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ABSTRACT

In the present paper we introduce some generalized difference double sequence spaces
defined by a sequence of Orlicz-functions. We study some topological properties and
some inclusion relations between these spaces. We also make an effort to study these
properties over n-normed spaces.

RESUMEN

En este articulo introducimos algunos espacios de sucesiones doble-diferencia gen-
eralizadas definidas por una sucesién de funciones de Orlicz. Estudiamos algunas
propiedades topoldgicas y algunas relaciones de inclusién entre estos espacios. Ademas,
hacemos un esfuerzo para estudiar estas propiedades en espacios n-normados.
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1 Introduction and Preliminaries

The initial works on double sequences is found in Bromwich [4]. Later on, it was studied by Hardy
[6], Moricz [17], Moricz and Rhoades [18], Tripathy ([33], [34]), Basarir and Sonalcan [2] and many
others. Hardy[6] introduced the notion of regular convergence for double sequences. Quite recently,
Zeltser [36] in her Ph.D thesis has essentially studied both the theory of topological double sequence
spaces and the theory of summability of double sequences. Mursaleen and Edely [21] have recently
introduced the statistical convergence and Cauchy convergence for double sequences and given the
relation between statistical convergent and strongly Cesaro summable double sequences. Nextly,
Mursaleen [19] and Mursaleen and Edely [22] have defined the almost strong regularity of matrices
for double sequences and applied these matrices to establish a core theorem and introduced the
M-core for double sequences and determined those four dimensional matrices transforming every
bounded double sequences x = (Xmn) into one whose core is a subset of the M-core of x. More
recently, Altay and Basar [1] have defined the spaces BS, BS(t), CSp, CSpp, CSy and BV of double
sequences consisting of all double series whose sequence of partial sums are in the spaces My,
My (t), Cp, Cop, Cr and Ly, respectively and also examined some properties of these sequence
spaces and determined the «-duals of the spaces BS, BV, CSyp and the (v)-duals of the spaces
CSypp and CS; of double series. Now, recently Basar and Sever [3] have introduced the Banach space
L4 of double sequences corresponding to the well known space {4 of single sequences and examined
some properties of the space L. Let w? denote the set of all double sequences of complex numbers.
By the convergence of a double sequence we mean the convergence of the Pringsheim sense i.e. a
double sequence x = (xk1) has Pringsheim limit L (denoted by P —limx = L) provided that given
€ > 0 there exists n € N such that |[xx; — L] < € whenever k,1 > n see [26]. We shall write more
briefly as P-convergent. We shall denote the space of all P-convergent sequences by c?. The double
sequence x = (xx1) is bounded if there exists a positive number M such that |xx1| < M for all k
and 1. Let 12, the space of all bounded double sequence such that [IXklloo,2 = supy Ixk1l < oo. For
more details about double sequence spaces see ([30], [31],[32]) and references therein.

The notion of difference sequence spaces was introduced by Kizmaz [13], who studied the difference
sequence spaces lo (A), ¢(A) and co(A). The notion was further generalized by Et. and Colak [5]
by introducing the spaces loo (A™), c(A™) and co(A™). Let w be the space of all complex or real
sequences x = (xx) and let m, s be non-negative integers, then for Z = 1, ¢, co we have sequence
spaces

Z(A]) ={x = (xk) e w: (Afxx) € Z},

S

where A'x = (AT'xy) = (AT Tx — AT Txp 1) and A%y = xy for all k € N, which is equivalent

to the following binomial representation
= m
A= S ( )
v
v=0

Taking s = 1, we get the spaces which were studied by Et and Colak [5]. Taking m =s =1, we
get the spaces which were introduced and studied by Kizmaz [13].
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An Orlicz function M : [0,00) — [0,00) is a continuous, non-decreasing and convex function
such that M(0) =0, M(x) > 0 for x > 0 and M(x) — oo as x — oo. Lindenstrauss and Tzafriri
[14] used the idea of Orlicz function to define the following sequence space:

o0
].M:{XEW2ZM(M) <oo}
k=T P
which is called as an Orlicz sequence space. Also Ly is a Banach space with the norm

Il :mf{p > o;]; M("‘T“') < 1}.

Also, it was shown in [14] that every Orlicz sequence space Iy contains a subspace isomorphic to
l,(p > 1). The A,— condition is equivalent to M(Lx) < LM(x), for all L with 0 < L < 1. An
Orlicz function M can always be represented in the following integral form

where n is known as the kernel of M, is right differentiable for t > 0,1n(0) = 0,n(t) > 0, 1 is
non-decreasing and 1(t) — oo as t — oo.
Let X be a linear metric space. A function p : X — R is called paranorm, if

1 ) >0, for all x € X,

2 p(x), for all x € X,

3) pix+y) <px)+rply), for all x,y € X,

(1 p
2 p
3)p
(4) if (An) is a sequence of scalars with A, = A as n — oo and (x,) is a sequence of vectors

w1thp( n—Xx) = 0asn — oo, then p(Anxn —Ax) = 0 asn — oo.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X,p) is
called a total paranormed space. It is well known that the metric of any linear metric space is
given by some total paranorm (see [35], Theorem 10.4.2, P-183). For more details about sequence
spaces see ([12], [15], [20], [23], [24], [25], [27]) and references therein.

Let M = (Mx,1) be a sequence of orlicz functions,p = (px,1) be a bounded sequence of positive
real numbers and u = (ux,1) be a sequence of strictly positive real numbers. Let X be a semi-
normed space over the complex field C with the seminorm q. Now we define the following classes
of sequences in the present paper:

2 (A™, M, u,p, q,s) = {x = (xx,1) €EW?: P —1]i<I‘rLl(kl)_5uk,1 [Mk,l(q (%))]p“ —0,

for some p > 0,L and s > 0},
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c3(A™ M, u,p, q,s) = {x = (xx1) EW? P — li%(kl)_sum {Mm(q(%))rm _o,

for some p > 0 and 520}

and

A My o) = {x = ) € w2 sl g [ (a(S254) )] < oo

for some p >0 and s > O}.
If we take M(x) = x, we get

A?Xkyl — L)}pk‘l

AT 1P, 65) = {x = (oir) € WP P = lim(kD)~*wie[ (=20

for some p > 0,L and s > 0},

. -~ AMx Pk,
GHAT, WPy 5) = {x = (i) € WP P = Tim(k)~uiy g (S ) [ =0,

for some p >0 and s > 0}
and Am .
X K,
lﬁo(Al?,u,m q,s) = {x = (xx1) € w2 - sup(kl) " Suy 1 {q(nTk'L)} < 00,
Kl

for some p >0 and s > O}.

