CUBO A Mathematical Journal
Vol.15, N203, (31-44). October 2013

Coincidence and common fixed point theorems in
Non-Archimedean Menger PM-spaces

SUNNY CHAUHAN B. D. PAaNT MOHAMMAD IMDAD
R.H. Government Government Degree College, Department of Mathematics,
Postgraduate College, Champawat-262523, Aligarh Muslim University,
Kashipur-244713, (U.S. Uttarakhand, India. Aligarh 202 002, India.
Nagar), Uttarakhand, India. badridatt.pant@gmail.com mhimdad@yahoo.co.in

sun.gkv@gmail.com

ABSTRACT

The object of this work is to point out a fallacy in the proof of Theorem 1 contained in
the recent paper of Khan et al. [Jordan J. Math. Stat. (JIMS) 5(2) (2012), 137-150]
proved in Non-Archimedean Menger PM-space by using the notions of sub-compatibility
and sub-sequential continuity. We show that the results of Khan et al. [Jordan J. Math.
Stat. (JJMS) 5(2) (2012), 137-150] can be recovered in two ways. Further, we establish
some illustrative examples to show the validity of the main results. Our results improve
a multitude of relevant fixed point theorems of the existing literature.

RESUMEN

El objetivo de este trabajo es senalar una falacia en la demostracion del Teorema 1
contenido en un articulo reciente de Khan et al. [Jordan J. Math. Stat. (JIMS) 5(2)
(2012), 137-150] probado en un espacio-PM No-Arquimedeano Menger usando nociones
de continuidad subcompatible y sub secuencial. Mostramos que el resultado de Khan
et al. [Jordan J. Math. Stat. (JJMS) 5(2) (2012), 137-150] puede recuperarse de dos
maneras. Ademas, establecemos algunos ejemplos ilustrativos que muestran la validez
de los resultados principales. Nuestro resultado mejora una gran cantidad de teoremas
de punto fijo importantes existentes en la literatura.
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1 Introduction

Istratescu and Crivit [I9] introduced the concept of Non-Archimedean probablistic metric spaces
(briefly, N.A. PM-spaces) in 1974. In this sequence, Istratescu [I6,[17] obtained some fixed point
theorems on N.A. Menger PM-spaces and generalized the results of Sehgal and Bharucha-Reid [32]
(see [1820]). Further, Hadzi¢ [13] improved the results of Istratescu [16L17].

In 1987, Singh and Pant [33] introduced the notion of weakly commuting mappings on N.A.
Menger PM-spaces and proved some common fixed point theorems. Dimri and Pant [I0] studied
the application of N.A. Menger PM-spaces to product spaces. In 1997, Cho et al. [§] introduced
the concepts of compatible mappings and compatible mappings of type (A) in N.A. Menger PM-
spaces and obtained some fixed point theorems for these mappings. Most of the common fixed point
theorems for contraction mappings invariably require a compatibility condition besides assuming
continuity of at least one of the mappings. Since then, Pant [27] noticed these criteria for fixed
points of contraction mappings and introduced a new continuity condition, known as reciprocal
continuity and obtained a common fixed point theorem by using the compatibility in metric spaces.
He also showed that in the setting of common fixed point theorems for compatible mappings sat-
isfying contraction conditions, the notion of reciprocal continuity is weaker than the continuity of
one of the mappings. Jungck and Rhoades [21] weakened the notion of compatible mappings by
introducing weakly compatible mappings and proved common fixed point theorems without any
requirement of continuity of the involved mappings. In 2009, Kutukcu and Sharma [26] introduced
the concept of compatible mappings of type (A-1) and type (A-2) in N.A. Menger PM-spaces and
showed that they are equivalent to compatible mappings under certain conditions. Many math-
ematicians proved several common fixed point theorems in Non-Archimedean Menger PM-spaces
using different contractive conditions (see [4,[61[0,2224][34]). In 2008, Al-Thagafi and Shahzad [I]
introduced the concept of occasionally weakly compatible (shortly, owc) mappings in metric spaces.
Bouhadjera and Godet-Thobie [2] weakened the concept of occasionally weak compatibility and re-
ciprocal continuity in the form of sub-compatibility and sub-sequential continuity respectively and
proved some interesting results with these concepts in metric spaces. Recently, Imdad et al. [14]
showed that the results contained in [2] can easily recovered by replacing sub-compatibility with
compatibility or sub-sequential continuity with reciprocally continuity (also see [3,5,12]).

