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ABSTRACT

We define and study homogeneous Besov spaces associated with the spherical mean
operator. We establish some results of completeness, continuous embeddings and den-
sity of subspaces. Next, we define a discrete equivalent norm on this space and we give
other properties.

RESUMEN

Definimos y estudiamos los espacios homogneos Besov asociados con el operador esférico
medio. Se establecen algunos resultados de la exhaustividad, de inclusiones continuas y
de la densidad de subespacios. A continuacién, se define una norma equivalente discreta,
en este espacio y se dan otras propiedades.
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1 Introduction

For a continuous function f on R x R™, even with respect to the first variable, the spherical mean
operator Z is defined as

A0 = | fmoxrE)don(n £ (nx) € Rx R,
Sn
where S™ is the unit sphere, i.e. S™ = {(1,&) € R x R™ ; n? 4 |§]*> = 1} and oy, is the surface

measure on S™ normalized to have total measure one.
The dual of the spherical mean operator '% is defined by
r(LH)
Blg)(rx) = 2 | aly/r k- ul )y,
T 2 n
where dy is the Lebesgue measure on R™.

The spherical mean operator % and its dual *% play an important role and have many
applications, for example, in image processing of so-called synthetic aperture radar (SAR) data
[14, 5], or in the linearized inverse scattering problem in acoustics [9].

Many aspects of such operator have been studied [T}, B [6 18, 2T]. In particular, in [I8] the first
author with the others associated to the spherical mean operator the Fourier transform defined by

N en F0N =[x et dvaln )
where
® @, > is the function defined by
V(r,x) e RxR"™, @ualr,x) =% (cos(u.)e*i“‘”) (r,x).

e v, is the measure defined on [0, +oo[ x R™, by

1
e~ o ™ dr ® dx.
277 (=) (2m) 2

an(T‘,X) =

e [ is the set given by

F=RxR"U{(ig,A); (1, A) € R x R™, [ <[A[}.

They have constructed the harmonic analysis related to the Fourier transform .# (Inversion for-
mula, Schwartz theorem, Paley-Wiener theorem, Plancherel theorem).

There are many ways to define Besov Spaces [4] 5l 13| [16] 20} 23]. Tt is well known that Besov
spaces can be defined for instance in terms of convolutions f x ¢ with different kinds of smooth
functions ¢ and that can be also described by means of differences A, f [10] [IT], 22].
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In this work, we define and study a class of homogeneous Besov spaces connected with the

spherical mean operator Z. More precisely, let ¢ be a smooth function on R xR™, even with respect
to the first variable. For all p, q € [1,+00] and v € R, we define the Besov space f@gﬁ( [0, +o0[ x
R“) to be the space of tempered distributions f on R x R™, even with respect to the first variable
such that

—+0o0
f:J fry# b L
0 t

where * is the convolution product associated with the spherical mean operator and ¢; t > 0 is
the dilated function of ¢ defined by

1

Virx) € 0,400l x B™,  i(r,x) = ooy (5, 7

(see Definition [I0] below).
The space %g;;" (10,400 x R™) is equipped firstly with the norm

1
+o00 T
(7 (A0l ) TS it < g < oo

P 0 Y
Mpq(f) =
[ % dellp v :
»Vn fq= .
ebtbslolp yev , i q =400
with
+o00 1
(J J |f>kd)t(T,X)|p d’Vn(T,X)) ) lfp S H,"‘OO[,
n O
[T el =

esssup [fx (T, %), if p =+oo0.
(r,x)€[0,+00[xR™
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Then we have established the coming results

e The Besov space )& (10, +o0o[ x R™) is independent of the choice of the function ¢ and
will be denoted by ﬂg q ( [0, +o0[ x R“). This means that for all smooth functions ¢ and
1, there exists a positive constant Cg, v, such that

vie B¢ (10,400l x R™), MY&(f) < Cq oy MUY ().

e The space %} q ( [0, +oo[ x R“) is homogeneous with degree equal to
(2n+1)/p—v—2n—1, that is for all f € B} 4 ( [0, +oo[ X R“) and t > 0, the distribution
f belongs to the space B 4 ([0, +0o[xR™)and we have

2n+1

MPG(f) =t

—y—2n—1 b
Yo My (f).
e The Besov space is a Banach one when v < (2n+1)/p.

