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ABSTRACT

We study the K-theory groups for the group C∗
-algebras of nilpotent dis
rete groups,

mainly, without torsion. We determine the K-theory 
lass generators for the K-theory

groups by using generalized Bott proje
tions.

RESUMEN

Estudiamos los grupos de la K-teoría para el grupo de álgebras C∗
de grupos dis
retos

nilpotentes prin
ipalmente sin torsión. Determinamos los generadores de la 
lase de

K-teoría para los grupos de la K-teoría usando proye

iones generalizadas de Bott.
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1 Introdu
tion

The K-theory groups for the group C∗
-algebra of the dis
rete Heisenberg nilpotent group are


omputed in the paper [1℄ of Anderson and Pas
hke by determining the K-thoery 
lass generators

for the K-theory groups by using the Bott proje
tion on the two dimensional torus. The K-

theory groups for the group C∗
-algebras of the generalized dis
rete Heisenberg nilpotent groups

are 
omputed in the paper [3℄ of the author by determining the K-theoy 
lass generators for the

K-theory groups by using generalized Bott proje
tions on the higher dimensional torus de�ned

in [3℄.

In this paper, based on those results in the typi
al 
ase of two-step, nilpotent dis
rete groups,

we study the K-theory groups for the group C∗
-algebras of general, nilpotent dis
rete groups,

mainly, without torsion, and it is found out that we 
an determine the K-theory 
lass generators

for the K-theory groups by using the generalized Bott proje
tions. Moreover, several 
onsequen
es

of this main result are also obtained.

Notation. We denote by C(X) the C∗
-algebra of all 
ontinuous, 
omplex-valued fun
tions on a


ompa
t Hausdor� spa
e X. Denote by C∗(G) the (full or redu
ed) group C∗
-algebra of a nilpotent,

dis
rete group G (that is amenable). Note that C∗(G) is generated by unitaries that 
orrespond

to generators of G. Denote by K0(A) and K1(A) the K0-group and the K1-group of a C∗
-algebra

A respe
tively (see [2℄).

2 Finitely generated nilpotent dis
rete 
ase

Re
all that a k-dimensional non
ommutative torus denoted by Tk
θ is the universal C∗

-algebra

generated by k unitaries Uj (1 ≤ j ≤ k) with the relations UiUj = e2πiθijUjUi for i 6= j and

θij ∈ R and θ = (θij) ∈ Mk(R) a k× k skew adjoint matrix over the �eld R of real numbers with

θii = 0 and θji = −θij (i 6= j).

Lemma 2.1. Let G be a �nitely generated, two-step nilpotent dis
rete group without torsion and

with Z its 
enter and C∗(G) be the group C∗
-algebra of G.

Then C∗(G) 
an be viewed as a 
ontinuous �eld C∗
-algebra over the dual group Z∧

of Z with

�bers given by non
ommutative tori T
n−k
θλ

with the relations by θλ varing over elements λ ∈ Z∧
,

where Z∧
is an ordinary torus T

k
by Pontrjagin duality theorem with 1 ≤ k = rank(Z) the rank of

Z, and n = rank(G).

Proof. This is 
ertainly known and may follow from the same way as done by [1℄ in the 
ase of G

the dis
rete Heisenberg group of rank 3.

Indeed, note that sin
e G/Z is 
ommutative, the 
ommutator subgroup [G,G] of G is 
ontained

in Z. As a fa
t of the unitaty representation theory for G, that is identi�ed with the representation
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theory of C∗(G), any element λ in Z∧
indu
es an irredu
ible indu
ed representation πλ of G and

of C∗(G) and any element of [G,G] is mapped to a 
omplex number in the one-torus T, so that the

image of C∗(G) under πλ is a non
ommutive torus T
n−k
θλ

with θλ asso
iated to λ. Sin
e elements

λ ∈ Z∧ = Tk
vary 
ontinuously on Z∧

, the norms of πλ([ui, uj]) for ui, uj unitary generators

of C∗(G) 
orresponding to generators of G also vary 
ontinuously, to make a 
ontinuous �eld

C∗
-algebra over Z∧

with �bers non
ommutative tori T
n−k
θλ

.

As the main result we obtain

Theorem 1. Let G be a �nitely generated, nilpotent dis
rete group without torsion and C∗(G) be

the group C∗
-algebra of G.

