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ABSTRACT

The obje
t of the present paper is to study quasi-
onformally �at and quasi-
onformally

semisymmetri
 generalized Sasakian-spa
e-forms.

RESUMEN

El objeto del artí
ulo a
tual es estudiar formas de espa
io Sasakian 
uasi-
onforma
ionales

planas y 
uasi-
onforma
ionales generalizadas semisimétri
as.
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1 Introdu
tion

The notion of generalized Sasakian-spa
e-forms was introdu
ed and studied by Alegre et al [1℄

with several examples. A generalized Sasakian-spa
e-form is an almost 
onta
t metri
 manifold

(M,φ, ξ, η, g) whose 
urvature tensor is given by

R(X, Y)Z = f1{g(Y, Z)X − g(X,Z)Y}

+ f2{g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY)φZ}

+ f3{η(X)η(Z)Y − η(Y)η(Z)X

+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ}

where f1, f2, f3 are di�erentiable fun
tions on M and X, Y, Z are ve
tor �elds on M. In su
h 
ase we

will write the manifold as M(f1, f2, f3). This kind of manifolds appears as natural generalization

of the Sasakian-spa
e-forms by taking:

f1 =
c+ 3

4
and f2 = f3 =

c− 1

4
,

where c denotes 
onstant φ-se
tional 
urvature. The φ-se
tional 
urvature of generalized Sasakian-

spa
e-forms M(f1, f2, f3) is f1 + 3f2. Moreover, 
osymple
ti
 spa
e-forms and Kenmotsu spa
e-

forms are also parti
ular 
ase of generalized Sasakian-spa
e-forms. In the re
ent paper P. Alegre

and A. Carriazo [2℄ studied 
onta
t metri
 and trans-Sasakian generalized Sasakian-spa
e-forms.

Generalized Sasakian-spa
e-forms have been studied by several authors, viz., [5, 6, 10, 12℄.

In Riemannian geometry, many authors have studied 
urvature properties and to what extent

they determined the manifold itself. Two important 
urvature properties are �atness and symme-

try. As a generalization of lo
al symmetri
 spa
e, the notion of semisymmetri
 spa
e [13℄ is de�ned

as R(X, Y) · R = 0, where R(X, Y) a
ts on R as a derivation. In this 
onne
tion, the 
onformal

�atness and lo
al symmetry of generalized Sasakian-spa
e-forms was studied in [10℄. Also in [6℄,

generalized Sasakian-spa
e-forms with vanishing proje
tive 
urvature tensor and some symmetry

properties have been 
onsidered. Motivated by these fa
ts, in this paper we study the �atness and

semisymmetry property of generalized Sasakian-spa
e-form regarding the quasi-
onformal 
urva-

ture tensor.

The notion of the quasi-
onformal 
urvature tensor was given by Yano and Sawaki [14℄. A
-


ording to them in a (2n + 1)-dimensional (n > 1) almost 
onta
t metri
 manifold the quasi-


onformal 
urvature tensor C̃ is de�ned by

C̃(X, Y)Z = aR(X, Y)Z+ b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX− g(X,Z)QY]

−
r

2n + 1

( a

2n
+ 2b

)
[g(Y, Z)X − g(X,Z)Y] (1)

where a and b are 
onstants and R, S, Q and r are the Riemannian 
urvature tensor of type (1, 3),

the Ri

i tensor of type (0, 2), the Ri

i operator de�ned by g(QX, Y) = S(X, Y) and the s
alar
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urvature of the manifold respe
tively. If a = 1 and b = − 1

2n−1
, then (1) takes the form

C(X, Y)Z = R(X, Y)Z−
1

2n − 1
[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY]

+
r

(2n)(2n − 1)
[g(Y, Z)X− g(X,Z)Y] = C(X, Y)Z (2)

where C is the 
onformal 
urvature tensor [8℄. Thus 
onformal 
urvature tensor is a parti
ular 
ase

of quasi-
onformal 
urvature tensor.

