Generalization of New Continuous Functions in Topological Spaces

P. G. Patil
Department of Mathematics,
SKSVM Agadi College of
Engg. and Techn.,
Laxmeshwar-582 116,
Karnataka State, India.
pgpatil010gmail.com

T. D. RAYANAGOUDAR

Department of Mathematics,

Govt. First Grade College,

Annigeri-582 116,

Karnataka State, India.

rgoudar 1980@gmail.com

S. S. BENCHALLI
Department of Mathematics,
Karnatak University,
Dharwad-580 003
Karnataka State, India.
benchalliss@gmail.com

ABSTRACT

In this paper, $\omega\alpha$ -closed sets and $\omega\alpha$ -open sets are used to define and investigate the new classes of functions namely somewhat $\omega\alpha$ -continuous functions and totally $\omega\alpha$ -continuous functions.

RESUMEN

En este artículo conjuntos cerrados- $\omega\alpha$ y abiertos- $\omega\alpha$ se usan para definir e investigar las clases de nuevas funciones continuas $\omega\alpha$ y totalmente continuas $\omega\alpha$.

Keywords and Phrases: $\omega\alpha$ -closed, $\omega\alpha$ -open, $\omega\alpha$ -continuous, somewhat $\omega\alpha$ -continuous and totally $\omega\alpha$ - continuous functions.

2010 AMS Mathematics Subject Classification: 54C08, 54C10.

1 Introduction

Recent progress in study of charactreization and generalization of continuity has been done by means of several generalized closed sets. As a generalization of closed sets $\omega\alpha$ -closed sets were introduced and studied by Benchalli.et.al[1].

The concepts of feebly continuous functions and feebly open functions were introduced by Zdenek Frolik[2]. Gentry and Hoyle[3] introduced and studied the concepts of somewhat continuous functions and somewhat open functions. Recently, Santhileela and Balasubramanian[8] introduced and studied the concepts of somewhat semi continuous functions and somewhat semi open functions. In this paper, we will continue the study of related functions with $\omega\alpha$ -closed and $\omega\alpha$ -open sets. We introduce and characterize the concept of somewhat $\omega\alpha$ -continuous and totally $\omega\alpha$ -continuous functions.

2 Preliminaries

Throughout this paper (X,τ) , (Y,σ) and (Z,η) (or simply X,Y and Z) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X,τ) , cl(A), int(A), acl(A) and A^c denote the closure of A, inerior of A, the a-closure of A and the compliment of A in X respectively.

We recall the following definitions, which are usefull in the sequel. Before entering into our work we recall the following definitions from various authors.

Definition 2.1. A subset A of a topological space (X, τ) is called semi-open [5] (resp. α -open[6]) if $A \subseteq cl(Int(A))$ (resp $A \subseteq Int(cl(Int(A)))$). The compliment of semi-open (resp. α -open) is called semi-closed(resp. α -closed).

Definition 2.2. A subset A of a topological space (X, τ) is called $\omega \alpha$ -closed [1] if $\alpha cl(A) \subseteq U$ whenever $A \subset U$ and U is ω -open in X. The compliment of $\omega \alpha$ -closed set is $\omega \alpha$ -open.

The family of all $\omega\alpha$ -closed sets of X is denoted by $\tau_{\omega\alpha}^*$. In [7], we showed that $\tau_{\omega\alpha}^*$ forms a topology on X.

Definition 2.3. A function $f:(X,\tau)\to (Y,\sigma)$ is is said to be $\omega\alpha$ -continuous [7] if the inverse image of every open set in Y is $\omega\alpha$ -open in X.

Definition 2.4. A function $f:(X,\tau)\to (Y,\sigma)$ is is said to be perfectly $\omega\alpha$ -continuous [7] if the inverse image of every $\omega\alpha$ open set in Y is clopen in X.