Then the K-theory 
lass generators in the K0-group K0(C
∗(G)) are given by the 
lass of the

identity of C∗(G) and the 
lasses of generalized Bott proje
tions 
ombinatori
ly 
orresponding to

abelian subalgebras of C∗(G) that 
orrespond to even subsets of mutually 
ommuting generators,

even numbered, in the set of generators of G.

Moreover, the K-theory 
lass generators in the K1-group K1(C
∗(G)) are given by the 
lass

of unitary generators of C∗(G) that 
orrespond to ea
h of generators of G, or 
orrespond both to

generators of G and to the generalized Bott proje
tions, ea
h of whi
h is obtained 
ombinatori
ly

from both the generalized Bott proje
tion and ea
h of generators of G whi
h is not involved in the

generalized Bott proje
tion.

The statement above 
an be understood pre
isely by helpful examples and remark below the

following proof.

Proof. Re
all that under the assumption onG, the groupG is isomorphi
 to a su

essive semi-dire
t

produ
t of Z the group of integers:

G ∼= Z⋊ Z ⋊ · · ·⋊ Z


rossed by Z rank(G) − 1 times, with rank(G) the rank of G. Then

C∗(G) ∼= C∗(Z)⋊ Z ⋊ · · ·⋊ Z

a su

essive 
rossed produ
t C∗
-algebra by Z, and C∗(Z) ∼= C(T) by the Fourier transform.

Set rank(G) = n. Let U = {g1, · · · , gn} be the set of generators of G. Note that sin
e G

is dis
rete, the generators of G 
an be identi�ed with 
orresponding unitary generators of C∗(G)

(via the left regular, or universal representation on the 
orresponding Hilbert spa
e sin
e G is

amenable). Suppose that V is an even subset of U with some mutually 
ommuting generators

of G. Denote by C∗(V) the C∗
-algebra generated by elements of V . Then C∗(V) is an abelian

subalgebra of C∗(G) and is isomorphi
 to C(T|V|) the C∗
-algebra of all 
ontinuous, 
omplex-valued

fun
tions on the |V |-dimensional torus T|V|
, where |V | is the 
ardinality of V . We assign su
h even
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subset V ea
h to the generalized Bott proje
tion PV in M2(C(T
|V|)) the 2× 2 matrix algebra over

C(T|V|), involving all elements of V . See the remark below for the de�nition of PV .

It follows that K0(C(T
|V|)) 
an be embedded in K0(C

∗(G)) 
anoni
ally. Therefore, the K0-

group 
lass [PV ] 
an be viewed in K0(C
∗(G)). It also follows that if V 6= V ′

even subsets in U,

then [PV ] 6= [PV ′ ], i.e., PV is not equivalent to PV ′
. Indeed, if PV is equivalent to PV ′

, then we 
an

dedu
e a 
ontradition, by observing that the 
oordinates of T|V|

orresponding to V are di�erent

from those of T|V ′|
of V ′

.

If G is 
ommutative, then G ∼= Zn
, and C∗(G) ∼= C(Tn) by the Fourier transform, and it is

shown by [3℄ that the K0-group 
lasses of generalized Bott proje
tions on the even dimensional

tori T2k (2 ≤ 2k ≤ n) 
ombinatori
ly in Tn
and the 
lass of the identity generate all 
lasses in

K0(C(T
n)).

By the lemma above, if G is a �nitely generated, two-step nilpotent dis
rete group without

torsion, then C∗(G) 
an be viewed as a 
ontinuous �eld C∗
-algebra over the dual group Z∧

of

the 
enter Z of G with �bers given by non
ommutative tori, that are su

essive 
rossed produ
t

C∗
-algebras by Z, generated by unitaries 
orresponding to generators of G not in Z, where their

relations vary over Z∧
. It is also shown by [3℄ that even in this 
ase, the same holds as in the


ommutative 
ase.

Indeed, the 
lass of the identity and the 
lasses of generalized Bott proje
tions in M2(C
∗(G))

generate all 
lasses in K0(C
∗(G)), be
ause it is noti
ed in [3℄ that the 
lasses of the genearalized

Rie�el proje
tions de�ned in [3℄ and the 
lass of the identity generate all 
lasses in the K0-group

of a �ber, a non
ommutative torus, and the 
lasses of the genearalized Rie�el proje
tions 
an not


ontribute to a 
lass of K0(C
∗(G)) sin
e those proje
tions are not 
ontinuous over Z∧

. Therefore,

a proje
tion for a 
lass of K0(C
∗(G)) 
an not involve the generalized Rie�el proje
tions in �bers.