We have also proved some continuous embeddings and density of subspaces.

Next, we define the following discrete norm on the space B} 4 ( [0, +oo[ x R“) by setting

<Z (If*d;ikylp,vnf) L i< q < +00;

b . keZ
Npg () =
Hf * d)zk”p,vn . -
esksglzlp e if g = +o0.

We show that this norm defines the same topology as the norm Mg:g’. We prove that this space is
homogeneous in a weaker sense when equipped with the norm Ngjg’, that is there exist two positive
constants C; and C; such that for all f € ¥ ([0, +oo[ x R™) and t >0

2n+1 2n+1

Cit e VTV NYE(F) SNYO(f) < Cot™r 2T NYP(f).

Finally, we establish some new continuous embedding.

2 Fourier transform associated with the spherical mean op-
erator

In this section, we recall some harmonic analysis results related to the Fourier transform associated
with the spherical mean operator.
Let @, (1,A) € C x C™, be the function defined by

V(ir,x) e RxR"™, @ua(r,x) =% (cos(u.)e‘w‘")) (r,x).

It’s well known ([18, 21]) that
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i. The function @, » is given by

V(rx) ERXRY, @ualr e N (r/i 4N+ +AZ),

where jn_1)/2 is the modified Bessel function defined by

Juoi(s) = —
) =21 (M ) T ”(T)émr((l{m(;)%’

and J(n_1)/2 is the Bessel function of first kind and index (n —1)/2 [7, 8, 17, 27].

ii. For all (u,A) € C x C™, @ is the unique infinitely differentiable function on R x R™, even
with respect to the first variable, satisfying

Dj'LL(T,X],...,Xn) :—i)\ju(T,X],...,Xn)) 1 <J <n,

Eu(r,m ) "')XT\) = —qu(r,X] ) "'vxn)v

u(0,...,0) =1, 2%(0,%1,...,xn) =0, V(X1, ..., Xn) € R™.

where

n

2 _ 2 nd )

O]

=1
iii. The function @, ) is bounded on R x R™ if, and only if (p,A) belongs to the set I' given by
F=RxR"U{(ig,A); (1,A) € R x R™, || < [A}. (2.2)
In this case, we have

sup  |Qua(r,x) =1
(r,x) ERXR"™

We denote by

e LP(dvy,), p € [1,+0o0], the space of measurable functions f on [0, +oo[ x R™, such that

1
+o00 =
(J' J If(r,x)|? dvn(r,x)> < +4oo, ifp € [1,4o0[;
= n O

esssup If(r,x)| < +o0, if p =+o0,
(r,x)€[0,4+00[xR™

[l

p YVII

where v,, is the measure defined in the introduction.

e [, the subset of T" given by

I =1[0,+ool x R™ U{(ip,A); (1,A) € R x R™, 0 < <A},
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e Br, the o-algebra on I'} defined by

Br, =0 " (Bo, roo[xrn),
where 0 is the bijective function defined on I'y by
O, A) = (V2 + A2 A). (2.3)
e v, the measure defined on I'y by

Yn(A) =vn(B(A)); A€ Br, .
e LP(dyn), p € [1,+00], the space of measurable functions on I'y satisfying
I, ., <+oo.

