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ABSTRACT

We study the existence of weak solutions for nonlinear integral inclusion with multiple
time delay. The main result of the paper is based on the fixed point theorem of Ménch
type and the technique of measure of weak noncompactness.

RESUMEN

Estudiamos la existencia de soluciones débiles de la inclusién integral no lineal con
retardos temporales multiples. El resultado principal del articulo se basa en el Teorema
de Punto Fijo de tipo Monch y la técnica de medida de la no-compacidad débil
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1 Introduction

Fractional differential equations have been of great interest recently. It is due to the development
of the theory of fractional calculus itself and by application of such constructions in various fields of
science and engineering such as control theory, physics, mechanics, electrochemistry, porous media,
etc. There are many works discussing the solvability of nonlinear fractional differential equations
and inclusions, see the monographs of Abbas et al. [2], Kilbas et al. [14], Lakshmikantham et al.
[15], Podlubny [18], Tarasov [20], the papers of Agarwal et al. [3, 4, [5], Benchohra et al. [7, [§],
Kilbas and Marzan [13], Salem [19], Vityuk and Golushkov [21], and the references therein.

In [12], R. W. Ibrahim and H. A. Jalab studied the existence of solutions of the following
fractional integral inclusion

u(t) = > bi(t)u(t— ) € I*F(t,u(t)); if t € [0,T], (1)

i=1

where 1y <t € [0,T],b; : [0, T] = R, i =1...,n are continuous functions, and F : [0, TIxR — P(R)

is a given multivalued map.

In [1I], Abbas and Benchohra considered the following fractional integral equation with delay
m

u(XﬂJ) = Z Qi(X,U)u(X— Emy - ui) + Iéf(X»y»u(X»y])§ if (X>1J) € I = [O> Cl] X [O»b}) (2)
i=1

U(X,y) = (D(X)y); if (ny) S T = [_((—.) al x [_U>b]\(0> al x (O»b]) (3)

where a,b >0, 0 =(0,0), &,u; >0; i=1...,m, § =maxi—1.. m{&}, 0 =maxi—1.. m{wl}, Ij
is the left-sided mixed Riemann-Liouville integral of order r = (r1,12) € (0,00) X (0,00), f :
JxR™ = R" gi:] = R; i=1...m are given continuous functions, and @ : T — R™ is a given
continuous function such that

D(x,0) = > gilx,00®(x — &, —wi); x € [0, al,
i=1

and

®(0,y) =Y gi(0,y)®(—Ei,y — wi); y € [0,bl.
i=1

Motivated by the above papers, in this paper, we consider the following fractional integral
inclusion with multiple time delay:

U«(X»y) _Z 91(X>U)U«(X— 51,9 - p’i) € IgF(X>y)u(X)U)); (X)y) € Ia X Ib~ (4)
i=1

ux,y) =¥(xy); (xy) €] =[-&al x [~ bI\(0,a] x (0,b], (5)
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where ]a = [0) (1], Ib = [O»b] for a,b > 0,0= (0»0)) &= maXi:]...m{E‘iL W= maXi:]...m{Hi}y Ig
is the left sided mixed Pettis integral of order o, o« = (a1, 2) € (0,00) X (0,00), F:Jqa X Jp X E —

P(E) is a multivalued map (P(E) is the family of all nonempty subsets of E), gi : Jo X Jb — R;i=

1,...m are given continuous functions, and ¥ : T — E is a given continuous function such that
m
Y(0,y) =) gil0,y)¥(—E,y — )i y € [0,
i=1
and

Y(x,0) =Y gilx, 0)W(x — &, —i); x € [0, al.
i=1

E is a Banach space with norm |.||. Our result is based on fixed point theorem of Mdnch type
and the technique of measure of weak noncompactness. Let us mention that other tools like the
nonlinear alternative of Leray-Schauder type, the Banach fixed point theorem and Schauder’s fixed
point theorem, such have been used to analyze the above problem in the scalar case [1l 2]. The
present results complement and extend those considered in the scalar case.

