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ABSTRACT

We prove a common fixed point theorem for a pair of self mappings in complete G-
metric spaces. Our result will improve and supplement some recent results in the setting
of G-metric spaces.

RESUMEN

Probamos un teorema de punto fijo genérico para un par de auto-aplicaciones en es-
pacios G-métricos completos. Nuestro resultado mejorard y complementara algunos de
los resultados recientes en el marco de los espacios G-métricos.
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1 Introduction

The study of metric fixed point theory has been at the centre of vigorous activity and it has a
wide range of applications in applied mathematics and sciences. Over the past two decades a
considerable amount of research work for the development of fixed point theory have executed by
several authors. Different generalizations of the usual notion of a metric space have been proposed
by Gdhler [4, 5] and by Dhage |2, [3]. Unfortunately, it was found that most of the results claimed
by Dhage are invalid. These errors were pointed out by Mustafa and Sims in [I3]. They also
introduced a more appropriate concept of generalized metric space called G-metric space [9] and
developed a new fixed point theory for various mappings in this new structure. Our aim in this
study is to prove a common fixed point theorem in a complete G-metric space. This theorem
generalizes the fixed point results of [1], [10] and [11].

2 Preliminaries

In this section, we present some basic definitions and results for G-metric spaces which will be
needed in the sequel. Throughout this paper we denote by N the set of positive integers.

Definition 2.1. (see[d]) Let X be a nonempty set, and let G : X x X x X — R* be a function
satisfying the following axioms:

(G1)G(xyy,z) =0 if x =y =z,

(G2)0 < G(x,%x,y),for all x,y € X, with x #y,

(G3)G(x,x,y) < G(x,y,z), for all x,y,z € X, with z # v,

(G4) G(xyy,2) = G(x,2,y) = G(y,2z,x) = - - - (symmetry in all three variables),

(Gs) G(x,y,2) < G(x,a,a) + G(a,y,z),for all x,y,z,a € X, (rectangle inequality).

Then the function G is called a generalized metric , or, more specifically a G-metric on X, and

the pair (X, G) is called a G-metric space.

Proposition 2.1. (see[9]) Let (X, G) be a G-metric space. Then for any x,y,z, and a € X, it follows
that

(M if G(x,y,z) =0 then x =y = z,
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(2) G(x,y,2) < Gx,%,y) + G(x,%,2),

(3) G(x,y,y) < 2G(y, x,x),

(4) G(x,y,2) < G(x,a,z) + G(a,y,2),

(5) G(x,y,2) < 5 (G(x,y,a) + G(x,q,2) + G(a,y,2)),

Definition 2.2. (see[d]) Let (X, G) be a G-metric space, let (xn) be a sequence of points of X, we
say that (xn) is G-convergent to x if lim G(x,xn,xm) = 0; that is, for any € > 0, there exists

n,m—oo
no € N such that G(x,Xn,Xm) < €, for all n,m > ng. We call x as the limit of the sequence

(xn) and write x, — x.

Proposition 2.2. (see[d]) Let (X, G) be a G-metric space, then the following are equivalent.

(1) (xn) is G — convergent to x.
(2) G(xnyXn,x) — 0, as n — oco.

(3) G(xn,x,x) = 0, as n — oo.

(4) G(XnyXm,x) — 0, as n,m — oo.

Definition 2.3. (see[d]) Let (X,G) be a G-metric space, a sequence (xn) is called G-Cauchy if
given € > 0, there is ng € N such that G(xn,Xxm,x1) < €, for all n,m,1l > nop; that is, if
G(XnyXm,x1) = 0 as n,m,l — oo.

Definition 2.4. (seed]) Let (X, G) and (X', G’) be G-metric spaces and let f: (X,G) — (X', G")
be a function, then f is said to be G-continuous at a point a € X if given € > 0, there exists § > 0
such that x,y € X; G(a,x,y) < & implies G,(f(a),f(x),f(y)) < e. A function f is G-continuous on
X if and only if it is G-continuous at all a € X.

Proposition 2.3. (see[d]) Let (X,G) and (X', G") be G-metric spaces, then a function f:X — X' is
G-continuous at a point x € X if and only if it is G-sequentially continuous at x; that is, whenever
(xn) is G-convergent to x, (f(xn)) is G-convergent to f(x).

