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ABSTRACT

The object of the present paper is to study quasi-conformally flat and quasi-conformally
semisymmetric generalized Sasakian-space-forms.

RESUMEN

El objeto del articulo actual es estudiar formas de espacio Sasakian cuasi-conformacionales
planas y cuasi-conformacionales generalizadas semisimétricas.
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1 Introduction

The notion of generalized Sasakian-space-forms was introduced and studied by Alegre et al [I]
with several examples. A generalized Sasakian-space-form is an almost contact metric manifold
(M, ¢, &,m, g) whose curvature tensor is given by

RX,VIZ = fi{g(V,Z2)X —g(X,Z)Y}
+  f2Ag(X, Z)pY — g(Y, dZ)pX + 2g(X, pY)dZ}
+  f3(n(XM(2)Y —m(YIn(Z2)X
+ g(X,Zm(E—g(Y, Zn(X)&}

where f1, 2, f3 are differentiable functions on M and X, Y, Z are vector fields on M. In such case we
will write the manifold as M(fy, 2, f3). This kind of manifolds appears as natural generalization
of the Sasakian-space-forms by taking:

c+3 c—1

2 and f2:f3: 2 y

f1 =

where ¢ denotes constant ¢-sectional curvature. The d-sectional curvature of generalized Sasakian-
space-forms M (fq,f,,f3) is f1 + 3f2. Moreover, cosymplectic space-forms and Kenmotsu space-
forms are also particular case of generalized Sasakian-space-forms. In the recent paper P. Alegre
and A. Carriazo [2] studied contact metric and trans-Sasakian generalized Sasakian-space-forms.
Generalized Sasakian-space-forms have been studied by several authors, viz., [5,6,10,12].

In Riemannian geometry, many authors have studied curvature properties and to what extent
they determined the manifold itself. Two important curvature properties are flatness and symme-
try. As a generalization of local symmetric space, the notion of semisymmetric space [13] is defined
as R(X,Y) - R = 0, where R(X,Y) acts on R as a derivation. In this connection, the conformal
flatness and local symmetry of generalized Sasakian-space-forms was studied in [10]. Also in [6],
generalized Sasakian-space-forms with vanishing projective curvature tensor and some symmetry
properties have been considered. Motivated by these facts, in this paper we study the flatness and
semisymmetry property of generalized Sasakian-space-form regarding the quasi-conformal curva-
ture tensor.

The notion of the quasi-conformal curvature tensor was given by Yano and Sawaki [14]. Ac-
cording to them in a (2n 4 1)-dimensional (n > 1) almost contact metric manifold the quasi-
conformal curvature tensor C is defined by

CX,Y)Z = aR(X,Y)Z+DIS(Y,Z)X = S(X,Z)Y +¢(Y,Z)QX — g(X, Z)QY]

“5r7 (g 20) IR 2X = g0, 2] 0

where a and b are constants and R, S, Q and r are the Riemannian curvature tensor of type (1,3),
the Ricci tensor of type (0,2), the Ricci operator defined by g(QX,Y) = S(X,Y) and the scalar
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curvature of the manifold respectively. If a =1 and b = —2n1—71, then (@) takes the form

T
. r B _ X
a9 DX - 9(X 2V = C(X,V)Z -
where C is the conformal curvature tensor [§]. Thus conformal curvature tensor is a particular case

of quasi-conformal curvature tensor.

A manifold (M, ¢, &1, g) shall be called quasi-conformally flat if the quasi-conformal curva-
ture tensor C = 0. It is known that the quasi-conformally flat manifold is either conformally flat if
a # 0 or Einstein if a = 0 and b # 0 [3]. If the manifold (M, ¢, &, 1, g) satisfies R(X, Y).é =0, then
the manifold is said to be quasi-conformally semisymmetric manifold. A manifold (M, ¢, &,n, g) is
said to be Ricci symmetric if R-S = 0 holds on M [7]. The class of Ricci semisymmetric manifolds
includes the set of Ricci symmetric manifolds (VS = 0) as a proper subset. Every semisymmetric

manifold is Ricci symmetric. The converse is not true.

