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ABSTRACT

In this paper, we give analogues of local uncertainty inequality for the Sturm-Liouville
transform on [0, 00[. A generalization of Donoho-Stark’s uncertainty principle is ob-
tained for this transform.

RESUMEN

En este articulo entregamos resultados analogos de una desigualdad de incertidumbre
local de la transformada Sturm-Liouville en [0, co[. Una generalizacién del principio de
incertidumbre de Donoho-Stark se obtiene de esta transformacién.
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1 Introduction

We consider the second-order differential operator defined on ]0, co[ by
A/
Au=u" + Xu' + p%u,

where A is a nonnegative function satisfying certain conditions and p is a nonnegative real number.
This operator plays an important role in analysis. For example, many special functions (orthogonal
polynomials) are eigenfunctions of an operator of A type. The radial part of the Beltrami-Laplacian
in a symmetric space is also of A type. Many aspects of such operators have been studied [2] 10}
17, 18, 19]. In particular, the two references [2, [I7] investigate standard constructions of harmonic
analysis, such as translation operators, convolution product, and Fourier transform, in connection

with A.

Many uncertainty principles have already been proved for the Sturm-Liouville operarator A,
namely by Rosler and Voit [I4] who established an uncertainty principle for Hankel transforms.
Bouattour and Triméche [I] proved a Beurling’s theorem for the Sturm-Liouville transform. Daher
et al. [3 [ B] give some related versions of the uncertainty principle for the Sturm-Liouville
transform (Hardy’s theorem and Miyachi’s theorem). Ma [9] proved a Heisenberg uncertainty
principle for the Sturm-Liouville transform.

Building on the ideas of Faris [7] and Price [12] [13], we show a local uncertainty principle for
the Sturm-Liouville transform F. More precisely, we will show the following result. If T <p < 2,
qg=p/(p—1)and 0 < a < (2a+2)/q, there is a constant K(a) such that for every f € LP(u) and
every measurable subset E C [0, co[ such that 0 < v(E) < oo,

~a _
2a+2

1/q
<L|]—"(f)(7\)|qdv(7\)> gK(a)(v(E)) XL (0, (1.1)

where p is the measure given by du(x) := A(x)dx, and v is the Plancherel measure associated to
F. (For more details see the next section.)

This inequality generalizes the local uncertainty principle for the Hankel transform given by Ghob-
ber et al. [8] and Omri [11].

We shall use the local uncertainty principle (1.1); and building on the techniques of Donoho
and Stark [6], we show a continuous-time principles for the LP theory, when 1 < p < 2.

This paper is organized as follows. In Section 2 we list some basic properties of the Sturm-
Liouville transform F (Plancherel theorem, inversion formula,...). In Section 3 we show a local
uncertainty principle for the Sturm-Liouville . The Section 4 is devoted to Donoho-Stark’s
uncertainty principle for the Sturm-Liouville transform F in the LP theory, when 1 <p < 2.
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2 The Sturm-Liouville transform F

We consider the second-order differential operator A defined on ]0, ool by
A/
Au=u" + Xu' + p%u,
where p is a nonnegative real number and
A(x) =x**"1B(x), «>—1/2,

for B a positive, even, infinitely differentiable function on R such that B(0) = 1. Moreover we
assume that A and B satisfy the following conditions:

(i) A is increasing and lim A(x) = oco.

X—00
Al A’
(i) A is decreasing and Xan;o % = 2p.
(iii) There exists a constant & > 0 such that
A/
0 9o D(x)exp(—8x) if p >0,
A(x)
A’ 20041
) _ 20+ T Dx)exp(—ox)  if p =0,
Al(x) X

where D is an infinitely differentiable function on ]0, co[, bounded and with bounded derivatives
on all intervals [xg, 0o, for xo > 0. This operator was studied in [2 [10, [I7], and the following
results have been established:

(I) For all A € C, the equation

Au = —Au
{ u0) =1, u(0)=0
admits a unique solution, denoted by @, with the following properties:
e for x > 0, the function A — @, (x) is analytic on C;
e for A € C, the function x — @ (x) is even and infinitely differentiable on R;
e for all A\x € R,
lpa(x)[ < 1. (2.1)

(IT) For nonzero A € C, the equation Au = —A?u has a solution @y satisfying

B (x) = —— exp(iM)Vi(x, A),

A(x)

with limy_,0o V(x,A) = 1. Consequently there exists a function (spectral function)

A = c(A),
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such that
©x = c(A)Dx + c(—A)D_, for nonzero A € C.

