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ABSTRACT

In this paper we shall establish sufficient conditions for the existence of solutions of a

class of fractional differential equation (Cauchy type ) and its solvability in a subset of

the Banach space. The main tool used in our study is the non-expansive operator tech-

nique. The non integer case is taken in sense of Riemann-Liouville fractional operators.

Applications are illustrated.

RESUMEN

En este art́ıculo establecemos condiciones suficientes para la existencia de soluciones de

una clase de ecuaciones diferenciales fraccionales (del tipo Cauchy) y su solubilidad en

un subconjunto de un espacio de Banach. La principal herramienta utilizada en nuestro

estudio es la técnica del operador no expansivo. El caso no entero se escoge en el sentido

de operadores fraccionales Riemann-Liouville. Además, se ilustran aplicaciones.
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1 Introduction

Fractional calculus and its applications (that is the theory of derivatives and integrals of any

arbitrary real or complex order) has importance in several widely diverse areas of mathematical

physical and engineering sciences. It generalized the ideas of integer order differentiation and n-

fold integration. Fractional derivatives introduce an excellent instrument for the description of

general properties of various materials and processes. This is the main advantage of fractional

derivatives in comparison with classical integer-order models, in which such effects are in fact

neglected. The advantages of fractional derivatives become apparent in modeling mechanical and

electrical properties of real materials, as well as in the description of properties of gases, liquids

and rocks, and in many other fields [1-5].

The class of fractional differential equations of various types plays important roles and tools not

only in mathematics but also in physics, control systems, dynamical systems and engineering

to create the mathematical modeling of many physical phenomena. Naturally, such equations

required to be solved. Many studies on fractional calculus and fractional differential equations,

involving different operators such as Riemann-Liouville operators, Erdlyi-Kober operators, Weyl-

Riesz operators, Caputo operators and Grnwald-Letnikov operators, have appeared during the

past three decades. The existence of positive solution and multi-positive solutions for nonlinear

fractional differential equation are established and studied [6-8]. Moreover, by using the concepts

of the subordination and superordination of analytic functions, the existence of analytic solutions

for fractional differential equations in complex domain are suggested and posed in [9,10].

Our aim in this paper is to consider the existence and uniqueness of nonlinear Cauchy problems

of fractional order in sense of Riemann-Liouville operators. Also, two theorems in the analytic

continuation of solutions are studied. In the fractional Cauchy problems, we replace the first

order time derivative by a fractional derivative. Fractional Cauchy problems are useful in physics.

Recently, the author studied the the fractional Cauchy problems in complex domain [11].

One of the most frequently used tools in the theory of fractional calculus is furnished by the

Riemann-Liouville operators (see[6-8]). The Riemann-Liouville fractional derivative could hardly

pose the physical interpretation of the initial conditions required for the initial value problems

involving fractional differential equations. Moreover, this operator possesses advantages of fast

convergence, higher stability and higher accuracy to derive different types of numerical algorithms.

Definition 1.1. The fractional (arbitrary) order integral of the function f of order α > 0 is defined

by

Iαaf(t) =

∫t

a

(t− τ)α−1

Γ(α)
f(τ)dτ.
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When a = 0, we write Iαaf(t) = f(t) ∗ φα(t), where (∗) denoted the convolution product (see [7]),

φα(t) = tα−1

Γ(α)
, t > 0 and φα(t) = 0, t ≤ 0 and φα → δ(t) as α → 0 where δ(t) is the delta

function.

Definition 1.2. The fractional (arbitrary) order derivative of the function f of order 0 ≤ α < 1 is

defined by

Dα
af(t) =

d

dt

∫t

a

(t− τ)−α

Γ(1− α)
f(τ)dτ =

d

dt
I1−α
a f(t).

Remark 1.1. From Definition 1.1 and Definition 1.2, we have

Dαtµ =
Γ(µ+ 1)

Γ(µ− α+ 1)
tµ−α, µ > −1; 0 < α < 1

and

Iαtµ =
Γ(µ+ 1)

Γ(µ+ α+ 1)
tµ+α, µ > −1; α > 0.

