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ABSTRACT

In this paper, woa-closed sets and wax-open sets are used to define and investigate the
new classes of functions namely somewhat woa-continuous functions and totally wox-
continuous functions.

RESUMEN

En este articulo conjuntos cerrados-woa y abiertos-wa se usan para definir e investigar
las clases de nuevas funciones continuas wa y totalmente continuas w«.
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1 Introduction

Recent, progress in study of charactreization and generalization of continuity has been done by
means of several generalized closed sets. As a generalization of closed sets wax-closed sets were
introduced and studied by Benchalli.et.al[1].

The concepts of feebly continuous functions and feebly open functions were introduced by
Zdenek Frolik[2]. Gentry and Hoyle[3] introduced and studied the concepts of somewhat con-
tinuous functions and somewhat open functions. Recently, Santhileela and Balasubramanian|8]
introduced and studied the concepts of somewhat semi continuous functions and somewhat semi
open functions. In this paper, we will continue the study of related functions with wox-closed and
wox-open sets. We introduce and characterize the concept of somewhat wa-contnuous and totally
wax-continuous functions.

2 Preliminaries

Throughout this paper (X, T), (Y,0) and (Z,n)(or simply X,Y and Z) represent topological spaces
on which no separation axioms are assumed unless otherwise mentioned.For a subset A of (X, 1),
cl(A),int(A), acl(A) and A€ denote the closure of A, inerior of A, the «-closure of A and the
compliment of A in X respecively.

We recall the following definitions, which are usefull in the sequel.Before entering into our
work we recall the following definitions from various authors.

Definition 2.1. A subset A of a topological space (X,T) is called semi-open [5] (resp. x-open[6])
if A Ccl(Int(A)) (resp A C Int(cl(Int(A))). The compliment of semi-open (resp.cc-open) is called
semi-closed(resp.x-closed).

Definition 2.2. A subset A of a topological space (X,T) is called wo-closed [1] if acl(A) C U
whenever A C U and U is w-open in X. The compliment of wo-closed set is wax-open.

The family of all wx-closed sets of X is denoted by T%, . In [7], we showed that T}, forms a
topology on X.

Definition 2.3. A function f : (X,7) — (Y,0) is is said to be woa-continuous [7] if the inverse
image of every open set in Y is wx-open in X.

Definition 2.4. A function f: (X,T) — (Y,0) is is said to be perfectly wo-continuous [7] if the
inverse image of every wo open set in Y is clopen in X.

Definition 2.5. A function f: (X,t) = (Y, 0) is is said to be somewhat-continuous [3](resp.somewhat
semi-continuous[8]) if for U € o and f~1(U) # ¢ there exists an open (resp.semi open) set V in X
such that V# ¢ and V C £1(U).
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Remark 2.6. Fvery somewhat continuous function is somewhat semi continuous but converse

need not true in generalf8].

Definition 2.7. A function f : (X,;1) — (Y,0) is said to be somewhat-open [3](resp.somewhat
semi-open[8]) function provided that for U € T and U # ¢, there exists an open (resp.semi open)
set V in'Y such that V # & and V C £71(U).

Remark 2.8. Every somewhat open function is somewhat semi open function but the converse
need not be true in generalf8].

3 Somewhat wa - Continuous functions

In this section, we introduce a new class of functions called somewhat wo-continuous functions
using wa-closed sets and obtain some of their characterizations.

Definition 3.1. A function f : (X,;t) — (Y,0) is said to be Somewhat wx- continuous if for
every open set U in Y and f~1(U) # &, there exists wx-open set V in X such that V # & and
vV Cf(u).

Example 3.2. Let X =Y = {p,q}, T = {X,d,} and 0 = {X,d,{p}}. The identity function
f:(X,t) = (Y,0) is somewhat wx-continuous function.

Theorem 3.3. Every somewhat continuous function is somewhat wo- continuous but converse
need not true in general.

Example 3.4. In Ezample 3.2, f is somewhat wx-continuous but not somewhat continuous.

Remark 3.5. The concept of somewhat wa-continuous and somewhat semi-continuous functions
are independet as seen from the following examples.

Example 3.6. In Example 3.2,f is somewhat wa-continuous but not somewhat-semi continuous.

Example 3.7. Let X =Y ={a,b,c}, T ={X, d,{a,b}} and 0 ={X, d,{a}}. Then the identity map
f:(X,t) = (Y,0) is somewhat-semi continuous but not somewhat wx-continuous.

Theorem 3.8. If f : (X,;t) — (Y,0) is somewhat wx-continuous and g : (Y,0) — (Z,n) is
continuous function,then their composition gof is somewhat wx-continuous function.

