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ABSTRACT

We study the K-theory groups for the group C*-algebras of nilpotent discrete groups,
mainly, without torsion. We determine the K-theory class generators for the K-theory
groups by using generalized Bott projections.

RESUMEN

Estudiamos los grupos de la K-teoria para el grupo de algebras C* de grupos discretos
nilpotentes principalmente sin torsiéon. Determinamos los generadores de la clase de
K-teoria para los grupos de la K-teoria usando proyecciones generalizadas de Bott.
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1 Introduction

The K-theory groups for the group C*-algebra of the discrete Heisenberg nilpotent group are
computed in the paper [I] of Anderson and Paschke by determining the K-thoery class generators
for the K-theory groups by using the Bott projection on the two dimensional torus. The K-
theory groups for the group C*-algebras of the generalized discrete Heisenberg nilpotent groups
are computed in the paper [3] of the author by determining the K-theoy class generators for the
K-theory groups by using generalized Bott projections on the higher dimensional torus defined
in [3].

In this paper, based on those results in the typical case of two-step, nilpotent discrete groups,
we study the K-theory groups for the group C*-algebras of general, nilpotent discrete groups,
mainly, without torsion, and it is found out that we can determine the K-theory class generators
for the K-theory groups by using the generalized Bott projections. Moreover, several consequences
of this main result are also obtained.

Notation. We denote by C(X) the C*-algebra of all continuous, complex-valued functions on a
compact Hausdorff space X. Denote by C*(G) the (full or reduced) group C*-algebra of a nilpotent,
discrete group G (that is amenable). Note that C*(G) is generated by unitaries that correspond
to generators of G. Denote by Ko(2() and K;(2() the Ko-group and the K;-group of a C*-algebra
2 respectively (see [2]).

2 Finitely generated nilpotent discrete case

Recall that a k-dimensional noncommutative torus denoted by Tf is the universal C*-algebra
generated by k unitaries U; (1 < j < k) with the relations U;U; = e?™ % U;U; for i # j and
0y € R and 0 = (0;5) € My (R) a k x k skew adjoint matrix over the field R of real numbers with
Gﬁ =0 and eji = —615 (1 7& ])

Lemma 2.1. Let G be a finitely generated, two-step nilpotent discrete group without torsion and
with Z its center and C*(G) be the group C*-algebra of G.

Then C*(G) can be viewed as a continuous field C*-algebra over the dual group Z of Z with
fibers given by moncommutative tori Tg;k with the relations by O varing over elements A € Z/°,
where Z is an ordinary torus T* by Pontrjagin duality theorem with 1 < k = rank(Z) the rank of
Z, and n = rank(G).

Proof. This is certainly known and may follow from the same way as done by [1] in the case of G
the discrete Heisenberg group of rank 3.

Indeed, note that since G/Z is commutative, the commutator subgroup [G, G] of G is contained
in Z. As a fact of the unitaty representation theory for G, that is identified with the representation
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theory of C*(G), any element A in Z” induces an irreducible induced representation 7, of G and

of C*(G) and any element of [G, G] is mapped to a complex number in the one-torus T, so that the
image of C*(G) under 7, is a noncommutive torus Tg;k with 0, associated to A. Since elements
A € Z = T* vary continuously on Z”, the norms of 7 ([ui,u;]) for ui,u; unitary generators
of C*(G) corresponding to generators of G also vary continuously, to make a continuous field
C*-algebra over Z” with fibers noncommutative tori ']I‘g;k. O

As the main result we obtain

Theorem 1. Let G be a finitely generated, nilpotent discrete group without torsion and C*(G) be
the group C*-algebra of G.

Then the K-theory class generators in the Ko-group Ko(C*(G)) are given by the class of the
identity of C*(G) and the classes of generalized Bott projections combinatoricly corresponding to
abelian subalgebras of C*(G) that correspond to even subsets of mutually commuting generators,
even numbered, in the set of generators of G.

Moreover, the K-theory class generators in the Ki-group Ki(C*(G)) are given by the class
of unitary generators of C*(G) that correspond to each of generators of G, or correspond both to
generators of G and to the generalized Bott projections, each of which is obtained combinatoricly
from both the generalized Bott projection and each of generators of G which is not involved in the
generalized Bott projection.