If we take p = (px,1) =1, we get

c2(A™ M, u, q,s) = {x = (x,1) EWH P — 1&{111(k1)75uk)1 [Mk)l(q (%))] =0,

for some p > 0,L and s > 0},

cé(Al{‘,M,u, q,s) = {x = (xk,1) € w2 P— lim (kL) *uy {Mkyl(q(%))} =0,

)

for some p > 0 and 520}

and

12 (AT, M, q,s) = {x = (xi1) € W S}llllo(kl)*suk,l [Mk,l(q (%))} < 00,

for some p >0 and s > 0}.

If we take m =n =0 and q(x) = |x|, then we get new double sequence spaces as follows :

. _ Ix , —L|\7Prt
cz(/\/l,u,p,s) = {x = (xx,1) € w?:P— llim(kl) Syt {MK‘L(%)} =0,

)
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for some p > 0,L and s > O},

. _ Xk, 1\ TPwt
GBIMyw,pys) = {x = (o) € w? £ P =il e Mt (Z25) |7 =0,

for some p > 0 and SZO}

and

P,
Lo (Mo u,pys) = {X = (xi,1) € w? sup(Kl) w1 [Mk,l(‘xz’l‘)} " <o,
k1

for some p >0 and s > O}.

If we take m =n =1 and q(x) = |x|, then we get new double sequence spaces as follows :

- Y

(AT, M, u,p,s) = {X = (xx,1) €W? 1P — llim(kl)fsuk@ [Mk,l(

,L

[Axi,1 — L\)rw
P

for some p > 0,L and s > 0},

|AXk,1|):|pk,L

b

(AT, My, p,s) = {x = (xi) € w?: P —lim(kD) e [Mica (

for some p > 0 and SZO}

and

ATMx P,
12 (A™ My, p,s) = {x = (xx,1) € w? - sg}lz)(kl)_sukﬂ {Mk,t(‘ np k,L‘)} L o,

for some p >0 and s > 0}.

The following inequality will be used throughout the paper. Let p = (px,1) be a double sequence of
positive real numbers with 0 < py,1 < sup = H and let K = max{1,2"~"}. Then for the factorable
k,1

sequences {ay,1} and {by 1} in the compléx plane, we have
lax,1 + b, /PRt < K(lag [Pt + [by i [Pet). (1.1)

The main goal of this paper is to extend a few known results in the literature from single differ-
ence sequence spaces to double difference sequence spaces. We also make an effort to study some
topological properties and inclusion relations between above defined sequence spaces.
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2  Main Results

Theorem 2.1 Let M = (Mx1) be a sequence of Orlicz functions, p = (px,1) be a bounded se-
quence of positive real numbers and uw = (ux,1) be a sequence of strictly positive real numbers, then
the classes of sequences c3(AT™, M,u,p,q,s), c?(AT, M,u,p,q,s) and Lo (AT, M, u,p, q,s) are
linear spaces over the field of complex numbers C.

Proof. Let x = (xk1), y = (yk,1) € c3(A™, M,u,p,q,s) and o, € C. Then there exist
positive numbers p; and p; such that

AT P,
1111111(]{1)75111%1 {Mk,l(q(%))} o =0, for some p; >0
) 1

and

llir?(kl)_suk,l [Mk‘L(q(%))rw =0, for some py > 0.

Let p3 = max(2|alp1,2[Blp2). Since M = (My 1) is non-decreasing convex function and so by
using inequality (1.1), we have

11£I?(kl)isuk’l [Mk,l (q (Am((xxk 1+ Byxk,1) )rk .

)
= lim(kl) " [Mk,l(

R
L L e
i oS8

0

(Amxk 1))}%1
(B

So, ax + By € CO(A“ M,u,p,q,s). Hence c3(AN, M,u,p,q,s) is a linear space. Similarly, we

S K hm(kl U.k 1 {MkJ

el

(
+ Klim(kl) “*uiy {Mk,l(

= 0.

can prove that c?(A™, M,u,p, q,s) and lgo(ATn‘i,M,u,p, q,s) are linear spaces.

Theorem 2.2 Let M = (My,1) be a sequence of Orlicz functions, p = (px,1) be a bounded
sequence of positive real numbers and u = (ui,1) be a sequence of strictly positive real numbers.
For 72 =12_,c? and c(z), the spaces Z* (AT, M,w,p, q,s) are paranormed spaces, paranormed by

nm

= ké1 q(xk,1) + inf {PPL“l 1sgg(kl)suk,1Mk,L(q(%)) < 1}

where H = max(1, sup px,1).

)
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Proof.  Clearly g(—x) = g(x), g(0) = 0. Let (xk,1) and (yx,) be any two sequences belong
to any one of the spaces Z%(AM, M,u,p,q,s), for Z* = c(z), c? and 12,. Then, we get p1, p2 >0

such that

Am
Sup(kl)isuk,le,l(q (ﬂ)) <1
k,1 P1

and

Am
sup(kl) ™Sk, 1My 1 (q (M) <M
k,1 P2

Let p = p1 + p2. Then by convexity of M = (My,1), we have

supl e M (a (S ) < (R supl M (a (S
- (e o(5))
< 1
Hence we have,
mn
gx+y) = D qbityk)
K1=1
+ inf{pLHL :ss?(kl)suk,le,l(q(w)) < 1}
< E q(xkyl)—i—inf{p]kal:slll{)(kl)*suk‘LMk,l(q(ATﬁ;Tk,L)) §1}
K 1=1 ,
- : Dpt . AT'Yk,1
+ Z q(yk‘1)+1nf{p2” :sup(kl) sukyle‘L(q( n )) §1}.
=1 k1 P2

This implies that
g(x+y) < g(x) +gly).

The continuity of the scalar multiplication follows from the following inequality

(o) = 3 aliooe) +int {p B s sup() S M (a( 2E252)) <1
gl = k‘L:1qu,1 P -k’ILD k, 1Vl g 0 <

Il E q(xk,1)+inf{(t|u\)% :sg]io(kl)_sukyll\/[k’l(q(%)) < ]}’

k=1 t
where t = |—ﬁ|. Hence the space Z2(A%, M,u,p,q,s), for Z? = c3,c? and 12, is a paranormed

space, paranormed by g.