2 Preliminaries

We extract here the basic theory of non-expansive mappings in order to offer the notions and

results that will be needed in the next sections of the paper. Let (X, d) be a metric space. A

mapping P : X → X is said to be an ν-contraction if there exists ν ∈ [0, 1) such that

d(Px, Py) ≤ νd(x, y), ∀ x, y ∈ X.

In the case where ν = 1 the mapping P is said to be non expansive. Let K be a nonempty subset

of a real normed linear space E and P : K → K be a map. In this setting, P is non-expansive if

‖Px− Py‖ ≤ ‖x− y‖ ∀x, y ∈ K.

The following result is a fixed point theorem for non expansive mappings, due to Browder,

Ghode and Kirk, see e.g. [12]:

Theorem 2.1. Let K be a nonempty closed convex and bounded subset of a uniformly Banach

space E. Then any non expansive mapping P : K → K has at least a fixed point.

Definition 2.1. Let K be a convex subset of a normed linear space E and let P : K → K be

a self-mapping. Given an x0 ∈ K and a real number λ ∈ [0, 1], the sequence xn defined by the

formula

xn+1 = (1− λ)xn + λPxn, n = 0, 1, 2, ...

is usually called Krasnoselskij iteration or Krasnoselskij-Mann iteration.
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Definition 2.2. Let K be a convex subset of a normed linear space E and let P : K → K be a

self-mapping. Given an x0 ∈ K and a real number λn ∈ [0, 1], the sequence xn defined by the

formula

xn+1 = (1− λn)xn + λnPxn, n = 0, 1, 2, ...

is usually called Mann iteration.

Edelstein [13] proved that strict convexity of E suffices for the Krasnoselskij iteration converge to

a fixed point of P. While, Egri and Rus [14] proved that for any subset of E, the Mann iteration

converge to a fixed point of P when P is a non-expansive mapping.

We need the following results, which can be found in [15]:

Lemma 2.1. Let K be a convex and compact subset of a Banach space E and let P : K → K be a

non-expansive mapping. If the Mann iteration process xn satisfies the assumptions

(a) xn ∈ K for all positive integers n,

(b) 0 ≤ λn ≤ b < 1 for all positive integers n,

(c)
∑

∞

n=0 λn = ∞.

Then xn converges strongly to a fixed point of P.

Lemma 2.2. Let K be a closed bounded convex subset of a real normed space E and P : K → K

be a non-expansive mapping. If I−P maps closed bounded subset of E into closed subset of E and

xn is the Mann iteration, with λn satisfying assumptions (a)-(c) in Lemma 2.1, then xn converges

strongly to a fixed point of P in K.

3 Existence theorems and approximation of solutions

For most of the differential and integral equations with deviating arguments that appear in recent

literature, the deviation of the argument usually involves only the time itself. However, another

case, in which the deviating arguments depend on both the state variable u and the time t, is of

importance in theory and practice. Equations of the form

u ′(t) = f
(
t, u(u(t))

)

are called iterative differential equations. These equations are important in the study of infection

models and are related to the study of the motion of charged particles with retarded interaction

(see [16-18]).

In this section, we establish the existence and uniqueness results for the fractional differential

equation

Dαu(t) = f
(
t, u(t), u(u(t))

)
(3.1)
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with initial condition u(0) = u0, where t, u0 ∈ J := [0, T ] and f ∈ C(J× J× J, J). For t ∈ J denote

Mt = max{t, T − t}

and

CL,α = {u : |u(t1) − u(t2)| ≤
L

Γ(α+ 1)
|t1 − t2|

α, ∀t1, t2 ∈ J}, L > 0.

It is clear that CL,α is a nonempty convex and compact subset of the Banach space
(
C[J], ‖.‖

)
,

where ‖x‖ = supt∈J |x(t)|.

Theorem 3.1. Assume that the following conditions are satisfied for the initial value problem (1):

(A1) f ∈ C[J× J× J, J];

(A2) ∃ℓ > 0 : |f(t, u1, u2) − f(t, v1, v2)| ≤ ℓ[|u1 − v1|+ |u2 − v2|], ∀ t, ui, vi, i = 1, 2 ∈ J;

(A3) If L is the Lipschitz constant such that |u(t1) − u(t2)| ≤ L
Γ(α+1)

|t1 − t2|
α, then

M = max{|f(t, u, v)| : (t, u, v) ∈ J× J× J} ≤ L

2
;

(A4) One of the following conditions holds:

(a) M Tα

Γ(α+1)
≤ Mu0

, where Mu0
= max{u0, T − u0};

(b) u0 = 0, M Tα

Γ(α+1)
≤ T − u0, f(t, u, v) ≥ 0, ∀t, u, v ∈ J;

(c) u0 = T, M Tα

Γ(α+1)
≤ u0, f(t, u, v) ≥ 0, ∀t, u, v ∈ J.