In the present paper quasi-conformally flat and quasi-conformally semisymmetric generalized
Sasakian-space-forms are studied. The paper is organized as follows: Section 2 of this paper con-
tains some preliminary results on generalized Sasakian-space-forms. In section 3, we study quasi-
conformally flat generalized Sasakian-space-forms and obtain necessary and sufficient conditions for
a generlized Sasakian-space-form to be quasi-conformally flat. Also, we consider quasi-conformally
Ricci tensor and quasi-conformally Ricci symmetric generalized Sasakian space-forms. In the next
section, we deal with quasi-conformally semisymmetric generalized Sasakian-space-forms and it is
proved that a generalized Sasakian-space-form is quasi-conformally semisymmetric if and only if
the space-form is quasi-conformally flat and f; = f3.

2 Preliminaries

An odd-dimensional manifold M?™*1 is said to admit an almost contact structure (¢, &,n), if it
carries a tensor field ¢ of type (1,1), a vector field & and a 1-form n satisfying

¢ =—1+n®E ME)=1, $&=0, nod=0. (3)
If g is a compatible Riemannian metric with (¢, &,1) such that
g(dX, dY) = g(X,Y) =n(X)n(Y) (4)
or equivalently,
9(X, &) =n(X), g(X,dY) = —g(dX,Y) (5)

for all vector fields X, Y on M2™+1 then M2™*+! becomes an almost contact metric manifold with
an almost contact metric structure (¢, &,1,g). An almost contact metric structure is called a
contact metric structure if

g(X, bY) = dn(X, Y)
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An almost contact metric manifold is Sasakian if and only if

(Vxd)Y = g(X, )& —n(Y)X (6)
for all vector fields X, Y on M2™+1,
For a (2n + 1)-dimensional generalized Sasakian-space-form we have [1]
RIX,Y)Z = fi{g(Y,Z2)X—g(X, Z)Y}

+ f2{g(X,dZ)dY — g(Y, dZ)dX 4 2g(X, dY)dZ}
+  f3(XM(Z2)Y —n(Y)n(Z2)X
+

9(X,Zm(Y)E — g(Y, Zn(X)E}, (7)
QX = (2nfy +3f, —f3)X — (32 + 2n — 1)f3)n(X)é, (8)
SIX,Y) = (2nfy +3f2 —f3)g(X,Y) — (3f2 + (Zn — 1)f3In(X)n(Y), (9)
r = 2n(2n+ 1)f; +6nf,; —4nf3 (10)
for all vector fields X,Y, Z. By virtue of equations(d) and (@), we have
nRX,Y)Z) = (fi —f3{g(Y; Zn(X) — g(X, Z)n(Y)}, (11)
RIX,Y)E = (f1 —f3)n(Y)X=n(X)Y}, (12)
R(EX)Y = (f1 —f3){g(X, V)& —n(Y)X}, (13)
SIX, &) = 2n(fy —f3)n(X), (14)
S(&,&) = In(fy —f3). (15)

The above results will be used in the next sections. Now we would like to recollect some of the
examples of generalized Sasakian-space-forms.

Example 1: ( [II])A cosymplectic-space-form, i.e., a cosymplectic manifold with constant ¢-
sectional curvature c, is a generalized Sasakian-space-form with f; = f, = f3 = c¢/4.

Example 2:( [9])A Kenmotsu-space-form, i.e., a Kenmotsu manifolds with constant ¢-sectional
curvature c, is a generalized Sasakian-space-form with f; = (¢ —3)/4 and f; = f3 = (c+1)/4.
Example 3: ( [1I])Let N(F;, F2) be a generalized complex-space-form. Then, the warped product
M = R x¢ N, endowed with the almost contact metric structure (¢, &,1,gs), is a generalized
Sasakian-space-form M (fy;f2;f3) with functions:

F — £ F F -2
(Fy om) _Fhonmn . (Fom .

f] = fz b f2 -

iz 12 '
In particular if N(c) is a complex-space-form, we obtain the generalized Sasakian-space-form

M c—4f2 ¢ c—4f’2+f"
a2 a2 a2 T f)

Hence, the warped products R x¢ C™, R xy CP™(4) and R xs CH™(—4) are generalized Sasakian-
space-forms.
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Example 4: R x; C™ is a generalized Sasakian-space-form with

(f/)z (f/”z f”
7R f2=0, f3=— ) R

where f = f(t).