2 Preliminaries

In this section, we introduce the notation, definitions, and preliminary facts that will be used in
the remainder of this survey paper. Let R denote the real line and let Jo = [0, a] and Jp = [0, b]
be two closed and bounded intervals in R for some real numbers a > 0 and b > 0. Throughout
the paper, E is a Banach space with norm ||.| and dual E*. Also (E,w) = (E, o(E,E*)) denotes
the space E with its weak topology. We take C(Jo X Ju, E) to be the Banach space of continuous
functions u: Jq X Jp — E, with the usual supremum norm

[ulloo = sup{[ulx,y)ll, (%,Y) € Ja X Juk

Definition 2.1. [T7] The function x : Jq X Jo — E is said to be Pettis integrable on Jo X Jp if and
only if there is an element x1xj € E corresponding to each I x ] C Jo X Ju (I and ] are measurable),
such that @(x1x) = [, II ©(x(s,t))dsdt for all @ € E* where the integral on the right is assumed
to exist in the sense of Lebesgue (by definition, X1y = [, fl x(s,t)dsdt).

We let L'(Jq X Job, E) denote the Banach space of measurable functions u : Jo x J, — E that
are Pettis integrable, equipped with the norm

a rb
Il :L L () dxdy.

Let P(E) is the family of all nonempty subsets of E.

A multivalued map G : E — P(E) has convex (closed) valued if G(x) is convex (closed) for all
x € E. We say that G is bounded on bounded sets if G(B) is bounded in E for each bounded set
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B of E (i.e. sup,cp{sup{|ly]l:y € G(x)}} < c0). The map G is upper semicontinuous (u.s.c) on E

if for each xo € E, the set G(xo) is a nonempty closed subset of E and for each open set N of E
containing G(x¢) there exists an open neighborhood M of xq such that G(M) C N. The mapping
G has a fixed point if there exists x € E such that x € G(x).

In what follows P.i(E) = {Y € P(E) : Y is closed}, P,(E) = {Y € P(E) : Y is bounded},
Pep(E) ={Y € P(E) : Y is compact}, and P¢p cv(E) ={Y € P(E) : Y is compact and convex}.
A multivalued map G : Jq X Jo — Pci(E) is said to be measurable if for each w € E the
function
(%y) = dlw, G(x,y)) = inf{lw —v|: v € G(x,y)}

is measurable. For more details on multivalued maps see the books of Aubin and Cellina [6],
Deimling [10].

Definition 2.2. A function h: E — E is said to be weakly sequentially continuous if h takes each

weakly convergent sequence in E to weakly convergent sequence in E (ie for any (xn)n in E with
xn — X in (E,w), h(xn) — h((x)) in (E,w)).

Definition 2.3. A function F: Q — Pci,cv(Q) has weakly sequentially closed graph if for any
sequence (Xn,Yn) € Q X Q, where yn € F(xn) for n € {1,2,...}yand where both xn, — x in (E, w)
and yn — y in (E,w) theny € F(x).

Proposition 2.4. [T7, [T1] If x(.) is Pettis integrable and h(.) is a measurable and essentially
bounded real-valued function, then x(.)h(.) is Pettis integrable.

Definition 2.5. [J] Let E be a Banach space, Qg the bounded subsets of E and By the unit ball of
E. The De Blasi measure of weak noncompactness is the map 3 : Qg — [0,00) defined by
B(X) =inf{e > 0: there exists a weakly compact subset Q of E:X C eB; + Q}

Properties: De Blasi measure of noncompactness satisfies some properties

(a) ACB = B(A) <pB(B), (e) B(A+B) <B(A)+B(B),
(

b) B(A) =0& A is relatively compact, (f) B(AA) = AIB(A)

(c
(d

B(AUB) = max{B(A), B(B)},

B(AY) = B(A), (A denotes the weak clo-
sure of A), (h) B(Up<nAA = hB(A).

)

)

)
(g) Blconv(A)) =B(A),

)

The following result follows directly from the Hahn-Banach theorem.

Proposition 2.6. Let E be a normed space with xo # O then there exists @ € E* with ||| =1
and @(xo) = [[xol|-
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For a given set V of functions v: J4 X Jp — E let us denote by

V(X)U) :{V(X»ULV S V}a (X»y) € ]a X ]b

and
V(Ja xJo) ={v(x,y):veV, (x,y) € Ja X Ju}

For completeness, we recall the definition of the fractional Pettis-integral of order o« > 0. Let
o1, &2 >0 and o« = (1, x2). For h € L'(J4 % Ju, E), the expression

(Igh)(x ):]ijy(x—s)“‘l( — )27 Th(s, t)dsdt
oI Taea) Jo o Y ’

where the sign " [" denotes the Pettis integral and T'(.) is the Euler gamma function, is called the
left sided mixed Pettis integral of order «.

