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ABSTRACT

The purpose of this paper is to prove the following result. Let X be a complex Hilbert
space, let £(X) be the algebra of all bounded linear operators on X and let A(X) C
L(X) be a standard operator algebra, which is closed under the adjoint operation. Let
T: A(X) — L(X) be a linear mapping satisfying the relation 2T(AA*A) = T(A)A*A +
AA*T(A) for all A € A(X). In this case T is of the form T(A) = AA for all A € A(X),
where A is some fixed complex number.

RESUMEN

El propésito de este articulo es probar el siguiente resultado. Sea X un espacio de
Hilbert complejo, sea L£(X) el algebra de todos los operadores lineales acotados sobre
X y sea A(X) C L(X) la &lgebra de operadores clasica, la cual es cerrada bajo la
operacion adjunto. Sea T : A(X) — L(X) una aplicacién lineal satisfaciendo la relaciéon
2T(AA*A) = T(A)A*A+AA*T(A) para todo A € A(X). En este caso, T es de la forma
T(A) = AA para todo A € A(X), donde A es un nimero complejo fijo.
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This research has been motivated by the work of Vukman, Kosi-Ulbl [5] and Zalar [13].
Throughout, R will represent an associative ring with center Z(R). Given an integer n > 2, a

ring R is said to be n-torsion free if for x € R, nx = 0 implies x = 0. An additive mapping x +— x*
on a ring R is called involution if (xy)* = y*x* and x** = x hold for all pairs x,y € R. A ring
equipped with an involution is called a ring with involution or *-ring. Recall that a ring R is prime
if for a,b € R, aRb = (0) implies that either a = 0 or b = 0, and is semiprime in case aRa = (0)
implies a = 0. We denote by Q, and C the Martindale right ring of quotients and the extended
centroid of a semiprime ring R, respectively. For the explanation of Q. and C we refer the reader
to [2].

An additive mapping T : R — R is called a left centralizer in case T(xy) = T(x)y holds for
all pairs x,y € R. In case R has the identity element, T : R — R is a left centralizer iff T is of
the form T(x) = ax for all x € R, where a is some fixed element of R. For a semiprime ring R
all left centralizers are of the form T(x) = gqx for all x € R, where q € Q, is some fixed element
(see Chapter 2 in [2]). An additive mapping T : R — R is called a left Jordan centralizer in case
T(x%) = T(x)x holds for all x € R. The definition of right centralizer and right Jordan centralizer
should be self-explanatory. We call T : R — R a two-sided centralizer in case T is both a left and
a right centralizer. In case T : R — R is a two-sided centralizer, where R is a semiprime ring with
extended centroid C, then T is of the form T(x) = Ax for all x € R, where A € C is some fixed
element (see Theorem 2.3.2 in [2]). Zalar [13] has proved that any left (right) Jordan centralizer
on a semiprime ring is a left (right) centralizer.

Let us recall that a semisimple H*-algebra is a complex semisimple Banach*-algebra whose
norm is a Hilbert space norm such that (x,yz*) = (xz,y) = (z,x*y) is fulfilled for all x,y,z € A.
For basic facts concerning H*-algebras we refer to [I]. Vukman [10] has proved that in case there
exists an additive mapping T : R — R, where R is a 2-torsion free semiprime ring satisfying
the relation 2T(x?) = T(x)x + xT(x) for all x € R, then T is a two-sided centralizer. Kosi-Ulbl
and Vukman [9] have proved the following result. Let A be a semisimple H*—algebra and let
T:A — A be an additive mapping such that 2T(x™*') = T(x)x™ + x™T(x) holds for all x € R and
some fixed integer n > 1. In this case T is a two-sided centralizer. Recently, Benkovi¢, Eremita
and Vukman [3] have considered the relation we have just mentioned above in prime rings with
suitable characteristic restrictions. Kosi-Ulbl and Vukman [9] have proved that in case there exists
an additive mapping T : R — R, where R is a 2-torsion free semiprime *-ring, satisfying the relation
T(xx*) = T(x)x* (T(xx*) = xT(x*)) for all x € R, then T is a left (right) centralizer. For results
concerning centralizers on rings and algebras we refer to [4HI3], where further references can be
found.

Let X be a real or complex Banach space and let £(X) and F(X) denote the algebra of all
bounded linear operators on X and the ideal of all finite rank operators in £(X), respectively. An
algebra A(X) C L(X) is said to be standard in case F(X) C A(X). Let us point out that any
standard operator algebra is prime, which is a consequence of a Hahn-Banach theorem. In case X
is a real or complex Hilbert space, we denote by A* the adjoint operator of A € £(X). We denote
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by X* the dual space of a real or complex Banach space X.

Vukman and Kosi-Ulbl [5] have proved the following result.

Theorem 0.1. Let R be a 2-torsion free semiprime ring and let T : R — R be an additive mapping.
Suppose that
2T (xyx) = T(x)yx + xyT(x) (1)

holds for all x,y € R. In this case T is a two-sided centralizer.

In case we have a *-ring, we obtain, after putting y = x* in the relation (), the relation
2T (xx*x) = T(x)x*x + xx*T(x).
It is our aim in this paper to prove the following result, which is related to the above relation.

Theorem 0.2. Let X be a complex Hilbert space and let A(X) be a standard operator algebra, which
is closed under the adjoint operation. Suppose T : A(X) — L(X) is a linear mapping satisfying the
relation

2T(AA*A) =T(A)A*A + AA™T(A) (2)

for all A € A(X). In this case T is of the form T(A) = AA, where A is a fixed complex number.

