

So, it follows that uϑ is a minimum point of ▷ε and thus

▷ε(uϑ + ◁v)→ ▷ε(uϑ)

◁
↔ 0, (3.6)

for all v ↓ Bφ and all ◁ > 0 small enough. Therefore, using relation (3.6), we deduce that

Jε(uϑ + ◁v)→ Jε(uϑ)

◁
+ ↼⇑v⇑ ↔ 0.

Letting ◁ ↗ 0+, we obtain

J
↑
ε
(uϑ, v) + ↼⇑v⇑ ↔ 0 for all u ↓ H, (3.7)

where J
↑
ε
(uϑ, v) is the directional derivative of the function Jε at uϑ in the direction of v. Since

J
↑
ε
(uϑ, v) = ↙J ↑

ε
(uϑ), v∝ = J

↑
ε
(uϑ)v,

we obtain from (3.7),

⇑J ↑
ε
(uϑ)⇑ ↘ ↼.

Thus, we deduce that there exists a sequence {un} ′ intBφ such that

Jε(un) ↗ c = inf
u↓Bω

Jε(u) and J
↑
ε
(un) ↗ 0 as n ↗ ≃.
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As the sequence {un} is bounded in H, then there exists u0 ↓ H such that, up to a subsequence,

{un} converges to u0 in H. Hence, the problem (1.1) has a nontrivial solution.

Lemma 3.5. Let ε > 0. Suppose that conditions (H1)-(H5) are satisfied. If u ↓ H is a solution

of problem (1.1), then there exist two positive constants κ1 and κ2 such that κ1 ↘ ⇑u⇑ ↘ κ2.

Proof. The proof of this lemma is organized into two steps, as outlined below.

Step 1. Assume that u ↓ H is a solution of (1.1) with ⇑u⇑p(·) ↘ 1. Set 0 =
p
→

ε

(
T

p→→1

p→

p+

TK
p+

2

.

Since f satisfies (H4), for any ε ↓ (0,!1), there exist φ,⇁ > 0 such that ε ↘ !1 → φ < 0 and

εf(k, ϖ) ↘ (!1 → φ) |ϖ|p(k)→2
ϖ for all k ↓ Z [1, T ] and ϖ ↓ R with |ϖ| ↘ ⇁.

On the other hand, by (H2)(i), there exists a positive constant L such that

ε|f(k, ϖ)| ↘ L|ϖ|r(k)→1
, for all (k, ϖ) ↓ Z [1, T ]⇔ R and |ϖ| > ⇁,

where L = ε


1

↼r(k)→1 + 1

. Consequently, we get that

ε|f(k, ϖ)| ↘ (!1 → φ) |ϖ|p(k)→1 + L|ϖ|r(k)→1 for all k ↓ Z [1, T ] and ϖ ↓ R.

Using the above inequality, (2.2), (2.4), (2.8) and Lemma 2.3 (c), we obtain

⇑u⇑p
+

p(·) ↘ φp(·)(u) =
T∑

k=1

1

p(k)
|↑u(k)|p(k) ↘ 1

p→

T∑

k=1

|↑u(k)|p(k)

↘ 1

p→

T∑

k=1

(
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k) = ε

p→

T∑

k=1

f(k, u(k))u(k)

↘ ε

p→
(!1 → φ)

T∑

k=1

|u(k)|p(k) + εL

p→

T∑

k=1

|u(k)|r(k)

↘ ε

p→
(!1 → φ)

T∑

k=1

|u(k)|p
+

+
εL

p→

T∑

k=1

|u(k)|r
+

↘ ε

p→
(!1 → φ)

(
T

p→→1

p→

p
+

T⇑u⇑p
+

+
εL

p→

(
T

p→→1

p→

r
+

T⇑u⇑r
+

↘ ε

p→
(!1 → φ)

(
T

p→→1

p→

p
+

TK
p
+

2 ⇑u⇑p
+

p(·) +
εL

p→

(
T

p→→1

p→

r
+

TK
r
+

2 ⇑u⇑r
+

p(·).
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Therefore,

⇑u⇑p(·) ↔





1→ ε

p→
(!1 → φ)

(
T

p→→1

p→

p
+

TK
p
+

2

εL

p→

(
T

p→→1

p→

r
+

TK
r
+

2





1
r+→p+

.

Set

κ
≃
1 =





1→ ε

p→
(!1 → φ)

(
T

p→→1

p→

p
+

TK
p
+

2

εL

p→

(
T

p→→1

p→

r
+

TK
r
+

2





1
r+→p+

and note that

0 < κ
≃
1 < 1.

Indeed, since

ε ↘ !1 → φ <
p
→

ε

(
T

p→→1

p→

p+

TK
p+

2

,

it follows that

0 < 1→ ε

p→
(!1 → φ)

(
T

p→→1

p→

p
+

TK
p
+

2 < 1.

Clearly, εL
(
T

p→→1

p→

r
+

TK
r
+

2 > p
→. Hence, 0 < κ

≃
1 < 1.

Step 2. Suppose that u ↓ H is a solution of (1.1) such that ⇑u⇑p(·) ↔ 1. Then, there exists a

constant κ
≃
2 > 1 such that ⇑u⇑p(·) ↘ κ

≃
2.

According to (2.6) and (2.8), one has

r
→

(
Jε(u) + ε

T∑

k=1

F (k, u(k))

)
→ ε

T∑

k=1

f(k, u(k))u(k)

= r
→

T∑

k=1

1

p(k)

(
|↑u(k)|p(k) +

√
1 + |↑u(k)|2p(k) → 1


→

T∑

k=1

(
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k)

↔ r
→

p+

T∑

k=1

|↑u(k)|p(k) →
T∑

k=1

|↑u(k)|p(k) =
(
r
→

p+
→ 1

 T∑

k=1

|↑u(k)|p(k).

Recall the Ambrosetti-Rabinowitz condition:

r
→

ϖ
↘ f(k, ϖ)

F (k, ϖ)
, for all (k, ϖ) ↓ Z [1, T ]⇔ R and for some r

→
> p

+
. (3.8)

Integrating, we obtain that (3.2) holds (see [6, Remark 5.2] or [8, Remark 3.7]).
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Combining the above inequalities with (2.2), (3.5), (3.8) and Lemma 2.3, it follows that

r
→

(
Jε(u) + ε

T∑

k=1

F (k, u(k))

)
→ ε

T∑

k=1

f(k, u(k))u(k)

↘ r
→
Jε(u) + r

→
ε

T∑

k=1

1

r→
f(k, u(k))u(k)→ ε

T∑

k=1

f(k, u(k))u(k)

= r
→
Jε(u) = r

→ inf
h↓!

max
s↓[0,1]

Jε (h(s)) ↘ r
→ max

s↓[0,1]
Jε (se) ↘ r

→ max
s⇐0

Jε

(
s

e

⇑e⇑p(·)



↘ r
→ max

s⇐0



 T

p→
2p

++1

(
T

p→→1

p→

p
+

s
p
+ ⇑e⇑p+

⇑e⇑p+

p(·)

→ ε↽2→r
→
T

p→→r→

p→ s
r
→ ⇑e⇑r→

⇑e⇑r→
p(·)

+
2T

p→
+ εTCϱ





↘ r
→ max

s⇐0

(
T

p→
2p

++1

(
T

p→→1

p→

p
+

s
p
+

K
p
+

2 → ε↽2→r
→
T

p→→r→

p→ s
r
→
K

r
→

1 +
2T

p→
+ εTCϱ

)
,

where e ↓ H is given by Lemma 3.2 (ii). Hence from (2.3), we infer that

(
r
→

p+
→ 1


⇑u⇑p

→

p(·) ↘
(
r
→

p+
→ 1


φp(·)(u) =

(
r
→

p+
→ 1

 T∑

k=1

1

p(k)
|↑u(k)|p(k)

↘ r
→

p→
max
s⇐0

(
T

p→
2p

++1

(
T

p→→1

p→

p
+

s
p
+

K
p
+

2 → ε↽2→r
→
T

p→→r→

p→ s
r
→
K

r
→

1 +
2T

p→
+ εTCϱ

)
.

Let

1(s) =
T

p→
2p

++1

(
T

p→→1

p→

p
+

s
p
+

K
p
+

2 → ε↽2→r
→
T

p→→r→

p→ s
r
→
K

r
→

1 +
2T

p→
+ εTCϱ

and
d1

ds
(s) = 0. Since r

→
> p

+, then 1(s) ↗ →≃ as s ↗ ≃.

Therefore,

d1

ds
(s) =

T

p→
2p

++1

(
T

p→→1

p→

p
+

p
+
K

p
+

2 s
p
+→1 → ε↽2→r

→
T

p→→r→

p→ r
→
K

r
→

1 s
r
→→1

,

which implies that

s
r
→→p

+

=

T

p→
2p

++1

(
T

p→→1

p→

p
+

p
+
K

p
+

2

ε↽2→r→T

p→→r→
p→ r→Kr→

1

.

So,

s =





T

p→
2p

++1

(
T

p→→1

p→

p
+

p
+
K

p
+

2

ε↽2→r→T

p→→r→
p→ r→Kr→

1





1
r→→p+

.
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Let

κ
≃
2 =





r
→

p→

(
T

p→
2p

++1

(
T

p→→1

p→

p
+

s
p
+

K
p
+

2 → ε↽2→r
→
T

p→→r→

p→ s
r
→
K

r
→

1 +
2T

p→
+ εTCϱ

)

r
→

p+
→ 1





1/p→

.

Thus, by the definition of 1, one has

1max(s) ↔
2T

p→
+ εTCϱ,

which is equivalent to saying

r
→
1max(s) ↔

r
→

p→
2T + r

→
εTCϱ >

r
→

p→
2T >

r
→

p→
↔ r

→

p+
>

r
→

p+
→ 1.

Since r
→
> p

+ and 2 < p
→ ↘ p(·) < p

+
< ≃, we infer that κ

≃
2 > 1 and by (2.2), there exist

some constants κ1 = K1κ
≃
1, κ2 = K2κ

≃
2 such that κ1 ↘ ⇑u⇑ ↘ κ2.

The proof of Lemma 3.5 is then complete.

Next, we examine conditions under which our problem (1.1) has a unique non trivial solution.

Lemma 3.6. There exists a constant c > 0 such that for all k ↓ Z [1, T ] and s > 0,

min

{(
1 + ωp(k)(s)

)
s
p(k)→2

, s
p(k)→1 2ωp(k)

2s
(s)+(p(k)→ 1)

(
1 + ωp(k)(s)

)
s
p(k)→2

}
↔ cs

p(k)→2
,

where c = min{1, p→ → 1}.

Proof. For all s > 0, we observe that

(
1 + ωp(k)(s)

)
s
p(k)→2 ↔ s

p(k)→2 = 1⇔ s
p(k)→2

.

One also has
2ωp(k)

2s
(s) =

p(k)sp(k)→1

(
1 + s2p(k)

)3/2 .

At more, one has

s
p(k)→1 2ωp(k)

2s
(s) + (p(k)→ 1)

(
1 + ωp(k)(s)

)
s
p(k)→2

= (p(k)→ 1) sp(k)→2 +
(2p(k)→ 1) s2p(k)→2 + (p(k)→ 1) s4p(k)→2

(
1 + s2p(k)

)3/2 ↔
(
p
→ → 1

)
s
p(k)→2

.
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Hence, for all s > 0,

min{
(
1 + ωp(k)(s)

)
s
p(k)→2

, s
p(k)→1 2ωp(k)

2s
(s) + (p(k)→ 1)

(
1 + ωp(k)(s)

)
s
p(k)→2} ↔

min{1, p→ → 1}sp(k)→2
.

As in [27], one has the following result.

Lemma 3.7. There exists a positive constant c such that

(
1 + ωp(k)(ϖ)

)
|ϖ|p(k)→2

ϖ →
(
1 + ωp(k)(η)

)
|η|p(k)→2

η


(ϖ → η) ↔ c42→p(k)|ϖ → η|p(k),

for all ϖ, η ↓ R with (ϖ, η) ∞= (0, 0).

Let us now introduce the following hypothesis.

(H6) There exist a constant 0 < 3 <
p
→
c42→p

+

ε

(
T

p→→1

p→

p+

TK
p+

2 (2κ≃
2)

p+→p→

such that

|f(k, ϖ)→ f(k, η)| ↘ 3|ϖ → η|p
+→1 for all k ↓ Z [1, T ] and ϖ, η ↓ R with ϖ ∞= η.

One has the following result.

Theorem 3.8. Under assumptions (H1)-(H5) and (H6), there exists a unique nontrivial solution

of problem (1.1).

Proof. Let u and v be two non-trivial solutions to problem (1.1). Then, by (2.7), we have

T∑

k=1

(
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k)→2↑u(k)↑(u→ v)(k) = ε

T∑

k=1

f(k, u(k))(u→ v)(k) (3.9)

and

T∑

k=1

(
1 + ωp(k)(↑v(k))

)
|↑v(k)|p(k)→2↑v(k)↑(u→ v)(k) = ε

T∑

k=1

f(k, v(k))(u→ v)(k). (3.10)

Subtracting (3.9) and (3.10), we obtain

T∑

k=1

 (
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k)→2↑u(k)→

(
1 + ωp(k)(↑v(k))

)
|↑v(k)|p(k)→2↑v(k)


↑(u→ v)(k)

= ε

T∑

k=1

[f(k, u(k))→ f(k, v(k))] (u→ v)(k). (3.11)
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If ⇑u→ v⇑p(·) ↘ 1, then using (2.4), Lemma 3.6, (3.11), (H6) and Lemma 2.3 (c), we deduce from

(2.2) that

c42→p
+

⇑u→ v⇑p
+

p(·) ↘ c42→p
+

φp(·)(u→ v) ↘ 1

p→

T∑

k=1

c42→p(k)|↑u(k)→↑v(k)|p(k)

↘ 1

p→

T∑

k=1

((
1 + ωp(k)(↑u(k))

)
|↑u(k)|p(k)→2↑u(k)

→
(
1 + ωp(k)(↑v(k))

)
|↑v(k)|p(k)→2↑v(k)


(↑u(k)→↑v(k))

=
ε

p→

T∑

k=1

[f(k, u(k))→ f(k, v(k))] (u→ v)(k)

↘ ε3

p→

T∑

k=1

|u(k)→ v(k)|p
+

↘ ε3

p→

(
T

p→→1

p→

p
+

T⇑u→ v⇑p
+

↘ ε3

p→

(
T

p→→1

p→

p
+

TK
p
+

2 ⇑u→ v⇑p
+

p(·).

Therefore, 
c42→p

+

→ ε3

p→

(
T

p→→1

p→

p
+

TK
p
+

2


⇑u→ v⇑p

+

p(·) ↘ 0.

Recall that the constant 3 is such that 3 <
p
→
c42→p

+

ε

(
T

p→→1

p→

p+

TK
p+

2

.

Hence, ⇑u→ v⇑p
+

p(·) = 0, which implies that u = v.

Now, let ⇑u→ v⇑p(·) ↔ 1. Similarly, we can deduce that

c42→p
+

⇑u→ v⇑p
→

p(·) ↘ c42→p
+

φp(·)(u→ v) ↘ ε3

p→

(
T

p→→1

p→

p
+

TK
p
+

2 ⇑u→ v⇑p
+

p(·).

Consequently,

⇑u→ v⇑p
+→p

→

p(·) ↔ p
→
c42→p

+

ε3

(
T

p→→1

p→

p+

TK
p+

2

.

Which is equivalent to say

⇑u→ v⇑p(·) ↔




p
→
c42→p

+

ε3

(
T

p→→1

p→

p+

TK
p+

2





1
p+→p→

.



22 B. Moussa, I. Nyanquini & S. Ouaro CUBO
28, 1 (2026)

It is then clear that if u, v are solutions to problem (1.1) and 3 <
p
→
c42→p

+

ε

(
T

p→→1

p→

p+

TK
p+

2 (2κ≃
2)

p+→p→

,

then

2κ≃
2 < ⇑u→ v⇑p(·) ↘ ⇑u⇑p(·) + ⇑v⇑p(·) ↘ 2κ≃

2.

This contradicts the assumption that ⇑u→ v⇑p(·) ↔ 1. Consequently, it follows that u = v.
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ABSTRACT

The concept of metric dimension in graphs has the aim of

finding a set of vertices in a graph with the smallest size

that can be used as a reference to identify all vertices in the

graph uniquely. Formally, let G be a connected graph, and

let S = {s1, . . . , sk} → V (G) be an ordered set. For every

v ↑ V (G), we define r(v|S) = (d(v, s1), . . . , d(v, sk)) where

d is the distance function of G. We call S a resolving set if

r(u|S) ↓= r(v|S) for every u, v ↑ V (G), u ↓= v. The metric
dimension of G, denoted by dim(G), is the smallest inte-

ger k such that G has a resolving set of size k. Recently,

the authors have initiated research on the relation between

the metric dimension of a graph and its nullity (that is, the

multiplicity of 0 in its adjacency spectrum), and we have ob-

tained several results. In this paper, we present some new

relationships between the metric dimension and the spec-

trum of graphs. In detail, we present an inequality involving

the metric dimension and nullity of any bipartite or singu-

lar graph. Then, we give an infinite class of graphs having

equal metric dimension and nullity using the rooted product

of graphs. Finally, for any connected graph G other than

a path, we show that a submatrix of the distance matrix

of G, associated with a minimal resolving set of G, has the

full-rank property.
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RESUMEN

El concepto de dimensión métrica en grafos tiene como

propósito encontrar un conjunto de vértices en un grafo con

el menor tamaño que puede usarse como referencia para iden-

tificar únicamente todos los vértices del grafo. Formalmente,

sea G un grafo conexo, y sea S = {s1, . . . , sk} → V (G)

un conjunto ordenado. Para todo v ↑ V (G), definimos

r(v|S) = (d(v, s1), . . . , d(v, sk)) donde d es la función de

distancia de G. Llamamos a S un conjunto resolvente si

r(u|S) ↓= r(v|S) para todo u, v ↑ V (G), u ↓= v. La dimen-
sión métrica de G, denotada por dim(G), es el entero más

pequeño k tal que G tiene un conjunto resolvente de tamaño

k. Recientemente, los autores han comenzado a investigar

sobre la relación entre la dimensión métrica de un grafo y

su nulidad (es decir, la multiplicidad de 0 en su espectro de

adyacencia), y hemos obtenido diversos resultados. En este

artículo, presentamos algunas relaciones nuevas entre la di-

mensión métrica y el espectro de grafos. En detalle, presen-

tamos una desigualdad que involucra la dimensión métrica

y la nulidad de cualquier grafo bipartito o singular. Luego,

entregamos una clase infinita de grafos con igual dimensión

métrica y nulidad usando el producto enraizado de grafos.

Finalmente, para todo grafo conexo G distinto de un camino,

mostramos que una submatriz de la matriz de distancia de

G, asociada a un conjunto resolvente mínimo de G, tiene la

propiedad de rango completo.

Keywords and Phrases: Metric dimension, spectrum, nullity, distance matrix.
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1 Introduction

In the 1960s, Slater [14] and Harary and Melter [10] independently introduced the concept of metric

dimension of graphs. They introduced the term locating set or resolving set which refers to a set

of vertices used to identify each vertex in a graph uniquely. A resolving set with the smallest size

is called a basis, and its cardinality is referred to as the metric dimension of the graph. Since the

metric dimension of graphs and its variations have direct applicability to several real-world issues

like robot navigation [12] and chemistry [3], research on them has grown rapidly in the recent few

decades. See, for example, [15] and [13] for surveys on this topic. On the other hand, in 1972,

Cvetkovi!, Gutman, and Trinajsti! [5], and then Cvetkovi! and Gutman [4], introduced the nullity

of a graph as a new invariant; it is the multiplicity of 0 as an eigenvalue of the graph’s adjacency

matrix. They further investigated the connection between graph nullity and chemical structures.

Excellent overviews of graph nullity can be found in [1] and [9].

Despite the growth of interest in the metric dimension of graphs, its connection to the graph’s

spectrum has not been studied further. Recently, the authors [7] have initiated research on the

relation between the metric dimension of a graph and its spectrum, and we have obtained several

results. This research was motivated by the observation that the equality dim(G) = ω(G), where

dim(G) and ω(G) respectively denote the metric dimension and nullity of the graph G, holds

for complete bipartite graphs Kr,s where r →= s, paths Pn where n is odd, and cycles Cn where

n ↑ 0 (mod 4). This paper aims to provide further connections between the two concepts. In

detail, we first give an inequality involving dim(G) and ω(G) for any bipartite or singular graphs

G, generalizing our previous result for trees. Then, we give an infinite class of graphs G where

dim(G) = ω(G) using the rooted product of graphs. Finally, we give another relation between the

metric dimension of a graph and its distance matrix. We show that for any connected graph G, a

submatrix of its distance matrix, associated with a minimal resolving set of G, has the full-rank

property.

All the graphs considered in this study are finite, simple, and undirected. We refer to Diestel [6]

for the basic definitions related to graphs. An empty graph ↓ is the graph without any vertices

and edges. Let G = (V (G), E(G)) be a graph. We simply write V = V (G) and E = E(G) if the

graph is clear from context. Two vertices u, v ↔ V are said to be adjacent if uv ↔ E. The open

neighborhood of a vertex u ↔ V is the set NG(u) := {v ↔ V : uv ↔ E}, and the closed neighborhood

of u is NG[u] := {u}↗NG(u). The degree of a vertex u ↔ V , denoted by deg(u), is the size of NG(u).

A vertex is called pendant if it has degree one, and let p(G) denote the number of pendant vertices

of G. For two distinct vertices u, v in a graph G, the distance d(u, v) of u and v is the length of a

shortest path connecting u and v. We denote by Pn, Cn, Km,n, and Kn for paths, cycles, complete

bipartite, and complete graphs. For two integers a ↘ b, we define [a, b] := {x ↔ Z : a ↘ x ↘ b}.

Let u, v ↔ V , u →= v. We say that a vertex s ↔ V resolves u and v if d(u, s) →= d(v, s). Let
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S = {s1, s2, . . . , sk} ≃ V be an ordered subset of V . The representation of v ↔ V with respect to

S, denoted by r(v|S), is the vector r(v|S) = (d(v, s1), d(v, s2), d(v, s3), . . . , d(v, sk)). We call S a

resolving set of G if r(u|S) →= r(v|S) for every distinct pair u, v ↔ V , that is, if each vertex of G

has a unique representation with respect to S. In other words, S is a resolving set if and only if

every pair of distinct vertices u, v ↔ V is resolved by an element of S. A resolving set of G with

minimum size is called a basis of G. The cardinality of a basis of G is called the metric dimension

of G which is denoted by dim(G). A resolving set of G is called minimal if for every S0 ⇐ S, S0 is

not a resolving set of G, that is, S does not contain a smaller resolving set of G.

Let G = (V,E) be a graph of order n with V = {v1, v2, . . . , vn}. The adjacency matrix of G

is the n ⇒ n matrix A = A(G) = (aij) whose entry aij is equal to 1 if vi and vj are adjacent,

and 0 otherwise. The distance matrix of G is the matrix D = D(G) = (dij), where dij =

d(vi, vj). For M ↔ {A,D}, the M-spectrum of G, denoted by specM(G), is the set of eigenvalues

of M(G) together with their multiplicities. If the distinct eigenvalues of M(G) are ε1 > ε2 >

· · · > εs, and their multiplicities are m1,m2, . . . ,ms, respectively, then we write specM(G) =

{ε
m1
1 ,ε

m2
2 , . . . ,ε

ms
s }. For an eigenvalue ε, we may write mM(ε) to denote the multiplicity of ε

in specM(G). The nullity of G, denoted by ω(G), is the multiplicity of eigenvalue 0 in specA(G),

that is, ω(G) = mA(0). We call a graph G singular if ω(G) > 0. For the trivial case, we define

ω(↓) = 0.

2 Preliminary Results

In this section, we provide some known results that are useful in our discussions.

Theorem 2.1 ([3, 12]). A graph G has dim(G) = 1 if and only if G is a path.

Theorem 2.2 ([15]). For every integer n ⇑ 3, dim(Cn) = 2.

Let G and H be two graphs. The union G↗H is the graph where V (G↗H) = V (G)↗ V (H) and

E(G ↗H) = E(G) ↗ E(H). The join G ⇓H is the graph obtained by taking the two graphs and

connecting, by an edge, each vertex in G to each vertex in H. Furthermore, the complement G of

G has V (G) = V (G) and E(G) = {uv : uv /↔ E(G), u, v ↔ V (G)}.

Theorem 2.3 ([3]). Let G be a graph of order n ⇑ 4. Then, dim(G) = n ⇔ 2 if and only if

G = Kr,s (r, s ⇑ 1), G = Ks ⇓Kt (s ⇑ 1, t ⇑ 2), or G = Ks ⇓ (K1 ↗Kt) (s, t ⇑ 1).

For the case of trees, we need the following definitions. A vertex of degree at least 3 in a graph G is

called a major vertex of G. A pendant vertex u of G is called a terminal vertex of a major vertex v

of G if d(u, v) < d(u,w) for every other major vertex w of G. In other words, a pendant vertex u is

a terminal vertex of v if v is the closest major vertex from u. The terminal degree ter(v) of a major
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vertex v is the number of terminal vertices of v. A major vertex v of G is called an exterior major

vertex of G if ter(v) > 0. Let ϑ(G) denote the sum of the terminal degrees of all major vertices

of G, and let ex(G) denote the number of exterior major vertices of G. With these definitions, we

may calculate the metric dimension of trees other than a path by the following formula.

Theorem 2.4 ([3, 12,14]). If T is a tree other than a path, then

dim(T ) = ϑ(T )⇔ ex(T ) =
∑

v→V
ter(v)>1

(ter(v)⇔ 1).

The proof of Theorem 2.4 utilizes the following general bound for any connected graphs.

Lemma 2.5 ([3]). If G is a connected graph, then dim(G) ⇑ ϑ(G)⇔ ex(G).

For an exterior major vertex v in G, a tail of v is a path connecting v to one of its terminal vertex,

excluding v. Thus, an exterior major vertex v has ter(v) tails. We call a tail odd or even if it has

an odd or even number of vertices, respectively. A branch B is a subgraph of G induced by an

exterior major vertex v in G and all its tails. In this case, we call v the stem vertex of B. Thus,

a branch with n tails is a subdivision of the star graph K1,n. We say a branch B is of Type I if it

has at least one odd tail and Type II otherwise. In Figure 1b, the branches of T in Figure 1a are

the blocked subgraphs B1, B2, B3, and B4. The vertex c is the stem of B2. The branches B2, B3,

and B4 are of Type I, while the branch B1 is of Type II. With these additional definitions, observe

that the second equality in Theorem 2.4 indicates that the metric dimension of a tree depends only

on the structure of its branches.

We now discuss the rooted and corona product of graphs. Let G be a graph where V (G) =

{v1, v2, . . . , vn}. Let H be a set of n graphs H1, H2, . . . , Hn where a vertex in Hi is chosen as the

root of Hi, i ↔ [1, n]. The rooted product of G by H, denoted by G(H), is the graph obtained by

identifying the root of Hi and vi for every i ↔ [1, n] [8]. A special case of rooted product of graphs

is the caterpillar graph. A caterpillar is a tree such that the removal of its pendants produces

a path. For positive integers k and n1, n2, . . . , nk, a caterpillar CP (n1, n2, . . . , nk) is the graph

Pk({K1,n1 , . . . ,K1,nk}) by taking the center vertex of each K1,ni as its root.

Let G and H be two graphs with |G| = n. The corona product G ↖ H is defined as the graph

obtained by taking one copy of G and n copies of H, and we connect (by an edge) every vertex

in the ith copy of H with the ith vertex of G [16]. For the case where H = Km for some positive

integer m, we have G↖Km = G(H) where H = {H1, H2, . . . , Hn}, Hi = K1,m for every i ↔ [1, n].

Theorem 2.6 ([11]). If G is a connected graph of order n, and t ↔ N, t ⇑ 2, then dim(G↖Kt) =

n(t⇔ 1)

Theorem 2.7 ([11]). If G is a connected graph of order n, and H = {K1,m1 ,K1,m2 , . . . ,K1,mn}

where mi ⇑ 2 for every i ↔ [1, n], then dim(G(H)) =
∑n

i=1(mi ⇔ 1).
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(a) The tree T

c

B1

B2

B3

B4

(b) The branches of T

Figure 1: A tree and its branches

We now discuss the results related to the spectrum and nullity of graphs.

Theorem 2.8 ([2]).

(1) For every positive integers r, s, specA(Kr,s) = {±
↙
rs, 0r+s↑2

}.

(2) For every integer n ⇑ 2, specA(Cn) = {2 cos(2ϖk/n) : k ↔ [1, n]}.

(3) For every integer n ⇑ 1, specA(Pn) = {2 cos(ϖk/(n+ 1)) : k ↔ [1, n]}.

We can see from Theorem 2.8 that ω(Kr,s) = r + s ⇔ 2; ω(Cn) = 2 if n ↑ 0 (mod 4), and 0 if

otherwise; and ω(Pn) = 1 if n is odd, and 0 if n is even. The following observation is immediate

from Theorems 2.8, 2.1, 2.2, and 2.3.

Observation 2.9. The condition dim(G) = ω(G) holds if G is one of the following graphs:

(1) Kr,s where r →= s, or

(2) Cn where n ↑ 0 (mod 4), or

(3) Pn where n is odd.

Lemma 2.10 ([9]). Let G be a graph order n. Then, ω(G) = n if and only if G = Kn.

The following lemmas are very useful in many parts of our discussion.
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Lemma 2.11 ([4]). Let G be a bipartite graph containing a pendant vertex, say v, and H be the

graph obtained from G by deleting v and its neighbor. Then, ω(G) = ω(H).

Lemma 2.12 ([9]). Let G =
⋃t

i=1 Gi, where G1, . . . , Gt are connected components of G. Then,

ω(G) =
∑t

i=1 ω(Gi).

We now mention our previous result.

Theorem 2.13 ([7]). Let T be a tree other than a path. Let BI and BII be the sets of Type I and

Type II branches in T , respectively. Let e2 be the number of even tails in T . If T has an odd tail,

then

dim(T ) = ω(T )⇔ ω(T ⇔ BI)⇔ |BII|+ e2,

where T ⇔ BI is the graph obtained from T by deleting all Type I branches in T .

3 Main results

3.1 The metric dimension and nullity of bipartite or singular graphs

We first present an inequality involving dim(G) and ω(G) for any connected bipartite/singular

graph having an odd tail. The proof of this theorem is similar to the proof of Theorem 2.13.

However, for completeness, we present the proof.

Theorem 3.1. Let G be a connected bipartite or singular graph other than a path. Let BI and BII

be the sets of Type I and Type II branches in G, respectively. Let e2 be the number of even tails in

G. If G has an odd tail, then

dim(G) ⇑ ω(G)⇔ ω(G⇔ BI)⇔ |BII|+ e2

where G⇔ BI is the graph obtained from G by deleting all Type I branches in G.

Proof. Let B1, . . . , Bk be the branches in G. Since G has at least one odd tail, there exists a Type I

branch in G. Suppose that |BI| = p ⇑ 1. Without loss of generality, let BI = {B1, B2, . . . , Bp} and

BII = {Bp+1, Bp+2, . . . , Bk}. Observe that we may construct a sequence of graphs G0, G1, . . . , Gp

where G0 := G, Gp = G⇔BI, and Gj = Gj↑1 ⇔Bj = G⇔
⋃j

i=1 Bi for j ↔ [1, p]. So, the graph Gj

is obtained from G by deleting the branches B1, B2, . . . , Bj of G.

For an arbitrary j ↔ [1, p], consider the graph Gj↑1 and Type I branch Bj with stem vertex cj .

Suppose that Bj has e
(j) tails, e

(j)
1 odd tails, and e

(j)
2 even tails, hence e

(j) = e
(j)
1 + e

(j)
2 and

e2 =
∑k

i=1 e
(i)
2 . Let Podd be the set of all odd tails of Bj , and let Peven be the set of all even tails

of Bj . Pick an arbitrary odd tail, say P1, and then delete P1 and cj from Gj↑1. Since P1 is an odd
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Podd

PevenLj

Gj

P1

cj

(a) Gj→1

Podd

PevenLj

Gj

(b) Gj→1 ↔ P1 ↔ cj

Figure 2: The grouping of the vertices in Gj↑1 and Gj↑1 ⇔ P1 ⇔ cj

tail, we have ω(Gj↑1) = ω(Gj↑1⇔P1⇔ cj) by Lemma 2.11. Observe that the graph Gj↑1⇔P1⇔ cj

has several connected components (see Figure 2): Gj , odd tails of Bj except P1, and even tails of

Bj . By Lemma 2.11, we have

ω(P ) =






1, if P ↔ Podd,

0, if P ↔ Peven,

since successively deleting a pendant vertex and its neighbor of a path yields a single vertex if it

has an odd order, and an empty graph if it has an even order.

Consequently, by Lemma 2.12, we have

ω(Gj↑1) = ω(Gj↑1 ⇔ P1 ⇔ cj) = ω(Gj) +
∑

P→Podd

ω(P ) +
∑

P→Peven

ω(P ) = ω(Gj) +
(
e
(j)
1 ⇔ 1

)
.

Therefore, we have the relation ω(Gj) = ω(Gj↑1) ⇔
(
e
(j)
1 ⇔ 1

)
for j ↔ [1, p]. By applying this

relation successively, we obtain

ω(G⇔ BI) = ω(Gp) = ω(G0)⇔
p∑

i=1

(
e
(i)
1 ⇔ 1

)
= ω(G)⇔

p∑

i=1

(
e
(i)
1 ⇔ 1

)
.

Finally, since dim(G) ⇑
∑k

i=1(e
(i)

⇔ 1) by Lemma 2.5, we have

ω(G⇔ BI) = ω(G)⇔
k∑

i=1

(
e
(i)
1 ⇔ 1

)
+

k∑

i=p+1

(
e
(i)
1 ⇔ 1

)

= ω(G)⇔
k∑

i=1

(
e
(i)

⇔ 1⇔ e
(i)
2

)
+

k∑

i=p+1

(0⇔ 1)

= ω(G)⇔
k∑

i=1

(
e
(i)

⇔ 1
)
+

k∑

i=1

e
(i)
2 ⇔ (k ⇔ p)

⇑ ω(G)⇔ dim(G) + e2 ⇔ |BII|.
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Example 3.2. Let G be the graph shown in Figure 3a. The graph G ⇔ BI is the bold subgraph

shown in Figure 3c. With some calculations, we obtain ω(G) = 4 (so G is singular), ω(G⇔BI) = 1,

|BII| = 2, and e2 = 5. Thus, by Theorem 3.1, we obtain dim(G) ⇑ ω(G)⇔ ω(G⇔BI)⇔ |BII|+ e2 =

4⇔ 1⇔ 2 + 5 = 6.

(a) G (b) T (c) G↔ BI

Figure 3: The graph G, spanning tree T of G, and G⇔ BI

3.2 The metric dimension and nullity of the rooted product of some

graphs

Next, we discuss some relationships between the metric dimension and nullity of the rooted product

of some graphs. For certain conditions, this product will establish an infinite class of graphs whose

metric dimension and nullity are equal. For that, we need a useful class of graph called branch

graph which is simply a subdivision of K1,n for some positive integer n. The number of subdivision

processes in each “leg” of K1,n is arbitrary. The following proposition gives the metric dimension

of G(H) for any set of branch graphs H (see Figure 4). Observe that this proposition generalizes

Theorems 2.6 and 2.7.

Proposition 3.3. Let H = {B1, B2, . . . , Bn} be a set of n ⇑ 1 branch graphs. For every i ↔ [1, n],

the graph Bi has ei ⇑ 2 tails, and the center of Bi is chosen as the root of Bi. For every connected

graph G of order n, dim(G(H)) =
∑n

i=1(ei ⇔ 1) = p(G(H))⇔ n.

Proof. Let G be a connected graph of order n. First, we show that dim(G(H)) ⇑
∑n

i=1(ei ⇔ 1).

Let V (G) = {v1, . . . , vn}. The graph G(H) is obtained by identifying vi with the center of Bi.

Consequently, the pendant vertices of all Bi’s become the pendant vertices in G(H), so p(G(H)) =
∑n

i=1 ei. Moreover, all vertices in G become the exterior major vertices in G(H), so ex(G(H)) = n.

Thus, by Lemma 2.5, we have

dim(G(H)) ⇑ p(G(H))⇔ ex(G(H)) =
n∑

i=1

ei ⇔ n =
n∑

i=1

(ei ⇔ 1).
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Next, we show that dim(G(H)) ↘
∑n

i=1(ei ⇔ 1). For every vi ↔ V (G) ⇐ V (G(H)), let Ti :=

{v
1
i , v

2
i , . . . , v

ei
i } be the set of all terminal vertices of vi, where v

j
i is the terminal vertex of vi in the

jth tail, j ↔ [1, ei]. Let S =
⋃n

i=1(Ti \ {v
ei
i }). We will show that S is a resolving set of G(H). Let

x, y ↔ V (G(H)) be two distinct vertices. There are some cases for x and y.

(1) Let x, y ↔ V (Bi), i ↔ [1, n], that is, x and y are in the same branch.

(a) If x and y are in the same tail, say the jth tail, j ↔ [1, ei], then d(x, v1i ) →= d(y, v1i ).

(b) Suppose that x and y are in di"erent tails, say j1th and j2th tails, respectively. Observe

that at least one of vj1i and v
j2
i must be in S; say v

j1
i ↔ S without loss of generality.

Consequently, d(y, vj1i ) = d(y, vi) + d(vi, x) + d(x, vj1i ) > d(x, vj1i ) since d(y, vi) > 0.

(c) Suppose that x = vi and y is in the jth tail. If j ↔ [1, ei ⇔ 1], then d(y, vji ) < d(x, vji ).

If j = ei, then d(y, v1i ) = d(y, x) + d(x, v1i ) > d(x, v1i ) since d(y, x) > 0.

(2) Let x ↔ V (Bs) and y ↔ V (Bt), s →= t ↔ [1, n], that is, x and y are in di"erent branches.

Consequently, d(vs, vt) > 0.

(a) If x is in the jth tail, j ↔ [1, es ⇔ 1], then wherever y may be in Bt, we have d(y, vjs) =

d(y, vt) + d(vt, vs) + d(vs, x) + d(x, vjs) > d(x, vjs). Similar argument also applies if y is

in the jth tail, j ↔ [1, et ⇔ 1], that is, d(x, vjt ) > d(y, vjt ) wherever x may be in Bs.

(b) If x = vs and y = vt, then d(y, v1s) = d(y, vt)+d(vt, vs)+d(vs, v1s) > d(vs, v1s) = d(x, v1s).

(c) For the last case, suppose that x and y are in the esth and etth tails, respectively. If

d(x, v1s) →= d(y, v1s), then we are done. Now, let us assume that d(x, v1s) = d(y, v1s).

Observe that since d(vt, vs) > 0, we have

d(x, v1t ) = d(x, vs) + d(vs, vt) + d(vt, v
1
t )

= (d(x, vs) + d(vs, v
1
s)) + d(vs, vt) + d(vt, v

1
t )⇔ d(vs, v

1
s)

= d(x, v1s) + d(vs, vt) + d(vt, v
1
t )⇔ d(vs, v

1
s)

= d(y, v1s) + d(vs, vt) + d(vt, v
1
t )⇔ d(vs, v

1
s)

= (d(y, vt) + d(vt, vs) + d(vs, v
1
s)) + d(vs, vt) + d(vt, v

1
t )⇔ d(vs, v

1
s)

= (d(y, vt) + d(vt, v
1
t )) + 2d(vt, vs)

= d(y, v1t ) + 2d(vt, vs)

> d(y, v1t ).

Thus, for every case of x and y, there is an element of S resolving them. Consequently, S is a

resolving set of G(H), and since |S| =
∑n

i=1(ei⇔1), we have dim(G(H)) ↘
∑n

i=1(ei⇔1). Therefore,

dim(G(H)) =
∑n

i=1(ei ⇔ 1).
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G

· · ·

...

· · ·

...

Figure 4: The graph G(H)

Theorem 3.4. Let H = {B1, B2, . . . , Bn} be a set of n ⇑ 1 branch graphs whose tails are all odd

tails. For every i ↔ [1, n], the graph Bi has ei ⇑ 2 tails, and the center of Bi is chosen as the root

of Bi. For every connected bipartite graph G of order n,

dim(G(H)) = ω(G(H)) =
n∑

i=1

(ei ⇔ 1).

Proof. From Proposition 3.3, dim(G(H)) =
∑n

i=1(ei ⇔ 1). We only need to show that ω(G(H)) =
∑n

i=1(ei ⇔ 1). Observe that G is bipartite implies G(H) is also bipartite. Consider an arbitrary

branch Bi in G(H). By applying Lemma 2.11 consecutively, we may delete one tail from Bi

together with the vertex vi without changing the nullity, that is, the nullity of the resulting graph

is the same as of G(H). Moreover, this deletion leaves only ei ⇔ 1 tails of Bi. From Lemma 2.11

again, these ei ⇔ 1 tails leave ei ⇔ 1 isolated vertices (since every tail in Bi is an odd tail) without

changing the nullity. Thus, the deletion process on the branch Bi leaves the graph G(H) ⇔ Bi

and ei ⇔ 1 isolated vertices with the same nullity as G(H). By applying the same process to the

other branches, we get a graph consisting of
∑n

i=1(ei⇔1) isolated vertices whose nullity equals the

nullity of G(H). Thus, ω(G(H)) =
∑n

i=1(ei ⇔ 1). Therefore, dim(G(H)) = ω(G(H)).

The following corollary is a consequence of Theorem 3.4 by observing that corona product of graphs

and caterpillar graphs are special cases of rooted product of graphs.
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Corollary 3.5. The condition dim(G) = ω(G) holds if G is one of the following graphs:

(1) H ↖Kp for every connected bipartite graph H and positive integer p ⇑ 2, or

(2) CP (n1, n2, . . . , nk) for every positive integers k and ni ⇑ 2, i ↔ [1, k].

In contrast to Theorem 3.4, if all branch graphs in H have only even tails, then the metric dimension

of G(H) is strictly greater than its nullity as we show in the following theorem.

Theorem 3.6. Let H be a set of n ⇑ 2 branch graphs with at least 2 tails whose tails are all

even tails, and for every B ↔ H, the center of B is chosen as the root of B. For every connected

bipartite graph G of order n, dim(G(H)) > ω(G(H)).

Proof. Let H = {B1, . . . , Bn}, where every Bi ↔ H has ei ⇑ 2 tails. Assume to the contrary that

there exists a connected bipartite graph G of order n satisfying dim(G(H)) ↘ ω(G(H)). Since

G is connected and has an order n ⇑ 2, we have G →= Kn, so ω(G) ↘ n ⇔ 1 from Lemma 2.10.

From Proposition 3.3, we have dim(G(H)) =
∑n

i=1 ei ⇔ n, and by applying Lemma 2.11 on G(H)

consecutively, we obtain ω(G(H)) = ω(G). Therefore,

n = 2n⇔ n ↘

n∑

i=1

ei ⇔ n = dim(G(H)) ↘ ω(G(H)) = ω(G) ↘ n⇔ 1,

a contradiction.

3.3 The metric dimension and distance matrix of graphs

Finally, we discuss a relationship between the metric dimension of a graph and its distance matrix.

For that, we need the following notations. For a connected graph G and ↓ →= S ≃ V (G), the

distance matrix D of G can be partitioned into

D =
[
D[S] D[V \S]

]

where D[S] ↔ R|G|↓|S| and D[V \S] ↔ R|G|↓|V \S| are the submatrices obtained from D by taking

all the columns corresponding to the elements of S and V \S, respectively. Observe that the vth

row of D[S] is r(v|S)↔. Observation 3.7 is a direct consequence of this definition. Recall that a

resolving set S of G is called minimal if S does not contain a smaller resolving set of G. A basis

is a minimal resolving set, but the converse is not necessarily true.

Observation 3.7. Let G be a connected graph with distance matrix D and ↓ →= S ≃ V (G).

(1) S is a resolving set of G if and only if D[S] has no two identical rows.
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(2) S is a minimal resolving set of G if and only if (1) D[S] has no two identical rows, and (2)

for every s ↔ S, D[S\{s}] has two identical rows.

Theorem 3.8. Let G be a connected graph other than a path with distance matrix D. If S is a

minimal resolving set of G, then rank(D[S]) = |S|. Consequently, dim(G) ↘ rank(D).

Proof. Let S be a minimal resolving set of G with |S| = k. Since G is not a path, we have k ⇑ 2

from Theorem 2.1. Let i ↔ [1, k] be arbitrary. According to Observation 3.7, there are two rows

du = (du1, . . . , duk)↔ and dv = (dv1, . . . , dvk)↔ (u →= v) of D[S] such that dus = dvs for every

s ↔ [1, k]\{i}, but dui > dvi, without loss of generality. Define ci := dui ⇔ dvi > 0. Observe

that 1
ci
(du ⇔ dv) = ei where ei := (0, . . . , 0, 1, 0, . . . , 0)↔ with entry 1 is in the ith column. This

means that ei is in the row space of D[S]. Since i ↔ [1, k] is arbitrary, the linearly independent set

{e1, e2, . . . , ek} is contained in the row space of D[S], hence rank(D[S]) ⇑ |S|. By the property

of rank, we obtain rank(D[S]) ↘ min{|G|, |S|} = |S|. Therefore, rank(D[S]) = |S|. Consequently,

dim(G) ↘ |S| = rank(D[S]) ↘ rank(D).

The contrapositive of Theorem 3.8 and the fact that rank(D[S]) ↘ |S| produce the following

corollary.

Corollary 3.9. Let G be a connected graph other than a path with distance matrix D. If S is a

resolving set of G and rank(D[S]) < |S|, then S contains a smaller resolving set of G.

4 Conclusion and open problems

In this paper, we gave a lower bound of the metric dimension dim(G) of any connected bipar-

tite/singular graph G in terms of its nullity ω(G). Then, we gave infinite examples of graphs

having equal metric dimension and nullity using the rooted product of graphs. We found that

dim(G(H)) = ω(G(H)) if H is the set of branch graphs having only odd tails and having at least

two tails. It is still an open problem to characterize or list other graphs having equal metric

dimension and nullity.

Problem 4.1. Give other examples of graphs G with dim(G) = ω(G).

Another interesting problem is to investigate dim(G(H)) when H is the set of complete graphs of

order at least 3. As a preliminary observation, it is known that for every integer n ⇑ 2, dim(Kn) =

n ⇔ 1. On the other hand, we also have mA(Kn)(⇔1) = n ⇔ 1, thus dim(Kn) = mA(Kn)(⇔1).

We conjectured that there is a relationship between the metric dimension of a graph with the

multiplicity of eigenvalue ⇔1 through the existence of a clique.

Problem 4.2. Investigate the relationships between the metric dimension of a graph having cliques

and the multiplicity of ⇔1 in their spectrum. In particular, if F = G(H) where G is any connected
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bipartite graph and H is the set of complete graphs of order at least 3, then compare dim(F ) and

mA(F )(⇔1).

Lastly, we gave a relationship between the metric dimension of a graph and its distance matrix. We

showed that if S is a minimal resolving set of G having distance matrix D, then D[S] is full-rank.

Since the metric dimension of a graph is closely related to the graph distance, there may be more

relationships between the metric dimension and the distance matrix of a graph.

Problem 4.3. Find other relationships between the metric dimension of a graph and its distance

matrix.
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1 Introduction and motivation

The Euler-Mascheroni constant, represented by the symbol gamma ω, is a key mathematical con-

stant that appears in numerous areas of number theory and analysis. Introduced by the Swiss

mathematician Leonhard Euler in 1734, this constant is defined as the limit of the di!erence be-

tween the harmonic series and the natural logarithm. Mathematically, it is defined as the limit of

the sequence:

ωn =
n∑

k=1

1

k
+ ln

1

n
.

The approximate value of ω is 0.57721 . . . , although its precise nature –whether it is rational or

irrational– remains unresolved in the field of mathematics.

Throughout history, the Euler-Mascheroni constant has been extensively studied and computed.

Euler initially determined its value to six decimal places, and later mathematicians, including the

Italian mathematician Lorenzo Mascheroni, have worked to refine this calculation.

Despite its long-standing history, many aspects of ω continue to captivate mathematicians, making

it a subject of ongoing research and investigation.

In particular, many researchers are focused on developing new, rapidly converging sequences to

approximate ω.

This interest stems from the hypothesis that the unresolved question of whether ω is rational or

irrational may be attributed to the slow convergence rate of the classical sequence (ωn)n→1 .

Recent studies have introduced various sequences with faster convergence rates (but a sacrifice

of simplicity), aiming to shed light on the true nature of this enigmatic number. The methods

used range from modifying some terms from the harmonic series to changing the argument of the

logarithm to polynomial or rational functions. See, e.g., [2–5].

This paper aims to introduce some new faster convergences to ω, keeping a simple form.

2 The results

Along with the classical sequence (ωn)n→1 (that converges to ω decreasingly), the following sequence

ω↑
n =

n∑

k=1

1

k
+ ln

1

n+ 1

converges increasingly to ω.

Both sequences (ωn)n→1 and (ω↑
n)n→1 converge to ω like n↓1, since

lim
n↔↗

n (ωn → ω) =
1

2
and lim

n↔↗
n (ω↑

n → ω) = →1

2
.
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We introduce in this paper new sequences by modifying the argument of the logarithm to
1
2

(
1
n + 1

n+1

)
, then to 1

n2 + 1
(n+1)2

.

For the sake of simplicity, we propose the sequence

µn =
n∑

k=1

1

k
+ ln

(
1

n
+

1

n+ 1

)

that converges (to ω + ln 2) at a higher rate of convergence, as we can see from the following:

Theorem 2.1. a) The sequence (µn)n→1 converges decreasingly to ω+ln 2, at a rate of conver-

gence n↓2. More precisely,

lim
n↔↗

n2 (µn → (ω + ln 2)) =
7

24
.

b) The following inequalities hold true, for every integer n ↑ 1 :

7

24 (n+ 1) (n+ 2)
↓ µn → (ω + ln 2) ↓ 7

24n (n+ 1)
.