Proof. Let U be an open set in Z.Suppose that f~'(U) # ¢. Since U is open and g is continuous,
g~ '(W) € 1. Suppose that f~'(g~'(U)) # ¢. By hypothesis, there exists a wx-open set V in Y
such that V # ¢ and V C f~'(g~'(U)) = (gof)~'(V). Therefore gof is somewhat wo-continuous
function. O

Remark 3.9. In the above Theorem 3.8, if f is continuous and g is somewhat wa-continuous then
their composition gof need not be somewhat wx-continuous function as seen from the following
example.
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Example 3.10. Let X =Y =Z = {P) q}7 T= {X) d)){P}} ; 0= {Y) d)){P}} andm = {Z) (b){q}} Deﬁne
the functions f : (X,t) — (Y,0) by f(p) = f(q) = q and g : (Y,0) — (Z,m) by g(p) = q and
g(q) = p.Then clearly f is continuous function and g is somewhat wo-continuous function but

their comoposition gof : (X,t) — (Z,n) is not somewhat wo-continuous function.

Definition 3.11. A subset M of a topological space X is said to be wo-dense in X if there is no
proper wx-closed set F in X such that M C F C X.

Theorem 3.12. The following statements are equivalent for a function f: (X,t) — (Y, 0):

(1) f is somewhat wo-continuous function

(2) IfF is a closed subset of Y such that £~ (F) # X,then there is a proper wx-closed subset D
of X such that £~1(F) C D.

(3) If M is a wa-dense subset of X, then f(M) is a dense subset of Y.

Proof. (1) = (2): Let F be a closed subset of Y such that f~' (F) # X.Then f~' (Y—F) = X—f"'(f) #
¢. Then from (1) there exists wa-open set V in X such that V # ¢ and V. C f (Y - F) =
X — 7 1(F).This implies f~'(F) € X =V and X —V = D is a wa-closed set inX.

(2) = (3): Let M be any wa-dense set in X. Suppose f(M) is not a dense subset of Y, then there
exists a proper closed set F in Y such that f(M) C F C Y. This implies ' (F) # X. Then from (2)
there exists a proper wa-closed set D such that M C f~'(F) ¢ D C X. This contradicts the fact
that M is a wa-dense set in X.

(3) = (2): Suppose (2) is not true.Then there exists a closed setF in Y such that f~'(F) # X.But
there is no proper wo-closed set D in X such that f~'(F) C D. This means that f~'(F) is wx-dense
in X. But from hypothesis f(f~'(F)) = F must be dense in Y, which is contradiction to the choice
of F.

(2) = (1):Let U be an open set in Y and f~'(U) # ¢. Then (Y —U) =X —f ' (U) = ¢. Then
by hypothesis, there exists a proper wo-closed set D such that f~' (Y —U) C D. This implies that
X—D c f'(U) and X—D is wa-open and X — D # ¢. O

Theorem 3.13. Let f: (X,t) — (Y,0) be a function and X = AUB, A and B are open subsets
of X such that (f/A) and (f/B) are somewhat wox-continuous functions then f is somewhat wo-
continuous function.

Proof. Let U be an open set in Y such thatf~'(U) # ¢. Then (f/A)~"(U) # ¢ or (f/B)~'(U) # ¢
or both (f/A)~1(UW) # ¢ and (f/B)~"(U) # ¢ .

case(i): Suppose (f/A)~1(U) # ¢. Since f/A is somewhat wx-continuous , then there exists wa
open set V in A such that V # ¢ and V C (f/A)~'(U) c f~'(U). Since V is wx-open in A and A
is open in X, V' is wa-open X . Hence f is somewhat wa-continuous function.

case(ii): Suppose (f/B)~'(U) # ¢. Since f/B is somewhat wax-continuous , then there exists wa
open set V in B such that V # ¢ and V C (f/B)~"(U) C f~'(U). Since V is wa-open in B and B
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is open in X, V is wa-open X . Hence f is somewhat woa-continuous function.
case(iii): Suppose (f/A)~1(U) # ¢ and (f/B)~"(U) # ¢. Follows from case(i) and case(ii). O

Theorem 3.14. If A be any set in X and f: (X, 1) = (Y, 0) be somewhat wx-continuous such that
f(A) is dense in Y. Then any extension F of f is somewhat wox-continuous.