Theorem 2.3 Let M = (My,1) be a sequence of Orlicz functions, p = (px,1) be a bounded

sequence of positive real numbers and u = (ui,1) be a sequence of strictly positive real numbers.
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For 7? = lgo,c2 and c(z), the spaces ZZ(ATT{L,M,u,p, q,s) are complete paranormed spaces, para-

normed by
g ’El ] qixx,1 p . u,{) < Uk, 1Vl g = y

where H = max(1, sup pi,1).

)

Proof. We prove the result for the space 12 (A™, M,u,p,q,s). Let (XLI) be any Cauchy se-

quence in 12 (A™, M,u,p,q,s). Let € > 0 be given and for t > 0, choose xo be ﬁ?(ed such that
Ui, 1My 1 (t%) > 1, then there exists a positive integer ng € N such that g(x}d — XLL) < Tft’ for

all i,j > ng. Using the definition of paranorm, we get

mn 3 j
. . AM(xt )
3 ek —x) + it o2 s sup(kl) s My (g (BE LX) L E
St ’ ’ kL P Xot
for all i,j > no (2.1).
Hence we have,
mn .
Z q(xk,1 —XLI) < e, for all i,j > nyg.
k,1=1
This implies that
q(x{;y1 —XLI) <e, forall i,j>np and 1 <k <nm.
Thus (X}c,l) is a Cauchy sequence in C for k,1 =1,2,....,nm. Hence (X}c,l) is convergent in C for
k,1=1,2,....,nm. Let iliﬂxgox}{,l = Xx,1, say for k,1 =1,2,...,nm. (2.2)

Again from equation (2.1) we have,

AM i )
inf{pp_]ﬁ‘L :sup(kl)*suk,lzvlk,l(q (ﬂ%"kﬂ—))) < 1} < e, forall i,j> no.
K,

Hence we get

AT (xd ) )
—s el Tk < FEIS .
s}g{)(kl) uk,le,L(q( axt =) )) <1, forall {,j > no

It follows that (kl)*suk,IMk,l(q (ML)H))) <1, for each k,1 > 1 and for all i,j > no.
txo

g(xt—xJ

A (xE L —x) tx

This implies that
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Hence q(AT"fx}{,l) is a Cauchy sequence in C for all k,1 € N. This implies that q(AT"fx}{,l) is
convergent in C for all k,1 € N. Let lim q(AT"fxi 1) = Yxk,1 for each k,1 € N. Let k,1 =1, then we
i—oo0 ’

have
m

v ) X%+nv,1+mv =Y1,1. (2.3)

m
lim q(ARX] ;) = lim ) (—1)V<
1—00 1—)00\):0

We have by equation (2.2) and equation (2.3) lim x| = Xmn41, exists. Proceeding in this
1—00

way inductively, we have lim xi | = xx,1 exists for each k,1 € N. Now we have for all 1,j > no,
i—oo 7

mn j)

k‘LZ:1 q(xi . —XL,J +inf{p% 1Sgllo(kl)_suk,LMk,l(q(A?(Xi:)_Xk )) < 1} <e.

This implies that

mn _ ) - Am(xi —Xj )
lim { Z q (X1 — X 1) ‘an{PT 28up(k1)7suk,1Mk,1(q (“—k’;—k’L—)) < 1}} <,
j—oo ’ Kk,l

1:1 )

for all i > ng. Using the continuity of My 1, we have

mn .
. Am 1 _Am
z q(xp,L — xx,1) +inf{9mﬁ'l ZSQI{)(kI)*suk,le,L(q( n Mol 5 nxk’l)) < 1} <,
K1=1 ,

for all i > ny. It follows that (x!—x) € 12, (A™, M,u,p, q,s). Since x' € 12 (A%, M,u,p, q,s) and
12,(A™, M, u,p, q, ) is a linear space, so we have x = x* — (x* —x) € 12 (A}, M,u,p, q,s). This
completes the proof. Similarly, we can prove that c(A%, M,u,p,q,s) and c3(A%, M,u,p,q,s)
are complete paranormed spaces in view of the above proof.

Theorem 2.4 Let m > 1, then for all 0 < i < m, Z?(Al, M,u,p,q,s) C Z*(A™, M,u,p, q,s),

2

where Z* = c?,c% and 12,.

Proof. We will prove it for only c¢3(A™', M,u,p,q,s). Let x = (xk,1) € c3(AT™1, M,u,p,q,s).
Then

q(AT’?_]xk,l)” Pt

P— 1]i<Ir11(kl)_Suk,1 [Mk,l( =0, for some p >0 and s >0 (2.4)

Then from (2.4) we have

P o (oS5 <o

Y
e e (o(2E250)) ) o

and

P o o5
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Now for

ATx = (Alxi) = (AT Tx — A

m—1 m—1
n Xk 1 — AT Xepn AR

we have

o252

Xk+1 1+1)

< (kD) Pugy {Mk,l (q(A?T%) + q(%)
boq(AE Dy | g (AR Xkt
p p
< Kz(kl)_sukyl{{Mk‘L(q(AP‘i_T]Xk’l))rk’ —|—uk1[Mkl(q(m))rbl

s (oS (o220

P
< Kz{ [(kl)isuk,le,l(q (A?:#]Xk’l))] Pt {(kl) W, 1Mk 1(q (A
+ {(kl)suk,LMk,l(q(%))}PkﬂH +uk1[ Mkl(q(A

—1

1

Xk+1, 1))}"“‘»1
Xk 1,141 ))} Pr1,141 }

from this it follows that x = (xkx1) € c3(AM, M,u,p,q,s) and hence c3(A™', M,u,p,q,s) C

c% (AT M,u,p,q,s). On applying the principle of induction, it follows that c(z)(

ALy, Mo, p,q,s) C

c%(ArT{‘,M,u,p, q,s) fori=0,1,2,--- ;m — 1. Similarly, we can prove the other cases.

Theorem 2.5 (a) If 0 < infpk 1 < pra < 1, then Z2(A™, M,u,p, q,8) C Z*(A™, M, 1, q,s),
(b) If 1 <pra < blllppkl < oo, then ZZ( M, q,s) C ZZ(A?»M»U»P»%S),

2

where Z? = c?,c3 and 12,.