We now 
onsider the general 
ase by indu
tion. Suppose that the theorem on K0 is true when

rank(G) ≤ n. Let rank(G) = n + 1. Let [p] ∈ K0(C
∗(G)) for a proje
tion p in a matrix algebra

over C∗(G).

If p is generated by k unitaries 
orresponding to k generators of G with k ≤ n, then p is


ontained in the group C∗
-algebra C∗(H) of a nilpotent subgroup H of G generated by V the set of

the k generators of G, that is C∗(H) = C∗(V) ⊂ C∗(G). By indu
tion hypothesis, the 
lass [p] is

spanned by the 
lass of the identity and the 
lasses of generalized Bott proje
tions in M2(C
∗(H)).

We now assume that the proje
tion p involves all elements of U. We also may assume that G

is not two-step nilpotent. Therefore, the quotient group G/Z is not 
ommutative and nilpotent.

There is a quotient map q from C∗(G) to C∗(G/Z) and is extended to their matrix algebras. Then

q(p) is a proje
tion that involves all generators of G/Z. But by indu
tion, and sin
e G/Z is non


ommutative, the K0-group 
lasses of K0(C
∗(G/Z)) 
an not involve all generators of G/Z. This is

a 
ontradi
tion. Hen
e, there is no su
h proje
tion p. In fa
t, this redu
tion 
an be 
ontinued until

that p is 
ontained in an abelian subalgebra of C∗(G) that is generated by unitaries 
orresponding

to a set of mutually 
ommuting generators of G
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The K1-group 
ase for C∗(G) is treated similarly as in the K0-group 
ase above. Indeed,

when G is 
ommutative, it is shown by [3℄ that the K1-group K1(C
∗(G)) 
an be generated by the


lasses represented by either unitary generators of C∗(G) 
orresponding to generators of G or the

unitaires that 
ombinatori
ly 
orrespond to both generalized Bott proje
tions and ea
h of unitary

generators of C∗(G) 
orresponding to generators of G. See the remark below for the de�nition of

the unitaries. Moreover, even in the 
ase of G two-step nilpotent, the same holds for K1(C
∗(G)).

And the general 
ase 
an be proved by the same way as in the proof for that 
ase of K0(C
∗(G)).

In fa
t, the 
onstru
tion of generators of K1(C
∗(G)) 
an be made by bije
tively 
orreponding to

the generators of K0(C
∗(G)) 
onstru
ted, in a suitable and 
ombinatori
 way (see the examples

below).

Remark. Re
all from [3℄ (or [1℄ originally) that the Bott proje
tion P in M2(C(T
2)) is de�ned as

a proje
tion-valued fun
tion from T
2
to M2(C):

P(w, z) = Ad(U(w, z))

(

1 0

0 0

)

∈ M2(C), (w, z) ∈ T
2,

where U(w, z) = Y(t, z)∗ with w = e2πit ∈ T for t ∈ [0, 1] and

Y(t, z) = exp

(

iπt

2
K(z)

)

exp

(

iπt

2
S

)

K(z) =

(

0 z

	z 0

)

, S = K(1).

Moreover, the generalized Bott proje
tionQk inM2(C(T
2k)) is de�ned in [3℄ by a proje
tion-valued

fun
tion from T2k
to M2(C):

Qk(z1, · · · , z2k) = Ad(U1(z1, z2))Ad(U2(z3, z4)) · · ·Ad(Uk(z2k−1, z2k))

(

1 0

0 0

)

where Uj(·, ·) = U(·, ·) for 1 ≤ j ≤ k. Furthermore, the unitary Vk in M2(C(T
2k+1)) obtained

from the generalized Bott proje
tion Qk and a unitary generator u of C∗(G) 
orresponding to a

generator of G is de�ned in [3℄ by

Vk =

(

1 0

0 1

)

+ (u− 1)⊗Qk ∈ M2(C(T
2k+1)).

Example 2.2. If G = Zn
, then C∗(G) ∼= C(Tn) by the Fourier transform, and K∗(C(T

n)) ∼= Z2n−1

for ∗ = 0, 1 ( [4℄). Note that the generators of K0(C(T
n)) are given by the 
lass of the identity and

the 
lasses of generalized Bott proje
tions de�ned as above and the generators of K1(C(T
n)) are

given by the 
lasses of unitary generators of C∗(Zn) 
orresponding to generators of Zn
and the
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lasses of the unitaries asso
iated to both generalized Bott proje
tions and the unitary generators

of C∗(Zn) de�ned as above (see [3℄).