Moreover there exist positive constants kq,k; and k such that
KA < Je(A) 2 < ko A2

for all A such that ImA < 0 and |A| > k.
Notation 2.1. We denote by

e 1 the measure defined on [0, 0ol by du(x) := A(x)dx; and by LP(u), 1 < p < oo, the space
of measurable functions f on [0, co[, such that

0o 1/p
Iflle () = (J If(x)pdu(x)) <o, 1<p<oo,
0

[Ifll oo () == ess sup [f(x)| < oo;
x€[0,00[
dA
e v the measure defined on [0, co[ by dv(A) := W; and by LP(v), 1 < p < oo, the space

of measurable functions f on [0, co[, such that ||f||p ) < oo.

The Fourier transform associated with the operator A is defined on L' (p) by

F(HA) = L eA(x)f(x)du(x) for A e R.

Some of the properties of the Fourier transform JF are collected bellow (see [2] [10] 17, 18]).
Theorem 2.2. (i) L' — L™-boundedness. For all f € L'(n), F(f) € L®(v) and

IF ()l vy < Ml (- (2.2)
(ii) Inversion theorem. Let f € L' (), such that F(f) € L'(v). Then

f(x) = J:o eA(X)F(f)(A)dv(A), a.e. x € [0, 00]. (2.3)

(iii) Plancherel theorem. The Fourier transform F extends uniquely to an isometric isomor-
phism of L2(Wn) onto L?(v). In particular,

Il 2 () = IF () L2(v)- (2.4)

Using relations (2.2) and (2.4) with Marcinkiewicz’s interpolation theorem [15, [16], we deduce
that for every 1 < p < 2, and for every f € LP(u), the function F(f) belongs to the space L9(v),
q=p/(p—1), and

IF Oy < lfllee - (2.5)
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3 [P local uncertainty inequality

This section is devoted to establish a local uncertainty principle for the Sturm-Liouville transform
F, more precisely, we will show the following theorem.

Theorem 3.1. If 1 <p <2, q=p/lp—1) and 0 < a < (2o +2)/q, then for all f € LP(u) and
all measurable subset E C [0, 0o such that 0 < v(E) < o0,

~a _
2a+2

1/q
<L|f(f)()\)|qdv(>\)> gK(a)(v(E)) XL ()

(g—1)a
2x+2

K(a) = (qa)_#iz (2(x+2— qa)

qa 1/4q
T+ — S B
Zoc—I—Z—qa(X;[gEO] (X)) ] ’

where . - 1
ro = (qa) Za+2 (2OC+ 5 _ qa) Za+2 (V(E)) 2a+2 .
Proof. For v > 0, denote by X, X[o,+[ and X[r,c0[ the characteristic functions.
Let fe LP(u), 1 <p <2andlet q=p/(p—1). By Minkowski’s inequality, for all r > 0,
IF(ExellLav) < IFEXo,rDXElLa(v) + [1F (X000 XE ILa (v)

1/9
(v(B) T IF X0, ) + IF (xir,oo) L v

IN

hence it follows from (2.2) and (2.5) that

1/q
IFE)XElLa(v) < (V(E)) 1fx10,r et () + Xy o0tllLr (1) (3.1)

On the other hand, by Holder’s inequality,

Ifxi0,riller () < 1 “Xio,rllLa (o X fllLe (-

By hypothesis a < (2o +2)/q,

Tfa+(20c+2)/q (

1/q
X “Xpo,r(llL < S B(X))
I o,rillLa (w) 2x+2—qa)'/9\ cior ’

and therefore,

r—a+(2x+2)/q 1/q a
Il w = Geim= NIE (le[lc)l?r]B(X)) X[ () (3.2)
Moreover,
X, ootllLr (1) < 11X X ootllee (o X FllLe () < 774X e (1) (3.3)

Combining the relations (3.1), (3.2) and (3.3), we deduce that

) 1/q a+2042)/q 1/
ey (V(E)) : ( sup B(X)) Xl (-

F(f <
| F(f)xellLa(v) < 2004+ 2 —qa)/9\ o0
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1—q _ 1
We choose r =19 = (q a) s (2(x +2-— qa) e (V(E)) ZHZ, we obtain the desired inequality.

Remark 3.2. (i) The Local uncertainty principle for the Sturm-Liouville transform F generalizes
the local uncertainty principle for the Hankel transform (see [8, [I1]).