Proof. (i) Let x = (xx,1) € 12, (A, M, u,p, q,s). Since 0 < infpy,; < 1, we have

Kk, 1 Kkl

and hence x = (xx,1) € 14 (A™, M,u,p, q,s).

sup(kl) " *uy 1 {Mk,L (q (%))} < sup(kl) g, {Mkyl (q (%))} pk,l’

(i) Let px,1 for each (k,1) and suppx,1 < oo. Let x = (x1) € 15 (AT, M,u,q,s). Then, for

k,1
each 0 < € < 1, there exists a positive integer N such that

Am
sup(kl) ™ “ux,1 [Mk,l (q (ﬂ))} <e<l,
k,l p

for all myn € N. This implies that

k1 k1

sup(kl) w1 [Mk,l (q (%))} e sup(kl) ™1,y {MK‘L (q (%))} '
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Thus x = (xk,1) € 12,(A™, M,u,p, q,s) and this completes the proof.

Theorem 2.6 Let M’ = (M, 1) and M" = (M) be two sequences of Orlicz functions satisfying
M (t
ktl( : > 1, then ZZ(APS)MI)u)p) q, s) = ZZ(AI{L)MHOMI)u)p) q, s),

A -condition. If B = tlim
—00

where 72 = ¢?, c(z) and lgo.

Proof. We prove it for Z? = ¢? and the other cases will follows on applying similar techniques.
Let x = (xk,1) € ¢?(AT, M',u,p, q,s), then

Pyt g oL o

Let 0 < e <1 and 8 with 0 <8 <1 such that My/(t) < e for 0 <t < 3. Let

Aka 1— L
_ / n y
Yk,1 = Mk,l(q(ip ))
and consider
My Ly, 1P = IMG 4 (Y, )IP + IMY ()] P (2.5)

where the first term is over yx,1 < & and the second is over yi,1 > 5. From the first term in (2.5),

we have
(KU MY Ly, )IPRt < (KD S IMY (2] (e, )] (2.6)

On the other hand, we use the fact that

Yk,1 Yi,1
3] 3y
5 ~ ' TS

Yi,1 <

Since (M) for each k, 1 is non-decreasing and convex, it follows that
k1 g

1 1 2
Malyin) < M (1 554) < GMER)+ MU (S,

Since (M{;l) for each k, 1 satisfies Aj-condition, we have

1 1
MY (i) < sKZEEMY (2) + sk 2Rbmy (2) = kZ9Rtmy (2.

2% 2% b
Hence, from the second term in (2.5), it follows that
(K1) My P < max (1, (KM7(2)5 M) () [y )IP= (27)

By the inequalities (2.6) and (2.7), taking limit in the Pringsheim sense, we have x = (xy 1) €
c? (AT, M o M’ u,p, q,s). Observe that in this part of the proof we did not need f > 1. Now,
let B > 1 and x = (xk,1) € c2(M’,AT,u,q,p). Then, we have M{C"L(t) > B(t) forall t > 0. It
follows that x = (xk,1) € c2(A™, M" o M’,u,p, q,s) implies x = (xx,1) € c2(AT™, M’ 1, p, q,s).
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This implies ¢ (A, M/, u,p, q,s) = (AT, M" o M’ 1u,p,q,s).

Theorem 2.7 Let M’ = (My 1) and M" = (My/ ) be two sequences of Orlicz functions, q,qn
and qz be seminorms and s,s1 and sy be positive real numbers. Then
(1) Z%(A™, M’ u,p, q,8) N Z2 (AT M w,p, q,8) C Z2 (AT, M + M” w,p, q,8),
(2) Z%(A™, M,u,p, q1,s) N Z* (AT, M, u,p, q2,8) C Z2(AT, M,u,p, q1 + q2,8),
(3) If q1 is stronger than qz, then Z*(AT™, M,u,p,q1,8) C Z2(A™, M, 1, P, q2,5)
(4) If s1 < s, then Z*(A™, M,u,p, q,81) C Z2(A™, M, u, P, q,52),

where Z? = c%,c3 and 12,.

Proof. (1) Let x = (xx1) € c2(ATY, M’,u,p, q,8) N c?(A™, M”11, p, q,s). Then

A?Xkyl —L

Pxo1
5 ))} =0, for some p7 > 0,
1

p_ lli{?(kl)fsukvl {M{c,l (q(

P— liﬁl(kl)fsukd [M{Q"L(q(%))} Pt =0, for some py > 0.

Let p = max(p1,p2). The result follows from the following inequality

- e

< k{00 [ (B IV P gy [ (g (B By P

p1 P2
The proofs of (2), (3) and (4) follows by same pattern.
Theorem 2.8 For any sequence of orlicz functions, if q1 = (equivalent to) qa, then

ZZ(APJ)M»LL»P»QMS) = ZZ(APJ>M»LL»P»QZ)S); where 7% = CZ)C% and lgo

Proof.lt is easy to prove so we omit the details.

3 Some generalized difference double sequence spaces over
n-normed spaces

The concept of 2-normed spaces was initially developed by Géhler[8] in the mid of 1960’s, while that
of n-normed spaces one can see in Misiak[16]. Since then, many others have studied this concept
and obtained various results, see Gunawan ([9],[10]), Gunawan and Mashadi [11] and many others.
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Let n € N and X be a linear space over the field K, where K is the field of real or complex numbers
of dimension d, where d > n > 2. A real valued function |-, ---, || on X™ satisfying the following
four conditions:

(1) Ix1,%2y- -+ yXnll = 0 if and only if x1,X2,- -+, X, are linearly dependent in X;

(2) Ix1,%2,-** yXnll is invariant under permutation;