Keeping in mind that the number 1
2

(
1
n + 1

n+1

)
, which appears in the expression of the sequence

(µn)n→1 , is the arithmetic mean of 1
n and 1

n+1 , we introduce the following sequence involving the

quadratic mean of 1
n and 1

n+1 :

εn =
n∑

k=1

1

k
+

1

2
ln

(
1

n2
+

1

(n+ 1)2

)
.

The sequence (εn)n→1 converges
(
to ω + 1

2 ln 2
)

with a rate of convergence n↓2, as we can see from

the following:

Theorem 2.2. a) The sequence (εn)n→1 converges decreasingly to ω + 1
2 ln 2, at a rate of con-

vergence n↓2. More precisely,

lim
n↔↗

n2

(
εn →

(
ω +

1

2
ln 2

))
=

5

12
.

b) The following inequalities hold, for every integer n ↑ 1 :

5

12 (n+ 1) (n+ 2)
↓ εn →

(
ω +

1

2
ln 2

)
↓ 5

12n (n+ 1)
.



46 C. Mortici CUBO
28, 1 (2026)

3 The proofs

A main tool for computing the speed of convergence is the following lemma, first stated in [6].

Lemma 3.1. If (xn)n→1 is convergent to zero and

lim
n↔↗

nk (xn → xn+1) = l ↔ (→↗,↗) ,

for some k > 1 and l ↘= 0, then

lim
n↔↗

nk↓1xn =
l

k → 1
.

This lemma is useful especially when the sequence (xn)n→1 is defined as a sum and consequently,

the di!erence xn → xn+1 becomes of a simpler form.

Proof of Theorem 1. a) We have µn → µn+1 = f (n) , where

f (x) = → 1

x+ 1
+ ln

(
1

x
+

1

x+ 1

)
→ ln

(
1

x+ 1
+

1

x+ 2

)
.

This function f is decreasing on (0,↗), since

f ↑ (x) = → 14x+ 7x2 + 6

x (2x+ 3) (2x+ 1) (x+ 2) (x+ 1)2
< 0.

As limx↔↗ f (x) = 0, it follows that f > 0 on (0,↗) and consequently, the sequence (µn)n→1

is decreasing.

By standard calculations (or faster, using the Maple software) we get:

lim
n↔↗

n3 (µn → µn+1) =
7

12
.

According to Lemma 3.1, we obtain:

lim
n↔↗

n2 (µn → (ω + ln 2)) =
7

24
.

b) First we prove the following inequalities, for every integer n ↑ 1:

7

12n (n+ 1) (n+ 2)
→ 7

4n (n+ 1) (n+ 2) (n+ 3)
< µn → µn+1 <

7

12n (n+ 1) (n+ 2)
, (3.1)

namely u (x) < 0 and v (x) > 0, for all x ↔ (0,↗) , where

u (x) = f (x)→ 7

12x (x+ 1) (x+ 2)
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and

v (x) = f (x)→
(

7

12x (x+ 1) (x+ 2)
→ 7

4x (x+ 1) (x+ 2) (x+ 3)

)
.

The function u is increasing, while the function v is decreasing, as

u↑ (x) =
94x+ 47x2 + 42

12x2 (2x+ 3) (2x+ 1) (x+ 2)2 (x+ 1)2
> 0, x > 0,

and

v↑ (x) = → 4305x+ 4748x2 + 2137x3 + 336x4 + 1296

12x (2x+ 3) (2x+ 1) (x+ 3)2 (x+ 2)2 (x+ 1)2
< 0, x > 0.

But limx↔↗ u (x) = limx↔↗ v (x) = 0, thus u (x) < 0 and v (x) > 0, for all x ↔ (0,↗) , as

we have announced before. The inequality (3.1) is true.

Now we plan to sum the inequalities (3.1) from n to n+k→1, where k is any positive number:

7

12

n+k↓1∑

i=n

1

i (i+ 1) (i+ 2)
→ 7

4

n+k↓1∑

i=n

1

i (i+ 1) (i+ 2) (i+ 3)

< µn → µn+k <
7

12

n+k↓1∑

i=n

1

i (i+ 1) (i+ 2)
. (3.2)

These are telescopic sums, as

1

i (i+ 1) (i+ 2)
=

1

2

(
1

i (i+ 1)
→ 1

(i+ 1) (i+ 2)

)
(3.3)

and
1

i (i+ 1) (i+ 2) (i+ 3)
=

1

3

(
1

i (i+ 1) (i+ 2)
→ 1

(i+ 1) (i+ 2) (i+ 3)

)
. (3.4)

The inequality (3.2) becomes:

7

24

(
1

n (n+ 1)
→ 1

(n+ k) (n+ k + 1)

)

→ 7

12

(
1

n (n+ 1) (n+ 2)
→ 1

(n+ k) (n+ k + 1) (n+ k + 2)

)

< µn → µn+k <
7

24

(
1

n (n+ 1)
→ 1

(n+ k) (n+ k + 1)

)
.

By taking the limit as k ≃ ↗, we obtain:

7

24

1

n (n+ 1)
→ 7

12

1

n (n+ 1) (n+ 2)
↓ µn → (ω + ln 2) ↓ 7

24

1

n (n+ 1)
,

which is the conclusion.
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Proof of Theorem 2. a) We have εn → εn+1 = g (n) , where

g (x) = → 1

x+ 1
+

1

2
ln

(
1

x2
+

1

(x+ 1)2

)
→ 1

2
ln

(
1

(x+ 1)2
+

1

(x+ 2)2

)

This function g is decreasing on (0,↗), since

g↑ (x) = → 38x+ 59x2 + 40x3 + 10x4 + 10

x (x+ 2) (2x+ 2x2 + 1) (6x+ 2x2 + 5) (x+ 1)2
< 0.

As limx↔↗ g (x) = 0, it follows that g > 0 on (0,↗) and consequently, the sequence (εn)n→1

is decreasing.

By standard calculations (or faster, using the Maple software) we get:

lim
n↔↗

n3 (εn → εn+1) =
5

6
.

According to the Lemma 3.1, we obtain:

lim
n↔↗

n2

(
εn →

(
ω +

1

2
ln 2

))
=

5

12
.

b) First we prove the following inequalities, for every integer n ↑ 1:

5

6n (n+ 1) (n+ 2)
→ 5

2n (n+ 1) (n+ 2) (n+ 3)
< εn → εn+1 <

5

6n (n+ 1) (n+ 2)
, (3.5)

namely s (x) < 0 and t (x) > 0, for all x ↔ (0,↗) , where

s (x) = g (x)→ 5

6x (x+ 1) (x+ 2)

and

t (x) = g (x)→
(

5

6x (x+ 1) (x+ 2)
→ 5

2x (x+ 1) (x+ 2) (x+ 3)

)
.

The function s is increasing, while the function t is decreasing, as

s↑ (x) =
190x+ 279x2 + 184x3 + 46x4 + 50

6x2 (2x+ 2x2 + 1) (6x+ 2x2 + 5) (x+ 2)2 (x+ 1)2
> 0

and

t↑ (x) = →5089x+ 10 460x2 + 11 283x3 + 6620x4 + 1994x5 + 240x6 + 1080

6x (2x+ 2x2 + 1) (6x+ 2x2 + 5) (x+ 3)2 (x+ 2)2 (x+ 1)2
< 0.

But limx↔↗ s (x) = limx↔↗ t (x) = 0, thus s (x) < 0 and t (x) > 0, for all x ↔ (0,↗) , as we

have announced before. The inequality (3.5) is true.
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Now we plan to sum the inequalities (3.5) from n to n+k→1, where k is any positive number:

5

6

n+k↓1∑

i=n

1

i (i+ 1) (i+ 2)
→ 5

2

n+k↓1∑

i=n

1

i (i+ 1) (i+ 2) (i+ 3)

< εn → εn+k <
5

6

n+k↓1∑

i=n

1

i (i+ 1) (i+ 2)
. (3.6)

These are telescopic sums, as we can see from (3.3)-(3.4). The inequality (3.6) becomes:

5

12

(
1

n (n+ 1)
→ 1

(n+ k) (n+ k + 1)

)

→ 5

6

(
1

n (n+ 1) (n+ 2)
→ 1

(n+ k) (n+ k + 1) (n+ k + 2)

)

< εn → εn+k <
5

12

(
1

n (n+ 1)
→ 1

(n+ k) (n+ k + 1)

)
.

By taking the limit as k ≃ ↗, we obtain:

5

12 (n+ 1) (n+ 2)
↓ εn →

(
ω +

1

2
ln 2

)
↓ 5

12n (n+ 1)
.

4 Further remarks

We believe that the ideas in this paper could be of interest to other researchers to obtain new

generalizations, or results.

To be more precisely, recall that the harmonic sum is closely related to the digamma function ϑ,

i.e. the logaritmic derivative of the Euler-gamma function:

ϑ (x) =
d

dx
(ln! (x)) .

Here,

! (x) =

∫ ↗

0
tx↓1e↓tdt, x > 0.

We have ϑ (1) = →ω and for every integer n ↑ 2,

ϑ (n) = →ω +
n↓1∑

k=1

1

k
.

Furthermore,

ϑ (x+ 1) = ϑ (x) +
1

x
.

For proofs and other properties, please see [1, p. 258].
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Under these circumstances, the sequences we deal with in the above sections admit continuous

forms on (1,↗) , as follows:

ω (x) = ω + ϑ (x) + ln
1

x→ 1
(4.1)

µ (x) = ω + ϑ (x) + ln

(
1

x→ 1
+

1

x

)
(4.2)

ε (x) = ω + ϑ (x) +
1

2
ln

(
1

(x→ 1)2
+

1

x2

)
, (4.3)

for x > 1. We have: ωn = ω (n+ 1) , µn = µ (n+ 1) , εn = ε (n+ 1) , for all integers n ↑ 1.

Bounds for the functions ω, µ, ε given in (4.1)-(4.3) and consequently for the sequences (ωn)n→1 ,

(µn)n→1 , (εn)n→1 can be obtained by using the asymptotic series of the digamma function:

ϑ (x) ⇐ lnx→ 1

2x
→

↗∑

i=1

B2i

2ix2i
= lnx→ 1

2x
→ 1

12x2
+

1

120x4
→ 1

252x5
+ . . . , as x ≃ ↗. (4.4)

Here, Bj are the Bernoulli numbers given by the generating function:

t

et → 1
=

↗∑

j=0

Bj
tj

j!
.

We have B1 = →1/2 and B2j+1 = 0, for all positive integers j, while the first few Bernoulli numbers

are B2 = 1/6, B4 = →1/30, B6 = 1/42 . . . For detalis, see, e.g., [1, p. 804].

The above announced bounds can be obtained by truncation of the (4.4) series. More precisely,

under and upper approximations are given by alternatively truncate the (4.4) series:

lnx→ 1

2x
→

2m↓1∑

i=1

B2i

2ix2i
< ϑ (x) < lnx→ 1

2x
→

2n∑

i=1

B2i

2ix2i
.

In this way, along bounds, other monotonicity, even complete monotonicity properties can be

discovered.
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ABSTRACT

In this paper, we study Kirchho! equations with constraint

conditions






→
(
a+ b

∫

R3
|↑u1|2 dx

)
!u1 = ω1u1

+ µ1|u1|p1→2
u1 + εr1|u1|r1→2

u1|u2|r2 in R3
,

→
(
a+ b

∫

R3
|↑u2|2 dx

)
!u2 = ω2u2

+ µ2|u2|p2→2
u2 + εr2|u1|r1 |u2|r2→2

u2 in R3
,

∫

R3
|u1|2 dx = c1,

∫

R3
|u2|2 dx = c2,

u1 ↓ H
1 (R3)

, u2 ↓ H
1 (R3)

.

(P)

where a, b, ε, µi, ci > 0, ri > 1, 2 < pi <
14
3 < r :=

r1 + r2 ↔ 2↑ for i = 1, 2, and ω1, ω2 ↓ R appear as Lagrange

multipliers. The existence of normalized solutions for p1 and

p2 within a specific range of (2, 14
3 ) has been considered both

the Sobolev subcritical case (r < 2↑) and the critical case

(r = 2↑) by the Minimax principle and variational methods.

This paper provides a refinement and extension of the results

for the normalized solutions to Kirchho! equations.
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RESUMEN

En este artículo, estudiamos ecuaciones de Kirchho! con

condiciones de restricción






→
(
a+ b

∫

R3
|↑u1|2 dx

)
!u1 = ω1u1

+ µ1|u1|p1→2
u1 + εr1|u1|r1→2

u1|u2|r2 en R3
,

→
(
a+ b

∫

R3
|↑u2|2 dx

)
!u2 = ω2u2

+ µ2|u2|p2→2
u2 + εr2|u1|r1 |u2|r2→2

u2 en R3
,

∫

R3
|u1|2 dx = c1,

∫

R3
|u2|2 dx = c2,

u1 ↓ H
1 (R3)

, u2 ↓ H
1 (R3)

.

(P)

donde a, b, ε, µi, ci > 0, ri > 1, 2 < pi <
14
3 < r := r1+r2 ↔

2↑ para i = 1, 2, y ω1, ω2 ↓ R aparecen como multiplicadores

de Lagrange. La existencia de soluciones normalizadas para

p1 y p2 en un rango específico de (2, 14
3 ) ha sido considerado

tanto el caso Sobolev subcrítico (r < 2↑) y el caso crítico (r =

2↑) a través del principio Minimax y métodos variacionales.

Este artículo entrega un refinamiento y una extensión de

los resultados para soluciones normalizadas de ecuaciones de

Kirchho!.

Keywords and Phrases: Normalized solution, Kirchho! equations, variational methods.

2020 AMS Mathematics Subject Classification: 35J60, 47J30, 35J20.
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1 Introduction and main results

In this paper, we are concerned with the existence of normalized solutions to following Kirchho!

equations in H
1
(
R3

)
→H

1
(
R3

)
,






↑
(
a+ b

∫

R3

|↓u1|2 dx
)
!u1 = ω1u1 + µ1 |u1|p1→2

u1 + εr1 |u1|r1→2
u1 |u2|r2 ,

↑
(
a+ b

∫

R3

|↓u2|2 dx
)
!u2 = ω2u2 + µ2 |u2|p2→2

u2 + εr2 |u1|r1 |u2|r2→2
u2,

(1.1)

under mass constraints, ∫

R3

|u1|2 dx = c1,

∫

R3

|u2|2 dx = c2, (1.2)

where c1, c2 are prescribed positive constants.

The Kirchho!-type problems, initially proposed by Kirchho! in 1883 [18], extend the classical

d’Alembert wave equations. Following the foundational work by Lions [22], Kirchho!-type equa-

tions have attracted significant interest, leading to extensive exploration of their steady-state mod-

els. Early classical studies on Kirchho! equations can be found in [1,12,13,19,23] and the references

therein.

Currently, physicists are particularly interested in solutions that satisfy normalized conditions:
∫
R3 |ui|2dx = ci, for i = 1, 2, due to their clear physical significance, particularly regarding mass.

For example, from a physical perspective, the normalized condition can represent the number of

particles in each component of Bose-Einstein condensates or the power supply in nonlinear optics.

In this context, ωi appears as an unknown quantity in the Kirchho! equations (1.1). It is therefore

natural to prescribe the value of the mass so that ωi can be interpreted as Lagrange multipliers.

From this perspective, problem (P) can be addressed by studying certain constrained variational

problems, obtaining normalized solutions by identifying critical points of the energy functional

J : H1
(
R3

)
→H

1
(
R3

)
↔ R defined by

J (u1, u2) =
a

2

2∑

i=1

↗↓ui↗22 +
b

4

2∑

i=1

↗↓ui↗42 ↑
2∑

i=1

µi

pi
↗ui↗pi

pi
↑ ε

∫

R3

|u1|r1 |u2|r2dx,

constrained on S := S (c1) → S (c2), where ↗ · ↗p denotes the standard norm in L
p
(
R3

)
for p ↘

[1,+≃) and S(c) :=
{
u ↘ H

1
(
R3

)
: ↗u↗22 = c

}
for any c > 0.

When b = 0, the Kirchho! equations (1.1) reduce to a nonlinear Schrödinger equations. In this

case, we note that the mass critical exponent 10
3 . If the problem (P) is purely mass subcritical, i.e.,

2 < p1, p2, r <
10
3 , Gou and Jeanjean [10] searched for a critical point of J as a global minimizer

of J on S. In the purely mass supercritical case, i.e., 10
3 < p, q, r < 2↑, Bartsch et al. [3] first

considered the case of p = q = r = 4. They obtained the existence of positive solutions to problem

(P) provided 0 < ε < ε1(c1, c2) or ε > ε2(c1, c2). Bartsch and Jeanjean [2] extended these results
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of [3] to 10
3 < p1, p2, r < 2↑. Recently, Jeanjean et al. [17] focused on the coupled purely mass

supercritical case and proved the existence of solutions for all c1, c2, and without restrictions on

ε. For the mixed cases such as 2 < p1, p2 <
10
3 < r < 2↑ or 2 < r <

10
3 < p1, p2 < 2↑, Gou and

Jeanjean [11] explored the multiplicity of solutions to problem (P). Later, Bartsch and Jeanjean

[2] used the mountain pass lemma and a compactness argument to show that problem (P) has a

positive solution for suitable c1, c2 > 0 when 2 < p1 <
10
3 < p2 and r < 2↑. In the Sobolev critical

case, Li and Zou [21] investigated the condition that 2 < p1, r < 2↑, p2 ⇐ 2↑. Bartsch et al. [4]

also considered the Sobolev critical case with 2 < r < 2↑ = p1 = p2. When 10
3 < p1, p2 < r = 2↑,

Liu and Fang [24] demonstrated that problem (P) has a mountain pass solution. Zhang and Han

[34] obtained a positive ground state solution of problem (P) with 2 < p1, p2 <
10
3 and r = 2↑.

When b > 0, there are several results in the literature dealing with normalized solutions to problem

(P). Ye [32,33] considered this constrained problem for a single Kirchho! equation






↑
(
a+ b

∫

R3

|↓u|2dx
)
!u = ωu+ µ|u|p→2

u in R3
,

∫

R3

|u|2dx = c.

(1.3)

Ye proved that p = 14
3 is a mass critical exponent for Kirchho! equation. To be more precise, the

functional corresponding to problem (1.3) is

Iµ(u) :=
a

2
↗↓u↗22 +

b

4
↗↓u↗42 ↑

µ

p
↗u↗pp,

which is bounded from below on manifold S(c) when 2 < p <
14
3 . However, when 14

3 < p < 6, the

functional is not bounded from below on S(c). By Ekeland’s variational principle and the strict

monotonicity of a energy function, Cao et al. [5] considered the existence of positive solutions to

problem (P) with the purely mass subcritical case 2 < p1, p2, r <
14
3 . Recently, Yang [31] showed

the existence of positive solutions to problem (P) in the purely mass supercritical case 14
3 < p1,

p2, r < 2↑ and in the mixed case 2 < r <
14
3 < p1, p2 < 2↑. Hu and Mao [15] further obtained the

existence of two solution (local minimizer and Mountain-Pass type) for the mixed cases 2 < p1,

p2 ⇐ 10
3 and 14

3 < r < 2↑. More results about the normalized solutions, we refer the readers to

[8, 14,29,30].

To provide clarity in the discussion, we summarize some of the results on normalized solutions to

problem (P) in Table 1.

Motivated by the aforementioned works, we study normalized solutions to problem (P) in three

distinct cases: (H1): 10
3 < p1, p2 <

14
3 < r < 2↑; (H2): 2 < p1 <

14
3 < p2, r < 2↑ and

(H3): 2 < p1, p2 <
10
3 , r = 2↑. To address compactness issues, we work within the radial space

Sr := Sr (c1)→Sr (c2), where Sr(c) :=
{
u ↘ H

1
r

(
R3

)
: ↗u↗22 = c

}
, and H

1
r

(
R3

)
denotes the space of
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Table 1

b p1, p2, r Types of solutions References
b = 0 2 < p1, p2, r <

10
3 a global minimizer [2, 10]

b = 0 10
3 < p1, p2, r < 6 Mountain Pass solution [2, 3]

b = 0 2 < p1 <
10
3 < p2, r < 6 Mountain Pass solution [2]

b = 0 2 < r <
10
3 < p1, p2 < 6 Mountain Pass solution, a local minimizer [11]

b = 0 r = 6 or p1, p2 = 6 Mountain Pass solution, ground state solution [4, 21,24,34]
b > 0 2 < p1, p2, r <

14
3 a global minimizer [5]

b > 0 14
3 < p1, p2, r < 6; 2 < r <

14
3 < p1, p2 < 6 Mountain Pass solution, a local minimizer [31]

b > 0 2 < p1, p2 ⇐ 10
3 ,

14
3 < r < 6 Mountain Pass solution, a local minimizer [15]

b > 0 10
3 < p1, p2 <

14
3 ,

14
3 < r < 6 open problem

b > 0 2 < p1 <
14
3 < p2, r < 6 open problem

b > 0 2 < p1, p2 <
14
3 , r = 6 open problem

radial functions on R3. By the principle of symmetric criticality, the critical points of J constrained

on Sr are also critical points of J constrained on S.

It is known that critical points of J |Sr
stay in

P := {(u1, u2) ↘ Sr : P (u1, u2) = 0} ,

as a consequence of Pohozaev identity, where

P (u1, u2) := a

2∑

i=1

↗↓ui↗22 + b

2∑

i=1

↗↓ui↗42 ↑
2∑

i=1

µiϑpi↗ui↗pi
pi

↑ εrϑr

∫

R3

|u1|r1 |u2|r2dx.

Moreover, we define for u ↘ S(c) the map

(s ϖ u)(x) := e
3s
2 u (esx) , s ↘ R,

which preserves the L
2 norm and plays a special role in the study of structures of J(u1, u2) and

P (u1, u2) on the constraint Sr. We introduce the fiber mapping for J(u1, u2),

”u1,u2(s) : = J(s ϖ u1, s ϖ u2) (1.4)

=
ae

2s

2

2∑

i=1

↗↓ui↗22 +
be

4s

4

2∑

i=1

↗↓ui↗42 ↑
2∑

i=1

µie
piωpis

pi
↗ui↗pi

pi
↑ εe

rωrs

∫

R3

|u1|r1 |u2|r2dx,

for any (u1, u2) ↘ Sr. It is easy to verify that (s ϖ u, s ϖ v) ↘ P if and only if s is a critical point of

”u1,u2(s). In particular, (u, v) ↘ P if only if s = 0 is a critical point of ”u1,u2(s).

We will require some preliminary results regarding problem (1.3). Let m(c, µ) denote the ground

state level, defined as

m(c, µ) := inf

{
Iµ(u) : u ↘ S(c) such that

(
Iµ


S(c)

↓
(u) = 0


,
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and introduce the Pohozaev set for the single Kirchho! equation:

V (c) :=
{
u ↘ S(c) : 0 = a↗↓u↗22 + b↗↓u↗42 ↑ µϑp↗u↗pp

}
.

Now, we state the first result about the mass sub-critical case as follows.

Theorem 1.1. Assume the following assumptions (H1) holds,

(H1) :
10

3
< p1, p2 <

14

3
< r < 2↑.

There exists ε0 := ε0(c1, c2) > 0, such that for 0 < ε ⇐ ε0 and c1, c2 < c
↑
, problem (P) has a

positive normalized solution.

Inspired by [2], Bartsch and Jeanjean constructed a minimax level and proved the existence of a

positive normalized solution for Schrödinger equations with 2 < p1 <
10
3 < p2, r < 2↑. Our second

result deals with the case

(H2) : 2 < p1 <
14

3
< p2, r < 2↑; 2 < r2 <

10

3
.

which we call it mix mass sup-critical case.

Theorem 1.2. Assume that (H2) holds. For

(p1) 2 < p1 ⇐ 10
3 and c1 > 0, or

10
3 < p1 <

14
3 and c1 > c↑, where c↑ is positive constant only

depend on a, b, µ1,

if m(c1, µ1) +m(c2, µ2) < 0, problem (P) has a positive normalized solution.

As a corollary of Theorem 1.2, we obtain the following results.

Corollary 1.3. Assume that (H2) holds.

(i) For any c2 > 0, there exists c̄1, such that for c1 ⇒ c̄1, problem (P) has a positive normalized

solution.

(ii) For any c1 > c↑, there exists c̄2, such that for c2 ⇒ c̄2, problem (P) has a positive normalized

solution.

Last, we consider the mass sub-critical and Sobolev critical case,

(H3) : 2 < p1, p2 ⇐ 10

3
, r = 2↑.
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Theorem 1.4. Assume that (H3) holds. There exist ε↑ := ε↑(c1, c2) and µ↑, such that for 0 <

ε < ε↑ and µ1, µ2 < µ↑, problem (P) has a ground state solution.

Remark 1.5. (i) Theorem 1.1 serves as a complement to the work of Hu and Mao [15], specif-

ically addressing the case of problem (P) with 2 < p1, p2 ⇐ 10
3 and

14
3 < r < 2↑. Compared

with a single equation, the main di!culty for systems is how to exclude the semi-trivial so-

lutions. In [15], the authors heavily rely on p <
10
3 since that m(c, µ) < 0 to excluding

semi-trivial solutions. However, we partially extend to the case that
10
3 < p1, p2 <

14
3 with

the mass constrained suitable small to overcome this di!culty.

(ii) Theorems 1.2 and 1.4 complement the results of Zhang and Han [34] and Bartsch and Jean-

jean [2], which extended the study from Schrödinger equations to Kirchho" equations.

(iii) Compared Kirchho" equations with single Kirchho" equation, the existence and types of so-

lutions to problem (P) are similar to the result of single equation,






↑
(
a+ b

∫

R3

|↓u|2dx
)
!u = ωu+ µ|u|q→2

u+ |u|p→2
u, in R3

,

∫

R3

|u|2dx = c,

(1.5)

where a, b, c are positive constants and 2 < q < p ⇐ 2↑. Feng et al. in [7] have proven

that under condition 2 < q <
10
3 < p = 2↑, problem (1.5) has a second solution. It is an

interesting question whether problem (P) also has a second solution under condition (H3)?

The rest of this paper is organized as follows. In Section 2, we present some preliminary results.

Sections 3-5 are devoted to the proofs of Theorems 1.1-1.4.

Notation: In this paper, we denote H := H
1
(
R3

)
→ H

1
(
R3

)
and Hr := H

1
r

(
R3

)
→ H

1
r

(
R3

)
.

↔ and ϱ denote the strong and weak convergence in the related function space, respectively.

H
→1(R3) is the dual space of H

1(R3). C, C(·), . . . denote positive constants. on(1) represents

a real sequence with on(1) ↔ 0 as n ↔ +≃. D
1,2

(
R3

)
denotes the closure of the function

space C
↔
c

(
R3

)
with the norm ↗u↗D1,2(R3) = ↗↓u↗2. The best Sobolev constant S is given by

S = infu↗D1,2(R3)\{0}
↘≃u↘2

2

↘u↘2
2→

.

2 Preliminary results

Before we proceed further, let us first revisit the Gagliardo-Nirenberg inequality in [27, 28]. For

2 ⇐ p ⇐ 2↑, there exists a constant Cp > 0 such that for any u ↘ H
1(R3),

↗u↗p ⇐ Cp↗↓u↗ωp

2 ↗u↗1→ωp

2 ,
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where ϑp = 3(p→2)
2p . For 2 ⇐ r1 + r2 ⇐ 2↑, there exists q > 1 such that

max

{
2

r1
,

2↑

2↑ ↑ r2


⇐ q ⇐ min

{
2↑

r1
,

2

(2↑ r2)+


. (2.1)

Set q
↓ := q

q→1 , 2 ⇐ r1q, r2q↓ ⇐ 2↑, by the Hölder inequality, we have

∫

R3

|u1|r1 |u2|r2 dx ⇐ ↗u1↗r1r1q↗u2↗r2r2q↑ < ≃,

which implies that the functional J is well defined. For 14
3 < r = r1 + r2 < 2↑, by the Hölder

inequality and the Gagliardo-Nirenberg inequality, we know

∫

R3

|u1|r1 |u2|r2 dx ⇐ ↗u1↗r1r ↗u2↗r2r ⇐ C↗↓u1↗r1ωr
2 ↗↓u2↗r2ωr

2

⇐ C


2∑

i=1

↗↓ui↗22

 r1ωr
2


2∑

i=1

↗↓ui↗22

 r2ωr
2

⇐ C
(
↗↓u1↗22 + ↗↓u2↗22

) rωr
2

. (2.2)

Specifically, for r = 2↑, rϑr = 2↑, then C = S
→ 2→

2 . Next, we need a splitting lemma similar to

Brézis-Lieb Lemma as follows.

Lemma 2.1 ([11, Lemma 2.4], [6, Lemma 2.3]). Assume that r1, r2 > 1, 2 < r1 + r2 ⇐ 2↑. If

(un
1 , u

n
2 ) ϱ (u1, u2) in H,

then up to a subsequence

∫

R3

|un
1 |

r1 |un
2 |

r2
dx =

∫

R3

|u1|r1 |u2|r2 dx+

∫

R3

|un
1 ↑ u1|r1 |un

2 ↑ u2|r2 dx+ on(1).

Moreover, a description of the PPS sequence is also needed as follows.

Lemma 2.2 ([15, Lemma 2.5, 2.6]). Assume that 2 < p1, p2 < 2↑, 2 < r < 2↑. If {(un
1 , u

n
2 )} is a

bounded Palais-Smale sequence for J on Sr, there exist (u1, u2) ↘ Hr and a sequence {(ωn
1 ,ω

n
2 )} ⇑

R2
, such that up to a subsequence

(i) (un
1 , u

n
2 ) ϱ (u1, u2) in Hr, (un

1 , u
n
2 ) ↔ (u1, u2) in L

p
(
R3

)
→ L

p
(
R3

)
for p ↘ (2, 2↑).

(ii) (ωn
1 ,ω

n
2 ) ↔ (ω1,ω2) in R2

.

(iii) J
↓ (un

1 , u
n
2 )↑ ω

n
1 (u

n
1 , 0)↑ ω

n
2 (0, u

n
2 ) ↔ 0 in H

→1
r

(
R3

)
→H

→1
r

(
R3

)
.

(iv) (u1, u2) is a solution of equations (1.1) for ω1, ω2 ⇐ 0 if P (un
1 , u

n
2 ) ↔ 0. In addition,

u
n
1 ↔ u1 in H

1
r

(
R3

)
if ω1 < 0. Similarly, u

n
2 ↔ u2 in H

1
r

(
R3

)
if ω2 < 0.
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Lemma 2.3 ([16]). Let p ↘ (1, 3]. If u ↘ L
p
(
R3

)
⇓C

2
(
R3

)
is non-negative and satisfies ↑!u ⇒ 0

in R3
, then u = 0.

Lemma 2.4. Let pi ↘ (2, 2↑), i = 1, 2. If (u1, u2) ↘ Hr is a solution of Kirchho" equations (1.1)

with u1 ⇒ 0, u1 ⇔= 0, and u2 ⇒ 0, then ω1 < 0. Similarly, if u1 ⇒ 0, u2 ⇒ 0, and u2 ⇔= 0, then

ω2 < 0.

Proof. Similar proofs can be referenced in [5, Lemma 2.4].

The following existing results concerning the single Kirchho! equation is rather significant to the

main proof of Theorems.

Proposition 2.5. Assume that p ↘ (2, 2↑) and µ > 0. Then

(i) [5, Lemma 2.2], [26, Theorem 1.1, 1.4]: Assume that 2 < p <
10
3 , the problem (1.3) has a

unique positive ground state solution for any c > 0. If p = 10
3 , there exists c

↓
such that the

problem (1.3) has a unique positive ground state solution for c > c
↓
. Moreover, m(c, µ) < 0,

m(c, µ) ↔ ↑≃ as c ↔ ≃.

(ii) [5, Lemma 2.2], [26, Theorem 1.1], [25, Theorem 1.1]: Assume that p ↘ ( 103 ,
14
3 ), there exists

0 < c
↑
< c↑, such that the problem (1.3) admits exactly two positive normalized solutions w1,

w2 if c > c
↑

and no solution if c < c
↑
. If c ⇒ c↑, one of the above positive solutions is the

unique normalized ground state solution. Without loss of generality, let w1 be the normalized

ground state and w2 be the high-energy, then there holds that Iµ(w1) = m(c, µ) ⇐ 0 < Iµ(w2),

and m(c, µ) ↔ ↑≃ as c ↔ ≃.

(iii) [33], [31, Lemma 3.1]: If p ↘ ( 143 , 2↑) and problem (1.3) admits a unique solution uc for any

c > 0, m(c, µ) = Iµ (uc) = maxs↗R ”uc(s) = minu↗V (c) Iµ(u) > 0, where

”u(s) := Iµ(s ϖ u) =
ae

2s

2
↗↓u↗22 +

be
4s

4
↗↓u↗42 ↑

µe
pωps

p
↗u↗pp.

Moreover, m(c, µ) is strictly decreasing with respect to c.

3 The proof of Theorem 1.1

We shall investigate the mountain pass geometry of J (u1, u2) on Sr.

Lemma 3.1. Assume that (H1) holds.

(i) There exist ς0 = ς0 (c1, c2) and ε0 = ε0 (c1, c2) > 0, such that for 0 < ε ⇐ ε0,

inf
A(2ε0)\A(ε0)

J (u1, u2) > 0,



62 Q. Xie & L. Xu CUBO
28, 1 (2026)

where A(ς0) :=
{
(u1, u2) ↘ Sr : ↗↓u1↗22 + ↗↓u2↗22 < ς0

}
for ς0 > 0.

(ii) There exists (u1, u2) ↘ Sr\A (2ς0), such that J (u1, u2) < 0.

Proof. (i) Let ς := ↗↓u1↗22 + ↗↓u2↗22. By (2.2) and the Gagliardo-Nirenberg inequality, for

(u1, u2) ↘ Sr, we have:

J (u1, u2) =
a

2
ς+

b

4

2∑

i=1

↗↓ui↗42 ↑
2∑

i=1

µi

pi
↗ui↗pi

pi
↑ ε

∫

R3

|u1|r1 |u2|r2 dx

⇒ b

8
ς
2 ↑

2∑

i=1

µi

pi
Ci↗↓ui↗

piωpi
2 ↑ εC3ς

rωr
2

⇒ b

8
ς
2 ↑

2∑

i=1

µi

pi
Ciς

piωpi
2 ↑ εC3ς

rωr
2 ,

where Ci := C(c1, c2) for (i = 1, 2, 3). If (H1) holds, then 2 < piϑpi < 4 and 4 < rϑr < 2↑.

Let ς0 > 0 be large enough such that

2∑

i=1

µi

pi
Ci (ς0)

piωpi↓4

2 ⇐ b

32
, (3.1)

and then choose ε0 > 0 small enough such that

ε0C3 (2ς0)
rωr↓4

2 ⇐ b

32
.

Hence, for any 0 < ε ⇐ ε0 and (u1, u2) ↘ A (2ς0) \A (ς0), i.e., ς0 ⇐ ς < 2ς0, we have

J (u1, u2) ⇒
b

8
ς
2 ↑

2∑

i=1

µi

pi
Ciς

piωpi
2 ↑ εC3ς

rωr
2 = ς

2


b

8
↑

2∑

i=1

Ciς
piωpi↓4

2 ↑ εC3ς
rωr↓4

2



⇒ bς
2
0

(
1

8
↑ 1

32
↑ 1

32

)
=

b

16
ς
2
0.

(ii) Let u
t(x) := t

3
2u(tx). Then,

↗ut↗22 = ↗u↗22, ↗↓u
t↗22 = t

2↗↓u↗22, ↗ut↗pp = t
pωp↗u↗pp, for all p ↘ (2, 2↑) .

Fix (u1, u2) ↘ Sr, (ut
1, u

t
2) ↘ Sr\A (2ς0) when t is su"ciently large. Since

J(ut
1, u

t
2) =

a

2
t
2

2∑

i=1

↗↓ui↗22 +
b

4
t
4

2∑

i=1

↗↓ui↗42 ↑
2∑

i=1

µi

pi
t
piωpi ↗ui↗pi

pi
↑ εt

rωr

∫

R3

|u1|r1 |u2|r2dx,

it is straightforward to check that φ(u1,u2)(t) := J (ut
1, u

t
2) < 0 for t large enough.
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Thanks to Lemma 3.1, we introduce a minimax structure of the mountain pass type. Specifically,

there exists,

ϑ (c1, c2) := inf
g↗!

max
t↗[0,1]

J(g(t)),

where # :=

g ↘ C ([0, 1],Sr) : g(0) ↘ ↼A(ς0), g(1) /↘ A (2ς0), J(g(1)) < 0


. This framework al-

lows us to search for a critical point of the mountain pass type at the level ϑ (c1, c2). It is clear

that ϑ (c1, c2) ⇒ infu↗ϑA(ε0) J (u1, u2) > 0.

Lemma 3.2. Assume that (H1) holds. There exists a Palais-Smale sequence {(un
1 , u

n
2 )} for J |Sr

at the level ϑ (c1, c2), which satisfies {un
1}→ ↔ 0, {un

2}→ ↔ 0, and P (un
1 , u

n
2 ) ↔ 0.

Proof. The proof of the theorem is standard, and we omit the detailed steps here. For a compre-

hensive explanation, refer to [15, Lemma 3.1], [2, Lemma 5.5], and [9, Theorem 4.1].

Lemma 3.3. Assume that (H1) holds. There exists a pair of positive solution (u1, u2) to equations

(1.1) for some (ω1,ω2), and J (u1, u2) = ϑ (c1, c2) > 0.

Proof. By Lemma 3.2, there exists a Palais-Smale sequence {(un
1 , u

n
2 )} for J |Sr at the level ϑ (c1, c2).

We first prove that {(un
1 , u

n
2 )} is bounded in Hr. Since P (un

1 , u
n
2 ) ↔ 0, we have

a

2∑

i=1

↗↓u
n
i ↗22 + b

2∑

i=1

↗↓u
n
i ↗42 =

2∑

i=1

µiϑpi↗un
i ↗pi

pi
+ εrϑr

∫

R3

|un
1 |

r1 |un
2 |

r2
dx+ on(1). (3.2)

Thus,

ϑ(c1, c2) + on(1) =
a

2

2∑

i=1

↗↓u
n
i ↗22 +

b

4

2∑

i=1

↗↓u
n
i ↗42 ↑

2∑

i=1

µi

pi
↗un

i ↗pi
pi

↑ ε

∫

R3

|un
1 |

r1 |un
2 |

r2
dx

= a

(
1

2
↑ 1

rϑr

) 2∑

i=1

↗↓u
n
i ↗22 + b

(
1

4
↑ 1

rϑr

) 2∑

i=1

↗↓u
n
i ↗42

↑
2∑

i=1

µiϑpi

(
1

piϑpi

↑ 1

rϑr

)
↗un

i ↗pi
pi

⇒ a

(
1

2
↑ 1

rϑr

)
ς+

b

2

(
1

4
↑ 1

rϑr

)
ς
2 ↑

2∑

i=1

Ciµiϑpi

(
1

piϑpi

↑ 1

rϑr

)
ς

piωpi
2 ,

where ς = ↗↓u
n
1↗22 + ↗↓u

n
2↗22, 4 < rϑr < 2↑, 2 < piϑpi < 4. Hence, {(un

1 , u
n
2 )} is bounded in Hr.

Then, for p, q ↘ (2, 2↑), we may assume that

(un
1 , u

n
2 ) ϱ (u1, u2) in Hr, (un

1 , u
n
2 ) ↔ (u1, u2) in L

p(R3)→ L
q(R3). (3.3)

By Lemmas 2.2, 3.2, there exists a sequence {(ωn
1 ,ω

n
2 )} ⇑ R2, such that (ωn

1 ,ω
n
2 ) ↔ (ω1,ω2),

ω1,ω2 ⇐ 0. Consequently, (u1, u2) is a solution to equations (1.1) and satisfies P (u1, u2) = 0.
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Since (un
1 )

→ ↔ 0, (un
2 )

→ ↔ 0, it follows that u1, u2 ⇒ 0.

Now, we prove J (u1, u2) = ϑ (c1, c2). By (3.3) and Lemma 2.1, the right hand side of (3.2)

converges to
2∑

i=1

µiϑpi↗ui↗pi
pi

+ εrϑr

∫

R3

|u1|r1 |u2|r2dx.

Combining this with P (u1, u2) = 0, we have

lim
n⇐+↔

a

2∑

i=1

↗↓u
n
i ↗22 + b

2∑

i=1

↗↓u
n
i ↗42 = a

2∑

i=1

↗↓ui↗22 + b

2∑

i=1

↗↓ui↗42.

Therefore, J (un
1 , u

n
2 ) ↔ J (u1, u2), and hence, J (u1, u2) = ϑ (c1, c2).

Proof of Theorem 1.1. As known from Lemma 3.3, it is su"cient to prove that (u1, u2) ↘ Sr. Using

the fact that (u1, u2) is a solution to equations (1.1), we deduce that

ω1↗u1↗22 + ω2↗u2↗22 = a

2∑

i=1

↗↓ui↗22 + b

2∑

i=1

↗↓ui↗42 ↑
2∑

i=1

µi↗ui↗pi
pi

↑ εr

∫

R3

|u1|r1 |u2|r2 dx.

Combining Pohozaev identity and the fact that ϑpi , ϑr < 1, we get

ω1↗u1↗22 + ω2↗u2↗22 =
2∑

i=1

µi (ϑpi ↑ 1) ↗ui↗pi
pi

+ εr (ϑr ↑ 1)

∫

R3

|u1|r1 |u2|r2 dx < 0.

Hence, at least one of ω1 and ω2 is negative. Without loss of generality, we may assume ω1 < 0.

By Lemma 2.2, we have u
n
1 ↔ u1 in H

1
r

(
R3

)
, and then u1 ↘ Sr (c1). For the sake of contradiction,

suppose that ω2 ⇒ 0, then

↑
(
a+ b

∫

R3

|↓u2|2 dx
)
!u2 = ω2u2 + µ2 |u2|p2→2

u2 + εr2 |u1|r1 |u2|r2→2
u2 ⇒ 0.

It follows from Lemma 2.3 that u2 = 0. Thus, J (u1, u2) = J (u1, 0), and u1 ↘ Sr (c1) satisfies the

equation

↑
(
a+ b

∫

R3

|↓u|2 dx
)
!u = ω1u+ µ1 |u|p1→2

u. (3.4)

However, this equation contradicts Proposition 2.5 (ii) that equation (3.4) admits no solution if

c < c
↑. Therefore, ω2 < 0, and then, u2 ↘ Sr (c2). Finally, by the maximum principle, we deduce

that u1, u2 > 0 in R3.
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4 The proof of Theorem 1.2

Inspired by [2], let p1 and p2 be in di!erent ranges i.e., (H2). For any K > 0, set

TK :=
{
u2 ↘ S (c2) : ↗↓u2↗22 ⇐ K

}
and BK :=

{
u2 ↘ S (c2) : ↗↓u2↗22 = 2K

}
.

Rewriting that Ju1 (u2) := J (u1, u2) for u1 ↘ S (c1) and

Ju1 (u2) = Ju1(0) +
a

2
↗↓u2↗22 +

b

4
↗↓u2↗42 ↑

µ2

p2
↗u2↗p2

p2
↑ ε

∫

R3

|u1|r1 |u2|r2 dx.

Lemma 4.1. Assume that (H2) holds. There exists a continuous function K from S (c1) to R,

u1 ↖↔ K (u1), such that

sup
TK(u1)

Ju1(u2) < inf
BK(u1)

Ju1(u2), for all u1 ↘ S(c1).

The function K is bounded, and it is bounded away from 0 on bounded subsets of S (c1).

Proof. Fixing u1 ↘ S (c1), for u2 ↘ TK , we have that,

Ju1 (u2) ⇐ Ju1(0) +
a

2
↗↓u2↗22 +

b

4
↗↓u2↗42 ⇐ Ju1(0) +

aK(u1)

2
+

bK(u1)2

4
.

For u2 ↘ BK , ϑ↓ :=
3(r2q↑→2)

2q↑ , where q↓ is defined in (2.1). Using the Gagliardo-Nirenberg inequality

and (2.2), we obtain,

Ju1 (u2) ⇒ Ju1(0) + aK(u1) + bK(u1)
2 ↑ µ2

p2
C↗↓u2↗

p2ωp2
2 ↗u2↗

p2(1→ωp2 )
2 ↑ Cε↗u1↗r1r1q↗u2↗r2r2q↑

⇒ Ju1(0) + aK(u1) + bK(u1)
2 ↑ C1K(u1)

p2ωp2
2 ↑ C2↗u1↗r1r1qK(u1)

ω↑
2 .

Observe that C1K(u1)
p2ωp2

2 ⇐ a
8K(u1) if K(u1) > 0 is su"ciently small for p2ωp2

2 > 1. Similarly,

C2↗u1↗r1r1qK(u1)
ω↑
2 ⇐ a

8K(u1) if K(u1) > 0 is su"ciently small for ω↑

2 > 1, provided that q <
6

10→3r2
.

We can choose q satisfying this inequality and (2.1) because

6

10↑ 3r2
> max

{
2

r1
,

2↑

2↑ ↑ r2


,

which is a consequence of r1 + r2 >
14
3 and 2 < r2 <

10
3 . More precisely, let K : S (a1) ↔ R+

satisfy

K (u1) ⇐ min

(
a

8C1

) 2
p2ωp2↓2

,

(
a

8C2↗u1↗r1r1q

) 2
ω↑↓2


. (4.1)
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For u2 ↘ BK(u1), we have

Ju1 (u2) ⇒ Ju1(0) + aK (u1) + bK
2 (u1)↑

a

8
K (u1)↑

a

8
K (u1)

> Ju1(0) +
a

2
K (u1) +

b

4
K

2 (u1)⇒ sup
TK(u1)

Ju1(u2). (4.2)

Clearly, we define a continuous function K : S (c1) ↔ R+ that satisfies (4.1) and is bounded away

from 0 on bounded subsets of S (c1). In fact, the right-hand side of (4.1) can serve as a definition.

By (4.1), K is also bounded from above.

Now, we denote

T (u1) := TK(u1), B (u1) := BK(u1),

and

B := {(u1, u2) : u1 ↘ S (c1) , u2 ↘ B (u1)} .

It follows from the assumption (p1) in Theorem 1.2 and Proposition 2.5 that there exists a ground

state solution u ↘ S (c1) for problem (1.3) satisfying

J(u, 0) = m(c1, µ1) = Iµ1(u) = min
u↗S(c1)

J(u, 0) < 0.

Lemma 4.2. Assume that (H2) holds. There exist v̄ ↘ T (u) and w̄ ↘ S (c2) \T2K(u) such that

max{J(u, v̄), J(u, w̄)} < inf
(u1,u2)↗B

J (u1, u2) .

Proof. Since J (u, u2) ↔ J(u, 0) as ↗↓u2↗2 ↔ 0, to obtain v̄ ↘ T (u), we claim that J(u, 0) <

infB J . The functional J(·, 0) : S(c1) ↔ R is coercive because 2 < p1 <
14
3 . Choose R > 0 such

that J(u1, 0) ⇒ J(u, 0)+1 if ↗↓u1↗2 ⇒ R. It follows from (4.2) and (u1, u2) ↘ B with ↗↓u1↗2 ⇒ R

that

J(u1, u2) ⇒ J(u1, 0) +
3

4
K(u1) > J(u, 0) + 1. (4.3)

For (u1, u2) ↘ B with ↗↓u1↗2 ⇐ R, there holds,

J(u1, u2) ⇒ J(u1, 0) +
3

4
K(u1) ⇒ J(u, 0) +

3

4
↽, (4.4)

where ↽ := inf↘≃u1↘2⇒R K(u1) > 0 from Lemma 4.1. By (4.3) and (4.4), the claim holds.

To find w̄ ↘ S(c2)\T2K(u) as required, consider any u ↘ S(c2). Clearly, t ϖ u ↘ S(c2) for every

t > 0, and ↗↓(t ϖ u)↗2 ↔ ≃ as t ↔ ≃. Since p2 >
14
3 , fixing an arbitrary u ↘ S(c2), we see that

J(u, (t ϖ u)) ↔ ↑≃ as t ↔ ≃.



CUBO
28, 1 (2026)

Normalized solutions for coupled Kirchho! equations... 67

As a result of Lemma 4.2, the set

#1 :=

g
↓ ↘ C([0, 1],Sr) : g

↓(0) = (v1, v2) , g
↓(1) = (w1, w2) , v2 ↘ T (v1) , w2 /↘ T2K(w1),

max {J (v1, v2) , J (w1, w2)} < inf
B

J


,

is nonempty.

Lemma 4.3. ϑ̄ (c1, c2) := infg↑↗!1 maxt↗[0,1] J(g
↓(t)) ⇒ infB J.

Proof. It is su"cient to show that for each g
↓(t) := (g↓1(t), g

↓
2(t)) ↘ #1, there exists t ↘ [0, 1] such

that g
↓(t) ↘ B. Consider the map ⇀ : [0, 1] ↔ R defined by t ↔ ↗↓g

↓
2(t)↗22 ↑ 2K (g↓1(t)). This map

satisfies

⇀(0) = ↗↓v2↗22 ↑ 2K (v1) ⇐ K (v1)↑ 2K (v1) < 0,

and ⇀(1) = ↗↓w2↗22 ↑ 2K (w1) > 0. Thus, there exists t ↘ [0, 1] such that ⇀(t) = 0, which implies

that g
↓(t) ↘ B.

Lemma 4.4. Assume that the conditions of Theorem 1.2 hold. Then, we have

ϑ̄ (c1, c2) ⇐ m(c1, µ1) +m(c2, µ2).

