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ABSTRACT

We present the basics of two-body quantum-mechanical scattering theory and the the-
ory of quantum resonances. The wave operators and S-matrix are constructed for
smooth, compactly-supported potential perturbations of the Laplacian. The meromor-
phic continuation of the cut-off resolvent is proved for the same family of Schrodinger
operators. Quantum resonances are defined as the poles of the meromorphic con-
tinuation of the cut-off resolvent. These are shown to be the same as the poles of the
meromorphically continued S-matrix. The basic problems of the existence of resonances
and estimates on the resonance counting function are described and recent results are

presented.
RESUMEN

Presentamos los conceptos bésicos de la teoria de dispersiéon cuanto-mecanica de dos
cuerpos y la teoria de resonancias cuanticas. El operador de ondas y la matriz S se
construyen para perturbaciones del potencial suaves y de soporte compacto del Lapla-
ciano. La continuaciéon meromorfica de la resolvente truncada se prueba para la misma
familia de operadores de Schrdinger. Las resonancias cuanticas se definen como los po-
los de la continuacién meromérifca de la resolvente truncada. Se muestra que ellas son
las mismas que los polos de la matriz S continuada meromérficamente. Los problemas
bésicos de la existencia de resonancias y las estimaciones de la funcién de conteo de la
resonancia se describen y resultados recientes se presentan.
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1 Introduction: Schrodinger operators

The purpose of these notes is to present the necessary background and the current state-of-the-
art concerning quantum resonances for Schrodinger operators in a simple, but nontrivial, setting.
The unperturbed Hamiltonian Hy = —A is the Laplacian on L?(R%). In quantum mechanics, the
Schrédinger operator or Hamiltonian Hy represents the kinetic energy operator of a free quantum
particle. Many interactions are represented by a potential V that is a real-valued function with V €
L& (R4), the essentially bounded functions of compact support. Occasionally, we need the potential
to have some derivatives and this will be indicated. If, for example, the potential V € C$°(R4Y),
then all the results mentioned here hold true. The perturbed Hamiltonian is Hy = —A+ V.

A fundamental property shared by both Hamiltonians is self-adjointness. The unperturbed
Hamiltonian Hy is self-adjoint on its natural domain H?(R%), the Sobolev space of order two, which
is dense in L2(R%). The self-adjoint operator Ho is the generator of a one-parameter strongly-

continuous unitary group t € R — Ug(t) = e tHot,

The potential V is relatively Ho-bounded with relative bound zero. By the Kato-Rellich
Theorem [14, Theorem 13.5], the perturbed operator Hy is self-adjoint on the same domain H? (R¢).

This self-adjoint operator generates a one-parameter strongly-continuous unitary group t € R —
Uy (t) = e tHvt,

The unitary groups Up(t) and Uy (t) provide solutions to the initial value problem for the
Schrodinger operator in L?(R%). For example, the solution to

0Y(t)
ot

— Hy(t), $(0) = o € H(RY), (1.1)

is formally given by U (t) = Uy (t)Po. In this way, the unitary group Uy (t) provides the time-
evolution of the initial state .

Scattering theory seeks to provide a description of the perturbed time-evolution Uy (t) in
terms of the simpler (as we will show below) time-evolution Ug(t). Although we will work on the
Hilbert space L2(R%), much of scattering theory can be formulated in a more abstract setting.
Consequently, we will often write H for a general Hilbert space.

Suppose we take a state f € H and consider the interacting time-evolution Uy (t)f. What
is the behavior of Uy (t)f as t — +oo? There is one exactly solvable case, although, as we will
see, it is not too interesting. Suppose that f is an eigenfunction of Hy with eigenvalue E so
that f satisfies the eigenvalue equation Hyf = Ef. Then, the time evolution is rather simple
since Uy (t)f = e 'Ff, as is easily verified by differentiation. We do not expect this simple
oscillating state to be approximated by the free dynamics so we should eliminate these states from
our consideration. Let Hcons(Hyv) be the closed subspace of H orthogonal to the span of all the
eigenfunctions of Hy. We will call these states the scattering states of Hy. Given f € Heons(Hy),
can we find a state ;. € H so that as time runs to plus infinity, the state Uy (t)f looks approximately
like the free time-evolved state Ug(t)f, 7 In particular, we ask if given f € Heont(Hv ), does there
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exist a state f; € H so that

Uy (t)f —Up(t)fy — 0, as t — +oo. (1.2)

When it is possible to find such a vector f,, we have a simpler description of the dynamics Uy (t)
generated by Hy in terms of the free dynamics Up(t) generated by Hg. We can also pose the
question concerning the existence of a state f_ so that (L2) holds for t — —oo with f_ replacing
fyi.

We understand (2 to mean convergence as a vector in H, that is

lim |[Uy (t)f — Ug(t)f ||z = 0. (1.3)

t—+o0

Note that if f, is an eigenfunction of Hy with eigenvalue E, that is Hof, = Efy, then Uy (t)f, =
e "Ef, we would not expect the limit (L3) to exist. Hence, we want f, to be a state with
nontrivial free time evolution. This means that we want f to be a scattering state for Hp, that is,
Ty € Heont(Ho). For our specific example, Hy = —A, there are no eigenfunctions so Heont (Ho) = H.

Because the operators Up(t) and Uy (t) are unitary, the limit in (I3]) is equivalent to

lim ||f— Uy (t)*Uo(t)f4]% = 0. (1.4)
t—+o00
Since Hp = —A has no eigenvalues and only continuous spectrum, we expect that the limit
tEIJPoo Uy (t)*Up (L), =, (1.5)

if it exists, should exist for all states f; € H. Similarly, we might expect that the limit

lim Uy (t)*Up(t)f_ =1, (1.6)

t——o0
exists for all f € H. We will prove in section [2] that these limits do exist and define bounded
operators Q4 (Hv,Hp) on H called the wave operators for the pair (Ho, Hy).

If we consider the original problem: Given f € Heont(Hyv ), find fi so that the limit in (T2,
and the similar limit for t — —oo, it might seem strange that we consider Q1 (Hvy, Hp) rather than
the limit of the operators in the other order, namely, Ug(t)*Uy (t) on the scattering states of Hy .
As we will see, it is much more difficult to prove the existence of the latter limit. Let us consider,
however, the inner product (g, Q4 (Hy, Hp)f) for g in the range of the wave operator Q4 (Hy, Ho).
Using the definition and unitarity of the time evolution groups, we have

(9,Qx(Hv, Ho)f) = Tim (g, Uy (t)"Uo(t)f)
= Jim (Uo(t)"Uv(t)g, f)
= (Qx(Hv,Ho)"g,f). (1.7)
Since this holds for all f € H, it follows that for g € Ran Q4 (Hy, Hp),

lim UO(t)*uV(t)g = Q4 (Hy, Ho)*g. (1.8)

t—+oo
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Comparing this to [I3)), it is clear that we obtain the desired states by f+ = Q4 (Hy, Ho)*f. As
we will see in Proposition F] the existence of the strong limits of Uy (t)*Uy (t) on the scattering

states of Hy as t — +oo is related to asymptotic completeness.

The existence of the wave operators Q4 (Hv, Hp) allow us to define states f for any scattering
state f € Heont(Hyv). The map S: f_ — f plays an important role in scattering theory. This map
is called the S-operator for the pair (Hp, Hy).

Two technical remarks. 1) The subspace of scattering states Hcont(Hyv) is technically the
absolutely continuous spectral subspace of Hy (see section B). The unperturbed operator Hp =
—A has spectrum equal to the half-line [0, 00) and is purely absolutely continuous. In our setting,
the perturbed operator Hy has only absolutely continuous spectrum and possibly eigenvalues. In
general, it is a difficult task to prove the absence of singular continuous spectrum. There is an
orthogonal spectral projector Econts(Hyv) so that Heons(Hv) = Econs(Hv)H. We will use either
notation interchangeably. 2) The type of convergence described in (LX) and (L6 is called strong
convergence of operators. We say that a sequence of bounded operators A, on ‘H converges strongly
to A € B(H) if for all f € H, we have lim, oo Anf = Af.

2 Fundamentals of two-body scattering theory

The basic objects of scattering theory are the wave operators and the scattering operator. The
crucial property of the wave operators Q4 (Hy, Hp) is called asymptotic completeness. This condi-
tion guarantees the unitarity of the scattering operator. On the level of spectral theory, asymptotic
completeness means that the restrictions of the operators Hp and Hy to their absolutely continuous
subspaces are unitarily equivalent. From this viewpoint, scattering theory is a tool for studying
the absolutely continuous spectral components of the pair (Hp, Hy) of self-adjoint operators. The
theory has been developed to a very abstract level and the reader is referred to the references for
further details (for example, [32] [45]).

2.1 Wave operators

Another way to write (4] is
lim Uy (t)*Uo(t)fy =1, (2.1)

t—oo
so one of our first tasks is to ask whether the limit on the left side of (Z1]) exists.

Proposition 1. Suppose that the real-valued potential V € Lg"(Rd) and that d > 3. For any f € H,
the limit

th—>m Uy (t)*Up(t)f (2.2)

exists. This limit defines a bounded linear transformation Q (Hy, Hp) with ||Q4(Hv,Ho)|| = 1.
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The linear operator Q (Hy, Hop) is called a wave operator. We can also consider the limit in

@) as time runs to minus infinity. We introduce another wave operator Q_(Hy, Hp) defined by

s— lim Uy(t)*Uo(t) = Q_(Hy,Ho), (2.3)

t——o0

when the strong limit exists. Of course, we can introduce another pair of wave operators by
interchanging the order of Hy and Hp. We will consider these wave operators Q4 (Hp,Hy) in
section 2.3l when we discuss asymptotic completeness. We will see that it is much more difficult to
prove the existence of these wave operators. We prove Proposition [I] using the classic Cook-Hack
method (see, for example, [31, section XI.4]). In the following proof, we drop the Hamiltonians
from the notation for the wave operators and simply write Q4 for the wave operators Q4 (Hvy, Hp).

Proof. 1. The proof of Proposition [ relies on an explicit estimate for the free propagation given
by Ug(t). For any f € L'(R4) N L%(RY), and for t # 0, we have

Ca
[Uo (t)f]loo < WWHL (2.4)

This estimate is proved (see [I, Lemma 3.12]) using an explicit formula for Uy(t)f, t # 0. For any
f e L'(RY) N L?(RY), we have

TN [ iy
Uo(t)f)(x) = | — Iyl /Y £ (y) ady. 2.5
N =(5) e () ay (2.
This representation is based on the fact that the Fourier transform (see [B.4]) and ([B4)) of the
action of the free propagation group is

(F(Uo(£)F)) (k) = e ¥t (Ff) (k). (2.6)

Formally, formula (2.3]) is obtained by computing the inverse Fourier transform. This involves a

singular integral:

J ek (x—y) p—ilki*t gdy (2.7)
Rd

This integral can be done by first regularizing the integrand by replacing t by t — ie, for € > 0.
This results in a Gaussian function of k, and the Fourier transform is explicitly computable.
It is also a Gaussian function. One can then take e — 0 and recover the formula (23] since
f € L2(RY) N L' (RY) guarantees convergence of the integral.