Proposition 2.4. (see[9]) Let (X,G) be a G-metric space, then the function G(x,y,z) is jointly
continuous in all three of its variables.

Proposition 2.5. (see[d]) Every G-metric space (X, G) will define a metric space (X,dg) by

dG(X)y) = G(X»H»U) + G(H»X)X)» for all XY € X.
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Definition 2.5. (see[d]) A G-metric space (X, G) is said to be G-complete (or a complete G-metric

space) if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Proposition 2.6. (see[d]) A G-metric space (X, G) is G-complete if and only if (X, dg) is a complete

metric space.

3 Main Results

Theorem 3.1. Let (X, G) be a complete G-metric space, and let Ty, T, be mappings from X into
itself satisfying

G(Th (x), T2(T1 (x)), T2 (T (x))), G(x, Th (x), Ta (x)),
max < rmin (3.1)
G(T2(x), i (T2(x)), Ta (T2(x))) G(x, T2(x), T2(x))

for every x € X, where 0 < r < 1 and that
inf [G(x,y,y) + min{G(x, T1(x), T1 (x)), G(x, T2(x), T2(x))} : x € X] >0

for every y € X with y is not a common fixed point of Ty and T,.

Then T; and T, have a common fixed point in X.

Proof. Let xo € X be arbitrary and define a sequence (x) by
Xn = Ti(xn_1), if nis odd

= Ta(xn_1), if n is even.

Then for any odd positive integer n € N, we have

G(Xn)XnJrlaXnJr]) = G(T1 (Xn71)sT2(Xn)sT2(Xn))
= G(Ti(xn=1), T2(T1 (xn=1)), T2(T1 (xn—1)))
G(Tr (xn—1), T2(T1 (xn—1)), T2(T1 (xn—1))),

IN

max
G(T2(xn—1), i (T2(xn—-1)), T1 (T2(xn-1)))
G(xn-1, Ti(xn—-1), T (xn—1)),
rmin , by B1)
G(xn—1, T2(xn-1), T2(xn-1))
TG(xn-1, T1(xn-1), T1 (xn—1))

= TG(Xn,],Xn,Xn).

IN
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If n is even, then by ([B1]), we have
G(XTL)XTL+1)XT1+1) = G(TZ(Xn—l))T1 (Xﬂ))T] (XTL))
= G(T2(xn-1), Ti(T2(xn-1)), T (T2(xn—-1)))
G(Tr (xn—1), T2(T1 (xn—1)), T2(T7 (xn—1))),

IN

max
G(T2(xn—=1), Ti (T2 (xn—=1)), T1 (T2 (xn—1)))

G(xn—1, T1 (xn—1), T1 (xn—1)),

IN

Tmin
G(xn—1, T2(xn-1), T2(xn-1))
< r G(anl ) TZ(anl )) T2 (xn-1))
= T G(XTL—1 y Xm,y Xn)'
Thus for any positive integer n, it must be the case that
G(XnyXnt1yXn+1) ST G(Xn—1,Xn, Xn). (3.2)
By repeated application of (32]), we obtain

G(Xny Xnt1yXn+1) < 1 G(x0,X1,X7). (3'3)

Then, for all n,m € N, n < m, we have by repeated use of the rectangle inequality and (B3]
that

G(xnyXmyXm) < G(XnyXni1yXnt1) + G(Xnt 1y Xny2, Xn+2)
+G(Xn42, Xn43yXn43) + -+ G(Xm—1yXmy Xm)
< (T ™) Gxoy X, x0)
rn
< 7 Glxoyxa,xa).

Then, im G(Xn, Xm,Xm) = 0, as n, m — oo, since im ]r_nr
n,m,l € N, (Gs) implies that

G(x0,%x1,%1) =0, as n,m — oo. For

G(Xn)meXl) < G(anxmsxm) + G(Xlsxmsxm)s

taking limit as n,m,l — oo, we get G(xn,Xm,%1) — 0. So (xn) is a G-Cauchy sequence. By
completeness of (X, G), there exists u € X such that (x) is G-convergent to u.