The statement above can be understood precisely by helpful examples and remark below the
following proof.

Proof. Recall that under the assumption on G, the group G is isomorphic to a successive semi-direct
product of Z the group of integers:

GZZXNZX---XZ
crossed by Z rank(G) — 1 times, with rank(G) the rank of G. Then

C'G)=C(Z)XNZx- - XTZ

~

a successive crossed product C*-algebra by Z, and C*(Z) = C(T) by the Fourier transform.

Set rank(G) = n. Let U = {g1,---,gn} be the set of generators of G. Note that since G
is discrete, the generators of G can be identified with corresponding unitary generators of C*(G)
(via the left regular, or universal representation on the corresponding Hilbert space since G is
amenable). Suppose that V is an even subset of U with some mutually commuting generators
of G. Denote by C*(V) the C*-algebra generated by elements of V. Then C*(V) is an abelian
subalgebra of C*(G) and is isomorphic to C(T!V!) the C*-algebra of all continuous, complex-valued
functions on the |V|-dimensional torus T!V!, where |V| is the cardinality of V. We assign such even
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subset V each to the generalized Bott projection Py in M, (C(T!V!)) the 2 x 2 matrix algebra over

C(T'V!), involving all elements of V. See the remark below for the definition of Py .

It follows that Ko(C(TV!)) can be embedded in Ko(C*(G)) canonically. Therefore, the Ko-
group class [Py] can be viewed in Ko(C*(G)). It also follows that if V # V' even subsets in U,
then [Pv] # [Py ], i.e., Py is not equivalent to Py.. Indeed, if Py is equivalent to Py, then we can
deduce a contradition, by observing that the coordinates of T!V! corresponding to V are different
from those of TV’ of V.

If G is commutative, then G = Z™, and C*(G) = C(T") by the Fourier transform, and it is
shown by [3] that the Ko-group classes of generalized Bott projections on the even dimensional
tori T2* (2 < 2k < n) combinatoricly in T™ and the class of the identity generate all classes in
Ko(C(T™)).

By the lemma above, if G is a finitely generated, two-step nilpotent discrete group without
torsion, then C*(G) can be viewed as a continuous field C*-algebra over the dual group Z” of
the center Z of G with fibers given by noncommutative tori, that are successive crossed product
C*-algebras by Z, generated by unitaries corresponding to generators of G not in Z, where their
relations vary over Z*. It is also shown by [3] that even in this case, the same holds as in the
commutative case.

Indeed, the class of the identity and the classes of generalized Bott projections in M, (C*(G))
generate all classes in Ko(C*(G)), because it is noticed in [3] that the classes of the genearalized
Rieffel projections defined in [3] and the class of the identity generate all classes in the Ko-group
of a fiber, a noncommutative torus, and the classes of the genearalized Rieffel projections can not
contribute to a class of Ko(C*(G)) since those projections are not continuous over Z”*. Therefore,
a projection for a class of Ko(C*(G)) can not involve the generalized Rieffel projections in fibers.

We now consider the general case by induction. Suppose that the theorem on Ky is true when
rank(G) < n. Let rank(G) = n+ 1. Let [p] € Ko(C*(G)) for a projection p in a matrix algebra
over C*(G).

If p is generated by k unitaries corresponding to k generators of G with k < m, then p is
contained in the group C*-algebra C*(H) of a nilpotent subgroup H of G generated by V the set of
the k generators of G, that is C*(H) = C*(V) c C*(G). By induction hypothesis, the class [p] is
spanned by the class of the identity and the classes of generalized Bott projections in M, (C*(H)).

We now assume that the projection p involves all elements of U. We also may assume that G
is not two-step nilpotent. Therefore, the quotient group G/Z is not commutative and nilpotent.
There is a quotient map q from C*(G) to C*(G/Z) and is extended to their matrix algebras. Then
q(p) is a projection that involves all generators of G/Z. But by induction, and since G/Z is non
commutative, the Ko-group classes of Ko(C*(G/Z)) can not involve all generators of G/Z. This is
a contradiction. Hence, there is no such projection p. In fact, this reduction can be continued until
that p is contained in an abelian subalgebra of C*(G) that is generated by unitaries corresponding
to a set of mutually commuting generators of G
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The Ki-group case for C*(G) is treated similarly as in the Kp-group case above. Indeed,