2. Given this result ([2.4]), we proceed as follows. Let us define Q(t) by
Qt) = Uy (t) Up(t). (2.8)
From this definition, we compute for any f € L' (R4) N L?(R9Y)

Qr)—nf = JO%UV(S)*UQ(S)f ds

th Uv(s)*VUp(s)f ds. (2.9)
0
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Since Up(t) maps L#(R4) to itself and V € LP(R9Y), the integral on the right is well-defined. To
prove the existence of the limit, consider 0 << t; < t2 and note that from (Z9) and the estimate

24), we have

t2 t2
‘J UV(S)*VUQ(S)f ds S HV”LZ(Rd) J HUo(S)fHLoo(Rd) ds
t t
1 1 tz
< CallVils Il | 572 as
ty
< CallVliez@alfl ey~ 4% =574, (2.10)
It follows that for d > 3, we have the bound
1(Q(t2) — Q(t1)f]| < Cal|VII[IF]1 (1~ Y2 =) 9/2). (2.11)

Consequently, for any sequence t, — oo, the sequence of vectors Q(t,)f is a norm-convergent
Cauchy sequence so limy_,0o Q(t)f = . exists. We must show that the map f € L'(R4)NLZ(RY) —
f, defines a linear bounded operator. Since ||Q(tn)f|| < ||[f]|L2(ga), for any tn, it follows that
[l < |/f]l. This defines Q, : f — f, on a dense domain L'(R4) N L%(R%). A densely-defined
bounded linear operator can be extended to H without increasing the norm. Finally, one verifies
that s — lim; 0 Q(t) = Q by approximating any g € H by a sequence in L'(R4) N L2(R%) and
using a triangle inequality argument. O

The simplicity of this proof relies on the estimate (2.4]) for the group Up(t). It is more difficult
to consider the strong limit of Up(t)*Uy (t) since no general formula is available for Uy (t)f.

2.2 Properties of wave operators

The wave operators Q4 are bounded operators on H with |Q4| = 1. They satisfy a number of

important properties.

First, they are partial isometries in the sense that Ex = (% () are orthogonal projections. In
our case, Ex = I, the identity operator on H. In the general case, the operator E4 is the projection
onto the continuous subspace of Hp. For any f, g € H, we have

(Q:tf) Q:tg) = (fs E:I:g) = (E:tf) E:tg)) (212)
so that
[Q+f|| = [[ELf]. (2.13)

It follows that Q4 are isometries on E4+H and that the kernel of Q4 is (1 — EL)H. We have
that Q1 EL = Q4. The subspaces of H given by ELH are called the initial spaces of the partial
isometries Q4.

Second, the adjoints QY are partial isometries. Since (Q%)*Q% = Q107 , the operator
Fir = 040} satisfies FZ = Q. (Q101)04 =04 ELQF =F4, and in a similar manner F = Fy,
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so Fi are orthogonal projections. It follows that F1 Q% = QFf and that ||Q%f|| = ||[FLf||. One

can show that Fi are the orthogonal projections onto the closed ranges of the wave operators
Ran Q4 =FLH. The subspaces FLH are called the final subspaces of the partial isometries Q.

Proposition 2. The wave operators satisfy the following intertwining relations:
Qilo(t) = Uv(t)Qy
Uo(t)Ql QF Uy (t). (2.14)

Proof. These relations follow from the existence of the wave operators and the simple properties
of the unitary evolution groups. For any f € H, we have

Uv(t)Qf = lim Uy (t)Uy(s)"Uo(s)f

S o0

= lim [Uy(s —t)*Up(s — t)]Up (t)f
§—00

= lim [Uy(u)"Uo(w)Uo (t)f
U—0o0

= Q. Up(t)f, (2.15)

proving the first intertwining relation. The second is proven in the same manner. O

2.3 Asymptotic completeness

The existence of the wave operators Q4 (Hy, Hp) means the existence of a orthogonal projectors
onto the initial space Eyx = Q4(Hv,Ho)*Q+(Hv,Ho) = I and final subspaces Fr =
Q4 (Hv,Hp)Qi(Hv,Hp)* that are the ranges of the wave operators Q4 (Hv,Hp). The range of
the wave operators must be contained in the continuous spectral subspace of Hy .

Definition 3. The pair of self-adjoint operators (Ho, Hy) is said to be asymptotically complete if
F H=F H =Econt(Hv)H, that is, if Ran QO = Ran Q, = E.on(Hv)H.

In our situation, with Hy = —A, the spectrum of Hy is purely absolutely continuous and
Econt(Ho)H = H. In particular, Ex = 14. Also, neither operator Hy nor Hy has singular
continuous spectrum. In more general situations, one needs to prove that the perturbed operator
Hy has no singular continuous spectrum. In these more general cases, the subspace Heont(Hv)
must be taken as the absolutely continuous spectral subspace.

One can also consider wave operators Q4 (Hp,Hy) defined by switching the order of the
unitary operators in (Z2)):

Qi(HO) HV) =Ss— tll}Iinoo UO(—t)U\/ (t)Econt(HV)- (216)

At first sight, it would seem that the existence of these wave operators would be equivalent to
the existence of Q4 (Hv,Hp). However, we have no explicit control over the dynamics generated
by Hy such as formula (28). Consequently, it is difficult to use the Cook-Hack method to prove
the existence of the wave operators Q4 (Hp,Hyv). In fact, the existence of the wave operators
Q4 (Ho,Hy) is equivalent to asymptotic completeness.
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Proposition 4. Suppose that the wave operators Q. (Hy,Hp) exist. Then the pair of operators

(Ho, Hv) are asymptotically complete if and only if the wave operators Q4 (Hg, Hy/) exist.

Proof. 1. Suppose that both sets of wave operators exist. Then, we know that the projection
Econt(Hy) = Qi(Hv, Hv). But, we have

Uy (—t) Uy (t) = Uy (—t)Up(t) - Uo(—t)Uy (1), (2.17)
from which it follows that
Q4 (Hy,Hy) = Q4 (Hy, Ho)Qx(Ho, Hy ). (2.18)

This implies that Heons(Hv) € Ran Q4 (Hy,Hp). Since the existence of Q4 (Hy,Hp) means
that Ran Q4 (Hv,Ho) C Hcont(Hv), these two inclusions mean that Ran Q. (Hy,Hp) =
Q_ (HV) HO) = Hcont(HV)-

2. To prove the other implication, we assume that the wave operators Q4 (Hy, Hp) exist and
are asymptotically complete. Then, for any ¢ € Heont(Hy ), there exists a 1 € H so that ¢ =
Q. (Hy,Hp)Ww. This means that Ug(t)Pp — Uy (t)d converges to zero as t — +oo. By unitarity
of the operator Up(t), this means that limy_, o Up(—t)Uy (t)d = for all ¢ € Heone(Hy). This
implies the existence of Q. (Hp,Hy). The proof of the existence of the other wave operator is
analogous. O

We now turn to proving the existence of the wave operators Q4 (Hg, Hy/). Many methods have
been developed over the years in order to do this. The classic result of Birman [31], Theorem XI.10]
is perhaps the simplest to apply to our simple two-body situation. There are more elegant and
far-reaching methods. The Enss method, in particular, is based on a beautiful phase-space analysis
of the scattering process. A thorough account of the Enss method may be found in Perry’s book
[27]. Perry combined the Enss method with the Melin transform in [26] to present a new, clear, and
short proof of asymptotic completeness for two-body systems more general than those considered
here. Finally, the problem of asymptotic completeness for N-body Schrodinger operators with
short-range, two-body potentials, was solved by Sigal and Soffer [38]. They developed a very
useful technique of local decay estimates.

In preparation, we recall that a bounded operator K is in the trace class if the following
condition is satisfied. The singular values of a compact operator A are given by p;(A) = /Aj(A*A),
where {A;(B)} are the eigenvalues of B. We say that K is in the trace class if Zj i (K) < co. We
say that K is in the Hilbert-Schmidt class if } ; 15(K)? < co. We refer to [29] or [39] for details
concerning the von Neumann-Schatten trace ideals of bounded of operators.

Theorem 5. Let V € LP(R?) be a real-valued potential and d > 3. Then the pair (Ho, Hy)is
asymptotically complete.

Proof. 1. By Proposition[] it suffices to prove that Q4 (Hp, Hy) exist since we know from Proposi-
tion [[] that the wave operators Q. (Hy, Hp) exist. For any interval I C R and self-adjoint operator
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A, let E1(A) denote the spectral projection for A and the interval I. In the first step, we note that
E1(Ho)VE1(Hv), E1(Hv)VE1(Ho) € Th. (2.19)

The trace class property of these operators is easily demonstrated by proving that [V|'/2Ro(1)¥ is
a Hilbert-Schmidt operator for k > d/2 and noting that E;(Hg)Ro(i)~* is a bounded operator.

2. Next, we need the following result called Pearson’s Theorem in [31] Theorem XI.7]. Let a > 0
and define the bounded operator Jo = E(_q,q)(Ho)E(_q,q)(Hv). The trace class property (2Z.19)
means that HoJq — JaHv € Z7. The main result of [31, Theorem XI1.7] is that

s = lim_ Uo(t)"Jally (1)Econe (Hy ) (2.20)
exists. Let 0 < ap < a and choose ¢ € E(_q, a,)(Hv)Econt(Hv)H. We then have
Uo(t)"E(—q,a)(Ho)Uv(t)d = Up (1) JaUv(t)d, (2.21)

so by (220), the strong limit of the term on the left in (227]) exists.

3. We can now write the expression that gives the wave operator acting on any
(ORS E(fao,ao)(HV)Econt(HV)H:

Uo(t)" Uy (t)d = Uo(t)"[E(_q,a)(Ho) + Er\(—a,a) (Ho)IUv (1) . (2.22)

Since the strong limit of the first term on the right in (222]) exists by (2.21]), it suffices to prove
that
lim {Sup |UO(t)*ER\(—a,a)(HO)UV(t)d)”} =0. (2.23)
a—oo teR
Once this is proven, we can first take a — oo and then ap — oo so that the limit in (2:22) holds
for any d) S Econt(HV)H'

4. To prove ([2.23), we need some estimates. Let f(s) = s> +1 > 1. The fact that V is relatively
Ho-bounded means that

[f(Hy)f(Ho) '] < C1 < oo. (2.24)

Next, recall that ¢ € E(_q,,q,)(Hv)H, for 0 < ap < a, so that

[f(Hv)Uy ()| < sup f(s) =ad +1 < oco. (2.25)

Is|<ao

Finally, since f is invertible, we have

—1
[f(Ho) ™ Eg\(_a,a)(Ho) < [ inf f(s)] =(a?4+1)"". (2.26)

Is|>ao

Note that this vanishes as a — oo.



