On centralizers of standard operator algebras with involution

Maja Fošner, Benjamin Marcen
Faculty of Logistics,
University of Maribor,
Mariborska cesta 7 3000 Celje Slovenia,
maja.fosner@fl.uni-mb.si,
benjamin.marcen@fl.uni-mb.si

NEJC ŠIROVNIK

Faculty of Natural Sciences and Mathematics,

University of Maribor,

Koroška cesta 160 2000 Maribor Slovenia.

nejc.sirovnik@uni-mb.si

ABSTRACT

The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let $\mathcal{L}(X)$ be the algebra of all bounded linear operators on X and let $\mathcal{A}(X) \subset \mathcal{L}(X)$ be a standard operator algebra, which is closed under the adjoint operation. Let $T:\mathcal{A}(X)\to\mathcal{L}(X)$ be a linear mapping satisfying the relation $2T(AA^*A)=T(A)A^*A+AA^*T(A)$ for all $A\in\mathcal{A}(X)$. In this case T is of the form $T(A)=\lambda A$ for all $A\in\mathcal{A}(X)$, where λ is some fixed complex number.

RESUMEN

El propósito de este artículo es probar el siguiente resultado. Sea X un espacio de Hilbert complejo, sea $\mathcal{L}(X)$ el álgebra de todos los operadores lineales acotados sobre X y sea $\mathcal{A}(X) \subset \mathcal{L}(X)$ la álgebra de operadores clásica, la cual es cerrada bajo la operación adjunto. Sea $T: \mathcal{A}(X) \to \mathcal{L}(X)$ una aplicación lineal satisfaciendo la relación $2T(AA^*A) = T(A)A^*A + AA^*T(A)$ para todo $A \in \mathcal{A}(X)$. En este caso, T es de la forma $T(A) = \lambda A$ para todo $A \in \mathcal{A}(X)$, donde λ es un número complejo fijo.

Keywords and Phrases: ring, ring with involution, prime ring, semiprime ring, Banach space, Hilbert space, standard operator algebra, H*-algebra, left (right) centralizer, two-sided centralizer.

2010 AMS Mathematics Subject Classification: 16N60, 46B99, 39B42.

This research has been motivated by the work of Vukman, Kosi-Ulbl [5] and Zalar [13]. Throughout, R will represent an associative ring with center Z(R). Given an integer $n \geq 2$, a ring R is said to be n-torsion free if for $x \in R$, nx = 0 implies x = 0. An additive mapping $x \mapsto x^*$ on a ring R is called involution if $(xy)^* = y^*x^*$ and $x^{**} = x$ hold for all pairs $x, y \in R$. A ring equipped with an involution is called a ring with involution or *-ring. Recall that a ring R is prime if for $a, b \in R$, aRb = (0) implies that either a = 0 or b = 0, and is semiprime in case aRa = (0) implies a = 0. We denote by Q_r and C the Martindale right ring of quotients and the extended centroid of a semiprime ring R, respectively. For the explanation of Q_r and C we refer the reader to [2].

An additive mapping $T:R\to R$ is called a left centralizer in case T(xy)=T(x)y holds for all pairs $x,y\in R$. In case R has the identity element, $T:R\to R$ is a left centralizer iff T is of the form $T(x)=\alpha x$ for all $x\in R$, where α is some fixed element of R. For a semiprime ring R all left centralizers are of the form T(x)=qx for all $x\in R$, where $q\in Q_r$ is some fixed element (see Chapter 2 in [2]). An additive mapping $T:R\to R$ is called a left Jordan centralizer in case $T(x^2)=T(x)x$ holds for all $x\in R$. The definition of right centralizer and right Jordan centralizer should be self-explanatory. We call $T:R\to R$ a two-sided centralizer in case T is both a left and a right centralizer. In case $T:R\to R$ is a two-sided centralizer, where R is a semiprime ring with extended centroid R, then R is of the form R is a for all R is a whore R is a semiprime ring with element (see Theorem 2.3.2 in [2]). Zalar [13] has proved that any left (right) Jordan centralizer on a semiprime ring is a left (right) centralizer.

