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ABSTRACT

The purpose of this research in the queueing theory is the theorem about the law

of the iterated logarithm in multiphase queueing systems and its application to the

mathematical model of the message switching system. First the law of the iterated

logarithm is proved for the cumulative idle time of a customer. Finally we present an

application of the proved theorem for the model of the message switching system.

RESUMEN

El propósito de esta investigación en la teoŕıa de colas es el teorema sobre la ley de

logaritmo iterado en sistemas multifase y su aplicación al modelo matemático del sis-

tema de interruptores de mensajes. Primero, la ley de logaritmo iterado se prueba para

el tiempo ocioso acumulado de un cliente. Finalmente presentamos una aplicación del

teorema probado para el modelo de sistema de interruptores de mensajes.
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15, 2 (2013)

1 Introduction

At first, the law of the iterated logarithm is considered by investigating the cumulative idle

time of a customer in multiphase queueing systems.

Interest in the field of multiphase queueing systems has been stimulated by the theoretical

values of the results as well as by their possible applications in information and computing systems,

communication networks, and automated technological processes (see, for example, [20]). The

methods of investigation of single-phase queueing systems are considered in [2], [3], etc. The

asymptotic analysis of models of queueing systems in heavy traffic is of special interest (see, for

example, [9], [10], [4], [5], etc.). The papers [11], [18] and others desribed the beginning of the

investigation of diffusion approximation to queueing networks. Intermediate models - multiphase

queueing systems - are considered rarer due to serious technical difficulties (see, for example, book

[7]). The works on cumulative idle time for the multiphase queueing systems and open Jackson

networks in heavy traffic are also sparse. In one of the first papers of this kind, [16] used numerical

methods to study values of the mean of the cumulative idle time in single-server queues. [22]

obtained limit theorems for the cumulative idle time in the systems GI/G/1 andM/G/1. [12]

presented expressions for the cumulative idle time of a server in the GI/G/1 system. [19] found the

Laplace transform of the distribution of the cumulative idle time in a finite time interval for the

GI/G/1 system. [8] conceived the Laplace transform of the expected cumulative idle time in an

M/G/1 queue. [17] considered the moderate-deviation behaviour of the cumulative idle time with

single-server queues. These results complement the existing results on the heavy traffic behaviour

of this process. [23] established functional central limit theorems for a cumulative idle time process

in a fluid queue. These limit processes have discontinuous sample paths (e.g., to be a non-Brownian

stable process, or a more general Levy process).

Let the cumulative idle time of a customer in the phases of a queueing system be unrestricted,

the principle of service being “first come, first served”. All the random variables studied are defined

on one basic probability space (Ω,F,P).

We present some definitions in the theory of metric spaces (see, for example, [1]).

Let C be a metric space consisting of real continuous functions in [0, 1] with a uniform metric

ρ(x, y) = sup
0≤t≤1

|x(t) − y(t)|, x, y ∈ C .

Let D be a space of all real-valued right-continuous functions in [0,1] having left limits and

endowed with the Skorokhod topology induced by the metric d (under which D is complete and

separable). Also, note that d(x, y) ≤ ρ(x, y) for x, y ∈ D .

In this paper, we will constantly use an analog of the theorem on converging together (see,

for example, [6]):
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Theorem 1.1.

Let ε > 0 and Xn, Yn, X ∈ D . If P

(

lim
n→∞

d(Xn ,X) > ε
)

= 0

and P

(

lim
n→∞

d(Xn,Yn) > ε
)

= 0, then P

(

lim
n→∞

d(Yn,X) > ε
)

= 0.
(1)

2 Statement of the problem

We investigate here a k-phase queue (i.e., after a customer has been served in the j-th phase of

the queue, he is routed to the j+ 1-th phase of the queue, and, after the service in the k-th phase

of the queue, he leaves the queue). Let us denote by tn the time of arrival of the n-th customer;

by S
(j)
n – the service time of the n-th customer in the j-th phase; zn = tn+1 − tn; and by τj,n+j -

departure of the n-th customer from the j-th phase of the queue, j = 1, 2, · · · , k.

Let interarrival times (zn) at the multiphase queueing system and service times (S
(j)
n ) in each

phase of the queue for j = 1, 2, · · · , k be mutually independent identically distributed random

variables.

Next, denote by BIj,n the idle time of the n-th customer in the j-th phase of the multiphase

queue; F̂j,n =
n∑

l=1

BIj,l stands for a cummulative idle time of the n-th customer in the j-th phase

of the multiphase queue, j = 1, 2, . . . , k.

When j = 1, 2, . . . , k, let

δj,n =

{
S
(j)

n−(j−1)
− zn, if n ≥ k

0, if n < k.