Proof. By Proposition 2.5 (iii), there exists ū ↘ V (c2) such that

min
u↗V (c2)

Iµ2(u) = max
t↗R

Iµ2(t ϖ ū) = m(c2, µ2) = Iµ2(0 ϖ ū) = Iµ2(ū) = J(0, ū). (4.5)

Next, we consider the path h : [0, 1] ↔ Sr defined by h(t) = (u, hs(t)), where

hs(t)(x) = e
s(2t↓1)3

2 ū

(
es(2t→1)

x


.

Here, s > 0 is chosen su"ciently large so that

hs(0)(·) = e
↓3s
2 ū

(
e→s·

)
↘ T (u), hs(1)(·) = e

3s
2 ū (es·) /↘ T2K(u),

and

max {J (u, hs(0)) , J (u, hs(1))} < inf
B

J.

Therefore, h belongs to #1. Utilizing (4.5) and ε ⇒ 0, we get

max
t↗[0,1]

J(h(t)) ⇐ J(u, 0) + max
t↗[0,1]

J (0, hs(t)) = m(c1, µ1) +m(c2, µ2).

This completes the proof.
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Lemma 4.5. Assume that (H2) holds. There exists a Palais-Smale sequence {(un
1 , u

n
2 )} ⇑ Sr for

J at the level ϑ̄ (c1, c2) that satisfies {un
1}→ ↔ 0, {un

2}→ ↔ 0 in Hr, and the additional property

that P (un
1 , u

n
2 ) ↔ 0. Moreover, the sequence {(un

1 , u
n
2 )} is bounded.

Proof. The existence of the sequence {(un
1 , u

n
2 )} can be referenced in Lemma 3.2. Here, we only

provide the proof of boundedness. Given that P (un
1 , u

n
2 ) = 0, for any ↽ > 0, we have:

J (un
1 , u

n
2 ) =

a

2

2∑

i=1

↗↓u
n
i ↗22 +

b

4

2∑

i=1

↗↓u
n
i ↗42 ↑

2∑

i=1

µi

pi
↗un

i ↗pi
pi

↑ ε

∫

R3

|un
1 |r1 |un

2 |r2 dx

=
(1 + ⇁)a

4

2∑

i=1

↗↓u
n
i ↗22 +

⇁b

4

2∑

i=1

↗↓u
n
i ↗42 + δ1(⇁)↗un

1↗p1
p1

+ δ2(⇁)↗un
2↗p2

p2

+ εδ3(⇁)

∫

R3

|un
1 |r1 |un

2 |r2 dx+
(1↑ ⇁)

4
P (un

1 , u
n
2 ),

where

δ1(⇁) =
(1↑ ⇁)µ1ϑp1

4
↑ µ1

p1
, δ2(⇁) =

(1↑ ⇁)µ2ϑp2

4
↑ µ2

p2
, δ3(⇁) =

(1↑ ⇁)rϑr
4

↑ 1.

Note that the coe"cients satisfy δ1(⇁) < 0 and δ2(⇁), δ3(⇁) > 0 for su"ciently small ↽ > 0. Although

δ1(⇁) < 0, the term ↗un
1↗p1

p1
is controlled by

2
i=1 ↗↓u

n
i ↗42 because p1 <

14
3 . Hence, we conclude

that J is coercive. Consequently, the sequence {(un
1 , u

n
2 )} ⇑ Sr is bounded.

Proof of Theorem 1.2. By Lemmas 2.2 and 4.5, we can assume that (un
1 , u

n
2 ) ϱ (u1, u2) in Hr,

where u1 ⇒ 0 and u2 ⇒ 0. As shown in Lemma 3.3, we have J(u1, u2) = ϑ̄ (c1, c2). To establish

strong convergence, it su"ces to show, according to Lemmas 2.4 and 2.2 (iv), that u1 ⇔= 0 and

u2 ⇔= 0.

We first claim that: if ϑ̄ (c1, c2) < 0, then u1 ⇔= 0 and u2 ⇔= 0.

For contradiction, that at least one of u1 or u2 is zero. Then, by Lemma 2.1,

(un
1 , u

n
2 ) ↔ (u1, u2) in L

p
(
R3

)
→ L

q
(
R3

)
for p, q ↘ (2, 2↑) and ε

∫

R3

|un
1 |

r1 |un
2 |

r2
dx ↔ 0.

For the sequence {(un
1 , u

n
2 )} satisfying P (un

1 , u
n
2 ) ↔ 0, we deduce that

a

2∑

i=1

↗↓u
n
i ↗22 + b

2∑

i=1

↗↓u
n
i ↗42 ↑

2∑

i=1

µiϑpi↗un
i ↗pi

pi
= on(1).
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By the weak lower semi-continuity, we have

J (un
1 , u

n
2 ) =

a

2

2∑

i=1

↗↓u
n
i ↗22 +

b

4

2∑

i=1

↗↓u
n
i ↗42 ↑

2∑

i=1

µi

pi
↗un

i ↗pi
pi

↑ ε

∫

R3

|un
1 |r1 |un

2 |r2dx

=
a

4

2∑

i=1

↗↓u
n
i ↗22 ↑

2∑

i=1

µiϑpi

(
1

piϑpi

↑ 1

4

)
↗un

i ↗pi
pi

+ on(1) (4.6)

⇒ a

4

2∑

i=1

↗↓ui↗22 ↑ C1↗u1↗p1
p1

+ C2↗u2↗p2
p2
,

where C1 > 0 and C2 > 0. We now distinguish three cases.

Case 1. (u1 = u2 = 0): From (4.6), we obtain J (un
1 , u

n
2 ) ⇒ 0. Since we have assumed that

ϑ (c1, c2) < 0, this case cannot occur.

Case 2. (u1 = 0 and u2 ⇔= 0): By Lemmas 2.2, 2.4, we have ω2 < 0, and hence un
2 ↔ u2 ↘ Sr (c2).

From (4.6), we get

0 > ϑ̄(c1, c2) = J (un
1 , u

n
2 ) ⇒

a

4
↗↓u2↗22 + C2↗u2↗p2

p2
> 0, as n ↔ ≃. (4.7)

This results in a contradiction.

Case 3. (u1 ⇔= 0 and u2 = 0): Since u2 = 0 and J(u1, u2) = ϑ̄ (c1, c2), we have

ϑ̄(c1, c2) = J (u1, u2) = J (u1, 0) = Iµ1 (u1) .

We know u1 satisfies

↑
(
a+ b

∫

R3

|↓u|2dx
)
!u = ω1u+ µ1|u|p1→2

u.

For 2 < p1 ⇐ 10
3 , u1 is a positive ground state solution by Propsition 2.5 (i). Then m(c1, µ1) =

Iµ1(u1). From Lemmas 4.1, 4.3 and the definitions of B, #1, we know that

ϑ̄ (c1, c2) ⇒ inf
B

J > J(u1, 0) = Iµ1(u1) = m(c1, µ1), (4.8)

which contradicts ϑ̄ (c1, c2) = m(c1, µ1). When 10
3 < p1 <

14
3 , u1 can be characterized as

either a high energy solution or a ground state solution. If u1 is ground state solution, we

can get a contradiction similar to (4.8). If u1 is high energy solution, we have a contradiction

as 0 < Iµ(u1) = ϑ̄(c1, c2) < 0. Thus, the claim holds.

In view of Lemmas 2.2, 4.4 and 4.5, to establish the theorem, it is enough to prove that m(c1, µ1)+

m(c2, µ2) < 0. Note also that u1 > 0 and u2 > 0 follow directly from the strong maximum

principle.



70 Q. Xie & L. Xu CUBO
28, 1 (2026)

Proof of Corollary 1.3. The Corollary is a straightforward consequence of Theorem 1.2 and Propo-

sition 2.5.

5 The proof of Theorem 1.4

In this section, we first consider the case that (H3). Recalling Proposition 2.5 (i), for 2 < p1,

p2 ⇐ 10
3 , there exist u

1 and u
2 such that

m(c1, µ1) = Iµ1(u
1) and m(c2, µ2) = Iµ2(u

2).

Lemma 5.1. Assume that (H3) holds. There exist ε1 := ε1(c1, c2) and ς↑ := ς↑(c1, c2) > ↗↓u
1↗22+

↗↓u
2↗22 such that

J(u1, u2) > 0 on A (2ς↑) \A (ς↑) for 0 < ε < ε1,

where A(ς↑) =
{
(u1, u2) ↘ Sr : ↗↓u1↗22 + ↗↓u2↗22 < ς↑

}
for ς↑ > 0.

Proof. Recalling the proof of Lemma 3.1, we can take a su"ciently large ς↑ such that

ς↑ > ↗↓u
1↗22 + ↗↓u

2↗22,

and
2∑

i=1

µi

pi
Ci (ς↑)

piωpi↓4

2 ⇐ b

32
. (5.1)

Next, we choose ε1 > 0 to be su"ciently small, such that

ε1C3 (2ς↑)
2→↓4

2 ⇐ b

32
. (5.2)

The lemma follows directly from (5.1) and (5.2).

Now we can set

ϑ
↓(c1, c2) := inf

A(2ε→)
J(u1, u2).

The following lemma plays a crucial role in overcoming compactness.

Lemma 5.2. Assume that (H3) holds. Then, for any 0 < ε < ε1, the following statements are

true:

(i) ϑ
↓(c1, c2) < m(c1, µ1) +m(c2, µ2) < 0.

(ii) ϑ
↓(c1, c2) ⇐ ϑ

↓(c↓1, c
↓
2), for all 0 < c

↓
1 ⇐ c1, 0 < c

↓
2 ⇐ c2.
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Proof. (i) From Lemma 5.1, we know that
(
u
1
, u

2
)
↘ A(ς↑). Furthermore, using Proposition

2.5 (i) and the fact that ε > 0, we deduce that

ϑ
↓(c1, c2) ⇐ J(u1

, u
2) = Iµ1(u

1)+Iµ2(u
2)↑ε

∫

R3

u1
r1 u2

r2 dx < m(c1, µ1)+m(c2, µ2) < 0.

(ii) To prove this, we need to show that for any ↽ > 0, ϑ↓(c1, c2) ⇐ ϑ
↓(c↓1, c

↓
2)+↽, for all 0 < c

↓
1 ⇐ c1

and 0 < c
↓
2 ⇐ c2. Let ϕ(x) ↘ C

↔
c

(
RN ) be a cut-o! function such that

0 ⇐ ▷(x) ⇐ 1 and ▷(x) =





1, |x| ⇐ 1,

0, |x| ⇒ 2.

By the definition of ϑ↓(c↓1, c
↓
2) and Lemma (5.1), there exists (u1, u2) ↘ A (ς↑) such that

J(u1, u2) ⇐ ϑ
↓(c↓1, c

↓
2) +

↽

2
. (5.3)

For any δ > 0, we define (uϖ1(x), uϖ2(x)) := (u1▷(δx), u2▷(δx)). Since (uϖ1 , uϖ2) ↔ (u1, u2)

in Hr as δ ↔ 0+, there exists a su"ciently small δ such that

J (uϖ1 , uϖ2) ⇐ J(u1, u2) +
↽

4
and ↗↓uϖ1↗

2
2 + ↗↓uϖ2↗

2
2 ⇐ 3

2
ς↑. (5.4)

Let ϕ(x) ↘ C
↔
c

(
R3

)
such that supp(ϕ) ⇑

{
x ↘ R3 : 4

ϖ ⇐ |x| ⇐ 1 + 4
ϖ

}
and set

(ũ1, ũ2) =






c1 ↑ ↗uϖ1↗

2
2

↗ϕ↗2
ϕ,


c2 ↑ ↗uϖ2↗

2
2

↗ϕ↗2
ϕ



 .

Noting that, for any s ⇐ 0,

supp (uϖ1) ⇓ supp(s ϖ ũ1) = ↙ and supp (uϖ2) ⇓ supp(s ϖ ũ2) = ↙.

As s ↔ ↑≃, we have

J(s ϖ ũ1, s ϖ ũ2) ↔ 0 and ↗↓s ϖ ũ1↗22 + ↗↓s ϖ ũ2↗22 ⇐ ↽

12ς↑b
. (5.5)

It follows that

(uϖ1 + s ϖ ũ1, uϖ2 + s ϖ ũ2) ↘ A (2ς↑) ,
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and by (5.3)-(5.5), for s < 0 large enough, we have

ϑ
↓(c1, c2) ⇐ J (uϖ1 + s ϖ ũ1, uϖ2 + s ϖ ũ2)

= J (uϖ1 , uϖ2) + J(s ϖ ũ1, s ϖ ũ2) +
b

2

2∑

i=1

↗↓uϖi↗22 ↗↓s ϖ ũi↗22

⇐ J(u1, u2) +
↽

4
+

↽

8
+

↽

8
⇐ ϑ

↓(c↓1, c
↓
2) + ↽.

The proof is completed.

Lemma 5.3. Assume that (H3) holds. For any 0 < ε < ε1, there exists

µ↑ := µ↑(a, b, c1, c2, p1, p2,ε, ς)

such that for µ1, µ2 < µ↑ and (u1, u2) ↘ Sr, the function ”u1,u2(s), defined in (1.4) has two

critical points tu1,u2 < ◁u1,u2 and two zeros cu1,u2 < du1,u2 with tu1,u2 < cu1,u2 < ◁u1,u2 < du1,u2 .

Moreover, for s ↘ R,

(i) If (s ϖ u1, s ϖ u2) ↘ P, then either s = tu1,u2 or s = ◁u1,u2 .

(ii) ↗↓s ϖ u1↗22 + ↗↓s ϖ u2↗22 ⇐ ς↑ for every s ⇐ cu1,u2 and

J(tu1,u2 ϖ u1, tu1,u2 ϖ u2) = min
{
J(s ϖ u1, s ϖ u2) : ↗↓s ϖ u1↗22 + ↗↓s ϖ u2↗22 ⇐ ς↑

}
< 0.

(iii) We have J (◁u1,u2 ϖ u1, ◁u1,u2 ϖ u2) = max{J(s ϖ u1, s ϖ u2) : s ↘ R}.

Proof. (i) Since piϑp1 < 2 for i = 1, 2, and r = 2↑, it is evident that ”u1,u2(↑≃) = 0→ and

”u1,u2(+≃) = ↑≃. By Lemma 5.1, we know that ”u1,u2(s) has at least two critical points

tu1,u2 < ◁u1,u2 , where tu1,u2 is a local minimum point of ”u1,u2(s) at negative level and ◁u1,u2 is a

global maximum point at positive level. On the other hand, it is standard to prove that ”u1,u2(s)

has at most two critical points as in [20, Lemma 4.5]. The (ii) and (iii) follow from Lemma 5.1

and (i).

Proof of Theorem 1.4. Consider a minimizing sequence {(un
1 , u

n
2 )} ⇑ Sr for J |A(2ε→)

. By Lemma

5.3, we have ↗↓tun
1 ,u

n
2
ϖ u

n
1↗22 + ↗↓tun

1 ,u
n
2
ϖ u

n
2↗22 ⇐ ς↑, and the sequence

{
tun

1 ,u
n
2
ϖ u

n
1 , tun,un

2
ϖ u

n
2

}

remains a minimizing sequence for J |A(2ε→)
. According to [9, Theorem 4.1], there exists a new

minimizing sequence, still denoted by {(un
1 , u

n
2 )} ⇑ A (2ς↑), such that

J (un
1 , u

n
2 ) ↔ ϑ

↓(c1, c2), P (un
1 , u

n
2 ) ↔ 0, J

↓|Sr
(un

1 , u
n
2 ) ↔ 0, as n ↔ ≃. (5.6)
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Given that J
↓|Sr

(un
1 , u

n
2 ) ↔ 0, there exist sequences {ωn

1} ⇑ R and {ωn
2} ⇑ R such that

a

2∑

i=1

∫

R3

↓u
n
i ↓ϕidx+ b

2∑

i=1

↗↓u
n
i ↗22

∫

R3

↓u
n
i ↓ϕidx↑

2∑

i=1

µi

∫

R3

|un
i |pi→2

u
n
i ϕidx

↑ εr1

∫

R3

|un
1 |r1→2|un

2 |r2un
1ϕ1dx↑ εr2

∫

R3

|un
1 |r1 |un

2 |r2→2
u
n
2ϕ2dx

=

∫

R3

(ωn
1u

n
1ϕ1 + ω

n
2u

n
2ϕ2)dx+ on(1), (5.7)

for any (ϕ1,ϕ2) ↘ Hr. Taking (un
1 , 0) and (0, un

2 ) as test functions, we have





ω
n
1 c1 + on(1) = a↗↓u

n
1↗22 + b↗↓u

n
1↗42 ↑ µ1↗un

1↗p1
p1
,

ω
n
2 c2 + on(1) = a↗↓u

n
2↗22 + b↗↓u

n
2↗42 ↑ µ2↗un

2↗p2
p2
.

Since the sequence {un
1 , u

n
2} ⇑ A (2ς↑) is bounded, we suppose that limn⇐↔

∫
R3 |↓u

n
i |

2
dx = Ai ⇒

0. Without loss of generality, let us assume that, up to a subsequence, (ωn
1 ,ω

n
2 ) ↔ (ω1,ω2) ↘ R2,

(un
1 , u

n
2 ) ϱ (u1, u2) ↘ Hr and (un

1 , u
n
2 ) ↔ (u1, u2) in L

p
(
R3

)
→L

q
(
R3

)
for any p, q ↘ (2, 2↑). Then,

we know that,





↑(a+ bA1)!u1 = ω1u1 + µ1|u1|p1→2

u1 + εr1|u1|r1→2
u1|u2|r2 ,

↑(a+ bA2)!u2 = ω2u2 + µ2|u2|p2→2
u2 + εr2|u1|r1 |u2|r2→2

u2.
(5.8)

From (5.8), we have

0 = PA (u1, u2) := a

2∑

i=1

↗↓ui↗22 + b

2∑

i=1

Ai↗↓ui↗22 ↑
2∑

i=1

µiϑpi↗ui↗pi
pi

↑ ε2↑
∫

R3

|u1|r1 |u2|r2dx.

Let (ūn
1 , ū

n
2 ) := (un

1 ↑ u1, u
n
2 ↑ u2). Then ū

n
1 ↔ 0 in L

p1
(
R3

)
, ūn

2 ↔ 0 in L
p2

(
R3

)
and we have

P (un
1 , u

n
2 ) = PA(u1, u2) + a

2∑

i=1

↗↓ū
n
i ↗22 + b

2∑

i=1

Ai↗↓ū
n
i ↗22 ↑ ε2↑

∫

R3

|ūn
1 |r1 |ūn

2 |r2dx

= a

2∑

i=1

↗↓ū
n
i ↗22 + b

2∑

i=1

Ai↗↓ū
n
i ↗22 ↑ ε2↑

∫

R3

|ūn
1 |r1 |ūn

2 |r2dx+ on(1). (5.9)

From (2.2), (5.9) and Lemma 2.1, we obtain

a

2∑

i=1

↗↓ū
n
i ↗22 ⇐ a

2∑

i=1

↗↓ū
n
i ↗22 + b

2∑

i=1

Ai↗↓ū
n
i ↗22 = ε2↑

∫

R3

|ūn
1 |

r1 |ūn
2 |

r2
dx+ on(1)

⇐ ε2↑S→ 2→
2


2∑

i=1

↗↓ū
n
i ↗22

 2→
2

+ on(1). (5.10)
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Up to a subsequence, we assume that
2

i=1 ↗↓ū
n
i ↗22 ↔ l ⇒ 0. According to (5.10), we have l = 0

or l ⇒
(

a
ϱ2→

 1
2
S

3
2 . If l ⇒

(
a

ϱ2→

 1
2
S

3
2 , then from (5.6), (5.10), and Lemma 2.1, we conclude

ϑ
↓(c1, c2) = lim

n⇐↔
J (un

1 , u
n
2 ) = J(u1, u2) + lim

n⇐↔
J (ūn

1 , ū
n
2 ) +

b

2

2∑

i=1

↗↓u
n
i ↗22↗↓ui↗22

⇒ J(u1, u2) + lim
n⇐↔

J (ūn
1 , ū

n
2 )

⇒ ϑ
↓ (↗u1↗22, ↗u2↗22

)
+ lim

n⇐↔


a

2

2∑

i=1

↗↓ū
n
i ↗22 +

b

4

2∑

i=1

↗↓ū
n
i ↗42 ↑ ε

∫

R3

|ūn
1 |

r1 |ūn
2 |

r2
dx



⇒ ϑ
↓ (↗u1↗22, ↗u2↗22

)
+ lim

n⇐↔


a

2

2∑

i=1

↗↓ū
n
i ↗22 ↑ ε

∫

R3

|ūn
1 |

r1 |ūn
2 |

r2
dx



⇒ ϑ
↓ (↗u1↗22, ↗u2↗22

)
+ lim

n⇐↔



a

2

2∑

i=1

↗↓ū
n
i ↗22



1↑ 2

a
εS

→ 2→
2


2∑

i=1

↗↓ū
n
i ↗22

2






 .

By
2

i=1 ↗↓ū
n
i ↗22 ⇐ ς↑, there exists ε↑ < ε1 such that

(
a

2ϱ→
S

2→
2

 1
2 ⇒ ς↑. Then



1↑ 2

a
εS

→ 2→
2


2∑

i=1

↗↓ūi↗22

2


 ⇒ 0,

when ε < ε↑, which contradicts with (ii) of Lemma 5.2. Thus,
2

i=1 ↗↓ū
n
i ↗22 ↔ 0, as n ↔ ≃.

Then (un
1 , u

n
2 ) ↔ (u1, u2) in D

1,2(R3)→D
1,2(R3) and (u1, u2) is a solution to equations (1.1).

Finally, we will prove that (un
1 , u

n
2 ) ↔ (u1, u2) in Hr. Taking (un

1 , u
n
2 ) as the test function in (5.7),

we obtain

∝J ↓ (un
1 , u

n
2 ) , (u

n
1 , u

n
2 )′ = ω

n
1 c1 + ω

n
2 c2 + on(1).

Given that P (un
1 , u

n
2 ) ↔ 0, (ωn

1 ,ω
n
2 ) ↔ (ω1,ω2), we have

ω1c1 + ω2c2 = ω
n
1 c1 + ω

n
2 c2 + on(1) =

2∑

i=1

µi (ϑpi ↑ 1) ↗un
i ↗pi

pi
< 0.

Since ω1c1 + ω2c2 < 0, at least one of ω1 and ω2 is negative. Next, we consider three possible

conditions.

Case 1. (ω1 < 0 and ω2 < 0): Using the fact that

∝J ↓ (un
1 , u

n
2 )↑ ω

n
1 (u

n
1 , 0) , (u

n
1 , 0)′ ↔ ∝J ↓ (u1, u2)↑ ω1 (u1, 0) , (u1, 0)′ = 0,

we have 



ω1↗un

1↗22 + on(1) = a↗↓u
n
1↗22 + b↗↓u

n
1↗42 ↑ µ1↗un

1↗p1
p1
,

ω1↗u1↗22 = a↗↓u1↗22 + b↗↓u1↗42 ↑ µ1↗u1↗p1
p1
.
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Since Lemma 2.1, ω
n
1 ↔ ω1 < 0, ↗un

1↗p1
p1

↔ ↗u1↗p1
p1

, and u
n
1 ↔ u1 in D

1,2(R3), we get

↗un
1↗22 ↔ ↗u1↗22, leading to strong convergence. The case where ω2 < 0 is treated similarly.

Case 2. (ω1 < 0 and ω2 ⇒ 0): Using the method of Case 1, it can be concluded that un
1 ↔ u1 in

H
1
r

(
R3

)
and u1 ↘ Sr (c1). Assume, by contradiction, that ω2 ⇒ 0, then

↑
(
a+ b

∫

R3

|↓u2|2 dx
)
!u2 = ω2u2 + µ2 |u2|p2→2

u2 + εr2 |u1|r1 |u2|r2→2
u2 ⇒ 0.

By Lemma 2.3, we deduce that u2 = 0. Thus, J (u1, u2) = J (u1, 0), un
1 ↔ u1, and u1 ↘

Sr (c1) satisfies the equation

↑
(
a+ b

∫

R3

|↓u|2 dx
)
!u = ω1u+ µ1 |u|p1→2

u.

Therefore, Iµ1(u1) ⇒ m(c1, µ1). On the other hand, by Hölder inequality,

0 ⇐
∫

R3

|un
1 |

r1 |un
2 |

r2
dx ⇐ ↗un

1↗
r1
2→ ↗u

n
2↗

r2
2→ .

Using the fact u
n
2 ↔ 0 in D

1,2
(
R3

)
, we have

ϑ
↓(c1, c2) = lim

n⇐↔
J (un

1 , u
n
2 ) = Iµ1(u1)+ lim

n⇐↔
Iµ2 (u

n
2 )↑ε lim

n⇐↔

∫

R3

|un
1 |

r1 |un
2 |

r2
dx ⇒ m(c1, µ1),

which contradicts Lemma 5.2 (i)

Case 3. (ω2 < 0 and ω1 ⇒ 0): By similar arguments as in Case 2, we obtain a contradiction

ϑ
↓(c1, c2) ⇒ m(c2, µ2). Therefore, we conclude that (un

1 , u
n
2 ) ↔ (u1, u2) in Hr.

By Lemma 5.3 and ϑ
↓(c1, c2) < 0, we have

ϑ
↓(c1, c2) = J(u1, u2) = inf

P
J = inf

A(ε→)
J < 0.

This implies that (u1, u2) is a ground state solution. The proof of Theorem 1.4 is completed.
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ABSTRACT

In this work, we consider the higher-order reaction-di!usion

parabolic problem with time dependent coe"cient. We prove

the blow-up of solutions and obtain a lower and an upper

bound for the blow-up time. Finally, we investigate the ex-

istence of a global weak solution to the problem.

RESUMEN

En este trabajo, consideramos un problema parabólico de

reacción-difusión de alto orden con coeficiente dependiente

del tiempo. Demostramos la explosión de soluciones y

obtenemos cotas inferior y superior para el tiempo de ex-

plosión. Finalmente, investigamos la existencia de una solu-

ción débil global del problema.

Keywords and Phrases: Blow-up, higher-order, singular potential, global existence, reaction-di!usion.

2020 AMS Mathematics Subject Classification: 35B44, 35K25, 35K67.

Published: 22 January, 2026

Accepted: 27 October, 2025

Received: 16 October, 2024

©2026 E. Pi!kin et al. This open access article is licensed under a Creative Commons

Attribution-NonCommercial 4.0 International License.

http://cubo.ufro.cl/
https://doi.org/10.56754/0719-0646.2801.079
https://orcid.org/0000-0001-6587-4479
https://orcid.org/0000-0001-6988-8333
https://orcid.org/0000-0002-3209-7439
https://orcid.org/0000-0001-9308-0115
mailto:episkin@dicle.edu.tr
mailto:afidanmat@gmail.com
mailto:ferreirajorge2012@gmail.com
mailto:shahrouzi@um.ac.ir


80 E. Pi!kin, A. Fidan, J. Ferreira & M. Shahrouzi CUBO
28, 1 (2026)

1 Introduction

In this work, we investigate the following reaction-di"usion parabolic problem with singular po-

tential: 




zt

|x|2m
+Az = ω (t) |z|r→1

z, (x, t) → !↑ (0, T ) ,

ε
i
z (x, t)

εϑi
= 0, i = 0, 1, . . . ,m↓ 1, (x, t) → ε!↑ (0, T ) ,

z (x, 0) = z0 (x) → H
m
0 (!) ↔ L

r+1 (!) , x → !,

(1.1)

here n ↗ 1 and ! ↘ R
n is open and bounded with Lipschitz boundary, where T > 0, r > 1,

A =(↓”)m , m > 1 is an integer constant and a unit outer normal ϑ, x = (x1, x2, . . . , xn) ,

|x| =
√

x
2
1 + x

2
2 + · · ·+ x2

n. The coe#cient ω (t) is chosen such that

ω → C
1 [0,≃) , ω (0) > 0 and ω

↑ (t) ↗ 0 for all t → [0,≃) . (1.2)

Explosive phenomena commonly arise in solutions to reaction-di"usion partial di"erential equations

of various types (see e.g. [4, 6, 15] and references therein). Understanding the conditions under

which such phenomena occur is of practical interest. However, accurately computing the precise

blow-up time is often challenging. Despite this challenge, it is still possible to estimate the blow-

up time using various methods. Notable approaches for investigation include the first eigenvalue

method proposed by Kaplan in 1963, the potential well method developed by Levine and Payne in

1970, the comparison method, and other techniques involving integration. A recent comprehensive

overview of these methods can be found in the monograph by Hu [11], Al’shin et al. [2] and Pi!kin

[17]. Additionally, readers may refer to the survey articles by Galaktionov [8] and Levine [13] for

insights into the blow-up properties of more general evolution problems. Specifically, su#cient

conditions for blow-up estimates are discussed in works of Philippin [16] and Han [9] provided

insights for the equation of the form:

zt +”2
z = k (t) f (z) .

In another study, Han [10] investigated the equation of the form

zt

|x|2
↓”z = k (t) |z|p→1

z,

in which the author derived the lower and upper bounds on the blow-up time of weak solutions.

In [23], Thanh et al. considered the reaction-di"usion parabolic problem with time dependent

coe#cients
zt

|x|4
+”2

z = k (t) |z|p→1
z.



CUBO
28, 1 (2026)

Blow-up and global existence of solutions for a higher-order... 81

They proved an upper and lower bound for blow-up time. Do et al. [5] investigated the existence

of a global weak solution to the problem together with the decaying and blow-up properties using

the potential well method.

Recently, Thanh et al. [24] proved the higher-order version ”
(
|”|m→2 ”

)
of the p↓Laplacian

and the function k (t) non-Newtonian filtration equation and obtained the blow-up result with

lower and upper bounds. The reader is directed to [19–21] for a detailed discussion of higher-order

hyperbolic equations.

In our research, we employed various types of Dirichlet-Neumann boundary conditions in conjunc-

tion with a general nonlinear term. Additionally, we derived the primary outcomes of this paper

using a methodology distinct from those discussed in prior works. While some of the literature

has addressed blow-up solutions for higher-order parabolic equation, to the best of our knowledge,

there is currently no article available that specifically explores the finite-time blow-up solutions for

a higher-order parabolic equation with a variable coe#cient term ω (t). Consequently, we endeav-

ored to investigate and present new and noteworthy findings in this regard. For a more in-depth

exploration of blow-up phenomena in higher-order parabolic equation, readers are encouraged to

consult the book by Galaktionov [7].

Motivated by above-mentioned papers, in this paper, we investigate to prove the upper and lower

bounds for the blow-up time of solutions for problem (1.1), which was not previously studied, where

we study higher-order parabolic equation with time dependent coe#cient source terms ω (t) |z|r→1
z.

The rest of the work is as follows: In Section 2, we give some assumptions needed in this work. In

Section 3, under suitable conditions, we obtain an upper bound for the blow-up time. In Section

4, we obtain a lower bound for the blow-up time. In Section 5, under suitable conditions, we

investigate the existence of a global weak solution to the problem.

2 Preliminaries

In this part, we present certain lemmas and assumptions required for the formulation and proof of

our results. Let ⇐.⇐, ⇐.⇐r and ⇐.⇐Wm,r(!) indicate the typical L2 (!) , Lr (!) and W
m,r (!) norms

(see [1, 18]).

Now, we consider some energy estimates: Let n ↗ 1 and ! ↘ R
n be open bounded with Lipschitz

boundary. For each z → H
m
0 (!) ↔ L

r+1 (!) and t → [0,≃) define the following functionals of the

problem (1.1):

• Energy functional is as follows:

J (z, t) =
1

2

∥∥∥A
1
2 z

∥∥∥
2
↓ ω (t)

r + 1
⇐z⇐r+1

,
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• and Nehari functional is as follows:

I (z, t) =
∥∥∥A

1
2 z

∥∥∥
2
↓ ω (t) ⇐z⇐r+1

.

We strive to establish both upper and lower bounds for the blow-up time of a weak solution to

equation (1.1), the precise definitions of which are provided in the following.

Definition 2.1. A function z is termed a weak solution to equation (1.1) if z →
L
2
(
0, T ;Hm

0 (!) ↔ L
r+1 (!)

)
and

zt
|x|2m → L

2
(
0, T ;L2 (!)

)
where z satisfies the following equation:

(
zt

|x|2m ,ϖ

)
+
(
A 1

2 z,A 1
2ϖ

)
= ω(t)

(
|z|r→1

z,ϖ
)
, (2.1)

for all ϖ → H
m
0 (!) ↔ L

r+1 (!) and t → [0,≃) .

When ! ↘ R
n is an open and bounded set with a Lipschitz boundary, the existence of a local weak

solution can be established using standard Ordinary Di"erential Equation (ODE) theory, coupled

with the Faedo-Galerkin approximation technique, as is well-known in the literature.

Definition 2.2. Assume that z(t) is a weak solution to (1.1). If z(t) exists for all t in the interval

[0, T ↓), and the limit as to blow up at a finite time T
↓

if z(t) exists for all t → [0, T ↓) and

lim
t↔T→

∥∥∥∥
zt

|x|m
∥∥∥∥
2

= ≃. (2.2)

Such a T
↓

is called the maximal existence time as well as the blow up time for z(t). If (2.2) does

not happen for any finite time T
↓
, then z(t) is called a global solution and the maximal existence

time of z(t) is ≃.

We are able to define the stable and unstable sets as follows for each t ↗ 0:

• Stable set:

#1 (t) = {z → H
m
0 (!) : J (z, t) < n↗ and I (z, t) > 0} .

• Unstable set:

#2 (t) = {z → H
m
0 (!) : J (z, t) < n↗ and I (z, t) < 0} .

#1 (t) and #2 (t) are crucial to our paper. Where

n↗ = lim
t↔↗

n (t) .

Note that J, I, C0, n,#1 and #2 are all time-dependent, as indicated by the presence of ω (t) in
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(1.1). The introduction of this time-dependent factor introduces additional technical complexity

into our analysis.

Because of the presence of the inverse coe#cient 1/ |x|2m, it is important to highlight the distinction

between the two cases when 0 → ! and 0 /→ !. If 0 → ! then 1/ |x|2m develops a singularity. This

requires the application of Rellich’s inequality, which is valid for n ↗ 2m+ 1, in the proofs of our

main results. However, if 0 /→ ! then there is no singularity and (1.1) can be considered as a slight

extension of the model in [10]. In this case our results are valid for all n ↗ 1. To deal with these

two cases at the same time, we use the notation

n! =





2m+ 1, if 0 → !

1, if 0 /→ !
and 2↓ =





≃, if n ⇒ 2m,

2n
n→2m = 2 + 2m

n→2m , if n ↗ 2m+ 1.

Let us start with the following Rellich inequality Lemma.

Lemma 2.3. Assume that n ↗ 2m + 1 and ! ↘ R
n

be open bounded. Let z → H
m
0 (!) . Then

z
|x|2m → L

2 (!) and

∫

!

|z|2

|x|2m
dx ⇒

(
m

2

n (m↓ 1) (n↓ 2m)

)2 ∫

!

∣∣∣A
1
2 z

∣∣∣
2
dx = C

∫

!

∣∣∣A
1
2 z

∣∣∣
2
dx.

Proof. Let z → H
m
0 (!) and ž be its zero extension to R

n
. Then ž → H

m (Rn) by [1, Lemma 3.27],

and

∫

!

|z|2

|x|2m
dx ⇒

∫

Rn

|ž|2

|x|2m
dx ⇒

(
m

2

n (m↓ 1) (n↓ 2m)

)2 ∫

Rn

∣∣∣A
1
2 ž

∣∣∣
2
dx

⇒
(

m
2

n (m↓ 1) (n↓ 2m)

)2 ∫

Rn

∣∣∣A
1
2 z

∣∣∣
2
dx, (2.3)

here we used [3, Corollary 6.3.5], in the second step of the argument. This provides the justification

for the claim.

The next result below is the Gagliardo-Nirenberg inequality.

Lemma 2.4. Let n ↗ 2m+ 1 and ! be open and bounded subset of R
n
, 1 < r < 1 + 4m

n→2m . Then

there exists C0 = C0 (!, n, r) > 0 so that

⇐z⇐r+1
Lr+1(!) ⇒ C0

∥∥∥A
1
2 z

∥∥∥
ω(r+1)

⇐z⇐(1→ω)(r+1)
, ⇑z → H

m
0 (!) ,

where

ϱ =
n (r ↓ 1)

4 (r + 1)
→ (0, 1) . (2.4)
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Proof. Let z → H
m
0 (!) . It follows from Gagliardo-Nirenberg inequality that

⇐z⇐r+1
Lr+1(!) ⇒ C (!, n, r)

∥∥∥A
1
2 z

∥∥∥
ω(r+1)

⇐z⇐(1→ω)(r+1)
,

where used
∥∥⇓2

z
∥∥ ⇒ C (!, n)

∥∥∥A
1
2 z

∥∥∥ ,

by [22, Chapter 3, Proposition 3].

Lemma 2.5. Assume that n ↗ 1 and ! ↘ R
n

be open and bounded with Lipschitz boundary.

Suppose ω is defined by (1.2). Let z be a weak solution to equation (1.1) with T > 0. Then the

following identities hold:

(H1)

J (z(h), h) +

∫ h

0

(∥∥∥∥
zt (s)

|x|m
∥∥∥∥
2

↓ ω
↑ (s)

r + 1
⇐z⇐r+1

Lr+1(!)


ds = J (z0, 0) ,

and

(H2)

d

dt

(
1

2

∥∥∥∥
z(h)

|x|m
∥∥∥∥
2


=

(
z (h)

|x|2m
, zt (h)


= ↓I (z(h), h) ,

for a.e. h → [0, T ).

Proof. For (H1), first assume that zt → L
2
(
0, T ;Hm

0 (!) ↔ L
r+1 (!)

)
. Then, utilizing zt as a test

function in (2.1) we have

∥∥∥∥
zt

|x|m
∥∥∥∥
2

+
(
A 1

2 z,A 1
2 zt

)
= ω (t)

(
|z|r→1

z, zt

)
.

Moreover, direct calculations provide

d

dt
J (z(t), t) =

(
A 1

2 z,A 1
2 zt

)
↓ ω (t)

(
|z|r→1

z, zt

)
↓ ω

↑ (t)

r + 1
⇐z⇐r+1

Lr+1(!) ,

as a function of t in the interval [0, T ). Combining these two identities together results in

d

dt
J (z(t), t) = ↓

∥∥∥∥
zt

|x|m
∥∥∥∥
2

↓ ω
↑ (t)

r + 1
⇐z⇐r+1

Lr+1(!) , (2.5)

as a function of t in the interval [0, T ).

Now (H1) follows by integrating both sides of (2.5) with respect to t over (0, h), where h → (0, T ).

To conclude, with an approximation argument we examine that (2.5) holds without the assumption

that zt → L
2
(
0, T ;Hm

0 (!) ↔ L
r+1 (!)

)
.
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The proof of (H2) is the same way and is omitted.

The result we give below is obtained directly from Lemma 2.4 and the Friedrichs inequality (cf.

[14, Theorem 1.10]).

Lemma 2.6. Let n ↗ 1, z → H
m
0 (!) and 2 < r + 1 < 2↓. Then there exists a constant Sr =

Sr (n, r) > 0 so that

⇐z⇐Lr+1(!) ⇒ Sr ⇐”z⇐ .

In addition, we note that the constant Sr may be made explicit and sharp when n ↗ 2m+ 1.

Our next result is known as the concavity argument, which is widely used in the literature and is

used for the su#cient condition of blow-up.

Lemma 2.7 ([12,13]). Suppose that a positive, twice-di!erentiable on (0,≃) function ς (t) satisfies

the inequality

ς
↑↑ (t)ς (t)↓ (1 + φ) (ς↑ (t))

2 ↗ 0,

where φ > 0. If ς (0) > 0 and ς
↑ (0) > 0 for all t → (0,≃) . Then there exists T > 0 such that

lim
t↔T↑

ς (t) = ≃, and T ⇒ ς (0)

φς↑ (0)
.

3 Upper bound for blow-up time

In this part, we are going to obtain the upper bounds for the finite time blow-up results. For

simplicity, we shall write

L (t) =
1

2

∥∥∥∥
z (t)

|x|m
∥∥∥∥
2

,

for each t → [0, T ) .

We start with the proof of Theorem 3.1. This is related to the upper limit on the explosion time

of the weak solution when the initial energy functional is negative (1.1) .

Theorem 3.1. Assume that n ↗ 2m+1 and ! ↘ R
n

be open and bounded with Lipschitz boundary.

Let r > 1 and ω be given by (1.2). Such that 0 ⇔= z0 → H
m
0 (!) ↔ L

r+1 (!) and

J (z0, 0) =
1

2

∥∥∥A
1
2 z0

∥∥∥
2
↓ ω (0)

r + 1
⇐z0⇐r+1

Lr+1(!) < 0.

Suppose that z (t) is a weak solution to (1.1) with T > 0. Then z blows up at a finite time T
↓

which

satisfies

T
↓ ⇒

∥∥∥ z0
|x|m

∥∥∥
2

(1↓ r2) J (z0, 0)
.
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Proof. Here we set T
↓
< ≃, where T

↓ ↗ 0 is the maximum existence time of z, and then we aim

to provide an upper bound for T
↓.

Set for this purpose

K (t) = ↓J (z (t) , t) ,

for every t → [0, T ↓) . According to the hypothesis L (0) > 0 and K (0) > 0.

We can also write from Lemma 2.5:

K↑ (t) = ↓ d

dt
J (z (t) , t) =

∥∥∥∥
zt

|x|m
∥∥∥∥
2

+
ω
↑ (s)

r + 1
⇐z⇐r+1

Lr+1(!) ↗ 0, (3.1)

for each t → [0, T ↓) , so K increases over [0, T ↓) . Consequently, K (t) ↗ K (0) > 0 for all t → [0, T ↓) .

Assume that t → [0, T ↓) . Same way,

L↑ (t) =

(
z

|x|2m
, zt


= ↓I (z (t) , t) =

r ↓ 1

2

∥∥∥A
1
2 z

∥∥∥
2
↓ (r + 1) J (z (t) , t) ↗ (r + 1)K (t) . (3.2)

Thus,

L (t)K↑ (t) ↗ 1

2

∥∥∥∥
z

|x|m
∥∥∥∥
2 ∥∥∥∥

zt

|x|m
∥∥∥∥
2

↗ 1

2

(
z

|x|2m
, zt

2

=
1

2
(L↑ (t))

2 ↗ r + 1

2
L↑ (t)K (t) . (3.3)

From (3.1), (3.2) and (3.3), we get

(
K (t)L→(r+1)/2 (t)

)↑
= L→(r+3)/2 (t)

(
K↑ (t)L (t)↓ r + 1

2
K (t)L↑ (t)

)
↗ 0.

This means that KL→(r+1)/2 strictly increases over [0, T ↓), which follows:

0 < ↼0 = K (0)L→(r+1)/2 (0) < K (t)L→(r+1)/2 (t)

⇒ 1

r + 1
L↑ (t)L→(r+1)/2 (t) =

2

1↓ r2

(
L(1→r)/2 (t)

)↑
,

here we used (3.2).

Integrating this last representation with respect to t over (0, ↽), where ↽ → (0, T ↓), we obtain:

↼0↽ ⇒ 2

1↓ r2

(
L(1→r)/2 (↽)↓ L(1→r)/2 (0)

)
.

Since this inequality only holds for a finite period of time, we deduce T
↓
< ≃. Moreover,

0 ⇒ L(1→r)/2 (↽) ⇒ L(1→r)/2 (0)↓
(
r
2 ↓ 1

)
↼0

2
↽,
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for all ↽ → [0, T ↓) . This reveals that

T
↓ ⇒ 2

(r2 ↓ 1) ↼0
L(1→r)/2 (0) =

2L (0)

(1↓ r2) J (z0, 0)
.

The proof is complete.

Next we state and prove Theorem 3.2. Here it provides an upper bound on the explosion time for

a weak solution to (1.1) when the initial energy functional is positive.

Theorem 3.2. Suppose that n ↗ 2m+1 and ! ↘ R
n

be open and bounded with Lipschitz boundary.

Let r > 1 and ω be given by (1.2). Assume that 0 ⇔= z0 → H
m
0 (!) ↔ L

r+1 (!) and

0 ⇒ C1J (z0, 0) <
1

2

∥∥∥∥
z0

|x|m
∥∥∥∥
2

= L (0) ,

where

C1 =
(r + 1) C
r ↓ 1

and C =

(
m

2

n (m↓ 1) (n↓ 2m)

)2

.

Suppose that z (t) be a weak solution to (1.1) with T > 0. Then z blows up at a finite time T
↓

which satisfies

T
↓ ⇒ 4rC1L (0)

(r ↓ 1)2 (r + 1) (L (0)↓ C1J (z0, 0))
.

Proof. Here we set T
↓
< ≃ , where T

↓ ↗ 0 is the maximum existence time of z, and then we aim

to provide an upper bound for T
↓
.

From (3.2)

L↑ (t) ↗ r ↓ 1

2

∥∥∥A
1
2 z

∥∥∥
2
↓ (r + 1) J (z (t) , t) ↗ r ↓ 1

2C

∥∥∥∥
z (t)

|x|m
∥∥∥∥
2

↓ (r + 1) J (z (t) , t)

=
r ↓ 1

C [L (t)↓ C1J (z (t) , t)] =
r ↓ 1

C M (t) ,

for each t → (0, T ↓) , where in the second step we used Lemma 2.3.

Observe from the inequality above:

M↑ (t) = L↑ (t)↓ C1
d

dt
J (z (t) , t) ↗ L↑ (t) ↗ r ↓ 1

C M (t) ,

for each t → (0, T ↓) , here we used (3.1) in the second step.

Moreover,

M (0) = L (0)↓ C1J (z0, 0) > 0,
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by assumption. Consequently, an application of Gronwall’s inequality gives

M (t) ↗ M (0) exp

(
r ↓ 1

C t

)
> 0.

This means that L↑ (t) > 0 for every t → (0, T ↓). That is, L increases strictly over [0, T ↓) and hence

L (t) > L (0) , (3.4)

for every t → [0, T ↓) .

And by C1 and C given in the statement of this theorem. Fix ↽ → [0, T ↓) and

ϱ →
(
0,

r + 1

rC1

)
M (0) and ⇀ →

(
L (0)

(r ↓ 1)ϱ
,≃

)
. (3.5)

The choices of ϱ and ⇀ are justified below with (3.8) and (3.9) respectively. Define non-negative

functional

$ (h) =

∫ h

0
L (s) ds+ (↽ ↓ h)L (0) + ϱ (h+ ⇀)2 ,

where h → [0, ↽ ] . Then

$↑ (h) = L (h)↓ L (0) + 2ϱ (h+ ⇀) = 2

∫ h

0

(
z (s)

|x|m
, zt (s)

)
ds+ 2ϱ (h+ ⇀) ,

and

$↑↑ (h) = 2

(
z (h)

|x|m
, zt (h)

)
+ 2ϱ = ↓2I (z (h) , h) + 2ϱ

↗ ↓2 (r + 1) J (z (h) , h) + (r ↓ 1)
∥∥∥A

1
2 z

∥∥∥
2
+ 2ϱ

↗ ↓2 (r + 1)


J (z0, 0)↓

∫ h

0

(∥∥∥∥
zt (s)

|x|m
∥∥∥∥
2

+
ω
↑ (s)

r + 1
⇐z⇐r+1

Lr+1(!)


ds


+ (r ↓ 1)

∥∥∥A
1
2 z

∥∥∥
2
+ 2ϱ

↗ ↓2 (r + 1)


J (z0, 0)↓

∫ h

0

(∥∥∥∥
zt (s)

|x|m
∥∥∥∥
2

+
ω
↑ (s)

r + 1
⇐z⇐r+1

Lr+1(!)


ds


+

2 (r ↓ 1)

C L (h) + 2ϱ,

(3.6)

for each h → [0, ↽) , where we used Lemmas 2.5 and 2.3 in the third and fourth lines, respectively.

In what follows it is convenient to denote

φ (h) =

(
2

∫ h

0
L (s) ds+ ϱ (h+ ⇀)2

(∫ h

0

∥∥∥∥
zt (s)

|x|m
∥∥∥∥
2

L2(!)

ds+ ϱ



↓
(∫ h

0

(
z (s)

|x|m
, zt (s)

)
ds+ ϱ (h+ ⇀)

2

↗ 0, (3.7)
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for every h → [0, ↽ ] , where in the last step of (3.7) we used the Cauchy-Schwarz inequality.

From Lemma 2.7, (3.6) and (3.4), we obtain

$ (h)$↑↑ (h)↓ r + 1

2
($↑ (h))

2
= $ (h)$↑↑ (h)↓ 2 (r + 1)

∫ h

0

(
z (s)

|x|m
, zt (s)

)
ds+ ϱ (h+ ⇀)

2

= $ (h)$↑↑ (h) + 2 (r + 1)


φ (h)↓ ($ (h)↓ (↽ ↓ h)L (0))

(∫ h

0

∥∥∥∥
zt (s)

|x|m
∥∥∥∥
2

ds+ ϱ



↗ $ (h)$↑↑ (h)↓ 2 (r + 1)$ (h)

(∫ h

0

∥∥∥∥
zt (s)

|x|m
∥∥∥∥
2

ds+ ϱ



↗ $ (h)


$↑↑ (h)↓ 2 (r + 1)

(∫ h

0

∥∥∥∥
zt (s)

|x|m
∥∥∥∥
2

ds+ ϱ



↗ $ (h)


↓2 (r + 1) J (z0, 0) +

2 (r ↓ 1)

C L (h)↓ 2rϱ



↗ $ (h)


↓2 (r + 1) J (z0, 0) +

2 (r ↓ 1)

C L (0)↓ 2rϱ



= 2 (r + 1)$ (h)


↓J (z0, 0) +

1

C1
L (0)↓ rϱ

r + 1


↗ 0, (3.8)

for all h → [0, ↽ ] .