(3) HO(XI)XZs “yXnll = lex] ||X1»X2) -+ yxnl for any « € K, and

(4) I +x"yx2y -y xall <%,y xnll + 11X, x2, -+ Xall
is called an n-norm on X and the pair (X,||-,---,-||) is called a n-normed space over the field K.
For example, we may take X = R™ being equipped with the n-norm |[x1,x2, -+ ,Xxnl|l[g = the
volume of the n-dimensional parallelopiped spanned by the vectors x1,%2,- -+ ,X, which may be

given explicitly by the formula

Ix1,%2, -+ yxnlle = [ det(xi;)],
where xi = (X{1,Xi2, - yXin) € R™ for each 1 = 1,2,--- ,nn and ||.||[g denotes the Euclidean norm.
Let (X,]|-,---,-]|) be an n-normed space of dimension d > n > 2 and {aj,az,---,an} be linearly
independent set in X. Then the following function |-, - - ,|jec on X™ ! defined by
HX])XZ)' e )Xn—lHoo = maX{HX])XZ)' e )Xn—hai” i=1,2,--- )n}

defines an (n — 1)-norm on X with respect to {a1,az,---,an}.
A sequence (xi) in a n-normed space (X, |-, ,||) is said to converge to some L € X if

lim ||xx —L,z1,--- ,zn_1l| =0 for every z7,---,zn_1 € X.

k—oo
A sequence (xy) in a n-normed space (X, ||-,--- ,-]|) is said to be Cauchy if

lim ka_xp)Z]s" : )Zn71|| =0 for every z1,---,zn1 € X.

k,p—oo

If every Cauchy sequence in X converges to some L € X, then X is said to be complete with respect
to the n-norm. Any complete n-normed space is said to be n-Banach space. For more details
about sequence spaces see ([28], [29]) and references therein.

Let M = (My,1) be a sequence of Orlicz functions, p = (pk,1) be a bounded sequence of positive
real numbers and u = (uy,1) be a sequence of positive reals such that uy 1 # 0 for all k, then we
define the following sequences spaces in the present paper:

C%(MaA?Jspsuvs) ||) e s”) =

. _ ATYx Pk,1
{X = (Xk,l) ew?: lim (k1) suk‘L {Mk,L (H np k’l)z1  y Zn] H)} =0,

k,l—o00
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for some p >0 and s > O},

CZ(M,A?,}),U,S, ||) e s”) =

. _ ATlx1—L Pi,t
{X = (x,) €w? s lim (k) suk,l[Mk,l(H%slh e ,Zn71||)} =0,

k,l—o00

for some p >0, L and s > 0},

and
lgo(./\/l,A;n,‘p,u,S, oy 5l =

A}?xkﬂ

{x = (xx,1) € w?: sup (k1) Suy 1 {MK‘L(H

Pk,
)21)"')Zn—1H)i| < 00,
k,1>1

for some p >0 and s > 0}.

In this section of the present paper we shall study the topological properties and some interest-
ing inclusion relation between the spaces c? (M, AT, p,, s, [+ - -+, -[]), ¢ (M, AT, pyw, s, |-y - <« oIl
and lgo(M)AP:)p)u) Sy ||) T ||)

Theorem 3.1 Let M = (My 1) be a sequence of Orlicz functions, p = (pi,1) be a bounded sequence
of positive real numbers and w = (ux,1) be a sequence of strictly positive real numbers, then the
spaces C%(M»ATT»P»W Sy ||) T ||): CZ(MsA'Tspsus Sy ||) ) H) and lgo(MvALn)p)u) Sy Hs ) H)
are linear spaces.

Proof. Let x = (xx1), Yy = (yx,1) € c3(M, AT pyu,s, |l ,-|]) and a, B € C. Then there
exist positive number p; and p such that

AT P,
lim (kl)*suk‘L[Mk‘L(H “Xk’l,zh--- ,Zn—ﬂ\ﬂ - 0, for some p; >0
k,l—00 P1

and

AT P,
lim (kl)_suk,l[Mk,l(H npl’ik'L,Zh E ,Zn—1||)} oo 0, for some p; > 0.

k,l—o00

Let p3 = max(2|alp1,2[Blp2). Since M = (My 1) is non-decreasing convex function and so by
using inequality (1.1), we have
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. _ ATM(ooxe 1 + )l Pt
tim_ ()~ [Miey (I S LT PYRL )]
k,l—o00 P3

. _ xATYx AT Pik,1
=i () i (Mo (I 550 2, ,zn_1\\+||%,zh---,zn_m)]

k,l—o00
. _ AT 1 Pi,L
S n y
< Kl s () [Mi (125 2z
. o Amyk]_ Px,1
S n y
+ K k,lllgloo 2Pt (kl) Uk, 1 {Mk,l (H 02 yZ1y "ty Zn—1 H):|
. _ Aka 1 Pk,1
< K lim (kl) Suk,l[Mk,l(H 2z ,Zn—1||)}
k,l—o00 P1
. _ AT k.1 Pk,
+ K lim (k1) *ux, [Mk,l(H m Yk, ¥ APRRE )Zn—1||)}
k,l—0c0 P2
= 0.
So, ax + Py € c%(M,AL‘i,p,u,s,ll-,--- ,-). Hence c%(M,A}}l,p,u,s, I-y-+-,-|]) is a linear space.
Similarly, we can prove that c?(M,A™ p,, s, |- -+, -||) and 12 (M, A™ p,u,s, |-y - -+ ,||) are lin-
ear spaces.

Theorem 3.2 Let M = (My1) be a sequence of Orlicz functions, p = (px,1) be a bounded se-
quence of positive real numbers and uw = (ux,1) be a sequence of strictly positive real numbers. For
7?2 =12.,c? and 2, the spaces Z2(M, AT, p,u, s, --- ) are paranormed spaces, paranormed
by

nm
. Pr.l _
9) = > Ihxi,z1,0 »anlH-an{P 2 sup(kl) suk,le,l(H
k,l
K1=1 ,

AI{LXk,[

yZly " sznle) < ]}

where H = max(1, sup pi,1).