Let us denote Sj,n =
∑n−1

l=1 δj,l, S0,n ≡ 0, Ŝj,n = Sj−1,n − Sj,n, xj,n = τj,n − tn, x0,n ≡ 0,

x̂j,n+1 = xj,n − δj,n+1, x̂0,n ≡ 0, zj,n = x̂j,n − Sj,n, αj = Mδj,n, α0 ≡ 0, Dzn = σ2
0, DS

(j)
n =

σ2
j , σ̃

2
j = σ2

0 + σ2
j , S

(0)
n = zn, j = 1, 2, . . . , k, [x] as the integer part of number x.

We assume that the following conditions are fulfilled:

there exists a constant γ > 0 such that

sup
n≥1

M|S(j)n |4+γ < ∞, j = 0, 1, 2, . . . , k (2)

and

αk < αk−1 < · · · < α1 < 0. (3)

In this paper, we mostly use the equations presented in [13]:

x̂j,n = max
0≤l≤n

(x̂j−1,l − Sj,l) + Sj,n, x̂0,n ≡ 0, n ≥ k, j = 1, 2, . . . , k. (4)
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3 On the law of the iterated logarithm for the cumulative

idle time of a customer

First we investigate the law of the iterated logarithm for the cumulative idle time in multiphase

queues.

We prove such a theorem.

Theorem 3.1. If conditions (2) and (3) are fulfilled, then

P

(

lim
n→∞

F̂j,n − (−αj) · n
σ̃j · a(n)

= 1

)

= P

(

lim
n→∞

F̂j,n − (−αj) · n
σ̃j · a(n)

= −1

)

= 1,

j = 1, 2, . . . , k and a(n) =
√
2n ln lnn.

Proof. Denote random functions D as follows

F̂nj (t) =
F̂j,[nt] − (−αj) · [nt]

a(n)
, Ẑn

j (t) =
ẑj,[nt] − (−αj) · [nt]

a(n)
,

Ŝnj (t) =
(−Sj,[nt]) − (−αj) · [nt]√

n
, j = 1, 2, . . . , k and 0 ≤ t ≤ 1.

Using a triangle inequality we see that, for each fixed ε > 0,

P
(

lim
n→∞

d(F̂nj , Ŝ
n
j ) > ε

)

≤ P
(

lim
n→∞

d(F̂nj , Ẑ
n
j ) >

ε

2

)

+P
(

lim
n→∞

d(Ẑn
j , Ŝ

n
j ) >

ε

2

)

≤

P
(

lim
n→∞

ρ(F̂nj , Ẑ
n
j ) >

ε

2

)

+P
(

lim
n→∞

ρ(Ẑn
j , Ŝ

n
j ) >

ε

2

)

=

P



 lim
n→∞

sup
0≤t≤1

|Fj,[nt] − ẑj,[nt]|

a(n)
>

ε

2



+P



 lim
n→∞

sup
0≤t≤1

|ẑj,[nt] − (−Sj,[nt])|

a(n)
>

ε

2



 =

P



 lim
n→∞

max
0≤l≤n

|Fj,l − ẑj,l|

a(n)
>

ε

2



+P



 lim
n→∞

max
0≤l≤n

|ẑj,l − (−Sj,l)|

a(n)
>

ε

2



 , j = 1, 2, . . . , k.

Thus, we have for each fixed ε > 0,

P
(

lim
n→∞

d(F̂nj , Ŝ
n
j ) > ε

)

≤ P



 lim
n→∞

max
0≤l≤n

|F̂j,l − ẑj,l|

a(n)
>

ε

2



+

P



 lim
n→∞

max
0≤l≤n

|ẑj,l − (−Sj,l)|

a(n)
>

ε

2



 , j = 1, 2, . . . , k.

(5)
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It is proved (see [14]) that, if conditions (3) are fulfilled, then, for each fixed ε > 0,

P



 lim
n→∞

max
0≤l≤n

|F̂j,l − ẑj,l|

√
n

> ε



 = 0, j = 1, 2, . . . , k.

Using similar method as in [14] can be proven that, for each fixed ε > 0,

P



 lim
n→∞

max
0≤l≤n

|F̂j,l − ẑj,l|

a(n)
> ε



 = 0, j = 1, 2, . . . , k. (6)

So the first term in (5) converges to zero. We will prove that second term in (5) also converges

to zero.

Using (4) we see that

ẑj,n = max
0≤l≤n

(x̂j−1,l − Sj−1,l + Sj−1,l − Sj,l) = max
0≤l≤n

(ẑj−1,l + Sj,l), j = 1, 2, . . . , k.