Let n € N be fixed. Then, since (x,,) G-converges to u and G is continuous on its variables,

we have
mn

G(Xﬂ)u)u) = lim G(Xn,Xm,Xm) < G(XO)X1)X1)'

m—oo 1—r



90 S.K.Mohanta and Srikanta Mohanta CUBO

14, 3 (2012)

Assume that u is not a common fixed point of Ty and T,. Then, by hypothesis, we have

0 < inf[G(x,u,u)+min{G(x,T;(x), T1(x)), G(x, T2(x), T2(x))}: x € X]
< inf [Glxn, uyw) +min{ G(xn, T1 (xn), T1 (xn))y G(xn, T2(xn), T2(xn))} : 1 € N]
< inf | 12 600 x1,x1) + Gl X1y %) i €
< inf {]r_ G(xo,x1,x1)+rnG(xo,x1,x1):nEN}
= O)

which is a contradiction. Therefore, u is a common fixed point of T; and Ts.
O

Theorem 3.2. Let (X, G) be a complete G-metric space, and let Ty, To be mappings from X into
itself satisfying

G(Ti(x), Th (x), T2(Ty (x))), G(x, %, Ti(x)),
max < rmin (3.4)
G(T2(x), T2(x), Th (T2(x))) G(x,x, T2(x))

for every x € X, where 0 < r < 1 and that
inf[G(x,x,y) + min{G(x,x, T (x)), G(x,x, T2(x))}: x € X] >0

for every y € X with y is not a common fixed point of Ty and T,.

Then Ty and T, have a common fixed point in X.

Proof. Let xo € X be arbitrary and define a sequence (x) by

Xn = Ti(xn_1), if nis odd

= Ta(xn_1), if n is even.
Then by the argument similar to that used in Theorem [B.I] we have for any positive integer n,
G(Xny Xny Xnt1) < 1 G(x0, X0, X1)- (3.5)
Then, for all n,m € N; n < m, we have by repeated use of the rectangle inequality and (3.3 that

G(XmyXnyXn) < G(XmyXm—1,Xm—1) + G(Xm—1yXm—2,Xm—2)
+G(Xm—2yXm—3yXm—3) + - + G(Xn+41,Xn,Xn)
(™ + g —H‘m*]) G(x0,%0,%X1)

n
1—r

IN

IN

G(x0,X0,X1).
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Thus (x,) becomes a G-Cauchy sequence. By completeness of (X, G), there exists u € X such that
(xn) is G-convergent to u.

Let n € N be fixed. Then since (x,) G-converges to u and G is continuous on its variables,

we have
mn

G(XnyXn,u) = lim G(XpyXn,Xm) <

G(x0,X0,X1)-
m—oo el

The argument similar to that used in the proof of Theorem [B.1] establishes that u is a common
fixed point of T; and Ts.
O

Combining Theorem B.1] and Theorem B.2] we state the following Theorem:

Theorem 3.3. Let (X, G) be a complete G-metric space, and let Ty, To be mappings from X into
itself satisfying one of the following conditions:

G(Ty (x), T2(Ta (%)), T2(Ta (x))), G(x, Th (x), T (%)),
max < rmin
G(T2(x), T1 (T2(x)), Ta (T2(x))) G(x, T2(x), T2(x))

for every x € X, where 0 <1 < 1 and that
inf[G(x,y,y) + min{G(x, Ty (x), T (x)), G(x, T2(x), T2(x))} : x € X] > 0

for every y € X with y is not a common fixed point of Ty and T,.

or
G(Tr (%), T1 (x), T2(T7 (x))), G(x,x, T1(x)),

max < rmin
G(T2(x), T2(x), T1 (T2(x))) G(x,x, T2(x))

for every x € X, where 0 <1 < 1 and that
inf [G(x,x,y) + min{G(x,x, T1(x)), G(x,x, T2(x))}: x € X] >0

for every y € X with y is not a common fixed point of Ty and T,.

Then Ty and T, have a common fixed point in X.

As an application of Theorem [3.3] we have the following Corollary.
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Corollary 1. Let (X, G) be a complete G-metric space, and let T : X — X be a mapping satisfying

one of the following conditions:
G(T(x), T2(x), T2(x)) < rG(x, T(x), T(x)) (3.6)

for every x € X, where 0 < v < 1 and that
inf[G(x,y,y) + G(x, T(x), T(x)) :x € X] >0 (3.7)

for everyy € X with y # T(y).

or
G(T(x), T(x), T*(x)) <71 G(x,x,T(x)) (3.8)
for every x € X, where 0 < v < 1 and that
inf[G(x,x,y) + G(x,x, T(x)) : x € X] >0 (3.9)
for everyy € X with y # T(y).
Then T has a fized point in X.
Proof. Take T; =T, =T in Theorem B.3] O

We now supplement Corollary [Il by examination of condition (3.8])(or, B.8])) and condition
B2 (or, (BT)) in respect of their independence. In fact, we furnish Example Bl and Example 32]
below to show that these two conditions are independent in the sense that Corollary [ shall fall
through by dropping one in favour of the other.

