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ABSTRACT

The purpose of the present paper is to study pseudosymmetry conditions on f-Kenmotsu

manifolds.

RESUMEN

El propésito del presente articulo es estudiar condiciones de pseudosimetria en var-

iedades f-Kenmotsu.
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1 Introduction

Let M™ be an almost contact manifold with an almost contact metric structure (¢, &1, g) [1]. We
denote by @, the fundamental 2-form of M™ i.e., ®(X,Y) = g(X, dY) for any vector fields X,Y €
x(M™), where x(M™) being the Lie algebra of differentiable vector fields on M™. Furthermore, we
recollect the following definitions [1, 3, 8].

The manifold M™ and its structure (¢, &, 1, g) is said to be:

i) normal if the almost complex structure defined on the product manifold M™ x R is integrable
(equivalently, [¢b, d] + 2dn ® & = 0),

ii) almost cosymplectic if dn =0 and d® =0,

iii) cosymplectic if it is normal and almost cosymplectic (equivalently, Vé = 0, where V is
covariant differentiation with respect to the Levi-Civita connection).

The manifold M™ is called locally conformal almost cosymplectic (respectively, locally conformal
cosymplectic) if M™ has an open covering {U} endowed with differentiable functions oy : U; — R
such that over each Uy the almost contact metric structure (d+, &t,14t, g¢) defined by

—20¢

br=¢, & =e"E m=e 'n, gr=¢e “'g

is almost cosymplectic (respectively, locally conformal cosymplectic).

Normal locally conformal almost cosymplectic manifold were studied by Olszak and Rosca [7].
An almost contact metric manifold is said to be f-Kenmotsu if it is normal and locally conformal
almost cosymplectic. The same type of manifold was also studied by Yildiz et al. [9] using
the projective curvature tensor. Olszak and Rosca [7] also gave a geometric interpretation of f-
Kenmotsu manifolds and studied some curvature restrictions. Among others, they proved that a
Ricci symmetric f-Kenmotsu manifold is an Einstein manifold.

Our work is structured in the following way: After introduction, we have given some basic
equations of f-Kenmotsu manifold in section 2. Section 3 deals with the study of 3-dimensional f-
Kenmotsu manifold with cyclic parallel Ricci tensor. And we study almost pseudo Ricci symmetric,
pseudosymmetric, Ricci pseudosymmetric and Ricci generalized pseudosymmetric 3-dimensional f-
Kenmotsu manifolds in sections 4, 5, 6 and 7, respectively.

2 f-Kenmotsu manifolds

Let M™ be a smooth (2n+ 1)-dimensional manifold endowed with an almost contact metric struc-
ture (¢, &,1, g) which satisfy
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$E =0, n(X)=g(X,&), g(dX,dY)=g(X,Y) =n(X)n(Y), (2.2)

for any vector fields X,Y € x(M™) where id is the identity of the tangent bundle TM™, ¢ is a
tensor field of type (1,1), & is a vector field, n is a T-form and g is a Riemannian metric.

We say that (M™, ¢, &1, g) is an f-Kenmotsu manifold if the Levi-Civita connection V of ¢
satisfies the condition [6]

(Vx®)(Y) = flg(dX, V)& —n(Y)dX], (2.3)

where f € C°(M™M) is strictly positive and df An = 0. If f =0, then the manifold is cosymplectic
[5]. An f-Kenmotsu manifold is called regular if f> + f’ # 0 where f’ = &f.
In an f-Kenmotsu manifold, from (2.3) we have

Vx& = fIX—=n(X)E]. (2.4)
The condition df An =0 holds if dim M™ > 5 but it does not hold if dim M™ =3 [7].
(Vxn)(Y) = flg(X,Y) =n(XIn(Y)]. (2.5)

In a 3-dimensional Riemannian manifold, we have

RIGYIZ = g(%,Z)QX — g(X, Z)QY +S(Y, Z)X — S(X, Z)Y (2.6)
~3{9(¥, Z)X = g(X, Z)Y).