Definition 2.5. A function $f:(X,\tau)\to (Y,\sigma)$ is is said to be somewhat-continuous [3](resp.somewhat semi-continuous[8]) if for $U\in\sigma$ and $f^{-1}(U)\neq\varphi$ there exists an open (resp.semi open) set V in X such that $V\neq\varphi$ and $V\subseteq f^{-1}(U)$.

Remark 2.6. Every somewhat continuous function is somewhat semi continuous but converse need not true in general[8].

Definition 2.7. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be somewhat-open [3](resp.somewhat semi-open[8]) function provided that for $U\in\tau$ and $U\neq\varphi$, there exists an open (resp.semi open) set V in Y such that $V\neq\varphi$ and $V\subseteq f^{-1}(U)$.

Remark 2.8. Every somewhat open function is somewhat semi open function but the converse need not be true in general[8].

3 Somewhat $\omega \alpha$ - Continuous functions

In this section, we introduce a new class of functions called somewhat $\omega\alpha$ -continuous functions using $\omega\alpha$ -closed sets and obtain some of their characterizations.

Definition 3.1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be Somewhat $\omega\alpha$ - continuous if for every open set U in Y and $f^{-1}(U)\neq \varphi$, there exists $\omega\alpha$ -open set V in X such that $V\neq \varphi$ and $V\subset f^{-1}(U)$.

Example 3.2. Let $X = Y = \{p, q\}$, $\tau = \{X, \phi, \}$ and $\sigma = \{X, \phi, \{p\}\}$. The identity function $f: (X, \tau) \to (Y, \sigma)$ is somewhat $\omega \alpha$ -continuous function.

Theorem 3.3. Every somewhat continuous function is somewhat $\omega\alpha$ - continuous but converse need not true in general.

Example 3.4. In Example 3.2, f is somewhat $\omega \alpha$ -continuous but not somewhat continuous.

Remark 3.5. The concept of somewhat $\omega \alpha$ -continuous and somewhat semi-continuous functions are independed as seen from the following examples.

Example 3.6. In Example 3.2, f is somewhat $\omega \alpha$ -continuous but not somewhat-semi continuous.

Example 3.7. Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{X, \phi, \{a\}\}$. Then the identity map $f: (X, \tau) \to (Y, \sigma)$ is somewhat-semi continuous but not somewhat $\omega \alpha$ -continuous.

Theorem 3.8. If $f:(X,\tau)\to (Y,\sigma)$ is somewhat $\omega\alpha$ -continuous and $g:(Y,\sigma)\to (Z,\eta)$ is continuous function, then their composition gof is somewhat $\omega\alpha$ -continuous function.

Proof. Let U be an open set in Z.Suppose that $f^{-1}(U) \neq \varphi$. Since U is open and g is continuous, $g^{-1}(U) \in \eta$. Suppose that $f^{-1}(g^{-1}(U)) \neq \varphi$. By hypothesis, there exists a $\omega \alpha$ -open set V in Y such that $V \neq \varphi$ and $V \subseteq f^{-1}(g^{-1}(U)) = (gof)^{-1}(V)$. Therefore gof is somewhat $\omega \alpha$ -continuous function.

Remark 3.9. In the above Theorem 3.8, if f is continuous and g is somewhat $\omega \alpha$ -continuous then their composition gof need not be somewhat $\omega \alpha$ -continuous function as seen from the following example.

Example 3.10. Let $X = Y = Z = \{p, q\}$, $\tau = \{X, \varphi, \{p\}\}$, $\sigma = \{Y, \varphi, \{p\}\}$ and $\eta = \{Z, \varphi, \{q\}\}$ Define the functions $f : (X, \tau) \to (Y, \sigma)$ by f(p) = f(q) = q and $g : (Y, \sigma) \to (Z, \eta)$ by g(p) = q and g(q) = p. Then clearly f is continuous function and g is somewhat $\omega \alpha$ -continuous function but their comoposition $gof : (X, \tau) \to (Z, \eta)$ is not somewhat $\omega \alpha$ -continuous function.

Definition 3.11. A subset M of a topological space X is said to be $\omega\alpha$ -dense in X if there is no proper $\omega\alpha$ -closed set F in X such that $M \subset F \subset X$.