Proof. Let us first consider the restriction of T on F(X). Let A be from F(X) (in this case we have
A* € F(X)). Let P € F(X) be a self-adjoint projection with the property AP = PA = A (we also
have A*P = PA* = A*). Putting P for A in (2)) we obtain

2T(P) = T(P)P + PT(P).

Left multiplication by P in the above relation gives PT(P) = PT(P)P. Similarly, right multiplication
by P in the above relation leads to T(P)P = PT(P)P. Therefore

T(P) =T(P)P = PT(P) = PT(P)P. (3)
Putting A + P for A in the relation (2)) we obtain

2T(A?) 4+ 2T(AA* + A*A) +4T(A) + 2T(A*) =
=TA)A+A")+TA)P+T(P)A*A+T(P)(A +A*)+
+ (A+A"T(A) +PT(A) + AA*T(P) + (A + A*)T(P).

Putting —A for A in the above relation and comparing the relation so obtained with the above
relation gives

2T(A?) 4+ 2T(AA* + A*A) =
=T(A)(A+A*) + T(P)A*A + (A + A*)T(A) + AA*T(P) (4)
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and

AT(A) + 2T(A*) =
=T(A)P+PT(A)+T(P)(A+ A*)+ (A+ A*)T(P). (5)
So far we have not used the assumption of the theorem that X is a complex Hilbert, space. Putting

iA for A in the relations @) and (@) and comparing the relations so obtained with the above
relations, respectively, we obtain

2T(A%) =T(A)A +AT(A), (6)
AT(A) =T(A)P + PT(A) + T(P)A + AT(P). (7)
Putting A* for A in the relation (&) gives
AT(A*)+2T(A) =
=T(A*)P +PT(A*) + T(P)(A+ A*) + (A + A*)T(P).

Putting 1A for A in the above relation and comparing the relation so obtained with the above
relation leads to
2T(A) =T(P)A + AT(P).

Comparing the above relation and (@), we obtain
2T(A) =T(A)P + PT(A). (8)

Right (left) multiplication by P in the above relation gives T(A)P = PT(A)P and PT(A) = PT(A)P,
respectively. Hence, PT(A) = T(A)P, which reduces the relation (§) to

From the above relation one can conclude that T maps F(X) into itself. We therefore have a linear
mapping T : F(X) — F(X) satisfying the relation (@) for all A € F(X). Since F(X) is prime, one
can conclude, according to Theorem 1 in [I0] that T is a two-sided centralizer on F(X). We intend
to prove that there exists an operator C € £(X), such that

T(A)=CA 9)

for all A € F(X). For any fixed x € X and f € X* we denote by x ® f an operator from F(X)
defined by (x ® fly = f(y)x,y € X. For any A € £L(X) we have A(x ® f) = (Ax) ® f. Now let us
choose such f and y that f(y) =1 and define Cx = T(x ® f)y. Obviously, C is linear and applying
the fact that T is a left centralizer on F(X), we obtain

(CA)x =C(Ax) =T(AX) @ fly=T(A(x @ f))y =T(A)(x @ fly = T(A)x

for any x € X. We therefore have T(A) = CA for any A € F(X). As T is a right centralizer
on F(X), we obtain C(AB) = T(AB) = AT(B) = ACB. We therefore have [A, C]B = 0 for any
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A,B € F(X), whence it follows that [A,C] = 0 for any A € F(X). Using closed graph theorem
one can easily prove that C is continuous. Since C commutes with all operators from F(X), we

can conclude that Cx = Ax holds for any x € X and some fixed complex number A, which gives
together with the relation (@) that T is of the form

T(A) =AA (10)

for any A € F(X) and some fixed complex number A. It remains to prove that the relation (I0)
holds on A(X) as well. Let us introduce T; : A(X) — £L(X) by T;(A) = AA and consider To = T—Tj.
The mapping To is, obviously, additive and satisfies the relation (). Besides, To vanishes on F(X).
It is our aim to show that Ty vanishes on A(X) as well. Let A € A(X), let P € F(X) be a one-
dimensional self-adjoint projection and S = A + PAP — (AP + PA). Such S can also be written in
the form S = (I—P)A(I —P), where I denotes the identity operator on X. Since S — A € F(X), we
have To(S) = To(A). Tt is easy to see that SP = PS = 0. By the relation (2) we have

To(S)S*S + SS™To(S) =
= 2To(SS*S) =
=2To((S+P)S+P)*(S+P)) =
=To(S+P)S+P)*(S+P)+(S+P)S+P)*To(S+P)
=To(S)S*S + To(S)P + SS*To(S) + PTo(S).
We therefore have
To(S)P + PTp(S) =0.
Considering To(S) = To(A) in the above relation, we obtain
To(A)P + PTo(A) =0. (11)
Multiplication from both sides by P in the above relation leads to
PTo(A)P =0.
Right multiplication by P in the relation (II) and considering the above relation gives
To(A)P = 0.

Since P is an arbitrary one-dimensional self-adjoint projection, it follows from the above relation
that To(A) =0 for all A € A(X), which completes the proof of the theorem. O

We conclude the paper with the following conjecture.

Conjecture 0.3. Let R be a semiprime *-ring with suitable torsion restrictions and let T: R — R
be an additive mapping satisfying the relation

2T(xx™ x) = T(x)x* x + xx*T(x)

for all x € R. In this case T is a two-sided centralizer.
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