Thus,

ẑj,n = max
0≤l≤n

(ẑj−1,l + Sj,l), j = 1, 2, . . . , k, z0,· ≡ 0. (7)

Also we see that

ẑj,n −

j∑

i=1

Ŝi,n ≥ ẑj−1,n + Ŝj,n −

j∑

i=1

Ŝi,n = ẑj−1,n −

j−1∑

i=1

Ŝi,n ≥ · · · ≥

ẑ1,n − Ŝ1,n = max
0≤l≤n

(Ŝ1,n) − Ŝ1,n ≥ 0.

So,

ẑj,n −

j∑

i=1

Ŝi,n ≥ 0, j = 1, 2, . . . , k. (8)

But

ẑj,n ≤ max
0≤l≤n

(ẑj−1,l) + max
0≤l≤n

Ŝj,l = ẑj−1,n + max
0≤l≤n

Ŝj,l ≤ · · · ≤
j∑

i=1

{ max
0≤l≤n

Ŝi,l}.

From it follows that

ẑj,n ≤
j∑

i=1

{ max
0≤l≤n

Ŝi,l}, j = 1, 2, . . . , k. (9)

Using (8) and (9) we get that

0 ≤ ẑj,n −

j∑

i=1

Ŝi,n ≤
j∑

i=1

{ max
0≤l≤n

Ŝi,l − Ŝi,n}, j = 1, 2, . . . , k. (10)



58 S. Minkevičius CUBO
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Applying (9) we achieve for each fixed ε > 0,

P











max
0≤l≤n

|ẑj,l −
j∑

i=1

Ŝj,l|

a(n)
> ε











= P











max
0≤l≤n

(ẑj,l −
j∑

i=1

Ŝj,l)

a(n)
> ε











≤

P











j∑

i=1

max
0≤l≤n

{ max
0≤m≤l

Ŝi,m − Ŝi,l}

a(n)
> ε











≤ P











k∑

i=1

max
0≤l≤n

{ max
0≤m≤l

Ŝi,m − Ŝi,l}

a(n)
> ε











≤

k∑

i=1

P





max
0≤l≤n

{ max
0≤m≤l

Ŝi,m − Ŝi,l}

a(n)
>

ε

k



 =

k∑

i=1

P





max
0≤l≤n

{ max
0≤m≤l

(−Ŝi,l−m)}

a(n)
>

ε

k



 =

k∑

i=1

P





max
0≤l≤n

{ max
0≤m≤l

(−Ŝi,m)}

a(n)
>

ε

k



 ≤
k∑

i=1

P





max
0≤l≤n

(−Ŝi,l)

a(n)
>

ε

k



 , j = 1, 2, . . . , k.

(11)

Thus, we have that for each fixed ε > 0,

P











max
0≤l≤n

|ẑj,l −
j∑

i=1

Ŝj,l|

a(n)
> ε











≤
k∑

i=1

P





max
0≤l≤n

(−Ŝi,l)

a(n)
>

ε

k



 , j = 1, 2, . . . , k. (12)

Note (see, for example, [14]) that for each fixed ε > 0,

P



 lim
n→∞

max
0≤l≤n

(−Ŝi,l)

a(n)
> ε



 = 0, j = 1, 2, . . . , k, (13)

if conditions (3) are fulfilled.

Using relation
k∑

i=1

Ŝi,n = −Sj,n, j = 1, 2, . . . , k and (12) - (13) we obtain that for each fixed

ε > 0,

P



 lim
n→∞

max
0≤l≤n

|ẑj,l − (−Sj,l)|

a(n)
> ε



 = 0 j = 1, 2, . . . , k. (14)

Using the theorem on the law of the iterated logarithm for random functions Ŝnj (t), j =

1, 2, . . . , k (see, for example, [21]) we achieve that

P

(

lim
n→∞

(−Sj,n) − (−αj) · n
σ̃j · a(n)

= 1

)

= 1

and

P

(

lim
n→∞

(−Sj,n) − (−αj) · n
σ̃j · a(n)

= −1

)

= 1, j = 1, 2, . . . , k.

(15)
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Thus, applying (1), (5), (6), (14) and (15) we obtain that

P

(

lim
n→∞

F̂j,n − (−αj) · n
σ̃j · a(n)

= 1

)

= 1

and

P

(

lim
n→∞

F̂j,n − (−αj) · n
σ̃j · a(n)

= −1

)

= 1, j = 1, 2, . . . , k.

(16)

The proof of Theorem 3.1 is complete.

4 On the model of switching facility

In this part of the paper, we will present an application of the proved theorem - a mathematical

model of message switching system.

As noted in the introduction, multiphase queueing systems are of special interest both in

theory and in practical applications. Such systems consist of several service nodes, and each

arriving customer is served at each of the consecutively located node (frequently called phases).