Theorem 3.12. The following statements are equivalent for a function $f:(X,\tau)\to (Y,\sigma)$:

- (1) f is somewhat $\omega \alpha$ -continuous function
- (2) If F is a closed subset of Y such that $f^{-1}(F) \neq X$, then there is a proper $\omega \alpha$ -closed subset D of X such that $f^{-1}(F) \subset D$.
- (3) If M is a $\omega \alpha$ -dense subset of X, then f(M) is a dense subset of Y.

Proof. (1) \Rightarrow (2): Let F be a closed subset of Y such that $f^{-1}(F) \neq X$. Then $f^{-1}(Y-F) = X-f^{-1}(f) \neq \Phi$. Then from (1) there exists $\omega \alpha$ -open set V in X such that $V \neq \Phi$ and $V \subset f^{-1}(Y-F) = X - f^{-1}(F)$. This implies $f^{-1}(F) \subset X - V$ and X - V = D is a $\omega \alpha$ -closed set in X.

- $(2)\Rightarrow (3)$: Let M be any $\omega\alpha$ -dense set in X. Suppose f(M) is not a dense subset of Y, then there exists a proper closed set F in Y such that $f(M)\subset F\subset Y$. This implies $f^{-1}(F)\neq X$. Then from (2) there exists a proper $\omega\alpha$ -closed set D such that $M\subset f^{-1}(F)\subset D\subset X$. This contradicts the fact that M is a $\omega\alpha$ -dense set in X.
- (3) \Rightarrow (2): Suppose (2) is not true. Then there exists a closed set F in Y such that $f^{-1}(F) \neq X$. But there is no proper $\omega\alpha$ -closed set D in X such that $f^{-1}(F) \subseteq D$. This means that $f^{-1}(F)$ is $\omega\alpha$ -dense in X. But from hypothesis $f(f^{-1}(F)) = F$ must be dense in Y, which is contradiction to the choice of F.
- (2) \Rightarrow (1):Let U be an open set in Y and $f^{-1}(U) \neq \varphi$. Then $f^{-1}(Y-U) = X f^{-1}(U) = \varphi$. Then by hypothesis, there exists a proper $\omega \alpha$ -closed set D such that $f^{-1}(Y-U) \subset D$. This implies that $X D \subset f^{-1}(U)$ and X D is $\omega \alpha$ -open and $X D \neq \varphi$.

Theorem 3.13. Let $f:(X,\tau)\to (Y,\sigma)$ be a function and $X=A\cup B$, A and B are open subsets of X such that (f/A) and (f/B) are somewhat $\omega\alpha$ -continuous functions then f is somewhat $\omega\alpha$ -continuous function.

Proof. Let U be an open set in Y such that $f^{-1}(U) \neq \phi$. Then $(f/A)^{-1}(U) \neq \phi$ or $(f/B)^{-1}(U) \neq \phi$ or both $(f/A)^{-1}(U) \neq \phi$ and $(f/B)^{-1}(U) \neq \phi$.

case(i): Suppose $(f/A)^{-1}(U) \neq \varphi$. Since f/A is somewhat $\omega\alpha$ -continuous, then there exists $\omega\alpha$ open set V in A such that $V \neq \varphi$ and $V \subset (f/A)^{-1}(U) \subset f^{-1}(U)$. Since V is $\omega\alpha$ -open in A and A is open in X, V is $\omega\alpha$ -open X. Hence f is somewhat $\omega\alpha$ -continuous function.

case(ii): Suppose $(f/B)^{-1}(U) \neq \varphi$. Since f/B is somewhat $\omega\alpha$ -continuous, then there exists $\omega\alpha$ open set V in B such that $V \neq \varphi$ and $V \subset (f/B)^{-1}(U) \subset f^{-1}(U)$. Since V is $\omega\alpha$ -open in B and B

is open in X, V is $\omega\alpha$ -open X. Hence f is somewhat $\omega\alpha$ -continuous function. case(iii): Suppose $(f/A)^{-1}(U) \neq \varphi$ and $(f/B)^{-1}(U) \neq \varphi$. Follows from case(i) and case(ii). \square

Theorem 3.14. If A be any set in X and $f:(X,\tau)\to (Y,\sigma)$ be somewhat $\omega\alpha$ -continuous such that f(A) is dense in Y. Then any extension F of f is somewhat $\omega\alpha$ -continuous.