Let us recall that a semisimple H^* -algebra is a complex semisimple Banach*-algebra whose norm is a Hilbert space norm such that $(x,yz^*)=(xz,y)=(z,x^*y)$ is fulfilled for all $x,y,z\in A$. For basic facts concerning H^* -algebras we refer to [1]. Vukman [10] has proved that in case there exists an additive mapping $T:R\to R$, where R is a 2-torsion free semiprime ring satisfying the relation $2T(x^2)=T(x)x+xT(x)$ for all $x\in R$, then T is a two-sided centralizer. Kosi-Ulbl and Vukman [9] have proved the following result. Let A be a semisimple H^* -algebra and let $T:A\to A$ be an additive mapping such that $2T(x^{n+1})=T(x)x^n+x^nT(x)$ holds for all $x\in R$ and some fixed integer $n\geq 1$. In this case T is a two-sided centralizer. Recently, Benkovič, Eremita and Vukman [3] have considered the relation we have just mentioned above in prime rings with suitable characteristic restrictions. Kosi-Ulbl and Vukman [9] have proved that in case there exists an additive mapping $T:R\to R$, where R is a 2-torsion free semiprime *-ring, satisfying the relation $T(xx^*)=T(x)x^*$ ($T(xx^*)=xT(x^*)$) for all $x\in R$, then T is a left (right) centralizer. For results concerning centralizers on rings and algebras we refer to [4–13], where further references can be found.

Let X be a real or complex Banach space and let $\mathcal{L}(X)$ and $\mathcal{F}(X)$ denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in $\mathcal{L}(X)$, respectively. An algebra $\mathcal{A}(X) \subset \mathcal{L}(X)$ is said to be standard in case $\mathcal{F}(X) \subset \mathcal{A}(X)$. Let us point out that any standard operator algebra is prime, which is a consequence of a Hahn-Banach theorem. In case X is a real or complex Hilbert space, we denote by A^* the adjoint operator of $A \in \mathcal{L}(X)$. We denote

by X^* the dual space of a real or complex Banach space X.

Vukman and Kosi-Ulbl [5] have proved the following result.

Theorem 0.1. Let R be a 2-torsion free semiprime ring and let $T: R \to R$ be an additive mapping. Suppose that

$$2T(xyx) = T(x)yx + xyT(x)$$
 (1)

holds for all $x, y \in R$. In this case T is a two-sided centralizer.

In case we have a *-ring, we obtain, after putting $y = x^*$ in the relation (1), the relation

$$2T(xx^*x) = T(x)x^*x + xx^*T(x).$$

It is our aim in this paper to prove the following result, which is related to the above relation.

Theorem 0.2. Let X be a complex Hilbert space and let $\mathcal{A}(X)$ be a standard operator algebra, which is closed under the adjoint operation. Suppose $T: \mathcal{A}(X) \to \mathcal{L}(X)$ is a linear mapping satisfying the relation

$$2T(AA^*A) = T(A)A^*A + AA^*T(A)$$
(2)

for all $A \in \mathcal{A}(X)$. In this case T is of the form $T(A) = \lambda A$, where λ is a fixed complex number.

Proof. Let us first consider the restriction of T on $\mathcal{F}(X)$. Let A be from $\mathcal{F}(X)$ (in this case we have $A^* \in \mathcal{F}(X)$). Let $P \in \mathcal{F}(X)$ be a self-adjoint projection with the property AP = PA = A (we also have $A^*P = PA^* = A^*$). Putting P for A in (2) we obtain

$$2T(P) = T(P)P + PT(P).$$

Left multiplication by P in the above relation gives PT(P) = PT(P)P. Similarly, right multiplication by P in the above relation leads to T(P)P = PT(P)P. Therefore

$$T(P) = T(P)P = PT(P) = PT(P)P.$$
(3)

Putting A + P for A in the relation (2) we obtain

$$\begin{aligned} 2\mathsf{T}(A^2) + 2\mathsf{T}(AA^* + A^*A) + 4\mathsf{T}(A) + 2\mathsf{T}(A^*) &= \\ &= \mathsf{T}(A)(A + A^*) + \mathsf{T}(A)\mathsf{P} + \mathsf{T}(\mathsf{P})A^*A + \mathsf{T}(\mathsf{P})(A + A^*) + \\ &+ (A + A^*)\mathsf{T}(A) + \mathsf{P}\mathsf{T}(A) + AA^*\mathsf{T}(\mathsf{P}) + (A + A^*)\mathsf{T}(\mathsf{P}). \end{aligned}$$