Ezample 3.1. Let X ={0}U {3 :n > 1}. Define G : X x X x X = R" by

1 1 1
G(x,y,2z) = 1 |x—y |+Z Iy—zl—i—Z |z—x|, for all x,y,z € X.

Then (X, G) is a complete G-metric space.
Define T: X — X by T(0) = % and T (Z]T) = 2"—]+r for n > 1.Clearly, T has got no fixed point in X.
Also, it is easy to check that

G(T(x), T*(x), T*(x)) = % G(x, T(x), T(x))

for every x € X.
Thus, condition (B.0) in Corollary [lis satisfied. However, T(y) # y for all y € X and so

inf{G(x,y,y) + G(x, T(x), T(x)) : x,y € X with y # T(y)}
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= inf{G(xy,y) +G(x,T(x),T(x)) : x,y € X}
1 1
= inf{zx—y|+z|X—T(X)1X>U€X}
= 0.
Thus condition ([B.7) in Corollary [Il does not hold.

Similarly, we can verify that condition (B8] in Corollary[lis also satisfied but condition [39) fails.
Clearly, the conclusion of Corollary [l is not valid.

Ezxample 3.2. Take X ={0,1}U[2,00). Define G : X x X x X — R* by

1

1 1
G(XHJ)Z):Z \X—y|+1 |y—z|+Z |z—x|, for all x,y,z € X.

Then (X, G) is a complete G-metric space.
Define T: X — X by

T(x) = 0, forx#0

1, forx =0.

Clearly, T possesses no fixed point in X.
Since T(y) #y for all y € X, we have

inf{G(x,y,y) + G(x, T(x), T(x)) : x,y € Xwithy # T(y)}

= inf{G(x,y,y) + G(x,T(x), T(x)) : x,y € X}

1 1
= im‘{z |x—y |+§ [x—T(x) |:x,y GX}

> 0.

Thus condition B.7) in Corollary [l is satisfied.

However, for x = 0, we have

G(T(x), T?(x), T2 (x)) = 5 | T(x) = T*(x) |= % >1G(x, T(x), T(x))

N =

for any r € [0,1).

This shows that condition ([3:6) in Corollary [l does not hold.

Similarly, we can check that condition ([B.3) in Corollary [Ilis also satisfied but condition (B8] fails.
Obviously, Corollary [l is invalid in this case.

As an application of Corollary [Il we have the following results.
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Corollary 2. Let (X,G) be a complete G-metric space, and let T : X — X be a G-continuous

mapping satisfying one of the following conditions:

G(T(x), T?(x), T*(x)) < 7Gx, T(x), T(x)) (3.10)
or
G(T(x), T(x), T*(x)) < 7Gx, %, T(x)) (3.11)

for every x € X, where 0 < r < 1. Then T has a fixed point in X.

Proof. Suppose that T satisfies condition (BI0) for every x € X. Assume that there exists y € X
with y # T(y) and
inf[G(x,y,y) + G(x, T(x), T(x)) : x € X] =0.

Then there exists a sequence (x,) in X such that
Tim (G, Y, y) + Glxn, Tlxn), Tl )} =0,
which implies that,
G(xn,Y,y) = 0 and G(xn, T(xn), T(xn)) = 0 as N — oo.

So, by Proposition [2.2] the sequence (x,,) is G-convergent to y.
But by (Gs), we have

G(T(xn),y,y)

IN

G(T(xn)yXn,Xn) + G(xn,y,y)
< 2G(xn, T(xn), T(xn)) + G(me»y)

0asn — oco.