Proof. Let U be an open set in Y such that $F^{-1}(U) \neq \varphi$. Since $f(A) \subset Y$ is dense in Y and $U \cap f(A) \neq \varphi$. It follows that $F^{-1}(U) \cap A \neq \varphi$. That is $f^{-1}(U) \cap A \neq \varphi$. Hence by hypothesis there exists a $\omega \alpha$ -open set V in A such that $V \neq \varphi$ and $V \subset f^{-1}(U) \subset F^{-1}(U)$. This implies F is somewhat $\omega \alpha$ -continuous.

Definition 3.15. A topological space X is said to be $\omega \alpha$ -separable if there exists a countable subset B of X which is $\omega \alpha$ -dense in X.

Theorem 3.16. Let $f:(X,\tau)\to (Y,\sigma)$ is somewhat $\omega\alpha$ -continuous function. If X is $\omega\alpha$ -separable then Y is separable.

Proof. Let B be countable subset of X which is $\omega\alpha$ -dense in X. Then from Theorem 3.12,f(B) is dense in Y. Since B is countable f(B) is also countable which is dense in Y. This implies that Y is separable.

4 Somewhat $\omega \alpha$ -Open Functions

In this section, we introduce the concept of somewhat $\omega\alpha$ -open functions and study some of their characterizations.

Definition 4.1. A function $f: (X, \tau) \to (Y, \sigma)$ is somewhat $\omega \alpha$ -open provided that for open set U in X and $U \neq \varphi$ there exists a $\omega \alpha$ -open set V in Y such that $V \neq \varphi$ and $V \subseteq f(U)$.

Example 4.2. Let $X = Y = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{X, \phi, \{a\}\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a and f(c) = b. Then clearly f is somewhat $\omega \alpha$ -open.

Theorem 4.3. Every somewhat open function is somewhat $\omega \alpha$ -open function but converse need not be true in general.

Example 4.4. In Example 4.2, f is somewhat $\omega \alpha$ -open function but not somewhat -open function.

Remark 4.5. Somewhat $\omega \alpha$ -open and somewhat semi-open functions are independent of each other as seen from the following examples.

Example 4.6. In Example 4.2, f is somewhat $\omega \alpha$ -open function but not somewhat semi-open function.

Example 4.7. Let $X = Y = \{a, b, c\}$, $\tau = \{X, \varphi, \{b\}, \{a, c\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a, b\}\}$. Then the identity function $f: (X, \tau) \to (Y, \sigma)$ is somewhat semi-open but not somewhat $\omega \alpha$ -open function.

Theorem 4.8. If $f:(X,\tau)\to (Y,\sigma)$ is open function and $g:(Y,\sigma)\to (Z.\eta)$ is somewhat $\omega\alpha$ -open function, then their composition gof is somewhat $\omega\alpha$ -open function.

We have the following characterization.

Theorem 4.9. The following statements are equivalent for bijective function $f:(X,\tau)\to (Y,\sigma)$

- (1) f is somewhat $\omega \alpha$ -open function
- (2) If F is closed subset of X such that $f(F) \neq Y$, then there exists a $\omega \alpha$ -closed subset D of Y such that $D \neq Y$ and $f(F) \subset D$.

Proof. (1) \Rightarrow (2):Let F be a closed subset of X such that $f(F) \neq Y$. From (1), there exists a $\omega \alpha$ -open set $V \neq \varphi$ in Y such that $V \subset f(X - F)$. Put D = Y - V. Clearly D is a $\omega \alpha$ -closed in Y and we claim that $D \neq Y$. If D = Y, then $V = \varphi$ which is a contradiction. Since $V \subset f(X - F)$, $D = Y - V \subset Y - [f(X - F)] = f(F)$.