Then we have the coming properties

Proposition 1. 1) For all non negative measurable function f on I’y (respectively integrable on Ty
with respect to the measure dy,), we have

[ ftemarmmn o L o (02 43 ey
" H, Yk, Z%F(”T“)(Zn)% o H, 3 pap

Al n_1
+J J fip, A) (A2 — pu2) 2 udp.d?x}.
nJo
ii) For all non negative measurable function g on [0, +o00[ x R™ (respectively integrable on [0, +oo[ x
R™ with respect to the measure dv,, ), the function go 0 is measurable positive on 'y (respectively

integrable on 'y with respect to the measure dyy) and we have

J . ro g(r,x)dvn(r,x) :J' J g0 0(, A)dyn (1 A).

0 ry

In the following, we shall define the translation operator and the convolution product associ-
ated with the spherical mean operator. For this, we use the product formula for the function @ i,
for all (r,x),(s,y) € R x R™, we have

r n+1 7T
(pug\(r,x)(pp‘x(s,y)z)‘[ O (\/rz + 52+ 2rscos9,x +y) sin™~'(0)do (2.4)
VR (%) do

Definition 2. i) For all (r,x) € [0, +oco[xR™, the translation operator T(, ) associated with the
spherical mean operator is defined on LP(dvy,), p € [1,4+00], by

r(ntt 7
Tir ) (f)(s,y) = (Z)J f (\/rz + s2 + 2rscos 8,x+y> sin™~'1(0)de.
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ii) The convolution product of f,g € L'(dv,,) is defined by

+oo

Vi x) € 0,400l xR, Frglro) = | | flsulr, g (@)(s,u)dvalsv),

where
d(s,y) = gls,—y).

We have the following properties
e For all (r,x), (s,y) € [0,400[ x R™, the relation (Z4]) can be written

Tir ) (@A) (8, W)@ (1, %) @uals,y). (2.5)

o If f € LP(dvn), 1 < p < +oo, then for all (s,y) € [0,+oo[ x R™, the function (s y(f)
belongs to LP(dv,) and we have

< |Ifll

(s, ()| (2.6)

P, Vn PyVn *

e Let p, g, T € [1,+00] such that % = % + % — 1. Then for all f € LP(dvy) and g € L9(dvy,),
the function f x g belongs to L"(dv,,) and we have

159l v, <l lollg v, - (2.7)

Now, we will define the Fourier transform .% connected with the spherical mean operator and
we recall some properties that we need in the next section.

Definition 3. The Fourier transform associated with the spherical mean operator is defined on
L (dvn) by

+o00
WA €D FOWN) = | | 1) gualnx) dvalrx),
nJo
where I" is the set defined by the relation (2.2]).

The Fourier transform .% satisfies the properties

e For every f in L' (dv,,) and (r,x) € [0, 4+00[ x R™, we have
V(LA €l F (Tr,—x) () (I, M) @1, %) Z () (1, A). (2.8)
e For all f,g € L'(dvy,), we have

VimAD) el F (fxg) (1,A) = Z (1)1, A)F () (1, A). (2.9)

e For all f € L'(dvy), we have

Y(wA) €N Z () (LA)Z (f) 0O, A), (2.10)
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where

V(mA) R x R™, Z (f) (u,MZJ nj:zr,x)j%] (rp)e A% gy, (v, x) (2.11)

and 0 is the function defined by the relation (Z3]).

Theorem 4. (Inversion formula for .%) Let f € L'(dv,,) such that the function .% (f) belongs to
L'(dyn), then for almost every (r,x) € [0, +oo[ x R™, we have

f(r,x) :J L FE)(1A) Prunlr ) dyn ().

We denote by

e &, (R x R™) the space of infinitely differentiable functions on R x R™, even with respect to
the first variable.

e S, (R x R™) the subspace of &, (R x R™) consisting of functions rapidly decreasing together
with all their derivatives.

e S, (') the space of functions f : ' — C infinitely differentiable, even with respect to the
first variable and rapidly decreasing together with all their derivatives, i.e

0 \ k2
Vki,ks €N, Vo € N™, 14124202 D ,A‘< ,
1,k2 €N, Vo€ JSup (1S 4200 (a) A1, A)| < +oo

o

where
0 .
— (f(m,A)), ifu=reR
of or
ou 19
To .. e <
T3t (f(it,A)), ifp=1it,[t| <Al
and

0\« 0 \%n
Dy = () ()"
A\ MNn
° S; (RxR™) and S;(F) are respectively the topological dual spaces of S, (R x R™) and
S, ().
Each of these spaces is equipped with its usual topology.