Then observe this

$ (0) = ↽L (0) + ϱ⇀
2
> 0, and $↑ (0) = 2ϱ⇀ > 0.

Consequently, from Lemma 2.7:

↽ ⇒ 2$ (0)

(r ↓ 1)$↑ (0)
=

2
(
↽L (0) + ϱ⇀

2
)

2 (r ↓ 1)ϱ⇀
=

L (0)

(r ↓ 1)ϱ⇀
↽ +

⇀

r ↓ 1
.

This is as a result

↽

(
1↓ L (0)

(r ↓ 1)ϱ⇀

)
⇒ ⇀

r ↓ 1
,

or equivalently, we can write

↽ ⇒ ⇀

r ↓ 1

(
1↓ L (0)

(r ↓ 1)ϱ⇀

)→1

=
ϱ⇀

2

(r ↓ 1)ϱ⇀ ↓ L (0)
. (3.9)

Reducing the expression mentioned in (3.5) across the range of ⇀ results in

↽ ⇒ 4L (0)

(r ↓ 1)2 ϱ
. (3.10)

Next, we aim to minimize the expression referenced by (3.10) within the specified range of ϱ as
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outlined in (3.5). This leads to the following inequality:

↽ ⇒ 4rC1L (0)

(r ↓ 1)2 (r + 1)M (0)
. (3.11)

Finally, the inequality stated in reference (3.11) remains valid for all ↽ → (0, T ↓). From this, we

can conclude that

T
↓ ⇒ 4rC1L (0)

(r ↓ 1)2 (r + 1)M (0)
,

as needed.

4 Lower bound for blow-up time

In this section we consider with the lower bound for the finite time blow-up results. This is the

content of Theorem 4.1. For simplicity, we shall write

L (t) =
1

2

∥∥∥∥
z (t)

|x|m
∥∥∥∥
2

,

for each t → [0, T ) .

We start with the proof of Theorem 4.1. This is related to the lower limit on the explosion time

of the weak solution when the initial energy functional is negative (1.1) .

Theorem 4.1. Assume that n ↗ 2m + 1 and ! ↘ R
n

be open bounded with Lipschitz boundary.

Let ω is given by (1.2) which enjoys a further property that

ω↗ = lim
t↔↗

ω (t) < ≃.

Suppose that 1 < r < 1+ 4m
n . Let z (t) be a weak solution to (1.1) with T > 0 and 0 ⇔= z0 → H

m
0 (!) .

Assume that z (t) blows up at T
↓
. Then

T
↓ ↗ L1→ε (0)

C↓ (⇁ ↓ 1)
,

where

ϱ =
n (r ↓ 1)

4 (r + 1)
→ (0, 1) , ⇁ =

(1↓ ϱ) (r + 1)

2↓ ϱ (r + 1)
> 1,

and

C
↓ =

2↓ ϱ (r + 1)

2

(
2

ω↗C0ϱ (r + 1)

)→ω(r+1)/(2→ω(r+1)) (
sup
x↘!

|x|
)4ε

,

with C0 = C0 (!, n, r) > 0.
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Proof. By assumption 1 < r < 1 + 4m
n this leads to

0 < ϱ (r + 1) =
(r ↓ 1)n

4
< m.

This allows us to apply Young’s inequality below.

Based on the constants defined in the expression of this theorem and utilizing the Lemma 2.4 and

Young’s inequality. We get

L↑ (h) =

(
z (h)

|x|m
, zt (h)

)
= ↓I (z (h) , h) = ω (h) ⇐z⇐r+1

Lr+1(!) ↓
∥∥∥A

1
2 z

∥∥∥
2

⇒ C0ω↗

∥∥∥A
1
2 z

∥∥∥
ω(r+1)

⇐z⇐(1→ω)(r+1) ↓
∥∥∥A

1
2 z

∥∥∥
2

⇒
∥∥∥A

1
2 z

∥∥∥
2
+

2↓ ϱ (r + 1)

2

(
2

ω↗C0ϱ (r + 1)

)→ω(r+1)/(2→ω(r+1))

⇐z⇐2ε ↓
∥∥∥A

1
2 z

∥∥∥
2

=
2↓ ϱ (r + 1)

2

(
2

ω↗C0ϱ (r + 1)

)→ω(r+1)/(2→ω(r+1))

⇐z⇐2ε

⇒ 2↓ ϱ (r + 1)

2

(
2

ω↗C0ϱ (r + 1)

)→ω(r+1)/(2→ω(r+1)) (
sup
x↘!

|z|
)4ε

L (t)ε

= C
↓L (t)ε ,

for all h → (0, T ↓) . Equivalency one has

L↑ (t)

L (t)ε
⇒ C

↓
,

where do we get it
1

1↓ ⇁

(
L1→ε (t)↓ L1→ε (0)

)
⇒ C

↓
t.

Lastly, since ⇁ > 1 and limt↔T→ L (t) = ≃, allowing t ↖ T
↓ in the above inequality, we have

T
↓ ↗ L1→ε (0)

C↓ (⇁ ↓ 1)
,

as required.

5 Global existence

In this Section, we establish the existence of a global weak solution to the equation referenced

as (1.1), which corresponds to Theorem 5.2. While the proof follows the conventional arguments

of Faedo-Galerkin approximation, the presence of the fourth-order operator in (1.1) requires a

thorough justification, particularly when the initial datum z0 belongs to the stable set #1. For the

sake of simplicity in notation, we utilize the dot notation in this part
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z
↑
k = (zk)t =

ε

εt
zk.

Hereafter

a ↙ b = min {a, b} and a ∝ b = max {a, b} .

Remember we set

n! =





2m+ 1, if 0 → !

1, if 0 /→ !
and 2↓ =





≃, if n ⇒ 2m,

2n
n→2m , if n ↗ 2m+ 1,

with

#1 (t) = {z → H
m
0 (!) : J (z, t) < n↗ and I (z, t) > 0} ,

and

#2 (t) = {z → H
m
0 (!) : J (z, t) < n↗ and I (z, t) > 0} ,

for every t ↗ 0.

We begin with a problem of approximation.

Lemma 5.1 ([5]). Assume that n ↗ n! and 2 < r + 1 < 2↓. Suppose that k → N, T > 0 and

zk0 → C
↗
c (!) . Then the problem






ρk (x) z↑k +Azk = ϱk (zk) , (x, t) → !↑ (0, T ] ,

ε
i
zk (x, t)

εϑi
= 0, i = 0, 1, . . . ,m↓ 1, (x, t) → !↑ (0, T ] ,

zk (x, 0) = zk0, x → !,

(5.1)

accepts a global solution zk → C ([0, T ] ;Hm
0 (!)) so that z

↑
k → L

2 (0, T ;Hm
0 (!)) , where

ρk (x) = |x|→2m ↙ n and ϱk (zk) = ω (t)

(↓k) ∝

(
|zk|r→1

zk

)
↙ k


.

Finally, we present the existence of a global weak solution to (1.1) when the initial datum z0

belongs to the stable set #1.

Theorem 5.2. Suppose that n ↗ n! and ! ↘ R
n

be open bounded with Lipschitz boundary.

Assume that 2 < r + 1 < 2↓. Let z0 →


1 (0) . Suppose ω → C
1 [0,≃) satisfies ω (0) > 0 and

ω
↑ (t) ↗ 0 for all t → [0,≃). Morever suppose that limt↔↗ ω (t) = 1. Then there exists a global

weak solution to (1.1).

Proof. Since z0 → #1 (0) , there exists a constant ε0 > 0 so that

J (u0, 0) + ε0 < n↗.



CUBO
28, 1 (2026)

Blow-up and global existence of solutions for a higher-order... 93

From Lemma 5.1 for every k → N there exists a weak solution zk → C ([0, T ] ;Hm
0 (!)) with

z
↑
k → L

2 (0, T ;Hm
0 (!)) to the problem (5.1), here zk0 → C

↗
c (!) is so that

lim
k↔↗

zk0 = z0 in H
m
0 (!) .

By choosing a su#ciently large k → N , we can also assume that

J (zk0, 0) ⇒ J (z0, 0) + ε0 < n↗. (5.2)

Using z
↑
k as a test function in (5.1), we get

∫ t

0

∫

!
ρ
2
kz

↑
k (s)

2
dx ds+

∫ t

0

∫

!
Azk (s) z

↑
k (s) dx ds

=

∫ t

0

∫

!
ϱk (zk) z

↑
k (s) dx ds ⇒

∫ t

0

∫

!
|zk (s)|r→1

zk (s) z
↑
k (s) dx ds.

When you realize this ∫

!
Azkz

↑
kdx =

d

dt

(
1

2

∫

!

∥∥∥A1/2
zk

∥∥∥
2
dx

)
,

and ∫

!
|zk|r→1

zkz
↑
kdx =

d

dt

(
1

r + 1

∫

!
⇐zk⇐r+1

Lr+1(!) dx

)
.

We can rewrite the above inequality as follows:

∫ t

0

∫

!
ρkz

↑
k (s)

2
dx ds+ J (zk (t) , t) ⇒ J (zk0, 0) < n↗, (5.3)

here we used (5.2) in the last step. This implies zk (t) → #1 for every t → [0, T ] . Indeed, let us

express the opposite statement by way of contradiction. Let t
↓ denote the minimal time at which

zk (t↓) /→ #1. Utilizing the fact that zk → C ([0, T ] ;Hm
0 (!)) we deduce that zk (t↓) → ε#1. In other

words, either J (zk (t↓) , t↓) = n↗ or I (zk (t↓) , t↓) = 0. The former is impossible due to (5.3).

As a result, it is necessary to satisfy I (zk (t↓) , t↓) = 0 or equivalently,

∥∥∥A
1
2 zk (t

↓)
∥∥∥
2
= ω (t↓) ⇐zk (t↓)⇐r+1

Lr+1(!) ,

which implies

J (zk (t
↓) , t↓) =

r ↓ 1

2 (r + 1)

∥∥∥A
1
2 zk (t

↓)
∥∥∥
2
↗ r ↓ 1

2 (r + 1)
S
→2
r ⇐zk (t↓)⇐2Lr+1(!)

=
r ↓ 1

2 (r + 1)
S
→2
r




ω (t↓)→1/2

∥∥∥A 1
2 zk (t↓)

∥∥∥
⇐z⇐Lr+1(!)





2
r+1 ( 1

2→
1

r+1 )
↑1
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↗ r ↓ 1

2 (r + 1)
ω (t↓)2/(1→r)

S
→2(r+1)/(r→1)
r = n (t↓) ↗ n↗.

This statement contradicts the information provided in inequality (5.3). Therefore, zk (t) belongs

to the set #1 for each t in the interval [0, T ], as asserted.

For t → [0, T ] , if zk (t) → #1, it implies

∥∥∥A
1
2 zk (t)

∥∥∥
2
= ω (t) ⇐zk (t)⇐r+1

Lr+1(!) .

By utilizing equation (5.3) we can derive the following inequality:

∫ t

0

∫

!
ρkz

↑
k (s)

2
dx ds+

(
1

2
↓ ω (t)

r + 1

)∥∥∥A
1
2 zk (t)

∥∥∥
2
< J (zk0, 0) < n↗. (5.4)

There is one in particular

(
1

2
↓ 1

r + 1

)∥∥∥A
1
2 zk (t)

∥∥∥
2
=

(
1

2
↓ ω↗

r + 1

)∥∥∥A
1
2 zk (t)

∥∥∥
2

<

(
1

2
↓ ω (t)

r + 1

)∥∥∥A
1
2 zk (t)

∥∥∥
2
< J (zk0, 0) , (5.5)

here ω↗ = limt↔↗ ω (t) = 1 by hypothesis. Utilizing the Lemma 2.6, (5.5) and (5.2), we get

∫

!
|zk (t)|r+1

dx < S
r+1
r

(∥∥∥A
1
2 zk (t)

∥∥∥
2
)(r+1)/2

= S
r+1
r

(∥∥∥A
1
2 zk (t)

∥∥∥
2
)(r+1)/2→1 ∥∥∥A

1
2 zk (t)

∥∥∥
2

< S
r+1
r

(
1

2
↓ 1

r + 1

)→1

J (zk0, 0)

(r+1)/2→1 ∥∥∥A
1
2 zk (t)

∥∥∥
2

< S
r+1
r

(
1

2
↓ 1

r + 1

)→1

(J (z0, 0) + ε0)

(r+1)/2→1 ∥∥∥A
1
2 zk (t)

∥∥∥
2

= ▷

∥∥∥A
1
2 zk (t)

∥∥∥
2
. (5.6)

Note that

0 < ▷ < S
r+1
r

(
1

2
↓ 1

r + 1

)→1

d↗

(r+1)/2→1

=

(
1

2
↓ 1

r + 1

)→1
r ↓ 1

2 (r + 1)

(r→1)/2

= 1.

Next, we employ zk as a test function in (5.1) to obtain

1

2

∫

!
ρkz

2
k dx+

∫ t

0

∫

!

∣∣∣A
1
2 zk (s)

∣∣∣
2
dx ds ⇒

∫ t

0

∫

!
|zk (s)|r+1

dx ds+
1

2

∫

!
ρkz

2
k0 dx

<▷

∫ t

0

∫

!

∣∣∣A
1
2 zk (s)

∣∣∣
2
dx ds+

1

2

∫

!
ρkz

2
k0 dx,
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where we utilized reference (5.6) in the second step.

It can be deduced that

1

2

∫

!
ρkz

2
k dx+ (1↓ ▷)

∫ t

0

∫

!

∣∣∣A
1
2 zk (s)

∣∣∣
2
dx ds <

1

2

∫

!
ρkz

2
k0 dx < C, (5.7)

here C > 0 is independent of k and T. As a result, the sequence {zk}k↘N is uniformly bounded in

L
2 (0, T ;Hm

0 (!)) .

By (5.4) and (5.7), the following properties are satisfied:






zk ↖ z a.e. in (0, T )↑ !,

ρ
1/2
k zk

ϑ↖ zt
|x|m in L

2
(
0, T ;L2 (!)

)
,

A 1
2 zk

ϑ↖ A 1
2 z in L

2
(
0, T ;L2 (!)

)
,

zk
ϑ↖ z in L

2
(
0, T ;Lr+1 (!)

)
,

zk
ϑ↖ z in L

2
(
0, T ;Lr+1 (!)

)
,

for all T > 0. The theorem now follows by taking limits as k ↖ ≃ in (5.1). Since T > 0 is arbitrary,

the solution is global.
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ABSTRACT

The Aoki’s function A(x) :=
(
1 + 1

x

)x
+
(
1→ 1

x

)→x
is sharply

estimated for x ↑ 1. For example, we have the zero approx-

imation given as

2e

(
1 +

1
4x2 → 1

)
< A(x) < 2e

(
1 +

3
4x2 → 1

)
, x ↓ 29

14
.

RESUMEN

Estimamos ajustadamente la función de Aoki A(x) :=(
1 + 1

x

)x
+

(
1→ 1

x

)→x
para x ↑ 1. Por ejemplo, tenemos

la aproximación cero dada por

2e

(
1 +

1
4x2 → 1

)
< A(x) < 2e

(
1 +

3
4x2 → 1

)
, x ↓ 29

14
.
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1 Introduction

The Aoki’s function A(x),

A(x) :=

(
1 +

1

x

)x

+

(
1→ 1

x

)→x

, (1.1)

the sum of two strictly monotonic functions, increasing and decreasing respectively, has been

estimated in [1, Theorem 1] as

e(2xe → 1)

xe → 1
=: A1(x) < A(x) < A2(x) :=

e(2x2 → 1)

x2 → 1
(x > 1). (1.2)

Figure 1 (left), showing1 the graphs of the functions A1(x), A(x) and A2(x), discloses that the

double inequality (1.2) is relatively rough. This fact has encouraged us to give more accurate

approximations, which are illustrated in Figure 1 (right), where there are plotted the graphs of the

functions A↑
1(x), A(x) and A↑

2(x) from Example 3.5.

3 4 5 6 7 8

5.6

5.8

6.0

6.2

3 4 5 6 7 8 9

5.6

5.8

6.0

6.2

Figure 1: Left there are the graphs of the functions A1(x), A(x) and A2(x). Right are illustrated
the inequalities (3.1)–(3.2) in Example 3.5.

The main purpose of this article is to provide a sharp estimate of the function A(x). The emphasis

is on its brevity, a simple approach and its concrete sharpness (double inequalities), which is also

important in some numerical treatments.

1
All graphics in this paper are made using Mathematica [4].



CUBO
28, 1 (2026)

An asymptotic estimate of Aoki’s function 101

2 Background – an expansion of the function (1 + y)1/y

According to [3, (20) and Theorem and Corollaries 1–2 on p. 105] there holds the following lemma.

Lemma 2.1. For every real y > →1, we have the expansion

(1 + y)1/y =
2e

y + 2

↓∑

i=0

B2i ·
(

y

y + 2

)2i

, (2.1)

where the sequence B2n is strictly monotonically decreasing, bounded as

B2 = B3 =
5

6
and

7

10
< lim

n↔↓
Bn < Bn <

8

10
, for n ↑ 4, (2.2)

and is given recursively as

B0 = B1 = 1, B2m+1 = B2m =
1

m

m∑

j=1

4j + 1

4j + 2
B2m→2j , for m ↑ 1. (2.3)

Lemma 2.1 implies the next lemma.

Lemma 2.2. The equation (2.1) holds for any real y such that |y| < 1.

Remark 2.3. Instead of Lemma 2.1, we could also use the results of the paper [2], which provides

the expansion (1 + x)1/x = e
∑↓

j=0(→1)jbjxj (bj ↓ R+
, →1 < x ↔ 1). However, in this expan-

sion, the convergence of the series is slower than the convergence of the series in the expansion

(1 + x)1/x = e ·
∑↓

j=0(→1)jBj ·
(

x
x+2

)j
(Bj ↓ R+

, →1 < x ↗= 0), given in the paper [3].

3 Expansion of the Aoki’s function

Using y = ± 1
x in Lemma 2.2, we get the following theorem.

Theorem 3.1. The expansion

A(x) = 2e x
↓∑

i=0

B2i ·
(

1

(2x+ 1)2i+1
+

1

(2x→ 1)2i+1

)

holds true for any x > 1.

Proof. For x > 1, we have
∣∣ ± 1

x

∣∣ < 1. Consequently, using Lemma 2.2, the equation (2.1) holds

for y = 1
x and also for y = → 1

x . Therefore we obtain

(
1 +

1

x

)x

=
2ex

1 + 2x

↓∑

i=0

B2i ·
(

1

1 + 2x

)2i
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and (
1→ 1

x

)→x

=
2ex

2x→ 1

↓∑

i=0

B2i ·
(

1

2x→ 1

)2i

.

Corollary 3.2. For any integer m ↑ 0 and every real x > 1, we have

A(x) = A↑
m(x) + ωm(x),

where A↑
m(x) := 2e x

m∑

i=0

B2i ·
(

1

(2x+ 1)2i+1
+

1

(2x→ 1)2i+1

)

and 0 < ωm(x) < ω↑m(x) :=
eB2m+2

(x→ 1)(2x→ 1)2m+1
<

e

(x→ 1)(2x→ 1)2m+1
.

Proof. Referring to Theorem 3.1 and (2.2) in Lemma 2.1, we have

0 < ωm(x) = 2e x ·
↓∑

i=m+1

B2i ·
2

(2x→ 1)2i+1
< 4e x ·B2m+2 · (2x→ 1)→(2m+3)

↓∑

i=0

(2x→ 1)→2i

= 4e x ·B2m+2 · (2x→ 1)→(2m+3) · 1

1→ (2x→ 1)→2
=

eB2m+2

(x→ 1)(2x→ 1)2m+1
.

Hence, referring to the estimates (2.2), we prove Corollary 3.2.

Remark 3.3. In Corollary 3.2, m is a parameter that a!ect the error term ωm(x).

Example 3.4 (zero approximation). Setting m = 0 in Corollary 3.2 and using (2.2), we estimate

2e

(
1 +

1

4x2 → 1

)
< A(x) < 2e

(
1 +

1

4x2 → 1

)
+

5e

6(x→ 1)(2x→ 1)
, x > 1

↔ 2e

(
1 +

3

4x2 → 1

)
, x ↑ 29

14
.

Example 3.5. Putting m = 1 in Corollary 3.2 and considering the equality B4 = 287
360 , given by

(2.3), we obtain the following inequalities

A(x) > 2e

(
1 +

1

4x2 → 1
+

10x2(4x2 + 3)

3(4x2 → 1)3

)
(3.1)

A(x) < 2e

(
1 +

1

4x2 → 1
+

10x2(4x2 + 3)

3(4x2 → 1)3

)
+

287e

360(x→ 1)(2x→ 1)3
. (3.2)

Corollary 3.6. For an integer m ↑ 0 and a real x > 1, the relative error

εm(x) :=
A(x)→A↑

m(x)

A(x)

of the approximation A(x) ↘ A↑
m(x) satisfies the double inequality

0 < εm(x) < ε↑m(x) :=
B2m+2

2(x→ 1)(2x→ 1)2m+1
<

1

2(x→ 1)(2x→ 1)2m+1
.
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Proof. According to Example 3.4, we have A(x) > 2e. Therefore, using Corollary 3.2, we get

εm(x) =

(
A↑

m(x) + ωm(x)
)
→A↑

m(x)

A(x)
<

ω↑m(x)

2e
=

B2m+2

2(x→ 1)(2x→ 1)2m+1
.

Example 3.7. Thanks to Lemma 2.1 and Corollary 3.6, we have

ε↑0(x) =
5

12(x→ 1)(2x→ 1)
and ε↑1(x) =

287

720(x→ 1)(2x→ 1)3
, x > 1.

Figure 2 shows the graphs of the errors ε1(x) and ε↑1(x) on the left and the graphs of the quotient

ε↑1(x)/ε1(x) on the right respectively.

12 14 16 18 20

1.!10"6

2.!10"6

3.!10"6

4.!10"6

5.!10"6

6.!10"6

Ρ1!x"

Ρ1
$!x"

20 40 60 80 100

1.05

1.10

1.15

1.20

1.25

Ρ
1
" !x"

Ρ1 !x"

Figure 2: On the left are the graphs of the errors ε1(x) and ε↑1(x); on the right is the graph of the
quotient ε↑1(x)/ε1(x).

Remark 3.8. A reviewer of this article suggested that the author rewrite the article following

reviewer’s suggestions, which, in his opinion, also include a better and much simpler approach to

the problem at hand. The result of reviewer’s intervention is his expansion

A(x) =
↓∑

n=0

a→2n

x2n
=

m∑

n=0

a→2n

x2n
+ Em(x) ,

where a→2n :=
2e

(2n)!
D2n with Dn defined recursively as

D0 := 1, Dm :=
m→1∑

j=0

(→1)m→j (m→ 1)!

j!
· m→ j

m+ 1→ j
Dj , m ↑ 1

and estimated as

∣∣Dm

∣∣ < m!

2
,

∣∣Em(x)
∣∣ < 2e|D2m+2|

(2m+ 2)! · (x2m+2 → x2m+1)
<

e

(x→ 1)x2m+1
,

for m ↑ 1. However, the sequence (Dn)n↗0 is not simple. Additionally, the crucial fact is that the

series
∑↓

n=0
a→2n

x2n converges more slowly than the series
∑↓

i=0 B2i ·
(

1
(2x+1)2i+1 + 1

(2x→1)2i+1

)
, see

Corollary 3.2.
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ABSTRACT

Among the class of generalized Fourier transformations, the

linear canonical transform is of pivotal importance mainly

due to its higher degrees of freedom in lieu of the conven-

tional Fourier and fractional Fourier transforms. This ar-

ticle is a continuation of our recent work “Linear canonical
deformed Hankel transform and the associated uncertainty
principles, J. Pseudo-Di!er. Oper. Appl.(2023), 14:29”.
Building upon this, we formulate the generalized transla-

tion and convolution operators associated with this newly

proposed transformation. Besides, the obtained results are

invoked to examine and obtain an analytical solution of the

generalized heat equation. Finally, we study the heat semi-

group pertaining to the generalized heat equation.

RESUMEN

Entre la clase de transformaciones de Fourier generalizadas,

la transformada lineal canónica es de importancia central,

mayormente debido a sus grados de libertad más altos en

lugar de las transformadas convencionales de Fourier y de

Fourier fraccionaria. Este artículo es una continuación de

nuestro trabajo reciente “Linear canonical deformed Han-
kel transform and the associated uncertainty principles, J.
Pseudo-Di!er. Oper. Appl.(2023), 14:29”. Construyendo a

partir de esto, formulamos los operadores de traslación y con-

volución generalizados asociados a esta nueva transformación

propuesta. Además, los resultados obtenidos se utilizan para

examinar y obtener una solución analítica de la ecuación de

calor generalizada. Finalmente, estudiamos el semigrupo de

calor pertinente a la ecuación de calor generalizada.
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1 Introduction

The Fourier transform is regarded as one of the remarkable discoveries in mathematical sciences

as it profoundly influenced diverse branches of science and engineering. In the realm of harmonic

analysis, the Fourier transform plays a pivotal role in analyzing signals wherein the characteristics

are statistically invariant over time [6]. In the higher-dimensional scenario, there are several ways

to arrive at the definition of the Fourier transform. The most basic formulation in Rd is given by

the integral transform

F(f)(ω) =
1

(2ε)d/2

∫

Rd

f(x) e→i↑ω,x↓ dx. (1.1)

Alternatively, one can rewrite the transform as

F(f)(ω) =
1

(2ε)d/2

∫

Rd

f(x)K(ω, x) dx, (1.2)

where K(ω, x) is the unique solution to the system of partial di!erential equations





ϑxjK(ω, x) = →iωjK(ω, x), j = 1, . . . , d,

K(ω, 0) = 1, ω ↑ Rd

Yet another mathematical description of the higher-dimensional Fourier transform was proposed

by Howe [44] via the Laplace operator ↓ on Rd as follows:

F = exp

(
iεd

4

)
exp

(
iε

4

(
↓→ ↔x↔2

))
. (1.3)

It is pertinent to mention that each of the above alternative representations has its specific use

cases, and a detailed description regarding di!erent ramifications of the Fourier transform can

be found in [10]. Many generalizations of the Fourier transform can be attributed to a deeper

understanding of the fundamental operators in Harmonic analysis. In the d-dimensional Euclidean

space, the three elementary operators are the Laplace operator ↓, norm ↔·↔, and the Euler operator

E, respectively defined as follows:

↓ :=
d∑

j=1

ϑ2
xj
, ↔x↔2 :=

d∑

j=1

x2
j , E :=

d∑

j=1

xjϑxj ,

As observed in [44], the operators

E =
↔x↔2

2
, F = →↓

2
, and H = E +

d

2

are invariant under O(d) and generate the Lie algebra sl2:

[H,E] = 2E, [H,F ] = →2F, [E,F ] = H.
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Recently, there has been a lot of interest in other di!erential or di!erence operator realizations of

sl2 or other Lie (super) algebras. The focus is in particular on the generalized Fourier transforms

that subsequently arise from these operator theoretic notions including the Dunkl transform [13],

various discrete Fourier transforms in Rd [23], Fourier transforms in Cli!ord algebras [11] and many

more. However, the hard problem in this context is to find explicit closed formulas for the integral

kernel of the associated Fourier transforms. For further useful details regarding the generalized

Fourier transforms and their implications, we refer the interested reader to [10].

Very recently, Ben Said et al. [3] have given a foundation for the deformation theory of the

classical case, by constructing a generalization Fk,a of the Fourier transform, and the holomorphic

semigroup Ik,a with infinitesimal generator

Lk,a,d :=
∥∥x

∥∥2→a↓k →
∥∥x

∥∥a, a > 0, (1.4)

acting on a concrete Hilbert space deforming L2(Rd), where ↓k is the Dunkl Laplace operator.

The authors have analyzed Fk,a and Ik,a(z) in the context of integral operators as well as rep-

resentation theory. The deformation parameters consist of a real parameter a coming from the

interpolation of the minimal unitary representations of two di!erent reductive groups by keeping

smaller symmetries, and a parameter k coming from Dunkl’s theory of di!erential-di!erence oper-

ators associated with a finite Coxeter group (see [3]). In case a = 2
n , n ↑ N and d = 1, we call the

generalized Fourier transform Fk, 2
n
, the deformed Hankel transform and will be denoted by Fk,n.

As of now, the deformed Hankel transform Fk,n has witnessed an ample amount of research in the

realm of harmonic analysis, which includes the study of kernel of the deformed Hankel transform

[9], the generalized translation operator [2, 5, 30], the generalized maximal function [2], the Flett

potentials [4], the deformed wavelet packets [19], uncertainty principles [25], the (k, n)-generalized

wavelet multipliers [26], the (k, n)-generalized wavelet transform [27,29], the localization operators

[34], the (k, n)-generalized Gabor transform [28], the (k, n)-generalized Stockwell transform [30],

the (k, n)-generalized Wigner transform [32] and many more.

This paper is a continuation of the recent work carried out in the article Linear canonical deformed

Hankel transform and the associated uncertainty principles [33]. Nonetheless, in [33], we have

introduced and studied the linear canonical transform in the deformed Hankel frame (i.e. special

case a = 2
n , n ↑ N and d = 1). Recall that the classical linear canonical transform (LCT) was

independently introduced by Collins [8] in paraxial optics, and Moshinsky, and Quesne [35] in

quantum mechanics, to study the conservation of information and uncertainty under linear maps

of phase space. The LCT is an integral transformation associated with a general homogeneous

lossless linear mapping in phase space endowed with a total of three free parameters. The involved

parameters constitute a 2↗ 2 uni-modular matrix mapping the position x and the wave number y
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into 

x↔

y↔



 =



a b

c d







x

y



 ,

where ad → bc = 1. The transformation maps any convex body into another convex body while

preserving the area of the body. Such transformations constitute the homogeneous special group

SL(2,R). The linear canonical transform of any signal f with respect to a real matrix M =

(a, b; c, d) ↑ SL(2,R) with b ↘= 0 is defined by

FM

f(x)


(y) =

1≃
ib

∫

R
f(x)KM (x, y) dy, (1.5)

where

KM (x, y) = exp


i

2

(
dx2 + ay2 → ixy

b

)
. (1.6)

It is important to emphasize that the LCT provides a unified treatment of many generalized Fourier

transforms in the sense that it is an embodiment of several well-known integral transforms including

the Fourier transform [6,42], the fractional Fourier transform [1], the Fresnel transform [24], scaling

operations and so on [7,21]. Due to the extra degrees of freedom and simple geometrical manifes-

tation, the LCT is more flexible than other transforms and is as such suitable as well as a powerful

tool for investigating deep problems in optics, quantum physics and signal processing [7, 21]. In-

deed, over a couple of decades, the application areas for LCT have been growing at an exponential

rate and is as such befitting for investigating deep problems in signal analysis, filter design, phase

retrieval problems, pattern recognition, radar analysis, holographic three-dimensional television,

quantum physics, and many more. Apart from applications, the theoretical framework of LCT has

likewise been extensively studied and investigated which has led to the formulation of convolution

theorems [40], sampling theorems [22], Poisson summation formulae [45] and uncertainty principles

[41]. For more about LCT and their applications, we allude to [7, 21,37–39].

The main goal of this article is twofold. First, by employing the fundamental tools associated

with the linear canonical deformed Hankel transform (LCDHT) [33], we introduce and investigate

a generalized translation operator corresponding to the LCDHT. This operator is then utilized to

define a convolution product, and several of its essential properties are examined. Subsequently, we

establish the main theorems pertaining to the harmonic analysis in the framework of the LCDHT.

Recognizing that the LCDHT represents a recent addition to the class of integral transforms,

o!ering several additional degrees of freedom, we are further motivated to apply it to the heat

equation. Therefore, the second objective of this paper is to study the generalized heat equation

and the corresponding heat semigroup within the LCDHT setting. Thus, we can conclude that

the principal contribution of this work lies in developing the harmonic analysis and exploring the

generalized heat equation associated with a family of integral transforms such as the Dunkl, Bessel,

and linear canonical Bessel (LCB) transforms [12, 15–17]. Besides, our analysis extends to other
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integral transforms that have not yet been studied in this context, including the Dunkl fractional

transform, the Dunkl Fresnel transform, and the LCD transform.

The remainder of this paper is organized as follows. Section 2 recalls the main results of the har-

monic analysis associated with the deformed Hankel transform and the linear canonical deformed

Hankel transform (LCDHT). Section 3 introduces and investigates the generalized translation op-

erator corresponding to the LCDHT, along with an examination of its fundamental properties,

including symmetry, commutativity, and continuity on certain functional spaces. Section 4 is

devoted to the development and analysis of the generalized convolution product. In Section 5,

we consider the generalized heat equation and the associated heat semigroup operator within the

LCDHT framework. Finally, Section 6 presents the concluding remarks, summarizing the principal

findings and outlining possible directions for future research.

2 Deformed Hankel transforms, translation and convolutions

In this section, we shall present the prerequisites concerning the deformed Hankel transform which

shall be frequently used in formulating the main results. More precisely, we shall briefly review the

conventional translation operators, deformed Hankel transform and the corresponding generalized

translation and convolutions. For a detailed perspective, we refer to the articles [3, 5, 30] and the

references therein.

2.1 Deformed Hankel transform

Let Lp
k,n(R), 1 ⇐ p ⇐ ⇒, be the space of measurable functions on R such that

∥∥f
∥∥
Lp

k,n(R)
=

(∫

R

f(x)
pdϖk,n(x)

)1/p

< ⇒, if 1 ⇐ p < ⇒,

∥∥f
∥∥
L→

k,n(R)
= ess sup

x↗R

f(x)
 < ⇒,

where

dϖk,n(x) := Mk,n

x

(2k↑2)n+2

n dx, Mk,n =
n

n(2k↑1)
2

2
n(2k↑1)+2

2 !


n(2k→1)+2
2

 , k ⇑ n→ 1

n
, n ↑ N.

For p = 2, the space is equipped with the scalar product:


f, g


L2

k,n(R)
:=

∫

R
f(x)g(x) dϖk,n(x).
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To facilitate our narrative, we set some notations as under:

• Cb(R) the space of bounded continuous functions on R.

• Cb,e(R) the space of even bounded continuous functions on R.

• C0(R) the space of continuous functions on R and vanishing at infinity. We provide C0(R)
with the topology of uniform convergence.

• Cc(R) the space of continuous functions on R and with compact support.

• Cp(R) the space of functions of class Cp on R.

• S(R) the Schwartz space of rapidly decreasing functions on R.

• Sk,n(R) the space of all functions f ↑ C↘(R≃) such that

sup
x↗R↓

|(|x| 2
n )j(|x|2→ 2

n↓k)
s(xmf (m)(x))| < ⇒, for all j, s,m ↑ N0.

• SL(2,R) the group of 2↗ 2 real matrices with determinant one.

We are now in a position to recall the notion of Dunkl operator. In this direction, we have the

following definition:

For any f ↑ C1(R), the Dunkl operator Tk on R is defined by

Tkf(x) := f ↔(x) + 2k
f(x)→ f(→x)

x
, (2.1)

where as the corresponding Dunkl-Laplace operator ↓k, for any f ↑ C2(R), is given by

↓kf(x) := T 2
k f(x) = f ↔↔(x) + 2k

(
f ↔(x)

x
→ f(x)→ f(→x)

2x2

)
. (2.2)

Consider the operator

”k,n :=
x
2→ 2

n↓k →
x
 2
n . (2.3)

In the following, we recall some spectral properties of the di!erential-di!erence operator ”k,n.

• ”k,n is an essentially self-adjoint operator on L2
k,n(R).

• There is no continuous spectrum of ”k,n.

• The discrete spectrum of →”k,n is


4m
n + 2k + 2

n ± 1 : m ↑ N

.
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Definition 2.1. For any f ↑ L1
k,n(R) and k ⇑ n→ 1

n
, n ↑ N, the deformed Hankel transform is

denoted by Fk,n(f) and is given as

Fk,n(f)(ϱ) =

∫

R
f(x)Bk,n(ω, x) dϖk,n(x), for all ω ↑ R, (2.4)

where Bk,n(ω, x) is the deformed Hankel kernel given by

Bk,n(ω, x) = ςnk→n
2


n|ωx| 1

n


+ (→i)n

n
2

n !
(
nk → n

2 + 1
)

!
(
nk + n

2 + 1
)ωxςnk+n

2


n|ωx| 1

n


. (2.5)

Observe that

ςε(u) := !(φ+ 1)
u
2

→ε
Jε(u) = !(φ+ 1)

↘∑

m=0

(→1)m

m!!(φ+m+ 1)

u
2

2m
(2.6)

denotes the normalized Bessel function of index φ.

Example 2.2. The function φt, t > 0, defined on R by

φt(x) =
1

(2t)
2nk+2↑n

2

e→
n|x|

2
n

4t ,

satisfies

Fk,n(φt)(ϱ) = e→nt|ϑ|
2
n , ⇓ ϱ ↑ R.

Here, we list some important properties of the deformed Hankel kernel and transform:

(i) Bk,n(z, t) = Bk,n(t, z), Bk,n(z, 0) = 1, Bk,n(z, t) = Bk,n((→1)nz, t),

Bk,n(ωz, t) = Bk,n(z,ωt), ⇓z, t,ω ↑ R.

(ii) Bk,n(., .) solves the following di!erential-di!erence equations on R↗ R






|ω|2→ 2
n↓ω

kBk,n(ω, x) = →|x| 2
nBk,n(ω, x),

|x|2→ 2
n↓x

kBk,n(ω, x) = →|ω| 2
nBk,n(ω, x).

where the superscript in ↓x
k denotes the relevant variable.

(iii) For k ⇑ 1/2, Bk,n(., .) satisfies the following inequality

Bk,n(x, y)
 ⇐ 1, ⇓x, y ↑ R (2.7)
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(iv) Bk,n(., .) is bounded if and only if

k ⇑ n→ 1

2n
. (2.8)

(v) Under the bounded condition (2.8), there always exists a finite positive constant C depending

on n and k such that
Bk,n(x, y)

 ⇐ C, ⇓x, y ↑ R. (2.9)

(vi) ([31]). For x, y ↑ R and ↼ ↑ C with Re ↼ > 0, we have

∫

R
e→ϖ|ϑ|2/n Bk,n(x, ϱ)Bk,n(y, ϱ) dϖk,n(ϱ) =

e→(n2/4ϖ)(|x|2/n+|y|2/n)

(
2↼

n

) (2k↑1)n+2
2

Bk,n


x

( 2ϖn )n
, (→i)ny


.

(2.10)

(vii) Under the bounded condition (2.8), the deformed Hankel transform Fk,n is bounded on

L1
k,n(R). In particular, if k ⇑ 1/2,

∥∥Fk,n(f)
∥∥
L→

k,n(R)
⇐

∥∥f
∥∥
L1

k,n(R)
. (2.11)

(viii) The deformed Hankel transform Fk,n provides a natural generalization of the conventional

Hankel transform. For instance, if we set

Beven
k,n (x, y) =

1

2
(Bk,n(x, y) +Bk,n(x,→y)) = jnk→n

2


n|xy| 1

n


. (2.12)

Then, Fk,n of an even function f on R specializes to a Hankel type transform on R+. In

fact, when f(x) = F (|x|) is an even function on R and belongs to L1
k,n(R), then

Fk,n(f)(ϱ) =
(n2 )

( 2nk↑n
2 )

!
(
2nk+2→n

2

)
∫ ↘

0
F (r)j 2nk↑n

2


n(r|ϱ|) 1

n


r

(2k↑2)n+2
n dr, ⇓ ϱ ↑ R. (2.13)

(ix) The deformed Hankel transform f ⇔↖ Fk,n(f) is an isometric isomorphism on L2
k,n(R) and

satisfies [3] ∫

R

Fk,n(f)(ω)
2dϖk,n(ω) =

∫

R

f(x)
2dϖk,n(x). (2.14)

(x) For all f, g ↑ L2
k,n(R), we have

∫

R
Fk,n(f)(ω)Fk,n(g)(ω) dϖk,n(ω) =

∫

R
f(x)g(x) dϖk,n(x). (2.15)

(xi) The deformed Hankel transform Fk,n is an involutive unitary operator on L1
k,n(R), that is;

F→1
k,n(f)(x) = Fk,n(f)((→1)nx), x ↑ R. (2.16)
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(xii) For any f ↑ Lp
k,n(R), 1 ⇐ p ⇐ 2, the deformed Hankel transform Fk,n(f) belongs to Lp↔

k,n(R)
and satisfies the following inequality:

↔Fk,n(f)↔Lp↔
k,n(R)

⇐
∥∥f

∥∥
Lp

k,n(R)
, (2.17)

where p↔ denotes the conjugate exponent of p.

(xiii) Fk,n(S(R)) ↙ C↘(R) if and only if n = 1.

(xiv) Fk,n(S(R)) = S(R) if and only if n = 1.

(xv) For any f ↑ S(R), we have

Fk,n(f)(y) = F1


|y| 1

n


+ yF2


|y| 1

n


, (2.18)

where the even functions F1, F2 ↑ S(R).

(xvi) The space Sk,n(R) satisfies the following properties: (see [14]).

• Fk,n(Sk,n(R)) = Sk,n(R).

• The embedding Sk,n(R) ↽↖ Lp
k,n(R), 1 ⇐ p < ⇒, is continuous.

• Sk,n(R) is a dense subset of Lp
k,n(R), 1 ⇐ p < ⇒.

(xvii) The unitary operator Fk,n satisfies the following intertwining relations on a dense subspace

of L2
k,n(R):

Fk,n ∝ |x| 2
n = →|x|2→ 2

n”k ∝ Fk,n, Fk,n ∝ |x|2→ 2
n”k = →|x| 2

n ∝ Fk,n. (2.19)

2.2 Generalized translation and convolution operators

Definition 2.3 ([27]). The generalized translation operator f ⇔↖ ⇀k,nx f on L2
k,n(R) is defined by

Fk,n(⇀
k,n
x f) = Bk,n(., x)Fk,n(f). (2.20)

It is fruitful to have a class of functions in which (2.20) holds pointwise. One such class is the

generalized Wigner space Wk,n(R) given by

Wk,n(R) :=

f ↑ L1

k,n(R) : Fk,n(f) ↑ L1
k,n(R)


.

Following, we give several properties of the generalized translation operator [27].



114 H. Mejjaoli, F. A. Shah & N. Sraieb CUBO
28, 1 (2026)

(i) For any f ↑ L2
k,n(R), we have

∥∥⇀k,nx f
∥∥
L2

k,n(R)
⇐

∥∥f
∥∥
L2

k,n(R)
, ⇓x ↑ R. (2.21)

(ii) For any f ↑ Wk,n(R), we have

⇀k,nx f(y) =

∫

R
Bk,n((→1)nx, ϱ)Bk,n((→1)ny, ϱ)Fk,n(f)(ϱ) dϖk,n(ϱ), ⇓x, y ↑ R. (2.22)

(iii) For any f ↑ Wk,n(R), we have

⇀k,nx f(y) = ⇀k,ny (f)(x), ⇓x, y ↑ R. (2.23)

(iv) For all f in Wk,n(R) and g ↑ L1
k,n(R) ′ L↘

k,n(R), we have

∫

R
⇀k,nx f(y)g(y) dϖk,n(y) =

∫

R
f(y)⇀k,n(→1)nxg(y) dϖk,n(y), ⇓x ↑ R. (2.24)

(v) ([31]). For every ↼ > 0, the (k, n)-generalized translation of the generalized Gaussian function

is given by

⇀k,nx


e→

n2|s|
2
n

4ω


(y) = e→n2 |x|

2
n +|y|

2
n

4ω Bk,n


x

( 2ϖn )n
, (i)ny


. (2.25)

Recently, an explicit formula for the generalized translation operator ⇀k,nx has been reported in [5]:

Theorem 2.4. For any f ↑ Cb(R) and k ⇑ n→ 1

n
, the generalized translation operator ⇀k,nx is

given by

⇀k,nx f(y) =

∫

R
f(z) d⇁k,nx,y (z), (2.26)

where

d⇁k,nx,y (z) =






Kk,n(x, y, z)dϖk,n(z), if xy ↘= 0,

d↼x(z), if y = 0,

d↼y(z), if x = 0,

(2.27)

Kk,n(x, y, z) = K
nk→n

2
B (|x| 1

n , |y| 1
n , |z| 1

n )∞k,n(x, y, z), (2.28)

having support on the set

z ↑ R : | |x| 1

n → |y| 1
n | < |z| 1

n < |x| 1
n + |y| 1

n


,
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∞k,n(x, y, z) =
Mk,n

2n


1 + (→1)n

n! sgn(xy)

(2kn→ n)n
C

nk→n
2

n
(
”(|x| 2

n , |y| 2
n , |z| 2

n )
)

+
n! sgn(xz)

(2kn→ n)n
C

nk→n
2

n
(
”(|z| 2

n , |x| 2
n , |y| 2

n )
)
+

n! sgn(yz)

(2kn→ n)n
C

nk→n
2

n
(
”(|z| 2

n , |y| 2
n , |x| 2

n )
)

,

(2.29)

”(u, v, w) =
1

2
≃
uv

(u+ v → w), u, v, w ↑ R≃
+, (2.30)

C
nk→n

2
n the Gegenbauer polynomials and K

nk→n
2

B is the positive kernel given by

K
nk→n

2
B (u, v, w) =






!(nk→n
2 +1)

22nk↑n↑1!(nk→n↑1
2 )!( 1

2 )


(u+v)2→w2

 
w2→(u→v)2

nk↑n+1
2

(uvw)2nk↑n if |u→ v| < w < u+ v,

0 elsewhere.

Remark 2.5. (i) For all x, y,ω ↑ R, we have the following product formula:

⇀k,nx Bk,n(ω, y) = Bk,n(ω, x)Bk,n(ω, y). (2.31)

(ii) For all x, y ↑ R≃, we have ∫

R
Kk,n(x, y, z)dϖk,n(z) = 1. (2.32)

(iii) For all x, y, z ↑ R≃, we have

Kk,n(x, y, z) = Kk,n(y, x, z). (2.33)

(iv) For all x, y, z ↑ R≃, we have

Kk,n(x, y, z) = Kk,n((→1)nx, z, y). (2.34)

(v) For all x, y, z ↑ R≃, we have

Kk,n(x, (→1)ny, z) = Kk,n(x, (→1)nz, y). (2.35)

(vi) For any x, y ↑ R, we have ∫

R
|Kk,n(x, y, z)| dϖk,n(z) ⇐ 4. (2.36)
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On what follows we will recall the “trigonometric” form of the generalized translation operator

proved in [30].

Theorem 2.6. (i) For f ↑ Cb(R) write f = fe + fo as a sum of even and odd functions. Then

⇀k,nx f(y) =
Mk,n

2n




∫ ϱ

0
fe
(
∈∈x, y∋∋ς,n

)
1 + (→1)n

n! sgn(xy)

(2kn→ n)n
C

nk→n
2

n (cosφ)


(sinφ)2nk→ndφ



 |y| 1
n → |x| 1

n cosφ

∈∈x, y∋∋
1
n
ς,n





+

∫ ϱ

0
fo


∈∈x, y∋∋ς,n






n! sgn(x)

(2kn→ n)n
C

nk→n
2

n



 |x| 1
n → |y| 1

n cosφ

∈∈x, y∋∋
1
n
ς,n





+
n! sgn(y)

(2kn→ n)n
C

nk→n
2

n



 |y| 1
n → |x| 1

n cosφ

∈∈x, y∋∋
1
n
ς,n








 (sinφ)2nk→ndφ



 , (2.37)

where

∈∈x, y∋∋ς,n :=

|x| 2

n + |y| 2
n → 2|xy| 1

n cosφ
n

2
. (2.38)

(ii) For every f ↑ Cb,e(R), we have

⇀k,nx f(y) =
Mk,n

2n

∫ ϱ

0
f
(
∈∈x, y∋∋ς,n

)
1 + (→1)n

n! sgn(xy)

(2kn→ n)n
C

nk→n
2

n (cosφ)


(sinφ)2nk→ndφ.

(2.39)

(iii) For every ω > 0, we have

⇀k,nx

(
e→ω|.|

2
n

)
(y) =

Mk,n

2n
e→ω

(
|x|

2
n +|y|

2
n

)
Vk,n(ω;x, y), (2.40)

where

Vk,n(ω;x, y) :=

∫ ϱ

0
e2ω|xy|

1
n cosς


1 + (→1)n

n! sgn(xy)

(2kn→ n)n
C

nk→n
2

n (cosφ)


(sinφ)2nk→ndφ.

(iv) ([30]). Using (2.40), properties of the Gegenbauer polynomials and by simple calculations,

we obtain ⇀
k,n
x

(
e→ω|.|

2
n

)
(y)

 ⇐
Mk,n

2n
e→ω

(
|x|

1
n →|y|

1
n

)2

. (2.41)
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Theorem 2.7 ([5]). Let ⇀k,nx be the generalized translation operation as defined in (2.19). Then,

(i) For any f ↑ L1
loc(dϖk,n) and k ⇑ n→ 1

n
, we have

⇀k,nx f(y) = ⇀k,ny f(x), ⇀k,n0 f = f.

(ii) For any f ↑ Lp
k,n(R), 1 ⇐ p ⇐ ⇒, we have

∥∥⇀k,nx f
∥∥
Lp

k,n(R)
⇐ 4

∥∥f
∥∥
Lp

k,n(R)
. (2.42)

(iii) For every f ↑ L1
k,n(R), we have

Fk,n(⇀
k,n
x f)(ω) = Bk,n((→1)nω, x)Fk,nf(ω), ω ↑ R.

(iv) For any f ↑ Lp
k,n(R), 1 ⇐ p ⇐ 2, we have

Fk,n(⇀
k,n
x f)(ω) = Bk((→1)nω, x)Fk(f)(ω), a.e. ω ↑ R. (2.43)

(v) For all f ↑ Cb(R) or belongs in Lp
k,n(R), 1 ⇐ p ⇐ ⇒, we have

⇀k,nx ⇀k,ny (f) = ⇀k,ny ⇀k,nx (f). (2.44)

Proposition 2.8. If f ↑ C0(R), then we have

lim
|x|⇐↘

⇀k,nx (f)(y) = 0.