)

Proof. Clearly g(—x) = g(x), g(0) = 0. Let (xx) and (yx) be any two sequences belong

to any one of the spaces Z%(M,A™ p,w,s, |- ,[), for Z2 = c3, ¢? and 1%,. Then, we get

p1, P2 > 0 such that

_ AT x
sup(kl) suk,l[Mk,l(H np]k’lylh"' ,Zn71||)} <1
K1

and

IN

_ ATV
sup(kl) suk,l[Mk,l(H "yk’l,lh"' ,anH)}
k,l P2

Let p = p1 + p2. Then by convexity of M = (My1), we have
_ AT (X1 + )
sup(kl) Suk,l[Mk,l(H%yk‘Lalh'“ »anH)}

K1
_ Ax
< ( i )Sup(kl) Suk,L{Mk,L(H np]k’l»lh"')ln—l\\)}

P1+pP27 k1
P2 ) s AT'Yk1
sup(kU)*we [Mict (I 22258 2,z o))
(p]+p2 k,{) x,1 x,1 05 yZ1, yZn—1

1.
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Hence we have,

mn

gx+y) = D N+ y)zi, e zall
k,l=1

Am
4 inf (o™ sup(t) s [Migy (| )] <)

P
mn
Z ||Xk,bll oy zn—ll

<
=1
. Pkl o Akal
+inf {py ™ s sup(kl) i [Mig (1P 20, zall) | <1
k1l P1
mn
+ Z ||yk,l)z1)"' )Zn—ln
=1
) LI _ ATYk 1
+ Hlf{PzH :sup(kl) suk,l[Mk,l(H “pg =z, ,anH)} §1}-
K1

This implies that
g(x+y) < g(x) +g(y).

The continuity of the scalar multiplication follows from the following inequality

mn
Q(HX) = Z ||HXk,1)7~1>"' )Zn—ln
k,1=1
. Pil _ AT ux
+ Hlf{Ppt‘L : sup(kl) sUk,L{Mk,L(H%,ZW” ,Zn71||)} < 1}
k,1
mn
= lu Y Ixenziy szl
K,1=1
: Pra - A1
it (1) " 2 sup(l) S [Mica (12755 21,2l | < 1,
where t = I_ftl' Hence the space Z% (M, AT p,w,s, ||,y ,[), for Z? = c3,c? and 1% is a para-

normed space, paranormed by g.

Theorem 3.3 Let M = (Mx,1) be a sequence of Orlicz functions, p = (px,1) be a bounded
sequence of positive real numbers and u = (ui,1) be a sequence of strictly positive real numbers.
For Z? =1%,,¢? and c3, the spaces Z2(M, AT, p,, s, -+ ,-I|) are complete paranormed spaces,

paranormed by

— r Amxk1
. Pk.l _
Q(X) = Z ||Xky1,Z],' o ,an]H +1nf{p H :sup(kl) suk,le,l(H T\.p > yZly " ,anlH) < 1})
k,l
k,1=1 y

where H = max(1, sup px,1).
k1

Proof. We prove the result for the space 12 (M, A™ p,u,s,||----,||). Let (x!) be any Cauchy
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sequence in 12, (./\/l ATV pyowy sy |l -+, o|l). Let € > 0 be given and for t > 0, choose xo be fixed such

€

that wi, 1My 1 > 1, then there exists a positive integer ng € N such that g(xk l—xi U< oo

for all i,j > no. Usmg the definition of paranorm, we get

n ) ) _— Am(xil_xj )
> 0=z s znallng {p I sup () uie M (|1 2z 1)
K, l=1 kol P
€ ..
< —, for all i,j >nyp (3.1).
Xot

Hence we have,

Z [1( xkL xkl) 21, yzZn—1ll < €, for all i,j > n,.
k,1=1
This implies that
||(XL1 —XLYI),Z], oo znotll <€, forall i,j>np and 1<k <nm.
Thus (x}“< ) is a Cauchy sequence in C for k,1=1,2,....,nm. Hence (XLI) is convergent in C for
k,1=1,2,....,nm. Let lim xkl—xkl, say for k,1 =1,2,....,nm. (3.2)
i—oo

Again from equation (3.1) we have,

j
inf o™ sup(kt)~*we M 12 ("k; e 2 zall) <1} <6, forall 1 o,
k.1

Hence we get

AT (xt L —x o
S]llllo(kl)sUk,LMk,1(||%’I_TT‘I—),Z1,"' »anH) <1, forall i,j > mo.
It follows that (kl)™®wy 1My L(H—X;;%)“) FARERE: ,zn_1H) < 1, for each k,1 > 1 and for all

i)j > MNo.
For t > 0 with (k)™ Suy, 1My, 1($3%) > 1, we have

_ A (xE —%) ) _ tx
(kD) Mgt (I1=2 LT 2z ) < (KD Mt (50)-
g(xt —xJ) 2
This implies that
. ; txo € €
H(A?XLL—APJXLL)»ZM oy Zn— 1”<T§_E'

Hence (ATT{LX]';J) is a Cauchy sequence in C for all k,1 € N. This implies that (A?ﬁxi’l) is convergent
in C for all k,1 € N. Let lim A'x} ; =y, for each k,1 € N. Let k,1 =1, then we have
i—o0 ’

. ; o m\
11120 ATTXE‘] - 11i>120 Z(_])V < X%—O—nv,mv—H =Y1. (33)

i—
v=0 v
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i
mn+

We have by equation (3.2) and equation (3.3) lim x 1 = Xmn+1, exists. Proceeding in this
1—00

way inductively, we have lim xi | = xx,1 exists for each k,1 € N. Now we have for all 1,j > o,
i—oo 7

mn X
Z ||(Xi,1 - XLYLLZ]) oy znll
k,1=1

AM Xi —Xj

wint (o™ sup(k) M (IR 2y ) < 1) <
k,1
This implies that
mn ) i
Jliglo { Z H(Xi,l _XLJ)»Z] y Ty Zn—1 H
k,1=1
AM(xE —Xj
wint {7 s sup(k) e Mg (1R 2y ) <1 <
kL

for all 1 > ng. Using the continuity of (My 1), we have
mn
Z ||(X}<,1 - Xk,l))zh Tty Zn—1 ||
k,1=1

AT L — AT

+inf{p% isup(kl)_suk,LMk,l(H( n ot 5 = k’l),lh"' )Zn—lH) < 1} <€,
k1

for all i > no. It follows that (x'—x) € 12 (M,A™ p,u,s,|---,-|). Since x' €
12 (M, A% pyuy s, |l -l]) and 12 (M, AR pyu, s, |-+, -|l) is a linear space, so we have x =
xt— (xt —x) € 12 (M,A™ ,p,u,s, |-+ ,-|]). This completes the proof. Similarly, we can prove
that ¢(M, A%, p,u, |l ,-|) and c3(M, A%, p,u, -, ,-||) are complete paranormed spaces in
view of the above proof.
Theorem 3.4 If 0 < px1 < qx1 < oo for each k,l, then Z*(M, AT p,,s,|l----,-|l) C
22 (M, AT gy, s, Iy ooy ll), for Z2 = ¢ and 2.
Proof. Let x = (xx,1) € ¢*(M, AT, p,u,s, |-+ ,-|l). Then there exists some p > 0 and L € X
such that

. _ A1 —L Pr,1
tim (k)i (Mic (17825021, zaal) ) =0

k,l—o00

ATV —L
This implies that (kl)fsuk‘LMk‘L(HﬂxL

large k, 1. Hence we get
. _ A1 —L qx,1
lim (k1) Suk,L(Mk,L(H%yzh”' )Zn—1H))

k,l—0c0

yZ1y ,Zn_1H) < e (0 < e < 1) for sufficiently

. B AMx - L Pk,
< lim (kl) Suk,l(Mk,l(H%’Z]’”. )Zn—]H)) =0.

k,l—0c0

This implies that x = (xx1) € ¢?(M, A, q,1,s, |-, ,-|[). This completes the proof.