Theorem 5. (Schwartz theorem)[2] [I8] i) The Fourier transform .% is a topological isomorphism
from S,(R x R™) onto S,(I"). The inverse mapping is given by

VX eRx R, (A = | jr A Pl x) dyn().  (212)

ii) (Plancherel formula) For all f, g € S,(R x R™), we have

“+o00 o -
J J f(r,x) 9(r,x) dvnlr,x) = H Z(E) (A Z@ N dyn(mA).
0 n Ty
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In particular

17 ()2, ll2,,, -

Theorem 6. (Plancherel theorem) The Fourier transform .# can be extended to an isometric iso-
morphism from L?(dv,,) onto L?(dyy).

For T € S;(R x R™), we put
(Z(1),0) = (TLF () ¢eS.N). (2.13)

Then from Theorem [l we get the following result

Corollary 7. The transform % defined by the relation ([ZI3)) is a topological isomorphism from
S.(R x R™) onto S_(T).

Proposition 8. i) Let f € & (R x R™), f slowly increasing and let g € S,(R x R™). Then the
function f * g belongs to the space &, (R x R™).

ii) For all f € S,(R x R™) and T € S_ (R x R™). The function T % f defined by
\V/(T,X) € R x an T x f(T)X) = <T) T(T‘,*X) (F»
belongs to the space &, (R x R™) and is slowly increasing. Moreover, we have

gf(TT*f) — Z(H).Z(T).

3 Besov spaces

This section contains the main result of this paper. Indeed, we define and study a class of Besov
spaces B ;g’ ( [0, +oo[ % R“), where ¢ is a smooth function. We show that this space is independant
of the choice of ¢ and is a Banach space for y < (2Zn+1)/p. Next, we prove that %g;;" ( [0, +ool x
R“) is an homogeneous space with degree equal to (2Zn+1)/p —y —2n—1.

Lemma 9. Let a, b, ay, by be real numbers such that 0 < a; < a < b < by. Then there exists
a function P € S, (R x R™) satisfying the following assumptions

Y V(A el F)(wA) =0.

i) V(wA) el a® <u?+202 <b? ZFW)(w,A)=C
where C is a positive constante.

i) ZW) (A =0 if p2+2A%>bF or p?+2A°2 < al.
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iv) For all (u,A) € T\{(0,0)},

1.

400
| (@i -

0

Proof. From Uryshon’s lemma, there exists an infinitely differentiable function w on R such that

e VteR;, O0< w(t)<1.
e Vte [a,b]; w(t)=1.

e supp(w) Clay, byl

Let g be the function defined on R x R™ by
w (/12 +[x]?)
Heo dt\ 3’
27
(], <)

then the function g belongs to the space S,.(R x R™). Since, the transform 7 defined by the
relation (ZI1]) is a topological isomorphism from the space S.(R x R™) onto itself [24] 25], then
there exists 1 € S, (R x R™) such that }fv(lb) = g. Thus, by the relation (ZI0), we deduce that the
function 1 satisfies the hypothesis of the lemma. O

g(r,x) =

We denote by

e 9,(T) the space of real infinitely differentiable functions g on I, even with respect to the first
variable such that, there exist two positive real numbers
0 < a < b verifying

g, A\) =0 if p2+2A%2<a® or p?+42A° > b2
o S.0(R x R™) the subspace of S,(R x R™) consisting of functions f such that .# (f) belongs
to the space Z,(I").