Proof. For f ↑ C0(R), y ↑ R and φ ↑ [0,ε], we have

lim
|x|⇐↘

fe
(
∈∈x, y∋∋ς,n

)
= lim

|x|⇐↘
fo
(
∈∈x, y∋∋ς,n

)
= 0.

Using Theorem 2.6 (i), the properties of the Gegenbauer polynomials, an application of dominated

convergence theorem give the desired result.
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Theorem 2.9 ([30]). Let Lp
k,n,e(R) be the space of even functions in Lp

k,n(R). Then,

(i) For every bounded and non-negative function f ↑ L1
k,n,e(R), we have ⇀k,nx f ⇑ 0, ⇀k,nx f ↑

L1
k,n(R), ⇓x ↑ R, and

∫

R
⇀k,nx f(y) dϖk,n(y) =

∫

R
f(y) dϖk,n(y). (2.45)

(ii) For any f ↑ Lp
k,n,e(R), we have

∥∥⇀k,nx f
∥∥
Lp

k,n,e(R)
⇐

∥∥f
∥∥
Lp

k,n,e(R)
. (2.46)

(iii) For every f ↑ L1
k,n(R), we have

∫

R
⇀k,nx f(y) dϖk,n(y) =

∫

R
f(y) dϖk,n(y). (2.47)

(iv) If f1 and f2 are two suitable functions, we have

∫

R
⇀k,ny f1((→1)nt)f2(t)dϖk,n(t) =

∫

R
⇀k,ny f2((→1)nt)f1(t)dϖk,n(t), y ↑ R. (2.48)

Definition 2.10. The generalized convolution product of two suitable functions f, g ↑ L2
k,n(R) is

defined by

f △k,n g(x) =

∫

R
⇀k,nx f((→1)ny) g(y) dϖk,n(y). (2.49)

It is pertinent to mention that the convolution product (2.49) is both commutative and associative.

We culminate this subsection by giving the following important results.

Proposition 2.11 ([5]). Let f △k,n g(x) be the generalized convolution as defined in (2.49). Then,

(i) For any f ↑ L2
k,n(R) and g ↑ L1

k,n(R), we have

f △k,n g(x) =

∫

R
⇀k,nx f((→1)ny)g(y) dϖk,n(y). (2.50)

(ii) For every f ↑ Lp
k,n(R) and g ↑ Lq

k,n(R) with 1 ⇐ p, q, r ⇐ ⇒, 1
p + 1

q → 1 = 1
r , the convolution

product f △k,n g belongs to Lr
k,n(R) and satisfies the inequality:

∥∥f △k,n g
∥∥
Lr

k,n(R)
⇐ 4↔f↔Lp

k,n(R)↔g↔Lq
k,n(R). (2.51)

(iii) For every f ↑ L2
k,n(R) and g ↑ L1

k,n(R), we have

Fk,n(f △k,n g) = Fk,n(f)Fk,n(g). (2.52)
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(iv) For f, g ↑ L2
k,n(R), the convolution f △k,ng ↑ L2

k,n(R) if and only if Fk,n(f)Fk,n(g) ↑ L2
k,n(R)

and satisfies [27]

Fk,n(f △k,n g) = Fk,n(f)Fk,n(g). (2.53)

(v) For every f, g ↑ L2
k,n(R), we have

∫

R

f △k,n g(x)
2dϖk,n(x) =

∫

R

Fk,n(f)(ϱ)
2|Fk,n(g)(ϱ)|2dϖk,n(ϱ). (2.54)

2.3 Deformed Hankel transform in linear canonical domain

In this section, we recall some results proved in [33].

Definition 2.12. The deformed linear canonical Hankel transform of any function f ↑ L1
k,n(R),

with respect to the uni-modular matrix M = (a, b; c, d) ↑ SL(2,R) is defined by

FM
k,n(f)(x) =

1

(ib)
(2k↑1)n+2

2n

∫

R
KM

k,n(x, y)f(y) dϖk,n(y), (2.55)

where

KM
k,n(x, y) = e

i
2 ( d

b x
2+ a

b y
2)Bk,n

x
b
, y

. (2.56)

Definition 2.12 allows us to make the followings comments:

(i) For M = (1, b, 0, 1), the deformed linear canonical Hankel transform (2.55) coincides with

the Fresnel transform associated with the deformed Hankel transform:

Wb
k,nf(x) =






1

(ib)
(2k↑1)n+2

2n

∫

R
Eb

k,n(x, y)f(y) dϖk,n(y), b ↘= 0,

f(x), b = 0,

where Eb
k,n(x, y) = e

i
2b (x

2+y2)Bk,n

(
x
b , y

)
.

(ii) For M = (cosh(b), sinh(b); sinh(b), cosh(b)), b ↑ R, the deformed linear canonical Hankel

transform (2.55) boils down to the following integral transform

Vb
k,nf(x) =






1

(i sinh(b))
(2k↑1)n+2

2n

∫

R
Rb

k,n(x, y)f(y) dϖk,n(y), b ↘= 0,

f(x), b = 0,

where Rb
k,n(x, y) = e

i
2 coth(b)(x2+y2)Bk,n


x

sinh(b) , y

.
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(iii) For M = (cosφ, sinφ;→ sinφ, cosφ), φ ↑ R, the deformed linear canonical Hankel transform
(2.55) coincides with the fractional deformed Hankel transform Fε

k,n:

Fω
k,nf(x) =






e
i
(

(2k↑1)n+2
2n

)
(ω→2nε)→ω̂ε/2)

| sin(ω)|
(2k↑1)n+2

2n

∫

R
Kω

k,n(x, y)f(y) dεk,n(y), (2j → 1)ϑ < ω < (2j + 1)ϑ,

f(x), ω = 2jϑ,

f(→x), ω = (2j + 1)ϑ,

where φ̂ = sgn(sin(φ)), Kε
k,n(x, y) = e→

i
2 cot(ε)(x2+y2)Bk,n


x

sin(ε) , y

.

Definition 2.13. For any uni-modular matrix M ↑ SL(2,R), the di!erential-di!erence operator

↓M
k,n is defined by

↓M
k,n := |x|2(1→ 1

n )


d2

dx2
+

(
2k

x
→ 2i

d

b
x

)
d

dx
→
(
d2

b2
x2 + (2k + 1)i

d

b
+

k

x2
(1→ s)

)
, (2.57)

where s(u(x)) := u(→x).

Definition 2.13 allows us to make the following comments:

(i) For M = (0, 1;→1, 0), ↓M
k,n boils down to the deformed Laplace operator ↓k,n whereas FM

k,n

coincides with the deformed Hankel transform Fk,n (except for a constant unimodular factor

(ei
ε
2 )

(2k↑1)n+2
2n ).

(ii) ↓M
k,n is related to the deformed Laplace operator ↓k,n via

e→
i
2

d
b x

2

∝ ↓M
k,n ∝ e i

2
d
b x

2

= ↓k,n + |x| 2
n . (2.58)

(iii) For any f, g ↑ S(R), we have

∫

R
↓M

k,nf(x)g(x) dϖk,n(x) =

∫

R
f(x)↓M

k,ng(x) dϖk,n(x). (2.59)

(iv) For each y ↑ R, the kernel KM
k,n(., y) of the linear canonical deformed Hankel transform FM

k,n

satisfy the following: 




↓M
k,nK

M
k,n(., y) = →|yb |

2
nKM

k,n(., y),

KM
k,n(0, y) = e

i
2

a
b y

2

.
(2.60)

(v) For each x, y ↑ R, we have

|KM
k,n(x, y)| ⇐ 1. (2.61)
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Theorem 2.14. Let M = (a, b; c, d) ↑ SL(2,R). Then,

(i) For any f ↑ L1
k,n(R), FM

k,n(f) belongs to C0(R) and satisfies the following inequality:

∥∥FM
k,n(f)

∥∥
L→

k,n(R)
⇐ |b|→

(2k↑1)n+2
2n

∥∥f
∥∥
L1

k,n(R)
. (2.62)

(ii) For every f ↑ L1
k,n(R) with FM

k,n(f) ↑ L1
k,n(R), we have


FM

k,n ∝ FM↑1

k,n


(f) =


FM↑1

k,n ∝ FM
k,n


(f) = sn+1(f) a.e., (2.63)

where sj(f)(x) := f((→1)jx), ⇓x ↑ R, j ↑ N.

(iii) FM
k,n is a topological isomorphism from L2

k,n(R) into itself.

(iv) FM
k,n is a topological isomorphism from Sk,n(R) into itself.

(v) For any f, g ↑ L1
k,n(R), we have

∫

R
FM

k,n(f)(x)g(x) dϖk,n(x) =

∫

R
f(x)FM↑1

k,n (g)(x) dϖk,n(x).

(vi) If f ↑ L1
k,n(R) ′ L2

k,n(R), then FM
k,n(f) ↑ L2

k,n(R) and

∥∥FM
k,n(f)

∥∥
L2

k,n(R)
=

∥∥f
∥∥
L2

k,n(R)
. (2.64)

(vii) For any f, g ↑ L2
k,n(R), we have


FM

k,n(f), g

L2

k,n(R)
=

〈
f,FM↑1

k,n g
〉

L2
k,n(R)

. (2.65)

(viii) (Operational formulas). Let M ↑ SL(2,R) and f ↑ S(R). Then we have

FM
k,n

[
|y| 2

n f(y)
]
= →|b| 2

n↓M
k,n

[
FM

k,n(f)
]
, (2.66)

and

|x| 2
nFM

k,n(f) = →|b| 2
nFM

k,n

[
↓M↑1

k,n (f)
]
. (2.67)
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Definition 2.15. The deformed linear canonical Hankel transform of any function f ↑ Lp
k,n(R),

1 ⇐ p ⇐ 2 with respect to the uni-modular matrix M = (a, b; c, d) ↑ SL(2,R) is defined by

FM
k,n(f) = e→i( (2k↑1)n+2

2n )ε
2 sgn(b)


L d

b
∝”b ∝ Fk,n ∝ L a

b


(f), (2.68)

where Fk,n : Lp
k,n(R) ↖ Lp↔

k,n(R) is the deformed Hankel transformation on Lp
k,n(R), Ld/b and ”b

are the chirp multiplication and dilation operators, defined respectively, by

Lsf(x) = e
is
2 x2

f(x), s ↑ R and ”sf(x) =
1

|s|
(2k↑1)n+2

2n

f
x
s


, s ↑ R≃. (2.69)

Theorem 2.16 (Young’s inequality). For any uni-modular matrix M = (a, b; c, d) ↑ SL(2,R) and

1 ⇐ p ⇐ 2, FM
k,n satisfies the following inequality:

∥∥FM
k,n(f)

∥∥
Lp↔

k,n(R)
⇐ |b|(

(2k↑1)n+2
2n )

(
2
p↔ →1

)∥∥f
∥∥
Lp

k,n(R)
. (2.70)

3 Generalized translations associated with LCDHT

Definition 3.1. Let M = (a, b; c, d) ↑ SL(2,R), b ↘= 0, a given uni-modular matrix. For suitable

function f , we define the generalized translation operator associated with the operator ↓M
k,n by

TM,k,n
x f(y) = e

i
2

d
b (x

2+y2)⇀k,nx

[
e→

i
2

d
b s

2

f(s)
]
(y), (3.1)

where ⇀k,nx is the (k, n)-generalized translation operator associated with ”k,n.

We will rely on this definition for each function on the following spaces:

• Lp
k,n(R), 1 ⇐ p ⇐ ⇒.

• Cb(R).

Some important properties of the generalized translation operator TM,k,n
x are assembled in the

following theorem.

Theorem 3.2. Let M = (a, b; c, d) ↑ SL(2,R), b ↘= 0, then the generalized translation operator

TM,k,n
x as defined in (3.1) satisfies the following properties:

(i) Linearity: TM,k,n
x [φf + βg] (y) = φTM,k,n

x f(y) + βTM,k,n
x g(y), φ,β ↑ R.

(ii) Symmetry: TM,k,n
0 = Id, TM,k,n

x f(y) = TM,k,n
y f(x), ⇓x, y ↑ R.
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(iii) Product Formula: For every x, , y, z ↑ R, we have

TM,k,n
x


KM

k,n(., y)

(z) = e→

i
2

a
b y

2

KM
k,n(x, y)K

M
k,n(z, y). (3.2)

(iv) Commutative: We have

TM,k,n
x ∝ TM,k,n

y = TM,k,n
y ∝ TM,k,n

x and ↓M
k,n ∝ TM,k,n

x = TM,k,n
x ∝ ↓M

k,n. (3.3)

(v) Let f ↑ Sk,n(R). The function u(x, y) = TM,k,n
x f(y) is a solution of the problem






”M
x,k,n u(x, y) = ”M

y,k,n u(x, y)

u(x, 0) = f(x).
(3.4)

(vi) For all x, y ↑ R, we have

TM,k,n
x f(y) =

∫

R
e→i d

b z
2

f(z) WM
k,n(x, y, z) dϖk,n(z), (3.5)

where

WM
k,n(x, y, z) = e

i
2

d
b (x

2+y2+z2) Kk,n(x, y, z). (3.6)

(vii) The generalized translation operator TM,k,n
x is continuous from Cb(R) into itself. Moreover,

the operator is also continuous from Lp
k,n(R), 1 ⇐ p ⇐ ⇒, into itself and satisfies the following

inequality:
∥∥TM,k,n

x f
∥∥
Lp

k,n(R)
⇐ 4 ↔f↔Lp

k,n(R) . (3.7)

(viii) For any f ↑ L1
k,n(R) and g ↑ Cb(R), we have

∫

R


TM,k,n
x f((→1)ny)

 [
e→i d

b y
2

g(y)
]
dϖk,n(y) =

∫

R

[
e→i d

b y
2

f(y)
] 

TM,k,n
x g((→1)ny)


dϖk,n(y).

(3.8)

(ix) For any f ↑ L1
k,n(R), we have

FM
k,n

[
TM↑1,k,n
x f

]
(ω) = e

i
2

d
b ω

2

KM
k,n(ω, x)F

M
k,n(f)(ω), ω ↑ R. (3.9)

(x) For every f ↑ Lp
k,n(R), 1 < p ⇐ 2, we have

FM
k,n

[
TM↑1,k,n
x f

]
(ω) = e

i
2

d
b ω

2

KM
k,n(ω, x)F

M
k,n(f)(ω), a.e. (3.10)
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(xi) If f ↑ C0(R), then we have

lim
|x|⇐↘

TM↑1,k,n
x f(y) = 0, y ↑ R. (3.11)

Proof. Using (3.1), we establish the proof of (i) and (ii).

(iii) Invoking Definition 3.1 and (2.31), we observe that

TM,k,n
x


KM

k,n(·, y)

(z) = e

i
2

d
b (x

2+z2)⇀k,nx

[
s ⇔↖ e

i
2

a
b y

2

Bk,n

s
b
, y
]

(z)

= e
i
2

d
b (x

2+z2)e
i
2

a
b y

2

⇀k,nx

[
s ⇔↖ Bk,n

s
b
, y
]

(z)

= e
i
2

d
b (x

2+z2)e
i
2

a
b y

2

Bk,n

x
b
, y

Bk,n

z
b
, y


= e→
i
2

a
b y

2

KM
k,n(x, y)K

M
k,n(z, y).

(iv) For any f ↑ Lp
k,n(R), 1 ⇐ p ⇐ ⇒ (or f ↑ Cb(R)), (3.1) and Theorem 2.7 imply that


TM,k,n
x ∝ TM,k,n

y


f(z) = e

i
2

d
b (x

2+y2+z2)

⇀k,nx ∝ ⇀k,ny

 [
e→

i
2

d
b s

2

f(s)
]
(z)

= e
i
2

d
b (x

2+y2+z2)

⇀k,ny ∝ ⇀k,nx

 [
e→

i
2

d
b s

2

f(s)
]
(z)

=

TM,k,n
y ∝ TM,k,n

x


f(z).

Moreover, for any f ↑ Sk,n(R), identities (2.58) and (2.19) imply that


↓M

k,n ∝ TM,k,n
x


f(y) = e

i
2

d
b (x

2+y2)
[
|x|2→ 2

n↓k ∝ ⇀k,nx

] [
e→

i
2

d
b s

2

f(s)
]
(y)

= e
i
2

d
b (x

2+y2)
[
⇀k,nx ∝ |x|2→ 2

n↓k

] [
e→

i
2

d
b s

2

f(s)
]
(y)

=

TM,k,n
x ∝ ↓M

k,n


f(y).

(v) Since system (3.4) is equivalent to






|x|2→ 2
n↓k,xũ(x, y) = |y|2→ 2

n↓k,yũ(x, y),

ũ(x, 0) = e→
i
2

d
b x

2

f(x),

where ũ(x, y) = e→
i
2

d
b (x

2+y2)u(x, y). Therefore, by invoking the transmutation property

e→
i
2

d
b x

2

∝ ↓M
k,n ∝ e i

2
d
b x

2

= |x|2→ 2
n↓k,

together with the identity (2.19) and ⇀k,nx ↓k = ↓k⇀k,nx , we obtain that the function

ũ(x, y) = ⇀k,nx

[
e→

i
2

d
b s

2

f(s)
]
(y)
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is a solution of the previous system. Consequently, we get

u(x, y) = e
i
2

d
b (x

2+y2)⇀k,nx

[
e→

i
2

d
b s

2

f(s)
]
(y) = TM,k,n

x (f)(y)

is a solution of (3.4).

(vi) This is a direct consequence of (3.1) and (2.26).

(vii) The continuous property of TM,k,n
x follows directly from the fact that

TM,k,n
x f =

[
L d

b ,x
∝ L d

b ,y
∝ ⇀k,nx ∝ L→ d

b

]
f

where L d
b
, L→ d

b
, ⇀k,nx are continuous from Cb(R) into itself and Lp

k,n(R) into itself, respec-

tively. Moreover, for any f ↑ Lp
k,n(R), the operator TM,k,n

x f belongs to Lp
k,n(R) and satisfies

∥∥TM,k,n
x f

∥∥
Lp

k,n(R)
=

∥∥∥⇀k,nx

[
L→ d

b
f
]∥∥∥

Lp
k,n(R)

⇐ 4
∥∥∥L→ d

b
f
∥∥∥
Lp

k,n(R)
= 4 ↔f↔Lp

k,n(R) .

(viii) For any f ↑ L1
k,n(R) and g ↑ Cb(R), (3.1) and (2.49) yield

∫

R


TM,k,n
x f((→1)ny)

 [
e→i d

b y
2

g(y)
]
dϖk,n(y)

= e
i
2

d
b x

2
∫

R
⇀k,nx

[
e→

i
2

d
b s

2

f(s)
]
((→1)ny)

[
e→

i
2

d
b y

2

g(y)
]
dϖk,n(y)

= e
i
2

d
b x

2
∫

R

[
e→

i
2

d
b y

2

f(y)
]
⇀k,nx

[
e→

i
2

d
b s

2

g(s)
]
((→1)ny) dϖk,n(y)

=

∫

R

[
e→i d

b y
2

f(y)
] 

TM,k,n
x g((→1)ny)


dϖk,n(y).

(ix) For any f ↑ L1
k,n(R), (2.55), (2.56), (3.1) and Theorem 2.7 imply that

[
(ib)

(2k↑1)n+2
2n

]
FM

k,n

[
TM↑1,k,n
x f

]
(ω)

= e
i
2 (

d
b ω

2→ a
b x

2)

∫

R
⇀k,nx

[
e

i
2

a
b s

2

f(s)
]
(y)Bk,n

(
ω

b
, y

)
dϖk,n(y)

= e
i
2 (

d
b ω

2→ a
b x

2)

∫

R
e

i
2

a
b y

2

f(y)⇀k,nx

[
s ⇔↖ Bk,n

(
ω

b
, s

)]
((→1)ny) dϖk,n(y)

= e
i
2 (

d
b ω

2→ a
b x

2)Bk,n

(
ω

b
, x

)∫

R
e

i
2

a
b y

2

f(y)Bk,n

(
ω

b
, y

)
dϖk,n(y)

=
[
(ib)

(2k↑1)n+2
2n

]
e

i
2

d
b ω

2

KM
k,n(ω, x)F

M
k,n(f)(ω).

(x) For any f ↑ L1
k,n(R) ′ Lp

k,n(R), the result follows directly by virtue of property (ix) while

as Young inequality (2.70) and relation (3.7) show that the mappings f ⇔↖ FM
k,n

[
TM↑1,k,n
x f

]

and f ⇔↖ FM
k,n(f) are continuous from Lp

k,n(R) into Lp↔

k,n(R). As such, the result follows
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immediately by the density of L1
k,n(R) ′ Lp

k,n(R) in Lp
k,n(R).

(xi) Using the relation (3.1) and Proposition 2.8, we derive the result.

Corollary 3.3. For any f ↑ S(R), we have

TM↑1,k,n
x f(y) =

1

(→ib)
(2k↑1)n+2

2n

e→
i
2

a
b y

2
∫

R
Bk,n

(
(→1)n

ω

b
, y

)
KM

k,n(ω, x)F
M
k,n(f)(ω) dϖk,n(ω).

(3.12)

Proof. For any f ↑ S(R), inequality (3.7) implies that y ⇔↖ [TM↑1,k,n
x f ](y) is continuous function

of L1
k,n(R). Therefore, as a consequence of (3.9) and the inversion formula of the deformed linear

canonical Hankel transform, the result follows immediately.

We conclude this section with the following important result.

Theorem 3.4. Let TM,k,n
y be the generalized translation operator associated with the uni-modular

matrix M = (a, b; c, d), b ↘= 0. Then,

(i) For all f ↑ C0(R), we have

lim
y⇐0

∥∥TM,k,n
y f → f

∥∥
↘ = 0. (3.13)

(ii) For any f ↑ Lp
k,n(R), 1 ⇐ p < ⇒, we have

lim
y⇐0

∥∥TM,k,n
y f → f

∥∥
Lp

k,n(R)
= 0. (3.14)

Proof. (i) First step: We shall prove the result for any f ↑ Cc(R). Using the fact that

Mk,n

2n

∫ ϱ

0
(sinφ)2nk→ndφ = 1 and

∫ ϱ

0
C

nk→n
2

n (cosφ)(sinφ)2nk→ndφ = 0,

the generalized translation operator TM,k,n
y we can be expressed

TM,k,n
y f(x)→ f(x) = ay(x) + by(x) + cy(x) + dy(x), (3.15)

where

ay(x) =
Mk,n

2n
fe(x)

∫ ε

0

[
ei

d
2b (x

2+y2→↑↑x,y↓↓2ϑ,n) → 1
]{

1 + (→1)n
n! sgn(xy)
(2kn→ n)n

C
nk→n

2
n (cosϖ)

}
(sinϖ)2nk→ndϖ,

by(x) =
Mk,n

2n

∫ ε

0

e
i d
2b

(
x2+y2→

(
|x|

2
n +|y|

2
n →2|xy|

1
n cosϑ

)n) [
fe

(
↑↑x, y↓↓ϑ,n

)
→ fe(x)

]
(sinϖ)2nk→ndϖ

cy(x) =
Mk,n

2n
fo(x)

∫ ε

0

[
ei

d
2b (x

2+y2→↑↑x,y↓↓2ϑ,n) → 1
]
Rk,n(x, y,ϖ)(sinϖ)

2nk→ndϖ

dy(x) =
Mk,n

2n

∫ ε

0

e
i d
2b

(
x2+y2→

(
|x|

2
n +|y|

2
n →2|xy|

1
n cosϑ

)n) [
fo
(
↑↑x, y↓↓ϑ,n

)
→ fo(x)

]
Rk,n(x, y,ϖ)(sinϖ)

2nk→ndϖ,
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(i) stel and

Rk,n(x, y,φ) =
n! sgn(x)

(2kn→ n)n
C

nk→n
2

n



 |x| 1
n → |y| 1

n cosφ

∈∈x, y∋∋
1
n
ς,n



+
n! sgn(y)

(2kn→ n)n
C

nk→n
2

n



 |y| 1
n → |x| 1

n cosφ

∈∈x, y∋∋
1
n
ς,n



 .

(i) stel Invoking the properties of the Gegenbauer polynomials, we observe that there exists a

positive constant C(k, n) such that

∥∥ay
∥∥
↘ ⇐ C(k, n)↔f↔↘

∫ ϱ

0

ei
d
b (x

2+y2→↑↑x,y↓↓2ϑ,n) → 1
 (sinφ)2nk→ndφ.

Therefore, we have

lim
y⇐0

ei
d
b (x

2+y2→↑↑x,y↓↓2ϑ,n) → 1 = 0, |ei
d
b (x

2+y2→↑↑x,y↓↓2ϑ,n) → 1| ⇐ 2,

and ∫ ϱ

0
(sinφ)2nk→ndφ =

2n

Mk,n
< ⇒.

Then, an application of dominated convergence theorem implies that

lim
y⇐0

∫ ϱ

0

ei
d
b (x

2+y2→↑↑x,y↓↓2ϑ,n) → 1
 (sinφ)2nk→ndφ = 0.

So, we derive that

lim
y⇐0

∥∥ay
∥∥
↘ = 0.

As limy⇐0 fe

∈∈x, y∋∋ς,n


= fe(x), we derive from the uniform continuity of f , that for

given ▷ > 0, there exists ↼ > 0 such that |y| < ↼ and

by(x)
 ⇐ Mk,n

2n

∫ ϱ

0

fe

∈∈x, y∋∋ς,n


→ fe(x)

 (sinφ)2nk→ndφ ⇐ ▷.

Hence

lim
y⇐0

↔by↔↘ = 0.

Similarly, one can prove that

lim
y⇐0

↔cy↔↘ = lim
y⇐0

↔dy↔↘ = 0.

Thus, we conclude that for any f ↑ Cc(R), we have

lim
y⇐0

∥∥TM,k,n
y f → f

∥∥
↘ = 0.
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Second step: Assume that f ↑ C0(R). Using the fact that Cc(R) is dense in C0(R), there

exists a function g ↑ Cc(R) such that ↔f → g↔↘ ⇐ φ
10 so that

∥∥TM,k,n
y f → f

∥∥
↘ ⇐

∥∥TM,k,n
y (f → g)

∥∥
↘ +

∥∥TM,k,n
y g → g

∥∥
↘ + ↔f → g↔↘

⇐ 5 ↔f → g↔↘ +
∥∥TM,k,n

y g → g
∥∥
↘ ⇐ ▷

2
+
∥∥TM,k,n

y g → g
∥∥
↘ .

From the first step, for su"ciently small values of y, the quantity
∥∥TM,k,n

y g → g
∥∥
↘ can

be made less than ▷/2. As such, we shall get the desired result.

(ii) Let f ↑ Cc(R) such that supp f ↙ [→R,R] and y ↑ [→1, 1]. Involving Theorem 3.2 of [4], we

derive that the functions TM,k,n
y f are also supported in a common compact set

[→(R
1
n + |y| 1

n )n, (R
1
n + |y| 1

n )n] ↙ [→2n(R+ 1), 2n(R+ 1)]. Consequently, we have

∥∥TM,k,n
y f → f

∥∥p
Lp

k,n(R)
⇐

∫ 2n(R+1)

→2n(R+1)
dϖk,n(x)


∥∥TM,k,n

y f → f
∥∥
↘ ↖ 0, as y ↖ 0.

Therefore, the general case follows immediately by the density of Cc(R) in Lp
k,n(R). This

completes the proof of the theorem.

4 Generalized convolutions product associated with LCDHT

Definition 4.1. For a given uni-modular matrix M = (a, b; c, d) ↑ SL(2,R), b ↘= 0, the generalized

convolution product, associated with FM
k,n, for two suitable functions f and g is defined by

f ▽
M,k,n

g(x) =

∫

R


TM,k,n
x f


((→1)ny)

[
e→i d

b y
2

g(y)
]
dϖk,n(y). (4.1)

Some elementary properties of convolution (4.1) are summarized below:

(i) An application of Fubini’s theorem together with (2.35), (3.5) and (3.6), we have

f ▽
M,k,n

g =

∫

R

[∫

R
e→i d

b z
2

f(z)WM
k,n(x, (→1)ny, z) dϖk,n(z)

] [
e→i d

b y
2

g(y)
]
dϖk,n(y)

=

∫

R

[∫

R
e→i d

b y
2

g(y)WM
k,n(x, (→1)ny, z) dϖk,n(y)

] [
e→i d

b z
2

f(z)
]
dϖk,n(z) = g ▽

M,k,n
f.

(ii) Using Fubini’s theorem, we have

TM,k,n
x

(
f ▽

M,k,n
g

)
(y) =

∫

R
e→i d

b z
2

(
f ▽

M,k,n
g

)
(z)WM

k,n(x, y, z) dϖk,n(z)

=

∫

R
e→i d

b z
2

[∫

R


TM,k,n
z f((→1)ns)

 [
e→i d

b s
2

g(s)
]
dϖk,n(s)

]
WM

k,n(x, y, z) dϖk,n(z)
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=

∫

R

[∫

R
e→i d

b z
2
[
TM,k,n
(→1)nsf(z)

]
WM

k,n(x, y, z) dϖk,n(z)

] [
e→i d

b s
2

g(s)
]
dϖk,n(s)

=

∫

R
TM,k,n
x

[
TM,k,n
(→1)nsf

]
(y)

[
e→i d

b s
2

g(s)
]
dϖk,n(s)

=

∫

R
TM,k,n
y


TM,k,n
x f


((→1)ns)

[
e→i d

b s
2

g(s)
]
dϖk,n(s)

=

(
TM,k,n
x f


△

M,k,n
g

)
(y).

The following proposition contain the basic facts about convolutions of Lp
k,n(R), 1 ⇐ p ⇐ ⇒.

Proposition 4.2 (Young’s Inequality). Let 1 ⇐ p, q, r ⇐ ⇒ with p→1+q→1 = r→1+1. If f ↑ Lp
k,n(R)

and g ↑ Lq
k,n(R), then f ▽

M,k,n
g ↑ Lr

k,n(R) and satisfies the following inequality:

∥∥∥∥f ▽
M,k,n

g

∥∥∥∥
Lr

k,n(R)
⇐ 4

∥∥f
∥∥
Lp

k,n(R)
∥∥g

∥∥
Lq

k,n(R)
. (4.2)

Proof. Using Hölder’s inequality, we obtain

TM,k,n
x f((→1)ny)e→i d

b y
2

g(y)


=
TM,k,n

x f((→1)ny)
p |g(y)|q

1/r TM,k,n
x f((→1)ny)

p
1/p→1/r

(|g(y)|q)1/q→1/r .

Moreover, we have

∫

R

TM,k,n
x f((→1)ny)e→i d

b y
2

g(y)
dϖk,n(y) ⇐

(∫

R

TM,k,n
x f((→1)ny)

p |g(y)|q dϖk,n(y)
)1/r

(∫

R

TM,k,n
x f((→1)ny)

p dϖk,n(y)
) r↑p

rp
(∫

R
|g(y)|q dϖk,n(y)

) r↑q
rq

,

which leads us to



(
f ▽

M,k,n
g

)
(x)


r

⇐
(∫

R

TM,k,n
x f((→1)ny)

p dϖk,n(y)
) r↑p

p

↔g↔r→q
Lq

k,n(R)
∫

R

TM,k,n
x f((→1)ny)

p |g(y)|q dϖk,n(y).

By invoking (3.7), we observe that


(
f ▽

M,k,n
g
)
(x)


r

⇐ 4r→p ↔f↔r→p
Lp

k,n(R)
↔g↔r→q

Lq
k,n(R)

∫

R

TM,k,n
x f((→1)ny)

p |g(y)|q dϖk,n(y).
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After multiply both sides by dϖk,n(x) and integrating over R, we get

∥∥∥∥f ▽
M,k,n

g

∥∥∥∥
r

Lr
k,n(R)

⇐ 4r→p ↔f↔r→p
Lp

k,n(R)
↔g↔r→q

Lq
k,n(R)

∫

R

[∫

R

TM,k,n
x f((→1)ny)

p |g(y)|q dϖk,n(y)
]
dϖk,n(x)

= 4r→p ↔f↔r→p
Lp

k,n(R)
↔g↔r→q

Lq
k,n(R)

∫

R
|g(y)|q

[∫

R

TM,k,n
(→1)nyf(x)


p
dϖk,n(x)

]
dϖk,n(y)

⇐ 4r ↔f↔rLp
k,n(R) ↔g↔

r
Lq

k,n(R) .

Or equivalently, ∥∥∥∥f ▽
M,k,n

g

∥∥∥∥
Lr

k,n(R)
⇐ 4

∥∥f
∥∥
Lp

k,n(R)
∥∥g

∥∥
Lq

k,n(R)
.

Theorem 4.3. Let ▽
M,k,n

be the generalized convolution as defined by (4.1) associated with uni-

modular matrix M = (a, b; c, d) ↑ SL(2,R), b ↘= 0. Then,

(i) For any f, g ↑ L1
k,n(R), we have

FM
k,n

(
f ▽

M↑1,k,n
g

)
(x) =


(ib)

(2k↑1)n+2
2n


e→

i
2

d
b x

2

FM
k,n(f)(x)FM

k,n(g)(x), for all x ↑ R.

(4.3)

(ii) For any f ↑ L1
k,n(R) and g ↑ Lp

k,n(R), 1 < p ⇐ 2, we have

FM
k,n

(
f ▽

M↑1,k,n
g

)
(x) =


(ib)

(2k↑1)n+2
2n


e→

i
2

d
b x

2

FM
k,n(f)(x)FM

k,n(g)(x), a.e. x ↑ R. (4.4)

(iii) For f, g, h ↑ L1
k,n(R), we have

(
f ▽

M,k,n
g

)
▽

M,k,n
h = f ▽

M,k,n

(
g ▽

M,k,n
h

)
. (4.5)

Proof. (i) Using the definition of FM
k,n along with (3.9), it follows that

FM
k,n

(
f ▽

M↑1,k,n
g

)
(x)

=
1

(ib)
(2k↑1)n+2

2n

∫

R
KM

k,n(x, y)

[∫

R
TM↑1,k,n
y f((→1)nz)

[
ei

a
b z

2

g(z)
]
dϖk,n(z)

]
dϖk,n(y)

=
1

(ib)
(2k↑1)n+2

2n

∫

R

[
ei

a
b z

2

g(z)
] [∫

R
KM

k,n(x, y)T
M↑1,k,n
(→1)nz f(y) dϖk,n(y)

]
dϖk,n(z)

=

∫

R

[
ei

a
b z

2

g(z)
] [

FM
k,n


TM↑1,k,n
(→1)nz f


(x)

]
dϖk,n(z)

=

(ib)

(2k↑1)n+2
2n


e→

i
2

d
b x

2

FM
k,n(f)(x)FM

k,n(g)(x).
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It is pertinent to mention that Fubini theorem has been used in the second line as

∫

R2

KM
k,n(x, y)T

M↑1,k,n
y f((→1)nz)ei

a
b z

2

g(z)
 dϖk,n(y) dϖk,n(z)

⇐ C

∫

R2

TM↑1,k,n
y f((→1)nz)

 |g(z)| dϖk,n(y) dϖk,n(z) ⇐ 4C
∥∥f

∥∥
L1

k,n(R)
∥∥g

∥∥
L1

k,n(R)
< ⇒.

(ii) The result is true for g ↑ L1
k,n(R)′Lp

k,n(R) by virtue of (i). On the other hand, the Young’s

inequality (2.70) for the deformed linear canonical Hankel transform and Proposition 4.2 show

that the mappings g ⇔↖ FM
k,n

(
f △

M↑1,k,n
g

)
and g ⇔↖ FM

k,n(f) FM
k,n(g) are continuous from

Lp
k,n(R) into Lp↔

k,n(R). Finally, the result follows directly from density of L1
k,n(R) ′ Lp

k,n(R)
in Lp

k,n(R).

(iii) The result follows immediately by an application of result (i).

5 Generalized heat equation and the associated operators

In this section, we shall illustrate our proposed theory developed in previous sections to the fol-

lowing generalized heat equation associated with the operator ↓M↑1

k,n :






ϑu(t, x)

ϑt
= ◁↓M↑1

k,n u(t, x), (t, x) ↑ (0,⇒)↗ R

u(0, x) = f(x),
(5.1)

where f is defined on the Banach space B which could be either Lp
k,n(R), 1 ⇐ p ⇐ ⇒, (Cb(R), ↔.↔↘)

or (C0(R), ↔.↔↘), ◁ > 0 is the coe"cient of heat conductivity and the initial data u(0, x) = f(x)

means that u(t, x) ↖ f(x) as t ↖ 0 in the norm of B.

5.1 Generalized heat kernel associated with ω↓M→1

k,n

Given a uni-modular matrix M = (a, b; c, d) ↑ SL(2,R), b ↘= 0 and ◁, t > 0, we define

PM↑1

t (y) :=
1

(◁t)
(2k↑1)n+2

2

exp


→ iay2

2b
→ ny2

2◁t


, y ↑ R. (5.2)

Using the relations (2.55), (2.56), (5.2) and Example 2.2, we obtain

FM
k,n


PM↑1

t


(x) = exp

{
idx2

2b
→ t◁

(
x

|b|

)2
}
, ⇓ t > 0, x ↑ R. (5.3)
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Definition 5.1. Given a uni-modular matrix M = (a, b; c, d) ↑ SL(2,R), b ↘= 0, the generalized

heat kernel associated with ↓M↑1

k,n is denoted as GM↑1

t and defined by

GM↑1

t (x, y) = TM↑1,k,n
x

[
PM↑1

t

]
(y), x, y ↑ R, t > 0. (5.4)

We collect some basic properties of the generalized heat kernel GM↑1

t in the following proposition.

Proposition 5.2. The generalized heat kernel GM↑1

t as defined in (5.4) satisfies the following

properties:

(i) For t > 0, we have

GM↑1

t (x, y) =
1

(◁t)
(2k↑1)n+2

2

exp

{
→ia(x2 + y2)

2b
→ n(|x| 2

n + |y| 2
n )

2◁t

}
Bk,n

(
x

(◁t)n
, (→i)ny

)
.

(5.5)

(ii) For t > 0, there exists a positive constant C(k, n) such that

GM↑1

t (x, y)
 ⇐ C(k, n)e

→n

(
|x|

1
n ↑|y|

1
n

)2

2ϖt

(◁t)
(2k↑1)n+2

2

. (5.6)

(iii) For t > 0, we have ∫

R
e

i
2

a
b (x

2+y2)GM↑1

t (x, y) dϖk,n(y) = 1. (5.7)

(iv) For s, t > 0, we have

GM↑1

t+s (x, y) =

∫

R
GM↑1

t (x, z)GM↑1

s (y, z) ei
a
b z

2

dϖk,n(z). (5.8)

(v) For fixed t > 0 and y ↑ R, we have

FM
k,n


GM↑1

t (., y)

(ϱ) = ei

d
b ϑ

2

KM
k,n(ϱ, y) exp

{
→t◁


ϱ

b



2
n

}
. (5.9)

(vi) For a fixed y ↑ R, u(t, x) = GM↑1

t (x, y) is the solution of the generalized heat equation (5.1).

Proof. (i) Using the Definition 3.1, we observe that

GM↑1

t (x, y) =
1

(◁t)
(2k↑1)n+2

2

e→
i
2

a
b (x

2+y2)⇀k,nx

[
e→

n|s|
2
n

2ϖt

]
(y). (5.10)

Therefore, by simple application of (2.25), we derive the desired assertion.
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(ii) The assertion follows directly from the relation (5.10) and inequality (2.41).

(iii) An application of (5.10) leads us to

∫

R
e

i
2

a
b (x

2+y2)GM↑1

t (x, y) dϖk,n(y) =
1

(◁t)
(2k↑1)n+2

2

∫

R
⇀k,nx


e→

n|s|
2
n

2ϖt


(y) dϖk,n(y).

Thus, we obtain the desired result by applying (2.47) and simple calculations.

(iv) Using the identity (5.5), we obtain

∫

R
GM↑1

t (x, z)GM↑1

s (y, z) ei
a
b z

2

dϖk,n(z) =
1

((◁)2ts)
(2k↑1)n+2

2

e
↑i
2

a
b (x

2+y2)→
[
n |x|

2
n

2ϖt +n |y|
2
n

2ϖs

]

∫

R
e
→n

[
|z|

2
n

2ϖt + |z|
2
n

2ϖs

]

Bk,n

(
x

(◁t)n
, (→i)nz

)
Bk,n

(
y

(◁s)n
, (→i)nz

)
dϖk,n(z).

From the relation (2.10), we deduce that

∫

R
e
→n

[
|z|

2
n

2ϖt + |z|
2
n

2ϖs

]

Bk,n

(
x

(◁t)n
, (i)nz

)
Bk,n

(
y

(◁s)n
, (i)nz

)
dϖk,n(z)

=

(
◁ts

t+ s

) (2k↑1)n+2
2

e
n

[
s|x|

2
n

2ϖt(t+s)+
t|y|

2
n

2ϖs(t+s)

]

Bk,n

(
x

(◁(s+ t))n
, (i)nz

)
,

which leads to the given desired result.

(v) Involving the relations (5.4), (3.9) and (5.3), we get the desired result.

(vi) For fixed y ↑ R and t > 0, we put v(x, t) := GM↑1

t (x, y). Using (5.4) and Corollary 3.3, we

deduce that

GM↑1

t (x, y) =
1

(→ib)
(2k↑1)n+2

2n

∫

R
ei

d
b ω

2

Bk,n

(
(→1)n

ω

b
, y

)
KM

k,n(ω, x) exp

{
→t◁


ω

b



2
n

}
dϖk,n(ω).

(5.11)

By taking di!erentiations under integral, the identities (2.66), (2.60) and by standard anal-

ysis, we see that

[
ϑ

ϑt
→ ◁↓M↑1

k,n

]
GM↑1

t (x, y) = 0.

This completes the proof of the Proposition 5.2.
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Theorem 5.3. Assume that M = (a, b; c, d) ↑ SL(2,R) such that b ↘= 0. Let B be one of the

Banach spaces Lp
k,n(R) (1 ⇐ p ⇐ ⇒), (Cb(R), ↔.↔↘) or (C0(R), ↔.↔↘) . Then:

(i) For each f ↑ X, the function u(t, x) =

(
PM↑1

t ▽
M↑1,k,n

f

)
(x) satisfies the generalized heat

equation
ϑu(t, x)

ϑt
= ◁↓M↑1

k,n u(t, x), (t, x) ↑ (0,⇒)↗ R, (5.12)

and

∥∥u(t, ·)
∥∥
Lr

k,n(R)
⇐

4

2!


(2k→1)n+2

nq


Mk,n

1/q

(◁t)
(2k↑1)n+2

2

∥∥f
∥∥
Lp

k,n(R)
, (5.13)

where p, q, r ↑ [1,⇒] satisfying 1
p + 1

q = 1 + 1
r .

(ii) Let f(x) = e→
i
2

a
b x

2

p

|x| 2

n


with p(s) =

m∑

j=0

cjs
j.

We define the function u as u(t, x) =

(
PM↑1

t ▽
M↑1,k,n

f

)
(x). We have

u(t, x) = e→
i
2

a
b x

2
n∑

j=0

j! cj

(
2◁t

n

)j

L
( (2k↑1)n

2 )
j


→n|x| 2

n

2◁t


, (5.14)

where L
( (2k↑1)n

2 )
j denote the Laguerre functions of degree j [43]. Moreover,

ϑu(t, x)

ϑt
= ◁↓M↑1

k,n u(t, x), (t, x) ↑ (0,⇒)↗ R, with u(0, x) = f(x).

Proof. (i) In view of (5.11) and Fubini’s theorem, the function u(t, x) can be expressed as

u(t, x) =
1

(→ib)
(2k↑1)n+2

2n

∫

R
ei

d
b ω

2

KM
k,n(ω, x) exp

{
→t◁


ω

b



2
n

}
Fk,n(f)(ω) dϖk,n(ω). (5.15)

Moreover, as above take again di!erentiation under the integral in (5.15) and (2.66), we

derive the result.

Furthermore, the Young’s inequality (4.2) implies that

∥∥u(t, .)
∥∥
Lr

k,n(R)
=

∥∥∥∥P
M↑1

t ▽
M↑1,k,n

f

∥∥∥∥
Lr

k,n(R)
⇐ 4

∥∥∥PM↑1

t

∥∥∥
Lq

k,n(R)

∥∥f
∥∥
Lp

k,n(R)
. (5.16)
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Using (5.16) and the fact that

∥∥∥PM↑1

t

∥∥∥
Lq

k,n(R)
=

1

(◁t)
(2k↑1)n+2

2

(∫

R
e→

nq
2ϖt |y|

2
n dϖk,n(y)

)1/q

=

(
2!

(
(2k → 1)n+ 2

nq

)
Mk,n

)1/q

(◁t)
(2k↑1)n+2

2

,

we obtain the desired inequality (5.12).

(ii) Firstly, it is easy to see that

u(t, x) =

∫

R
GM↑1

t (x, (→1)ny) e
i
2

a
b y

2

p

|y| 2

n


dϖk,n(y). (5.17)

Now, if we write p

|y| 2

n


=

m∑

j=1

cj |y|
2j
n , then using (5.5) and by the change of variables

u =
y

(◁t)
n
2

, we obtain

∫

R
GM↑1

t (x, (→1)ny) e
i
2

a
b y

2

p

|y| 2

n


dϖk,n(y)

=
Mk,ne→

i
2

a
b x

2

e→
n|x|

2
n

2ϖt

(◁t)
(2k↑1)n+2

2

m∑

j=1

cj

∫

R
en

↑|y|
2
n

2ϖt Bk,n

(
x

(◁t)n
, (i)ny

)
|y|

(2k↑2)n+2+2j
n dy

=
m∑

j=1

cj

(
2◁t

n

)j

e→
i
2

a
b x

2

e→n |x|
2
n

2ϖt It(x), (5.18)

where

It(x) =
2

!

(
(2k → 1)n+ 2

2

)
∫

R
e→u2

j (2k↑1)n
2



2i|x| 1
nu√

2↼t
n



u(2k→1)n+1+2j du.

Using the identity (6.631(10) in [20]), we get

∫ ↘

0
e→u2

jε(uz)u
2j+2ε+1du =

!(φ+ 1)

2
j! e→

z2

4 Lε
j

(
z2

4

)
, z ⇑ 0.

Further, by simple calculations, we see that

It(x) = j! e→
i
2

a
b x

2

en
|x|

2
n

2ϖt L
( (2k↑1)n

2 )
j

(
→n|x|2/n

2◁t

)
, x ↑ R. (5.19)

Substituting (5.19) in (5.18), we get the desired identity:

u(t, x) = e→
i
2

a
b x

2
n∑

j=0

j! cj

(
2◁t

n

)j

L
( (2k↑1)n

2 )
j


→n|x| 2

n

2◁t


.
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Finally, using (i) we observe that the function u solves (5.12). Moreover using the identity,

(cf. [43]), (
2◁t

n

)j

L
(2k↑1)n

2
j

(
→n|x|2/n

2◁t

)
t=0

=
|x| 2jn
j!

we derive that u(0, x) = f(x). This completes the proof of the Theorem 5.3.

5.2 Heat semi-groups associated with ω↓M→1

k,n

We begin this subsection by recalling the necessary tools on semigroups.

Definition 5.4 ([36]). Let X be a Banach space. A one-parameter family S = {S(t); t ⇑ 0} of

bounded linear operators on X is called a strongly continuous semigroup if it satisfies:

(i) S(0) = IdX .

(ii) S(t+ s) = S(t)S(s) for all t, s ⇑ 0.

(iii) The mapping t ⇔↖ S(t)u is continuous on [0,⇒) for all u ↑ X. A strongly continuous semi-

group is called a contraction semigroup, if ↔S(t)↔ ⇐ 1 for all t ⇑ 0.

Let S = (S(t))t⇒0 be a strongly continuous semigroup. The generator O of S is defined by the

formula

Ou = lim
t⇐0

S(t)u→ u

t
=

d

dt
S(t)u


t=0

,

the domain D(O) of O being the set of all u ↑ X for which the limit defined above exists.

In this subsection, we shall denote B as one of the Banach spaces Lp
k,n(R) (1 ⇐ p < ⇒) or

(C0(R), ↔.↔↘).

Definition 5.5. Let M = (a, b; c, d) ↑ SL(2,R) be a uni-modular matrix such that b ↘= 0. Then,

for each t ⇑ 0 and f ↑ X, we define a family of operators

SM↑1

k,n (t)f =






1

4

[
PM↑1

t ▽
M↑1,k,n

f

]
if t > 0,

f if t = 0.

(5.20)

The family of operators (5.20) is often called the heat semigroup associated with ◁↓M↑1

k,n .
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Theorem 5.6. The family of operators

SM↑1

k,n (t) : t ⇑ 0


is strongly continuous contraction on

B.

Proof. We shall divide the proof of the theorem into two steps.

First step: (i) Assume that B = C0(R). Then, the result is trivial when t = 0. For any

f ↑ C0(R) and t > 0, (3.8) and (5.2), implies that


SM↑1

k,n (t)f

(x) =

1

4

∫

R

[
TM↑1,k,n
x PM↑1

t

]
((→1)ny)

[
ei

a
b y

2

f(y)
]
dϖk,n(y)

=
1

4

∫

R
ei

a
b y

2

PM↑1

t (y)
[
TM↑1,k,n
x f

]
((→1)ny) dϖk,n(y)

=
1

4

1

(◁t)
(2k↑1)n+2

2

∫

R
e

i
2

a
b y

2

e
↑n|y|

2
n

2ϖt

[
TM↑1,k,n
x f

]
((→1)ny) dϖk,n(y)

=
1

4

(
2

n

) (2k↑1)n+2
2

∫

R
ei

a
2b ( 2ϖt

n )ne→|v|
2
n
[
TM↑1,k,n
x f

]
(→1)n

(
2◁t

n

)n
2

v


dϖk,n(v).