(2) \Rightarrow (1):Let U be any non-empty open set in X. Put F = X - U. Then F is a closed subset of X and f(X - U) = f(F) = Y - f(U) which implies $f(F) \neq \varphi$. Therefore by (2) there is a $\omega \alpha$ -closed subset D of Y such that $D \neq Y$ and $f(F) \subset D$. Put V = X - D, clearly V is $\omega \alpha$ -open set and $V \neq \varphi$. Further, $V = X - D \subset Y - f(F) = Y - [Y - f(U)] = f(U)$.

Theorem 4.10. If $f:(X,\tau)\to (Y,\sigma)$ is somewhat $\omega\alpha$ -open function and A be any open subset of X. Then $f/A:(A,\tau/A)\to (Y,\sigma)$ is also somewhat $\omega\alpha$ -open function.

Theorem 4.11. If $f:(X,\tau)\to (Y,\sigma)$ be a function such that f/A and f/B are somewhat $\omega\alpha$ -open, then f is somewhat $\omega\alpha$ -open function, where $X=A\cup B$, A and B are open subsets of X.

5 Totally $\omega \alpha$ - Continuous Functions

In this section, we introduce a new class of functions called totally $\omega \alpha$ - continuous functions and study some of their properties.

Definition 5.1. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be totally $\omega\alpha$ -continuous, if the inverse image of every open subset of Y is an $\omega\alpha$ -clopen subset of X.

Example 5.2. Let $X = Y = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b, c\}\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c. Then f is totally $\omega \alpha$ -continuous function

Theorem 5.3. Every perfectly $\omega \alpha$ - continuous map is totally $\omega \alpha$ - continuous but converse need not be true in general.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be a perfectly $\omega\alpha$ - continuous. Let U be an open set in Y. Then U is $\omega\alpha$ -open in Y. Since f is a perfectly $\omega\alpha$ - continuous, $f^{-1}(U)$ is clopen in X, implies that $f^{-1}(U)$ is $\omega\alpha$ -clopen in X.

Example 5.4. In Example 5.2, f is totally $\omega \alpha$ -continuous but not perfectly $\omega \alpha$ -continuous.

Theorem 5.5. Every totally $\omega \alpha$ - continuous function is $\omega \alpha$ - continuous but converse need not be true in general.

Example 5.6. Let $X = Y = \{\alpha, b, c\}$, $\tau = \{X, \varphi, \{\alpha\}\}$ and $\sigma = \{Y, \varphi, \{\alpha\}, \{\alpha, c\}\}$. Then the identity function $f: (X, \tau) \to (Y, \sigma)$ is $\omega \alpha$ -continuous function but not totally $\omega \alpha$ -continuous function.

Remark 5.7. It is clear that the totally $\omega \alpha$ - continuous function is stronger than $\omega \alpha$ - continuous and weaker than perfectly $\omega \alpha$ - continuous.

Theorem 5.8. If $f:(X,\tau)\to (Y,\sigma)$ is totally $\omega\alpha$ -continuous function from an $\omega\alpha$ -connected space X in to Y, then Y is an indiscrete space.

Proof. Suppose that Y is not indiscrete space. Let A be a proper non-empty open subset of Y. Then $f^{-1}(A)$ is a non-empty proper $\omega \alpha$ - clopen subset of X which is contradiction to the fact that X is $\omega \alpha$ -connected.

Definition 5.9. A topological space X is said to be $\omega \alpha_2$ -space [7], if for every pair of distinct points x and y in X, there exists $\omega \alpha$ -open sets M and N such that $x \in N$, $y \in M$ and $M \cap N = \phi$.

Theorem 5.10. Let $f:(X,\tau)\to (Y,\sigma)$ be totally $\omega\alpha$ - continuous injection map. If Y is T_0 , then X is $\omega\alpha_2$ -space.