For our purpose we will need the following fixed point theorem.

Theorem 2.7. [16] Let E be a Banach space with Q a nonempty, bounded, closed, convexr and
equicontinuous subset of metrizable locally convex vector space C(J,E) such that 0 € Q. Suppose
that T: Q — Per,ev(Q) has weakly-sequentially closed graph. If the implication

V =conv({0}UT(V)) = V is relatively weakly compact, (6)

holds for every subset V.C Q, then the operator T has a fived point.

3 Main Results

we first define what we mean by solution of the problem (@)-(Gl).

Definition 3.1. A function u € C(J,E) is said to be solution of problem ({])-(3) if there exists a
function v € L' (Jo X Ju, E) with v(x,y) € F(x,y,u(x,y)) and such that

_m . _ T, . ;Xg _ xi—1 _ o x2—1
u(x,y)—;gl(x,y)u(x &y ul)_‘_r(oq)r(ocz)J'o L (x —s) (y—1) v(s,t)dsdt

and the function u satisfies condition (@) on J.

For any u € C(Jq X Jv, E), we define the set

SF,u :{v € L1 Ua X ]b>E)>V(X»U) € F(X»y»u(MU)J» (X)U) € ]a X ]b}

This is known as the set of selection function. Set

G= max { sup |gi(x,y)l-

=1em (xy)eTaxTo

We are now in the position to state and prove our existence result for the problem (@)-(El). We
first list the following hypotheses.
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(H1) F:Ja x Jo X E = Pep c1,ev(E), has weakly sequentially closed graph.

(H2) For each u € C(Jq X Ju, E), there exists a measurable function v : Jo X Jp — E with v(x,y) €
F(x,y,u(x,y)) a.e. on Jq X Jp and v is Pettis integrable on Jq X Jp.

(H3) There exists p € L*°(Jq X Jb, R4 ) such that

IF(x, y, wllp = sup{|[vl| : v € F(x,y, w)} < plx,y),
for (x,y) € Ja X Jp and each u € E.

(H4) There exists a number R > 0 such that

p*aoclbocz
MNog + DMz + 1) (1 — mG)

<R, (7)

where p* = [|p]|co-

(H5) Let 19 > 0 be arbitrary (but fixed). For any € > 0 and for any subset X C B, there exists
a closed subset 1o C J4 X Jp such that u(Jq x Jo\le) < € and

B(F(Tx X)) < sup pl(x,y)B(X),
(xy)eT

for each closed subset T of I., where u denotes the Lebesgue measure in R?.

The main result in this paper reads as follows.

Theorem 3.2. Assume that assumptions (H1)-(H5) hold. If

p*aoc] bcxz

G
"t e F Mo + 1)

<1, (8)
then problem({))- (&) has at least one solution on J.

Proof. To transform problem (@)-() into a fixed point problem, we define a multivalued map
Q:C(],E) = Pa(C(],E)) as

Q(u) ={h € C(J,E) such that

Y(x,y) if (x,y) €7,
hixy) =< XM gilxylulx — &,y — wi) if v € Sfu,
+m fg IS(X— s) Ty —t)*2 (s, t)dsdt;  (x,Y) € Ja X Jo.

where W(-,-) is the function defined by (B)). Now, we prove that Q satisfies all the assumptions of
the Theorem 2.7 and thus Q has a fixed point which is a solution of problem (@)-(&]). O
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First notice that, for all u € C(J], E), there exists a Pettis integral v : Jq X Jp — E such that
v(x,y) € Fix,y,ulx,y)) for a.e. (x,y) € Ja x Jo (Assumption (H2)) then @(v(x,y)) € L' (Ja X Jo)
for any ¢ € E*. From the definition of the integral of fractional order we have

X ry _ 0(1—1 _ O(z—]
pu(xy,)) = H (= )M Y= YT s 1)) dsdt

0 Jo (o )T (x2)
N N R )
- |, ‘P( Mo)h(wy) (&) dsdt

exists for almost every (x,y) € Jo % Jp and is an element from L' (], x Jp), that is, for almost every
(%,Y) € Ja X Jb, s € (0,x), t € (0,y) the measurable function

(=) y =y (=s) y =y
t)) = t
o (" ala) Vs Mahag) VY
is Lebesgue integrable, hence the function (s,t) — (st):(;])(r(;;%“r] v(s,t) is Pettis integrable

on J4 X Ju, and thus the operator Q is well defined.