(5.21)

Clearly the mapping (x, v) ⇔→↖
[
TM↑1,k,n
x f

] 
(→1)n

(
2↼t
n

)n
2 v


is continuous on R2.

Moreover, using (3.11) and (3.7), we have

lim
|x|⇐↘

[
TM↑1,k,n
x f

]
(→1)n

(
2◁t

n

)n
2

v


= 0

and
e

i a
2b ( 2ϖt

n )ne→|v|
2
n

[
TM↑1,k,n
x f

]
(→1)n

(
2◁t

n

)n
2

v

 ⇐ 4
∥∥f

∥∥
↘e→|v|

2
n ↑ L1

k,n(R).

Therefore, it follows by the dominated convergence theorem that SM↑1

k,n (t)f ↑ C0(R)
and satisfies the inequality:

∥∥∥SM↑1

k,n (t)f
∥∥∥
↘

⇐






(
2

n

) (2k↑1)n+2
2

∫

R
e→|y|

2
n dϖk,n(y)





∥∥f

∥∥
↘ =

∥∥f
∥∥
↘.

By taking supremum over all f ↑ C0(R) and noting that ↔f↔↘ ⇐ 1, we obtain∥∥∥SM↑1

k,n (t)
∥∥∥ ⇐ 1.
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(ii) For all t, s > 0 and f ↑ C0(R), from (5.8) we have

SM↑1

k,n (s)

SM↑1

k,n (t)f

(x)

=
1

4

∫

R
GM↑1

s (x, z)ei
a
b z

2

(∫

R
GM↑1

t (y, z)ei
a
b y

2

f(y) dϖk,n(y)

)
dϖk,n(z)

=
1

4

∫

R

(∫

R
GM↑1

s (x, z)GM↑1

t (y, z) ei
a
b z

2

dϖk,n(z)

)
ei

a
b y

2

f(y) dϖk,n(y)

=
1

4

∫

R
GM↑1

s+t (x, y)ei
a
b y

2

f(y) dϖk,n(y)

= SM↑1

k,n (s+ t)f(x).

(iii) Using the fact
(
2

n

) (2k↑1)n+2
2

∫

R
e→|y|

2
n dϖk,n(y) = 1,

identity (5.21) gives the freedom to write


SM↑1

k,n (t)f

(x)→ f(x) = at(x) + bt(x) (5.22)

where

at(x) =

(
2
n

) (2k↑1)n+2
2

4

∫

R
e→|v|

2
n

ei

a
2b ( 2ϖt

n )n|v|2 → 1

f(x) dϖk,n(v), (5.23)

bt(x) =

(
2
n

) (2k↑1)n+2
2

4
∫

R
ei

a
2b ( 2ϖt

n )n|v|2e→|v|
2
n

[
TM↑1,k,n
x f

]
(→1)n

(
2◁t

n

)n
2

v


→ f(x)


dϖk,n(v).

(5.24)

Using the fact that
∥∥∥∥T

M↑1,k,n

(→1)n( 2ϖt
n )

n
2 v

f → f

∥∥∥∥
↘

⇐ 5
∥∥f

∥∥
↘ and lim

t⇐0

∥∥∥∥T
M↑1,k,n

(→1)n( 2ϖt
n )

n
2 v

f → f

∥∥∥∥
↘

= 0,

together as above with an application of the dominated convergence theorem, we get

the desired result as

∥∥at
∥∥
↘ ⇐

(
2

n

) (2k↑1)n+2
2

4

[∫

R
e→|v|

2
n
ei

ϱ
2b ( 2ϖt

n )n|v|2 → 1
 dϖk,n(v)

]
↔f↔↘ →↖ 0, as t ↖ 0,

∥∥bt
∥∥
↘ ⇐

(
2

n

) (2k↑1)n+2
2

4

∫

R
e→|v|

2
n

∥∥∥∥T
M↑1,k,n

(→1)n( 2ϖt
n )

n
2 v

f → f

∥∥∥∥
↘

dϖk,n(v) →↖ 0, as t ↖ 0.
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Second step: (i) Assume that X = Lp
k,n(R), 1 ⇐ p < ⇒. For any f ↑ Lp

k,n(R), Young’s

inequality (4.2) yields

∥∥∥SM↑1

k,n (t)f
∥∥∥
Lp

k,n(R)
=

1

4

∥∥∥∥P
M↑1

t ▽
M↑1,k,n

f

∥∥∥∥
Lr

k,n(R)
⇐

∥∥∥PM↑1

t

∥∥∥
L1

k,n(R)

∥∥f
∥∥
Lp

k,n(R)
.

Since ∥∥∥PM↑1

t

∥∥∥
L1

k,n(R)
=

1

(◁t)
(2k↑1)n+2

2

∫

R
e→

n|y|
2
n

2ϖt dϖk,n(y) = 1.

Thus, we obtain ∥∥∥SM↑1

k,n (t)f
∥∥∥
Lp

k,n(R)
⇐

∥∥f
∥∥
Lp

k,n(R)
.

By taking supremum over all f ↑ Lp
k,n(R) and noting that ↔f↔Lp

k,n(R) ⇐ 1, we obtain

for each t ⇑ 0, SM↑1

k,n (t) is a bounded linear operator on Lp
k,n(R) and ↔SM↑1

k,n (t)↔ ⇐ 1.

(ii) Since S(R) ↙ C0(R), we derive that

SM↑1

k,n (s+ t) = SM↑1

k,n (s)SM↑1

k,n (t) on S(R).

On the other hand, SM↑1

k,n (s), SM↑1

k,n (t) and SM↑1

k,n (s + t) are continuous from Lp
k,n(R)

into itself. Therefore, the result follows immediately by the density of S(R) in Lp
k,n(R).

(iii) Firstly, we show that if f ↑ Cc(R), then

lim
t⇐0

∥∥∥SM↑1

k,n (t)f → f
∥∥∥
Lp

k,n(R)
= 0. (5.25)

By virtue of the relation (5.22), it follows that
∥∥∥SM↑1

k,n (t)f → f
∥∥∥
Lp

k,n(R)
⇐

∥∥at
∥∥
Lp

k,n(R)
+

∥∥bt
∥∥
Lp

k,n(R)
,

with

∥∥at
∥∥
Lp

k,n(R)
⇐

(
2

n

) (2k↑1)n+2
2

4

[∫

R
e→|v|

2
n
ei

a
2b ( 2ϖt

n )n|v|2 → 1
 dϖk,n(v)

] ∥∥f
∥∥
Lp

k,n(R)
→↖ 0,

as t ↖ 0,

whereas the Minkowski’s inequality yields that

∥∥bt
∥∥
Lp

k,n(R)
⇐

(
2

n

) (2k↑1)n+2
2

4

∫

R
e→|v|

2
n

∥∥∥∥T
M↑1,k,n

(→1)n( 2ϖt
n )

n
2 v

f → f

∥∥∥∥
Lp

k,n(R)
dϖk,n(v) →↖ 0,

as t ↖ 0.
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Implementation of the dominated convergence theorem implies that
∥∥∥∥T

M↑1,k,n

(→1)n( 2ϖt
n )

n
2 v

f → f

∥∥∥∥
Lp

k,n(R)
⇐ 5

∥∥f
∥∥
Lp

k,n(R)
(by (3.7)),

lim
t⇐0

∥∥∥∥T
M↑1,k,n

(→1)n( 2ϖt
n )

n
2 v

f → f

∥∥∥∥
Lp

k,n(R)
= 0, (see Theorem 3.4),

and v ⇔↖ e→|v|
2
n ↑ L1

k,n(R).

Since Cc(R) is dense in Lp
k,n(R), therefore, for any f ↑ Lp

k,n(R), there exists g ↑ Cc(R)
such that

∥∥f → g
∥∥
Lp

k,n(R)
⇐ ▷

3
,

and
∥∥∥SM↑1

k,n (t)f → f
∥∥∥
Lp

k,n(R)
⇐

∥∥∥SM↑1

k,n (t)(f → g)
∥∥∥
Lp

k,n(R)
+
∥∥∥SM↑1

k,n (t)g → g
∥∥∥
Lp

k,n(R)

+
∥∥f → g

∥∥
Lp

k,n(R)

⇐ 2
∥∥f → g

∥∥
Lp

k,n(R)
+

∥∥∥SM↑1

k,n (t)g → g
∥∥∥
Lp

k,n(R)

⇐ 2▷

3
+
∥∥∥SM↑1

k,n (t)g → g
∥∥∥
Lp

k,n(R)
.

Further the relation (5.25) implies that, for su"ciently small values of t, we have
∥∥∥SM↑1

k,n (t)g → g
∥∥∥
Lp

k,n(R)
⇐ ▷

3
.

Subsequently, we obtain

lim
t⇐0

∥∥∥SM↑1

k,n (t)f → f
∥∥∥
Lp

k,n(R)
= 0.

This completes the proof of Theorem 5.6.

We close this section by the following statement for the semigroup

SM↑1

k,n (t), t ⇑ 0


acting on the

Banach spaces B = Lp
k,n(R) (1 ⇐ p < ⇒) or (C0(R), ↔.↔↘).

Proposition 5.7. The operator ↓M↑1

k,n is closable and its closure generates the semigroup
SM↑1

k,n (t), t ⇑ 0


acting on the Banach spaces B.

Proof. Let f ↑ Sk,n(R). Involving the relations (5.20) and (5.15), we observe that

FM
k,n


SM↑1

k,n (t)→ Id

t
f


(ω) =

e→t↼|ςb |
2
n → 1

t
FM

k,n(f)(ω).
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Thus, we derive that

lim
t⇐0

FM
k,n


SM↑1

k,n (t)→ Id

t
f


(ω) = →◁


ω

b



2
n

FM
k,n(f)(ω) = FM

k,n


◁↓M↑1

k,n f

(ω).

Using the injectivity of FM
k,n on Sk,n(R), we infer that the generator of the semigroup

SM↑1

k,n (t), t ⇑ 0

, denoted by Ok,n, satisfies

Ok,nf = lim
t⇐0

SM↑1

k,n (t)→ Id

t
f = ◁↓M↑1

k,n f.

As Sk,n(R) is invariant under Fk,n, we derive that Sk,n(R) is invariant under

SM↑1

k,n (t), t ⇑ 0


which is a strongly continuous semigroup of contractions on B. So, we observe that Sk,n(R) is

subset of Ok,n. Moreover since Sk,n(R) is dense in B, Then by [36, Corollary 1.2.2], it follows

that Sk,n(R) is a core for the generator Ok,n and the desired result is proved.

6 Potential applications and simulation perspectives

The theoretical framework developed in this article admits several potential applications in diverse

areas of harmonic analysis, signal processing, and mathematical physics. Owing to the additional

degrees of freedom o!ered by the parameters of the linear canonical deformed Hankel transform

(LCDHT), the corresponding generalized translation and convolution operators introduced here

extend the analytical and practical scope of existing transform methods.

6.1 Uncertainty principles

The LCDHT provides a natural platform for establishing new variants of classical uncertainty

relations, including the Heisenberg, Donoho–Stark, and Hardy-type inequalities. By incorporating

linear canonical and deformed Hankel parameters, the LCDHT allows sharper localization bounds

in both the time and transform domains. Such results are expected to find applications in quantum

mechanics, optical tomography, and time–frequency localization theory, where precise phase–space

characterizations are essential.

6.2 Signal reconstruction

The generalized translation and convolution structures developed in this work constitute the foun-

dation for signal reconstruction and sampling theorems in the LCDHT domain. These results

facilitate the recovery of signals that are bandlimited with respect to the LCDHT rather than the

classical Fourier transform, o!ering significant advantages in nonuniform sampling, filter design,
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and inverse problems. Potential applications include optical field recovery, radar and sonar imag-

ing, seismic data interpretation, and medical image reconstruction, where signals often exhibit

Hankel-type or radial symmetries.

6.3 Simulation and error analysis perspectives

Although the present work is primarily theoretical, the proposed framework can be extended toward

numerical validation and simulation studies. A theoretical error analysis may focus on the stability

and convergence of the generalized translation and convolution operators under discretization or

kernel truncation. Synthetic test signals, such as Gaussian–Bessel or chirp-type functions, may be

used to verify reconstruction accuracy and energy preservation. Quantitative measures like mean

square error (MSE) and signal-to-noise ratio (SNR) would help assess computational fidelity. Such

experiments would not only corroborate the analytical findings but also demonstrate the robustness

and applicability of the LCDHT in signal reconstruction and time–frequency localization problems.

7 Conclusion and future work

In this paper, we have investigated the generalized translation and convolution operators within

the framework of the linear canonical deformed Hankel transform (LCDHT). Although the results

presented here are primarily theoretical, they have been e!ectively applied to the analysis of the

generalized heat equation and the associated heat semigroup. It is pertinent to mention that the

proposed transform not only unifies several existing integral transforms such as the classical and

fractional Fourier transforms, as well as the linear canonical transform in the Dunkl and Hankel

settings but also leads to the formulation of new integral transforms, including the fractional

(k, n)-generalized Fourier transform and the generalized Fresnel transform. Furthermore, building

upon the harmonic analysis developed in the earlier sections, we have explored the Gabor, wavelet,

Wigner, and wavelet multiplier transforms in the context of the LCDHT framework [18]. For future

research, we plan to extend this work by investigating additional applications in time-frequency

analysis and by developing the reproducing kernel theory associated with the LCDHT. These

directions are expected to further enrich the theoretical foundations and broaden the applicability

of this new class of integral transforms.
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RESUMEN

Este artículo presenta dos algoritmos extrapolados de tipo
Mann con viscosidad inercial para encontrar una solución
común al problema de desigualdad variacional que involucra
un operador continuo, monótono y Lipschitz y al problema
de punto fijo para una aplicación semicontractiva en espacios
de Hilbert reales. Los algoritmos propuestos presentan una
estrategia de tamaño de paso adaptativo, calculado iterati-
vamente, que evita la necesidad del conocimiento previo de
la constante de Lipschitz del operador. Bajo hipótesis apro-
piadas, establecemos dos teoremas de convergencia fuertes
que garantizan la robustez de los métodos. Más aún, entre-
gamos un análisis comparativo del desempeño de los algorit-
mos propuestos contra algunos esquemas existentes fuerte-
mente convergentes, sobre la base de experimentos numéri-
cos con ilustraciones gráficas basadas en MATLAB.

Keywords and Phrases: Subgradient extragradient method, extragradient method, Mann-like method, inertial

method, viscosity method.
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1 Introduction

Consider a real Hilbert space D equipped with the inner product →., .↑, and the corresponding norm

↓.↓, and ⊋ ↔= E be a closed, convex subset of D. This study is devoted to the pursuit of a common

solution to problems involving variational inequalities and fixed point theory within the framework

of real Hilbert spaces. The impetus for this investigation arises from the significant role these

problems play in numerous mathematical models, where constraints are naturally formulated as

variational inequalities and/or fixed point conditions. This situation occurs especially in practical

problems, such as signal processing, composite minimization problems, optimal control problems,

and image restoration. The relevance and applicability of this framework have been well-established

in prior works [3, 17,20,23,32]. Let us recall the involved problems.

The variational inequality problem associated with the operator F : D ↗ D over the set E seeks

to determine a point v ↘ E such that the following condition is satisfied:

→Fv, s≃ v↑ ⇐ 0, ⇒s ↘ E. (VIP)

The solution set of the (VIP) is denoted by V I(E,F). Variational inequality problems provide

a useful and indispensable tool for investigating various interesting issues emerging in many ar-

eas, such as social, physics, engineering, economics, network analysis, medical imaging, inverse

problems, transportation and much more; see, e.g., [4, 12, 23]. Variational inequality theory has

been proven to provide a simple, universal, and consistent structure to deal with possible prob-

lems. In the past few decades, researchers have shown tremendous interest in exploring di!erent

extensions of variational inequality problems. Recent advancements, as evidenced in works such

as [1, 10, 24, 28, 29] underscore a growing emphasis on the development of e"cient and practically

implementable numerical algorithms for addressing variational inequalities. Under fairly general

conditions, two prominent strategies have emerged for solving monotone variational inequalities:

projection-type methods and regularization-based approaches. In this study, we concentrate on

projection-type methods, with particular attention to the projection gradient method, arguably

the most straightforward among them for solving (VIP) given as:

sn+1 = PE(sn ≃ ωFsn),

where PE , denotes the metric projection onto the set E and ω > 0 is an appropriately chosen step

size.

It is worth emphasizing that the projected gradient method necessitates only a single projection

onto the feasible set per iteration, making it computationally appealing. However, its convergence

typically hinges on relatively strong assumptions, most notably, that the underlying operator is

either strongly monotone or inverse strongly monotone. To relax these stringent conditions, Kor-
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pelevich [15] proposed the extragradient method, originally designed to solve saddle point problems

in Euclidean spaces. The method introduces an additional intermediate step to enhance conver-

gence properties under weaker assumptions. The iterative scheme of the extragradient method is

given by: 




tn = PE(sn ≃ ωFsn),

sn+1 = PE(sn ≃ ωFtn),
(1.1)

where operator F is assumed to be monotone and L-Lipschitz continuous, PE represents the metric

projection from D onto E, and ω ↘ (0, 1/L). It is established that the sequence {sn} produced by

the process (1.1) converges to an element in V I(E,F).

It is essential to recognize that solving the shortest distance problem is equivalent to computing

the metric projection onto a closed convex set E. As previously noted, the extragradient method

involves two projections onto E in each iteration. While e!ective, this requirement can pose sig-

nificant computational challenges, particularly when E is a general closed and convex set with

a complex structure. To mitigate this issue, Censor et al. [9] introduced the subgradient extra-

gradient method as a refinement of the original extragradient algorithm. The key innovation in

this approach lies in replacing the second projection onto E with a projection onto a carefully

constructed half-space. This modification is advantageous because projecting onto a half-space is

computationally explicit and significantly simpler. The modified algorithm is formulated as follows:






tn = PE(sn ≃ ωFsn),

Tn = {s ↘ D|→sn ≃ ωFsn ≃ tn, s≃ tn↑ ⇑ 0},

sn+1 = PTn(sn ≃ ωFtn),

(1.2)

The sequence {sn} produced by (1.2) converges weakly to a solution of the variational inequality

in this case where V I(E,F) ↔= ⊋.

On the other hand, the fixed point problem plays a pivotal role in the theory and solution of

variational inequalities. Let S : E ↗ E be a nonlinear mapping. A point s ↘ D is called a fixed

point of the mapping S if it satisfies the condition Ss = s. The set of all fixed points of S is

denoted as Fix(S). The fixed point problem is formulated as follows:

find v ↘ E such that Sv = v. (FPP)

The principal objective of this paper is to determine a common solution to both the (VIP) and

the (FPP). Specifically, the goal is to find a point v such that

v ↘ V I(E,F) ⇓ Fix(S). (VIFPP)
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A wide range of numerical algorithms have been developed to tackle the combined variational

inequality and fixed point problem (VIFPP) in infinite-dimensional spaces as documented in [6,

7, 11, 36], and the references therein. Notably, Takahashi and Toyoda [26] proposed an iterative

scheme for approximating a solution to the (VIFPP) which is described as follows:

sn+1 = (1≃ εn)sn + εnSPE(sn ≃ ωnFsn), (1.3)

where F : E ↗ D is µ-inverse strongly monotone, S : E ↗ E is nonexpansive, εn ↘ (0, 1) is a

control sequence, ωn > 0 is a stepsize parameter, PE denotes the metric projection onto the convex

set E. They proved {sn} generated by (1.3) converges weakly to a solution of (VIFPP) under

certain conditions. More recently, Censor et al. [8] established the following iterative scheme and

proved its weak convergence to the solution of the (VIFPP),






tn = PE(sn ≃ ωFsn),

Tn = {s ↘ D|→sn ≃ ωFsn ≃ tn, s≃ tn↑ ⇑ 0},

sn+1 = εnsn + (1≃ εn)SPTn(sn ≃ ωFtn).

(1.4)

In the context of infinite-dimensional Hilbert spaces, strong (norm) convergence is generally more

desirable than weak convergence, particularly for practical applications. To ensure strong conver-

gence when solving the combined (VIFPP), Kraikaew and Saejung [16] introduced the Halpern Sub-

gradient Extragradient Method (HSEGM). This method integrates the Halpern iteration scheme

with the subgradient extragradient framework, providing a robust approach for approximating

common solutions to variational inequality and fixed point problems, which is described as:






tn = PE(sn ≃ ωFsn),

Tn = {s ↘ D|→sn ≃ ωFsn ≃ tn, s≃ tn↑ ⇑ 0},

un = εns0 + (1≃ εn)PTn(sn ≃ ωFtn),

sn+1 = ϑnsn + (1≃ ϑn)Sun,

(HSEGM)

They proved that the sequence {sn} generated by the (HSEGM) converges strongly to

PV I→Fix(S)(s0), the metric projection of the initial point s0 onto the set of common solutions of

the variational inequality and fixed point problems.

Recently, Thong and Hieu [34] proposed the Modified Subgradient Extragradient Method (MSEGM)

by integrating the subgradient extragradient technique with the Mann-type iteration scheme. The

primary objective of this algorithm is to identify common solution elements belonging to both the

solution set of the variational inequality problem (VIP) and the fixed point set of a demicontractive
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mapping. The algorithm is formally outlined as follows:






tn = PE(sn ≃ ωFsn),

Tn = {s ↘ D|→sn ≃ ωFsn ≃ tn, s≃ tn↑ ⇑ 0},

un = PTn(sn ≃ ωFtn),

sn+1 = (1≃ εn ≃ ϑn)un + ϑnSun,

(MSEGM)

They proved its strong convergence to an element v ↘ V I(E,F)⇓Fix(S), where ↓v↓ = min{↓u↓ :

u ↘ V I(E,F) ⇓ Fix(S)}.

A notable limitation of both the (HSEGM) and (MSEGM) algorithms is their reliance on prior

knowledge of the Lipschitz constant of the mapping F . However, in many practical situations, this

information is either unavailable or di"cult to estimate accurately. To address this issue, Thong

and Hieu [35] proposed two extragradient-viscosity algorithms, designed to solve the combined

(VIFPP) without requiring the Lipschitz constant. Their approach incorporates an adaptive step-

size rule, allowing automatic updates at each iteration. The algorithms are formulated as follows:






tn = PE(sn ≃ ωnFsn),

Tn = {s ↘ D|→sn ≃ ωnFsn ≃ tn, s≃ tn↑ ⇑ 0},

un = PTn(sn ≃ ωnFtn),

sn+1 = εnJ (sn) + (1≃ εn)[(1≃ ϑn)un + ϑnSun],

(VSEGM)

and 




tn = PE(sn ≃ ωnFsn),

un = tn ≃ ωn(Ftn ≃ Fsn),

sn+1 = εnJ (sn) + (1≃ εn)[(1≃ ϑn)un + ϑnSun],

(VTEGM)

where algorithms (VSEGM) and (VTEGM) update the step size {ωn} by the following rule:

ωn+1 =






min

{
ϖ↓sn ≃ tn↓

↓Fsn ≃ Ftn↓
, ωn

}
, if Fsn ≃ Ftn ↔= 0

ωn, otherwise,

The sequences produced by (VTEGM) and (VTEGM) converges strongly under mild assumptions

to q ↘ Fix(S) ⇓ V I(E,F), where q = PFix(S)→V I(E,F)(J (q)).

In recent years, fast iterative algorithms have attracted considerable interest, especially those

employing inertial techniques inspired by discrete analogues of second-order dissipative dynamical

systems [2, 19]. These inertial methods accelerate convergence by incorporating momentum-like

terms into the iterative process. Leveraging this framework, Tan et al. [33] proposed the following
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inertial algorithm for solving the combined variational inequality and fixed point problem (VIFPP)






wn = sn +Kn(sn ≃ sn↑1),

tn = PE(wn ≃ ωnFwn),

Tn = {s ↘ D|→wn ≃ ωnFwn ≃ tn, s≃ tn↑ ⇑ 0},

un = PTn(wn ≃ ωnFtn),

sn+1 = εnJ (sn) + (1≃ εn)[(1≃ ϑn)un + ϑnSun],

(IVSEGM)

where the step size {Kn} and {ωn} are updated by the following rules:

Kn =






min

{
ϱn

↓sn ≃ sn↑1↓
,K

}
, if sn ↔= sn↑1,

K, otherwise,

and

ωn+1 =






min

{
ϖ↓sn ≃ tn↓

↓Fsn ≃ Ftn↓
, ωn

}
, if Fsn ≃ Ftn ↔= 0,

ωn, otherwise.

Recently, Mewomo et al. [18] integrated the inertial, viscosity, and Tseng’s approaches and intro-

duced two Generalized Viscosity Inertial Tseng Methods (GVITMs) for solving pseudomonotone

variational inequalities with fixed point constraints, formulated as follows:






wn = sn + ϱn(sn ≃ sn↑1),

tn = PC(wn ≃ ςnFwn),

zn = tn ≃ ςn(Ftn ≃ Fwn),

un = φn,0zn +
∑m

i=1 φn,ivn,i, vn,i ↘ Sizn,

sn+1 = ↼nςJ (wn) + (I ≃ ↼nG)un,

(GVITMI)

where ϱn and ςn are updated by (1.5) and (1.6), respectively.

ϱn =






min

{
↽n

↓sn ≃ sn↑1↓
, ϱ

}
, if sn ↔= sn↑1,

ϱ, otherwise,
(1.5)

ςn+1 =






min

{
⇀↓wn ≃ tn↓

↓Fwn ≃ Ftn↓
, ςn + ⇀n

}
, if Fwn ≃ Ftn ↔= 0,

ςn + ⇀n, otherwise,
(1.6)
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and 




wn = sn + ϱn(sn ≃ sn↑1),

tn = PC(wn ≃ ςn⇔⇁wn),

zn = tn ≃ ςn(⇔⇁tn ≃⇔⇁wn),

un = φn,0zn +
∑m

i=1 φn,ivn,i, vn,i ↘ Sizn,

sn+1 = ↼nςJ (wn) + (I ≃ ↼nG)un,

(GVITMII)

where ϱn and ςn are updated by (1.5) and (1.7), respectively.

ςn+1 =






min

{
⇀↓wn ≃ tn↓

↓⇔⇁wn ≃⇔⇁tn↓
, ςn + ⇀n

}
, if ⇔⇁wn ≃⇔⇁yn ↔= 0,

ςn + ⇀n, otherwise.
(1.7)

where ϱ > 0, ς1 > 0, ⇀n is a nonnegative sequence such that
∑↓

n=1 ⇀n < +↖, and ⇀ ↘ (0, 1).

The authors established strong convergence results for the sequences generated by (GVITMI) and

(GVITMII) without imposing the sequential weak continuity of the pseudomonotone operator and

without requiring prior knowledge of the Lipschitz constants.

Recently, Kesornprom et al. [14] proposed a new variant of the proximal gradient algorithm

incorporating double inertial extrapolation for solving constrained convex minimization problems

in Hilbert spaces, formulated as follows:

zn = sn + θn(s
n ≃ sn↑1) + ωn(s

n↑1 ≃ sn↑2), n ⇐ 1,

sn+1 = PE(proxωng(z
n ≃ ↼n⇔f(zn))),

where

↼n+1 =






min

{
ϱ↓zn ≃ proxωng(z

n ≃ ↼n⇔f(zn))↓
↓⇔f(zn)≃⇔f(proxωng(z

n ≃ ↼n⇔f(zn)))↓ ,↼n

}
,

if ⇔f(zn)≃⇔f(proxωng(z
n ≃ ↼n⇔f(zn))) ↔= 0,

↼n, otherwise.

where θn ⇐ 0, ωn ⇐ 0, ↼1 > 0 and ϱ ↘ (0, 1
2 ). They established the weak convergence of the

proposed method to a point in argmin(f + g)⇓E. For an extensive discussion on fast iterative al-

gorithms and their recent advancements, the reader may consult [21,25,31,38,39] and the references

therein.

Motivated and inspired by existing studies in this area, the purpose of this paper is to develop two

inertial extragradient algorithms that combine the Mann iteration, viscosity approximation, and

subgradient extragradient methods with a new step size for discovering a common solution of a

monotone and Lipschitz variational inequality problem and of the fixed point problem involving a
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demicontractive mapping in real Hilbert spaces. The suggested algorithms need to calculate the

projection on the feasible set only once per iteration, which makes them faster. Strong convergence

theorems of the algorithms are established without the prior information of the Lipschitz constant

of the operator. Lastly, some computational tests appearing in finite and infinite dimensions are

proposed to support the theoretical results.

The organizational structure of our paper is built up as follows. In Section 2, we recall some

preliminary results and lemmas that need to be used in the next section. In Section 3, we propose

the algorithms and analyse their convergence. Some numerical experiments to verify our theoretical

results are presented in Section 4. At last, the paper ends with a brief summary in Section 5, the

final section.

2 Preliminaries

Consider ⊋ ↔= E (closed, convex) subset of a real Hilbert space D. The weak convergence and

strong convergence of the sequence {sn} to s are denoted as sn ⇀ s and sn ↗ s, respectively. For

any s, t ↘ D and ε ↘ R the following statements hold:

(i) ↓s+ t↓2 = ↓s↓2 + 2→s, t↑+ ↓t↓2.

(ii) ↓s+ t↓2 ⇑ ↓s↓2 + 2→t, s+ t↑.

(iii) ↓εs+ (1≃ ε)t↓2 = ε↓s↓2 + (1≃ ε)↓t↓2 ≃ ε(1≃ ε)↓s≃ t↓2.

For any point s ↘ D, there exists a distinct nearest point in the closed and convex subset E identified

as PE(s) satisfying PE(s) = argmin{↓s ≃ t↓, t ↘ E}. PE is termed as the metric projection of

D onto E. It is established that PE is a nonexpansive mapping and it possesses the following

fundamental properties:

(i) →s≃ PE(s), t≃ PE(s)↑ ⇑ 0, ⇒t ↘ E.

(ii) ↓PE(s)≃ PE(t)↓2 ⇑ →PE(s)≃ PE(t), s≃ t↑, ⇒t ↘ D.

Definition 2.1 ([27]). A mapping A : D ↗ D is said to be:

(i) L-Lipschitz continuous with L > 0 if

↓As≃At↓ ⇑ L↓s≃ t↓, ⇒s, t ↘ D.

(ii) ε-strongly monotone if there exists ε > 0 such that

→As≃At, s≃ t↑ ⇐ ε↓s≃ t↓2, ⇒s, t ↘ D.
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(iii) ε-inverse strongly monotone if there exists ε > 0 such that

→As≃At, s≃ t↑ ⇐ ε↓As≃At↓2, ⇒s, t ↘ D.

Remark 2.2 ([5]). if A : D ↗ D be an injective operator so that A↑1 is well defined, then:

(a) If A is ε-strongly monotone, then its inverse A↑1 is ε-inverse strongly monotone.

(b) If A is ε-inverse strongly monotone, then its inverse A↑1 is ε-strongly monotone.

(iv) monotone if

→As≃At, s≃ t↑ ⇐ 0, ⇒s, t ↘ D.

(v) quasi-nonexpansive if

↓As≃ u↓ ⇑ ↓s≃ t↓, ⇒u ↘ Fix(A), s ↘ D.

(vi) µ-strictly pseudocontractive with 0 ⇑ µ < 1 if

↓As≃At↓2 ⇑ ↓s≃ t↓2 + µ↓(I ≃A)s≃ (I ≃A)t↓2, ⇒s, t ↘ D.

(vii) ϑ -demicontractive with 0 ⇑ ϑ < 1 if

↓As≃ u↓2 ⇑ ↓s≃ u↓2 + ϑ↓(I ≃A)s↓2, ⇒u ↘ Fix(A), s ↘ D. (2.1)

or equivalently

→As≃ s, s≃ u↑ ⇑ ϑ ≃ 1

2
↓s≃As↓2, ⇒u ↘ Fix(A), s ↘ D. (2.2)

Definition 2.3 ([37]). If A : D ↗ D is a nonlinear operator with Fix(A) ↔= ⊋. Then, I ≃ A is

said to be demiclosed at zero if for any {sn} in D, the following implications holds:

sn ⇀ s and (I ≃A)sn ↗ 0 =↙ s ↘ Fix(A).

Lemma 2.4 ([33]). Consider S : D ↗ D as a ϑ -demicontractive operator with Fix(S) ↔= ⊋. Let

Sµ = (1≃ µ)I + µS, where µ ↘ (0, 1≃ ϑ). Then:

(i) Fix(S) = Fix(Sµ).

(ii) ↓Sµs≃ u↓2 ⇑ ↓s≃ u↓2 ≃ µ(1≃ ϑ ≃ µ)↓(I ≃ S)s↓2, ⇒s ↘ D, u ↘ Fix(S).

(iii) Fix(S) is a closed convex subset of D.
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Lemma 2.5 ([16]). Consider F : D ↗ D as a monotone and L-Lipschitz continuous mapping on

E. Let S = PE(I≃ϖF), where ϖ > 0. If sn is a sequence in D such that sn ⇀ q and sn≃Ssn ↗ 0,

then it follows that q ↘ V I(E,F) = Fix(S).

Lemma 2.6 ([22]). Consider a positive sequence {rn}, a sequence of real numbers {bn} and a

sequence {an} in the interval (0, 1) such that
∑↓

n=1 an = ↖. Assuming

rn+1 ⇑ anbn + (1≃ an)rn, ⇒n ⇐ 1

If lim sup
k↔↓

bnk ⇑ 0 for every subsequence {rnk} of {rn} satisfying lim inf
k↔↓

(rnk+1 ≃ rnk) ⇐ 0, then

lim
n↔↓

rn = 0.

3 Main result

This section presents two inertial extragradient algorithms that are specifically designed to solve

(VIFPP), and provides a convergence analysis of them. We first assume that the following condi-

tions are met by the suggested algorithms.

(A1) Fix(S) ⇓ V I(E,F) ↔= ⊋.

(A2) F : D ↗ D is monotone and L-Lipschitz continuous.

(A3) S : D ↗ D is µ-demicontractive such that (I ≃ S) is demiclosed at zero.

(A4) J : D ↗ D is Q-contraction with constant Q ↘ [0, 1).

3.1 Algorithm-I

Algorithm 3.1 Algorithm-I
Initialization: Choose K > 0, ω1 > 0, and ϖ ↘ (0, 1).
Select arbitrary s0 and s1 from D.
Iterative step:
Step 1. Given the iterates sn↑1 and sn (for n ⇐ 1), set

wn = sn +Kn(sn ≃ sn↑1),

where

Kn =





min

{
ϱn

↓sn ≃ sn↑1↓
,K

}
, if sn ↔= sn↑1;

K, otherwise.
(3.1)

Step 2. Compute
tn = PE(wn ≃ ωnFwn).
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Algorithm 3.1 Algorithm-I
Step 3. Compute

un = PTn(wn ≃ ωnFtn),

where the half-space Tn is defined by

Tn := {s ↘ D | →wn ≃ ωnFwn ≃ tn, s≃ tn↑ ⇑ 0}.

Step 4. Compute

sn+1 = εnJ (sn) + (1≃ εn)
[
(1≃ ςn ≃ ϑn)un + ϑnSun

]

and update

ωn+1 =





min

{
ϖ↓wn ≃ tn↓

↓Fwn ≃ Ftn↓
, ωn

}
, if Fwn ≃ Ftn ↔= 0;

ωn, otherwise.
(3.2)

Set n := n+ 1 and go to Step 1.

The subsequent lemmas prove to be valuable for analyzing the convergence of the algorithm.

Lemma 3.1 ([33]). The sequence {ωn} produced by (3.2) is a nonincreasing sequence and

lim
n↔↓

ωn = ω ⇐ min
{
ω1,

ϖ

L

}
.

Lemma 3.2 ([30]). Assume that condition (A2) holds. Let {un} be a sequence produced by

Algorithm 3.1, then

↓un ≃ v↓2 ⇑ ↓wn ≃ v↓2 ≃
(
1≃ ϖ

ωn
ωn+1

)
↓tn ≃ wn↓2 ≃

(
1≃ ϖ

ωn
ωn+1

)
↓un ≃ tn↓2 (3.3)

for all v ↘ V I(E,F).

Theorem 3.3. Under the fulfillment of Conditions (A1)-(A4), {ϱn} be a positive sequence such

that limn↔↓
εn
ϑn

= 0, where εn ∝ (0, 1) satisfies
∑↓

n=1 εn = ↖ and limn↔↓ εn = 0. Furthermore,

for some a > 0, b > 0, ςn ↘ (0, 1), limn↔↓ ςn = 0, and
∑↓

n=0 ςn = ↖, let ϑn ↘ (a, b) ∝
(0, (1 ≃ µ)(1 ≃ ςn)), then the sequence {sn} produced by Algorithm 3.1 converges in norm to v ↘
Fix(S) ⇓ V I(E,F), where v = PFix(S)→V I(E,F)(J (v)).

Proof. Since V I(E,F) is a closed convex subset, and by Lemma 2.4, Fix(S) is also a closed convex

subset. Therefore, the mapping PFix(S)→V I(E,F)(J ) : D ↗ D forms a contraction. By applying the

Banach contraction principle, there exists a unique point v ↘ D such that v = PFix(S)→V I(E,F)(J ).

Specifically, v ↘ Fix(S) ⇓ V I(E,F), and

→J (v)≃ v, u≃ v↑ ⇑ 0, ⇒u ↘ Fix(S) ⇓ V I(E,F).

The proof is split up into four sections.
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Claim 1. {sn} is a bounded sequence. Put, tn = (1≃ ςn ≃ ϑn)un + ϑnSun, we have

↓tn ≃ v↓ = ↓(1≃ ςn ≃ ϑn)un + ϑnSun ≃ v↓

= ↓(1≃ ςn ≃ ϑn)(un ≃ v) + ϑn(Sun ≃ v)≃ ςnv↓

= ↓(1≃ ςn ≃ ϑn)(un ≃ v) + ϑn(Sun ≃ v)↓+ ↓ςnv↓. (3.4)

Additionally, it can be deduced from (2.1), (2.2), and Lemma 3.2 that

↓(1≃ ςn ≃ ϑn)(un ≃ v) + ϑn(Sun ≃ v)↓2 = (1≃ ςn ≃ ϑn)
2↓(un ≃ v)↓2

+ 2(1≃ ςn ≃ ϑn)ϑn→Sun ≃ v, un ≃ v↑+ ϑ2n↓Sun ≃ v↓2

⇑ (1≃ ςn ≃ ϑn)
2↓(un ≃ v)↓2

+ 2(1≃ ςn ≃ ϑn)ϑn

[
↓un ≃ v↓2 ≃ 1≃ µ

2
↓un ≃ Sun↓2

]

+ ϑ2n
[
↓un ≃ v↓2 + µ↓un ≃ Sun↓2

]

= (1≃ ςn)
2↓un ≃ v↓2 + ϑn (ϑn ≃ (1≃ ςn)(1≃ µ)) ↓un ≃ Sun↓2

⇑ (1≃ ςn)
2↓un ≃ v↓2 ⇑ (1≃ ςn)

2↓wn ≃ v↓2

signifying that

↓(1≃ ςn ≃ ϑn)(un ≃ v) + ϑn(Sun ≃ v)↓ ⇑ (1≃ ςn)↓wn ≃ v↓. (3.5)

By the definition of wn, we obtain

↓wn ≃ v↓ = ↓sn +Kn(sn ≃ sn↑1)≃ v↓ ⇑ ↓sn ≃ v↓+ εn
Kn

εn
↓sn ≃ sn↑1↓.

From (3.1), it can be deduced that

lim
n↔↓

Kn

εn
↓sn ≃ sn↑1↓ = 0.

This result holds true, since Kn↓sn ≃ sn↑1↓ ⇑ ϱn for all n ⇐ 1. Moreover, considering the

limit lim
n↔↓

εn
ϑn

= 0, it follows that

lim
n↔↓

↓sn ≃ sn↑1↓ ⇑ lim
n↔↓

ϱn
εn

= 0.

Therefore, there exists a constant M↗ > 0 such that

Kn

εn
↓sn ≃ sn↑1↓ ⇑ M↗, ⇒n ⇐ 1. (3.6)
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Thus utilizing above, we get

↓wn ≃ v↓ ⇑ ↓sn ≃ v↓+ εnM↗. (3.7)

which in turn implies

↓(1≃ ςn ≃ ϑn)(un ≃ v) + ϑn(Sun ≃ v)↓ ⇑ ↓sn ≃ v↓+ εnM↗.

Referring to (3.4), we obtain

↓tn ≃ v↓ ⇑ ↓sn ≃ v↓+ εn

[
M↗ +

ςn
εn

↓v↓
]
⇑ ↓sn ≃ v↓+ εnM, (3.8)

where

M↗ +

ϖn

ϑn
↓v↓


⇑ M for some M > 0. Now,

↓sn+1 ≃ v↓ ⇑ ↓εnJ (sn) + (1≃ εn)ωn ≃ v↓

⇑ εn↓J (sn)≃ J (v)↓+ εn↓J (v)≃ v↓+ (1≃ εn)↓tn ≃ v↓

⇑ εnQ↓sn ≃ v↓+ εn↓J (v)≃ v↓+ (1≃ εn)[↓sn ≃ v↓+ εnM]

= (1≃ εn(1≃Q))↓sn ≃ v↓+ εn(↓J (v)≃ v↓+M)

⇑ max

{
↓sn ≃ v↓, ↓J (v)≃ v↓+M

1≃Q

}
⇑ · · · ⇑ max

{
↓s0 ≃ v↓, ↓J (v)≃ v↓+M

1≃Q

}
.

This implies that the sequence {sn} is bounded. Consequently, the sequences {wn}, J (sn),

{tn}, and {un} are also bounded.

Claim 2.

(1≃ εn)

(
1≃ ϖ

ωn
ωn+1

)
↓tn ≃ wn↓2 + (1≃ εn)

(
1≃ ϖ

ωn
ωn+1

)
↓un ≃ tn↓2

+ (1≃ εn)ϑn[(1≃ µ)≃ ϑn]↓un ≃ Sun↓

⇑ ↓sn ≃ v↓2 ≃ ↓sn+1 ≃ v↓2 + εn↓J (sn)≃ v↓2 + εnM↗↗ + (1≃ εn)ςnM↗↗↗.

Since from (3.7),

↓wn≃v↓2 ⇑ (↓sn≃v↓+εnM↗)
2 = ↓sn≃v↓2+εn


2M↗↓sn ≃ v↓+ εnM2

↗

⇑ ↓sn≃v↓2+εnM↗↗,

(3.9)

for some M↗↗ > 0.

↓sn+1≃v↓2 = ↓εn(J (sn)≃v)+(1≃εn)(tn≃v)↓2 ⇑ εn↓J (sn)≃v↓2+(1≃εn)↓tn≃v↓2. (3.10)
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Now,

↓tn ≃ v↓2 = ↓(1≃ ςn ≃ ϑn)un + ϑnSun ≃ v↓2 = ↓(un ≃ v) + ϑn(Sun ≃ un)≃ ςnun↓2

⇑ ↓(un ≃ v) + ϑn(Sun ≃ un)↓2 ≃ 2ςn→un, ωn ≃ v↑

= ↓un ≃ v↓2 + ϑ2n↓Sun ≃ un↓2 + 2ϑn→Sun ≃ un, un ≃ v↑+ 2ςn→un, v ≃ ωn↑.

It follows from Lemma(2.4),

↓tn ≃ v↓2 ⇑ ↓un ≃ v↓2 + ϑ2n↓Sun ≃ un↓2 ≃ ϑn(1≃ µ)↓un ≃ Sun↓2 + 2ςn→un, v ≃ ωn↑

⇑ ↓wn ≃ v↓2 + ϑn[ϑn ≃ (1≃ µ)]↓un ≃ Sun↓2 + ςnM↗↗↗. (3.11)

for some M↗↗↗ > 0, from (3.10)

↓sn+1 ≃ v↓2 ⇑ εn↓J (sn)≃ v↓2

+ (1≃ εn)
[
↓wn ≃ v↓2 + ϑn[ϑn ≃ (1≃ µ)]↓un ≃ Sun↓2 + ςnM↗↗↗

]

⇑ εn↓J (sn)≃ v↓2 + ↓sn ≃ v↓2 + εnM↗↗

≃ (1≃ εn)

(
1≃ ϖ

ωn
ωn+1

)
↓tn ≃ wn↓2 ≃ (1≃ εn)

(
1≃ ϖ

ωn
ωn+1

)
↓un ≃ tn↓2

≃ (1≃ εn)ϑn[(1≃ µ)≃ ϑn]↓un ≃ Sun↓+ (1≃ εn)ςnM↗↗↗.

By a straightforward manipulation, we attain the desired result.

Claim 3.

↓sn+1≃ v↓2 = (1≃ (1≃Q)εn)↓sn≃ v↓2+ εn(1≃Q)

[
(1≃ εn)εnN + 2→J (v)≃ v, sn+1 ≃ v↑

1≃Q

]
.

Since by (3.8),

↓tn ≃ v↓2 ⇑ [↓sn ≃ v↓+ εnM]2 = ↓sn ≃ v↓2 + ε2nM2 + 2εn→M, sn ≃ v↑ ⇑ ↓sn ≃ v↓2 + ε2nN ,

where M2 + 2
ϑn
→M, sn ≃ v↑ ⇑ N for some N > 0.

↓sn+1 ≃ v↓2 = ↓εnJ (sn) + (1≃ εn)tn ≃ v↓2

= ↓εn(J (sn)≃ J (v)) + (1≃ εn)(tn ≃ v) + εn(J (v)≃ v)↓2

⇑ ↓εn(J (sn)≃ J (v)) + (1≃ εn)(tn ≃ v)↓2 + 2εn→J (v)≃ v, sn+1 ≃ v↑

⇑ εnQ↓sn ≃ v↓2 + (1≃ εn)↓tn ≃ v↓2 + 2εn→J (v)≃ v, sn+1 ≃ v↑

⇑ εnQ↓sn ≃ v↓2 + (1≃ εn)
[
↓sn ≃ v↓2 + ε2nN

]
+ 2εn→J (v)≃ v, sn+1 ≃ v↑

= (1≃ (1≃Q)εn)↓sn ≃ v↓2 + εn(1≃Q)

[
(1≃ εn)εnN + 2→J (v)≃ v, sn+1 ≃ v↑

1≃Q

]
.
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Claim 4. The sequence ↓sn ≃ v↓2 converges to zero. In fact, using Lemma 2.6, it is su"cient to

show that for each subsequence ↓snk ≃ v↓ of ↓sn ≃ v↓ satisfying lim sup
k↔↓

→J (v)≃v, sn+1≃v↑ ⇑
0 with

lim inf
k↔↓

(↓snk+1 ≃ v↓ ≃ ↓snk ≃ v↓) ⇐ 0. (3.12)

We assume that ↓snk ≃ v↓ is a subsequence of ↓sn ≃ v↓, such that (3.12) holds, for the

purposes of this analysis. Next,

lim inf
k↔↓


↓snk+1 ≃ v↓2 ≃ ↓snk ≃ v↓2



= lim inf
k↔↓

[(↓snk+1 ≃ v↓ ≃ ↓snk ≃ v↓)(↓snk+1 ≃ v↓+ ↓snk ≃ v↓)] ⇐ 0.

Based on Claim 2, we have,

lim sup
k↔↓

(1≃ εnk)

(
1≃ ϖ

ωnk

ωnk+1

)
↓tnk ≃ wnk↓2 + (1≃ εnk)

(
1≃ ϖ

ωnk

ωnk+1

)
↓unk ≃ tnk↓2

+ (1≃ εnk)ϑnk [(1≃ µ)≃ ϑnk ]↓unk ≃ Sunk↓

⇑ lim sup
k↔↓

[
↓snk ≃ v↓2 ≃ ↓snk+1 ≃ v↓2 + εnk↓J (snk)≃ v↓2

+ εnkM↗↗ + (1≃ εnk)ςnkM↗↗↗
]

= ≃ lim inf
k↔↓

[
↓snk+1 ≃ v↓2 ≃ ↓snk ≃ v↓2

]

signifying that

lim
k↔↓

↓wnk ≃ tnk↓ = 0, lim
k↔↓

↓unk ≃ Sunk↓ = 0, ↓unk ≃ tnk↓ = 0. (3.13)

Therefore, we can infer that lim
k↔↓

↓unk ≃wnk↓ = 0. Referring to the definition of wn, we have

↓snk ≃ wnk↓ = Knk↓snk ≃ snk→1↓ = εnk

Knk

εnk

↓snk ≃ snk→1↓ ↗ 0 as k ↗ ↖. (3.14)

This in conjunction with lim
k↔↓

↓unk ≃ wnk↓ = 0, implies that

lim
k↔↓

↓unk ≃ snk↓ = 0. (3.15)

Considering tnk = (1≃ ςnk ≃ ϑnk)unk + ϑnkSunk , it is evident that

↓tnk ≃ unk↓ ⇑ ϑn↓(Sun ≃ unk)↓+ ςn↓unk↓.