when G is commutative, it is shown by [3] that the Kj-group K;(C*(G)) can be generated by the
classes represented by either unitary generators of C*(G) corresponding to generators of G or the
unitaires that combinatoricly correspond to both generalized Bott projections and each of unitary
generators of C*(G) corresponding to generators of G. See the remark below for the definition of
the unitaries. Moreover, even in the case of G two-step nilpotent, the same holds for K;(C*(G)).
And the general case can be proved by the same way as in the proof for that case of Ko(C*(G)).
In fact, the construction of generators of K;(C*(G)) can be made by bijectively correponding to
the generators of Ko(C*(G)) constructed, in a suitable and combinatoric way (see the examples
below). O

Remark. Recall from [3] (or [I] originally) that the Bott projection P in M, (C(T?)) is defined as
a projection-valued function from T? to M;(C):

P(w, z) = Ad(U(w, ) (:) g) eMa(C), (w,2) € T?,

where U(w, z) = Y(t,z)* with w = e?™t € T for t € [0,1] and

Y(t,z) = exp (i%tK(z)) exp (?S)

0 z
K(z)z(Z 0), S =K(1).

Moreover, the generalized Bott projection Qi in M (C(T?¥)) is defined in [3] by a projection-valued
function from T2¥ to M, (C):

1
Qx(z1,- -+ ,z21) = Ad(Us (z1,22))Ad (U2 (23, 24)) - - - Ad(Uy (221, 22k)) <0 g)

where U;(+,-) = U(+,-) for 1 < j < k. Furthermore, the unitary Vi in M;(C(T?**1)) obtained
from the generalized Bott projection Qy and a unitary generator u of C*(G) corresponding to a
generator of G is defined in [3] by

Vi = (; ?) + (u—T1)® Qi € Ma(C(T#+1).

Example 2.2. If G = Z", then C*(G) = C(T™) by the Fourier transform, and K, (C(T™)) = Z2" !
for x = 0,1 ( [4]). Note that the generators of Ko(C(T™)) are given by the class of the identity and
the classes of generalized Bott projections defined as above and the generators of K;(C(T™)) are
given by the classes of unitary generators of C*(Z™) corresponding to generators of Z™ and the
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classes of the unitaries associated to both generalized Bott projections and the unitary generators
of C*(Z™) defined as above (see [3]).

~

More precisely, when n = 4, the generators of Ko(C*(Z*)) = Z3 is given by the following
classes:
(1], [P12], [P13], [P14],
[P23], [P24], [P34], [Q1234],

where 1 is the identity of C*(Z*) and each Pij over T* is identified with the Bott projection over
T? that corresponds to i,j coordinates in T4, and Q1234 is the generalized Bott projection over
T4. Also, the generators of K;(C*(Z%)) = Z8 is given by the following classes:

[ur], fuz], fusl, [ual,
[V123], [V124], [V134], [V234],

where each 1 is the unitary generator of C*(Z*) corresponding to generators of Z* and each
unitary Viji in M, (C*(Z*)) is obtained by P;; and ux. Note that Vij;x may be obtained from
either P and ui, or Py and uj.

Example 2.3. Let G be the discrete Heisenberg group of rank 3:

G:

oS o =

a c
1 b|labceZ
0 1

Then Z = Z and G/Z = Z?. Also, C*(G) is viewed as a continuous filed C*-algebra over T = Z"
with fibers noncommutative 2-tori ']I%A. It is computed by [I] (and also [3]) that

Ko(C*(G)) = Z?, K;(C*(G)) =73,

and the generators of Ko(C*(G)) is given by the class of the identity of C*(G) and two classes of the
Bott projections over T2, where their domains are different in the sense as one T? = T x Z”* with the
first factor T corresponding to one of two generators of the fibers and the other T? = T x Z with
the first factor T corresponding to the other of two generators of the fibers, and the generators of
K;(C*(G)) is given by two classes of unitary generators of C*(G) corresponding both to generators
of G and to one of two Bott projections and the class of the unitary of M;(C*(G)) obtained from
both the chosen Bott projection and the rest of unitary generators of C*(G) corresponding to
generators of G. Namely,

Ko(C*(G)) = ([1],[P13], [P23]),
K1 (C*(G)) = ([u1], [usl, [V123]),

where the equations mean that the left hand sides are generated by the classes in the brackets in
the right hand sides, and the third coordinate in T3 corresponds to Z”* and the unitary Vi3 is
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obtained from the Bott projection P13 and u,. Note that the above set of generators of K;(C*(G))

may be replaced with {[u], [us], [V{,5]}, where V/,; is obtained from the Bott projection P,3 and
usp.