A manifold (M,φ, ξ, η, g) shall be 
alled quasi-
onformally �at if the quasi-
onformal 
urva-

ture tensor C̃ = 0. It is known that the quasi-
onformally �at manifold is either 
onformally �at if

a 6= 0 or Einstein if a = 0 and b 6= 0 [3℄. If the manifold (M,φ, ξ, η, g) satis�es R(X, Y).C̃ = 0, then

the manifold is said to be quasi-
onformally semisymmetri
 manifold. A manifold (M,φ, ξ, η, g) is

said to be Ri

i symmetri
 if R · S = 0 holds on M [7℄. The 
lass of Ri

i semisymmetri
 manifolds

in
ludes the set of Ri

i symmetri
 manifolds (∇S = 0) as a proper subset. Every semisymmetri


manifold is Ri

i symmetri
. The 
onverse is not true.

In the present paper quasi-
onformally �at and quasi-
onformally semisymmetri
 generalized

Sasakian-spa
e-forms are studied. The paper is organized as follows: Se
tion 2 of this paper 
on-

tains some preliminary results on generalized Sasakian-spa
e-forms. In se
tion 3, we study quasi-


onformally �at generalized Sasakian-spa
e-forms and obtain ne
essary and su�
ient 
onditions for

a generlized Sasakian-spa
e-form to be quasi-
onformally �at. Also, we 
onsider quasi-
onformally

Ri

i tensor and quasi-
onformally Ri

i symmetri
 generalized Sasakian spa
e-forms. In the next

se
tion, we deal with quasi-
onformally semisymmetri
 generalized Sasakian-spa
e-forms and it is

proved that a generalized Sasakian-spa
e-form is quasi-
onformally semisymmetri
 if and only if

the spa
e-form is quasi-
onformally �at and f1 = f3.

2 Preliminaries

An odd-dimensional manifold M2n+1
is said to admit an almost 
onta
t stru
ture (φ, ξ, η), if it


arries a tensor �eld φ of type (1, 1), a ve
tor �eld ξ and a 1-form η satisfying

φ2 = −I+ η⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0. (3)

If g is a 
ompatible Riemannian metri
 with (φ, ξ, η) su
h that

g(φX,φY) = g(X, Y) − η(X)η(Y) (4)

or equivalently,

g(X, ξ) = η(X), g(X,φY) = −g(φX, Y) (5)

for all ve
tor �elds X, Y on M2n+1
, then M2n+1

be
omes an almost 
onta
t metri
 manifold with

an almost 
onta
t metri
 stru
ture (φ, ξ, η, g). An almost 
onta
t metri
 stru
ture is 
alled a


onta
t metri
 stru
ture if

g(X,φY) = dη(X, Y)
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An almost 
onta
t metri
 manifold is Sasakian if and only if

(∇Xφ)Y = g(X, Y)ξ − η(Y)X (6)

for all ve
tor �elds X, Y on M2n+1
.

For a (2n + 1)-dimensional generalized Sasakian-spa
e-form we have [1℄

R(X, Y)Z = f1{g(Y, Z)X − g(X,Z)Y}

+ f2{g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY)φZ}

+ f3{η(X)η(Z)Y − η(Y)η(Z)X

+ g(X,Z)η(Y)ξ − g(Y, Z)η(X)ξ}, (7)

QX = (2nf1 + 3f2 − f3)X− (3f2 + (2n − 1)f3)η(X)ξ, (8)

S(X, Y) = (2nf1 + 3f2 − f3)g(X, Y) − (3f2 + (2n − 1)f3)η(X)η(Y), (9)

r = 2n(2n + 1)f1 + 6nf2 − 4nf3 (10)

for all ve
tor �elds X, Y, Z. By virtue of equations(7) and (9), we have

η(R(X, Y)Z) = (f1 − f3){g(Y, Z)η(X) − g(X,Z)η(Y)}, (11)

R(X, Y)ξ = (f1 − f3){η(Y)X− η(X)Y}, (12)

R(ξ, X)Y = (f1 − f3){g(X, Y)ξ− η(Y)X}, (13)

S(X, ξ) = 2n(f1 − f3)η(X), (14)

S(ξ, ξ) = 2n(f1 − f3). (15)

The above results will be used in the next se
tions. Now we would like to re
olle
t some of the

examples of generalized Sasakian-spa
e-forms.

Example 1: ( [11℄)A 
osymple
ti
-spa
e-form, i.e., a 
osymple
ti
 manifold with 
onstant φ-

se
tional 
urvature c, is a generalized Sasakian-spa
e-form with f1 = f2 = f3 = c/4.