Similarly, we can prove for the case Z2 = c%.
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Theorem 3.5 If M’ = (M{%l) and M" = (MIZ,l) be a sequence of Orlicz functions. Then
(i) Z2(M' AR Py, s, [y -yl © Z2(M” o MU AT, Py, s, Il -+ ),
(ii)
ZH M AT oy sy [y ) N Z2 (M7 AT g s, -yl
- ZZ(M/-}-M”,A?,P,U,S,H-,--- )'H))

for 22 =12, ¢? and c3.

Proof. (i) We prove this part for Z? = 12, and the rest of the cases will follow similarly. Let
(xx,1) € L2 (M/JAT pyy s, |-y -+, -I]), then there exists 0 < U < oo such that

A}‘ka,l

Pk,
(kl)_sukyl(M]Q,l(ll JZ1y ,zn_1||)) "<, forall kyleN.

Let yi,1 = (kl)*sukylM{{’l(H%,z]V- © 3 Zn1 ||). Then yi,1 < Uﬁ,t <V, say for all k,1 € N.
Hence we have

((Mz oM (I

for all k,1 & N.

AMx Px,1
Hence s]?}l:)ukyl((M]Z,loM{d)(|| “pk’l,zl, e ,zn,1||)) < o00. Thus x = (xk,1) € 12, (M"0
MI,APJ,}),‘LL,S, ||) T )H)

(ii) We prove the result for the case Z? = c? and the rest of the cases will follow similarly. Let
X = (Xk,l) € CZ(M/,ATT,}),U., S, ||) Ty ||) N CZ(MH)ATT{L)p)u) Sy Hv e )'H)a then there exist some
p1,p2 >0 and L € X such that

k—oo

. _ AT'xy 1 —L Pk,1
i (K1)~ (MY (15225, zaal])) T =0

and AM L p
- K1
lim (kl)isuk,l(M{gyl(HnX%’Z]’"' ,Zn*1||)) =0.

k—oo

Let p = p1 + p2. Then we have

my o Px,1
(k) w1 (M + M) (8852t 2z ]))

1 _ ATl —L Pk,

= K[(pl i pz)(kl) sukJMli‘l(”%Jh“' )Zn—lH)}
A1 —L Pr,t
" K[(pl Tpz)(kl)isuk’lM{g‘L(”%»zh'" ,an]H)} .

This implies that

k—oo

. _ AMx 1 —L Pkt
lim (k1) Suk,l((M{(,l + M) (||%,zl, e Zno ||)) —0.
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Thus x = (xk,1) € ¢2(M’ + M" ;AT p,w,s, |-+ ,-l). This completes the proof.

Theorem 3.6 Let M = (My,1) be a sequence of Orlicz functions, p = (px,1) be a bounded
sequence of positive real numbers and u = (uy,1) be a sequence of strictly positive real numbers,
then Z2(M,A™ 1 pou, s, [l 1) C Z2 (M, AT pyy s, oy -l) , for Z2 =12, ¢? and c2.

Proof.  We prove the result for the case Z* = 12, and the rest of the cases will follow simi-
larly. Let x = (xx,1) € 12, (M, A™ 1 pu,s, |-y, -l]). Then we can have p > 0 such that

AEI_]Xk

Px,1
(kt)—suk,L(Mk,l(n Ly Zn H)) < oo, forall keN. (3.4)

On considering 2p and using the convexity of (My,1), we have

1
X

AT A
(k) wea M (IZ5 5 21,z ) <0 5 00w M (1

2p = »Zh"',lnle)

m—1
‘An Xk+n,l+m
Y

+

N = N =

(kl)isuk,le,L(‘ yZ1y 7ty Zn—1 H)-

Hence we have
s AWLXk " Pk,1
(kl) Uk,L(Mk,L(H B 2y ,Zn—1H))

1 AT Tx Pt
< K[ i (Mt (P75 21, szl

_ 1 ATy Pr,1
+ (k1) suk,l(sz,L(Hw)Zh”' )Zn—1H)) }

Then using equation (3.4), we have

AI{LXk,I

Pk,
(kt)*suk,L(Mk,l(n z1, - ,zn_1||)) “' < oo, forall k,l€N.
Thus lgo(M»AKh] y PyWy Sy Hv ) ||) - lgo(MsA?Cspvus Sy ||) T ”)

Theorem 3.7 Let M = (My1) be a sequence of Orlicz functions. Then

C%(M)A?)P)u) Sy ||) T ||) c CZ(M)AI{L)p)u) Sy H) T ||) C lgo(M»ArT>P)u> Sy ||) T ||)
Proof. It is obvious that c§(M, AT, p,u, s, [+ ,[|) C (M, AT, p,u,s, [l ,[l). We shall
prove that CZ(M,A?,}),U, Sy ||) ) ||) C lgo(MsA?Cspvus Sy ||) e )H) Let
x = (xk,1) € 2 (M, A, p,u,s, |-+ ,[l). Then there exists some p > 0 and L € X such that

. - AT'x 1 —L Pk,1
tim (k)i (Mic (17875021, zacall]) ) =0

k,l—0c0
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On taking p = 2py, we have