Putting -A for A in the above relation and comparing the relation so obtained with the above relation gives

$$2T(A^{2}) + 2T(AA^{*} + A^{*}A) =$$

$$= T(A)(A + A^{*}) + T(P)A^{*}A + (A + A^{*})T(A) + AA^{*}T(P)$$
(4)

and

$$4T(A) + 2T(A^*) =$$

$$= T(A)P + PT(A) + T(P)(A + A^*) + (A + A^*)T(P).$$
(5)

So far we have not used the assumption of the theorem that X is a complex Hilbert space. Putting iA for A in the relations (4) and (5) and comparing the relations so obtained with the above relations, respectively, we obtain

$$2T(A^2) = T(A)A + AT(A), \tag{6}$$

$$4T(A) = T(A)P + PT(A) + T(P)A + AT(P).$$
 (7)

Putting A^* for A in the relation (5) gives

$$4T(A^*) + 2T(A) =$$

$$= T(A^*)P + PT(A^*) + T(P)(A + A^*) + (A + A^*)T(P).$$

Putting iA for A in the above relation and comparing the relation so obtained with the above relation leads to

$$2T(A) = T(P)A + AT(P)$$
.

Comparing the above relation and (7), we obtain

$$2T(A) = T(A)P + PT(A).$$
(8)

Right (left) multiplication by P in the above relation gives T(A)P = PT(A)P and PT(A) = PT(A)P, respectively. Hence, PT(A) = T(A)P, which reduces the relation (8) to

$$T(A) = T(A)P$$
.

From the above relation one can conclude that T maps $\mathcal{F}(X)$ into itself. We therefore have a linear mapping $T:\mathcal{F}(X)\to\mathcal{F}(X)$ satisfying the relation (6) for all $A\in\mathcal{F}(X)$. Since $\mathcal{F}(X)$ is prime, one can conclude, according to Theorem 1 in [10] that T is a two-sided centralizer on $\mathcal{F}(X)$. We intend to prove that there exists an operator $C\in\mathcal{L}(X)$, such that

$$\mathsf{T}(\mathsf{A}) = \mathsf{C}\mathsf{A} \tag{9}$$

for all $A \in \mathcal{F}(X)$. For any fixed $x \in X$ and $f \in X^*$ we denote by $x \otimes f$ an operator from $\mathcal{F}(X)$ defined by $(x \otimes f)y = f(y)x, y \in X$. For any $A \in \mathcal{L}(X)$ we have $A(x \otimes f) = (Ax) \otimes f$. Now let us choose such f and g that f(g) = 1 and define G(g) = G(g). Obviously, G(g) = G(g) is linear and applying the fact that G(g) = G(g) is a left centralizer on G(g) = G(g).

$$(CA)x = C(Ax) = T((Ax) \otimes f)y = T(A(x \otimes f))y = T(A)(x \otimes f)y = T(A)x$$

for any $x \in X$. We therefore have T(A) = CA for any $A \in \mathcal{F}(X)$. As T is a right centralizer on $\mathcal{F}(X)$, we obtain C(AB) = T(AB) = AT(B) = ACB. We therefore have [A, C]B = 0 for any

 $A, B \in \mathcal{F}(X)$, whence it follows that [A, C] = 0 for any $A \in \mathcal{F}(X)$. Using closed graph theorem one can easily prove that C is continuous. Since C commutes with all operators from $\mathcal{F}(X)$, we can conclude that $Cx = \lambda x$ holds for any $x \in X$ and some fixed complex number λ , which gives together with the relation (9) that T is of the form