. Sl,o(R x R™) the subspace of S, o(R x R™) formed by the functions f such that

+o00 t

V(i) € T\ {(0,0)), Jo (Z O 0)* T = 1. (3.1)

These functions are known as wavelets on [0, +oo[ x R™ [19] 26].
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) Lp(%); p € [1,+00], the space of measurable functions on ]0, +oo[ such that

“+o0 dt %
<J ]f(t)’pt> <400, 1<p<+oo;
0

Il o 2y =

esssup [f(t)] < +oo, p = +oo.
t>0

e x the convolution product defined on the group (]0, +ool, ) by

+o00
feolsl = | e T (32)

e For all measurable function ¢ on [0, 400l x R™, the dilated ¢¢; t > 0 of ¢ is defined by

1
V(r,x) € 0,400l x B™,  di(r,x) = oy d(5, 1)

Then we have the following properties

e Let p, q, T € [1,4+00] such that % + 15 =1+ 1; Then for all f € Lp(%) and

d : r(d
g € L9(<), the function f « g belongs to L"(<!) and we have

%l o, < Iflloqasliglicaas)- (3.3)

e For every ¢ € LP(dvy); p € [1,4+0o0], the function ¢ belongs to LP(dv,, ) and we have

2n+1

[dell, ., =t floll, .. (3.4)
where p" =p/(p —1).
e For all ¢ € L'(dv,,) and for every (pu,A) €T,
F(d)(wA) = F()(tu, tA). (3.5)

Definition 10. Let p, q € [1,4o0], v € R and ¢ € Sl‘o(R x R™). We define the Besov space
%g:g)( [0, 400l x R“) to be the space of tempered distributions f on R x R™, even with respect to
the first variable and satisfying

e For all t > 0, the function f * ¢ belongs to the space LP(dv,).

e The function
LI
tY

t

belongs to the space L9 (%).

e The integral
+oo dt
(r,x) — f*cbt*d)t(T)X)T

0
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is convergent in S;(R x R™) and

+o00 dt
f o J; frdor S (3.6)

The space 93?;3?( [0, +oo[ x R“) is equipped with the norm

+o00 q %
(J (7””‘“”?'”) d:) , if1<q < +oo;

tY
v, ¢ _ 0
Mpyq (f)
[ % dellp v P
ests>sng e if ¢ = 4o0.

Lemma 11. let P € S, (R x R™) and let ¢ € S, o(R x R™). Then for all k € N, there exists
ok € S.0(R x R™) such that

Py = t7* (Akll)) * (i),
where A is the differential operator defined by
7 nod «,0.2
A=—(—+— — — 7).
(arz T3 or +j:1 (axj) )
Moreover, for all p € [1, +o0]

s ell, < £ [la%]

PyVn

d)kH],’Vn (37)

PyVn

and

_2n+1
7

s bl o, <t ol lle]

PyVn PyVn

Proof. The operator A is continuous from S, (R x R™) into itself and for all
f € S.(R x R™), we have

F (AN (A = (W +2A2) Z(F) (1 A). (3.9)
Let P € S, (R x R™) and let ¢ € S, o(R x R™). From the relations (2.9) and 3], we get

FW o)A = FZW) (A Z(d)(tu, tA)

tZ(HZ+2|)\|2) 9(11))“1,7\) /(43)(’[%0\)

t2 (2 +21A12)°

and from the equality ([3.9), we obtain

Z(¢)(tp, tA)

FEro)d) = EFANWA Gy

(3.10)
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Since, the function ¢ belongs to the space S, o(R x R™) then the function

Z(d) (1, A)
u? + 2/A)2

belongs to the space S, (I") and from Theorem Bl there exists ¢1 € S, (R x R™) such that

Z (o), A)
u? +2A12 -

In particular, ¢ lies in S, o(R x R™) and the relation BI0) leads to

F W d)(wA) = F(AP) (A F (1)) (1,1,

(L, A) —

F (1), A)

which implies that

Vxdy = t2 (A)* (1)