In this paper, we prove common fixed point theorems for two pairs of self mappings by using
the notions of compatibility and sub-sequentially continuity (alternately sub-compatibility and
reciprocally continuity) in N.A. Menger PM-spaces. Some examples are also derived to support
our results.

2 Preliminaries

Definition 2.1. [31] A triangular norm T (briefly, t-norm) is a binary operation on the unit
interval [0,1] such that for all a,b,c,d € [0,1] and the following conditions are satisfied:
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(1) T(a,1) =a;

(2) T(a,b) =T(b,a);
(3) T(a,b) <T(c,d), whenever a <c and b < d;
(4) T((l, T(b) C)) = T(T(a,b),c).

Definition 2.2. [31] A mapping F: R — R" is said to be a distribution function if it is non-
decreasing and left continuous with inf{F(t) :t € R} = 0 and sup{F(t): t € R} = 1. We shall denote
by Im, the set of all distribution functions whereas H stands for specific distribution function (also
known as Heaviside function) defined as

H(t):{ 0, ift<o0;

1, ift>o0.

If X is a non-empty set, F : X x X — Im is called a probabilistic distance on X and F(x,y) is
usually denoted by Fy .

Definition 2.3. [I7,[19] The ordered pair (X,F) is said to be an N.A. PM-space if X is a non-
empty set and F is a probabilistic distance satisfying the following conditions: for all x,y,z € X
and t,t1,t2 >0,

(1) Fyt) =1 & x=y;
(2) Fx,y (t) = Fy,x (t);

(3) if Fx,y(t1) =1 and Fy .(t2) =1 then Fy (max{t;, t2}) = 1.

The ordered triplet (X, F,T) is called an N.A. Menger PM-space if (X,F) is an N.A. PM-
space, T is a t-norm and the following inequality holds:

Fx,z(max{tl ) tZ}) > T (Fx,y (tl )) FU)z(tZ)) )

for all x,y,z € X and t1,t2 > 0.

Example 2.4. Let X be any set with at least two elements. If we define Fxx(t) = 1 for all
x € X,t>0 and

Fx,y (t) =

0, ift<l;
1, ift>1,

where x,y € X,x # vy, then (X, F,T) is an N.A. Menger PM-space with T (a,b) = min{a, b}
or (ab) for all a,b € [0, 1].
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Example 2.5. Let X = R be the set of real numbers equipped with metric defined by d(x,y) = x—y |

and

S f t > 0’-
Fry(t) =3 trhwpl z.f B
0, ift=0.

Then (X, F,T) is an N.A. Menger PM-space with T as continuous t-norm satisfying T (a,b) =
min{a, b} or ab for all a,b € [0, 1].

Definition 2.6. [8] An N.A. Menger PM-space (X,F,T) is said to be of type (C)q if there exists
a g€ Q such that
Q(Fx,z(t)) < Q(Fx,y (t)) + Q(Fy,z(t))»

for all x,y,z € X;t > 0, where Q ={g | g: [0,1] — [0,00) is continuous with g(1) = 0 iff
t=1}

Definition 2.7. [8/ An N.A. Menger PM-space (X, F,T) is said to be of type (D)q if there exists
a g€ Q such that
o(T (t1,t2)) < glt1) + g(t2),

for all t1,t2 € [0, 1].

Remark 2.8. [8] If an N.A. Menger PM-space (X,F,T) is of type (D)g, then (X, F,T) is
of type (C)g. On the other hand, (X,F,T) is an N.A. Menger PM-space such that T (a,b) >
max{a+b—1,0} for all a,b € [0, 1], then (X, F,T) is of type (D)q for g € Q defined by g(t) =1—1,
t e [0,1].

Throughout this paper (X,F,7) is an N.A. Menger PM-space with a continuous strictly
increasing t-norm 7T .

Let ¢ : [0,00) — [0,00) be a function satisfying the condition (®@): ¢ is upper semi-continuous
from the right and ¢(t) <t for t > 0.

Lemma 2.9. [8] If a function ¢ : [0,00) — [0,00) satisfies the condition (®) then we have:

(1) for all t > 0,lim,, oo ®™(t) = 0, where ™ (t) is the n'M iteration of P(t).