More pre
isely, when n = 4, the generators of K0(C
∗(Z4)) ∼= Z8

is given by the following


lasses:

[1], [P12], [P13], [P14],

[P23], [P24], [P34], [Q1234],

where 1 is the identity of C∗(Z4) and ea
h Pij over T
4
is identi�ed with the Bott proje
tion over

T
2
that 
orresponds to i, j 
oordinates in T

4
, and Q1234 is the generalized Bott proje
tion over

T4
. Also, the generators of K1(C

∗(Z4)) ∼= Z8
is given by the following 
lasses:

[u1], [u2], [u3], [u4],

[V123], [V124], [V134], [V234],

where ea
h uj is the unitary generator of C∗(Z4) 
orresponding to generators of Z4
and ea
h

unitary Vijk in M2(C
∗(Z4)) is obtained by Pij and uk. Note that Vijk may be obtained from

either Pjk and ui, or Pik and uj.

Example 2.3. Let G be the dis
rete Heisenberg group of rank 3:

G =














1 a c

0 1 b

0 0 1









|a, b, c ∈ Z






.

Then Z = Z and G/Z ∼= Z2
. Also, C∗(G) is viewed as a 
ontinuous �led C∗

-algebra over T = Z∧

with �bers non
ommutative 2-tori T2
θλ
. It is 
omputed by [1℄ (and also [3℄) that

K0(C
∗(G)) ∼= Z

3, K1(C
∗(G)) ∼= Z

3,

and the generators of K0(C
∗(G)) is given by the 
lass of the identity of C∗(G) and two 
lasses of the

Bott proje
tions over T2
, where their domains are di�erent in the sense as one T2 = T×Z∧

with the

�rst fa
tor T 
orresponding to one of two generators of the �bers and the other T2 = T×Z∧
with

the �rst fa
tor T 
orresponding to the other of two generators of the �bers, and the generators of

K1(C
∗(G)) is given by two 
lasses of unitary generators of C∗(G) 
orresponding both to generators

of G and to one of two Bott proje
tions and the 
lass of the unitary of M2(C
∗(G)) obtained from

both the 
hosen Bott proje
tion and the rest of unitary generators of C∗(G) 
orresponding to

generators of G. Namely,

K0(C
∗(G)) ∼= 〈[1], [P13], [P23]〉,

K1(C
∗(G)) ∼= 〈[u1], [u3], [V123]〉,

where the equations mean that the left hand sides are generated by the 
lasses in the bra
kets in

the right hand sides, and the third 
oordinate in T3

orresponds to Z∧

and the unitary V123 is
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obtained from the Bott proje
tion P13 and u2. Note that the above set of generators of K1(C
∗(G))

may be repla
ed with {[u2], [u3], [V
′

123]}, where V
′

123 is obtained from the Bott proje
tion P23 and

u1.

Example 2.4. Let G × G be the dire
t produ
t of G the dis
rete Heisenberg nilpotent group of

rank 3. Then C∗(G×G) ∼= C∗(G)⊗C∗(G) the tensor produ
t of C∗(G). Sin
e Kj(C
∗(G)) (j = 0, 1)

are torsion free, the Künneth theorem in K-theory for C∗
-algebras (see [2℄) implies that

K0(C
∗(G× G)) ∼= [K0(C

∗(G))⊗ K0(C
∗(G))]⊕ [K1(C

∗(G))⊗ K1(C
∗(G))]

∼= [Z3 ⊗ Z
3]⊕ [Z3 ⊗ Z

3] ∼= Z
18,

K1(C
∗(G× G)) ∼= [K0(C

∗(G))⊗ K1(C
∗(G))]⊕ [K1(C

∗(G))⊗ K0(C
∗(G))]

∼= [Z3 ⊗ Z
3]⊕ [Z3 ⊗ Z

3] ∼= Z
18.