If
(L̃+ 2)Tαℓ

Γ(α+ 1)
≤ 1, (3.2)

then there exists at least one solution of problem (1) in CL,α which can be approximated by the

Krasnoselskij iteration

un+1 = (1− λ)un + λu0 + λ

∫t

0

(t− τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ,

where λ ∈ (0, 1) and u1 ∈ CL,α is arbitrary.

Proof. Consider the integral operator P : CL,α → C(J)

Pu(t) = u0 +

∫t

0

(t− τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ, t ∈ J, u ∈ CL,α.



134 Rabha W. Ibrahim CUBO
14, 3 (2012)

Our aim is show that P has a fixed point in CL,α. We proceed to apply Schauder fixed point

theorem or Banach fixed point theorem.

First we show that CL,α is invariant set with respect to P, i.e. T(CL,α) ⊂ CL,α. In virtue of condition

(A4a) and for all t ∈ J, u ∈ CL,α we have

|Pu(t)| ≤ |u0| + |

∫t

0

(t − τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ|

≤ |u0| +M
Tα

Γ(α+ 1)
≤ T

and

|Pu(t)| ≥ |u0| − |

∫t

0

(t − τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ|

≥ |u0| −M
Tα

Γ(α+ 1)
≥ u0 −Mu0

≥ 0.

Thus (Pu)(t) ∈ J, t ∈ J. In the similar manner of (A4a), we treat the cases (A4b) and (A4c). Now

for every t1, t2 ∈ J, by (A3), we obtain

|(Pu)(t1) − (Pu)(t2)| = |

∫t1

0

(t− τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ −

∫t2

0

(t− τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ|

≤ M
|tα1 − tα2 + 2(t1 − t2)

α|

Γ(α+ 1)

≤ 2M
|t1 − t2|

α

Γ(α + 1)

≤ L
|t1 − t2|

α

Γ(α+ 1)
.

Hence (Pu) ∈ CL,α whenever u ∈ CL,α. Therefore, P : CL,α → CL,α (i. e., P is a self-mapping

of CL,α). Let u, v ∈ CL,α and t ∈ J, by employing (A2) we have
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|(Pu)(t) − (Pv)(t)| = |

∫t

0

(t− τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ −

∫t

0

(t− τ)α−1

Γ(α)
f(τ, v(τ), v(v(τ)))dτ|

≤
∫t

0

(t − τ)α−1

Γ(α)
|f(τ, u(τ), u(u(τ))) − f(τ, v(τ), v(v(τ)))|dτ

≤
∫t

0

(t − τ)α−1

Γ(α)
[|u(τ) − v(τ)|+ |u(u(τ)) − v(v(τ))|]dτ

≤
∫t

0

(t − τ)α−1

Γ(α)
max[|u(τ) − v(τ)| + |u(u(τ)) − u(v(τ)) + u(v(τ)) − v(v(t))|]dτ

≤ Tαℓ

Γ(α+ 1)
[L̃‖u− v‖+ 2‖u− v‖]

≤ (L̃+ 2)Tαℓ

Γ(α + 1)
‖u− v‖,

where 1 ≤ ‖u− v‖ ≤ T and

L̃ := max
L

Γ(α+ 1)
, α ∈ (0, 1].

Now, by taking the supremum in the last assertion, we get

‖Pu) − (Pv)‖ ≤ (L̃ + 2)Tαℓ

Γ(α+ 1)
‖u− v‖.

If (L̃+2)Tαℓ

Γ(α+1)
< 1, then P is a contraction mapping and hence in view of Banach fixed point

theorem, Eq. (1) has a unique solution. Now if

(L̃+ 2)Tαℓ

Γ(α+ 1)
= 1

then P is non-expansive and, hence, continuous; thus Schauder fixed point theorem implies that

Eq. (1) has a solution in CL,α. Finally, in view of Lemmas 2.1 and 2.2, we obtain the second part

of the theorem.