(2) If {tn} is a non-decreasing sequence of real numbers and tn1 < G(tn) where n = 1,2,...
then limy, oo tn = 0. In particular, if t < ¢(t), for each t > 0 then t = 0.

Definition 2.10. [8] A pair (A,S) of self mappings defined on an N.A. Menger PM-space
(X, F,T) is said to be compatible if and only if Fasx, sax,(t) = 1 for all t > 0, whenever {xn} is
a sequence in X such that Axn, Sxn — z for some z € X as n — oo.
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Definition 2.11. A pair (A,S) of self mappings defined on an N.A. Menger PM-space (X, F,T)
satisfies the (E.A) property, if there exists a sequence {xn} such that

lim Ax, = lim Sx, =z,
n—oo n—oo

for some z € X.

Definition 2.12. [29] A pair (A,S) of self mappings of a non-empty set X is said to be weakly
compatible (or coincidentally commuting) if they commute at their coincidence points, i.e. if Az =
Sz for some z € X, then ASz = SAz.

It is easy to see that two compatible mappings are weakly compatible but converse is not true.

Definition 2.13. [2]1] A pair (A,S) of self mappings of a non-empty set X is owc iff there is a
point x € X which is a coincidence point of A and S at which A and S commute.

In an interesting note, Doric et al. [I1] showed that the notion of owc reduces to weak com-
patibility in the presence of a unique point of coincidence (or a unique common fixed point) of the
given pair of single valued mappings. Thus, no generalization can be obtained by replacing weak
compatibility with owc.

Inspired by Bouhadjera and Godet-Thobie [2], we define the notion of sub-compatible map-
pings in N.A. Menger PM-space as follows:

Definition 2.14. A pair (A,S) of self mappings defined on an N.A. Menger PM-space (X, F,T)
is said to be subcompatible iff there exists a sequence {xn} such that

lim Ax, = lim Sx, =z,
n—oo n—oo

for some z € X and limn 00 FAsx, ,5Ax, (t) =1, for all t > 0.

Remark 2.15. Two owc mappings are sub-compatible, however the converse is not true in general
(see [3, Example 1.2]).

Remark 2.16. A pair of sub-compatible mapping satisfies the (E.A) property. Obviously, compat-
ible mappings which satisfy the (E.A) property are sub-compatible but the converse statement does
not hold in general (see [30, Example 2.3]).

Definition 2.17. A pair (A,S) of self mappings defined on an N.A. Menger PM-space (X, F,T) is
called reciprocally continuous if for a sequence {xn} in X, limy, oo ASx, = Az and lim,,_,o, SAXx, =
Sz, whenever

lim Ax, = lim Sx, =z,
n—oo n—oo

for some z € X.
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Remark 2.18. If two self mappings A and B are continuous, then they are obviously reciprocally

continuous but converse is not true. Moreover, in the setting of common fized point theorems for
compatible pair of self mappings satisfying contractive conditions, continuity of one of the mappings
implies their reciprocal continuity but not conversely (see [27]).

Now we define the notion of sub-sequentially continuous mappings in N.A. Menger PM-space
due to Bouhadjera and Godet-Thobie [2]:

Definition 2.19. A pair of self mappings (A,S) defined on an N.A. Menger PM-space (X, F,T)
is called sub-sequentially continuous iff there exists a sequence {xn} in X such that,

lim Ax, = lim Sx, =z,
n—oo n—oo

for some z € X and limn_,oo ASxn = Az and limp 0o SAx,, = Sz.

Remark 2.20. One can easily check that if two self-mappings A and S are both continuous, hence
also reciprocally continuous mappings but A and S are not sub-sequentially continuous (see [28,
Ezample 1]).

3 Results

In 2012, Khan et al. [25] proved the following common fixed point theorem for two pairs of sub-
compatible as well as sub-sequentially continuous mappings in N.A. Menger PM-space.

Theorem 3.1. [25, Theorem 1] Let A,B,S and T be four self mappings of an N.A. Menger PM-
space (X, F,T). If the pairs (A,S) and (B, T) are sub-compatible and sub-sequentially continuous,
then

(1) A and S have a coincidence point,

(2) B and T have a coincidence point.