Hence, we obtain

↓tnk ≃ unk↓ = 0. (3.16)
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By using (3.15) and (3.16), we can deduce that

↓snk+1 ≃ snk↓ ⇑ ↓εnkJ (snk) + (1≃ εnk)tnk ≃ snk↓

⇑ εnk↓J (snk)≃ snk↓+ (1≃ εnk)↓tnk ≃ snk↓

⇑ εnk↓J (snk)≃ snk↓+ ↓tnk ≃ unk↓+ ↓unk ≃ snk↓ ↗ 0 as k ↗ ↖. (3.17)

Given that the sequence {snk} is bounded, it can be inferred that there exists a subsequence

{snkj
} of {snk} such that snkj

⇀ u. This further implies that

lim sup
k↔↓

→J (v)≃ v, snk ≃ v↑ = lim
j↔↓

→J (v)≃ v, snkj
≃ v↑ = →J (v)≃ v, u≃ v↑. (3.18)

From (3.14), it follows that wnk ⇀ u. Combining (3.13), lim
n↔↓

ωn = ω and Lemma 2.5, one

can conclude that u ↘ V I(E,F). Utilizing (3.15), we have unk ⇀ u. By the demiclosedness

of (I ≃S), we obtain u ↘ Fix(S). Consequently, u ↘ Fix(S)⇓ V I(E,F). Combining (3.18),

the definition of v and u ↘ Fix(S) ⇓ V I(E,F), we obtain

lim sup
k↔↓

→J (v)≃ v, snk ≃ v↑ = →J (v)≃ v, u≃ v↑ ⇑ 0, (3.19)

which in conjunction with (3.19) and (3.18), implies that

lim sup
k↔↓

→J (v)≃ v, snk+1 ≃ v↑ ⇑ lim sup
k↔↓

→J (v)≃ v, snk+1 ≃ snk↑+ lim sup
k↔↓

→J (v)≃ v, snk ≃ v↑

= →J (v)≃ v, u≃ v↑ ⇑ 0 (3.20)

Therefore (3.20) and Claim 3 in the light of Lemma 2.6 indicates that sn ↗ v as n ↗ ↖. Thus,

completes the proof.

Specifically, we may design a new algorithm for (VIP) if S = I (identity operator) in Algorithm

3.1. To be more exact, we have the corollary that follows:

Corollary 3.4. If F : D ↗ D is Lipschitz continuous, monotone and J : D ↗ D is a Q-

contraction with Q ↘ [0, 1). If the sequences ςn, εn, and ϑn be same as in Theorem 3.3 and if

V I(E,F) ↔= ⊋, let s0, s1 ↘ D and let the sequence {sn} be generated by






wn = sn +Kn(sn ≃ sn↑1),

tn = PE(wn ≃ ωnFwn),

un = PTn(wn ≃ ωnFtn), where the half-space Tn is defined by

Tn := {s ↘ D|→wn ≃ ωnFwn ≃ tn, s≃ tn↑ ⇑ 0},

sn+1 = εnJ (sn) + (1≃ εn)((1≃ ςn)un),

(3.21)



166 Z. A. Rather & R. Ahmad CUBO
28, 1 (2026)

where Kn and ωn are defined by (3.1) and (3.2), respectively. Then the iterative sequence {sn}
generated by (3.21) converges to v ↘ V I(E,F) in norm, where v = PV I(E,F)(J (v)).

3.2 Algorithm-II

Algorithm 3.2 Algorithm-II
Initialization: Choose K > 0, ω1 > 0, ϖ ↘ (0, 1). Let s0, s1 ↘ D be arbitrary.
Iterative step: Calculate sn+1 as follows:
Step 1. Given the iterates sn↑1 and sn(n ⇐ 1). Set wn = sn + Kn(sn ≃ sn↑1), where Kn is
defined by (3.1).
Step 2. Compute tn = PE(wn ≃ ωnFwn).
Step 3. Compute un = PTn(wn ≃ ωnFtn), where the half-space Tn is defined by

Tn := {s ↘ D | →wn ≃ ωnFwn ≃ tn, s≃ tn↑ ⇑ 0}.

Step 4. Compute sn+1 = εnJ (sn) + (1 ≃ εn)[(1 ≃ ϑn)(ςnun) + ϑnSun], and update ωn+1 by
(3.2).
Set n := n+ 1 and go to Step 1.

Theorem 3.5. Let conditions (A1)-(A4) holds and {ϱn} be a positive sequence with limn↔↓
εn
ϑn

=

0, where εn ∝ (0, 1) satisfies
∑↓

n=1 εn = ↖ and limn↔↓ εn = 0. Furthermore, for some a > 0,

ςn ↘ (0, 1), limn↔↓ ςn = 1, and
∑↓

n=0(1 ≃ ςn) = ↖, let ϑn ↘

a, (1↑µ)ϖn

2+µ+ϖn


∝ (a, 1 ≃ µ), then

the sequence {sn} produced by Algorithm 3.2 converges in norm to v ↘ Fix(S) ⇓ V I(E,F), where

v = PFix(S)→V I(E,F)J (v).

Proof. Claim 1. The sequence sn is bounded. Define tn = (1≃ ϑn)(ςnun) + ϑnSun.

↓tn ≃ v↓ = ↓(1≃ ϑn)(ςnun) + ϑnSun ≃ v↓

⇑ ↓(1≃ ϑn)ςn(un ≃ v) + ϑn(Sun ≃ v)↓+ (1≃ ϑn)(1≃ ςn)↓v↓. (3.22)

On the other hand,

↓(1≃ ϑn)ςn(un ≃ v) + ϑn(Sun ≃ v)↓2 = ((1≃ ϑn)ςn)
2↓un ≃ v↓2 + ϑ2n↓Sun ≃ v↓2

+ 2(1≃ ϑn)ςnϑn→Sun ≃ v, un ≃ v↑

⇑ ((1≃ ϑn)ςn + ϑn)
2 ↓un ≃ v↓2

+ ϑn (µϑn ≃ (1≃ µ)(1≃ ϑn)ςn) ↓Sun ≃ un↓2

⇑ ((1≃ ϑn)ςn + ϑn)
2 ↓un ≃ v↓2. (3.23)

we obtained the above inequality because ϑn <
(1≃ µ)ςn
2 + µ+ ςn

.



CUBO
28, 1 (2026)

Inertial viscosity Mann-type subgradient extragradient algorithms... 167

Thus it is implied from (3.23) that

↓(1≃ ϑn)ςn(un ≃ v) + ϑn(Sun ≃ v)↓ ⇑ ((1≃ ϑn)ςn + ϑn) ↓un ≃ v↓

⇑ (1≃ (1≃ ϑn)(1≃ ςn)) ↓un ≃ v↓

⇑ (1≃ (1≃ ϑn)(1≃ ςn)) ↓wn ≃ v↓

⇑ (1≃ (1≃ ϑn)(1≃ ςn)) [↓sn ≃ v↓+ εnM↗] . (3.24)

From (3.22), we have

↓tn ≃ v↓ ⇑ (1≃ (1≃ ϑn)(1≃ ςn)) [↓sn ≃ v↓+ εnM↗] + (1≃ ϑn)(1≃ ςn)↓v↓

⇑ (1≃ (1≃ ϑn)(1≃ ςn)) ↓sn ≃ v↓+ εnM↗ + (1≃ ϑn)(1≃ ςn)↓v↓

= (1≃ (1≃ ϑn)(1≃ ςn)) ↓sn ≃ v↓

+ (1≃ ϑn)(1≃ ςn)

[
εnM↗

(1≃ ϑn)(1≃ ςn)
+ ↓v↓

]

⇑ max

{
↓sn ≃ v↓, εnM↗

(1≃ ϑn)(1≃ ςn)
+ ↓v↓

}
:= M↗

for some M↗ > 0, hence

↓sn+1 ≃ v↓ = ↓εnJ (sn) + (1≃ εn)tn ≃ v↓

⇑ εn↓J (sn)≃ J (v)↓+ εn↓J (v)≃ v↓+ (1≃ εn)↓tn ≃ v↓

⇑ εnQ↓sn ≃ v↓+ εn↓J (v)≃ v↓+ (1≃ εn)M
↗

= εnQ↓sn ≃ v↓+ (1≃ εn)

[
M↗ +

εn
1≃ εn

↓J (v)≃ v↓
]

⇑ max

{
M↗ +

εn
1≃ εn

↓J (v)≃ v↓,Q↓sn ≃ v↓
}

⇑ · · · ⇑ max {M↗,Q↓s0 ≃ v↓} .

Which ensures the boundedness of {sn}, so the sequences {wn}, {J (sn)}, {tn}, and {un}
are also bounded.

Claim 2.

(1≃ εn)

(
1≃ ϖ

ωn
ωn+1

)
↓tn ≃ wn↓+ (1≃ εn)

(
1≃ ϖ

ωn
ωn+1

)
↓un ≃ tn↓

+ (1≃ εn)ϑn(1≃ µ≃ ϑn)↓Sun ≃ un↓2

⇑ ↓sn ≃ v↓2 ≃ ↓sn+1 ≃ v↓2 + εn↓J (sn)≃ v↓2 + (1≃ ςn)M
↗↗ + εnM

↗↗↗.

↓tn ≃ v↓2 = ↓(1≃ ϑn)(ςnun) + ϑnSun ≃ v↓2

= ↓(un ≃ v) + ϑn(Sun ≃ un)≃ (1≃ ϑn)(1≃ ςn)un↓2

⇑ ↓(un ≃ v) + ϑn(Sun ≃ un)↓2 ≃ 2(1≃ ϑn)(1≃ ςn)→un, ωn ≃ v↑



168 Z. A. Rather & R. Ahmad CUBO
28, 1 (2026)

= ↓un ≃ v↓2 + ϑ2n↓Sun ≃ un↓2 + 2ϑn→Sun ≃ un, un ≃ v↑≃

2(1≃ ϑn)(1≃ ςn)→un, ωn ≃ v↑

⇑ ↓un ≃ v↓2 + ϑ2n↓Sun ≃ un↓2 ≃ ϑn(1≃ µ)↓Sun ≃ un↓2

≃ 2(1≃ ϑn)(1≃ ςn)→un, ωn ≃ v↑

= ↓un ≃ v↓2 ≃ ϑn(1≃ µ≃ ϑn)↓Sun ≃ un↓2

≃ 2(1≃ ϑn)(1≃ ςn)→un, ωn ≃ v↑

⇑ ↓un ≃ v↓2 ≃ ϑn(1≃ µ≃ ϑn)↓Sun ≃ un↓2 + (1≃ ςn)M
↗↗

for some M↗↗ > 0. Now,

↓sn+1 ≃ v↓2 = ↓εn(J (sn)≃ v) + (1≃ εn)(tn ≃ v)↓2

⇑ εn↓J (sn)≃ v↓2 + (1≃ εn)↓tn ≃ v↓2

⇑ εn↓J (sn)≃ v↓2 + ↓sn ≃ v↓2 + εnM
↗↗↗

≃ (1≃ εn)

(
1≃ ϖ

ωn
ωn+1

)
↓tn ≃ wn↓ ≃ (1≃ εn)

(
1≃ ϖ

ωn
ωn+1

)
↓un ≃ tn↓

≃ (1≃ εn)ϑn(1≃ µ≃ ϑn)↓Sun ≃ un↓2 + (1≃ ςn)M
↗↗.

Hence, by simple deformation, we obtain the desired result.

Claim 3.

↓sn+1 ≃ v↓2 = (1≃ (1≃Q)εn)↓sn ≃ v↓2

+ εn(1≃Q)

[
(1≃ εn)εnM↗ + 2→J (v)≃ v, sn+1 ≃ v↑

1≃Q

]
.

By using the identical reasons as in Claim 3 of Theorem 3.3, the required result can be

produced.

Claim 4. Sequence {↓sn ≃ v↓2} converges to zero. We do not include the proof here because it is

comparable to Claim 4 of Theorem 3.3.

The following Corollary will be obtained if we put S = I in Algorithm 3.2.

Corollary 3.6. Consider F ,J as in Corollary 3.4 and let εn, ςn, ϑn be same as in Theorem 3.5.

Then the sequence {sn} with s0, s1 ↘ D generated by (3.25)






wn = sn +Kn(sn ≃ sn↑1),

tn = PE(wn ≃ ωnFwn),

un = PTn(wn ≃ ωnFtn),where the half-space Tn is defined by

Tn := {s ↘ D|→wn ≃ ωnFwn ≃ tn, s≃ tn↑ ⇑ 0},

sn+1 = εnJ (sn) + (1≃ εn)(ςnun + ϑn(1≃ ςn)un),

(3.25)
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converges to v ↘ V I(E,F) in norm, where v = PV I(E,F)(J (v)). where Kn and ωn are defined by

(3.1) and (3.2), respectively.

4 Numerical example

In this section, we provide a numerical example to illustrate the behavior of the proposed algorithms

and compare them with some existing strongly convergent algorithms. The parameters are set as

follows: εn = 1
n+1 , ϑn = n

2n+1 , ςn = n
30n+1 , ω1 = 1, ϖ = 0.5, J (s) = 0.5s, K = 0.3, ϱn = 100

(n+1)2 .

The solution s↗ is known, so we use Dn = ↓sn ≃ s↗↓ to measure the n-th iteration error and

convergence of Dn to 0 indicates that {sn} converges to the problem’s solution.

Example 4.1. We take the nonlinear operator F : R2 ↗ R2 defined by F(s, t) = (s+t+sin s,≃s+

t+ sin s), feasible set E = [≃1, 1]′ [≃1, 1]. Clearly F is monotone and Lipschitz continuous with

constant L = 3 and let the matrix F =



1 0

0 2



. We consider the mapping S : R2 ↗ R2 by

Su = ↓F↓↑1Fu, where u = (s, t)T . It is obvious to see that S is 0-demicontractive and thus ϑ = 0.

The solution of the problem is s↗ = (0, 0)T . The initial values s0 = s1 are randomly generated by

k ∞ rand(2, 1) in MATLAB. The numerical results of all the algorithms with di!erent initial values

are described in Figures (Figure 1, Figure 2, Figure 3, Figure 4).

Figure 1: The convergence graphs of {Dn = ↓sn ≃ s↗↓} vs iteration (n = 40).
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Figure 2: The convergence graphs of {Dn = ↓sn ≃ s↗↓} vs iteration (n = 30).

Figure 3: The Elapsed time graph of the sequence {Dn = ↓sn ≃ s↗↓} with initial values s0 = s1 =
30rand(2, 1) and n = 300
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Figure 4: The Elapsed time graph of the sequence {Dn = ↓sn ≃ s↗↓} with initial values s0 = s1 =
40rand(2, 1) and n = 250.

Example 4.2. Consider the linear operator F : Rm ↗ Rm (m = 50, 100, 150, 200) in the form

F(s) = Ms+q, where q ↘ Rm and M = NNT +Q+D, N is a m′m matrix, Q is a m′m skew-

symmetric matrix, and D is a m′m diagonal matrix with its diagonal entries being nonnegative

(hence M is positive symmetric definite). The feasible set E is given by E = {s ↘ Rm : ≃2 ⇑ si ⇑
5, i = 1, . . . ,m}. It is clear that F is monotone and Lipschitz continuous with constant L = ↓M↓.
In this experiment, all entries of N,D are generated randomly in [0, 2], Q is generated randomly

in [≃2, 2] and q = 0. Let S : D ↗ D be given by Ss = 0.5s. It is easy to see that the solution of the

problem in this case is s↗ = {0}. The initial values s0 = s1 are randomly generated by k∞rand(2, 1)
in MATLAB. Figure 5 shows the numerical behavior of all the algorithms in di!erent dimensions

(m = 50, m = 100, m = 150, m = 200).

Example 4.3. Finally, we consider our problem in the infinite-dimensional Hilbert space D =

L2([0, 1]) with inner product →s, y↑ =
 1
0 s(t)y(t)dt and norm ↓s↓ =

 1
0 |s(t)|2dt

 1
2
, ⇒s, y ↘ D. Let

the feasible set be the unit ball E = {s ↘ D : ↓s↓ ⇑ 1}. Define an operator F : E ↗ D by

(Fs)(t) =

 1

0
(s(t)≃G(t, u)g(s(u)))du+ h(t)), t ↘ [0, 1], s ↘ E,

where,

G(t, u) =
2tuet+u

e
∈
e2 ≃ 1

, g(s) = cos(s), h(t) =
2tet

e
∈
e2 ≃ 1

.
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Figure 5: The convergence graphs of {Dn = ↓sn ≃ s↗↓} vs iteration(n = 200).

It is known that F is monotone and L-Lipschitz continuous with L = 2 ([13]). The projection on

E is inherently explicit, that is,

PE(s) =






s

↓s↓ , if ↓s↓ > 1;

s, if ↓s↓ ⇑ 1.

The mapping S : L2([0, 1]) ↗ L2([0, 1]) is of the form

(Ss)(t) =
 1

0
ts(u) du, t ↘ [0, 1].

A straightforward computation implies that S is 0-demicontractive. The solution of the problem

is s↗(t) = 0. The maximum number of iterations 50 is used as a common stopping criterion for all

algorithms. Figure 6 shows the behaviors of Dn = ↓sn(t) ≃ s↗(t)↓ generated by all the algorithms

with four starting points.
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Figure 6: The convergence graphs of {Dn = ↓sn ≃ s↗↓} vs iteration (n = 50).

5 Conclusion

In this study, we investigated two self-adaptive iterative schemes for seeking a common solution

to the variational inequality problem involving a monotone and Lipschitz continuous mapping

and the fixed point problem with a demicontractive mapping. We proposed two new inertial

extragradient methods with a new step size to compute the approximate solutions of problems in a

real Hilbert space. The strong convergence of the suggested methods is established under standard

and suitable conditions. Finally, some computational tests are given to explain our convergent

results. The algorithms obtained in this paper improved and summarized some of the recent

results in the literature.
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satisfying certain conditions. We prove the boundedness of
the canonical Sturm-Liouville Hausdor! operators on the
space Lp(R+, A(x) dx), p ↑ [1,↓). We investigate canonical
Sturm-Liouville wavelet transform, and obtain some useful
results. The relation between the canonical Sturm-Liouville
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operator is also established. The properties of the adjoint
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RESUMEN

En el presente arículo, introducimos el operador de Sturm-
Liouville canónico LM := d2

dx2 +
(

A→(x)
A(x) → 2iab x

)
d
dx →

(
a2

b2
x2 + iab x

A→(x)
A(x) + iab

)
, donde A es una función no-

negativa que satisface ciertas condiciones. Demostramos el
acotamiento de los operadores Hausdor! de Sturm-Liouville
canónicos en el espacio Lp(R+, A(x) dx), p ↑ [1,↓). In-
vestigamos la transformada de ondeletas de Sturm-Liouville
canónica y obtenemos algunos resultados útiles. También se
establece la relación entre la transformada de ondeletas de
Sturm-Liouville canónica y el operador Hausdor! de Sturm-
Liouville canónico. Se discuten las propiedades de los ad-
juntos a operadores Hausdor! de Sturm-Liouville canónicos.
El análisis armónico asociado al operador LM juega un rol
importante para establecer los resultados de este artículo.

Keywords and Phrases: Canonical Sturm-Liouville transform, canonical Sturm-Liouville convolution, canonical

Sturm-Liouville Hausdor! operators, canonical Sturm-Liouville wavelet transform.
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1 Introduction

The study of Hausdor! operators, which originated from some classical summation methods, has a

long history in real and complex analysis. In the one-dimensional setting, Hausdor! operators on

the real line were introduced in [10] and studied on the Hardy space in [18]. The natural generaliza-

tion in several dimensions was introduced and studied in [3,5,16]. Particularly, Hausdor! operators

are interesting operators in harmonic analysis [19]. It contains some important operators, such as

Hardy operator, adjoint Hardy operator [6,15], and the Cesàro operator [14] in one dimension. The

Hardy-Littlewood-Pólya operator and the Riemann-Liouville fractional integral operator can also

be derived from the Hausdor! operator [1, 25]. The modern study of general Hausdor! operators

on L
1(R) and the real Hardy space H

1(R) over the real line was pioneered by Liflyand and Móricz

in [18]. Many research papers have addressed the boundedness of the Hausdor! operator on Hardy

spaces. For instance, Liflyand and his collaborators in [16,17] proved, by more e!ective ways, that

the Hausdor! operator has the same behavior on the Hardy space H
1(R) as that in the Lebesgue

space L
1(R). Recently, Daher and Saadi in [7, 8] investigated the Dunkl Hausdor! operator on

the Lebesgue space L
1
ω(R) and on the Hardy space H

1
ω(R). Subsequently, Mondal and Poria [22]

studied Hausdor! operators associated with the Opdam-Cherednik operator. Furthermore, Tyr

[35] studied the boundedness of q-Hausdor! operators on q-Hardy spaces. Another fundamental

tool in harmonic analysis is the canonical Sturm-Liouville Hausdor! operators, which is the main

object of study in this paper.

Here, we denote by M =



a b

c d



 an arbitary matrix in SL(2,R) such that b > 0. We define the

canonical Sturm-Liouville operator L
M on R→

+ by

L
M :=

d2

dx2
+

(
A

↑(x)

A(x)
→ 2i

a

b
x

)
d

dx
→

(
a
2

b2
x
2 + i

a

b
x
A

↑(x)

A(x)
+ i

a

b

)
,

where A is a nonnegative function satisfying certain conditions.

Note that if M =



 0 1

→1 0



, the operator L
M is reduced to the Sturm-Liouville operator L:

L :=
d2

dx2
+

A
↑(x)

A(x)

d

dx
.

The classical Sturm-Liouville operator L plays an important role in analysis [2, 39]. In particular,

the two references [4,33] investigate standard constructions of harmonic analysis, such as translation

operators, convolution product, and Fourier transform, in connection with the operator L.
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Using the Sturm-Liouville harmonic analysis [4, 33], for all ω ↑ C, the system






L
M
u = →

ω
2

b2
u,

u(0) = e
id
2bε

2

, u
↑(0) = 0,

admits a unique solution, denoted by ε
M
ε and given by

ε
M
ε (x) = e

i
2 (

d
b ε

2+ a
b x

2)
εω

b
(x), x ↑ R+,

where εε(x) is the Sturm-Liouville kernel [29,30].

In this paper, we introduce the canonical Sturm-Liouville transform FM :

FM (f)(ω) :=

∫

R+

ε
M
ε (x)f(x)A(x) dx, ω ↑ R+.

The canonical Sturm-Liouville transform FM can be regarded as a generalization of the Sturm-

Liouville transform F (see [20,27–32]):

F(f)(ω) :=

∫

R+

εε(x)f(x)A(x) dx, ω ↑ R+.

Let ϑ ↑ L
1(R+). We define the Hausdor! operator Hϑ associated with the canonical Sturm-

Liouville operator L
M for f ↑ L

1(R+, A(x) dx) by

Hϑf(x) :=

∫

R+

ft(x)ϑ(t) dt,

where ft is the dilation of f given by

ft(x) :=
A
(
x
t

)

tA(x)
f

(
x

t

)
, x ↑ R+.

The main purpose of this paper is to extend some results of the classical Hausdor! operator given in

[38] to the framework of canonical Sturm-Liouville theory, and to investigate the canonical Sturm-

Liouville wavelet transform. We prove the boundedness of canonical Sturm-Liouville Hausdor!

operator in space L
p(R+, A(x) dx), p ↑ [1,↓). The relation between the canonical Sturm-Liouville

wavelet transform and the canonical Sturm-Liouville Hausdor! operator is also established. Next,

we introduce the adjoint operator H
→
ϑ on L

2(R+, A(x) dx) by

H
→
ϑf(x) :=

∫

R+

f(tx)ϑ(t) dt, x ↑ R+.

We present the properties of the adjoint operator H→
ϑ, including its boundedness on L

p(R+, A(x) dx),
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p ↑ [1,↓). We also establish a relation between the canonical Sturm-Liouville wavelet transform

and the adjoint operator H
→
ϑ.

Note that if A(x) = x
2ω+1, ϖ > →1/2, the operator LM is reduced to the canonical Bessel operator

L
M
ω :

L
M
ω :=

d2

dx2
+

(
2ϖ+ 1

x
→ 2i

a

b
x

)
d

dx
→

(
a
2

b2
x
2 + 2i(ϖ+ 1)

a

b

)
.

In this case ε
M
ε (x) = ε

M
ε,ω(x) = e

i
2 (

d
b ε

2+ a
b x

2)
jω(

εx
b ), where jω is the normalized Bessel function of

the first kind and order ϖ. The canonical transform FM is the canonical Fourier-Bessel transform

FM
ω :

FM
ω (f)(ω) :=

∫

R+

ε
M
ε,ω(x)f(x)x

2ω+1dx, ω ↑ R+.

Recently, the canonical Fourier-Bessel transform FM
ω is the goal of many applications in the

harmonic analysis (see [9, 11,12,21,26]).

This paper is organized as follows. In Section 2, we recall some results about the Sturm-Liouville

transform F, the Sturm-Liouville translation ϱy and the Sturm-Liouville convolution ↔. In Section

3, we introduce the canonical Sturm-Liouville operator L
M , and we investigate the properties of

the canonical Sturm-Liouville transform FM , the canonical Sturm-Liouville translation ϱ
M
y and

the canonical Sturm-Liouville convolution ↔
M associated with this operator. In Section 4, we

introduce the canonical Sturm-Liouville Hausdor! operators Hϑ and we establish their properties.

In the last section, we investigate the canonical Sturm-Liouville wavelet transform and derive its

relation with the operators Hϑ and H
→
ϑ.

2 Sturm-Liouville harmonic analysis

In this section we recall some results about the harmonic analysis associated with the Sturm-

Liouville operator (Sturm-Liouville transform, Sturm-Liouville translation and Sturm-Liouville

convolution).

We consider the second-order di!erential operator L defined on R→
+ by

L :=
d2

dx2
+

A
↑(x)

A(x)

d

dx
,

where

A(x) = x
2ω+1

B(x), ϖ > →1/2,

for B a positive, even, infinitely di!erentiable function on R such that B(0) = 1. Moreover we

assume that A satisfies the following conditions:
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(i) A is increasing and lim
x↓↔

A(x) = ↓.

(ii)
A

↑

A
is decreasing and lim

x↓↔

A
↑(x)

A(x)
= 0.

(iii) There exists a constant ς > 0 such that

A
↑(x)

A(x)
=

2ϖ+ 1

x
+ e

↗ϖx
D(x), (2.1)

where D is an infinitely di!erentiable function on R→
+, bounded and with bounded derivatives

on all intervals [x0,↓), for x0 > 0.

This operator was studied in [4, 33], and the following results have been established:

(I) For all ω ↑ C, the equation 




Lu = →ω
2
u,

u(0) = 1, u
↑(0) = 0,

admits a unique solution, denoted by εε, with the following properties:

• for x ↑ R+, the function ω ↗↘ εε(x) is analytic on C.

• For ω ↑ C, the function x ↗↘ εε(x) is even and infinitely di!erentiable on R.

(II) For nonzero ω ↑ C, the equation

Lu = →ω
2
u,

has a solution !ε satisfying

!ε(x) =
e
iεx


A(x)

V (x,ω),

with

lim
x↓↔

V (x,ω) = 1.

Consequently there exists a function (spectral function) ω ↗↘ c(ω), such that

εε(x) = c(ω)!ε(x) + c(→ω)!↗ε(x), x ↑ R+,

for nonzero ω ↑ C.

Moreover there exist positive constants k1, k2, k, such that

k1|ω|
2ω+1

≃ |c(ω)|↗2
≃ k2|ω|

2ω+1
,

for all ω such that Imω ≃ 0 and |ω| ⇐ k.
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(III) The Sturm–Liouville kernel εε(x) possesses the following integral representation of Mehler-

type

εε(x) =

∫ x

0
K(x, y) cos(ωy) dy, x > 0, (2.2)

where K(x, .) is an even positive continuous function on (→x, x) and supported in [→x, x].

Using the Mehler integral representation formula (2.2), we obtain

→1 ≃ εε(x) ≃ 1, ω, x ↑ R+. (2.3)

We denote by

• µ the measure defined on R+ by

dµ(x) := A(x) dx,

and by L
p(µ), p ↑ [1,↓], the space of measurable functions f on R+, such that

⇒f⇒Lp(µ) :=

∫

R+

|f(x)|p dµ(x)

1/p

< ↓, p ↑ [1,↓),

⇒f⇒L↑(µ) := ess sup
x↘R+

|f(x)| < ↓.

• φ the measure defined on R+ by

dφ(ω) :=
dω

2↼|c(ω)|2
,

and by L
p(φ), p ↑ [1,↓], the space of measurable functions f on R+, such that

⇒f⇒Lp(ϱ) < ↓.

The Sturm-Liouville transform is the Fourier transform associated with the operator L and is

defined for f ↑ L
1(µ) by

F(f)(ω) :=

∫

R+

εε(x)f(x)dµ(x), ω ↑ R+. (2.4)

Some of the properties of the Sturm-Liouville transform F are collected bellow.
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Theorem 2.1 ([2, 4, 33,39]). (i) Plancherel theorem. The Sturm–Liouville transform F ex-

tends uniquely to an isometric isomorphism of L2(µ) onto L
2(φ). In particular,

⇒f⇒L2(µ) = ⇒F(f)⇒L2(ϱ).

(ii) Inversion theorem. Let f ↑ L
1(µ), such that F(f) ↑ L

1(φ). Then

f(x) =

∫

R+

εε(x)F(f)(ω) dφ(ω), a.e. x ↑ R+.

The Sturm-Liouville kernel εε satisfies the product formula [4, 33]

εε(x)εε(y) =

∫

R+

εε(z)w(x, y, z) dµ(z) for x, y ↑ R+; (2.5)

where w(x, y, .) is a measurable positive function on R+, with support in [|x→ y|, x+ y], satisfying
∫

R+

w(x, y, z) dµ(z) = 1,

w(x, y, z) = w(y, x, z) for z ↑ R+, (2.6)

w(x, y, z) = w(x, z, y) for z > 0. (2.7)

We now define the generalized translation operator induced by (2.5). For f ↑ L
1(µ), the linear

operator

ϱyf(x) :=

∫

R+

f(z)w(x, y, z) dµ(z), x, y ↑ R+, (2.8)

will be called Sturm-Liouville translation [4, 33].

As a first remark, we note that the relation (2.6) means that

ϱyf(x) = ϱxf(y), x, y ↑ R+.

Theorem 2.2 ([23,29,30]). (i) For all y ⇐ 0 and f ↑ L
p(µ), p ↑ [1,↓], we have

⇒ϱyf⇒Lp(µ) ≃ ⇒f⇒Lp(µ).

(ii) For f ↑ L
2(µ) and y ↑ R+, we have

F(ϱyf)(ω) = εε(y)F(f)(ω), ω ↑ R+.

Let f, g ↑ L
2(µ). The Sturm-Liouville convolution f ↔ g of f and g is defined by

f ↔ g(x) :=

∫

R+

ϱxf(y)g(y) dµ(y), x ↑ R+. (2.9)
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The convolution ↔ is commutative, associative and satisfies the Young inequality (see [23]). Let

p, q, r ↑ [1,↓] such that 1
p + 1

q = 1 + 1
r . Then for f ↑ L

p(µ) and g ↑ L
q(µ) we have

⇒f ↔ g⇒Lr(µ) ≃ ⇒f⇒Lp(µ)⇒g⇒Lq(µ).

Theorem 2.3 ([23,34]). (i) For f, g ↑ L
2(µ), the function f ↔ g belongs to L

↔(µ), and

f ↔ g(x) =

∫

R+

εε(x)F(f)(ω)F(g)(ω) dφ(ω), x ↑ R+.

(ii) Let f, g ↑ L
2(µ). Then

∫

R+

|f ↔ g(x)|2 dµ(x) =

∫

R+

|FM (f)(ω)|2 |FM (g)(ω)|2 dφ(ω),

where both sides are finite or infinite.

Example 2.4 ([13, 24]). Note that if A(x) = x
2ω+1, with ϖ > →1/2, the operator L is reduced to

the Bessel operator Lω:

Lω :=
d2

dx2
+

2ϖ+ 1

x

d

dx
.

In this case εε(x) = jω(ωx), where jω is the normalized Bessel function of the first kind and order

ϖ. We denote by µω the measure defined by dµω(x) := x
2ω+1dx.

The Fourier-Bessel transform Fω is defined for f ↑ L
1(µω) by

Fω(f)(ω) :=

∫

R+

jω(ωx)f(x) dµω(x), ω ↑ R+.

The Fourier-Bessel translation operators are defined for f ↑ L
1(µω) by

ϱ
ω
y f(x) :=

∫

R+

f(z)wω(x, y, z) dµω(z), x, y ↑ R+,

being wω(x, y, .) the kernel given by

wω(x, y, z) = aω
[(x+ y)2 → z

2]ω↗
1
2 [z2 → (x→ y)2]ω↗

1
2

22ω↗1(xyz)2ω
↽(|x↗y|,x+y)(z), (2.10)

where aω = !(ω+1)≃
ς!(ω+ 1

2 )
and ↽(|x↗y|,x+y) is the characteristic function of the interval (|x→ y|, x+ y).

Let f, g ↑ L
2(µω). The Fourier-Bessel convolution f ↔ω g of f and g is defined by

f ↔ω g(x) :=

∫

R+

ϱ
ω
x f(y)g(y) dµω(y), x ↑ R+.
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3 Canonical Sturm-Liouville operator

Throughout this paper, we denote by M =



a b

c d



 an arbitary matrix in SL(2,R) such that

b > 0. We define the canonical Sturm-Liouville operator L
M on R→

+ by

L
M :=

d2

dx2
+

(
A

↑(x)

A(x)
→ 2i

a

b
x

)
d

dx
→

(
a
2

b2
x
2 + i

a

b
x
A

↑(x)

A(x)
+ i

a

b

)
,

where A is the nonnegative function given in Section 2.

Note that if M =



 0 1

→1 0



, the operator L
M is reduced to the Sturm-Liouville operator L:

L :=
d2

dx2
+

A
↑(x)

A(x)

d

dx
.

For all ω ↑ C, the equation 




L
M
u = →

ω
2

b2
u,

u(0) = e
id
2bε

2

, u
↑(0) = 0,

admits a unique solution, denoted by ε
M
ε and given by

ε
M
ε (x) = e

i
2 (

d
b ε

2+ a
b x

2)
εω

b
(x), x ↑ R+.

For f ↑ L
1(µ), we define the canonical Sturm-Liouville transform FM (f) by

FM (f)(ω) :=

∫

R+

ε
M
ε (x)f(x) dµ(x), ω ↑ R+.

This transform can be written as

FM (f)(ω) = e
id
2bε

2

F
(
e

ia
2bx

2

f

)(
ω

b

)
, f ↑ L

1(µ), (3.1)

where F is the Sturm-Liouville transform given by (2.4).

We denote by φb, b > 0, the measure defined on R+ by

dφb(ω) :=
dω

2↼b|c(εb )|
2
,

and by L
p(φb), p ↑ [1,↓], the space of measurable functions f on R+, such that ⇒f⇒Lp(ϱb) < ↓.
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Theorem 3.1. (i) Let f ↑ L
1(µ), such that FM (f) ↑ L

1(φb). Then

f(x) =

∫

R+

ε
N
ε (x)FM (f)(ω) dφb(ω), a.e. x ↑ R+,

where N is the matrix given by N =



→a b

c →d



.

(ii) For f ↑ L
2(µ) we have

⇒FM (f)⇒L2(ϱb) = ⇒f⇒L2(µ).

Proof. (i) follows from Theorem 2.1 (ii) and relation (3.1). (ii) follows from Theorem 2.1 (i) and

relation (3.1).

For f ↑ L
1(µ), we define the canonical Sturm-Liouville translation operators by

ϱ
N
y f(x) := e

↗ ia
2b (x

2+y2)

∫

R+

f(z)e
ia
2b z

2

w(x, y, z) dµ(z), x, y ↑ R+. (3.2)

It is easy to prove the following results.

Theorem 3.2. The operators ϱ
N
y , y ↑ R+, satisfy:

(i) ϱ
N
y f(x) = ϱ

N
x f(y), x, y ↑ R+.

(ii) ϱ
N
y f(x) = e

↗ ia
2b (x

2+y2)
ϱy

(
f(z)e

ia
2b z

2
)
(x), where ϱy is the Sturm-Liouville translation given by

(2.8).

(iii) ϱ
M
y ε

M
ε (x) = e

↗ id
2bε

2

ε
M
ε (x)εM

ε (y).

Theorem 3.3. (i) For all y ↑ R+ and f ↑ L
p(µ), p ↑ [1,↓], we have

⇒ϱ
N
y f⇒Lp(µ) ≃ ⇒f⇒Lp(µ).

(ii) For f ↑ L
2(µ) and y ↑ R+, we have

FM (ϱNy f)(ω) = e
id
2bε

2

ε
N
ε (y)FM (f)(ω), ω ↑ R+,

where N =



→a b

c →d



.
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Proof. (i) follows from Theorem 2.2 (i) and Theorem 3.2 (ii).

(ii) Let f ↑ L
1(µ) ⇑ L

2(µ). Then

FM (ϱNy f)(ω) =

∫

R+

ϱ
N
y f(x)εM

ε (x) dµ(x)

=

∫

R+


e
↗ ia

2b (x
2+y2)

∫

R+

f(z)e
ia
2b z

2

w(x, y, z) dµ(z)


ε
M
ε (x) dµ(x).

By using Fubini’s theorem, (2.6) and (2.7) we obtain

FM (ϱNy f)(ω) = e
↗ ia

2by
2
∫

R+

f(z)e
ia
2b z

2

∫

R+

ε
M
ε (x)e↗

ia
2bx

2

w(z, y, x) dµ(x)


dµ(z).

And by Theorem 3.2 (iii) we deduce that

FM (ϱNy f)(ω) = e
id
2bε

2

ε
N
ε (y)FM (f)(ω), ω ↑ R+. (3.3)

Since L
1(µ) ⇑ L

2(µ) is dense in L
2(µ), the formula (3.3) remains valid for f ↑ L

2(µ).

Let f, g ↑ L
2(µ). The canonical Sturm-Liouville convolution f ↔

N
g of f and g is defined by

f ↔
N
g(x) :=

∫

R+

ϱ
N
x f(y)


e

ia
b y2

g(y)

dµ(y), x ↑ R+. (3.4)

Then we can write

f ↔
N
g(x) = e

↗ ia
2bx

2
(
e

ia
2b z

2

f

)
↔

(
e

ia
2b z

2

g

)
(x), x ↑ R+, (3.5)

where ↔ is the Sturm-Liouville convolution given by (2.9).

The canonical Sturm-Liouville convolution ↔
N is commutative, associative and satisfies the Young

inequality. Let p, q, r ↑ [1,↓] such that 1
p +

1
q = 1+ 1

r . Then for f ↑ L
p(µ) and g ↑ L

q(µ) we have

⇒f ↔
N
g⇒Lr(µ) ≃ ⇒f⇒Lp(µ)⇒g⇒Lq(µ).

Theorem 3.4. (i) For f, g ↑ L
2(µ), the function f ↔

N
g belongs to L

↔(µ), and

f ↔
N
g(x) =

∫

R+

e
↗ id

2bε
2

ε
N
ε (x)FM (f)(ω)FM (g)(ω) dφb(ω), x ↑ R+.

(ii) Let f, g ↑ L
2(µ). Then

∫

R+

|f ↔
N
g(x)|2 dµ(x) =

∫

R+

|FM (f)(ω)|2|FM (g)(ω)|2 dφb(ω),

where both sides are finite or infinite.
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Proof. (i) follows from (3.5), Theorem 2.3 (i) and (3.1). (ii) follows from (3.5), Theorem 2.3 (ii)

and (3.1).

Example 3.5 ([9,11,12,21,26]). Note that if A(x) = x
2ω+1, ϖ > →1/2, the operator L

M is reduced

to the canonical Bessel operator L
M
ω :

L
M
ω :=

d2

dx2
+

(
2ϖ+ 1

x
→ 2i

a

b
x

)
d

dx
→

(
a
2

b2
x
2 + 2i(ϖ+ 1)

a

b

)
.

In this case ε
M
ε (x) = ε

M
ε,ω(x) = e

i
2 (

d
b ε

2+ a
b x

2)
jω(

εx
b ).

The canonical Fourier-Bessel transform FM
ω is defined for f ↑ L

1(µω) by

FM
ω (f)(ω) :=

∫

R+

ε
M
ε,ω(x)f(x) dµω(x), ω ↑ R+.

Recently, the canonical Fourier-Bessel transform FM
ω is the goal of many applications in the har-

monic analysis.

The canonical Fourier-Bessel translation operators are defined for f ↑ L
1(µω) by

ϱ
ω,N
y f(x) := e

↗ ia
2b (x

2+y2)

∫

R+

f(z)e
ia
2b z

2

wω(x, y, z) dµω(z), x, y ↑ R+,

being wω(x, y, .) the kernel given by (2.10).

Let f, g ↑ L
2(µω). The canonical Fourier-Bessel convolution f ↔

N
ω g of f and g is defined by

f ↔
N
ω g(x) :=

∫

R+

ϱ
ω,N
x f(y)


e

ia
b y2

g(y)

dµω(y), x ↑ R+.

4 Canonical Sturm-Liouville Hausdor! operator

In this section we define and study the Hausdor! operator associated with the canonical Sturm-

Liouville operator L
M .

Let f ↑ L
p(µ), p ↑ [1,↓) and t > 0. We define the dilation function ft by

ft(x) :=
A
(
x
t

)

tA(x)
f

(
x

t

)
, (4.1)

and satisfies

⇒ft⇒Lp(µ) ≃

(
k(t)

t

)1↗ 1
p

⇒f⇒Lp(µ), (4.2)

where

k(t) = sup
x↘R+

(
A(x)

A(tx)

)
.
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From (2.1), there exist two constants C1, C2 > 0, such that

C1x
2ω+1

≃ A(x) ≃ C2x
2ω+1

, x ↑ R→
+.

Therefore,
1

Ct2ω+1
≃ k(t) ≃

C

t2ω+1
, t > 0,

where C = C2
C1

.

Let ϑ ↑ L
1(R+). We define the Hausdor! operator Hϑ associated with the canonical Sturm-

Liouville operator L
M for f ↑ L

1(µ) by

Hϑf(x) :=

∫

R+

ft(x)ϑ(t) dt. (4.3)

If we choose ϑ(t) = ⇀(1 → t)φ↗1
↽(0,1)(t), ⇀ > 0, we obtain the canonical Sturm-Liouville Cesàro

operator of order ⇀ denoted by Cφ and given by

Cφf(x) := ⇀

∫ 1

0
ft(x)(1→ t)φ↗1 dt.

A brief history of the study of Cesàro operator can be found in [14].

If we choose ϑ(t) = 1
t↽(1,↔)(t), we obtain the canonical Sturm-Liouville Hardy operator denoted

by H and given by

Hf(x) :=

∫ ↔

1
ft(x)

dt

t
.

It is well known that Hardy operators are important operators in harmonic analysis, for instance,

see [6, 15].

If we choose ϑ(t) = 1
max(1,t) , we obtain the canonical Sturm-Liouville Hardy-Littlewood-Pólya

operator denoted by P and given by

Pf(x) :=

∫ 1

0
ft(x)dt+

∫ ↔

1
ft(x)

dt

t
.

The study of Hardy-Littlewood-Pólya operators can be found in [1].

If we choose ϑ(t) = 1
!(↼)

(1↗ 1
t )

ε↓1

t ↽(1,↔)(t), ⇁ > 0 we obtain the canonical Sturm-Liouville Riemann-

Liouville fractional integral operator denoted by I and given by

If(x) :=
1

”(⇁)

∫ ↔

1
ft(x)

(
1→

1

t

)↼↗1 dt

t
.

The study of Riemann-Liouville fractional integral operators can be found in [25].
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Theorem 4.1. Let ϑ ↑ L
1(R+). Then for f ↑ L

1(µ), we have

FM (Hϑf)(ω) =

∫

R+

FM (ft)(ω)ϑ(t) dt, ω ↑ R+.

Proof. Let ϑ ↑ L
1(R+), and let f ↑ L

1(µ). Then by (4.3) we have

FM (Hϑf)(ω) =

∫

R+

Hϑf(x)ε
M
ε (x) dµ(x) =

∫

R+

∫

R+

ft(x)ϑ(t) dt


ε
M
ε (x) dµ(x).

Since ∫

R2
+

|ft(x)||ϑ(t)||ε
M
ε (x)| dtdµ(x) ≃ ⇒ϑ⇒L1(R+)⇒f⇒L1(µ) < ↓,

by Fubini’s theorem we obtain

FM (Hϑf)(ω) =

∫

R+

∫

R+

ft(x)ε
M
ε (x) dµ(x)


ϑ(t) dt =

∫

R+

FM (ft)(ω)ϑ(t) dt.

The theorem is proved.

Theorem 4.2. Let ϑ be a measurable function on R+ such that

Cϑ,p :=

∫

R+

(
k(t)

t

)1↗ 1
p

|ϑ(t)| dt < ↓. (4.4)

Then the Hausdor! operator Hϑ is bounded on L
p(µ), p ↑ [1,↓) with

⇒Hϑf⇒Lp(µ) ≃ Cϑ,p⇒f⇒Lp(µ).

Proof. By using Minkowski’s inequality for integrals, we have

⇒Hϑf⇒Lp(µ) =

∫

R+



∫

R+

ft(x)ϑ(t) dt



p

dµ(x)

1/p

≃

∫

R+

∫

R+

|ft(x)||ϑ(t)| dt

p

dµ(x)

1/p

≃

∫

R+

∫

R+

|ft(x)|
p
|ϑ(t)|p dµ(x)

1/p

dt =

∫

R+

⇒ft⇒Lp(µ)|ϑ(t)| dt.

Then by (4.2) we obtain

⇒Hϑf⇒Lp(µ) ≃ Cϑ,p⇒f⇒Lp(µ).

Going back to the definition of

∫

R+

∫

R+

|ft(x)||ϑ(t)| dt

p

dµ(x)

1/p

,
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we deduce that the integral

Hϑf(x) =

∫

R+

ft(x)ϑ(t) dt,

is absolutely convergent for almost all x ↑ R+, and defines a function Hϑf ↑ L
p(R+).

Let f, g ↑ L
2(µ), and let ϑ be a measurable function on R+ satisfying the condition

Cϑ,2 :=

∫

R+

(
k(t)

t

) 1
2

|ϑ(t)| dt < ↓. (4.5)

We define the adjoint operator H
→
ϑ by the relation

∫

R+

H
→
ϑf(x)g(x) dµ(x) =

∫

R+

f(x)Hϑg(x) dµ(x).

Theorem 4.3. Let f ↑ L
2(µ), and let ϑ be a measurable function on R+ satisfying the condition

(4.5). Then
H

→
ϑf(x) =

∫

R+

f(tx)ϑ(t) dt. (4.6)

Proof. Let f, g ↑ L
2(µ), and let ϑ be a measurable function on R+ satisfying the condition (4.5).

From (4.3) and Fubini’s theorem we have
∫

R+

f(x)Hϑg(x) dµ(x) =

∫

R+

f(x)

∫

R+

gt(x)ϑ(t) dt


dµ(x)

=

∫

R+

∫

R+

f(x)gt(x) dµ(x)


ϑ(t) dt =

∫

R+

∫

R+

f(tx)g(x) dµ(x)


ϑ(t) dt.

Using (4.2), this calculation is justified by the fact that

∫

R2
+

|f(x)||gt(x)|dµ(x)|ϑ(t)| dt ≃ Cϑ,2⇒f⇒L2(µ)⇒g⇒L2(µ) < ↓.

Then according to Fubini’s theorem we obtain

∫

R+

f(x)Hϑg(x) dµ(x) =

∫

R+

∫

R+

f(tx)ϑ(t) dt


g(x) dµ(x) =

∫

R+

H
→
ϑf(x)g(x) dµ(x),

where

H
→
ϑf(x) =

∫

R+

f(tx)ϑ(t) dt.

This calculation is justified by the fact that

∫

R2
+

|f(tx)||g(x)| dµ(x)|ϑ(t)| dt ≃ Cϑ,2⇒f⇒L2(µ)⇒g⇒L2(µ) < ↓.

This completes the proof of the theorem.
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Remark 4.4. From Theorem 4.2, the operator H
→
ϑ is bounded on L

p(µ), p ↑ [1,↓), with

⇒H
→
ϑf⇒Lp(µ) ≃ Cϑ, p

p↓1
⇒f⇒Lp(µ),

where Cϑ,p is the constant given by (4.4).

As in the same of Theorem 4.1, we obtain the following result.

Theorem 4.5. Let ϑ be a measurable function on R+ satisfying the condition

Cϑ,↔ :=

∫

R+

k(t)

t
|ϑ(t)| dt < ↓. (4.7)

Then for f ↑ L
1(µ), we have

FM (H→
ϑf)(ω) =

∫

R+

FM (f→
t )(ω)ϑ(t) dt, ω ↑ R+,

where f
→
t (x) = f(tx).

Proof. Let ϑ be a measurable function on R+ satisfying the condition (4.7), and let f ↑ L
1(µ).

Then by (4.6) we have

FM (H→
ϑf)(ω) =

∫

R+

H
→
ϑf(x)ε

M
ε (x) dµ(x) =

∫

R+

∫

R+

f(tx)ϑ(t) dt


ε
M
ε (x) dµ(x).

Since ∫

R2
+

|f(tx)||ϑ(t)||εM
ε (x)| dtdµ(x) ≃ Cϑ,↔⇒f⇒L1(µ) < ↓,

by Fubini’s theorem we obtain

FM (H→
ϑf)(ω) =

∫

R+

∫

R+

f(tx)εM
ε (x) dµ(x)


ϑ(t) dt =

∫

R+

FM (f→
t )(ω)ϑ(t) dt.

The theorem is proved.

Example 4.6. Note that if A(x) = x
2ω+1, ϖ > →1/2, we have

ft(x) =
1

t2ω+2
f

(
x

t

)
, k(t) =

1

t2ω+1
, Cϑ,p =

∫

R+

|ϑ(t)|

t
(2ω+2)(1↗ 1

p )
dt.

Therefore,

• the canonical Bessel-Hausdor! operator is given by

Hϑf(x) =

∫

R+

f

(
x

t

)
ϑ(t)

t2ω+2
dt.
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• The canonical Bessel-Cesàro operator of order ⇀ is given by

Cφf(x) = ⇀

∫ 1

0
f

(
x

t

) (1→ t)φ↗1

t2ω+2
dt.

• The canonical Bessel-Hardy operator is given by

Hf(x) =

∫ ↔

1
f

(
x

t

) dt

t2ω+3
.

• The canonical Bessel-Hardy-Littlewood-Pólya operator is given by

Pf(x) =

∫ 1

0
f

(
x

t

) dt

t2ω+2
+

∫ ↔

1
f

(
x

t

) dt

t2ω+3
.