Next we establish the solution of Eq. (1) in a subset of CL,α defined by

CL,α,δ =
{
u ∈ CL,α : u(t) ≤ δtα

Γ(α+ 1)
, ∀t ∈ J

}
, δ ∈ (0, 1).

It is clear that CL,α,δ is non-empty, convex and compact subset in C[J].

Theorem 3.2. Assume that the following conditions are satisfied:

(A5) u0 ≤ δtα
0

2Γ(α+1)
t0(6= 0) ∈ J;
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(A6) If L is the Lipschitz constant such that |u(t1)−u(t2)| ≤ L
Γ(α+1)

|t1−t2|
α, then M ≤ min{δ

2
, L
2
};

(A7) There exists a τ > 0 such that τ > −
ln(1−δ)

δ(T−t0)
, T 6= t0 and

Tα−1ℓ

Γ(α)τ
(
1

δ
+ L̃+ 1)max{eτt0 − 1, 1− eτ(t0−T)} ≤ 1 (3.3)

If (A2), (A4) hold then there exists at least one solution of problem (1) in CL,α,δ which can be

approximated by the Krasnoselskij iteration

un+1 = (1− λ)un + λu0 + λ

∫t

0

(t− τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ,

where λ ∈ (0, 1) and u1 ∈ CL,α,δ is arbitrary.

Proof. We assume the Banach space C[J] endowed with Bieleckis norm given by the formula

‖u‖B = max
t∈J

|u(t)|e−s(t−t0), s > 0, t > t0

(t, s, t0 ∈ J = [0, T ], T < ∞).

Let P be defined as in the proof of Theorem 3.1. By assumptions (A2), (A4), and (A6), it follows

that

P(CL,α,δ) ⊂ CL,α,δ.

Now we prove that CL,α,δ is an invariant set with respect to the operator P. Indeed, if u ∈ CL,α,δ

and t ∈ J then in view of (A5) and (A6), we have

Pu(t) ≤ u0 +M
tα

Γ(α+ 1)

= u0 +M
(tα − tα0 ) + tα0

Γ(α+ 1)

≤ δtα0
2Γ(α+ 1)

+
δtα

2Γ(α + 1)
−

δtα0
2Γ(α + 1)

+
δtα0

2Γ(α+ 1)

≤ δtα

Γ(α+ 1)
, t > t0,

that is Pu ∈ CL,α,δ.

Let u, v ∈ CL,α,δ and t ∈ J, we have
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|(Pu)(t) − (Pv)(t)| = |

∫t

0

(t− τ)α−1

Γ(α)
f(τ, u(τ), u(u(τ)))dτ −

∫t

0

(t− τ)α−1

Γ(α)
f(τ, v(τ), v(v(τ)))dτ|

≤ Tα−1ℓ

Γ(α)

∣∣∣
∫t

0

(
|u(τ) − v(τ)| + L̃|u(τ) − v(τ)| + |u(v(τ)) − v(v(τ))|

)
dτ

∣∣∣

≤ Tα−1ℓ

Γ(α)

(∣∣∣
∫t

0

(L̃+ 1)es(τ−t0)dτ
∣∣∣+

∣∣∣
∫t

0

es(δτ−t0)dτ
∣∣∣
)
‖u− v‖B

≤ Tα−1ℓ

Γ(α)

(∣∣∣ (L̃+ 1)

s
(es(t−t0) − 1)

∣∣∣ + 1

δs

∣∣∣es(δt−t0) − es(δt0−t0)
∣∣∣
)
‖u− v‖B.

This yields

|(Pu)(t) − (Pv)(t)|e−s(τ−t0) ≤ Tα−1ℓ

sΓ(α)

(
(L̃+ 1)

∣∣∣1− e−s(t−t0)
∣∣∣+ 1

δ

∣∣∣es(δ−1)t − es(δt0−t)
∣∣∣
)
‖u− v‖B

:= L(t)‖u− v‖B

where L(t) is a continuous function. Then there exists a constant L̂ > 0 such that

max
t∈J

|L(t)| ≤ L̂.