Our theorem tells us that

K0(C
∗(G×G)) ∼= 〈[1], [P13], [P23], [P46], [P56],

[P14], [P15], [P16], [P24], [P25], [P26], [P34], [P35], [P36],

[Q1346], [Q1356], [Q2346], [Q2356]〉,

where the subindi
es 1, 2, 3 
orrespond to the unitary generators uj of C
∗(G)⊗C and the subindi
es

4, 5, 6 
orrespond to the unitary generators uj of C⊗C∗(G) and both subindi
es 3 and 6 
orresponds

to the 
enter Z of G. Also,

K1(C
∗(G×G)) ∼= 〈[u1], [u3], [V123], [u4], [u6], [V456],

[V(P14, u2)], [V(P15, u2)], [V(P16, u2)],

[V(P24, u3)], [V(P25, u3)], [V(P26, u3)],

[V(P34, u5)], [V(P35, u6)], [V(P36, u4)],

[V(Q1346, u2)], [V(Q1356, u2)], [V(Q2346, u1)]〉,

where ea
h V(Pij, uk) means the unitary obtained from Pij and uk and ea
h V(Qijkl, um) means

the unitary obtained from Qijkl and um. Note that the unions of subindei
es su
h as (1, 2, 4) of

(14, 2) and (1, 2, 5) of (15, 2) are taken only on
e among 
ombinations of (i, j, k) with i < j < k.

Also, the 
hoi
e of adding um to either Pij or Qijkl may be di�erent to make the same set of unions

of subindi
es, and the set of generators of K0(C
∗(G × G)) 
orresponds to the set of generators of

K1(C
∗(G×G)) bije
tively.

Corollary 2.5. If G is a �nitely generated, dis
rete nilpotent group without torsion, then

K0(C
∗(G)) ∼= K1(C

∗(G)).

Example 2.6. The isomorphism in the 
orollary above does not hold if G has torsion. Indeed,

if G = Zn = Z/nZ (n ≥ 2) a 
y
li
 group, then C∗(G) ∼= Cn
, so that K0(C

∗(G)) ∼= Zn
but

K1(C
∗(G)) ∼= 0.
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Corollary 2.7. If G is a �nitely generated, dis
rete nilpotent group without torsion, then the

K-theory groups K0(C
∗(G)) and K1(C

∗(G)) are torsion free.

Proof. This follows from the 
onstru
tion of the generators of K0(C
∗(G)) and K1(C

∗(G)) obtained

in the theorem above.

Remark. Possibly, in the last 
orollary, the group G may have torsion.

Example 2.8. We 
onsider a version of the dis
rete Heisenberg nilpotent group with torsion

(see [1℄ or [3℄ for the dis
rete Heisenberg nilpotent group). Let G = Z2
2 ⋊α Z2 be a semi-dire
t

produ
t of the produ
t group Z2
2 of the 
y
i
 group Z2 = Z/2Z by an a
tion of Z2 de�ned by

αt(b + tc, c) for b, c, t ∈ Z2. Then the group C∗
-algebra C∗(G) is isomorphi
 to the 
rossed

produ
t C(Z∧
2 × Z∧

2 ) ⋊α∧ Z2 via the Fourier transform, where the dual a
tion α∧
of Z2 on the

produ
t spa
e of the dual group Z
∧
2

∼= Z2 is de�ned by α∧
t (z,w) = (z, ztw) for z,w ∈ Z

∧
2 via the

duality

α∧
t (ϕz,w)(b, c) = ϕz,w(b + tc, c) = zb+tcwc = ϕz,ztw(b, c)

where ϕz,w ∈ Z∧
2 ×Z∧

2 indenti�ed with (z,w) (
f. [5℄). We then obtain the following de
omposition:

C(Z∧
2 × Z

∧
2 )⋊α∧ Z2

∼= [C⊗ (C2
⋊α∧ Z2)]⊕ [C⊗ (C2

⋊α∧ Z2)]

∼= [C2 ⊗ C∗(Z2)]⊕ [M2(C)]

∼= [C2 ⊗ C
2]⊕M2(C) ∼= C

4 ⊕M2(C)

where the a
tion α∧
on C2

in the �rst dire
t summand is trivial and that in the se
ond is the shift.

Therefore,

K0(C
∗(G)) ∼= Z

5, but K1(C
∗(G)) ∼= 0.

Hen
e the K-theory groups are torsion free.

In this 
ase, the dire
t sum fa
tor Z4
in Z5 = K0(C

∗(G)) 
omes from C4
in C∗(G) whi
h

is a maximal abelian subalgebra of C∗(G) but the other dire
t sum fa
tor Z in Z
5 = K0(C

∗(G))


omes from M2(C) in C∗(G) whi
h is a non
ommutative subalgebra of C∗(G). Therefore, the 
ase

with torsion is 
ertainly di�erent from the torsion free 
ase 
onsidered above, but the nilpotent


ase with torsion is just the same as the abelian 
ase with torsion as in the example above, in the

K-theory level.