(i) fl<p<2and 0<a< (2a+2)/q, where q =p/(p — 1), then for every f € LP(u),

Zo(+2
o [(8) T E e ]| < K@l
EC[0,00[, 0<V(E)<oo

The left hand side is known to be an equivalent norm of F(f) in the Lorentz-space LP+ 9(v), where

_92x+2)
2a0+2—qa’

a =

4 [P Donoho-Stark uncertainty principle

Let T and E be measurable subsets of [0, co[. We introduce the time-limiting operator Pt by
Prf := fxT, (4.1)
and, we introduce the partial sum operator Sg by
F(Sef) = F(f)xe. (4.2)
Lemma 4.1. If v(E) < oo and f € LP(u), 1 <p <2,
Sef(x) = |_or(IF (DAL

Proof. Let f € LP(n), 1 <p <2andlet q=p/(p—1). Then by (2.1), Holder’s inequality and

(2.5),
IFExell = L M)AV
< (vi) IF Do
< (vm) pufnw,
and
1/2
IF(Oxellz ) = (Lf(ﬂmzdvm)

q—2

< (ve )Wf M

e
n\

IN

(VE) " HFleoe
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Thus F(f)xe € L'(n) NL?(n) and by (4.2),

Sef =F " (Flfxe).
This combined with (2.3) gives the result. O

Let T and E be measurable subsets of [0, co[. We say that a function f € LP(u), 1 <p <2, is
e-concentrated to T in LP (p)-norm, if there is a measurable function g(t) vanishing outside T such
that [|f — g|lie () < €llf]lLv (). Similarly, we say that F(f) is e-concentrated to E in L9(v)-norm,
q =p/(p—1), if there is a function h(A) vanishing outside E with ||F(f) —h|[ra(v) < ]| F(f)||La(v)-

If f is e7-concentrated to T in LP(u)-norm (g being the vanishing function) then by (4.1),

1/p
[f —Prfllr(w = (L [ f(t)pdu(t)> < —gllee () < erllfllie (4.3)
0,00\

and therefore f is er-concentrated to T in LP(u)-norm if and only if

||f— PTfHLP(H) S ST”fHLP(u)'

From (4.2) it follows as for Pt that F(f) is eg-concentrated to E in L9(v)-norm, g =p/(p—1),
if and only if

F () — F(Sef)|lav) < eel|lF(F)llLay)- (4.4)

Let By(E), 1 < p < 2, be the set of functions f € LP(p) that are bandlimited to E (i.e.
f € B, (E) implies Sgf =1).

The spaces B, (E) satisfy the following property.
Lemma 4.2. Let T and E be measurable subsets of [0, 0ol such that 0 < v(E) < co. For f € By(E),
T<p<2and0<a< (2a+2)(1 —%),

1/p THTa
IPrfle o < K@) (wM) " (V®) " 77 Ix e,
where K(a) is the constant given by Theorem 3.1.

Proof. If u(T) = oo, the inequality is clear. Assume that u(T) < co. For f € B,(E), 1 <p < 2,
from Lemma 4.1,

() = | eal0F (OO,
E
and by (2.1), Holder’s inequality and Theorem 3.1,

1/p

1/4q 14 _a
f(vl < (v(E)) (vaumwdvm) < Kla) (VE) " ko o,
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where q =p/(p —1). Hence,

1/p 1/ ERress
IPTf|Lp(u):(Llf(t)lpdu(t)) < k(@) (W) (E) " I

which yields the result. O

It is useful to have uncertainty principle for the LP(u)-norm.
Theorem 4.3. Let T and E be measurable subsets of [0,00[ such that 0 < v(E) < oo; and let
feBp(E), 1<p<2and0<a< (2a+2)(1— —) If f is eT-concentrated to T, then

K(a) /v et
Il < 72 (rM) 7 (V)" Xl

“1—e7

Proof. Let f € B,(E), 1 < p < 2. Since f is er-concentrated to T in LP(p)-norm, then by (4.3)
and Lemma 4.2,

Ifller g < erlifliee o + IIPfllLe )
o
< erlflie o + K@ (M) ()T 0 .
Thus, ] )
(1 —en) o < K@) (M) (M) 7 o,
which gives the result. O

Another uncertainty principle for the LP(u) theory is obtained.
Theorem 4.4. Let E be measurable subset of [0, 00[ such that 0 < v(E) < oo; and let f € LP(u),
1 <p<2ad0 < a< 2a+2)(1— %). If F(f) is eg-concentrated to E in L9(v)-norm,

q=p/(p—1), then

K(a) Tatz
IFE et < 7o (VE) ™ el

Proof. Let f € LP(u), 1 < p < 2. Since F(f) is eg-concentrated to E in L9 (v)-norm, q = p/(p—1),
then by (4.4) and Theorem 3.1,

1/q
IF e < el F e +(Lf(f)mqavm>

IN

et F()lLay +K(a)(v(E))“”||x e

Thus,

Zo(+2 |

(1= ee)IF(Nllary) < Kla)(V(B)

which proves the result. O

X Fller
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