10 Peter D. Hislop SEI(ZBOS

5. Returning to ([2:23), we write the norm as

[Uo (t)"Er\ (—a,a) (Ho) Uy (t) ||

< |Uo(t)* - f(Ho)  "Eg\(—a,a)(Ho) - f(Ho)f(Hv) ™" - f(Hv ) Uy (t) ||

< f(Ho) ™ "By (—a,0) (Ho) | [IF(Ho)F(Hv) M| [f(HVIUv (1)

< Cilag+a®+1)7, (2.27)
independently of t. Taking a — oo proves (Z23)). O

The asymptotic completeness of (Hp,Hy) means that the absolutely continuous parts of
each operator are unitarily equivalent. Recall that our condition on the real-valued potential
V € LP(RY) means that V(Ho + 1)~ is compact. By Weyl’s Theorem (see, for example, [14]
Theorem 14.6]), the essential spectrum of Hy is the same as the essential spectrum of Hy that
is [0,00). Hence, the perturbation can add at most a discrete set of isolated eigenvalues with
finite multiplicities. The property of asymptotic completeness goes beyond this and establishes the
unitary equivalence of the absolutely continuous components.

3 The scattering operator

The existence of the wave operators Q. (Hy, Ho) guarantees the existence of the asymptotic states
fi. For any f € Ran Q4 (Hyv,Ho) C Econt(Hv)H, we have f+ = Q1 (Hy, Ho)*f. The S-operator
maps f_ to f,. It is a bounded operator on L?(R%). Furthermore, the S-operator commutes with
the free time evolution Up(t). This allows for a reduction of the S-operator to a family of operators
S(A) defined on L?(S91) called the S-matrix.

3.1 Basic properties of the S-operator

An important use of the wave operators is the construction of the S-operator on H. For any
f € Ran Qi(Hy,Hp), we have from section 1] that f+ = Q4 (Hy,Hp)*f, or, for example,
f=0Q f_. As a result, we can compute a formula for the map f_ — f, in terms of the wave
operators: Sf_ =1, = Q5 f=0Q%0Q_f_. Consequently, the S-operator is defined as the bounded
operator

S=070_:H - H. (3.1)
Proposition 6. Suppose Ran Q_ C Ran Q.. Then, the scattering operator is a partial isometry

on L2(R9Y).

Proof. To prove this, we need to show that S*S is an orthogonal projection. This follows from the
properties of the wave operators:

$*S=(Q10 ) Q0 )=0"[0,0%]10_=Q*F,Q_. (3.2)
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Since we assume that Ran Q_ C FiH, we have F,Q_ = Q_, so from B2), $*S = F_, an
orthogonal projection. If Hyo = —A, this operator F_ is the identity operator on . O

Since Ran S C Ran Q% C Econs(Ho)H, we have that S : Econt(Ho)H — Econt(Ho)H. An
essential property of the S-operator is that it commutes with the free time evolution, as stated in
the following proposition.

Proposition 7. The S-operator commutes with the free time evolution: [S,Up(t)] = SUp(t) —
Up(t)S = 0. Consequently, the S-operator satisfies Eo(I)S = SEo(I), where Eq(I) is the spectral
projector for Hyp and any Lebesgue measurable I C R.

Proof. This follows from the definition S = Q% Q_ and the intertwining properties ([2.14) of the
wave operators. We compute:

SUp(t) = Q% Uy (1) Q- = (Uy(—t)Q4)* Q- = (Q4Up(—1))* Q- = Up(t)S. (3.3)

O

It follows from Proposition [7] that for a wide class of reasonable functions ¢, we have the
general result Sd(Hp) = d(Hop)S.

The key property of the equality of the ranges of the wave operators (part of asymptotic
completeness) has important consequences for the S-operator.

Theorem 8. Suppose that for a pair of self-adjoint operators (Hp,Hy), we have
Ran Q_(Hvy,Ho) = Ran Q. (Hy, Hp). Then, the S-operator is a unitary operator on L*(R4).

To prove the unitarity of the S-operator, we recall from (32) that, in general, S*S = Q*F, Q_.
If Ran O = Ran Q,, we have F,Q_ = Q_. Furthermore, under our hypotheses, we have
O*Q_ = 1y 2(ga), so that $*S = 1. As for §§*, a similar calculation gives S§* = Q1 F_Q,. It
could happen that Ran Q. is strictly larger that Ran Q_. In this case, the kernel of SS* is
nontrivial and consists of any element of Ran Q. orthogonal to Ran Q_. In this case, SS* is
not invertible. Our condition that Ran QO = Ran Q. eliminates this possibility and we find
SS*=Q03F 0O, =050, =1. Hence, the S-operator S is invertible and S—1 =5*

3.2 The S-matrix

Because the S-operator commutes with spectral family for Hp, both operators admit a simultane-
ous spectral decomposition. This is achieved with the Fourier transform. We define the Fourier
transform of f € S(RY) by

(Ff)(k) = (2n)—d/2J e % f(x) d%%. (3.4)
Rd
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The inverse Fourier transform is defined, for any g € S(R%), by

(Flg)(x) = (zm—d/zj e™*g(k) dk. (3.5)
Rd

The Fourier transform extends to a unitary map on L2(R%). Note that for Hy = —A, and f € S(R9),

we have

(F(Hof)) (k) = [kI* (Ff) (k). (3.6)

It is convenient to write k = Aw € R?, where A € [0,00) and w € S4~T. With this decompo-
sition a function f(k) may be viewed as a function on S4~! parameterized by A € [0, c0).

We need a family of maps from L2(R4) — L?(S4") parameterized by the energy A. These
maps E4(A) can be defined via the Fourier transform ([3.4). For A € R, and any f € S(R?Y), we
define

(B2 (M) (w) = (2m)~9/2 JRd et wi(x) ddx, w e s (3.7)

The transpose of these maps, *E4(A) : L#(S41) — L2(R9).

The formula for the S-matrix involves the resolvent Ry(A) = (Hy — A?) of Hy. We will study
the resolvent in detail in section @ Provided JA? # 0 and —A? is not an eigenvalue of Hy, the
resolvent Ry(A) is a bounded operator. We need to understand the behavior of VRy (A + i€)V,
for A € R, in the limit as € — 0. That this limit exists as a compact operator is part of the
limiting absorption principle that is discussed in section LIl We will write VRy(A + 10)V for
this limit. Recall from section B.2] that the singular values of a compact operator A are given by
wi(A) = /Aj(A*A), where {Aj(B)} are the eigenvalues of B, and that K is in the trace class if
Zj 1 (K) < 0.

Theorem 9. Assume that the pair (Hg, Hy) is asymptotically complete with Hg = —A. Then the
S-matrix is the unitary family of operators S(A), for A € R, on L2(S¢~") given by

S(A) = Tp2(ga1y — AT ZE_(A)(V = VRy(A +10)V)'EL(A) = T2 (sa-1) — A(N). (3.8)
The operator A(A) is the scattering amplitude. It is given by
AN) = —mAYZE_(A)(V = VRV (A +10)V)YEL(A), (3.9)
and is in the trace class.

We can also express the S-matrix in terms of localization operators in the case the support
of V is compact. We assume that suppV C B(0,Ry). We choose two other length scales so that
0 <Ry <Rz <R3z <oo Let 0<x; € Cé(Rd) have the property that x;V =V and suppx> C
B(0,R2) and suppxs C B(0,R3). Finally, let W(¢) denote the commutator W(d) = [—A, ¢], for
any ¢ € C2(R%). The following representation is due to Petkov and Zworski [28].

Theorem 10. Let V € C3(R%) and consider the S-matrix S(A), A € R, as a unitary operator on
L2(S91). Then, the S-matrix has the form

S(A) = Tragat) +AQA), AER, (3.10)
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where A(A) is in the trace class. Explicitly, the scattering amplitude A(A) has the form

A(A) = caA PE- (MW (x2)Ry (AW (x1) E+ (N), (3.11)

where the constant cq = —i(2mr)~42(1-4)/2,

4 The resolvent and resonances

We now switch our perspective and return to the study of the resolvent of the Schrédinger operator
Hy. We will connect these results with the S-matrix in section We recall from section [2] that
the spectrum of a self-adjoint operator A, denoted by o(A), is a closed subset of the real line. The
discrete spectrum of A, denoted 0gjsc(A), is the subset of the spectrum consisting of all isolated
eigenvalues with finite multiplicity. The complement of the spectrum is called the resolvent set
of A, denoted by p(A) = C\o(A). The resolvent of a self-adjoint operator A is defined, for any
z € p(A), as the bounded operator Ra(z) = (A —z)~'. It is a bounded operator-valued analytic
function on p(A). This means that about any point zo € p(A), the resolvent Ra(z) has a norm
convergent power series of the form

Ralz) =) Ajlz—2z), (4.1)
j=0

for bounded operators A; depending on zp. We note that for a self-adjoint operator A, the set
C\R is always in the resolvent set.

For a Schrédinger operator Hy = —A 4V, we reparameterized the spectrum by setting z = A2
and write Ry, (z) = Ry(A). Under this change of energy parameter, the spectrum in the complex
A-plane is the union of the line JA = 0 and at most finitely-many points of the form iA; on the
positive imaginary axis A; > 0. These points correspond to the negative eigenvalues of Hy so that
z=—\ € Ouisc(A).

Let xv € CP(R) be a compactly-supported function so that xvV = V. We are most concerned
with the properties of the localized resolvent Ry (A) = xvRv(A)xv. The operator-valued function
Rv (M) is defined for JA > 0 and A # iA;, with A; > 0 and _)\jz an eigenvalue of Hy. We would like
to find the largest region in the complex A-plane on which Ry (A) can be defined.

4.1 Limiting absorption principle

One might first ask if the bounded operator Ry (A) has a limit as JA — 0, from JA > 0. That is,
does the boundary-value of this operator-valued meromorphic function exist as a bounded operator
for A € R? Because of the weight functions xv the answer to this question is yes. In more general
settings, this result is part of what is referred to as the limiting absorption principle (LAP). The
LAP plays an important role in scattering theory.
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Theorem 11. The meromorphic bounded operator-valued function Ry (A) on the open set p (Hy ) =
A€ C|IN>0,—A? & 04ise(Hy)} admits continuous boundary values Ry (A) for A € R, except pos-
sibly at A = 0. That is, limc_,0+ Rv (A + i€) exists for all A € R\{0}, and is a bounded, continuous
operator-valued function on that set.