Thus we have

‖Pu− Pv‖B ≤ L̂‖u− v‖B,

which shows that P is Lipschitzian, hence continuous. By Schauders fixed point theorem it follows

that T has at least one fixed point which is actually a solution of the initial value problem (1).

We proceed to show that P is non-expansive function. The function

g(t) = 1− e−s(t−t0), s > 0, t > t0

is strictly increasing on J and g(t0) = 0; furthermore,

max
t∈J

g(t) = max{eτ̃t0 − 1, 1− eτ̂(t0−T)}.

Similarly for the function

h(t) = es(δ−1)t − es(δt0−t)

then

h ′(t) = ses(δ−1)t[(δ − 1) + esδ(t−t0)].

Now the function

k(t) = (δ− 1) + esδ(t−t0)
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is strictly decreasing on J; hence,

k(t) ≥ k(T) = (δ− 1) + esδ(T−t0). (3.4)

For δ ∈ (0, 1) and T 6= t0 then by the assumption (A7) there exists a τ > 0 such that

τ > −
ln(1− δ)

δ(T − t0)
, T 6= t0

which implies that k(T) > 0 and hence h is strictly increasing on J. If we put s = τ we have

max
t∈J

|h(t)| = max
{
|1− esδt0 |, |es(δ−1)T − es(δt0−T)|

}
.

But since δ ∈ (0, 1) thus we get

|es(δ−1)T − es(δt0−T)| = es(δ−1)T |1− esδ(t0−T)|

≤ 1− esδ(t0−T)

for sufficient s, δ, T and t0. Moreover, we have

|1− esδt0 | ≤ esδt0 − 1.

Consequently, we receive

L(t) ≤ max
{
esδt0 − 1, 1− esδ(t0−T)

}Tα−1ℓ

sΓ(α)
(
1

δ
+ L̃+ 1).

This shows that P is non-expansive.

Similar argument holds when T = t0 in Eq. (4) we have k(T) = δ > 0 hence h is strictly increasing

on J. Finally, one can use Lemmas 2.1 and 2.2 to obtain the second part of the theorem. This

completes the proof.

Example 3.1. Consider the following initial value problem associated to an fractional iterative

differential equation





D0.5u(t) = −1
3
+ 1

4
u(t) + 1

4
u(u(t)), t ∈ [0, 1]

u(0) = 1
3

(3.5)

where u ∈ C1([0, 1], [0, 1]). We are focused in the solutions u ∈ C1([0, 1], [0, 1]) belonging to the set

C1,0.5 = {u : |u(t1) − u(t2)| ≤
1

Γ(3
2
)
|t1 − t2|

0.5, ∀t1, t2 ∈ [0, 1]}

= {u : |u(t1) − u(t2)| ≤
1

0.886

√
|t1 − t2|, ∀t1, t2 ∈ [0, 1]}

= {u : |u(t1) − u(t2)| ≤ 1.1
√

|t1 − t2|, ∀t1, t2 ∈ [0, 1]}.
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To satisfy (A4a), we have M ≤ L
2
≃ 1

2
, M 1

3

= max{1
3
, 2
3
} = 2

3
= 0.666 and

M
Tα

Γ(α+ 1)
=

1

2
× 1

0.886
= 0.56 < 0.666.

Hence (A4a) is satisfied. The function f(t) = −1
3
+ 1

4
(u+ v), v := u(u(t)), is Lipschitzian with the

Lipschitz constant ℓ = 1
4
. This shows that

(L̃+ 2)Tαℓ

Γ(α+ 1)
=

3.1× 0.25

0.886
= 0.874 < 1.

Therefore, by Theorem 3.1 we obtain information on the existence and approximation of the

solutions of the initial value problem (5).

If we consider the function f(t) = −1
3
+ 286

1000
(u+ v) in Example 3.1, then we obtain

(L̃+ 2)Tαℓ

Γ(α+ 1)
=

3.1 × 0.286

0.886
≃ 1.

Therefore, again by Theorem 3.1 we pose the existence and approximation of the solutions of the

initial value problem (5).

Again, we consider the problem (5) on the interval [3
4
, 1] for ℓ = 0.015, where u ∈ C1([3

4
, 1], [3

4
, 1]).