Proof. Let U be an open set inY such thatF~'(U) # ¢. Since f(A) C Y is dense in Y and
Unf(A) # ¢. It follows that F~1(U) N A # ¢. That is f~'(U) N A # ¢.Hence by hypothesis
there exists a wa-open set V in A such that V # ¢ and V € f~'(U) € F~'(U).This implies F is
somewhat wax-continuous. O

Definition 3.15. A topological space X is said to be wo-separable if there exists a countable subset
B of X which is wa-dense in X.

Theorem 3.16. Let f: (X, T) — (Y, 0) is somewhat wax-continuous function.If X is wo-separable
then Y is separable.

Proof. Let B be countable subset of X which is wa-dense in X. Then from Theorem 3.12,f(B) is
dense in Y. Since B is countable f(B) is also countable which is dense in Y. This implies that Y is
separable. O

4 Somewhat wax-Open Functions

In this section, we introduce the concept of somewhat wax-open functions and study some of their
characterizations.

Definition 4.1. A function f: (X,1) — (Y, 0) is somewhat wx-open provided that for open set U
in X and U # ¢ there exists a wx -open set V in'Y such that V # ¢ and V C f(U).

Example 4.2. Let X = Y = {a,b,c} and T = {X, d,{a},{b,c}} and 0 = {X, d,{a}}. Define a
function f : (X;1) — (Y,0) by f(a) = ¢, f(b) = a and f(c) = b. Then clearly f is somewhat
wa-open.

Theorem 4.3. Fvery somewhat open function is somewhat wx-open function but converse need
not be true in general.

Example 4.4. In Example 4.2, f is somewhat wo-open function but not somewhat -open function.

Remark 4.5. Somewhat wx-open and somewhat semi-open functions are independent of each
other as seen from the following examples.

Example 4.6. In Example /.2, f is somewhat wo-open function but not somewhat semi-open
function.
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Example 4.7. Let X =Y ={a,b,c}, T ={X, ¢,{b},{a,c}} and
o ={Y, ¢,{a},{b},{a,b}}. Then the identity function f: (X,t) — (Y, 0) is somewhat semi-open but
not somewhat wo-open function.

Theorem 4.8. If f: (X,1) — (Y, 0) is open function and g: (Y,0) — (Zm) is somewhat wx-open
function,then their composition gof is somewhat wa-open function.

We have the following characterization.

Theorem 4.9. The following statements are eqivalent for bijective function f: (X, 1) — (Y, 0)

(1) fis somewhat wa-open function

(2) IfF is closed subset of X such that f(F) #Y, then there exists a wx-closed subset D of Y such
that D #Y and f(F) C D.

Proof. (1) = (2):Let F be a closed subset of X such that f(F) # Y. From (1), there exists a wo
-open set V # ¢ in Y such that V C f(X—F). Put D =Y —V. Clearly D is a wa-closed in Y
and we claim that D 2 Y. If D =Y, then V = ¢ which is a contradiction. Since V C f(X —F),
D=Y-VCY-—I[f(X—F)]=f(F).

(2) = (1):Let U be any non-empty open set in X. Put F = X —U. Then F is a closed subset of
X and f(X —U) = f(F) = Y — f(U) which implies f(F) # ¢. Therefore by (2) there is a wo-closed
subset D of Y such that D # Y and f(F) € D. Put V = X — D, clearly V is wa-open set and
V # ¢.Further, V=X—-D CY—f(F) =Y —[Y—f(U)] =f(U). O

Theorem 4.10. If f: (X,T) — (Y, 0) is somewhat wa-open function and A be any open subset of

X. Thenf/A : (A,Tt/A) = (Y, 0) is also somewhat wx-open function.

Theorem 4.11. If f: (X, ) — (Y,0)be a function such that /A and /B are somewhat wx-open,
then fis somewhat wx-open function, where X = A UB, A and B are open subsets of X.

5 Totally wx - Continuous Functions

In this section, we introduce a new class of functions called totally wa- continuous functions and
study some of their properties.

Definition 5.1. A function f: (X,7t) — (Y, 0) is said to be totally wx- continuous, if the inverse
image of every open subset of Y is an wx-clopen subset of X.

Example 5.2. Let X =Y ={a,b,c}, T ={X, d,{a}} and
o ={Y,d,{a},{b,c}}. Define a function f: (X,t) — (Y,0) byf(a) =b, f(b) = a and f(c) = c.Then
f is totally wo- continuous function

Theorem 5.3. Every perfectly wo- continuous map is totally wo- continuous but converse need

not be true in general.
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Proof. Let f: (X,1) — (Y, 0) be a perfectly wo- continuous. Let U be an open set in Y. Then U is

wa-open in Y. Since f is a perfectly wo- continuous, f~'(U) is clopen in X, implies that £~ (U)
is wa-clopen in X. O

Example 5.4. In Example 5.2, f is totally wo- continuous but not perfectly wx- continuous.