Further, if

(1)

Q(FA B (t)) < (b <max{ g(FSX,Ty(t))»g(FSx,Ax(t))aQ(FTy,By(t)], })
x,By < ’

Q(FSX,By (), Q(FTy,Ax (t)

holds for all x,y € X, t >0, d € ® and g:[0,1] — [0,00) is continuous and strictly decreasing
with g(1) =0 and g(0) < co. Then A,B,S and T have a unique common fixed point in X.

Unfortunately, Theorem [BI]is not true in its present form. To substantiate this viewpoint,
we refer to Imdad et al. [I5, Example 0.1] wherein it can be easily seen that involved mappings do
not have a coincidence or common fixed point in the underlying space.
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Motivated by a recent note of Imdad et al. [14], the conclusions of Theorem Bl remain valid
if we replace compatibility with sub-compatibility and sub-sequential continuity with reciprocal
continuity.

However, Theorem B.1] can be corrected in two ways under more general conditions as follows:

Theorem 3.2. Let A,B,S and T be self mappings of an N.A. Menger PM-space (X, F,T). If the
pairs (A,S) and (B, T) are compatible and sub-sequentially continuous, then

(1) the pair (A,S) has a coincidence point,
(2) the pair (B, T) has a coincidence point.

(3) There ezists € © such that

G(FSX,Ty(t)))G(FSX,Ax(t)))g(FTy,By(t)))
Fax < max , 2
BlFax.pu(t) d’( : { 1 (8(Fs,py (8)) + 8(Fry,ax (1) }) ®

holds for all x,y € X, t >0 and g € Q. Then A,B,S and T have a unique common fized point
mn X.

Proof. Since the pair (A, S) (also (B, T)) is sub-sequentially continuous and compatible mappings,
therefore there exists a sequence {x,} in X such that

lim Axn = lim Sxn =z, (3)
n—oo n—oo

for some z € X,

and

lim FAan,SAxn (t) = FAz,Sz(t) = 1)
n—oo

for all t > 0 then Az = Sz, whereas in respect of the pair (B, T), there exists a sequence {yn}
in X such that

lim By, = T}eréo Tyn =w, (4)

n—oo
for some w € X,

and

lim Fgry, By, (t) = Few,mw(t) =1,
n—oo

for all t > 0 then Bw = Tw. Hence z is a coincidence point of the pair (A,S) whereas w is
a coincidence point of the pair (B, T). Now we show that z = w. On using inequality (2) with
X =%Xn,Y =Yn, we get

E(Fan,Tyn(t))»E(Fan,Axn(t))aQ(FTyn,Byn(t))a
F Xny n t S max )
0(FAxn Byn(t) d’( * { 1 (g(Fsn sy (1) + 8(Fryn axe (1) })
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passing to limit as n — oo, we get

o(Fo(t)), a(F.
¢ | max
( { 1 (g(Fa ()
- d)(maX{G(Fz,w(t)),gm al1),

= ¢ (max{g(Fzw(t)),0,0,a(Fzw(t))})
= ¢ (g(Fzw(t))).

8(Fzw (1)

IN

N =
E
+

©

-
N

2

=
—
N——

Owing Lemma 229 we have z = w. We assert that Az = z. On using (@) with x = z and
Y = Yn, We get

g(FSz,Tyn(t)))g(FSz,Az(t)))g(FTymByn(t)))
FazBy, (1)) < max ,
9(Faz Bya 1) d’( ¢ { 1 (g(Fsa.pyn (1) + 0(Fry, Az(D) })

passing to limit as n — oo, we get
o (max { 8(Faz,2(0), 8(Fazaz(1), 8(F.2 (1), })
7 (8(Fazz(1)) + 8(Fz Az (1) ’
1
(max {g(FAz,z(tn,gm,gm, 5 (8(Fazz (1) +g(Fz,Az(tm})

¢
= q)(max{g(FAzz( )))O)O)Q(FAz,z(t))})
¢ (g(Faz,z(1))).