We are interested in the solutions u ∈ C1([3
4
, 1], [3

4
, 1]) belonging to the set

C1, 1
2
, 3
4

=
{
u ∈ C1, 1

2

: u(t) ≤ δtα

Γ(α+ 1)
, ∀t ∈ J

}
, δ ∈ (0, 1)}

= {u : u(t) ≤
3
4
t

1

2

Γ(3
2
)
, ∀t ∈ [

3

4
, 1]}

= {u : u(t) ≤ 0.846
√
t, t ∈ [

3

4
, 1]}.

Our aim is to satisfy the assumptions of Theorem 3.2. (A2) and (A4) are valid. Since u0 = 1
3
and

t0 = 3
4
we have

u0 ≤ δtα0
2Γ(α + 1)

=⇒
1

3
<

3

8
;

hence (A5) is satisfied. Moreover, a computation gives

M ≤ min{
δ

2
,
L

2
} = min{

δ

2
,
L

2
} = {

3

8
,
1

2
} =

3

8

thus (A6) is satisfied. Now we proceed to satisfy (A7); since

−
ln(1− δ)

δ(T − t0)
=

− ln 1
4
× 16

3
= 6.933
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and

max{eτt0 − 1, 1 − eτ(t0−T)} = max{189.5, .826}

then for τ = 7 we impose

Tα−1ℓ

Γ(α)τ
(
1

δ
+ L̃+ 1)max{eτt0 − 1, 1− eτ(t0−T)} =

0.15

37.17
max{189.5, .826}

= 0.758 < 1.

Hence in view of Theorem 3.2, problem (5) has a solution in the set C1, 1
2
, 3
4

. Note that when

ℓ = 0.025 we obtain

Tα−1ℓ

Γ(α)τ
(
1

δ
+ L̃+ 1)max{eτt0 − 1, 1− eτ(t0−T)} =

0.25

37.17
max{189.5, .826}

= 1.137 > 1.

Thus problem (5) hasn’t a solution in C1, 1
2
, 3
4

. While, for ℓ ≃ .02, implies

Tα−1ℓ

Γ(α)τ
(
1

δ
+ L̃+ 1)max{eτt0 − 1, 1− eτ(t0−T)} ≃ 1;

therefore, in virtue of Theorem 3.2, Eq.(5) has a solution.

Moreover, we can observe that problem (5) hasn’t a solution on the set C1, 1
2
, 1
2

over the interval

[1
2
, 1] :

C1, 1
2
, 1
2

=
{
u ∈ C1, 1

2

: u(t) ≤ δtα

Γ(α + 1)
, ∀t ∈ J

}
, δ ∈ (0, 1)}

= {u : u(t) ≤
1
2
t

1

2

Γ(3
2
)
, ∀t ∈ [

1

2
, 1]}

= {u : u(t) ≤ 0.564
√
t, t ∈ [

1

2
, 1]}.

For u0 = 1
3
, t0 = 1

2
, α = 1

2
, δ = 1

2
, a calculation poses

u0 ≤ δtα0
2Γ(α + 1)

=⇒
1

3
>

0.35

1.772
;

therefore, condition (A5) dose not satisfy.

Finally, problem (5) hasn’t a solution on the set C1, 1
2
, 1
2

over the interval [3
4
, 1] :

C1, 1
2
, 1
2

=
{
u ∈ C1, 1

2

: u(t) ≤ δtα

Γ(α + 1)
, ∀t ∈ J

}
, δ ∈ (0, 1)}

= {u : u(t) ≤
1
2
t

1

2

Γ(3
2
)
, ∀t ∈ [

3

4
, 1]}

= {u : u(t) ≤ 0.5
√
t, t ∈ [

3

4
, 1]}.
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For u0 = 1
3
, t0 = 3

4
, α = 1

2
, δ = 1

2
, a calculation yields

u0 ≤ δtα0
2Γ(α + 1)

=⇒
1

3
>

1

4
;

therefore, condition (A5) dose not satisfy.

As such iterative fractional differential equations are used to generalize the model infective disease

processes, pattern formation in the plane, and are important in investigations of dynamical systems,

future works will be also devoted to them.

Received: November 2011. Revised: August 2012.
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