Example 2.4. Let G x G be the direct product of G the discrete Heisenberg nilpotent group of
rank 3. Then C*(G x G) = C*(G)® C*(G) the tensor product of C*(G). Since K;(C*(G)) (j =0,1)
are torsion free, the Kiinneth theorem in K-theory for C*-algebras (see [2]) implies that

Ko(C™(G x G)) = [Ko(C*(G)) ® Ko (C(G))] & [K: (C*(G)) @ Ky (C*(G))]
MY AEIVAR VAV A
Ko(CH(G)) @ Ki(CH(G))] @

Y/
Ki(CH(G x G)) =
Z3 ®Z3] o [Z3 ®Z3] ~ Z]S.

(K
=[Z
[ K1 (C*(G)) @ Ko(C*(G))]
=

Our theorem tells us that
Ko(C*(G x G)) = ([1], [P13], [P23], [P4s], [Ps6],

[P14], [P15], [P16], [P24], [P25], [P26], [P34], [P35], [P36],
[Q1346), [Q1356], [Q2346], [Q2356]),

where the subindices 1,2, 3 correspond to the unitary generators u; of C*(G)®C and the subindices
4,5, 6 correspond to the unitary generators u; of C® C*(G) and both subindices 3 and 6 corresponds
to the center Z of G. Also,

K1 (C*(G x G)) = ([w], [uz], [Vi23], [ual, [ugl, [Vasel,

]
[V(P1a,u2)], [V(P15,u2)], [V(P16, u2)l,
[V(P24,u3)], [V(P25,u3)], [V(P26, us)l,
[V(P34,us)], [V(P35,u6)], [V(P36, ua)l,
[V(Q1346,u2)], [V(Q1356, u2)], [V(Q2346, w1 )])

where each V(Pij,uy) means the unitary obtained from Pi; and uyx and each V(Qjjii, Um) means
the unitary obtained from Qijixi and um,. Note that the unions of subindeices such as (1,2,4) of
(14,2) and (1,2,5) of (15,2) are taken only once among combinations of (i,j,k) with i <j < k.
Also, the choice of adding u, to either Py; or Qiji1 may be different to make the same set of unions
of subindices, and the set of generators of Ko(C*(G x G)) corresponds to the set of generators of
K7 (C*(G x G)) bijectively.

Corollary 2.5. If G is a finitely generated, discrete nilpotent group without torsion, then
Ko(C*(G)) = Ky (C*(G)).

Example 2.6. The isomorphism in the corollary above does not hold if G has torsion. Indeed,
if G = Zn = Z/nZ (n > 2) a cyclic group, then C*(G) = C", so that Ko(C*(G)) = Z™ but
Ki(C*(G)) = 0.
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Corollary 2.7. If G is a finitely generated, discrete nilpotent group without torsion, then the
K-theory groups Ko(C*(G)) and K1 (C*(G)) are torsion free.

Proof. This follows from the construction of the generators of Ko(C*(G)) and K;(C*(G)) obtained
in the theorem above. |

Remark. Possibly, in the last corollary, the group G may have torsion.

Example 2.8. We consider a version of the discrete Heisenberg nilpotent group with torsion
(see [1] or [3] for the discrete Heisenberg nilpotent group). Let G = Z3 x4 Z2 be a semi-direct
product of the product group Z3 of the cycic group Zy = Z/27 by an action of Z, defined by
ot(b 4 tc,¢) for b,c,t € Z,. Then the group C*-algebra C*(G) is isomorphic to the crossed
product C(Zﬁ\ X Zé\) X o Zy via the Fourier transform, where the dual action «” of Z; on the
product space of the dual group Z5' = Z, is defined by o (z,w) = (z,z'w) for z,w € Z5" via the
duality

b+tc

o‘?(@z,w)(byc) = (pz,w(b + tc, c)=z wé = (Pz,z‘w(byc)

where @, w € Z5 xZ5" indentified with (z,w) (cf. [5]). We then obtain the following decomposition:

C(Z5 X Z5) X L

2 [CR(C*xyn Z2)] & [CR (C? xyn Z2)]
= [C? @ C*(Z*)] ® [M2(C)]

= [C? ® C? & M;(C) = C* & M;(C)

where the action o on C? in the first direct summand is trivial and that in the second is the shift.
Therefore,

Ko(C*(G)) = 2Z°, but K;(C*(G))=0.