A typical example is provided by queueing systems with identical service. Such systems are very

important in applications, especially to message switching systems. In fact, in many comunication

systems the transmission times of the customers do not vary in the delivery process.

So, we investigate a message switching system which consists of k phases and in which S
j
n =

Sn, j = 1, 2, . . . , k (the service process is identical in phases of the system).

Let

δn =

{
Sn−k − zn, if n ≥ k

0, if n < k.

Also, let us note α = Mδn, Dzn = σ2
0, DSn = σ2, σ̃2 = σ2

0 + σ2, F̂j,n =
n∑

l=1

BIj,l, j =

1, 2, . . . , k.

We assume that the following conditions are fulfilled:

there exists a constant γ > 0 such that

sup
n≥1

M|Sn|
4+γ < ∞ (17)

and

α < 0. (18)

Similarly as in the proof of Theorem 3.1, we present the following theorem on the law of the

iterated logarithm for the cumulative idle time of a data packet in message switching systems.
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Theorem 4.1. If conditions (17) and (18) are fulfilled, then

P

(

lim
n→∞

F̂j,n − (−α) · n
σ̃ · a(n)

= 1

)

= P

(

lim
n→∞

F̂j,n − (−α) · n
σ̃ · a(n)

= −1

)

= 1,

j = 1, 2, . . . , k.

We see that the cumulative idle time of data packet is the same in the all phases of system.

5 Computing example

We see that Theorem 4.1 implies that for fixed ε > 0 there exists n(ε) such that for every

n ≥ n(ε), with probability one

(1− ε) · σ̃ · a(n) − α · n ≤ F̂j,n ≤ (1+ ε) · σ̃ · a(n) − α · n, (19)

where a(n) =
√
2n ln lnn, α = M(Sn − zn) < 0, σ̃2 = Dzn +DSn, j = 1, 2, . . . , k.

From this we can obtain

(1− ε) · σ̃ · a(n) − α · n ≤ F̂j,n ≤ (1+ ε) · σ̃ · a(n) − α · n,

|M(F̂j,n − (−α) · n) − {(1− ε) · σ̃ · a(n)}| ≤ 2 · ε · σ̃ · a(n),

|M

(

F̂j,n − (−α) · n)
σ̃ · a(n)

)

− (1+ ε)| ≤ 2 · ε, j = 1, 2, . . . , k.

(20)

So from (20) we can get

MF̂j,n ∼ (−α) · n+ (1+ ε) · σ̃ · a(n), j = 1, 2, . . . , k. (21)

MF̂j,n is average cumulative idle time of n-th message (time, which system is waiting for

processing message until n-th message arrival to the system).

We see from (21) thatMF̂j,n consists of linear function and nonlinear slowly increasing function

(1+ ε) · σ̃ · a(n), j = 1, 2, . . . , k.

Now we present a technical example from the computer network practice. Assume that mes-

sages arrive at the computer v1 at the rate λ of 20 per hour during business hours. These messages

are served at a rate µ of 25 per hour in the computer v1. After service in the computer v1 messages

arrive at the second computer v2. Also we note that messages are served at a rate µ of 25 per

hour in the computer v2. So, messages is served in computers v1, v2,. . . ,vk, and after messages

are served in computer vk, they leave computer network.

So, Mzn = 1/λ = 1/20 = 0.05, MSn = 1/µ = 1/25 = 0.04, α = 0.04 − 0.05 = −0.01 <

0,Dzn = 1/λ = 1/20 = 0.05, DSn = 1/µ = 1/25 = 0.04, σ̃2 = 41/104, σ̃ ∼ 0.064, ε = 0.001, n ≥
100.
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Thus,

MF̂j,n ∼ (−α) · n+ (1+ ε) · σ̃ · a(n) = (0.01) · n+ (0.064) · a(n), j = 1, 2, . . . , k. (22)

From (22) we get

MF̂j,n

n
= (0.01) + (0.064) ·

√

2 ln lnn

n
, j = 1, 2, . . . , k. (23)

Now we present figure for
MF̂j,n

n
, j = 1, 2, . . . , k, when 100 ≤ n ≤ 1000, ε = 0.001 (see (23)

and Table 1).

Time n
MF̂j,n

n
, j = 1, 2, . . . , k

100 0.02118510415

200 0.01826415546

300 0.01689524794

400 0.01605525217

500 0.01547101209

600 0.01503369681

700 0.01469010032

800 0.01441067288

900 0.01417749453

1000 0.01397897294

Table 1 Summary of computing results.

We see that when α = −0.01 < 0, computer network is busy 99 % of this time.

Corollary 5.1. Average idle time of message system direcly depends of traffic coefficient α

and time n and is the same in all phases of message system.

Received: September 2010. Accepted: September 2012.
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