1

Again, by Proposition [2.2] the sequence (T(xy)) is G-convergent to y. So G-continuity of T
implies that, (T?(xn)) G-converges to T(y).
Then by use of the rectangle inequality and ([3I0) that

G(anTz(Xn))Tz(Xn)) < G(anT(Xn)sT(Xn))+G(T(Xn)sT2(Xn))T2(Xn))
< G(xn, T(xn)y T(n)) + 1 G(xn, T(xn), T(xn))-

Taking the limit as n — oo, and using the fact that the function G is continuous on its variables,

we have

Gy, T(y), T(y)) G(y,y,y) +rG(y,y,y)
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which implies that, y = T(y). This is a contradiction.
Hence, if y # T(y), then

inf[G(x,y,y) + G(x, T(x), T(x)) : x € X] > 0.
If T satisfies condition ([BITl), then using the same methods as above one can prove that
inf[G(x,x,y) + G(x,x, T(x)) : x € X] > 0.

So, using Corollary [I, we have the desired result. O

The following Corollary is a generalization of the result [[I], Theorem 2.1].

Corollary 3. Let (X, G) be a complete G-metric space, and let T : X — X be a mapping satisfying
one of the following conditions:

G(x,y,2), G(x, T(x), T(x)),

G(y, T(y), T(y)), G(z,T(2), T(z)),

G(xTW), T +G(z,T(x),T(x))

G(T(x), T(y), T(z)) < kmax (3.12)

G(x,Y,2), G(x,x, T(x)),

G(y,y, T(y)), G(z,z,T(z)),

G (%%, T(y))+G(2,z,T(x))
2 )

G(T(x), T(y), T(z)) < kmax (3.13)
GOxT(y)+G (., T(x)

)

G(y,y,T(Z));G(Z‘Z,T(y))
)

G(x,%x,T(2))+G(z,z,T(x))
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for all x,y,z € X, where 0 < k < 1. Then T has a unique fized point (sayu) in X and T is
G-continuous at u.

Proof. Suppose that T satisfies condition ([B.12) for all x,y,z € X. Then replacing y and z by T(x),
we obtain from BI2) and using (Gs) that

G(x, T(x), T(x)), G(x, T(x), T(x)),
G(T(x), T*(x), T*(x)), G(T(x), T*(x), T*(x)),

G(x,TZ(x),TZ(x))zetT(x),Ttx),T(xn
)

G(T(x), T?(x), T?(x)) < kmax
G(x,T2(x),T* (x))+G (T (x),T(x),T(x))

G(x,TZ(x),TZ(x))zetT(x),Ttx),T(xn

G(x, T(x), T(x)), G(T(x), T*(x), T*(x)),

< kmax (3.14)

G(x,T(x),T(x))+G(T(x),T*(x),T*(x))
2

Without loss of generality we may assume that T(x) # T2(x). For, otherwise, T has a fixed point.
So, (BI4) leads to the following cases,

(1) G(T(x), T2(x), T2(x)) < k G(x,T(x),T<x))+GZ(T(x),T2(x),TZ(x)))

(2)  G(T(x), T*(x), T*(x)) < kG(x, T(x), T(x)).

In the first case, we have

Putr:ﬁ. Then 0 <r< 1.

Thus, in each case we must have
G(T(x), T?(x), T*(x)) < 7Gx, T(x), T(x))

for every x € X, where 0 <r < 1.
Assume that there exists y € X with y # T(y) and

inf[G(x,y,y) + G(x, T(x), T(x)) : x € X] =0.
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Proceeding exactly the same way as in the proof of Corollary 2] there exists a sequence (x;;) in X
such that (xy) is G-convergent to y and (T(xy)) is G-convergent to y.
Now applying (B12), we have

G(xn,Y,Y), G(xn, T(xn), T(xn)),

Gy, T(y), T(y)), Gly, T(y), T(y)),

G(xn, T(Y), T(YN+G (Y, T(xn),T(xn))
2 )

G(T(xn), T(y), T(y)) < kmax

G(Xan(U)vT(U))"'ZG(U\T(Xn)yT(Xn))
)

Gy, T(y),TY)+G(y,T(y),T(y))
2 )

G(Xn\T(U)\T(U))"'ZG(UvT(Xn)yT(Xn))

Taking the limit as n — oo, and using the fact that the function G is continuous on its
variables, we obtain

Gy, T(y), T(y)) <k Gy, T(y), T(y)),

which is a contradiction.
Hence, if y # T(y), then

inf[G(x,y,y) + G(x, T(x), T(x)) : x € X] > 0.