In a 3-dimensional f-Kenmotsu manifold, we see that [7]

RX,Y)Z = (% £ 22 4 2 ) (XAY)Z — (% £302 4 3F )X (EAY)Z (2.7)
(V)X N E)Z},
S(X,Y) = (% 124 f)g(X,Y) — (% 4362 4+ 3 I (X)n(Y), (2.8)

where R, S, Q and r are the Riemannian curvature tensor, the Ricci tensor, the Ricci operator and
the scalar curvature, respectively.
Now from(2.7), we have the following:

R(X,Y)& = —(f2 + )M (Y)X —n(X)Y], (2.9)
R(E,Y)Z = —(f* +1)[g(Y, Z)& —n(Z)Y], (2.10)
n(R(X,Y)Z) = —(f* + £)[g(Y, Zn(X) — g(X, Z)n(Y)]. (2.11)
And from (2.8), we get
S(X,&) = =2(f* + f')n(X), (2.12)

and

Q& = —2(f* +f')&. (2.13)
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3  3-dimensional f-Kenmotsu manifold with cyclic parallel
Ricci tensor

Suppose the manifold M™ under consideration satisfies the cyclic parallel Ricci tensor condition
[4]. Then we have

(VxS)(Y, Z) + (VyS)(Z,X) + (VzS)(X,Y) =0, (3.1)

for all X,Y,Z € x(M™).
From the above equation, it is seen that r is constant. And we have

(VxS)(V, Z2) + (V¥S)(Z,X) + (VZzS)(X,Y) = —( +3f2+3f)[(Vxn)(Y)ﬂ(Z) (3.2)

T
2
+m(
n(Z)( )(X)
+m(

From (3.1) and (3.2), we get

(% +3f2 4+ 3f)[(Vxn) (YIn(Z) +n(Y)(Vxn)(Z) + (Vyn)(Z)n(X) (3.3)
+1(Z)(Vyn)(X) + (Vzn) (XIn(Y) +n(X)(Vzn) (Y)] = 0.

Using (2.5) in (3.3), we get

(% + 32+ 3f)[g(X,YI(Z) + g(X, Zn(Y) + g(Y, Zn(X) + g(Y, X)n(Z) (3.4)
+9(Z,XMm((Y) + g(Z,YIn(X) —en(X)n(Yn(Z)] =0,  since f #0.

On substituting X =Y = e; in (3.4), where e; is an orthonormal basis of the tangent space at each
point of the manifold and taking summation over i, 1 < 1i < 3, which gives

4{% 432 4 3f"In(2) = o. (3.5)
Hence, we get n(Z) = 0, which is a contradiction. Therefore, from (3.5) we have
= —6(f% +1). (3.6)
Conversely, if T = —6(f2 + f') then from (3.2), we obtain
(VxS)(Y,Z) + (V¥ S)(Z,X) + (VZzS)(X,Y) =0. (3.7)
From the above discussions we have the following:

Theorem 3.1. A 3-dimensional f-Kenmotsu manifold satisfies cyclic parallel Ricci tensor if and
only if the scalar curvature v = —6(f2 4 f'), provided f # 0.
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4  Almost pseudo Ricci symmetric 3-dimensional f-Kenmotsu

manifold satisfying cyclic Ricci tensor

Chaki and Kawaguchi [2] introduced the concept of almost pseudo Ricci symmetric manifolds as an

extended class of pseudo symmetric manifolds. A Riemannian manifold (M™, g) is called an almost

pseudo Ricci symmetric manifold (APRS);,, if its Ricci tensor S of type (0, 2) is not identically zero

and satisfies the following condition
(VuS) (VW) = [A(U) + B(WIS(V,W) + A(V)S(U, W) + A(W)S(U, V),
where A and B are two non-zero 1-forms defined by
A(U) = g(U,Py),B(U) = g(U,P2).