The proof of this is given for more general potentials and N-body Schrodinger operators in,
for example, [9, chapter 4]. The key ingredient is a local commutator estimate called the Mourre
estimate, due to E. Mourre [22]. Let A = (1/2)(x-V 4+ V -x) be the generator of the unitary group
implementing the dilations x — e®x, for 8 € R, on L?(R%). One formally computes the following
commutator, assuming VV exists:

[Hy, Al = 2Ho — x - VV = 2Hy — (2V +x - VV). (4.2)

Let I C R be a closed interval. Let Ey/(I) be the projector for Hy and the interval I. We conjugate
the commutator in (2] by this spectral projector:

Ev(I)[Hv, AlEv(I) = 2Ev (DD HvEv (I) — K(V 1), (4.3)

where K(V,I) = Ev(I)(2V + x - VV)Ev () is a compact, self-adjoint operator due to the properties
of V.

We now assume that there are no eigenvalues of Hy in the interval I. For I C R, this means
that there are no positive eigenvalues of Hy. In our situation, this is true (see [, chapter 4]).
Then, the spectral theorem implies that s —lim;_0 Ev(I) = 0. Since K(V,I) is a compact operator
and K(V,I) = K(V,I)Ev(I), it follows that limjy_ [[K(V,1)|| = 0. Furthermore, if I = [Eq, E3],
then 2E(I)HyE(I) > 2E;. Given any € > 0, we choose I so that [I| is so small that |[K(V,I)|| < e.
Consequently, the commutator on the left in (2.9) is strictly nonnegative and bounded below:

Ev(I)[Hy, AJEv(I) > (2E1 — €)Ev(I) >0, |I|=E,—E; sufficiently small. (4.4)

One of the main results of Mourre theory is that for any interval I for which a positive
commutator estimate of the form (£4) holds, the boundary value of the weighted resolvent exists.
More precisely, for any o > 1, one has

lim {sup (A2 +1)"%2(Hy —E —ie) "(AZ + 1)“/2||} < 0. (4.5)
e—0" [ Eer

This technical estimate is the heart of the LAP. Estimate (43 is proved using a differential
inequality-type argument. In our case, the function xy serves as the weight for the resolvent. One
also proves that the limit in (@3H) is continuous in E € 1. If there are no embedded eigenvalues, as
in our case, this holds for all E > 0.

Let us summarize what we have proved so far. The cut-off resolvent Ry (A) is meromorphic on
C™* with poles having finite-rank residues at at most finitely-many values i\j, with A; > 0 such that
—?\jz is an eigenvalue of Hy. Using the LAP, we can extend the cut-off resolvent Ry (A) onto the
real axis as a bounded operator Ry (A), for A € R\{0}. This extension is continuous in A. Hence,
the cut-off resolvent is meromorphic on C* and continuous on C+\{0}.
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4.2 Analytic continuation of the cut-off resolvent of H,

Our cut-off resolvent Ry (A) is meromorphic on C* and continuous on the real axis, except possibly
at zero. It is now natural to ask if the operator has a meromorphic extension to the entire complex
A-plane as a bounded operator. We first consider the simpler case when V = 0. In this case,
let x € Cgo(Rd) be any compactly-supported cut-off function and consider the compact operator
Ro(A) = xRo(A)x. We mention that the kernel of this operator is known explicitly:

i A (d=2)/2 )
Ro(W(xy) = +x(x) (m) HY ) (A= yx(w), (4.6)
where Hjm(s) is the Hankel function of the first kind with index j. We remark that the LAP is
not necessary in order to construct an analytic continuation of the free cut-off resolvent Ro(A).
An alternate and very nice method, based on the explicit formula (@8], is presented in Vodev’s
review article [44].

We are tempted to define the continuation Ro(A) of Ro(A) for JA < 0 as the operator xRo(—A)x
since, if A € C—, then —A € C* and xRo(—A)x is well defined away from 0gjsc(Hv). Clearly,
Ro(A) = xRo(—A)x for JA < 0 is a meromorphic function in C~. The problem with this extension
is that the two functions Ro(A) and Ro(A) do not match up on the real axis.

In order to understand this, recall that in the z-plane, the resolvent (Ho —z)~!

is analytic on
C\[0,00). For Ap > 0 and € > 0, we are interested in the discontinuity of the resolvent across the
positive z-axis at the point ?\% > 0. We can measure this by computing the following limit of the

difference of the resolvents from above and below the point 7\% > 0:
(Ho — (A§ +1ie)) ™" — (Ho — (AF —1ie)) ', (4.7)

as € — 0. The point z, = )\% + ie has two square roots in the A-plane. Let Ao = @/7\3 + €2. For
zy, let © be the angle in the first quadrant so that 0 < 0 < 7t/2. Then, the the two square roots
are +Ao[cos(0/2) 4 isin(8/2)]. The positive square root lies in C* in the A-plane so we work with
this root Ay (€) = Aglcos(0/2) +isin(0/2)]. Similarly, the point z_ = A% — ie has two square roots
+Aolcos(8/2) —isin(0/2)]. Note that because z_ lies in the fourth quadrant, the imaginary part is
negative. We choose the negative square root of z_ because it lies in C* and call it A_(€). Finally,
for € small, we may write AL (e) = +A¢ + ie € CT. Consequently, the jump discontinuity in (€7
across R* in the z-plane corresponds to studying

i%[RQ (Ao +1i€) — Ro(—Ap + i€)], (4.8)

in the A-plane. Both terms in (48] are well-defined since the points £A+1ie have positive imaginary
parts € > 0.

We will compute the limit as € — 0 in (£8) and show that it is nonzero. Furthermore, we will
see that the limit extends to an analytic function on C. This is the term that must be added to
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Ro(—A), for TA < 0, in order to obtain a function that is continuous (and actually analytic) across
JA = 0. We follow a calculation in [19} sections 1.5-1.6]. For f € C3°(R4) and JA > 0, we have
_ e (FF)(E)

Ro(Mf)(x) = (2 d/zj iox _(FOE) gy 4.9

Ro(MIA)(x) = (2m) /2 | et i ate (4.9)
The Fourier transform Ff is a Schwartz function so it decays rapidly in [€] (see, for example, [30]
section IX.1, Theorem IX.1]). Since JA > 0, this guarantees that the integral in ([@9]) is absolutely
convergent. Switching to polar coordinates & = pw, with p > 0 and w € S4~1, we obtain for the
integral

e (FF o ; i
Jgdeﬁﬂé?%%%jddazjéldqu dpeww“975§:%%$g- (4.10)

In order to compute Ro(Ag + i€), we deform the p-contour into the lower-half complex p-
plane in a small, counter-clockwise oriented semicircle centered at Ag. The Fourier transform Ff
extends to an analytic function (see, for example [30, section IX.3]) so there is no difficulty with
this. Similarly, in order to compute Ro(—Ao + i€), we note that this is the same as computing the
integral in (£I0) with A = Ag —ie. This allows us to deform the p-integral into the upper-half
complex p-plane and integrate around a small, clockwise semicircle centered at Ag. Subtracting
the two terms as in (L)), we obtain

RMAO+¢ey—RM—AO+¢e):J ipwx P (FF)(pw) (4.11)

de dp e -
Sd—1 T'(Ao) (p2 — (Ao +1€)?)
where T'(Ap) is a counter-clockwise oriented circle about Ag > 0. Evaluating the integral by the
residue theorem, we obtain for Ag > 0,

i Ag?

gig%)[(Ro(?\o +1ie) — Ro(—Ao +1€))f)(x)] = I ma 2 qu dw (FF)(Aow) ePow > (4.12)

We define the kernel M(A;x,y) by

1

i
MAx,y) = EW

J dw eyl (4.13)
gd—1

Undoing the Fourier transform in (£12), we can write the limit in ([AI2]) as

T [(Ro(Ao + ie) — Ro(—Ao + 1€))1)(x)] = AS*ZJ Moix,y)f(y) dly.  (4.14)
Rd
Because the integration is over a compact set, the sphere, the kernel M(A;x,y) extends to an
analytic function on C. Furthermore, recalling that we have compactly supported cut-off functions,
the localized kernel

M x,y) = x(X)IMA; X, y)x(y), (4.15)

is square integrable for any A € C. Hence, the operator M(A) is an analytic, operator-valued
function on C with values in the Hilbert-Schmidt class of operators (see [29] section VI.6]).
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We can now define an extension Ro(A) of the cut-off resolvent Ro(A) from JA > 0 to C~\ (—oo, 0]
by

Ro(A) = xRo(A)x = XRo(—A)x + A 2xM(A)x, JA < 0. (4.16)
We then have for A > 0,

lim xRo(A —ie)x = lim[xRo(—A+ie)x + A4 *XM(A —ie)x]
e—0 e—0
= XRo(A)x, (4.17)

and thus we have continuity across the positive A half-axis. It can be checked that this actually
gives analyticity in a neighborhood of R\(—o0,0]. As for the open negative real axis (—o0o,0), we
note that M(—A) = M(A) since the sphere is invariant under the antipodal map w — —w. A
similar analysis can be performed for d > 2 even. We summarize the main results on the analytic
continuation for the free cut-off resolvent.

Proposition 12. Suppose that the dimension d > 3 is odd. The cut-off resolvent xRo(A)x of the
Lapalcian admits an analytic continuation as a compact operator-valued function to the entire
complex plane. In the case d = 1, there is an isolated pole of order one at A = 0. When the
dimension d > 4 is even, the cut-off resolvent admits an analytic continuation as a compact
operator-valued function to the infinite-sheeted Riemann surface of the logarithm A. In the case
d = 2, there is a logarithmic singularity at A = 0.

4.3 Meromorphic continuation of the cut-off resolvent of Hy

We can use Proposition[I2 and the second resolvent formula to obtain a meromorphic continuation
of the resolvent Ry (A). First, we write the second resolvent equation for A € C*,

Rv(A) =Ro(A) = Rv(A)VRo(A). (4.18)
Conjugating this equation by the cut-off function xv and using the fact that xvV =V, we obtain
Rv(A) = xRo(A)x — Rv (M) VxRo(A)x. (4.19)

Solving this for Rv(A), we obtain

Rv (A (1 + VxvRo(A)xv) = xvRo(A)xv. (4.20)

We use this equality in order to construct the meromorphic continuation of Ry (A).

The right side of (420 has an analytic continuation as does the second factor on the left. We
need to prove that this factor (1 + VxvRo(A)xv) has a continuation that is boundedly invertible,
at least away from a discrete set of A.