Now Corollary [l applies to obtain a fixed point (sayu) of T.
The proof using ([B.13) is similar. Uniqueness of u and G-continuity of T at u may be verified in
the usual way by using any one of condition ([812)) and condition (BI3) that T satisfies. O

Remark 1. We see that special cases of Corollary Bl are Theorem 2.1 of [I], Theorem 2.1 of [I1]
and Theorems 2.1, and 2.4 of [10].

The following Corollary is the result [[1], Theorem 2.2].

Corollary 4. Let (X, G) be a complete G-metric space, and let T : X — X be a mapping satisfying
one of the following conditions:

G(x,y,2), G(x, T(x), T(x)),

G(T(x), T(y),T(z)) < kmax < Gy, T(y), T(y)), G(x, T(y), T(y)), (3.15)

G(y, T(x), T(x)), G(z, T(z), T(2))
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or

G(x,y,2), G(x,x, T(x)),

G(T(x), T(y), T(z)) < kmax§ Gly,y,T(y)),G(x,x,T(y)), (3.16)

G(y,y,T(x)), G(z,2,T(z))
for all x,y,z € X, where 0 < k < 1. Then T has a unique fized point (sayu) in X and T is

G-continuous at .

Proof. Suppose that T satisfies condition (BI8) for all x,y,z € X. Then replacing z by x ; y and
x by T(x) in (BIH), we have

G(T(x), T(x),x), G(T(x), T*(x), T*(x)),

G(T?(0), T2 (x), T(x)) < kmaxq G(T(x),T?(x), T*(x)), G(T(x), T>(x), T*(x)),

G(T(x), T*(x), T*(x)), G(x, T(x), T(x))
< kmax{ G0y T00, T00), G(T(X), T2(0), T2(x) -
Without loss of generality we may assume that T(x) # T2(x). For, otherwise, T has a fixed

point.
So, it must be the case that,

G(T(x), T*(x), T*(x)) <k G(x, T(x), T(x))

for every x € X, where 0 <k < 1.
By the same argument used in the proof of Corollary [, we see that if y # T(y), then

inf[G(x,y,y) + G(x, T(x), T(x)) : x € X] > 0.

Now Corollary [l applies to obtain a fixed point (sayu) of T.
The proof using (18] is similar. Uniqueness of u and G-continuity of T at u are obtained by the
same argument used in Corollary [3 O

The following Corollary is the result [[I1], Theorem 2.9].

Corollary 5. Let (X, G) be a complete G-metric space, and let T : X — X be a mapping satisfying

one of the following conditions:

G(T(x), T(y), T(y)) < a{G(x, T(y), T(y)) + Gy, T(x), T(x))} (3.17)
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or

G(T(x), T(y), T(y)) < a{G(x,x,T(y)) + Gly,y, T(x))} (3.18)
for all x,y € X, where 0 < a < % Then T has a unique fized point (sayu) in X and T is

G-continuous at .

Proof. Suppose that T satisfies condition 1) for all x,y € X. Then replacing y by T(x) in (BI7),

we have

G(T(x), T?(x), T*(x))

IN

a {Gx, T?(x), T*(x)) + G(T(x), T(x), T(x)) }
a {Glx,T(x), T(x)) + G(T(x), T*(x), T*(x))} , by (Gs).

IN

So, it must be the case that,
a

G(x, T(x), T(x)).

G(T(x), T2 (x), T2 (x)) < ]

Put r=+%;. Then 0 <r <1 since0§a<%.
Thus,
G(T(x), T*(x), T2 (x)) < T G(x, T(x), T(x)).

for every x € X, where 0 <r < 1.
Assume that there exists y € X with y # T(y) and

inf[G(x,y,y) + G(x, T(x), T(x)) : x € X] =0.

As in the proof of Corollary 2] there exists a sequence (xn ) in X such that (x,,) is G-convergent to
y and (T(xy)) is G-convergent to y.
Now using ([B.I7), we have

G(T(xn), T(y), T(Y)) < a{Glxn, T(y), T(y)) + Gly, T(xn), T(xn))}.

Taking the limit as n — oo, and using the fact that the function G is continuous on its variables,
we have

G(y, T(y), T(y))

IN

a{G(y, T(y), T(y)) + G(y,y,y)}
aG(y, T(y), T(y)),

which is a contradiction.
Hence, if y # T(y), then

inf[G(x,y,y) + G(x, T(x), T(x)) : x € X] > 0.