Let R > 0 and consider the set
Q = {ueC(,B):[ufe <R

m
and [[u(x2,y2) —ulx1,y1)l| <R D gi(x2,y2) — gi(x1,u1)]
i

N p
Moo + DM o + 1

)[xgﬂygz _X;X]yixz]; for (Xl)yl)» (X2>y2) € ]a X ]b}

Clearly, the subset Q is closed, bounded, convex and equicontinuous subset of a metrisable locally
convex vector space C(J,E). The remainder of the proof will be given in four steps.

Step 1: Q(u) is convex for each u € Q.

For that, let 0 < A < 1, hy, hy € Q(u), obviously if (x,y) € J then Ah, (x,y)+(1=A)ha(x,y) €
Q(u). Now if (x,y) € Ja X Jb, then there exists v1,V2 € Sg, such that

. _m. N S ;xy_oqf]_cxzfl_ .
Ralow) = 3wt gy =)+ s || e =0 s s

i=1,2, Then for each (x,y) € Jq X Jb we have

(ARt + (1 =Ah2) () = Y gilx,ylulx — &,y — i)
i=1

; i 1 _ o x2—1 .
+ F(oq)l"(az)JoL(X %y — )% (v (s, 1) + (1 — A)va(s, t))dsd.
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Since S,y is convex ( because F has convex values), it follows that Ahy + (1 —A)h, € Q(u).

Step 2: Q maps Q into Q.

To see this, take h € QQ. Then there exists u € Q with h € Qu. And there exists v :
Ja X Jo — E Pettis integrable with v(x,y) € F(x,y, u(x,y))

Y(x,y) if (x,y) €7,
hixy) =9 >0 gilx,ylulx — &,y — ) if ve Sk,
ety Jo Jo (x =81 Ty =) Tu(s, t)dsdt;  (x,y) € Ja X Jb-
We can consider that h(x,y) # 0 and by Proposition there exists @ € E* with ||| =1 and
o(h(x,y)) = [R(xy)l| for (x,Y) € Ja x Jo, we have
eyl = e(hix,y))

= @(Z g:i (% y)ulx — &,y — i)

+ 7JXF(X—S)°“_1(y—t)"‘z_1v(s t)dsdt)
Mo )T (e2) Jo Jo ’

= ¢ (Z gilx,ylulx — &,y — m))
i=1
1

+ @ ( JX Jy (x =) Ty =% Tu(s t)dsdt>
(o )T (z) ’

0Jo

p* N -1 -1
< mGR+7J' J x —s)% —t)*27 "dsdt
Flo)Flo) Jo Jo 797 =Y
* 4 X1 X2
< mGR+ pra™b

<R.
Moy + Nl +1) —

on the other hand, for (x,y) € J, we have

[h(x,y)]| = ¢(h(x,y)) <R.

Next, suppose that (x1,y1), (x2,Y2) € Ja X Jp with x; < x2 and y; < y2, and let h € Qu, so
h(x1,y1) —h(x2,y2) # 0. Then there exists ¢ € E* such that

[h(x1,y1) —h(x2,Y2)| = @(h(x1,y1) — h(x2,Y2)),

and ||| = 1. Thus
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[Ih(x2,y2) — h(x1,y1)l

m

= 0D gilba,y2)ulxz — &, y2 — 1)
i
+; JXZ Jyz(xz — ) Ty, —1)%27 Ty(s, t)dsdt
Floe)T(e2) Jo Jo ’
m

=3 gilxn,y)ulx — &y — )
i

1 R P R
+r(061)r(062)J0 L (x7 =)y —t)*27 "u(s, t)dsdt)

m

= 0D gilbaya)ulxa — &iy2 —wi) — D gilxn,yi)ulxg — &,y1 — wi))
i

i=1

; X2 Y2 ey e
+(p(r((x])r((x2) Lq Jm (2 =)™ (yZ t)*27 (s, t)dsdt

;M v _x1—1 a1 a1 el
T o o (0297 e m 0% g ey gy )

X1

1
et )T (ec2) Jo

; X2 (Y1 et g
+F(oc1)r(ocz)L1 Jo b2 =) vz =1 vls, t)dsdt)