3 Quasi-conformally flat generalized Sasakian-space-forms

If the generalized Sasakian-space-form M(fy, f2, f3) under consideration is quasi-conformally flat,
then we have from ()
ROGY,Z,W) = 2IS(X,Z)g(% W) — S(% Z)g(X, W) (16)
+S(¥, W)g(X, Z) — S(X, W)g(Y, Z)]
T a
IR AR _
+(2n+”a[2n + 2bllg(Y, Z)g(X, W) — g(X, Z)g(Y, W],
where a and b are constants and R(X,Y, Z, W) = g(R(X,Y)Z,W). Now putting Z = § in (I6) and
using (@), (I2) and (@) we get
(f1 = f3)[g(X, WIn(Y) — g(Y, Wn(X)] (17)
b
= n(fi —f3)_[g(¥, W)n(X) — g(X, Win(Y)
+S(, Wn(X) — S(X, Wn(Y)]
T a
24 2b][g(X, Win(Y) — g% Wn(X)].

T el

Again putting X = & in (I7) and using (@) and ([4) it follows that

S(Y, W) = Ag(Y, W) + Bn(YIn(W), (18)
where
A= g (= 13) = 2n(f — 3) + 5y (5 + 20)] (19)
and
B = [(f1 —f3) +4n(f —f3)—m(% +2b)]. (20)

Here A+B = 2n(f; —f3). In the equation (I8) putting Y = W = {e;}, where {e;} is an orthonormal
basis of the tangent space at each point of the manifold and taking summation over i, 1 <1i < 2n+1,
we get

r=(2n+1)A+B. (21)

Now with the help of (I3) and (20) the equation (2I)) gives

T

[+ (2n — 1oll5——

— Zn(ﬁ — f3)] =0. (22)
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Ifa+ (2n—1)b=0and a # 0 # b. Then from () it follows that

C(X,Y)Z = aC(X,Y)Z, (23)

where C(X, Y)Z denotes the Weyl conformal curvature tensor. But, under the consideration C=0.
So the quasi-conformal flatness and conformally flatness are equivalent. This implies that C = 0.
If a4+ (2n—1)b # 0 and a # 0. Then from 22).

r=2n(2n +1)(f; —f3). (24)
So by comparing ([I0) and ([24) we have
3f24+ (2n—1)f3 =0. (25)
By taking account of (23] in (@), we get
S(X,Y) =2n(f1 —f3)g(X,Y). (26)
This shows that, M(fq, f2,f3) is an Einstein. Thus we state the following:

Theorem 1. A quasi-conformally flat generalized Sasakian-space-from is either conformally flat
or an Einstein manifold with scalar curvature v = 2n(2n + 1)(f; —f3).

In the above theorem we have seen if a + (2n—1)b =0 and a # 0 # b, then it follows that
a quasi-conformally flat generalized Sasakian-space-form is conformally flat. But, it is known that
[I0] a (2n + 1)-dimensional (n > 1) generalized Sasakian-space-form M(fq,f2,f3) is conformally
flat if and only if f; = 0. So in this case M(fy, f2, f3) is quasi-conformally flat if and only if f» = 0.

On the other hand, if a + (2n — 1)b # 0 and a # 0 then we have ([24). By comparing the
equations (I0) and (24), one can get (25]).

Conversely, suppose that ([25) holds. Then in view of (7), @) and (25), we can write the
equation () as

C(X,Y,Z,W)

= S Dalg(% Z)gX W) — g(X, Z)g(Y, W)

+afalg(X, Z)g(OY, W) — g(¥, 0Z)g(&X, W) + 26(X, $Y)g($Z, W]
%2 1g0%, Win(X)n(2) — g(X Win(Y)n(Z)
906 ZIn(YIn(W) — (% ZIn(X)n (W, (1)

where C(X,Y,Z, W) = g(C(X,Y)Z, W).
Replacing X by ¢X and Y by ¢Y in [27) we get

+

C(bX, dY,Z,W)

= ———2[g(Y, Z)g(§X, W) — g(¢X, Z)g($Y, W)

+afag(dX, dZ)g(d?Y, W) — g(dY, Z)g(d*X, W) + 2g(dX, dY)g(dZ, W)].  (28)
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Putting Y = W = ey, where {e;} is an orthonormal basis of the tangent space at each point of the

manifold, and taking summation over i, (1 <i<2n+ 1), we get

2n+1 ~
Z C((bx)(bei)Z) ei)
i=1

a
2n—1

f29(0X, $Z) + af2[~g(dX, dZ)g(Pei, dei) +3g(d*X, *Z)1. (29)

Again putting X = Z = ey, where {e;} is an orthonormal basis of the tangent space at each point
of the manifold, and taking summation over i, (1 <1i < 2n+ 1), we get after simplification f» =0
with a # 0. Then in view of (23], we get f3 = 0.