• The canonical Bessel-Riemann-Liouville fractional integral operator is given by

If(x) =
1

”(⇁)

∫ ↔

1
f

(
x

t

)(
1→

1

t

)↼↗1 dt

t2ω+3
.

5 Canonical Sturm-Liouville wavelet transform

In this section, we first recall some fundamental results on the canonical Sturm-Liouville wavelet

transform. The classical Sturm-Liouville wavelet transform has been studied extensively in [23,34]

where detailed definitions, illustrative examples, and comprehensive discussions of its properties

can be found. In the following we establish a relation between the canonical Sturm-Liouville

wavelet transform and the canonical Sturm-Liouville Hausdor! operator.

As in the same of [23,34] and by using Theorem 3.1 (ii), we prove following lemma.

Theorem 5.1. Let g ↑ L
2(µ), and t > 0. Then there exists a function g

↽
r in L

2(µ), such that

FM (g↽r)(ω) = FM (g)(rω), ω ↑ R+, (5.1)

and satisfies

⇒g
↽
r⇒L2(µ) ≃

,b(r)
⇓
r
⇒g⇒L2(µ), (5.2)

where

,b(r) = sup
ε>0

|c(εb )|

|c( ε
rb )|

.

We say that a function g ↑ L
2(µ) is a canonical Sturm-Liouville wavelet, if it satisfies the admis-

sibility condition

0 < ωg :=

∫

R+

|FM (g)(ω)|2
dω

ω
< ↓. (5.3)
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Example 5.2. The function g given by

g(x) :=

∫

R+

ω
2
e
↗ε2

ε
N
ε (x) dφb(ω), x ↑ R+,

is a canonical Sturm-Liouville wavelet and ωg = 1
8 . Note that if A(x) = x

2ω+1, ϖ > →1/2, we have

g(x) := →
e
↗ ia

2bx
2

2ω”(ϖ+ 1)

d

dt



 e
↗ x2

2(ibd+2tb2)

(ibd+ 2tb2)ω+1





t=0

, x ↑ R+,

For a function g ↑ L
2(µ) and for (r, s) ↑ R→

+⇔R+ we denote by gr,s the function defined on R+ by

g
↽
r,s(y) := ϱ

N
s g

↽
r(y),

where ϱ
N
s are the generalized translation operators given by (3.2).

From Theorem 3.3 (i) and (5.2), the function g
↽
r,s satisfies

⇒g
↽
r,s⇒L2(µ) ≃

,b(r)
⇓
r
⇒g⇒L2(µ). (5.4)

Let g ↑ L
2(µ) be a canonical Sturm-Liouville wavelet. We define for regular functions on R+, the

canonical Sturm-Liouville wavelet transform by

!N
g (f)(r, s) :=

∫

R+

e
ia
b y2

f(y)g↽r,s(y) dµ(y), (5.5)

which can also be written in the form

!N
g (f)(r, s) = f ↔

N
g
↽
r(s), (5.6)

where ↔
N is the generalized convolution product given by (3.4).

From (5.4) and (5.5) with Hölder’s inequality, we have

⇒!N
g (f)(r, .)⇒L↑(µ) ≃

,b(r)
⇓
r
⇒f⇒L2(µ)⇒g⇒L2(µ).

From (5.6), Theorem 3.4 (i) and (5.1), we have

!N
g (f)(r, s) =

∫

R+

e
↗ id

2bε
2

ε
N
ε (s)FM (f)(ω)FM (g)(rω) dφb(ω). (5.7)
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We denote by ▷ the measure defined on R2
+ by

d▷(r, s) := dµ(s)
dr

r
,

and by L
2(▷) the space of measurable functions f on R2

+, such that

⇒f⇒L2(⇀) :=

∫

R2
+

|f(r, s)|2 dµ(s)
dr

r

1/2

< ↓.

Theorem 5.3. Let g ↑ L
2(µ) be a canonical Sturm-Liouville wavelet.

(i) Plancherel formula for !N
g . For f ↑ L

2(µ) we have

⇒f⇒
2
L2(µ) =

1

ωg
⇒!N

g (f)⇒2L2(⇀).

(ii) Parseval formula for !N
g . For f, h ↑ L

2(µ) we have

↖f, h↙L2(µ) =
1

ωg
↖!N

g (f),!N
g (h)↙L2(⇀).

Proof. (i) Using Fubini’s theorem, Theorem 3.4 (ii), and the relation (5.6), we obtain

1

ωg
⇒!N

g (f)⇒2L2(⇀) =
1

ωg

∫

R2
+

|f ↔
N
g
↽
r(s)|

2 dµ(s)
dr

r

=
1

ωg

∫

R2
+

|FM (f)(ω)|2|FM (g↽r)(ω)|
2 dφb(ω)

dr

r

=

∫

R+

|FM (f)(ω)|2


1

ωg

∫

R+

|FM (g)(rω)|2
dr

r


dφb(ω).

By relation (5.3) we have
1

ωg

∫

R+

|FM (g)(rω)|2
dr

r
= 1.

Then we deduce the desired result from Theorem 3.1 (ii).

(ii) The result is easily deduced from (i).

We obtain a relation between the canonical Sturm-Liouville wavelet transform and the canonical

Sturm-Liouville Hausdor! operator.
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Theorem 5.4. Let g ↑ L
2(µ) be a canonical Sturm-Liouville wavelet, and let ϑ ↑ L

1(R+) satisfying

the condition (4.5). Then for f ↑ L
1(µ) ⇑ L

2(µ) we have

!N
g (Hϑf)(r, s) =

∫

R+

!N
g (ft)(r, s)ϑ(t) dt,

where ft is the dilation of f given by (4.1).

Proof. Let g ↑ L
2(µ) be a canonical Sturm-Liouville wavelet, and let f ↑ L

1(µ) ⇑ L
2(µ). From

Theorem 4.2 we have Hϑf ↑ L
2(µ). Then by (5.7) and Theorem 4.1, we get

!N
g (Hϑf)(r, s) =

∫

R+

e
↗ id

2bε
2

FM (Hϑf)(ω)F
M (g)(rω)εN

ε (s) dφb(ω)

=

∫

R+

e
↗ id

2bε
2

∫

R+

FM (ft)(ω)ϑ(t) dt


FM (g)(rω)εN

ε (s) dφb(ω)

=

∫

R+

∫

R+

e
↗ id

2bε
2

FM (ft)(ω)F
M (g)(rω)εN

ε (s) dφb(ω)


ϑ(t) dt

=

∫

R+

!N
g (ft)(r, s)ϑ(t) dt.

Using (4.2), this calculation is justified by the fact that

∫

R+

∫

R+

|FM (ft)(ω)||F
M (g↽r)(ω)| dφb(ω)|ϑ(t)| dt ≃ Cϑ,2⇒f⇒L2(µ)⇒g

↽
r⇒L2(µ) < ↓.

This ends the proof of the theorem.

As in the same of Theorem 5.4, we obtain the following result.

Theorem 5.5. Let g ↑ L
2(µ) be a canonical Sturm-Liouville wavelet, and Let ϑ be a measurable

function on R+ satisfying the conditions (4.5) and (4.7). Then for f ↑ L
1(µ) ⇑ L

2(µ) we have

!N
g (H→

ϑf)(r, s) =

∫

R+

!N
g (f→

t )(r, s)ϑ(t) dt,

where f
→
t (x) = f(tx).

Proof. Let g ↑ L
2(µ) be a canonical Sturm-Liouville wavelet, and let f ↑ L

1(µ) ⇑ L
2(µ). From

Remark 4.4 we have H
→
ϑf ↑ L

2(µ). Then by (5.7) and Theorem 4.5, we get

!N
g (H→

ϑf)(r, s) =

∫

R+

e
↗ id

2bε
2

FM (H→
ϑf)(ω)F

M (g)(rω)εN
ε (s) dφb(ω)

=

∫

R+

e
↗ id

2bε
2

∫

R+

FM (f→
t )(ω)ϑ(t) dt


FM (g)(rω)εN

ε (s) dφb(ω)
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=

∫

R+

∫

R+

e
↗ id

2bε
2

FM (f→
t )(ω)F

M (g)(rω)εN
ε (s) dφb(ω)


ϑ(t) dt

=

∫

R+

!N
g (f→

t )(r, s)ϑ(t) dt.

This calculation is justified by the fact that

∫

R+

∫

R+

|FM (f→
t )(ω)||F

M (g↽r)(ω)| dφb(ω)|ϑ(t)| dt ≃ Cϑ,2⇒f⇒L2(µ)⇒g
↽
r⇒L2(µ) < ↓.

This ends the proof of the theorem.

Conclusion

In this work we have succeeded in generalizing the results of Móricz for the classical Hausdor!

operator [38], Upadhyay et al. for the Hankel Hausdor! operator [36,37] and Daher et al. for the

Dunkl Hausdor! operator [7, 8] to the setting of canonical Sturm-Liouville theory. In this paper,

we have studied the canonical Sturm-Liouville Hausdor! operator on the Lebesgue space L
p(µ),

p ↑ [1,↓). Note that if M =



 0 1

→1 0



, we obtain the results of the classical Sturm-Liouville

case.
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ABSTRACT

We provide new characterizations of the bicomplex har-

monic and strongly bc-harmonic functions in terms of bc-

holomorphic functions. An extension to the bc-polyharmonic

setting is investigated. We also derive similar bicomplex ana-

log for strongly bc-polyharmonic functions of finite bi-order.

RESUMEN

Entregamos nuevas caracterizaciones de las funciones bicom-

plejas armónicas y fuertemente bc-armónicas en términos de

funciones bc-holomorfas. Se investiga una extensión al marco

bc-poliarmónico. También derivamos análogos bicomplejos

similares para funciones fuertemente bc-poliarmónicas de bi-

orden finito.
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1 Introduction

Polyharmonic functions with respect to the familiar Laplace operator are a natural extension of

harmonic functions [7]. The latter have been extensively studied in the literature [7, 11, 28] and

have played a crucial role in di!erent areas of mathematics and physics, including the theory of

holomorphic functions, the study of elliptic partial di!erential equations, minimal surfaces, digital

processing and electrical engineering. Recall that a 2m times continuously di!erentiable complex-

valued function f in the n-dimensional Euclidean space Rn is said to be polyharmonic of order m

in a domain ! → Rn, if it satisfies ”m
f(x) = 0 for x ↑ !, where ”m is the m-th iterate of the

Laplace operator

” =
1

2

(
ω
2

ωx
2
1

+
ω
2

ωx
2
2

+ · · ·+
ω
2

ωx2
n

)
, x = (x1x2, . . . , xn).

For m = 2, they are the so-called biharmonic functions, intervening in elasticity theory. We should

point out that polyharmonic functions have been studied by the end of the nineteenth century by

the classical paper [4] by Almansi. His main result states that for every polyharmonic function f

of order m on a star domain !, there exist some harmonic functions hk, k = 0, . . . ,m, on ! such

that

f(x) = |x|
2m

hm(x) + |x|
2(m→1)

hm→1(x) + · · ·+ h0(x).

This extends in fact the Gauss decomposition of a polynomial [3, 26]. The development of their

theory is due to Nicolesco [30] and Aronszajn [6] works. Recently, they have been the subject

of many investigations in a variety of mathematical and engineering fields, including numerical

analysis, approximation of functions, wavelet analysis, the construction of multivariate splines and

image processing. For a broader overview of these matters and its various applications see, e.g.

[5, 8, 22,26,29] and the references therein.

On the other hand, the analysis within the bicomplex numbers generalizing complex numbers is

currently a fully developed field of study. Its introduction goes back to Segre [39]. Next, they have

been elaborated by the Italian school in the early twentieth century [14,40]. Comprehensive studies

were later carried out in [32, 34, 41]. In the last decades, they have been rediscovered, developed,

and have attracted growing attention with some intriguing new advances with wide applications

[2, 9, 12, 13, 18, 19, 21, 31, 37, 38, 42]. In fact, they have been used to discuss di!erent aspects of the

bicomplex neural networks [25,43], and furthermore serve as an appropriate model for representing

color image encoding in image processing [3, 17]. Bicomplex analysis was also investigated in the

finite element method with a significant improvement when compared to the real and complex

cases [33]. Moreover, they are an ideal context to extend the classical results concerning signal

processing and time-frequency analysis using tools from frame theory [15].
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One of the well-developed axes in bicomplex analysis is the theory of holomorphic functions of a

bicomplex variable. In fact, it was widely studied in [32] (see also [14,36,40]) with a close connection

with functional calculus, theory of function spaces and integral transforms [15, 19, 21]. Contrary

to this theory, harmonic and potential theories are new areas of research that emerge within the

framework of bicomplex numbers. For some of their fundamentals, one refers for instance to [1,16].

Notice that di!erent bicomplex analogs of the classical mean value theorems (MVT) have been

obtained in [1] for bc-harmonic and strongly bc-harmonic functions, as well as their analytical

and geometrical converses, including the bicomplex analog of Hansen and Nadirashvili’s result

[23]. While a complete characterization of hyperbolic-valued bc-harmonic functions, in terms of

the bicomplex holomorphic functions, has been provided in [16]. It is proved in particular that a

real-valued bicomplex harmonic function is not necessarily the hyperbolic real part of a bicomplex

holomorphic function, but of a bicomplex polyholomorphic one. A result that was next extended

to the bicomplex polyharmonic functions.

In the present paper, we intend to pursue such investigation of extending to bicomplex context

the fecund theory of harmonic and polyharmonic functions of complex variable. In fact, we are

concerned with the bicomplex versions of some known results satisfied by the classical harmonic

functions on the complex plane C. Namely, we establish a concrete characterization of the strongly

bc-harmonic functions (Theorem 3.1), as well as di!erent bicomplex analogs of the additive de-

composition theorem for bc-harmonic and strongly bc-harmonic functions. The initial motivation

for the second task is a classical fact in complex analysis asserting that harmonic functions are

exactly those that can be rewritten as H + G for certain holomorphic functions H and G, which

usually is proved using the characterization of holomorphic functions in terms of the Wirtinger

operators. The proof of “only if” can also be handled starting from the fact that a real-valued

harmonic function is the real part of a holomorphic function, which fails when dealing with bc-

harmonic functions as pointed out in [16]. Accordingly, it seems to be natural and interesting

to know whether bc-harmonic (or bc-polyharmonic in general) functions can still have a similar

additive decomposition. This paper contains then an answer to this question. To this end, one

makes use of the expected characterization of an hyperbolic-valued bc-harmonic function F being

the hyperbolic real part of a bc-holomorphic function if and only if F belongs to the kernels of some

bicomplex first order di!erential operators. We also show that a bicomplex-valued function F on

BC in ker(ω
Z̃
) ↓ ker(ωZ†) is bc-harmonic if and only if there exist certain bicomplex holomorphic

functions H and G such that F = H +G
↑, where ↔ denotes the complex conjugation in BC with

respect to the bicomplex ij. More generally, we derive an additional decomposition without as-

suming the condition of belonging to ker(ω
Z̃
)↓ker(ωZ†), see Theorem 3.7. Similar characterization

for bc-polyharmonic functions of finite order in terms of special subclass of bc-polyholomorphic

functions is also obtained in Theorem 3.3. The main tool in its proof relies on [16, Proposition

3.8]. However, for a formal proof, see Remark 3.4, where one makes use of Proposition 4.4 in
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[16], giving a bicomplex analog of Almansi’s theorem for the representation of bc-polyharmonic in

terms of bc-harmonic functions. An explicit characterization of the so-called strongly bc-harmonic

is also provided (Theorem 3.1). This result is then employed to give a precise description of the

bc-harmonic functions arising as H0 + H
↑
1 + H

†
2 + H̃3, for some bc-holomorphic functions Hω,

ε = 0, 1, 2, 3. See Theorem 3.5 for an exact statement. The motivation for considering strongly

bc-harmonic functions lies in the fact that an explicit and complete description of some spectral

aspects of the bc-harmonic functions needs in general an additional harmonicity condition with

respect to the ↔-conjugation, see for example [1, 2]. This phenomena will be confirmed in the

present investigation.

We anticipate that the findings will be helpful for ulterior uses and applications. In fact, we

claim that they can be employed to give the explicit formula for special bicomplex Bergman and

Bargmann spaces of bc-harmonic functions as well as the integral representation for their elements

by Bargmann type transform. We also anticipate extending the obtained results to the bicomplex

analog of the so-called (ϑ,ϖ)-harmonic functions (see e.g. [10, 20, 24] and the references therein),

which are defined as those that are twice continuously di!erentiable functions u solutions of the

homogeneous equation L
ε

ϑ,ϖ
u = 0 on the complex plane (ϱ = 0) or the hyperbolic unit disc

(ϱ = +1), where

L
ε

ϑ,ϖ
:= (1↗ ϱ|z|

2)
{
(1↗ ϱ|z|

2)”+ ϑzωz + ϖzωz ↗ ϑϖ
}
.

Notice that for ϑ = ↗ϖ, it has been initiated and implicitly investigated in [2], by considering a

pair of bicomplex magnetic Laplacians on BC and the disc.

The paper is outlined as follows. In Section 2, we fix the notations, including those announced

above and related to the bicomplex numbers. We also define the bicomplex Laplace type operator

and di!erent notions of bc-harmonicity that we will work with. Section 3 deals with the proof

of Theorem 3.1, giving a complete description of strongly bc-harmonic functions, as well as the

additive decomposition theorems characterizing the bc-harmonic (Theorems 3.2 and 3.7) and bc-

polyharmonic (Theorem 3.3) functions. The last section deals with some concluding remarks

to answer the question how can the obtained conclusions be properly adapted to product-type

domains.

2 Preliminaries

In this section, we briefly review some basic and needed notions from bicomplex analysis, we fix

notations, and we introduce the di!erent notions of harmonicity in the bicomplex setting that we

will consider in this paper.
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2.1 Bicomplex numbers

Bicomplex numbers are defined by complexifying the complex numbers z = x+ iy ↑ C (x, y ↑ R).
Their 4-dimensional real algebra is then defined as BC = {Z = z1 + jz2; z1, z2 ↑ C}, where j is

an imaginary unit, j2 = ↗1, independent of i and satisfying ij = ji =: k. This turns k into what

is known as hyperbolic unit, leading to the particular subset D of hyperbolic numbers, which is

constituted of the bi-reals x + ky. The computation rules in BC extend, in a natural way, those

in C, giving rise to similar algebraic properties, except for division. More precisely, the null cone

coincides with NC = {ς(1± ij); ς ↑ C,ς ↘= 0}. The particular elements

e+ =
(1 + ij)

2
and e→ =

(1↗ ij)

2

are idempotent and satisfy e+e→ = 0. Moreover, they yield the idempotent decomposition ϑe+ +

ϖe→ = Z of every Z = z1 + jz2 ↑ BC, with unique complex components

ϑ = z1 ↗ iz2 =: Proj
+(z1 + jz2) and ϖ = z1 + iz2 =: Proj

→(z1 + jz2).

Thus, the map P = (Proj
+
, P roj

→),

P (z1 + jz2) := (z1 ↗ iz2, z1 + iz2) = (ϑ,ϖ), (2.1)

realizes the algebra isomorphism BC ≃ C ⇐ C. Given such decomposition, the set D reads equiv-

alently as the set of all xe+ + ye→ with x, y ↑ R, leading to the partial order ⇒ (xe+ + ye→ ⇒

x
↓
e++y

↓
e→ if x ⇑ x

↓ and y ⇑ y
↓ in R). A particular exception in the theory of bicomplex numbers is

the attribution of three complex conjugates Z† = z1↗jz2 = ϖe++ϑe→, Z̃ = z1+jz2 = ϖe++ϑe→,

Z
↑ = z1 ↗ jz2 = ϑe+ + ϖe→, to each bicomplex number Z = z1 + jz2. By means of the above

projection operators, one defines

!± := Proj
±(!) = {z1 ⇓ iz2 ↑ C, z1 + jz2 ↑ !}, (2.2)

for given ! → BC. We will write ! = !+
e+ + !→

e→, whenever ! is a generic product-type set

in BC, i.e. those for which there exists a one-to-one correspondence from ! onto !+
e+ + !→

e→.

By Theorem 8.6 in [32, p. 37], such product-type sets are exactly those subsets in BC such that

P (!) = !+
⇔ !→, where P is as in (2.1). It should be pointed out that the openness of the

components !± in C follows from the openness of ! in BC, which is seen as the four-dimensional

Euclidean space (see Riley’s notes [34] or [32, Theorem 8.7]). For further details on the di!erent

topological considerations related to BC, one refers to [32,34].
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2.2 Bicomplex holomorphy

Recall that a bicomplex-valued function

F (Z) = F1(z1, z2) + jF2(z1, z2),

on a given open set ! → BC, is said in [32] to be bicomplex holomorphic (bc-holomorphic for short)

in !, if for every Z0 ↑ !, the bicomplex limit

lim
H↔0
H/↗NC

F (Z0 +H)↗ F (Z0)

H

is finite. Another interesting characterization of the bc-holomorphicity is the Ringleb decompo-

sition theorem [35] (see also [32, Theorem 15.5]), asserting that a bicomplex-valued function f is

bc-holomorphic if and only if it is of the form

f(Z) = f(ϑe+ + ϖe→) = φ
+(ϑ)e+ + φ

→(ϖ)e→, (2.3)

where φ
± : C ↗↖ C are holomorphic C-valued functions on C. For a product-type domain this

remains equivalent to F1, F2 be holomorphic in the complex variables (z1, z2) ↑ !+
⇔ !→ and

satisfying in addition the complex Cauchy-Riemann equations [36, Theorem 1]

ωF1

ωz1
=

ωF2

ωz2
and

ωF2

ωz1
= ↗

ωF1

ωz2
.

Analogously to the classical complex derivatives ωz = ω/ωz and its complex conjugate ωz = ω/ωz,

there are the first order di!erential operators with respect to the di!erent bicomplex conjugates

ωZ =
ω

ωZ
:=

1

2

(
ω

ωz1
↗ j

ω

ωz2

)
, ωZ→ =

ω

ωZ↑ :=
1

2

(
ω

ωz1
+ j

ω

ωz2

)
,

ωZ† =
ω

ωZ† :=
1

2

(
ω

ωz1
+ j

ω

ωz2

)
, ω

Z̃
=

ω

ωZ̃

:=
1

2

(
ω

ωz1
↗ j

ω

ωz2

)
,

which can be used to provide a special realization of the so-called bicomplex holomorphic functions

as solutions of a system of linear di!erential equations with constant coe"cients. Namely, a real

di!erentiable bicomplex-valued function F on an open set in BC is bc-holomorphic if and only if

it is solution of (see [13, Theorem 2.7] or also [27, p. 159])

ωF

ωZ↑ =
ωF

ωZ† =
ωF

ωZ̃

= 0. (2.4)

The system provided in (2.4) is a central tool in the theory of bc-holomorphic functions, and can

be used to extend the bc-holomorphy to polyanalytic setting, so that the discussed bc-holomorphic

functions appear as the (1, 1, 1)-bc holomorphic functions in the definition below.
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Definition 2.1 ([21]). A bicomplex–valued function F having continuous partial derivatives on an

open set ! → BC, up to order 2max(m,n, k), and satisfying the system

ω
m

Z→F = ω
n

Z̃
F = ω

k

Z†F = 0 (2.5)

is said to be (m,n, k)-bc-polyholomorphic on !.

An explicit characterization of these functions has been obtained in [16, Proposition 3.8].
Proposition 2.2. The bicomplex-valued (m,n, k)-bc-polyholomorphic functions on BC are exactly

those that can be expanded as

F (Z) =
m→1∑

ω1=0

n→1∑

ω2=0

k→1∑

ω3=0

Z
↑ω1

Z̃
ω2Z

†ω3
Hω1,ω2,ω3(Z) (2.6)

for given bc-holomorphic functions Hω1,ω2,ω3 .

This result leads to an immediate extension of the Ringleb result (2.3) to these class of functions,

which reads simply for the (m, 1, 1) case as

F (Z = ϑe+ + ϖe→) =

(
m→1∑

k=0

ϑ
k
φk(ϑ)

)
e+ +

(
m→1∑

k=0

ϖ
k

↼k(ϖ)

)
e→,

for certain bc-holomorphic functions φk and ↼k.

2.3 Bicomplex harmonicity

The existence of the di!erent types of conjugates in the set of bicomplex numbers leads to di!erent

natural analogs of the classical Laplace operator

”z =
1

4

(
ω
2

ωx2
+

ω
2

ωy2

)
=

ω
2

ωzωz
, z = x+ iy, (2.7)

see [16] for details. The so-called bc-Laplacian ”bc as well as its †-conjugate ”†
bc

given by

”bc :=
ω
2

ωZωZ↑ and ”†
bc

:=
ω
2

ωZ†ωZ̃
.

are examples of such Laplacians. Their action on a given su"ciently real di!erential bicomplex-

valued function is well-defined and to be understood in the sense of Remark 2.5 in [16]. Thus,

for a twice continuously di!erentiable function F = F
+
e+ + F

→
e→, we have the idempotent

decomposition ”bc = ”ϑe++”ϖe→ and ”†
bc

= ”ϖe++”ϑe→. By considering the complex-valued

component functions h
±(ϑ,ϖ) := F

±(Z) with Z = ϑe+ + ϖe→, this action reads

[”bcF ](Z) = ([”ϑh
+](ϑ,ϖ))e+ + ([”ϖh

→](ϑ,ϖ))e→. (2.8)
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Being indeed, since both ωZ and ωZ→ are seen as BC-linear operators and e+ · e→ = 0, we have

ωF

ωZ↑ (Z) =

(
ω

ωϑ
e+ +

ω

ωϖ
e→

)(
h
+(ϑ,ϖ)e+ + h

→(ϑ,ϖ)e→
)
=

ωh
+

ωϑ
(ϑ,ϖ)e+ +

ωh
→

ωϖ
(ϑ,ϖ)e→,

and moreover

[”bcF ](Z) =

[
ω

ωZ

(
ωF

ωZ↑

)]
(Z) =

(
ω

ωϑ
e+ +

ω

ωϖ
e→

)(
ωh

+

ωϑ
(ϑ,ϖ)e+ +

ωh
→

ωϖ
(ϑ,ϖ)e→

)

=
ω
2
h
+

ωϑωϑ
(ϑ,ϖ)e+ +

ω
2
h
→

ωϖωϖ
(ϑ,ϖ)e→.

Accordingly, one suggests the following definition.

Definition 2.3 ([16]). Let F be a bicomplex-valued function on an open set ! → BC.

(i) F is said to be bicomplex harmonic (bc-harmonic) if it is twice continuously real di!erentiable

and satisfies the bc-Laplace equation ”bc = 0 on !. We denote their set by BHarm(!).

(ii) F is said to be bc-polyharmonic of order m if it is continuously real di!erentiable up to order

2m and satisfies the m-th bc-Laplace equation ”m

bc
= 0 on !.

It should be noticed here that the bc-polyharmonic functions are closely connected to a special class

of bc-polyholomorphic functions as expected in [16]. Their representations in terms of bc-harmonic

functions were obtained in [16, Proposition 4.4], which itself is a bicomplex extension of Almansi’s

result [4] for the classical polyharmonic complex-valued functions. For its exact statement, we let

|Z|
2k
bc

:= Z
k
Z

↑k for every Z ↑ BC and k = 0, 1, 2, . . .

Proposition 2.4. For every bc-polyharmonic function F on BC of order m, there are certain

bc-harmonic functions Hk, k = 0, 1, . . . ,m↗ 1, such that

F (Z) =
m→1∑

k=0

|Z|
2k
bc
Hk(Z). (2.9)

Remark 2.5. The component functions Hk in Proposition 2.4 are bc-harmonic and they implicitly

depend on Z
† and Z̃. More precisely, identity (2.9) reads equivalently

F (Z) =
+↘∑

k=0

m→1∑

k=0

(
Z

n+k
Z

↑k
An,k(Z̃, Z

†) + Z
k
Z

↑n+k
Bn,k(Z̃, Z

†)
)
, (2.10)

for given bicomplex-valued functions An,k and Bn,k belonging to ker(ωZ) ↓ ker(ωZ→).
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Definition 2.6. Let F be a bicomplex-valued function on an open set ! → BC.

(i) It is said to be strongly bicomplex harmonic if F and F
† are both bc-harmonic.

(ii) It is said to be strongly bc-polyharmonic of bi-order (m,n), if it has continuous partial deriva-

tives up to order 2max(m,n) and verifies ”m

bc
F = 0 and ”n

bc
F

† = 0 on !.

We conclude this section by providing explicit examples for the di!erent classes of bicomplex

holomorphic, polyholomorphic, harmonic and polyharmonic functions, in the i, j, ij = k represen-

tation as well as in the idempotent representation, which can easily constructed making use of the

obtained characterizations. Thus, the functions

(Zm + Z
n) + k(Zm

↗ Z
n) = 2ϑm

e+ + 2ϖn
e→

are the elementary bc-holomorphic functions on BC, while

(Zm
Z

↑ + Z
n
Z

†) + k(Zm
Z

↑
↗ Z

n
Z

†) = 2ϑm
ϑe+ + 2ϑϖn

e→

is an example of a (2, 2, 1)-polyholomorphic function. The following

h0(Z) = ZZ
† + ZZ̃ + Z

↑
Z̃ + Z

↑
Z̃ = 2↙

(
ϑ(ϖ + ϖ)

)

is a fundamental example of bc-harmonic function which can not be the real part of any bc-

harmonic function. An example of polyharmonic function is given by the the biharmonic function

Z
↑
Z

†
h0(Z) + h0(Z) = 2

{
(ϑϖ + 1) e+ +

(
ϑϖ + 1

)
e→

}
↙
(
ϑ(ϖ + ϖ)

)
.

3 Main results

3.1 Characterization of strongly bc-harmonic functions

The following result provides an explicit characterization of the strongly bc-harmonic functions.

Theorem 3.1. Let F be a bicomplex-valued function on BC. Then, the function F is strongly

bc-harmonic if and only if there are some sequences (am,n)m,n, (bm,n)m,n, (cm,n)m,n and (dm,n)m,n

of bicomplex numbers such that F has a power series expansion of the form

F (Z) =
+↘∑

m=0

+↘∑

n=0

(
am,nZ

m
Z

†n + bm,nZ
m
Z̃

n + cm,nZ
↑m

Z
†n + dm,nZ

↑m
Z̃

n

)
, (3.1)

converging absolutely and uniformly on any compact set of BC.
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Proof. The “if” follows by direct computation. However, the strongly bc-harmonicity of F in (3.1)

in the sense of Definition 2.6 can be handled by observing that the uniformly convergent series in

(3.1) can be rewritten as F = H +G
↑, with some functions H and G that can expanded as

+↘∑

m=0

Z
m

(
(↼(Z))† + ⊋↽(Z)

)

for given bc-holomorphic functions ↼ and ↽, and next employing using the useful facts ωZ→(φ†) =
(
ω
Z̃
(φ)

)†, ωZ→(φ̃) = ⫅̸ωZ†(φ), ω
Z̃
(φ†) = (ωZ→(φ))†, and ωZ†(φ̃) = ⫅̸ωZ→(G) as well as ωZ(G↑) =

(ωZ→(G))↑ and ωZ†(G↑) =
(
ω
Z̃
(G)

)↑.

For the proof of the “only if”, let F (ϑe+ + ϖe→) = F
+(ϑ,ϖ)e+ + F

→(ϑ,ϖ)e→ be a strongly bc-

harmonic function, with F
+
, F

→ : BC ↗↖ C. Thus, from ”bcF = 0 and ”bcF
† = 0, and in par-

ticular ”ϑF
+(·,ϖ) = 0 and ”ϑF

→(·,ϖ) = 0, for every fixed complex number ϖ, one observes that

both the partial components ϑ ∝↗↖ F
+(ϑ,ϖ) and ϑ ∝↗↖ F

→(ϑ,ϖ) are complex-valued harmonic

functions in the complex plane, for every fixed ϖ ↑ C. Therefore, there exist some complex-valued

holomorphic functions H+,ϖ , H→,ϖ , G+,ϖ and G
→,ϖ on C with power series expansions centered at

the origin such that

F
+(ϑ,ϖ) = H

+,ϖ(ϑ) +G+,ϖ(ϑ) =
+↘∑

m=0

a
+
m
(ϖ)ϑm + b

+
m
(ϖ)ϑm (3.2)

and

F
→(ϑ,ϖ) = H

→,ϖ(ϑ) +G→,ϖ(ϑ) =
+↘∑

m=0

a
→
m
(ϖ)ϑm + b

→
m
(ϖ)ϑm

, (3.3)

for all ϑ ↑ C. However, since the partial functions ϖ ∝↗↖ F
±(ϑ,ϖ) being harmonic, the involved

coe"cients

a
±
m
(ϖ) =

1

m!

ω
m
F

±

ωϑm
(0,ϖ), m = 0, 1, 2, . . . ,

and

b
±
m
(ϖ) =

1

m!

ω
m
F

±

ωϑ
m

(0,ϖ), m = 0, 1, 2, . . . ,

which are independent of ϑ and ϑ and seen as functions in the ϖ-variable, become C↘ and moreover

harmonic on the complex plane. Thus, we write

a
±
m

= H
±
1,m +H

±
2,m and b

±
m
(ϖ) = G

±
1,m +G

±
2,m,

for certain holomorphic functions H
±
0 , G±

0 , H±
1,m, H±

2,m, G±
1,m and G

±
2,m on C. Returning back to

(3.2)-(3.3) and using the expansion series of the involved holomorphic functions, we get
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F
±(ϑ,ϖ) = H

±
0 (ϖ) +G

±
0 (ϖ) +

+↘∑

m=1

(
H

±
1,m(ϖ) +H

±
2,m(ϖ)

)
ϑ
m +

(
G

±
1,m(ϖ) +G

±
2,m(ϖ)

)
ϑ
m

=
+↘∑

m,n=0

(
a
±
1,m,n

ϖ
n + a

±
2,m,n

ϖ
n
)
ϑ
m +

(
b
±
1,m,n

ϖ
n + b

±
2,m,n

ϖ
n
)
ϑ
m
,

which gives rise to (3.1).

3.2 Additive decomposition theorems

We begin with the following.

Theorem 3.2. A bicomplex-valued function F is of the form F = H+G
↑, for some bc-holomorphic

functions H and G, if and only if it is bc-harmonic on BC such that ω
Z̃
F = ωZ†F = 0.

Proof. For given F = H+G
↑ such that H and G are bc-holomorphic, the function F is bc-harmonic

for the smooth function F satisfies

ω
2
F

ωZωZ↑ =
ω

ωZ

(
ωH

ωZ↑

)
+

ω

ωZ↑

((
ωG

ωZ↑

))↑
= 0.

Moreover, using the facts ω
Z̃
(G↑) = (ωZ†(G))↑ and ωZ†(G↑) =

(
ω
Z̃
(G)

)↑, and keeping in mind

(2.8) it becomes clear that

ω
Z̃
F = ω

Z̃
(H) + ω

Z̃
(G↑) = ω

Z̃
(H) + (ωZ†(G))↑ = 0

and

ωZ†F = ωZ†(H) + ωZ†(G↑) = ωZ†(H) +
(
ω
Z̃
(G)

)↑
= 0

hold.

For the proof of the converse, we proceed into two steps.

Step 1: Assume that F : BC ↗↖ D is a hyperbolic-valued bc-harmonic function belonging to

ker(ω
Z̃
) ↓ ker(ωZ†). Next, observe that by means of [16, Theorem 1.1] there exists a bc-

holomorphic function T such that F = ↙ehyp (T ) := (T + T
↑)/2, which infers F = H + G

↑

with H = G = T/2.

Step 2: For the general case when F does not take values in D, we rewrite it as F = F1 + iF2,

with

F1 =
F + F

↑

2
and F2 =

F ↗ F
↑

2i
.
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Both F1 and F2 are hyperbolic-valued functions on BC. From this, it becomes clear that F

is a bc-harmonic if and only if F1 and F2 are bc-harmonic. Moreover, we necessarily have

2ω
Z̃
F1 = ↗2iω

Z̃
F1 = ω

Z̃
F

↑ = (ωZ†F )↑ = 0,

and

2ω
Z̃
F1 = ↗2iωZ†F1 = ωZ†F

↑ =
(
ω
Z̃
F
)↑

= 0.

This implies that the functions F1 and F2 belong to ker(ω
Z̃
) ↓ ker(ωZ†). However, from the

first step, we easily conclude that F1 = H1+G
↑
1 and F2 = H2+G

↑
2, for some bc-holomorphic

functions Hω and Gω, ε = 1, 2. Now, since i
↑ = ↗i, it follows

F = (H1 +G
↑
1) + i (H2 +G

↑
2) = H +G

↑
,

with H = H1 + iH2 and G = G1 ↗ iG2.

The following result extends the previous one to the bc-polyharmonic functions of arbitrary finite

order. The argument in the presented proof is completely di!erent from the one provided for

Theorem 3.2.

Theorem 3.3. Let F be a bicomplex-valued bc-polyharmonic function of order m on BC. Then,

there exist certain (m, 1, 1)-bc-polyholomorphic functions H and G such that F = H + G
↑ if and

only if ω
Z̃
F = ωZ†F = 0.

Proof. In the sense of Definition 2.1, the function H + G
↑ is clearly bc-polyharmonic, whenever

H and G are bc-polyholomorphic of order (m, 1, 1) and (n, 1, 1), respectively. Indeed, by setting

ε = max(m,n), we have

”ω

bc
(H +G

↑) =
ω
ω

ωZω

(
ω
ω
H

ωZ↑ω

)
+

ω
ω

ωZ↑ω

(
ω
ω
G

ωZ↑ω

)↑

= 0.

To prove the converse, let F be a bc-polyharmonic function of order m. Then, ω
m

Z→(ωm

Z
F ) =

”m

bc
F = 0. But, under the assumption ω

Z̃
F = ωZ†F = 0, the function ω

m

Z
F becomes (m, 1, 1)-bc-

polyholomorphic. Accordingly, it can be expanded as

ω
m

Z
F =

m→1∑

ω=0

Z
↑ω
↼ω,

by means of Proposition 2.2 (with n = k = 1). The involved functions ↼ω, ε = 0, 1, . . . ,m↗ 1, are

bc-holomorphic and can always be rewritten as ↼ω = ω
m

Z
↽ω for certain bc-holomorphic functions

↽ω. Thus, by considering the function

G =
m→1∑

ω=0

Z
↑ω
↽ω,
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we get ω
m

Z→(F ↑
↗ G

↑) = 0. But, using again the assumption ω
Z̃
F = ωZ†F = 0, it becomes clear

that F
↑
↗G

↑ = H is a (m, 1, 1)-bc-polyholomorphic function.

Remark 3.4. The proof of Theorem 3.3 can be handled using Almansi’s theorem for bc-polyharmonic

functions (see Proposition 2.4 or Remark 2.5) and by viewing Z and Z
† as independent variables.

In fact, for F being a bc-polyharmonic function of order m, there exist some bc-harmonic functions

Fk, k = 0, 1, . . . ,m↗ 1, such that

F (Z) = F0 + |Z|bcF1 + · · ·+ |Z|
2(m→1)
bc

Fm→1.

Accordingly, the assumption ω
Z̃
F = ωZ†F = 0 becomes equivalent to ω

Z̃
Fk = ωZ†Fk = 0 for every

k = 0, 1, . . . ,m ↗ 1. Therefore, making appeal to the discussion provided in the proof of Theorem

3.2 for each Fk, there exist some bc-holomorphic functions Hk and Gk such that Fk = Hk + G
↑
k
.

Hence, one derives F = H +G
↑, where

H =
m→1∑

k=0

|Z|
2k
bc
Hk and G =

m→1∑

k=0

|Z|
2k
bc
Gk.

Given such result (Theorem 3.3), the next one provides a su"cient condition to decompose a given

strongly bc-harmonic function F as F = H0 +H
↑
1 +H

†
2 + H̃3 for certain bc-holomorphic function

H. Notice, that the converse is clear since the di!erent bicomplex conjugates H
↑, H†, H̃ of a bc-

holomorphic function H are obviously bc-harmonic, and moreover they are strongly bc-harmonic,

which shows that the functions H0+H
↑
1 +H

†
2+H̃3, arising as the sum of the di!erent conjugates of

bc-holomorphic functions for some bicomplex holomorphic functions Hω, ε = 0, 1, 2, 3, are strongly

bc-harmonic.

Theorem 3.5. A bicomplex-valued strongly bc-harmonic function F in BC is of the form F =

H0 +H
↑
1 +H

†
2 + H̃3, for some bc-holomorphic functions Hω, ε = 0, 1, 2, 3, if

ω
m+n+j+k

F

ωZmZ↑nZ†jZ̃k
(0) = 0, (3.4)

holds, for every non-negative integers m,n, j and k such that mn = jk = 0.

Proof. The key observation is contained in the characterization provided by Theorem 3.1. In fact,

the involved bicomplex constants in (3.1) are given by

am,n =
1

m!n!

ω
m+n

F

ωZmZ†n (0), bm,n =
1

m!n!

ω
m+n

F

ωZmZ̃n
(0),

cm,n =
1

m!n!

ω
m+n

F

ωZ↑mZ†n (0), dm,n =
1

m!n!

ω
m+n

F

ωZ↑mZ̃n
(0).



218 A. Abouricha, L. Bouali & A. Ghanmi CUBO
28, 1 (2026)

Accordingly, under the assumption (3.4), which reads equivalently as

ω
m+j

F

ωZmZ†j (0) =
ω
m+j

F

ωZ↑mZ†j (0) =
ω
k+n

F

ωZkZ̃n
(0) =

ω
k+n

F

ωZ↑kZ̃n
(0) = 0, (3.5)

we get am,n = dm,n = 0, for every n ′ 1, and bm,n = cm,n = 0, for any m ′ 1. Thus, the

expansion series of F reduces further to F = H0 +H
↑
1 +H

†
2 + H̃3, where H0, H1, H2 and H3 are

the bc-holomorphic functions given by

H0 :=
+↘∑

m=0

amZ
m
, H1 :=

+↘∑

m=0

d
↑m
m

Z
m
, H2 :=

+↘∑

n=0

c
†
n
Z

n
, and H3 =:

+↘∑

n=0

b̃nZ
n
,

where we have set ak := ak,0, dk := dk,0ck := c0,k and bk := b0,k.

Remark 3.6. Theorem 3.5 can be reproved by considering an equivalent su"cient condition, lead-

ing to am,n = dm,n = 0 for every m ′ 1 and bm,n = cm,n = 0 for any n ′ 1.

Below, we give an additional additive decomposition theorem, which is specific for the bc-harmonic

functions.

Theorem 3.7. We have BHarm(BC) =
(
ker (ωZ→) + ker

(
ω
Z̃

))
↓ C

↘(BC). More precisely, H is

a bc-harmonic function if and only if it can be expanded as

H(Z) =
+↘∑

k=0

Z
k
Ak(Z

†
, Z̃) + Z

†k
Bk(Z,Z

↑), (3.6)

for some Ak ↑ ker (ωZ) ↓ ker (ωZ→) and Bk ↑ ker (ωZ†) ↓ ker
(
ω
Z̃

)
.

Proof. Let H be a bc-harmonic function and write H(Z) = Ĥ
+(ϑ,ϖ)e+ + Ĥ

→(ϑ,ϖ)e→. Hence,

the functions Ĥ
+(·, b) : C ↗↖ C and Ĥ

→(a, ·) : C ↗↖ C are harmonic on C. Thus, for every

fixed a, b ↑ C, the involved functions can be decomposed as Ĥ
+(ϑ, b) = h

+,1
b

(ϑ) + h
+,2
b

(ϑ) and

Ĥ
→(a,ϖ) = h

→,1
a

(ϖ) + h
→,2
a

(ϖ) for some holmorphic functions h
+,1
b

, h
+,2
b

: C ↗↖ C and h
→,1
a

, h
→,2
a

:

C ↗↖ C, thanks to the additive decomposition theorem for classical harmonic functions. Therefore,

by setting
H

(1)(Z|a, b) := h
+,1
b

(ϑ)e+ + h
→,1
a

(ϖ)e→

and

H
(2)(Z|a, b) := h

+,2
b

(ϑ)e+ + h
→,2
a

(ϖ)e→,

we have ωZ→(H(1)(·|a, b)) = ω
Z̃
(H(2)(·|a, b))) and

H(Z) = H
(1)(Z|ϑ,ϖ) +H

(2)(Z|ϑ,ϖ), Z = ϑe+ + ϖe→. (3.7)

The functions H
(1) and H

(2) belong clearly to ker (ωZ→) and ker
(
ω
Z̃

)
, respectively. The inverse

inclusion is immediate.
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In Proposition 3.10 below, it is proved that the involved H
(1), H(2), Ak and Bk in (3.7) and (3.6)

are connected to each other by some additive separate bc-holomorphic function, which extends

the notion of separate holomorphy to the bicomplex setting. Let F be a given bicomplex-valued

function on BC, identified to F̂ (ϑ,ϖ) := F (ϑe+ + ϖe→) on C2. Define the partial functions

Fϑ : C ↗↖ BC and F
ϖ : C ↗↖ BC given by

Fϑ(ϖ) = F
ϖ(ϑ) =: F̂ (ϑ,ϖ).

Definition 3.8. A bicomplex-valued function F on BC is said to be separately holomorphic if Fϑ

and F
ϖ are both holomorphic in C.

Accordingly, we have the following characterization.

Proposition 3.9. Let F be a bicomplex-valued function on BC. Then, the following assertions

are equivalent.

(i) F is separate holomorphic on !.

(ii) F satisfies
ωF

ωZ↑ =
ωF

ωZ̃

= 0. (3.8)

(iii) F has the expansion

F (Z) =
+↘∑

m,n=0

Cm,nZ
m
Z

†n
, Cm,n ↑ BC. (3.9)

Proof. The separate holomorphy of F reads ωF̂ /ωϑ = ωF̂ /ωϖ = 0, and therefore

ωF̂
+

ωϑ
=

ωF̂
→

ωϑ
=

ωF̂
+

ωϖ
=

ωF̂
→

ωϖ
= 0. (3.10)

This is in fact also equivalent to

ω

(
F̂

+
e+ + F̂

→
e→

)

ωZ↑ =
ω

(
F̂

→
e+ + F̂

+
e→

)

ωZ↑ =




ω

(
F̂

+
e+ + F̂

→
e→

)

ωZ̃





†

be identically zero on BC, which infers (3.8). Next, by means of (3.10), the functions in (ii) are

those for which we have

F̂
±(ϑ,ϖ) =

+↘∑

m,n=0

a
±
m,n

ϑ
m
ϖ
n
, a

±
m,n

↑ C,
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and therefore

F (Z) =
+↘∑

m,n=0

Cm,nZ
m
Z

†n
, with Cm,n = a

+
m,n

e+ + a
→
n,m

e→.

The converse (iii) implies (ii) is clearly immediate.

Proposition 3.10. Keep the notations of H(1), H(2), Ak and Bk as above. Then, for any H ↑

BHarm(BC), there exists a separate bc-holomorphic function G such that

H
(1)(Z|ϑ,ϖ) =

+↘∑

k=0

Z
k
Ak(Z

†
, Z̃) +G(Z) and H

(2)(Z|ϑ,ϖ) =
+↘∑

k=0

Z
†k
Bk(Z,Z

↑)↗G(Z).

Proof. For every Z = ϑe+ + ϖe→, set

G
(1)(Z) := H

(1)(Z|ϑ,ϖ)↗
+↘∑

k=0

Z
k
Ak(Z

†
, Z̃) and G

(2)(Z) := H
(2)(Z|ϑ,ϖ)↗

+↘∑

k=0

Z
†k
Bk(Z,Z

↑).

Then, from (3.7) and (3.6), we conclude that G(1) = ↗G
(2). However, since ωZ(Ak) = ωZ→(Ak) = 0,

ωZ†(Bk) = ω
Z̃
(Bk) = 0 and ωZ→(H(1)(·|a, b)) = ω

Z̃
(H(2)(·|a, b)) = 0, we get ωZ→G = ωZ→G

(1) = 0

and ω
Z̃
G = ω

Z̃
G

(1) = 0. This completes the proof by setting G := G
(1) = ↗G

(2)
↑ ker(ωZ→) ↓

ker(ω
Z̃
).

4 Concluding remarks

The conclusions of Theorems 3.2, 3.3, and 3.7 remain valid for arbitrary generic product-type

domains in BC without additional assumptions, while Theorems 3.1 and 3.5 remain correct on

special product-type domains in BC. In fact, the statements of Theorems 3.5 and 3.7 are both

valid on a given D(0, r1, r2), where

D(Z0, r1, r2) := {Z ↑ BC; ZZ
↑
⇒ r1e+ + r2e→},

for given nonnegative reals r1 and r2. Assertion of Theorem 3.5 also holds for arbitrary D(Z0, r1, r2)

by imposing
ω
m+n+j+k

F

ωZmZ↑nZ†jZ̃k
(Z0) = 0, (4.1)

for every positive integers m,n, j and k, as a su"cient condition for a given strongly bc-harmonic

bicomplex-valued function F on D(Z0, r1, r2) to be of the form F = H0 +H
↑
1 +H

†
2 + H̃3, for some

bc-holomorphic functions Hω, ε = 0, 1, 2, 3, on D(Z0, r1, r2). Analogously to Theorem 3.1, one

asserts that a given bicomplex-valued function F is strongly bc-harmonic on a product domain !
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if and only if for any Z0 ↑ ! and any r1, r2 > 0 such that D(Z0, r1, r2) → !, F can be expanded as

F (Z) =
+↘∑

m,n=0

am,n(Z ↗ Z0)
m(Z ↗ Z0)

†n + bm,n(Z ↗ Z0)
m ⫅̸(Z ↗ Z0)

n

+ cm,n(Z ↗ Z0)
↑m(Z ↗ Z0)

†n + dm,n(Z ↗ Z0)
↑m ⫅̸(Z ↗ Z0)

n

on D(Z0, r1, r2).
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