Y2
xVv(s,t)dsdt + J (x2 —$)*1 T (ys — t)*2 Tu(s, t)dsdt
Y1

(1 + DM (2 + 1)

m
< ) llgila,y2)ulxa — &,y — ) — gilxa,yn)ulxy — &, y1 — i
i1
P* XY oy —1 xy—1 a1 —1 ay—1
e o], e = 9™ 2 = 0% g 9 (g % s
L 2 [(v2 _g)x1—1 _q)x2—1
+F(oq)r(oc2) L] L] (x2 —s) (y2 —1t) dsdt
+Lr Jyz(x — )% Ty, — 1) %2 dsdt
Mloa)Mea) Jo Jy, 7 v )
P A rz Jy](x —5)*¥1 7 (y2 —t)*2 7 ' dsdt
T(o)T(e2) Jx; Jo : vz )
m *
< RZHgi(xz»yz)*gi(th)ﬂ+r P x5 Ty3? —x{ Ty 2]
i

This implies that h € Q, hence QQ C Q
Step 3: Q has weakly sequentially closed graph.

Let (un, wn) be a sequence in Q x Q with u, (x,y) — u(x,y) in (E,w) for each (x,y) € Ja X Jv,
wn (%, y) = w(x,y) in (E,w) for each (x,y) € Ja X Jo and wy, € Q(u,,) for n € {1,2,...}. We show
that w € Q(u).

Since wn € Q(un), there exists vn € Sg,, such that

m 1 X ry
Wn(X»y) = Z gi(X»y)U—n(X_ &Ly — )+ W J'O JO (x — 5)“]71 (U - t)odi]vn(s»t)det-
i=1



10 Mouffak Benchohra and Fatima-Zohra Mostefai FEJ@BOS)

We show that there exists v € Sg, such that

m 1 x ry
wxy) =) gilxyulx — &,y — ) + Ml (o) L L (x =) 'y — )% Tu(s, t)dsdt.

i=1
Since F(-,-,-) has compact values, there exists a subsequence vy, € Sg .., such that vy, is Pettis

integrable and

Un,, (%,y) € Fix, Yy, un(x,y)) ae.(x,y) € Ja X Jo

and
U, () = () in (E,w) as m — oo.

As F(x,y,) has weakly sequentially closed graph, v(x,y) € F(x,y,u(x,y)). Then Lebesgue
Dominated Convergence theorem for Pettis integral implies that

m X ry
olwnx,y)) = (Z g1 wlulx — £,y = )+ e | [ e sm iy t)“z‘v(s,t)dsdt>

i=1
ie. wn(x,y) = Qu(x,y) in (E,w). Since this holds, for each (x,y) € Jq X Jb, we have w € Qu.

Step 4: the implication (@) holds.

C

Let V be a subset of Q such that V = conv(Q(V)U{0}). Obviously V(x,y) C conv(Q(V(x,y))
{0}),V(x,y) € J. Further, as V is bounded and equicontinuous, the function (x,y) — v(x,y) =
B(V(x,y)) is continuous on J.

If (x,y) € J then

QV(x,y) ={Qu(x,y) :ue Vi ={¥(x,y) : (x,y) € ]}

and since ¥ is continuous on [—&,0] x [—u, 0], the set {W(x,y), (x,y) € [<&,0] x [, 0]} C E is
compact. Now by (H3) and the properties of the measure , for any (x,y) € Jo X Jp, we have

vix,y) < BIQV)(x,y) U{0})
< B(QAV)(x,y))
< B{Qu(x,y):ueV}
<B{EM, gilxylulx — &,y — w)u e V}
+B { e o J3 (= )%y = 0% (s, Ddsdb u(x,y) € Flx,y, w,u e V)

<Y BHgixyulx — &,y — pi)u e VY
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+F(oc1 ]1F(ocz) B {J‘g fg (X - S)“]71 (y - t)oqilv(s)t)det;v(xay) € F(MU,U)aU S V}

<1916 WIB(V(x,Y))
e Jo Jo (k= 8) 7 [y — )% Tp(s, t)B(V(s, t))dsdt

< MGl + s Tra 7y IV lleo

In particular,

* oclbcxz
Ilee < 0o (mG+ pla )

Moy + Mo + 1)

By @) it follows that ||v||cc = 0, that is v(x,y) = B(V(x,y)) = 0 for each (x,y) € ] and then V is
weakly relatively compact in C(J,E). Applying now Theorem 2.7 we conclude that T has a fixed
point which is a solution of problem (@)-(&l). O

Received: October 2012. Revised: February 2013.
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