Hence the K-theory groups are torsion free.

In this case, the direct sum factor Z* in Z°> = Ko(C*(G)) comes from C* in C*(G) which
is a maximal abelian subalgebra of C*(G) but the other direct sum factor Z in Z> = Ko(C*(G))
comes from M;(C) in C*(G) which is a noncommutative subalgebra of C*(G). Therefore, the case
with torsion is certainly different from the torsion free case considered above, but the nilpotent
case with torsion is just the same as the abelian case with torsion as in the example above, in the
K-theory level.

Corollary 2.9. If G is a finitely generated, discrete nilpotent group without torsion, then both
Ko(C*(G)) and K;(C*(G)) are isomorphic to a finitely generated, free abelian group, i.e., Z™ for

some positive integer m.
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3 Infinitely generated case

We assume that G is a countable discrete group.

Theorem 2. Let G be an infinitely generated, nilpotent discrete group without torsion. Then both
Ko(C*(G)) and K;(C*(G)) of the group C*-algebra C*(G) are isomorphic to an inductive limit of
finitely generated free abelian groups:

Ko(C*(G)) = Ky (C*(G)) = lim 2™,

for some positive integers m,, with M, < Mp.1, where the connecting maps Z™™ — Z™"+1 are
injective.
Therefore,
Ko(C*(G)) =K (C*(G)) = &*Z,

which is the infinite direct sum of Z, as a group.

Proof. Let U = {g1,g2,---} be an infinite set of generators of G and set U,, = {g1,92,...,9n},
where gn1 is not generated by g1,---,gn. Let C*(Uy) denote the C*-algebra generated by the
elements of C*(G) that correspond to the elements of U,. Then C*(U,) is a C*-subalgebra of
C*(G). There is the canonical inclusion i,, from C*(U,) — C*(U;11). It follows that C*(G) is an
inductive limit of the C*-subalgebras C*(U,,) under the inclusions i,,. By continuity of K-theory,
we have

K;(C*(G)) = lim Ky (C*(Un))

for j = 0,1. By the theorem in the previous section, we see that both K;(C*(Uy)) for j = 0,1
are isomorphic to Z™n for some positive integer m,; and m, < my,; and also that there is a
canonical inclusion from K;j(C*(Un)) = Z™" to Kj(C*(Un4q)) = Z™n+1.

We need to check that m,, # my, 1 for each n. Note that the group H,, generated by elements
of U, can be written as a successive semi-direct product by Z:

HoanZZXZ X ---XZ

crossed by Z n—1 times. Then H,, 1 = H,, x Z. It follows that the action of Z on H,, can not be
non-trivial on every generator of H,,. Because, if non-trivial, H, 41 is not nilpotent (but solvable).
Indeed, then there is no center in Hy 41, a contradiction to the nilpotentness of Hy 1. Therefore,
there is a generator of H;, such that the action of Z is trivial on it. Therefore, we can construct
a new Bott projection from these commuting elements of Hy 41, and not from H;,. It follows that
My < Mp41. O

Example 3.1. If G is an infinitely generated abelian discrete group, then C*(G) is isomorphic to
an inductive limit of C(T™) with the canonical inclusion from C(T™) to C(T™*'). Then

K5(C*(G)) = lim K;(C(T™)) = lim %" "= g7
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forj =0,1.
If G is an inductive limit of the product groups IMM"Z; with the canonical inclusion from TT"Z,
to TI"*17Z;, then G is commutative and infinitely generated and has torsion. Then

“(MZg) = lim @™ C*(22)

C*(G) = li; C
~ 1 nr2 ~ 1; 2" ~ o0
—@@C fh_r)n(C =o>C

where the last side means the infinite direct sum of C, so that

B®Z ifj=0,

K;(C*(G)) = K;(6C) = &<K;(C) = {0 i
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