IN

8(Faz,z(t))

On employing Lemma [2.9] we have z = Az. Therefore Az = z = Sz and hence z is a common
fixed point of (A,S). Now we show that z is a common fixed point of (B, T). On using (2) with
x =xn and y = z, we get

oFree aalt) < 6 (max { 8(Fsx,, 12(6)), 8(Fsx, axa (1), 8(Frz g2 (1), })

7 (8(Fsx,,Bz(t) + g(Frz, ax,, (1))

passing to limit as n — oo, we get

o <max { a(F2, 52 (8)), 8(Fz.2 (1)), 8(Feop2 (1), })
% (g(Fz,Bz(t)) + g(FBz,z(t))) )

— & (max {a(Fe (1), 001), 001, 3 0(Fo () + a(Fo () })

= Cb(max{g(F 2(1)),0 O»Q(Fz Bz(t))})
¢ (9(Fz,B2(1))) .

IN

9(FzB2(1))

In view of Lemma [2.9] we have z = Bz. Therefore Bz = z = Tz. Thus we conclude that z is a
common fixed point of A, B, S and T. The uniqueness of common fixed point is an easy consequence
of inequality (2I). O
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Theorem 3.3. Let A,B,S and T be self mappings of an N.A. Menger PM-space (X, F,T). If the
pairs (A,S) and (B, T) are sub-compatible and reciprocally continuous, then

(1) the pair (A,S) has a coincidence point,
(2) the pair (B, T) has a coincidence point.

(3) Further, the mappings A,B,S and T have a unique common fized point in X provided the
involved mappings satisfy the inequality (2) of Theorem [Z2

Proof. Since the pair (A,S) (also (B, T)) is sub-compatible and reciprocally continuous, therefore
there exists a sequences {x,,} in X such that

lim Ax, = lim Sx, =z,
n—oo n—oo

for some z € X,

and

lim FAan,SAxn (t) = lim FAz,Sz(t) =1,
n—oo n—oo
for all t > 0, whereas in respect of the pair (B, T), there exists a sequence {yn} in X with

Jim By = i Ty =

for some w € X,

and

lim FBTxn,Tan (t) = lim FBZ,TZ(t) = ])
n—oo n—oo

for all t > 0. Therefore, Az = Sz and Bw = Tw, i.e., z is a coincidence point of the pair (A, S)
whereas w is a coincidence point of the pair (B, T).
The rest of the proof can be completed on the lines of Theorem [3.21 O

Remark 3.4. The conclusions of Theorem and Theorem [3.3 remain true if we replace the
inequality [2) by one of the following:

Q(FAX,By (t)) § (b (man(FSx,Ty (t))» g(FSx,Ax (t))a Q(FTy,By (t))» g(FSx,By (t))) ) (5)

for all x,y € X, t > 0, where g € Q and ¢ satisfies the condition (D).

Or,
Q(FAX,By (1)) < ¢ (max Q(FSX,Ty (1)), g(FSX,AX (1)), Q(FTy,By (t), (6)

for all x,y € X, t > 0, where g € Q and ¢ satisfies the condition (D).
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Or,

g(FSx,Ty (t)) + g(FSX,AX (t)) =+ Q(FTy,By (t))»
Q(FAX,By (t)) < ¢ | max g(FSX,AX (t)) + g(FSx,By (t)), D (7)
9(Fax,1y (1)) + +9(Fry,By (1))

for all x,y € X, t >0, where g € Q and ¢ satisfies the condition (D).

Remark 3.5. Theorem and Theorem [33 (also in view of Remark[3.]) improve the results
of Rao and Ramudu [29, Theorem 14], Khan and Sumitra [23, Theorem 2] and Kutukcu and
Sharma [26, Theorem 1].

By choosing A, B, S and T suitably, we can drive a multitude of common fixed point theorems
for a pair or triod of mappings. As a sample, we outline the following natural result for a pair of

self mappings.

Corollary 3.6. Let A and S be self mappings of an N.A. Menger PM-space (X, F,T). If the pair
(A,S) is compatible and sub-sequentially continuous (alternately sub-compatible and reciprocally

continuous), then

(1) the pair (A,S) has a coincidence point.

(2) There exists € @ such that,

8(Fsx,5y (1)), 8(Fsx,ax (1)), 8(Fsy,ay (1)), }) -

Fax < X
g(Fax,ay(t)) < ¢ <ma { 3 (8(Fsx,ay (1)) + 9(Fsy,ax(t)))

holds for all x,y € X, t >0 and g € Q. Then A and S have a unique common fized point in
X.