Example 2:( [9℄)A Kenmotsu-spa
e-form, i.e., a Kenmotsu manifolds with 
onstant φ-se
tional


urvature c, is a generalized Sasakian-spa
e-form with f1 = (c− 3)/4 and f2 = f3 = (c+ 1)/4.

Example 3: ( [1℄)Let N(F1, F2) be a generalized 
omplex-spa
e-form. Then, the warped produ
t

M = R ×f N, endowed with the almost 
onta
t metri
 stru
ture (φ, ξ, η, gf), is a generalized

Sasakian-spa
e-form M(f1; f2; f3) with fun
tions:

f1 =
(F1 ◦ π) − f ′2

f2
, f2 =

F2 ◦ π

f2
, f3 =

(F1 ◦ π) − f ′2

f2
+

f ′′

f
.

In parti
ular if N(c) is a 
omplex-spa
e-form, we obtain the generalized Sasakian-spa
e-form

M

(
c− 4f ′2

4f2
,

c

4f2
,
c− 4f ′2

4f2
+

f"

f

)
.

Hen
e, the warped produ
ts R×f C
n
, R×f CP

n(4) and R×f CH
n(−4) are generalized Sasakian-

spa
e-forms.
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Example 4: R×f C
m

is a generalized Sasakian-spa
e-form with

f1 = −
(f ′)2

f2
, f2 = 0, f3 = −

(f ′1)2

f2
+

f ′′

f
,

where f = f(t).

3 Quasi-
onformally �at generalized Sasakian-spa
e-forms

If the generalized Sasakian-spa
e-form M(f1, f2, f3) under 
onsideration is quasi-
onformally �at,

then we have from (1)

R(X, Y, Z,W) =
b

a
[S(X,Z)g(Y,W) − S(Y, Z)g(X,W) (16)

+S(Y,W)g(X,Z) − S(X,W)g(Y, Z)]

+
r

(2n + 1)a
[
a

2n
+ 2b][g(Y, Z)g(X,W) − g(X,Z)g(Y,W)],

where a and b are 
onstants and R(X, Y, Z,W) = g(R(X, Y)Z,W). Now putting Z = ξ in (16) and

using (4), (12) and (14) we get

(f1 − f3)[g(X,W)η(Y) − g(Y,W)η(X)] (17)

= 2n(f1 − f3)
b

a
[g(Y,W)η(X) − g(X,W)η(Y)

+S(Y,W)η(X) − S(X,W)η(Y)]

+
r

(2n + 1)a
[
a

2n
+ 2b][g(X,W)η(Y) − g(Y,W)η(X)].

Again putting X = ξ in (17) and using (4) and (14) it follows that

S(Y,W) = Ag(Y,W) + Bη(Y)η(W), (18)

where

A = [−
a

b
(f1 − f3) − 2n(f1 − f3) +

r

(2n + 1)b
(
a

2n
+ 2b)] (19)

and

B = [
a

b
(f1 − f3) + 4n(f1 − f3) −

r

(2n + 1)b
(
a

2n
+ 2b)]. (20)

Here A+B = 2n(f1−f3). In the equation (18) putting Y = W = {ei}, where {ei} is an orthonormal

basis of the tangent spa
e at ea
h point of the manifold and taking summation over i, 1 ≤ i ≤ 2n+1,

we get

r = (2n + 1)A + B. (21)

Now with the help of (19) and (20) the equation (21) gives

[a+ (2n − 1)b][
r

2n + 1
− 2n(f1 − f3)] = 0. (22)
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If a+ (2n − 1)b = 0 and a 6= 0 6= b. Then from (1) it follows that

C̃(X, Y)Z = aC(X, Y)Z, (23)

where C(X, Y)Z denotes the Weyl 
onformal 
urvature tensor. But, under the 
onsideration C̃ = 0.

So the quasi-
onformal �atness and 
onformally �atness are equivalent. This implies that C = 0.