Therefore, we obtain from (7)) that

R(X,Y)Z = f1{g(Y, 2)X — g(X, Z)Y}. (30)

From (B0) we have
S(X,Y) =2nf1g(X,Y) and r=2n(2n -+ 1)f;.

Hence in view of (), we have C (X,Y)Z = 0. This leads to the following;:

Theorem 2. Let M(fy,f2,f3) be a (2n+1)-dimensional (n > 1) generalized Sasakian-space-form.
Then M(f1,f2,T3) is quasi-conformally flat if and only if one of the following statements is true:
(i)a+(2n—1)b =0, a#0#Db and f; =0.

(ii) a+ (2n—1)b #0, a # 0 and 3f2 + (2n —1)f3 = 0.

In a (2n + 1)-dimensional (n > 1) manifold (M, &, &,1,g), let {e;}, 1 =1,2,..,2n + 1 be a
local orthonormal basis. Then the quasi-conformal curvature tensor C(X,Y)Z defined as in (),
we can define a symmetric tensor of type (0,2)called as quasi-conformal Ricci tensor and which is

denoted by
2n+1

SG(X)Y) = Z E(ei)X)Y)ei)) (31)

i=1

where Y2 Clei, X, Y1) = Y77 g(Cle, X)Y, ).

i=1 i=1

From BI)and (), we have

Sc(X,Y) = {a+(2Zn—T1)b{S(X,Y) — (XY} (32)

T
Inti9

We first assume that a (2n + 1)-dimensional generalized Sasakian-space-form M(fy, f2, f3) is
Ricci semisymmetric. That is,

(R(X,Y).S)(Z,W) = —S(R(X,Y)Z,W) — S(Z,R(X, Y)W) = 0.
Now, since the curvature tensor R of type (0,4), defined by
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is skew-symmetric where R is the curvature tensor of type (1,3), we get from (B3) and () by
taking account that a + (2n —1)b # 0

S&(R(X,Y)Z,W) + S&(Z,R(X,Y)W) = 0 (33)

which implies that

(R(X,Y).Sz)(Z,W) = 0.
So the space-form M(fy,f2,f3) is quasi-conformally Ricci semisymmetric.
Again, let us suppose that the space-form is quasi-conformally Ricci semisymmetric, that is, R.Sz =
0 holds in M(fy, f2,f3). Then ([B3) holds. Now using (33), and the skew-symmetric properties of
R we get after simplification R.S = 0, which implies that the space-form is Ricci semisymmetric.
Hence the following theorem holds:

Theorem 3. A (2n + 1)-dimensional (n > 1) generalized Sasakian-space-form M(fq,f2,f3) is
Ricci semisymmetric if and only if it is quasi-conformally Ricci semisymmetric provided that a +
2n—1)b #£0.

4 Quasi-conformally semisymmetric generalized Sasakian-
space-forms

In this section we consider a generalized Sasakian-space-form M(fy, f2, f3) satisfying the condition

R(X,Y)-C =0. (34)

Then we obtain from (1) by using (@), (I2)) and (I4])

~ T a
nEX,Y)Z) = {(a+znb)(f1—fa)—m{ﬁub}}[gmzmoo
—g(X, Zn(Y)] + bIS(Y, Zn(X) — S(X, Z)n(Y)]. (35)

On taking Z = ¢ in the equation ([B3)), we get

n(C(X, Y)&) =o. (36)

Again putting X = & in the equation (B3], we have

2n+1) 2n

n€E2) = {a+ bt — 1) - s {4 20} g% 2
n(YIn(Z)] + bIS(Y,Z) — 2n(fy — f5)n(Yn(Z)

(37)
In virtue of (34) we get

R(X,Y)C(U, V)W — C(R(X, Y)U, V)W
—C(U, R(X, Y)V)W — C(U, V)R(X, Y)W = 0. (38)
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(f1 — f3){C(U, V, W, Y) —n(Y)n(C(U, V)W)
N (Wn(CY, V)W) +n(V)n(C(U, V)W)
Fn(Wn(C(U, V)Y) — g(Y, Wn(C(&, VIW)
—g(Y, VIn(C(U, )W) — g(¥, W)n(C(U, V)&)} = 0. (39)
Putting U =Y in (39) and with the help of (B3)) and (B8) we get either

f1 =13 (40)
{C(Y, V, W, Y) +n(W)n(C(Y, V)Y)
—g(Y, Y)n(C(& VIW) — g(Y, V)n(C(Y, )W)} = 0. (41)