Remark 3.7. The results similar to Corollary can also be outlined in respect of inequalities

(3)- @
Now we give some illustrative examples.

Example 3.8. Let (X, d) be a metric space with the usual metric d where X = [0, 00) and (X, F,T)

be the induced N.A. Menger PM-space with g(t) = 1—t for allt € [0,1], and Fx y(t) = H(t—d(x,y))

for all x,y € X and all t > 0 and T(a,b) = min{a, b} for all a,b € [0,1]. Set A=B and S =T.
Define the self mappings A and S on X by

A(X):{ x if x €10,1]; S(X):{ x if x € [0,1];

5x —4, ifx € (1,00). 4x —3, ifx € (1,00).
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Consider a sequence {xn} = {%}neN in X. Then

lim A(xn) = lim (l) =0= lim (SL) = lim S(xn).

n—oo n—oo 4n n—oo

Nezt,
1 1
lim AS(xn) = lim A{— ) = lim ( — ) =0=A(0),
n—oo n—oo 5n n—oo \ 20n
. . 1 . 1
i A = i (50 ) = i () =0 =st0)
and

lim FASXn,SAXn (t) = 1)
n—oo

for all t > 0. Consider another sequence {xn} = {1 + %}neN in X. Then

lim A(xn) = lim (S—I— % —4) =1= lim (4+ % —3) = lim S(xn).

n—oo n—oo n—oo n—oo

Also,

4 20
lim AS(xn,) = lim A<1+—> = lim <5+——4) =1#A(1),
n—oo n—oo n n—oo n

lim SA(xn) = lim S (1 + E) = lim <4+ 20 —3) =1#S(1),
n—oo n—oo n n—oo n

but limn 00 FASx, ,SAxn (t) = 1. Thus, the pair (A,S) is compatible as well as sub-sequentially
continuous but not reciprocally continuous. Therefore all the conditions of Corollary are sat-
isfied. Here, 0 is a coincidence as well as unique common fized point of the pair (A,S). It is
noted that this example cannot be covered by those fized point theorems which involve compatibil-
ity and reciprocal continuity both or by involving conditions on completeness (or closedness) of
underlying space (or subspaces). Also, in this example neither X is complete nor any subspace
A(X) = [0, H U (1,00) and S(X) = [O, %} U (1,00) are closed. It is noted that this example cannot
be covered by those fized point theorems which involve compatibility and reciprocal continuity both.

Example 3.9. In the setting of Ezample [38, define X = R (set of real numbers) and the self
mappings A and S on X by

A(X):{%» if x € (o0, 1); sm:{"“’ if X € (o0, 1);
5x —4, ifx € [l,00). 4x —3, ifx € [l,00).

Consider a sequence {x,} = {1 + in X. Then

%}neN

4
lim A(xn) = lim (5 + > —4) =1= lim (4 + —— 3) = lim S(xn).
n—oo n—oo n n—oo n n—oo
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Also,
lim AS(xn) = lim A <1 + i) = lim <5+ 20 —4) =1=A(1),
n—oo n—oo n n—oo n
2
lim SA(xn) = lim S (1 + E) = lim (4+ 20 —3) =1=S8§(1),
and

lim FASXn,SAXn (t) = 1)
n—oo

for all t > 0. Consider another sequence {xn} = {% — 4}nEN in X. Then

lim A(xn) = lim (%—1) =—1= lim (l—4+3) = lim S(xn).

n—oo n—oo n n—oo n n—oo

Next,
. . 1 . 1 1 1
lim AS(xp)= lim A{——1)=1lm (——- ) =—- =A(-1),
n—oo n—oo n n—oo \4n 4 4

lim SA(x,) = lim S (i — 1) = lim (l —1 —|—3) =2=S5(-1),
n—oo n—oco  \4n n—oo \ 4n

and limn o0 FAsx,, SAx, (t) # 1. Thus, the pair (A,S) is reciprocally continuous as well as
sub-compatible but not compatible. Therefore all the conditions of Corollary[3.6l are satisfied. Thus
1 is a coincidence as well as unique common fized point of the pair (A,S). It is also noted that
this example too cannot be covered by those fixed point theorems which involve compatibility and
reciprocal continuity both.

Received: June 2012. Accepted: September 2013.
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