Corollary 2.9. If G is a �nitely generated, dis
rete nilpotent group without torsion, then both

K0(C
∗(G)) and K1(C

∗(G)) are isomorphi
 to a �nitely generated, free abelian group, i.e., Zm
for

some positive integer m.
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3 In�nitely generated 
ase

We assume that G is a 
ountable dis
rete group.

Theorem 2. Let G be an in�nitely generated, nilpotent dis
rete group without torsion. Then both

K0(C
∗(G)) and K1(C

∗(G)) of the group C∗
-algebra C∗(G) are isomorphi
 to an indu
tive limit of

�nitely generated free abelian groups:

K0(C
∗(G)) ∼= K1(C

∗(G)) ∼= lim

−→
Z
mn ,

for some positive integers mn with mn < mn+1, where the 
onne
ting maps Z
mn → Z

mn+1
are

inje
tive.

Therefore,

K0(C
∗(G)) ∼= K1(C

∗(G)) ∼= ⊕∞

Z,

whi
h is the in�nite dire
t sum of Z, as a group.

Proof. Let U = {g1, g2, · · · } be an in�nite set of generators of G and set Un = {g1, g2, . . . , gn},

where gn+1 is not generated by g1, · · · , gn. Let C
∗(Un) denote the C∗

-algebra generated by the

elements of C∗(G) that 
orrespond to the elements of Un. Then C∗(Un) is a C∗
-subalgebra of

C∗(G). There is the 
anoni
al in
lusion in from C∗(Un) → C∗(Un+1). It follows that C
∗(G) is an

indu
tive limit of the C∗
-subalgebras C∗(Un) under the in
lusions in. By 
ontinuity of K-theory,

we have

Kj(C
∗(G)) ∼= lim

−→
Kj(C

∗(Un))

for j = 0, 1. By the theorem in the previous se
tion, we see that both Kj(C
∗(Un)) for j = 0, 1

are isomorphi
 to Zmn
for some positive integer mn and mn ≤ mn+1 and also that there is a


anoni
al in
lusion from Kj(C
∗(Un)) ∼= Zmn

to Kj(C
∗(Un+1)) ∼= Zmn+1

.

We need to 
he
k that mn 6= mn+1 for ea
h n. Note that the group Hn generated by elements

of Un 
an be written as a su

essive semi-dire
t produ
t by Z:

Hn
∼= Z ⋊ Z ⋊ · · ·⋊ Z


rossed by Z n− 1 times. Then Hn+1
∼= Hn ⋊Z. It follows that the a
tion of Z on Hn 
an not be

non-trivial on every generator of Hn. Be
ause, if non-trivial, Hn+1 is not nilpotent (but solvable).

Indeed, then there is no 
enter in Hn+1, a 
ontradi
tion to the nilpotentness of Hn+1. Therefore,

there is a generator of Hn su
h that the a
tion of Z is trivial on it. Therefore, we 
an 
onstru
t

a new Bott proje
tion from these 
ommuting elements of Hn+1, and not from Hn. It follows that

mn < mn+1.

Example 3.1. If G is an in�nitely generated abelian dis
rete group, then C∗(G) is isomorphi
 to

an indu
tive limit of C(Tn) with the 
anoni
al in
lusion from C(Tn) to C(Tn+1). Then

Kj(C
∗(G)) ∼= lim

−→
Kj(C(T

n)) ∼= lim

−→
Z
2n−1 ∼= ⊕∞

Z
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for j = 0, 1.

If G is an indu
tive limit of the produ
t groups ΠnZ2 with the 
anoni
al in
lusion from ΠnZ2

to Πn+1Z2, then G is 
ommutative and in�nitely generated and has torsion. Then

C∗(G) ∼= lim

−→
C∗(Πn

Z2) ∼= lim

−→
⊗nC∗(Z2)

∼= lim

−→
⊗n

C
2 ∼= lim

−→
C

2n ∼= ⊕∞

C

where the last side means the in�nite dire
t sum of C, so that

Kj(C
∗(G)) ∼= Kj(⊕

∞

C) ∼= ⊕∞Kj(C) ∼=

{
⊕∞Z if j = 0,

0 if j = 1.

Re
eived: Mar
h 2012. A

epted: September 2013.
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