If a+ (2n − 1)b 6= 0 and a 6= 0. Then from (22).

r = 2n(2n + 1)(f1 − f3). (24)

So by 
omparing (10) and (24) we have

3f2 + (2n − 1)f3 = 0. (25)

By taking a

ount of (25) in (9), we get

S(X, Y) = 2n(f1 − f3)g(X, Y). (26)

This shows that, M(f1, f2, f3) is an Einstein. Thus we state the following:

Theorem 1. A quasi-
onformally �at generalized Sasakian-spa
e-from is either 
onformally �at

or an Einstein manifold with s
alar 
urvature r = 2n(2n + 1)(f1 − f3).

In the above theorem we have seen if a + (2n − 1)b = 0 and a 6= 0 6= b, then it follows that

a quasi-
onformally �at generalized Sasakian-spa
e-form is 
onformally �at. But, it is known that

[10℄ a (2n + 1)-dimensional (n > 1) generalized Sasakian-spa
e-form M(f1, f2, f3) is 
onformally

�at if and only if f2 = 0. So in this 
ase M(f1, f2, f3) is quasi-
onformally �at if and only if f2 = 0.

On the other hand, if a + (2n − 1)b 6= 0 and a 6= 0 then we have (24). By 
omparing the

equations (10) and (24), one 
an get (25).

Conversely, suppose that (25) holds. Then in view of (7), (9) and (25), we 
an write the

equation (1) as

C̃(X, Y, Z,W)

=
a

1− 2n
f2[g(Y, Z)g(X,W) − g(X,Z)g(Y,W)]

+af2[g(X,φZ)g(φY,W) − g(Y,φZ)g(φX,W) + 2g(X,φY)g(φZ,W)]

+
3a

1− 2n
f2[g(Y,W)η(X)η(Z) − g(X,W)η(Y)η(Z)

+g(X,Z)η(Y)η(W) − g(Y, Z)η(X)η(W)], (27)

where C̃(X, Y, Z,W) = g(C̃(X, Y)Z,W).

Repla
ing X by φX and Y by φY in (27) we get

C̃(φX,φY, Z,W)

=
a

1− 2n
f2[g(φY,Z)g(φX,W) − g(φX,Z)g(φY,W)]

+af2[g(φX,φZ)g(φ
2Y,W) − g(φY,φZ)g(φ2X,W) + 2g(φX,φ2Y)g(φZ,W)]. (28)
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Putting Y = W = ei, where {ei} is an orthonormal basis of the tangent spa
e at ea
h point of the

manifold, and taking summation over i, (1 ≤ i ≤ 2n + 1), we get

2n+1
∑

i=1

C̃(φX,φei, Z, ei)

=
a

2n − 1
f2g(φX,φZ) + af2[−g(φX,φZ)g(φei , φei) + 3g(φ2X,φ2Z)]. (29)

Again putting X = Z = ei, where {ei} is an orthonormal basis of the tangent spa
e at ea
h point

of the manifold, and taking summation over i, (1 ≤ i ≤ 2n+ 1), we get after simpli�
ation f2 = 0

with a 6= 0. Then in view of (25), we get f3 = 0.

Therefore, we obtain from (7) that

R(X, Y)Z = f1{g(Y, Z)X− g(X,Z)Y}. (30)

From (30) we have

S(X, Y) = 2nf1g(X, Y) and r = 2n(2n + 1)f1.

Hen
e in view of (1), we have C̃(X, Y)Z = 0. This leads to the following:

Theorem 2. Let M(f1, f2, f3) be a (2n+1)-dimensional (n > 1) generalized Sasakian-spa
e-form.

Then M(f1, f2, f3) is quasi-
onformally �at if and only if one of the following statements is true:

(i) a+ (2n − 1)b = 0, a 6= 0 6= b and f2 = 0.

(ii) a+ (2n − 1)b 6= 0, a 6= 0 and 3f2 + (2n − 1)f3 = 0.

In a (2n + 1)-dimensional (n > 1) manifold (M,φ, ξ, η, g), let {ei}, i = 1, 2, ..., 2n + 1 be a

lo
al orthonormal basis. Then the quasi-
onformal 
urvature tensor C̃(X, Y)Z de�ned as in (1),

we 
an de�ne a symmetri
 tensor of type (0, 2)
alled as quasi-
onformal Ri

i tensor and whi
h is

denoted by

S
C̃
(X, Y) =

2n+1
∑

i=1

C̃(ei, X, Y, ei), (31)

where

∑2n+1

i=1
C̃(ei, X, Y, ei) =

∑2n+1

i=1
g(C̃(ei, X)Y, ei).