Recall that an operator of the form 14 K, for a bounded operator K, is boundedly invertible

if, for example, ||K|| < 1. The inverse is constructed as a norm convergent geometric series.
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There is another sufficient condition for invertibility. If the operator K is compact, then the

Fredholm Alternative Theorem [I4, Theorem 9.12] states that either K has an eigenvalue —1, and
consequently, the operator 1+ K is not injective, or 1 4 K is boundedly invertible. It follows from
section that the operator K(A) = VxvRo(A)xv in our expression [@20) extends to a compact
operator-valued analytic function. In this setting, the Analytic Fredholm Theorem [29, Theorem
VI1.14] is most useful.

Theorem 13. Suppose that K(A) is a compact operator-valued analytic function on a open connected
set QO C C. Then, either the operator 1+K(A) is not invertible for any A € Q, or else it is boundedly
invertible on Q except possibly on a discrete set D of points having no accumulation point in Q.
The operator is meromorphic on Q\D At those points, the inverse has a residue that is a finite-rank
operator.

This theorem tells us that T+K(A), the first factor on the right of ([@.20)), is boundedly invertible
for A € C except at a discrete set of points. Since we know that Ry (A) is invertible for JA > 0,
except for a finite number of points on the positive imaginary axis corresponding to eigenvalues, it
also follows from (£.20) that the discrete set of points at which 1+ K(A) fails to be invertible lies
in C™ if d is odd, or on A\C™" if d is even. Consequently, the Analytic Fredholm Theorem allows
us to establish the existence of a meromorphic extension of Ry (A).

Proposition 14. Let V € C3(R%) be a real-valued potential and let xy € CP(R4) be any function
such that xvV = V. Then the cut-off resolvent Ry (A) admits a meromorphic extension to C if d
is odd and to A if d is even. The poles have finite-rank residues.

4.4 Resonances of Hy

Having constructed the meromorphic continuation of the cut-off resolvent Ry(A), we can now
define the resonances of Hy .

Definition 15. Let V € C%(Rd) be a real-valued potential. The resonances of Hy are the poles of

the meromorphic continuation of the compact operator Ry (A) occurring in C~ for d odd, or on
A\CT for d even.

This definition can also be extended to complex-valued potentials. The residues of the exten-

sion of Ry (A) at the poles are finite rank operators. If Ag € C™ is a resonance, then a resonance
state Py, € H corresponding to Ag is a solution to

(1T + VxvRo(Ao)xv)ba, =0. (4.21)

The poles are independent of the cut-off function used provided it has compact support and satisfies
xV=V.



CUBO

Scattering theory and resonances ... 19
14, 3 (2012)

4.5 Meromorphic continuation of the S-matrix

The meromorphic continuation of the cut-off resolvent Ry (A) permits us to mermorphically con-
tinue the S-matrix S(A) as a bounded operator on L%(S4) from A € C* to all of C or A depending
on the parity of d. This follows from formula B8] of Theorem Because of the compactness
of the support of V, the operators EL(A), and their transposes, admit analytic continuations.
This property, together with the continuation properties of Ry (A) and formula (3.8), establish the
meromorphic continuation of S(A). For complex A, the S-matrix is no longer unitary. The relation
S(A)S(A)* =1, however, does continue to hold for A € C (or A).

Theorem 16. The S-matrix S(A) admits a mermorphic continuation to C if d is odd, or to the
Riemann surface A, if d is even, with poles precisely at the resonances of Hy. The order of the
poles are the same as the order of the poles for Hy and the residues at these poles have the same
finite rank.

For the Schrodinger operator Hy/, the resonances may be defined as the poles of the meromor-
phic continuation of the cut-off resolvent Ry (A), or in terms of the meromorphic continuation of
the S-matrix S(A). From formula ([B.8]), it follows that the poles of the meromorphic continuation
of the S-matrix are included in the poles of the continuation of the resolvent. It is not always true
that the scattering poles, defined via the S-matrix, are the same as the resolvent poles. A striking
example where the scattering poles differ from the resolvent poles occurs for hyperbolic spaces.
However, in the Schrodinger operator case considered here, these are the same. A proof is given
by Shenk and Thoe [37].

5 Resonances: Existence and the counting function

The resonance set Ry for a Schrodinger operator was defined in Definition [I5] as the poles of the
meromorphic continuation of the cut-off resolvent Ry (A) to C for d > 3 odd or to the Riemann
surface A for d > 4 even, together with their multiplicities. There are two basic questions that

arise:

(1) Existence: Do resonances exist for Schrodinger operators Hy with our class of potentials?

(2) Counting: How many resonances exist?

5.1 Existence of resonances

There are many different proofs of the existence of resonances for various quantum mechanical
systems. Resonances are considered as almost bound states or long-lived states that eventually
decay to spatial infinity. To understand this physical description, let us consider the time evolution
of a resonance state o corresponding to a resonance energy zo = Eo—il" (in the z-parametrization),
with T'> 0. A resonance state P solves the partial differential equation Hypo = zoWo and is
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purely outgoing. Since V has compact support, the function ¢ satisfies —Alpg = zoWo for |x| large
enough. The outgoing condition means that the radial behavior of a component of {y with angular
momentum £ > 0 is a Hankel function of the first kind HEL)_Z)/ZH(./ZO\X\). Such a function g
grows exponentially as [x| — oo and is not in H.

We can formally compute Uy (t)1o by expressing the time evolution group as an integral of
the resolvent over the energy
—1

Uy () o = 5 JR e "ERy(E) dE. (5.1)

Performing a deformation of the contour to capture the pole of the resolvent at zo and applying
the residue theorem, one finds that the time evolution behaves like e~ oty = e~ Tte= oty The
factor e "Eo1py has an oscillatory time evolution similar to that of a bound state with energy

tr

Eo, whereas the factor e™" is an exponentially decaying amplitude. The lifetime of the state is

T =T"". This is, roughly, the time it takes the amplitude to decay to e~ times its original size.

As noted above, there is no such state o € H corresponding to a resonance zp in the sense
that Hylo = zoWo. Since Hy is self-adjoint and zp has a nonzero imaginary part, the solutions of
this eigenvalue equation are not in H. There are, however, approximate resonance states obtained
by truncating such Py to bounded regions, say K € R%. The truncated state xx\o € H has

—rte—iEot

an approximate time evolution like e XxWo showing that the amplitude of the resonance

state in the bounded region K decays exponentially to zero.

A typical situation for which resonances are expected to exist is the hydrogen atom Hamil-
tonian Hy = —A — |x|7" acting on L?(R3), perturbed by an external constant electric field
Vpert(x) = £x1 in the xq-direction. The total Stark hydrogen Schrédinger operator is Hy(€) =
—A—|x|7" 4+ Ex1. When £ = 0, the spectrum of Hy consists of an infinite sequence of eigenvalues
E, = —1/4n? plus the half line [0,00). When & is turned on, the spectrum of Hy (&) is purely
absolutely continuous and equal to exactly the entire real line. There are no eigenvalues!

It is expected that the bound states E, of the hydrogen atom have become resonances for
E # 0. These finite-lifetime states are observed in the laboratory. These resonances, in the z-
parametrization, have their real parts close to the eigenvalues E,. Their imaginary parts are
exponentially small behaving like e~*/€. This means their lifetime is very long.

The proof of the existence of these resonances for the the Stark hydrogen Hamiltonian was
given by Herbst [I3] in 1979. The method of proof is perturbative in that the electric field strength
is assumed to be very small.

More generally, there are various models for which one can prove the existence of resonances
using the smallness of some parameter. The semiclassical approximation is the most common
regime. The quantum Hamiltonian is written as Hy(h) = —h?A + Vo + V; and h is considered
as a small parameter. For a discussion of resonances in the semiclassical regime, see, for example,
[14, Chapters 20-23]. For more information on the semiclassical approximation for eigenvalues,
eigenfunctions and resonances, see, for example, the monographs [10, 18] [33].
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If we inquire about the existence of resonances for the models studied here, Hy = —-A +V,

with V € C$(R?), with no parameters, the proof is much harder and requires different techniques.

Melrose [19] gave perhaps the first proof of the existence of infinity many resonances for such
Hy. The proof holds for smooth, real-valued, compactly-supported potentials V € C3(R%), for
d > 3 odd. The proof requires two ingredients that will be presented here without proof.

5.1.1 Small time expansion of the wave trace

The wave group Wy (t) associated with the Schrodinger operator Hy is defined as follows. Let 0¢
denote the partial derivative 0/0t. Consider the wave equation associated with Hy:

(02 —Hy)u=0, u(t=0) =up, Ou(t=0)=uy. (5.2)

The solution can be expressed in terms of the initial conditions (ug, ;). The time evolution occurs
on a direct sum of two Hilbert spaces Hrg = {(uo,u1) | f[\Vuo|2 + |u1]?] < oo}. This is the space
of finite energy solutions. In two-by-two matrix notation, the time evolution acts as

W (1) < o ) = ( b ) (5.3)
uq oiu

The infinitesimal generator of the wave group Wy (t) is the two-by-two matrix-valued operator

[ 0 1
AV:<HV 0). (5.4)

The evolution group Wy (t) is unitary on Hpg. Similarly, the free wave group Wy (t) is generated
by Ao that is expressed as in (5.4) with V = 0. If Hy = —A + V > 0, then this operator can be
diagonalized. The diagonal form is

(VH_V 0 ) 59

0 —vHyvy

In this case, the wave group Wiy (t) can be considered as two separate unitary groups e*vHvt
each acting on a single component Hilbert space.

The basic fact that we need is that the map t € R — Tr[Wy (t) — Wy(t)] is a distribution.
This means that for any p(t), a smooth, compactly-supported function, the integral

| et pmiwy (e - woro) (5.6)
R

is finite and bounded above by an appropriate sum of semi-norms of p. The distribution has a
singularity at t = 0 and the behavior of the distribution at t = 0 has been well-studied. For d > 3
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odd, the wave trace has the following expansion as t — 0:

(d—=1)/2
TrWy(t) —Wo(t)] = ) w(V)(=1)4 28412 (y)
j=1
N
+ ) WP (), (5.7)
j=(a+1)/2

where the remainder T (t) € C2N"9(R). The first sum consists of derivatives of the delta function
5(t) at zero. We recall that for any smooth function f, these distributions are defined as (8, f) =
(=1)£0)(0). The second part of the sum consists of distributions that are polynomial in t. The
coefficients w; (V) are integrals of the potential V and its derivatives. These are often called the
‘heat invariants’. The first three are:

[
wi(V) = ciq V(x) d%x
Jra
[
wa(V) = c24 VZ(x) d%x
Jra
[ 3 2y ad
wi(V) = c3a| (V(x)+|VVX)) d%, (5.8)
Jra

where the constants ¢ ¢ are nonzero and depend only on the dimension d.