- AMx Pr,1
sup(kl) ™S uy 1 (Mk,l (H np ol yZ1y "t )Zn—1))
k1

1 _ AMx 1 —L Pi,L
< SUPK[Z(kU suk,l(Mk,L(H$>Zh“' )Zn—lH))}
k,l P1
1 —s L Pk,
+ SupK[z(kU uk,le,l(H_th"' »anH)}
k,1 P1
1 _ A1 —L Pk,
< SUPK(E)pk‘l(kU S {Mk,l(H%)Zh'“ )Zn—1||)}
k,l P1
Top s L H
+ supK(5)7 ()~ max( i (Miu (1= 210+ zal)) ),
k,l P1
where H = max(1,suppx,1). Thus we get x = (xx,1) € 12, (M, AT p,w,s, ||, ,[|). Hence
C%(M)A?)P)u) S, ||) ) ||) C CZ(M)AI{L)p)u) Sy H) T )H) - lio(M»ATT»‘P»u» Sy H) Ty ||)
Theorem 3.8 The sequence space 12 (M, A™, p,u, s, |- -+ ,-||) is solid.
Proof. Let x = (xx,1) € 12, (M, AT p,w,s, |-y - -+, [), that is

_ Ax Pi,1
sup (kl) Suk,L{Mk,L(H npk’l»lh"' )Zn—lH)} < oo.

k,l—o0

Let (ax,1) be a sequence of scalars such that |ax 1| <1 for all k,1 € N. Thus we have

_ AT Px,1
SUDY, 100 (KU ™ Uk 1 [Mk,l(Hi‘x“ Tkl 71y )Zn—ﬂ\ﬂ
_ Aka 1 Pk,
< sup (kl) Suk,L{Mk,L(H sz )Zn—ﬂ\ﬂ < oo.
k,l—00 p

This shows that (o, 1xk,1) € 12 (M, AT pyu,s, |l -+, -|l) for all sequences of scalars (ox,1) with
loeq] < 1 for all k,1 € N, whenever (xx,1) € 15 (M,A™ p,u,s,|---,-|]). Hence the space
12 (M, A™ p,uys, |-+, -]]) is a solid sequence space.
Theorem 3.9 The sequence space 12 (M, AT, p,u, s, |-, -+ ,-||) is monotone.

Proof. The proof of the Theorem is obvious and so we omit it.

Received: October 2011. Revised: August 2012.



188 K. Raj and S. K. Sharma SEI(]?OI?)
References
[1] B. Altay and F. Bagar, Some new spaces of double sequencs, J. Math. Anal. Appl., 309 (2005),

[15]

[16]

[17]

70-90.

M. Basarir and O. Sonalcan, On some double sequence spaces, J. Indian Acad. Math., 21
(1999), 193-200.

F. Bagar and Y. Sever, The space L, of double sequences, Math. J. Okayama Univ., 51 (2009),
149-157.

T. J. Bromwich, An introduction to the theory of infinite series, Macmillan and Co. Ltd., New
York (1965).

M. Et and R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995),
377-386.

G. H. Hardy, On the convergence of certain multiple series, Proc. Camb. Phil., Soc., 19 (1917),
86-95.

G. H. Hardy, Divergent series, Oxford at the Clarendon Press, (1949).
S. Gahler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), 1-43.

H. Gunawan, On n-inner product, n-norms and the Cauchy-Schwartz inequality, Sci. Math.
Jap., 5 (2001), 47-54.

H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math.

Soc., 64 (2001), 137-147.

H. Gunawan and M. Mashadi,On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-
639.

P. K. Kamthan and M. Gupta, Sequence spaces and series, Lecture Notes in Pure and Applied
Mathematics, 65 Marcel Dekker, Inc., New York,(1981).

H. Kizmaz, On certain sequence spaces, Canad. Math-Bull., 24 (1981), 169-176.

J. Lindenstrauss and L. Tzafriri, On Orlicz seequence spaces, Israel J. Math, 10 (1971), 379-
390.

L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy
of Science, (1989).

A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.

F. Moricz, Extension of the spaces ¢ and co from single to double sequences, Acta Math.
Hungarica, 57 (1991), 129-136.



CUBO

Some generalized difference double sequence spaces ... 189

14, 3 (2012)

18]

[19]

[20]

[21]

[26]

[27]

F. Moricz and B. E. Rhoades, Almost convergence of double sequences and strong reqularity
of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.

M. Mursaleen, Almost strongly reqular matrices and a core theorem for double sequences, J.
Math. Anal. Appl., 293(2) (2004), 523-531.

M. Mursaleen, M. A. Khan and Qamaruddin, Difference sequence spaces defined by Orlicz
functions, Demonstratio Math., XXXII (1999), 145-150.

M. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal.
Appl., 288(1) (2003), 223-231.

M. Mursaleen and O. H. H. Edely, Almost convergence and a core theorem for double sequences,
J. Math. Anal. Appl., 293(2) (2004), 532-540.

J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
H. Nakano, Modular sequence spaces, Proc. Japan Acad., 27 (1951), 508-512.

S. D. Prashar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indiana J. Pure
Appl. Math. 25(14) (1994), 419-428.

A. Pringsheim, Zur Theori der zweifach unendlichen Zahlenfolgen, Math. Ann. 53(1900),
289-321.

K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space defined by a Musielak-Orlicz
function, Int. J. Pure Appl. Math., 67 (2011), 475-484 .

K. Raj, S. K. Sharma and A. K. Sharma, Difference sequence spaces in n-normed spaces
defined by a Musielak-Orlicz function, Armen. j. Math., 3 (2010), 127-141.

K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by a Musielak-
Orlicz function, Acta Univ. Sapientiae Math. 3 (2011), 97-109.

G. M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc. 28(1926),
50-73.

L. L. Silverman, On the definition of the sum of a divergent series, Ph. D. Thesis, University
of Missouri Studies, Mathematics Series, (1913).

S. Simons, The sequence spaces (py) and m(py), Proc. Japan Acad., 27 (1951), 508-512.

B. C. Tripathy, Generalized difference paranormed statistically convergent sequences defined
by Orlicz function in a locally convez spaces, Soochow J. Math., 30 (2004), 431-446.

B. C. Tripathy, Statistically convergent double sequences, Tamkang J. Math., 34 (2003),
231-237.



190 K. Raj and S. K. Sharma CUBO

14, 3 (2012)

[35] A. Wilansky, Summability through Functional Analysis, North- Holland Math. Stud. 85(1984).

[36] M. Zeltser, Investigation of double sequence spaces by Soft and Hard Analytical Methods,
Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of
Tartu, Faculty of Mathematics and Computer Science, Tartu (2001).