By induction, for all k € N*| there exists ¢y € S. o(R x R™) verifying

Py = 7 (AM) * (i) (3.11)
On the other hand, for every t > 0 and by the relation (34, we get
Hl‘l) * d)tH < ||ll)||1,vn ||(l)’t||‘p,v,1

PyVn

1

=t " Wl ldlp .

as the same way and using the relation (BII), it follows that

L VS TR T

Proposition 12. Let ¢ € sl,o(R x R™).
i) For all f € L?(dv,,) we have

“+o00 dt ) )
f= f*d)t*c])t?; in L“(dvy).
0

ii) Let y e R, vy < 2n+1)/p and f € S;(R x R™) such that for all t > 0, the function
f x ¢y belongs to LP(dvy) and the function

5 Pellpva
tY

t—

belongs to the space L4 (%). Then the integral

+o00 dt
J f*d)t*d)tT

0

converges in S;(R x R™).
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Proof. i) Let f € L?(dvy) and let Fo 1 (f) be the function defined by

b
Y(r,x) € [0, +oo[ x R™, Fa,b(f)(r,x):J f* e x de(r,x) %; 0<a<hb.

a

The function Fq p(f) is well defined and by the relation (3] we have

|Fa,b(f)(r,%)]

N

b
dt
[ 2 T 0,
a

ﬁ
t

N

b
1120, j Ibellt v [Dell2ivn
a

b
_2n+1

1fllzve (001 e [Bl2ve J gy

a

N

<  Ho0o.

Moreover, the function Fq p(f) belongs to L?(dvy ). Indeed by Minkowski’s inequality [12] and the
relation [34]) we get

b dt
[Fan(Bl,, < J [ by,
a
b dt
S N
a
b
= [z, 161, log(=)
< —+oo.

On the other hand, by Fubini’s theorem and the relation (3.1]), we have

b 24t

# (Fan )N = ZOwN) | (Flo)(tn o) T

a

Thus, by the Plancherel theorem

If=Faellz,, = |
° 2dt
(Z(@) i) T dvnluA).

I
—

Using the fact that
+oo 2 dt
| (Formm) ¢ =1,

we have b 2
(1, A) € M\(0,0)}, \PJ (7 (@)t ) % s

a

and applying the dominated convergence theorem, we deduce that

T =Pl =0
b— +o0
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ii) Let f be in S;(R x R™) satisfying the hypothesis, then the function Fq p(f) defined above is
bounded on R x R™. In fact

b dt
Fantfitr] < [ fcod,,, o, T
b Hf*q)tH _2na1 dt
= ol [ e e &
| adt13r(® awir dt
< Nl [ () ST oo ST
< —o00,

where ql is the conjugate exponent of q.
Thus for all a, b € R; b > a > 0, the function Fq p(f) defines an element of S;(R x R™).
Let 1 € S.(R x R™), by Fubini’s theorem, we have

Fantw) = [ [ [t o outro0 wirm Slavatrn

0 a
= ’ {d:oo . fx by * de(r,x) P(r,x) dvn(r,x)}%
= :’{d":oo "R'11b(1‘,x)”:ooj i fx de(s,4) Tir v (de)(s,Y) an(S,y)} dvn(r,x)}%
- ;:: {::OO Uan fxdils,y) ”:oo J N P(r,x) T(s,—y) (be)(r,%) dvn(r,x)} dﬂ/n(s,y)}%
—u": H:OOJ ) fxdels,y) de xW(s,y) an(S,y)] %

However,

J+oo ”:“’ JRn [f 5 dels,u)] |dexW(s, ) dﬂ/n(s,y)} %

0
+o0 . dt
<] leadl,, bl T
1 B dt +oo - dt
S O 2 O A S [ R W
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Using the relations (87) and (B.8]), we get
dt