From (31)and (1), we have

S
C̃
(X, Y) = {a+ (2n − 1)b}{S(X, Y) −

r

2n + 1
g(X, Y)}. (32)

We �rst assume that a (2n + 1)-dimensional generalized Sasakian-spa
e-form M(f1, f2, f3) is

Ri

i semisymmetri
. That is,

(R(X, Y).S)(Z,W) = −S(R(X, Y)Z,W) − S(Z, R(X, Y)W) = 0.

Now, sin
e the 
urvature tensor R of type (0, 4), de�ned by

g(R(X, Y)Z,W) = R(X, Y, Z,W)
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is skew-symmetri
 where R is the 
urvature tensor of type (1, 3), we get from (33) and (11) by

taking a

ount that a+ (2n − 1)b 6= 0

S
C̃
(R(X, Y)Z,W) + S

C̃
(Z, R(X, Y)W) = 0 (33)

whi
h implies that

(R(X, Y).S
C̃
)(Z,W) = 0.

So the spa
e-form M(f1, f2, f3) is quasi-
onformally Ri

i semisymmetri
.

Again, let us suppose that the spa
e-form is quasi-
onformally Ri

i semisymmetri
, that is, R.S
C̃
=

0 holds in M(f1, f2, f3). Then (33) holds. Now using (33), and the skew-symmetri
 properties of

R we get after simpli�
ation R.S = 0, whi
h implies that the spa
e-form is Ri

i semisymmetri
.

Hen
e the following theorem holds:

Theorem 3. A (2n + 1)-dimensional (n > 1) generalized Sasakian-spa
e-form M(f1, f2, f3) is

Ri

i semisymmetri
 if and only if it is quasi-
onformally Ri

i semisymmetri
 provided that a +

(2n − 1)b 6= 0.

4 Quasi-
onformally semisymmetri
 generalized Sasakian-

spa
e-forms

In this se
tion we 
onsider a generalized Sasakian-spa
e-formM(f1, f2, f3) satisfying the 
ondition

R(X, Y) · C̃ = 0. (34)

Then we obtain from (1) by using (4), (12) and (14)

η(C̃(X, Y)Z) =

{

(a+ 2nb)(f1 − f3) −
r

(2n + 1)

{ a

2n
+ 2b

}

}

[g(Y, Z)η(X)

−g(X,Z)η(Y)] + b[S(Y, Z)η(X) − S(X,Z)η(Y)]. (35)

On taking Z = ξ in the equation (35), we get

η(C̃(X, Y)ξ) = 0. (36)

Again putting X = ξ in the equation (35), we have

η(C̃(ξ, Y)Z) =

{

(a+ 2nb)(f1 − f3) −
r

(2n + 1)

{ a

2n
+ 2b

}

}

[g(Y, Z)

−η(Y)η(Z)] + b[S(Y, Z) − 2n(f1 − f3)η(Y)η(Z)]. (37)

In virtue of (34) we get

R(X, Y)C̃(U,V)W − C̃(R(X, Y)U,V)W

−C̃(U,R(X, Y)V)W − C̃(U,V)R(X, Y)W = 0. (38)
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Whi
h implies that

(f1 − f3){C̃(U,V,W, Y) − η(Y)η(C̃(U,V)W)

+η(U)η(C̃(Y, V)W) + η(V)η(C̃(U, Y)W)

+η(W)η(C̃(U,V)Y) − g(Y,U)η(C̃(ξ, V)W)

−g(Y, V)η(C̃(U, ξ)W) − g(Y,W)η(C̃(U,V)ξ)} = 0. (39)

Putting U = Y in (39) and with the help of (35) and (36) we get either

f1 = f3 (40)

or

{C̃(Y, V,W, Y) + η(W)η(C̃(Y, V)Y)

−g(Y, Y)η(C̃(ξ, V)W) − g(Y, V)η(C̃(Y, ξ)W)} = 0. (41)

Let {e1, e2, ..., e2n+1} is an orthonormal basis of the tangent spa
e at ea
h point of the manifold.