Now applying Corollary [Tl we obtain a fixed point (sayu) of T.
The proof using ([BI8) is similar. Uniqueness of u and G-continuity of T at u are obtained by the
same argument used above. O

Received: May 2011. Revised: June 2012.



100 S.K.Mohanta and Srikanta Mohanta CU(BO)
14, 3 (2012
References
[1] R.Chugh, T.Kadian, A.Rani, and B.E.Rhoades, ”Property P in G-metric spaces,” Fized Point

[10]

[11]

[12]

Theory and Applications, vol. 2010, Article ID 401684, 12 pages, 2010.

B.C.Dhage, ” Generalised metric spaces and mappings with fixed point,” Bulletin of the Cal-
cutta Mathematical Society, vol.84, no. 4, pp. 329-336, 1992.

B.C.Dhage, ” Generalised metric spaces and topological structure- 1,” Analele Stiintifice ale
Universitatii 7Al L Cuza” din lasi. Serie Noud. Matematicd, vol.46, no. 1, pp. 3-24, 2000.

S.Gdhler, ”2-metrische Rdume und ihre topologische Struktur,” Mathematische Nachrichten,
vol.26, pp. 115-148, 1963.

S.Gdhler, ”Zur geometric 2-metrische raume,” Revue Roumaine de Mathématiques Pures et

Appliquées, vol.40, pp. 664-669, 1966.

K.S.Ha,Y.J.Cho, and A.White, ” Strictly convex and strictly 2-convex 2-normed spaces,” Math-
ematica Japonica, vol.33, no. 3, pp. 375-384, 1988.

Osamu Kada, Tomonari Suzuki and Wataru Takahashi, ”Nonconvex minimization theorems
and fixed point theorems in complete metric spaces,” Math. Japonica , vol.44, no. 2, pp.
381-391, 1996,.

Sushanta Kumar Mohanta, ” Property P of Cirié operators in G-metric spaces,” International
J. of Math. Sci. and Engg. Appls., vol. 5, no. II, pp. 353-367, 2011.

Z.Mustafa and B.Sims, ” A new approach to generalized metric spaces,” Journal of Nonlinear
and convexr Analysis, vol. 7, no. 2, pp. 289-297, 2006.

Z.Mustafa and B.Sims, ”Fixed point theorems for contractive mappings in complete G-metric
spaces,” Fized Point Theory and Applications, vol. 2009, Article ID 917175, 10 pages, 2009.

Z.Mustafa, H.Obiedat, and F. Awawdeh, ”Some fixed point theorem for mapping on complete
G-metric spaces,” Fized Point Theory and Applications, vol. 2008, Article ID 189870, 12 pages,
2008.

Z.Mustafa, W.Shatanawi, and M.Bataineh, ”Existence of fixed point results in G-metric
spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 2009, Arti-
cle ID 283028, 10 pages, 2009.

Z.Mustafa and B.Sims, ”Some remarks concerning D-metric spaces,” in Proceedings of the
International Conference on Fixed Point Theory and Applications, pp. 189-198, Valencia,
Spain, July 2004.

Z.Mustafa, A new structure for generalized metric spaces-with applications to fixed point
theory, Ph.D. thesis, The University of Newcastle, Callaghan, Australia, 2005.



CU(BO) A Common Fixed Point Theorem in G-Metric Spaces ... 101
14, 3 (2012

[15] Z.Mustafa and H. Obiedat, ”A fixed points theorem of Reich in G-metric spaces,” Cubo A
Mathematics Journal, vol. 12, no. 01, pp. 83-93, 2010.

[16] Z.Mustafa, F. Awawdeh and W.Shatanawi, ”Fixed point theorem for expansive mappings in
G-metric spaces,” Int. J. Contemp. Math. Sciences, vol. 5, no. 50, pp. 2463-2472, 2010.

[17] S.V.R.Naidu, K.P.R.Rao, and N.Srinivasa Rao, ”On the concept of balls in a D-metric space,”
International Journal of Mathematics and Mathematical Sciences, no. 1, pp. 133-141, 2005.

[18] W.Shatanawi,” Fixed point theory for contractive mappings satisfying ¢-maps in G-metric
spaces,” Fized Point Theory and Applications, vol. 2010, Article ID 181650, 9 pages, 2010.