$$\mathsf{T}(\mathsf{A}) = \lambda \mathsf{A} \tag{10}$$

for any $A \in \mathcal{F}(X)$ and some fixed complex number λ . It remains to prove that the relation (10) holds on $\mathcal{A}(X)$ as well. Let us introduce $T_1:\mathcal{A}(X)\to\mathcal{L}(X)$ by $T_1(A)=\lambda A$ and consider $T_0=T-T_1$. The mapping T_0 is, obviously, additive and satisfies the relation (2). Besides, T_0 vanishes on $\mathcal{F}(X)$. It is our aim to show that T_0 vanishes on $\mathcal{A}(X)$ as well. Let $A\in\mathcal{A}(X)$, let $P\in\mathcal{F}(X)$ be a one-dimensional self-adjoint projection and S=A+PAP-(AP+PA). Such S can also be written in the form S=(I-P)A(I-P), where I denotes the identity operator on X. Since $S-A\in\mathcal{F}(X)$, we have $T_0(S)=T_0(A)$. It is easy to see that SP=PS=0. By the relation (2) we have

$$\begin{split} &T_0(S)S^*S + SS^*T_0(S) = \\ &= 2T_0(SS^*S) = \\ &= 2T_0((S+P)(S+P)^*(S+P)) = \\ &= T_0(S+P)(S+P)^*(S+P) + (S+P)(S+P)^*T_0(S+P) \\ &= T_0(S)S^*S + T_0(S)P + SS^*T_0(S) + PT_0(S). \end{split}$$

We therefore have

$$T_0(S)P + PT_0(S) = 0.$$

Considering $T_0(S) = T_0(A)$ in the above relation, we obtain

$$T_0(A)P + PT_0(A) = 0.$$
 (11)

Multiplication from both sides by P in the above relation leads to

$$PT_0(A)P = 0.$$

Right multiplication by P in the relation (11) and considering the above relation gives

$$T_0(A)P = 0.$$

Since P is an arbitrary one-dimensional self-adjoint projection, it follows from the above relation that $T_0(A) = 0$ for all $A \in \mathcal{A}(X)$, which completes the proof of the theorem.

We conclude the paper with the following conjecture.

Conjecture 0.3. Let R be a semiprime *-ring with suitable torsion restrictions and let $T : R \to R$ be an additive mapping satisfying the relation

$$2\mathsf{T}(xx^*x) = \mathsf{T}(x)x^*x + xx^*\mathsf{T}(x)$$

for all $x \in R$. In this case T is a two-sided centralizer.

Received: April 2013. Accepted: September 2013.

References

- [1] W. Ambrose: Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364-386.
- [2] K. I. Beidar, W. S. Martindale 3rd, A. V. Mikhalev: Rings with generalized identities, Marcel Dekker, Inc., New York, (1996).
- [3] D. Benkovič, D. Eremita, J. Vukman: A characterization of the centroid of a prime ring, Studia Sci. Math. Hungar. 45 (3) (2008), 379-394.
- [4] I. Kosi-Ulbl, J. Vukman: An equation related to centralizers in semiprime rings, Glas. Mat. 38 (58) (2003), 253-261.
- [5] I. Kosi-Ulbl, J. Vukman: On centralizers of semiprime rings, Aequationes Math. 66 (2003), 277-283.
- [6] I. Kosi-Ulbl, J. Vukman: On certain equations satisfied by centralizers in rings, Internat. Math. J. 5 (2004), 437-456.
- [7] I. Kosi-Ulbl, J. Vukman: Centralizers on rings and algebras, Bull. Austral. Math. Soc. 71 (2005), 225-234.
- [8] I. Kosi-Ulbl, J. Vukman: A remark on a paper of L. Molnár, Publ. Math. Debrecen. 67 (2005), 419-421.
- [9] I. Kosi-Ulbl, J. Vukman: On centralizers of standard operator algebras and semisimple H*-algebras, Acta Math. Hungar. 110 (3) (2006), 217-223.
- [10] J. Vukman: An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carol. 40 (1999), 447-456.
- [11] J. Vukman: Centralizers of semiprime rings, Comment. Math. Univ. Carol. 42 (2001), 237-245.
- [12] J. Vukman: Identities related to derivations and centralizers on standard operator algebras, Taiwan. J. Math. Vol. 11 (2007), 255-265.
- [13] B. Zalar: On centralizers of semiprime rings, Comment. Math. Univ. Carol. 32 (1991), 609-614.