Proof. Let x and y be any pair of distinct points of X. Then $f(x) \neq f(y)$. Then there exists an open set U containing f(x) but $\operatorname{not} f(y)$. Since Y is T_0 . Then $x \notin f^{-1}(U)$ and $y \notin f^{-1}(U)$. Since f is totally $\omega \alpha$ - continuous, $f^{-1}(U)$ is an $\omega \alpha$ -clopen subset of X. Also $x \in f^{-1}(U)$ and $y \in (f^{-1}(U))^c$. Hence X is $\omega \alpha_2$ -space.

Theorem 5.11. A topological space X is $\omega \alpha$ -connected if and only if every totally $\omega \alpha$ - continuous function from a space X in to any T_0 -space Y is a constant function.

Theorem 5.12. Let $f:(X,\tau)\to (Y,\sigma)$ is totally $\omega\alpha$ - continuous and Y be a T_1 -space. If A is an $\omega\alpha$ -connected subset of X, then f(A) is a single point.

Theorem 5.13. A function $f:(X,\tau)\to (Y,\sigma)$ is totally $\omega\alpha$ -continuous at a point $x\in X$ if for each open subset V in Y containing f(x), there exists a $\omega\alpha$ -clopen subset U in X containing x such that $f(U)\subset V$.

Proof. Let V be an open subset of Y and let $x \in f^{-1}(V)$. Since $f(x) \in V$, there exists a $\omega \alpha$ -clopen set U_x in X containing x such that $U_x \in f^{-1}(V)$. We obtain $f^{-1}(V) = U_{x \in f^{-1}(V)}$. Since arbitrary union of $\omega \alpha$ -open sets is $\omega \alpha$ -open, $f^{-1}(V)$ is $\omega \alpha$ -clopen in X.

Definition 5.14. Let X be a topological space. Then the set of all points y in X such that x and y cannot be separated by a $w\alpha$ -separation of X is said to be the quasi $w\alpha$ -component of X.

Theorem 5.15. Let $f:(X,\tau)\to (Y,\sigma)$ is totally $\omega\alpha$ -continuous map from a topological space X in to a T_1 -space Y, then f is constant on each quasi $\omega\alpha$ -component of X.

Proof. Let x and y be two points of X that lie in the some quasi $\omega\alpha$ -component of X. Assume that $f(x) = \alpha \neq \beta = f(y)$. Since Y is T_1 , α is closed in Y and so α^c is an open subset in Y. Since f is totally $\omega\alpha$ -continuous, $f^{-1}(\alpha)$ and $f^{-1}(\alpha^c)$ are disjoint $\omega\alpha$ -clopen subsets of X. Further $x \in f^{-1}(\alpha)$ and $y \in f^{-1}(\alpha)^c$, which is a contradiction in view of the fact that y must belong to every $\omega\alpha$ -clopen set containing x.

Received: April 2013. Accepted: September 2013.

References

- [1] S.S.Benchalli, P.G.Patil and T.D.Rayanagoudar, ωα-Closed Sets in Topological Spaces, The Global Jl. of Appl.Math.and Math.Sciences, V.2,1-2,(2009),53-63.
- [2] Zdenek Frolik,, Remarks concerning the Invariance of Baire Spaces under Mappings, *Czech.Math.Jl.*, II(86)(1961),389-385.
- [3] K.R. Gentry and H.B. Hoyle, Somewhat continuous functions, *Czech.Math.Jl.*, 21, No.1 (86) (1971),5-12.
- [4] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96
- [5] N. Levine, Semi-open sets and Semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [6] O.Njastad, On some classes of nearly open sets, Pacific Jl.Math., 15(1965),961-970.
- [7] P.G.Patil,, Some Studies in Topological Spaces, *Ph.D.Thesis*, *Karnatak University Dharwad* (2007).
- [8] D.Santhileela and G Balasubramanian, Somewhat semi continuous and somewhat semi open functions, *Bull. Cal. Math. Soc.*, 94(1)(2002) 41-48.