Let {e1,ea,...,e2n 11} is an orthonormal basis of the tangent space at each point of the manifold.
Putting Y = e; in (@) and taking summation over i, (1 <1 < 2n+ 1), and using (33)), (B1) we get

S(,W) =A'g(V, W)+ BM(VIn(W)}

where
Al 2n(a + 2nb)(f; —f3) —1b
a—D>b
and
B/ —2n(2n+ 1)b(f; —f3) +T‘b.

a—>b
Here A’ + B’ = 2n(f; — f3). Now contracting ([@2) we get

r=2n+1)A'+B’.

By [@3) and (@4) the equation (@3] gives
(a+(2n—=1)b)(r —2n(2n+1)(f; — f3)) = 0.

Therefore, either
a+(2n—1)b=0 or rv=2n2n+1)(f; —f3).
From ({43) and (1) we obtain
Al = 2T1(f1 - fg).

By ([@4) and ([@7) we get
B’ =0.

So, from ([@2), [@8)) and (@3)) we have

S(V,W) = 2n(f; —f3)g(V, W).

(42)
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Therefore, M(fq, f2,f3) is an Einstein manifold. Now with the help of [@7) and (&0) the equations
B3) and B1) imply that

n(C(X,Y)z) =0 (51)
and

n(C(&Y)Z) =0 (52)
respectively. So using (36),([EI) and (B2) in (B9) we get

C(U, V,W,Y) = 0. (53)

Therefore, by taking account of (0) and (B3]), we have either f; = f3 or M(fy, 2, f3) is quasi-
conformally flat.

Conversely, if f; = f3 then from ([I3)) R(&, W) = 0. Then obviously the condition R(&,U) - C=
0, that is, quasi-conformally semisymmetric condition is satisfied. Again if the space-form is
quasi-conformally flat, then clearly it is quasi-conformally semisymmetric. Hence we conclude the
following:

Theorem 4. A (2n+1)-dimensional (n > 1) generalized Sasakian-space-form is quasi-conformally
semisymmetric if and only if either the space-form is quasi-conformally flat or f1 = f3.

By combining the Theorem? and Theorem [ we can state the following corollary:

Theorem 5. Let M(fy,f2,f3) be a (2n+1)-dimensional (n > 1) generalized Sasakian-space-form.
Then M(f1, T2, f3) is quasi-conformally semisymmetric if and only if f1 = f3 or one of the following
statements is true:

(i)a+(2n—1)b=0,a#0#Db and f, =0.

(ii) a+ (2n—1)b #0, a # 0 and 3f2 + (2n —1)f3 = 0.

It can be easily seen that VP = 0 implies R.P = 0. Hence by virtue of Theorem [l we get

Corollary 4.1. A (2n+1)-dimensional (n > 1) quasi-conformally symmetric generalized Sasakian-
space-form is either quasi-conformally flat or f1 = f3.

A Riemannian manifold is said to be quasi-conformally recurrent if VP = A ® P, where A
is a non-zero 1-form. It can be easily shown that a quasi-conformally recurrent manifold satisfies
R - P =0. Hence we immediately get the following;:

Corollary 4.2. A (2n+1)-dimensional (n > 1) quasi-conformally recurrent generalized Sasakian-
space-form is either quasi-conformally flat or f1 = f3.

In particular, for Sasakian-space-form f; = Cf and f3 = Cf. So, f1 # f3. Hence we can

have the following corollary:

Corollary 4.3. A (2n+1)-dimensional (n > 1) Sasakian-space-form is quasi-conformally semisym-
metric if and only if it is quasi-conformally flat.
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Remark: If we take f(t) = et in Example 4, we have f; = —1, f; = 0 and f3 = 0. Therefore,
the condition 3f; + (2n—1)f3 = 0 and f; = 0 holds. Hence from Theorem ] generalized sasakian-
space-form R x¢ C™ with f(t) = e' is quasi-conformally flat.

Similarly from Theorem [, generalized Sasakian-space-form R x¢ C™ with f(t) = e® is quasi-
conformally semisymmetric.
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