For some insight as to why the trace in (L.7) exists, note that for p € C$°(R), a formal
calculation gives

JR p(t) Tr[Wh (t) — Wo(t)] dt = Tr( (Fp)(Av) — (Fp)(Ao)). (5.9)

The Fourier transform Fp is a smooth, rapidly decreasing function. Because V has compact support,
the difference (Fp)(Av)—(Fp)(Ap) is in the trace class. This follows from the fact that the difference
of the resolvents Ry (z)* — Ry (z)* is in the trace class for Jz # 0 and k > d/2.

5.1.2 Poisson formula

The key formula that links the resonances with the trace of the difference of the wave groups is
the Poisson formula. In our context it was proved by Melrose [20]. It is named this because of
the analogy with the classical Poisson summation formula. Let f € C*®°(R9) be a Schwarz function
meaning that the function and all of its derivatives decay faster that (||x||)~™N, for any N € N. The
classical Poisson summation formula states that

> flxtk) =) (Ff)(k)er™ k. (5.10)
kezd kezd
The Poisson formula for the wave group states that

TrWy (1) —Wo(t)l = D m(E)el'ls, t#0, (5.11)
EERYV
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where m(§) is the algebraic multiplicity of the resonance &. This multiplicity is defined as the rank
of the residue of the resolvent at the pole & or, equivalently, by the rank of the contour integral:

m(&) = Rank (J R(s) ds> , (5.12)
Ye

where y¢ is a small contour enclosing only the pole & of the resolvent. It is important to note
that the Poisson formula (5.11]) is not valid at t = 0.

5.1.3 Melrose’s proof of the existence of resonances

Melrose [19] section 4.3] observed that the Poisson formula (B.I1]) and the trace formula (57) can
be used together to prove the existence of infinitely many resonances for Schrodinger operators.

Theorem 17. Let us suppose that d > 3 is odd and that V € CP(R%R). Suppose also that
wj(V) # 0 for some j > (d+ 1)/2. Then Hy has infinitely many resonances. In particular, for
d = 3, since w2 (V) = ¢z IVZ(X) dx, for a positive constant c; > 0, if V € CP(R3;R) is nonzero,
then Hy has an infinite number of resonances.

Proof. 1. Suppose that Hy has no resonances. Then the right side of the Poisson formula (511 is
zero. On the other hand, it follows from the small time expansion (5.7)) and the assumption that
wj (V) # 0 for some j > (d + 1)/2 that for t > 0 the right side of the expansion (5.7)) is nonzero.
Note that for t > 0 all the contributions from the delta functions vanish. Hence we obtain a
contradiction. Consequently, there must be at least one resonance.

2. If there are only finitely-many resonances, then the sum on the right in (5I1)) is finite and the
formula can be extended to t = 0. In particular, at t = 0, it is a finite positive number greater than
or equal to the number of resonances. On the other hand, looking at the trace formula (&7), if
only one or more of the coefficients w; (V) # 0 for j > (d+1)/2, then the trace is zero at t = 0 (the
coefficients of the derivatives of the delta functions being zero), so we get a contradiction. Hence,
at least one of the coefficients of a delta function term is nonzero. Then the trace formula indicates
that the distribution Tr[Wy (t) — Wy (t)] is not continuous at t = 0 whereas the Poisson formula
indicates that it is continuous through t = 0, and we again obtain a contradiction. Consequently,

there must be an infinite number of resonances. O

We remark that in the even dimensional case for d > 4, S4 Barreto and Tang [36] proved
the existence of at least one resonance for a real-valued, compactly-supported, smooth nontriv-
ial potential. Having settled the question of existence, we now turn to counting the number of

resonarmnces.
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5.2 The one-dimensional case: Zworski’s asymptotics

As with many problems, the one-dimensional case is special since many techniques of ordinary
differential equations can be used. The most complete result on resonances for Hy = —d?/dx? +V
on L?(R) with a compactly-supported potential was proven by Zworski [46].

Theorem 18. Let V € L$°(R). Then the number of resonances Ny () with modulus less that r > 0

satisfies: 5
Ny (r) == ( sup Ix—yl) T4 0(r). (5.13)
T X,y€Esupp V
There are extensions of this result to a class of super-exponentially decaying potentials due to
R. Froese [I1]. We will not comment further on the one-dimensional case.

5.3 Estimates on the number of resonances: Upper bounds

The resonance counting function counts the number of poles, including multiplicities, of the mero-
morphic continuation of the cut-off resolvent in C~ for d odd, and on A for d even. We will
concentrate on the odd d-dimensional case, although we will give comments on the even dimen-

sional case too. For any r > 0, we define Ny/(r) as
Ny (1) = #{ | A;(V) satisfies [A; (V)] < r and TA;(V) < 0} (5.14)

This function is monotone increasing in r. It is the analogue of the eigenvalue counting function
Ny (r) studied by Weyl to count the number of eigenvalues of the Laplace-Beltrami operator on
a compact Riemannian manifold M with size less than r > 0. The Weyl upper bound on the

eigenvalue counting function is

Na(r) < caVol(M)(r)9, (5.15)
where (1) = V1 +12.

It is natural to ask if the resonance counting function Ny (r) satisfies a similar upper bound.
Since Melrose’s early work [2I], many people have established upper bounds on Ny (r) with in-
creasing optimality. Zworski [49] presents a good survey of the state-of-the-art up to 1994. The
optimal upper bound, having the same polynomial behavior as Weyl’s eigenfunction counting func-
tion (515, was achieved by Zworski [47]. A significant simplification of the proof was given by
Vodev [41].

Theorem 19. For d > 3 odd, the resonance counting function Ny (r) satisfies
Ny (r) < C(d, V)(r)¢, (5.16)
for a constant 0 < C(d, V) < co depending on d and V.

A sketch of the proof of this theorem will be given following the beautiful exposition of Zworski
[49, section 5], using Vodev’s simplification [4I]. One basic idea of the proof is to find a suitable
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analytic or meromorphic function that has zeros exactly at the resonances. Suppose h(A) is one
such function analytic on C. Then one can count the number of zeros using Jensen’s formula. This
formula relates the number of zeros of h to growth properties of h. If a circle of radius r > 0 crosses
no zero of h, if h(0) # 0, and if ax are the zeros of h inside the circle, then Jensen’s formula states

that
Ny (r)

] 27 )
lo —— | log|h(re'®)| d6 — log [n(0)|. £ 17
k=1 (|ak) 27TJ0 glh({re™)l g [h(0)] (5.17)

If we only sum over those zeros inside the circle of radius r/2, we have that log(r/|ax|) > log2, so
that

27
Nn(r/2)llog 2] < ;—HJ |log [h(re*®)|| d@ + |log [h(0)]l. (5.18)
0

This inequality shows that it suffices to bound h on circles of radius 2r in order to count the
number of zeros inside the circle of radius r > 0. We will use some inequalities for singular values,
the proofs of which can be found in [39].

Proof. 1. The first observation is that the operator (VRo(A)xyv)4*! is in the trace class for JA > 0.
Consequently, the following determinant is well-defined:

h(A) = det(1 — (VRo(A)xv )4t ). (5.19)

This function is analytic on C* with at most a finite number of zeros corresponding to the eigen-
values of Hy. It follows from section [£3] that this function has an analytic continuation to all of
C. Furthermore, the zeros of this function for JA < 0 include with the resonances of Hy that are
given as the zeros of the analytic continuation of 14 VR (A)xv according to (£20). The problem,
then, is to count the number of zeros of the analytic function h(A) inside a ball of radius r > 0 in
C. By Jensen’s inequality (5I])), it suffices to obtain a growth estimate on h of the form

Ih(A)] < Crec2N, (5.20)

2. We first estimate h in the half space JA > 0 using the fact that V has compact support contained
inside of a bounded region Q. Let —Aq > 0 denote the Dirichlet Laplacian on Q. By Weyl’s bound
(5-15), the j* eigenvalue A;(Q) of —Ag grows like A;(Q) ~ j%/4. Furthermore, we have AgV = AV.
Using these ideas and the simple inequality for the singular values p;(AB) < [|A]|p;(B), we have

B xvRoA)xv) = pi((—Aa + 1) (=Aa + 1) 2xvRo(A)xv)
< l(=Aa + D)2 v RoNxv | 1((—Aa +1)71/2)
< CjVe, (5.21)

It is important to note that the operator xvRo(A)xv : L?(R4) — H'(RY) is bounded uniformly
in A, for JA > 0. Consequently, the norm ||(—=Aq + 1)'/2xyvRo(A)xv/| is bounded uniformly in
A in the upper half space. Upon squaring this norm, the operator —Agn can be replaced by —A
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because of the support of xv. Since pmix—1(AB) < ux(A)um(B), we have ppj_; (A?) < uj(A)z,
and consequently, for all large j

W (xvRo(A)xv)4H!) < ¢j-lart/a, (5.22)

It follows that [h(A)| < C for JA > 0.

3. For JA < 0, we make use of the following formula from scattering theory used already in section
For A € R, we have

Xv(Ro(A) = Ro(—A))xv = ca(A™%) "Ex(MEx (M), (5.23)
where Ey(A) : L2(RY) — L2(S91) is given by
ExNg)(w) = [ e (xlgly) i, (5:21)

and 'Ey(A) denotes the transpose of this operator. This formula can be extended to all of C. We
compute the singular values of the operator on the left in (5.23)):

1 (xv (Ro(A) = Ro(—A))xv) < CIAIY2e2 M (B, (V). (5.25)

Since By (A)* : L2(S41) — L2(RY), the operator Ey(A)*Ey(A) : L2(S41) — L2(S4~1). This is a
crucial observation since the operator acts on a d — 1 dimensional space. Without this reduction,
one obtains an upper bound but with exponent d + 1 rather than the optimal exponent d. In a
manner similar to (5.2I]), we compute for any m > 0,

WEx(A) < pj((=Aga + 1) ™ (=Aga—1 +1)™Ey (A))
< (=Asa FDMELA) |l2ga—1y pj((—Agar +1)7™)
< C™M(2m) 2/ (A= eclAl (5.26)

This follows from the explicit formula for the kernel of Ey (A)),
Ey (A (w,x) = e %y (x). (5.27)

In particular, the factor (2m)! comes from differentiating the exponential factor. Using Stirling’s
formula for the factorial, we obtain from (G.25)—-(5.20)

15 (xv (Ro(A) = Ro(—A))xv) < A4 2ec2AC™ (2m  1)2m+(1/2) (5= 1/ (d=1)y2m, (5.28)