Putting Y = ei in (41) and taking summation over i, (1 ≤ i ≤ 2n+ 1), and using (35), (37) we get

S(V,W) = A ′g(V,W) + B ′η(V)η(W)} (42)

where

A ′ =
2n(a + 2nb)(f1 − f3) − rb

a− b
(43)

and

B ′ =
−2n(2n + 1)b(f1 − f3) + rb

a− b
. (44)

Here A ′ + B ′ = 2n(f1 − f3). Now 
ontra
ting (42) we get

r = (2n + 1)A ′ + B ′. (45)

By (43) and (44) the equation (45) gives

(a + (2n − 1)b)(r − 2n(2n + 1)(f1 − f3)) = 0. (46)

Therefore, either

a+ (2n − 1)b = 0 or r = 2n(2n + 1)(f1 − f3). (47)

From (43) and (47) we obtain

A ′ = 2n(f1 − f3). (48)

By (44) and (47) we get

B ′ = 0. (49)

So, from (42), (48) and (49) we have

S(V,W) = 2n(f1 − f3)g(V,W). (50)
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Therefore, M(f1, f2, f3) is an Einstein manifold. Now with the help of (47) and (50) the equations

(35) and (37) imply that

η(C̃(X, Y)Z) = 0 (51)

and

η(C̃(ξ, Y)Z) = 0 (52)

respe
tively. So using (36),(51) and (52) in (39) we get

C̃(U,V,W, Y) = 0. (53)

Therefore, by taking a

ount of (40) and (53), we have either f1 = f3 or M(f1, f2, f3) is quasi-


onformally �at.

Conversely, if f1 = f3 then from (13) R(ξ,U) = 0. Then obviously the 
ondition R(ξ,U) · C̃ =

0, that is, quasi-
onformally semisymmetri
 
ondition is satis�ed. Again if the spa
e-form is

quasi-
onformally �at, then 
learly it is quasi-
onformally semisymmetri
. Hen
e we 
on
lude the

following:

Theorem 4. A (2n+1)-dimensional (n > 1) generalized Sasakian-spa
e-form is quasi-
onformally

semisymmetri
 if and only if either the spa
e-form is quasi-
onformally �at or f1 = f3.

By 
ombining the Theorem2 and Theorem 4, we 
an state the following 
orollary:

Theorem 5. Let M(f1, f2, f3) be a (2n+1)-dimensional (n > 1) generalized Sasakian-spa
e-form.

Then M(f1, f2, f3) is quasi-
onformally semisymmetri
 if and only if f1 = f3 or one of the following

statements is true:

(i) a+ (2n − 1)b = 0, a 6= 0 6= b and f2 = 0.

(ii) a+ (2n − 1)b 6= 0, a 6= 0 and 3f2 + (2n − 1)f3 = 0.

It 
an be easily seen that ∇P = 0 implies R.P = 0. Hen
e by virtue of Theorem 4 we get

Corollary 4.1. A (2n+1)-dimensional (n > 1) quasi-
onformally symmetri
 generalized Sasakian-

spa
e-form is either quasi-
onformally �at or f1 = f3.

A Riemannian manifold is said to be quasi-
onformally re
urrent if ∇P = A ⊗ P, where A

is a non-zero 1-form. It 
an be easily shown that a quasi-
onformally re
urrent manifold satis�es

R · P = 0. Hen
e we immediately get the following:

Corollary 4.2. A (2n+1)-dimensional (n > 1) quasi-
onformally re
urrent generalized Sasakian-

spa
e-form is either quasi-
onformally �at or f1 = f3.

In parti
ular, for Sasakian-spa
e-form f1 = c+3

4
and f3 = c−1

4
. So, f1 6= f3. Hen
e we 
an

have the following 
orollary:

Corollary 4.3. A (2n+1)-dimensional (n > 1) Sasakian-spa
e-form is quasi-
onformally semisym-

metri
 if and only if it is quasi-
onformally �at.
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Remark: If we take f(t) = et in Example 4, we have f1 = −1, f2 = 0 and f3 = 0. Therefore,

the 
ondition 3f2+(2n− 1)f3 = 0 and f2 = 0 holds. Hen
e from Theorem 2, generalized sasakian-

spa
e-form R×f C
m

with f(t) = et is quasi-
onformally �at.

Similarly from Theorem 5, generalized Sasakian-spa
e-form R×f C
m

with f(t) = et is quasi-


onformally semisymmetri
.
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