By taking the cyclic sum of (4.1), we see that

(VuS)(V, W) + (VvS)(W, U) + (VwS) (U, V) = BA(U) + B(WIS(V,W)

+BA(V) +B(V)IS(U, W) + [3A(W) + B(W)IS(U, V).
Let M™ admit a cyclic Ricci tensor, then (4.3) becomes

BA(U) +B(WIS(V, W) + [BA(V) + B(V)IS(U, W) +
BA(W) +B(W)IS(U, V) =0.

Replacing W by ¢ in the above equation and using (2.12) and (4.2), we get

—2(f + £ }BA(W) + B(WIn(V) — 2(f* + £ )}BA(V) + B(V)In(W)

+[3n(P1) +n(P2)IS(U, V) = 0.
In (4.5), substituting V = & and using (2.12) and (4.2), we have

—2(f + £ }BA(W) + B(W] — 42(f* + £)}3n(P1) +n(P2)In(U) = 0.
Again treating U by & and using (4.2) in (4.6), we obtain
{f> + '}Bn(P1) +n(P2)] =0,
which implies
[3n(P1) +n(P2)] =0,

since {f2 4 f'} # 0.
From (4.8) and (4.6), it follows that

3A(U) +B(U) = 0.

Thus, we can state:

(4.1)

(4.2)

(4.3)

(4.5)

(4.9)

Theorem 4.1. There is no almost pseudo Ricci symmetric 3-dimensional f-Kenmotsu manifold

admitting cyclic Ricci tensor, unless 3A + B vanishes everywhere.
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5 Pseudosymmetric 3-dimensional f-Kenmotsu manifold

Let M™ be an pseudosymmetric 3-dimensional f-Kenmotsu manifold. Then we have,

for all X,Y,U,V,;W € x(M").
From the above relation it follows that

R(X, Y)R(U, VIW — R(R(X, Y)U, V)W — R(U, R(X, Y)V)W (5.2)
—R(U, VIR(X, Y)W = frl(X Ay Y)R(U, VW — R((X Ag Y)U, V)W
—R(U, (X Ag Y)VIW — R(U, V)(X Ay YIW],

where
(XNgY)Z = g(Y,Z)X —g(X, Z)Y. (5.3)
Substituting X by & and using (2.10) and (5.3), (5.2) yields

[(F2 + /) + frI{g(Y, R(U, VIW)E —n(R(U, VIW)Y — g(¥, U)R(E, VIW (5.4)
M (WR(, VIW — g(Y, VIR(U, E)W +n(VIR(U, Y)W — g(Y, W)R(U, V)¢
M(W)IR(U, V)Y} = 0.

Taking inner product of (5.4) with &, we get

[(f2 + ') + fRIR(W, V, W, Y) — (Y (R(U, V)W) — g(Y, Un(R(E, V)W) (5.5)
(UM (R, VIW) — g(Y, VIn(R(U, )W) +n(Vn(R(U, Y)W)
—g(Y, Wn(R(U, V)&) +n(W)n(R(U, V)Y)} = 0.

By using (2.11), (5.5) becomes

[(F% + ) + FRHR(U, V, W, Y) — (£2 + £/) [=g(V, Wn(Y)n(U) (5.6)
+g(U, Win(Y)n(V) — g(, W g(V, W) + g(Y, Wn(VIn(W) + g(V, Win(Un(Y)

—g(Y, Wn(Un(V) — g(¥, VIn(Wn(UW) + g(Y; V)g(U, W) + g(Y, Wn(Vn(U)

—g(UL, Win(Yn(V) + g(V, YIm(Wmn(U) — g(U, Y)n(VIn(W)]} =0.

Contracting the above equation, we obtain
[(F2 + ') + FRIS(V, W) + 2(f* + ) g(V, W)} = 0. (5.7)
The above equation can hold only if either

(1) (f2+f') = —fg, or
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(il) S(V, W) = ag(V, W), where o« = —2(f2 + /).

This leads to the following:

Theorem 5.1. A 3-dimensional pseudosymmetric f-Kenmotsu manifold with never vanishing
function {(f? + ') = —fr} is an Einstein manifold.