1/(d—1

We now optimize over the free parameter m by choosing m ~j~ ). As a result, we obtain

;1/(d—1)

15 (xv (Ro(A) — Ro(—A))xv) < ecMem® (5.29)

4. We now combine (521 with (5.29). For this, we need Fan’s inequality for singular values [39]
Theorem 1.7] that states that

Hnt+m+1(A +B) < pm+1(A) + pnt1(B). (5.30)
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For JA < 0, we write

15 (xvRo(A)xv) = K (IXv(Ro(A) — Ro(—=A))xv] + xvRo(=A)xv). (5.31)

Applying Fan’s inequality (530) to the right side of (531l), we find that for JA < 0, the singular
values satisfy
1/(a-1)

+¢j 174, (5.32)
Taking the (d + 1)%* power of the operators, as in (5.22)), we find

1 (xvRo(A)xv) < ecMle=cl

i ((xvRoA)xv) ) < eeMemei' /1T cj—(d+n/d, (5.33)

for a constant ¢ > 0. As j — oo, the first term dominates until j ~ [[A|4~'], where [] denotes the
integer part. We then use the Weyl estimate for the determinant (see [39]), factorize the product
using the first estimate in (5.33) for j < [d|A|9~"], to obtain

RN < [det(1 4 (VRo(A)xv) 4t )]
< T2, (1 + i ((VRo(A)xv)4t)
< (nj[i\;\ldﬂ]eclxw) (”jz[dmd*‘]“ i CZj—(dH)/d))
< ceN, (5.34)

This establishes (B.20]) so by Jensen’s inequality (EI8) we obtain the optimal upper bound on the
resonance counting function. O

Upper bounds for super-exponentially decaying potentials in d > 3 odd dimensions were
proved by R. Froese [12]. There are fewer results in even dimensions. We refer to [7] for a
discussion and the papers [15] 42 [43].

5.4 Estimates on the number of resonances: Lower bounds

One might hope to have a lower bound on the number of resonances of the form
Ny (r) > Cqrd. (5.35)

This is known to hold in two cases. The first case is Zworski’s result for d = 1. The second is for a
class of spherically symmetric potentials in dimension d > 3 odd. Zworski proved that if V(r) has
the property that V’(a) # 0, where a > 0 is the radius of the support of V, then an asymptotic
expansion holds for the number of resonances:

Nv(r) =cqa%r? +o(r?), d >3 and odd. (5.36)

In general, for V € L (RY) (or, even V € CP(RY)), there is presently no known proof of the optimal
lower bound (B.3H). There are some partial results for d > 3 odd. These include nonoptimal lower
bounds, estimates on the number of purely imaginary poles for potentials with fixed sign, and

counterexamples made from certain complex potentials.
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5.4.1 Nonoptimal lower bounds

For the case of d > 3 odd, the first quantitative lower bounds for the resonance counting function
for nontrivial, smooth, real-valued V € C$(R%), not of fixed sign, were proved in [2]. In particular,
it was proved there that

. ny(r)
1 —_— = 5.37
NP logr) 7 % 37
for all p > 1. For the same family of potentials, S& Barreto [34] improved this to
lim sup ) < o, (5.38)
T—00 T

We mention that, in particular, all these lower bounds require the potential to be smooth.

Concerning lower bounds in the even dimensional case for d > 4, S4 Barreto [35] studied the
resonance counting function Nsqg(r) defined to be the number of resonances A; with 1/7 < [Nl <7
and |argAj| < logr. As v — oo, this region in the Riemann surface A opens like log r. S& Barreto

proved that for even d > 4,
. NSaB (T‘)
1 = 5.39
13801.}]9 (logr)(loglogr)—P oo ( )

for all p > 1.

5.4.2 Purely imaginary poles

Lax and Phillips [I7] noticed that for odd dimensions d > 3, the wave operator associated with
exterior obstacle scattering has an infinite number of purely imaginary resonances. They remarked
that their proof held for Schrédinger operators with nonnegative, compactly-supported, nontrivial
potentials. Vasy [40] used their method to prove that a Schrédinger operator Hy with a compactly-
supported, bounded, real-valued potential with fixed sign (either positive or negative) has an
infinite number of purely imaginary resonances. These resonances are poles of the meromorphic
continuation of the resolvent of the form —ip;(V), with p;(V) > 0. In the z = A? plane, these are
located on the second Riemann sheet of the square root function. Furthermore, Vasy is able to
count these poles and prove the following lower bound

Ny (r) > Cqr®". (5.40)
This is not an optimal lower bound on the total number of resonances.

Recently, the author and T. J. Christiansen [7] proved that in even dimension there are no
purely imaginary resonances on any sheet for Hy with bounded, positive, real-valued potentials
with compact support.

5.4.3 Complex potentials

Most surprisingly, Christiansen [3] gave examples of compactly supported, bounded complez-valued

potentials having no resonances in any dimension d > 2! This result, while interesting in its own
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right, means that any technique that provides a result of the type (£.35) must be sensitive to

whether the potential is real- or complex-valued.

6 Maximal order of growth is generic for the resonance
counting function

There is one general result that is a weak form of (535) due to the author and T. J. Christiansen
[5]. This result states that for almost all potentials V € L°(K), for a compact subset K C R4,
real- or complex-valued, the lower bound holds in the following sense as determined by the order
of growth of the resonance counting function Ny (7).

Definition 20. The order of growth of the monotone increasing function Ny (r) is defined by

; (6.1)

if the limit exists and is finite.

Because of the upper bound (B.I0]), the order of growth of the resonance counting function
is bounded from above as py < d. We say that the order of growth is mazimal for a potential
V if py = d. By “almost all potentials” referred to above, we mean that the set of potentials
in L§°(K), for a fixed compact subset K C RY with nonempty interior, for which the resonance
counting function has maximal order of growth, is a dense Gs-set. Recall that a Gs-set is a
countable intersection of open sets. One sometimes says that a property that holds for all elements
in a dense Gs-set is generic. (Added in proof: For some recent developments, see Dinh and Vu
arXiv:1207.4273v1.)

6.1 Generic behavior: odd dimensions

The basic theorem on generic behavior is the following.

Theorem 21. [5] Let d > 3 be odd and K C R4 be a fixed, compact set with nonempty interior.
Let M¢(K) C L (K), for F =R or F = C, be the set of all real-valued, respectively, complex-valued
potentials in L§°(K) such that the resonance counting function Ny (r) has maximal order of growth.
Then, the set Mg(K) is a dense G set for F=R or F =C.

This holds for both real-valued and complex-valued potentials. By [3], we know there are
complex potentials with zero order of growth. An interesting open question is whether there exist
real-valued potentials in L8°(Rd) for which the resonance counting function has less than maximal
order of growth.

The proof of this theorem uses the S-matrix and its continuation to the entire complex plane.
In section [B] we defined the scattering matrix for the pair Hy = —A and Hy = Ho + V. The
S-matrix S(A), acting on L?(S91), is the bounded operator defined in (3.8). In the case that V is
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real-valued, this is a unitary operator for A € R. Under the assumption that supp V is compact,
the scattering amplitude A(A) : L2(S471) — 12(S471), defined in (B3), is a trace class operator.
Hence, the function

fv(A) = det S(A), (6.2)
is well-defined, at least for JA > 0O sufficiently large.

What are the meromorphic properties of fy(A)? As proved in Theorem [I6 the S-matrix
has a meromorphic continuation to the entire complex plane with finitely many poles for JA > 0
corresponding to eigenvalues of Hy, and poles in JA < 0 corresponding to resonances. We recall
that if JAg > co(||V||L=), the multiplicity of Ao, as a zero of det Sy(A), and of —Ao, as a pole
of the cut-off resolvent Ry (A), coincide. Consequently, the function fy(A) is holomorphic for
IN > co{||V]|L=), and well-defined for JA > 0 with finitely many poles corresponding to the
eigenvalues of Hy. Hence, the problem of estimating the number of zeros of fy(A) in the upper
half plane is the same as estimating the number of resonances in the lower half plane.

The estimates on fy(A) are facilitated in the odd dimensional case by the well-known rep-
resentation of fy(A) in terms of canonical products. Let G(A;p) be defined for integer p > 1,
by

GAp) = (1 =AM /204N /b (6.3)

and define
P(?\) :ﬂ)\jeRv,)\ﬁéO G()\/?\j;d—”. (6.4)

Then the function fy(A) may be written as

(6.5)

for some constant o« > 0 and where g(A) is a polynomial of order at most d. Careful study of the
scattering matrix and the upper bound of Theorem [[9 may be used to show that fy/(A) is of order
at most d in the half-plane JA > co (|| V| o), see [48].

We consider a fixed compact set K C RY with nonempty interior. Let M (K) be the subset of
potentials in L3°(K) having a resonance counting function with maximal order of growth. We can
separately consider real- or complex-valued potentials. The proof of Theorem 1] requires that we
prove 1) that M(K) is a Gs-set, and 2) that M(K) is dense in L (K). The proof that M(K) is a
Gs-set uses standard estimates on the S-matrix as in [5]. For N,M,j € N with j > 2N + 1, and for
q > 0, we define sets of potentials A(N, M, q,j) C LF(K) by

A(N,M,q,j) = {VeLF(K)|[[V[i= <N, log|det(Sv(A))l < MA[1,
for IA > 2N + 1 and [A| < j} (6.6)

One proves that these sets are closed. More importantly, we can use these sets to characterize the
set of potentials having a resonance counting function with an order of growth strictly less that d.
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For this, we define sets B(N, M, q) by

B(N,M,q) = [] A(N,M,q,j). (6.7)
j>2N+1

One proves that if Ny (1) has order of growth strictly less than d, then one can find (N, M, £) € N3
so that V € B(N, M, d — 1/¢{). Since the sets A(N, M,j, q) are closed, so are the sets B(N, M,j).
One notes that Uy m,j)ensB(N,M,j) is an Fy set. The final step of the proof is to show that
M(K) is the complement of this set. It follows that M (K) is a Gs-set.

The proof of the density of M(K) is more involved and relies on machinery from complex
analysis as developed in [4]. The basic idea is to consider a wider family of potentials V(x;z)
holomorphic in the complex variable z € Q C C, for some open subset Q. The construction of
the S-matrix goes through for these complex-valued potentials. The key result is that if for some
zo € Q the order of growth py(,,) for Ny/(,,) is equal to d, then there is a pluripolar subset E C Q
so that the order of growth for all potentials V(z), with z € Q\E, is equal to d. A pluripolar set
is very small, in particular, the Lebesgue measure of E N R is zero.