Theorem 5.5. Every totally wo- continuous function is wa- continuous but converse need not
be true in general.

Example 5.6. Let X =Y ={a,b,c}, T={X, d,{a}} and
o ={Y, d,{a},{a,c}}. Then the identity function f: (X,7) — (Y,0) is wa- continuous function but
not totally wx- continuous function.

Remark 5.7. It is clear that the totally wx- continuous function is stronger than wo- continuous
and weaker than perfectly wo- continuous.

Theorem 5.8. If f : (X,T) — (Y,0) is totally wx- continuous function from an wox-connected
space X in to Y, then Y is an indiscrete space.

Proof. Suppose that Y is not indiscrete space. Let A be a proper non-empty open subset of Y.
Then f~'(A) is a non-empty proper wa- clopen subset of X which is contradiction to the fact that
X is wa-connected. O

Definition 5.9. A topological space X is said to be woz-space [7], if for every pair of distinct
points x and y in X, there exists wo-open sets M and N such thatx e N,y € M and MNN = ¢.

Theorem 5.10. Let f: (X,1) — (Y, 0) be totally wa- continuous injection map. If Y is Ty, then
X is woz-space.

Proof. Let x and y be any pair of distinct points of X. Then f(x) # f(y). Then there exists an
open set U containing f(x) but notf(y). Since Y is To. Then x ¢ f~'(U) andy ¢ f~'(U). Since f is
totally wo- continuous,f~'(U) is an wa-clopen subset of X. Also x € f~'(U) and y € (f~'(U))°.
Hence X is wa;-space. O

Theorem 5.11. A topological space X is wx -connected if and only if every totally wo- continuous
function from a space X in to any To-space Y is a constant function.

Theorem 5.12. Let f: (X,1) = (Y, 0) is totally wo- continuous and Y be a Ty-space. If A is an
wa-connected subset of X, then f(A) is a single point.

Theorem 5.13. A function f: (X,T) — (Y,0) is totally wo- continuous at a point x € X if for

each open subset V in'Y containing f(x), there ezists a wa-clopen subset U in X containing x such
that f(U) C V.
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Proof. Let V be an open subset of Y and let x € f~1(V). Since f(x) € V, there exists a wax-clopen
set Uy in X containing x such that Uy € f~1(V). We obtain f~'(V) = U, c¢—1(y). Since arbitrary
union of wa-open sets is wa-open, £~ (V) is woa-clopen in X. O

Definition 5.14. Let X be a topological space. Then the set of all points y in X such that x and
y cannot be separated by a wo-separation of X is said to be the quasi wo-component of X.

Theorem 5.15. Let f: (X,T) — (Y,0) is totally wx- continuous map from a topological space X
in to a Ty-space Y, then f is constant on each quasi wx-component of X.

Proof. Let x and y be two points of X that lie in the some quasi wx-component of X. Assume
that f(x) = « # = f(y). Since Y is Ty, « is closed in Y and so « is an open subset in Y.
Since f is totally wo- continuous,f~' («) and £~ («¢) are disjoint wa-clopen subsets of X. Further
x € f (o) and y € f (), which is a contradiction in view of the fact that y must belong to
every wa-clopen set containing x. O

Received: April 2013. Accepted: September 2013.

References
[1] S.S.Benchalli, P.G.Patil and T.D.Rayanagoudar, wa-Closed Sets in Topological Spaces,The
Global Jl.of Appl.Math.and Math.Sciences, V.2,1-2,(2009),53-63.

[2] Zdenek Frolik,, Remarks concerning the Invariance of Baire Spaces under Mappings,
Czech.Math.JI., 11(86)(1961),389-385.

[3] K.R. Gentry and H.B. Hoyle, Somewhat continuous functions, Czech.Math.JI., 21, No.1 (86)
(1971),5-12.

[4] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96

[5] N. Levine, Semi-open sets and Semi-continuity in topological spaces, Amer. Math. Monthly,
70 (1963), 36-41.

[6] O.Njastad, On some classes of nearly open sets, Pacific Jl.Math., 15(1965),961-970.

[7] P.G.Patil,, Some Studies in Topological Spaces, Ph.D. Thesis, Karnatak University Dharwad
(2007).

[8] D.Santhileela and G Balasubramanian, Somewhat semi continuous and somewhat semi open
functions, Bull. Cal. Math.Soc.,94(1)(2002) 41-48.