6 Ricci pseudosymmetric 3-dimensional f-Kenmotsu mani-
fold
Suppose (M™, g) be a 3-dimensional Ricci pseudosymmetric f-Kenmotsu manifold. Then we have,
(R(X,Y) - S)(U, V) = f5Q(g, S) (U, V; X, Y), (6.1)
for all X,Y,U,V,W € x(M"). From the above relation it follows that
(R(X,Y) - S)(U, V) = fs((X g Y) - S)(U, V),
or

—S(R(X, Y)W, V) = S(U, R(X, Y)V) = f[=g(Y, W)S(X, V) + g(X, U)S(Y, V) (6.2)
—g(Y, VIS(U, X) + g(X, V)S(U, Y)].

Replacing X and U by & and using (2.1), (2.10) and (2.12) in the above equation, we get
[(F + ) + Fs{S (Y, V) + 2(f + ') g(V, V)} = 0, (6.3)
which follows that either [(f2 4+ f') + fs] =0 or
S(Y, V) = ag(Y, V), (6.4)

where o« = —2(f2 + f').
Thus we can state:

Theorem 6.1. If a 3-dimensional f-Kenmotsu manifold M™ is Ricci pseudosymmetric with re-
strictions X = U = &, then either [(f> +f') 4+ fs] = 0 or the manifold is an Einstein manifold.

7 Ricci generalized pseudosymmetric 3-dimensional f-Kenmotsu
manifold

Consider a Ricci generalized pseudosymmetric 3-dimensional f-Kenmotsu manifold. Then we have

(REXY) - R) (U, VIW = f((XAs Y) - R) (U, VIW, (7.1)
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for all X,Y, U, V,W € x(M™M).
We can write the above form as
R(X, Y)R(U, V)W — R(R(X, Y)U, V)W — R(U, R(X, Y)V)W
—R(U, VIR(X, Y)W = f[S(Y, R(U, V)W)X — S(X, R(U, VIW)Y
—S(Y, WR(X, V)W + S(X, WR(Y, V)W — S(Y, V)R(U, X)W
+S(X, VIR(W, Y)W — S(Y, W)R(U, V)X + S(X, W)R(U, V)Y].
On substituting X = U = & and using (2.10) and (2.12), (7.2) reduces to
—(F2 + (2 +)g(V, W)Y + R(Y, V)W — (f2 + f')g(Y, W) V]
= (£ + £)S(Y, VIn(W)E — 2(f2 + ') g(V, W)Y — 2(f? + f')R(Y, V)W
+2(£2 + )2 g(Y, WIn(V)E + (f2 + £)S(Y, WIn(V)E — (f2 + £)S(Y, W)V
+2(f2 +1)%g(V, Y)n(W)E].
Taking inner product of the above equation with Z, we get
—(F2 + I + £1g(V, W)g(Y, Z) + g(R(Y, VIW, Z) — (f* + f)g(Y, W)g(V, Z)]
= fl(f* + SV, VIn(W)n(Z) — 22 + ') *g(V, W)g(Y, Z)
—2(f2 + f1)g(R(Y, VIW, Z) + 2(f% + )2 g (Y, Wn(VIn(2)
+(f2 + S, Wn(VIn(Z) — (2 + £)S(, W)g(V, Z)
+2(f2 +1)2g(V, Y)n(W)n(2)].
Contracting (7.4) and simplifying gives
(F2 + ) (3f = 1)[S(Y, Z) 4 2(f* + f')g(V, Z)] =0,

which means that either (f> 4 f’)(3f —1) = 0 or S(V, Z) = «g(Y, Z), where o« = —2(f2 + f').

Hence we can state the following:

(7.4)

Theorem 7.1. If a 3-dimensional f-Kenmotsu manifold is Ricci generalized pseudosymmetric then

etther

(i) (f>+£)(3f—1)=0, or

(i) it is an Einstein manifold.
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