How do we know there is a potential for which Ny (r) has maximal order of growth? For d > 3
odd, we can use the result of Zworski [47]. As mentioned in section [5.4] Zworski proved the an
asymptotic expansion for Ny (1) for a class of radially symmetric potentials with compact support.
Let Vo be one of these potentials so that Vo € M(K). To prove the density of M(K) in LP(R?),
we take any Vq € L§°(K) and form V(z) = zVy + (1 — z)V;. This is a holomorphic function of z
for z € Q = C. We apply the result described above to this family of holomorphic potentials. In
particular, for zg = 1, we have V(zo) = Vj and py(,,) = d by Zworski’s result. Let E C C be the
pluripolar set so that for z € C\E, the order of growth py(,) = d. Since the Lebesgue measure of
ENR is zero, we can find z € R\(E N R), with |z| as small as desired, for which py(,) = d. So,
given € > 0, we take Z € R\(ENR) so that |z] < e(1+ || V1|l + ||[Vo|lL=)"". With this choice, we
have

[Vi = V(2)[lLeo <12l ([[VilL=[[Vollie=) < e. (6.8)

This proves the density of M(K) in L (R%). Note that we can take Vj real-valued and so V/(z) is
real-valued.

We remark that the representation (3] is not available in the even dimensional case.

6.2 Generic behavior: even dimensions

We now summarize the corresponding results in the even dimensional case. Let xv € Cgo(Rd) be
a smooth, compactly-supported function satisfying xvV = V, and denote the resolvent of Hy by
Rv(A) = (Hy—A2)"'. In the even-dimensional case, the operator-valued function xvRyv(A)xv has a
meromorphic continuation to the infinitely-sheeted Riemann surface of the logarithm A. We denote
by Am the m'" open sheet consisting of z € A with mm < argz < (m + 1)7t. The physical sheet
corresponds to Ao and it is identified with the upper half complex plane. We denote the number
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of the poles Ny, m (1) of the meromorphic continuation of the truncated resolvent xvRy(A)xv on

each sheet A, counted with multiplicity, and with modulus at most r > 0.

The order of growth of the resonance counting function Ny, (r) for Hy on the m'"-sheet is
defined by

log N
Pv,m = limsup w. (6.9)
T—00 logr
It is known that pv,m < d for d > 2 even [41l [42]. As in the odd dimensional case, it is proved
that generically (in the sense of Baire typical) the resonance counting function has the maximal

order of growth d on each non-physical sheet.

Theorem 22. Let d > 2 be even, and let K C R¢ be a fixed, compact set with nonempty interior.
Let Mg(K) C LFP(K), for F = R or F = C, be the set of all real-valued, respectively, complex-
valued potentials in L°(K) such that the resonance counting functions Ny (1), for m € Z\{0},
have maximal order of growth. Then, the set Mg(K) is a dense G5 set for F=R or F=C.

This theorem states that for a generic family of real or complex-valued potentials in L§®(K),
the order of growth of the resonance counting function is maximal on each sheet, pv,m = d, for
m € Z\{0}. This implies that there are generically infinitely many resonances on each nonphysical
sheet.

There are two challenges in proving Theorem 221 The first is to construct a function whose
analytic extension to the mt-sheet A,, has zeros at the resonances of Hy. This function will
substitute for ([G2). The second problem is prove a lower bound (535) for some potential in
L3 (K) in even dimensions.

To resolve the first problem, we use the following key identity, that follows from (£I6) and the
formulas for the meromorphic continuation of Hankel functions (see [6l, section 6] or [23] chapter
7]), relating the free resolvent on A, to that on Ag, for any m € Z,

. d2 dodd
Ro(e™A) = Ro(A) — m(d)T(A), where m(d) = { momoe © (6.10)
m d even.

The operator T(A) on L?(R9) has a Schwartz kernel

TAx,y) = m(zn)—dxd—zj 1 ey gy, (6.11)
sa—

see [19, Section 1.6]. This operator is related to M(A) introduced in section 2 in [@I3]) (see also

(5:24)). We note that for any x € CP(R4), xT(A)x is a holomorphic trace-class operator for A € C.

The operator T(A) has a kernel proportional to \x—y\(_d+2)/2](d,2)/2(7\\x—y\) when d is odd, and

to |x — y\(_d’LZ)/ZN(d,z)/z(?\\x —y|) when d is even. The different behavior of the free resolvent

for d odd or even is encoded in (610).

By the second resolvent formula ([@20), the poles of Ry (A) with multiplicity, correspond to the
zeros of I+ VRo(A)xv. We can reduce the analysis of the zeros of the continuation of I+ VRo(A)xv
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to Am to the analysis of zeros of a related operator on Ay using (EI0). If 0 < argA < 7 and
m € Z, then e!™™\ € A,,,, and

I+ VRo(e"™™ A)x = I+ V(Ro(A) — mT(A))xv
= (T4 VRo(A)xv) (I — m(I+ VRo(A)xv) "VIT(A)xv ).

For any fixed V € LP(R?), there are only finitely many poles of (I+VRo(A)xy) ™' with 0 < arg <
7. Thus
fv,m(A) = det(I—m(I+ VRo(A)xv) ' VT(A)xv) (6.12)

is a holomorphic function of A when 0 < argA < 7 and |A| > co(||V||L=). Moreover, with at most a
finite number of exceptions, the zeros of fv,m(A), with 0 < argA < 7 correspond, with multiplicity,
to the poles of Ry (A) with mm < argA < (m + 1)m. Henceforth, we will consider the function
fvm(A), for m € Z* = Z\{0}, on Ay. For d odd, we are only interested in m = —1. In this case,
the zeros of fv,—1(A), for A € Ap, correspond to the resonances. This provides an alternative to the
S-matrix formalism, as presented in section [6.1] for estimating the resonance counting function in
the odd dimensional case.

The second problem in even dimensions is to prove that there are some potentials in L§°(K)
for which the resonance counting function has the correct lower bound on each sheet. This is done
by an explicit calculation. We prove (6535 in even dimensions d > 2 for Schrédinger operators Hy
with radial potentials V(x) = Voxg, (0)(x), with Vo > 0, using separation of variables and uniform
asymptotics of Bessel and Hankel functions due to Olver [23] [24] 25]. This method can also be
used in odd dimensions as an alternative to [47] thus providing examples as required in section [G11

7 Topics not covered and some literature

This notes focussed on perturbations of the Laplacian on R¢ by real-valued, smooth, compactly
supported potentials. This is just one family of examples where resonances arise. Other topics
concerning resonances include:

(1) Complex-spectral deformation method and resonances
(2) Obstacle scattering

(3) Resonance free regions

(4) Resonances for the wave equation

(5) Resonances for elastic media

(6) Resonances for manifolds hyperbolic at infinity

(7) Semiclassical theory of resonances
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(8) Description of resonance wave functions
(9) Approximate exponential decay of resonance states

(10) Local energy decay estimates

There are some reviews on resonances that cover many aspects of the theory in this list. These

reviews include:

(1) The long discussion by M. Zworski [49] that covers the complex scaling method developed
by Sjéstrand and Zworski (inspired by the Baslev-Combes method) and its applications.

(2) G. Vodev has written an expository article in Cubo [44]. Many aspects of resonances for
elastic bodies and obstacle scattering are described there.

(3) The proof of the generic properties of the resonance counting function for even and odd
dimensions is described in Christiansen and Hislop [8], an expository summary written for
les Journées EDP 2008 FEvian available on the arXiv and from Cedram.

(4) Text book versions of spectral deformation and quantum resonances, with an emphasis on
the semiclassical regime, can be found in [9] and [I4].

Finally, for a lighter and intuitive discussion of resonances, the reader is referred to Zworski’s
article Resonances in physics and geometry that appeared in the Notices of the American Mathe-
matical Society [50].
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8 Appendix: Assorted results

Two groups of results that are related to material in the text are summarized here. The first is
a synopsis of the spectral theory of linear self-adjoint operators. The second is an analysis of the
time evolution of states lying in various spectral subspaces of a self-adjoint operator. Detailed
discussions of these topics may be found in the Reed-Simon series [29]-[32], for example, and many
other texts.
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8.1 Spectral theory

Let A be a self-adjoint operator on a separable Hilbert space H. Then, there is a direct sum
decomposition H = Hac(A)BHsc(A)PHpp(A) into three orthogonal subspaces that are A-invariant
in that A : D(A) N Hx(A) — Hx(A) for X = ac,sc,pp. The pure point subspace Hpp(A) is the
closure of the span of all the eigenfunctions of A. The continuous subspace Heon(A) = Hac(A) B
Hse(A) is the orthogonal complement of Hp,(A). For most Schrédinger operators Hy = —A+V,
one has Hy.(Hy) = (0. The proof of the absence of singular continuous spectrum is one of the
main applications of the Mourre estimate, see the discussion in section 1] [9, chapter 4], and the
original paper [22]. As the names suggest, there is a measure associated with a self-adjoint operator
and this measure has a Lebesgue decomposition into pure point and continuous measures. The
continuous measure admits a decomposition relative to Lebesgue measure into a singular continuous

and absolutely continuous parts.

8.2 The RAGE Theorem

The RAGE Theorem (Ruelle, Amrein, Georgescu, Enss) (see, for example, [9, section 5.4]) is a
general result about the averaged time evolution of states in the continuous subspace Hcont(A) of
a self-adjoint operator A.

Theorem 23. Let A be a self-adjoint operator and ¢ € Heonts(A), where Heons(A) is the continuous
spectral subspace of A. Suppose that C is a bounded operator and that C(A + 1)~ is compact.
Then, we have
: 17 —itA
Jim o L ICe A ¢ dt =o. (8.1)
Furthermore, if ¢ € H satisfies (8], then ¢ € Heont(A).

Let A = Hy be a Schrodinger operator of the type considered here, and C = xp,(0), the
characteristic function on a ball of radius R > 0 centered at the origin. The RAGE Theorem (81))
states that a state, initially localized near the origin, and in the continuous spectral subspace of
Hv, will eventually leave this neighborhood of the origin in this time-averaged sense. The con-
tinuous spectral subspace Heont (Hy) has a further decomposition into the singular and absolutely
continuous subspaces. It is the possible recurrent behavior of states in the singular continuous
subspace that requires the time averaging in (81).

Corollary 24. Let Hy be a self-adjoint operator on L2(R%). Let ¢ € Hac(Hv), where Hae(Hy)
is the absolutely continuous spectral subspace of Hy. Let xx be the characteristic function for a
compact subset K € R%. Then, we have

Jm [lxcUy (1) = 0. (8.2)

As one might expect, if ¢ is a finite linear combination of eigenfunctions, then the state
xk Uy (1) remains localized for all time. Indeed, for any € > 0, there is a compact subset K € R4
so that [[xga\k, Uv(t)d[ < €, for all t.
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