J+m {J:oo J-Rn [+ di(s,y)] |dex (s, )| dvn(s,y)} -

0
! dt
<llaslly ol | 2 lFe T
+oo  2n+1 dt
Wl B0l | e,
oo fxd dt
850y, ol [ iy 1S
too Ly fxd dt
bl ol J e L I t’;Hp,vn a
Let k be sufficiently large. Using the hypothesis vy < (2n+ 1)/p and applying Holder’s inequality,
we obtain
Hoo e . dt
| ] [ e dsul fbos wis, )] avalsn}
0 o Jrn
I+ bell,
<Al Nl £ 1o La’(4t) o La(4y)
_2n+1 Hf*d)tH Y Vn
+Hw”hvn Hd) P Vn LR L0 ool La’(4t) tY = La(4dt)
< 4o0.

This shows that for all P € S, (R x R™), lim+ (Fa,b(f), ) exists and
a—0

b— +o0

J+Oo J+WJ nf*Cbt(S,y) b xW(s,y) dvals,y) %

lim  (Fau(f),b) = o s

a—0t
b— +oo

This means that the integral
+o00 dt
T dex b —
0 t
converges in S;(R x R™).
Lemma 13. 1) Let f € 48 (10, +ool x R™). Then
1) For all P € S, (R x R™), we have

f*lj):L fxdexdy x| %

ii) For all p € S] 5(R x R™),
“+00
f:J fx, b, de.
0 P
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2) For all g € S,(R x R™) and for all ) € Sl‘o(R x R™), we have
+o00 dp
[ oot @
0 p

Proof. 1) Let f € %3;3([0&00[ X R“) .
1) For every P € S, (R x R™), we have
fxh(r,x) = <f>T(r,fX)d’>

. b dt ;
= lim (| f*xde*dy T)T(r,fx)ll»
a

a—0"
b— +oo
+oo b dt .
= dm [ (] frecouts vl T)mieoblsy) dvals,v),
ba:jr)oo 0 " “

and by Fubini’s theorem, we obtain

b +o00 . dt
fxp(r,x) = lim J(J J fxde* dils,y) Tr, ) 0(s,y) d'Vn(S,y)>7
a—0" a 0 n t
b— +oo
b
= 1irn+ J f*d)t*d)t*lb(r,x)%
bajfoo @
= J fxdex G xP(r,x) T
0

i) Let P € Sl,o(R x R™). For all positive real number p, we have

Yo, = (P x),. (3.12)
Applying i) we get
+o0 dt
f*xbp*lppzj Ty Py xPp *Up e
0
Now, let a;, az, by, bz be positive real numbers such that

F(P)wA) =0 if u?+2A° <a? or u?+2A”° >b?

and
FW(A) =0 if w2 +20°<aZ or p?+2A2 > b3
then b
. t a
FAmNZ )N =0 iS¢ [¢h 2 ~fx, B,
p 2 Qa2

and consequently, by the relation ([2:9)) and Theorem [4]

Gr*xPp =0 if — &, B. (3.13)

o+
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Thus,

PP dt
Ty x Gy xPp kP T

pox

f*%wpzj

Soforalla, beR; 0 <a<b,
b b )
dp P dty dp
fxb, —:J J fxdexdyx,*xPp, —) —.
Ja ? ° p a( px ‘ ‘ ° ? t> p
By Fubini’s theorem, we get
b bp , L
dp « dp\ dt
J iy, 2 = J (J foe e x b xPp * D) —) @ (3.14)
a p ac 13 p t

On the other hand, we have

Rl

| oiroiewg alnn L

B

i “+o00 5 dp
- (J JRH bt *Pp xPp(s,y) T(T),X)(f*d)t)(s,y)dvn(S,y))?

L 0

B
+o0o

-] nm,x)(f*vdat)(s,y)(f b sy + Ppls,u) L) dvn(s,)
B

0
r+oo

= J § T(r‘_x)(f *Vd)t)(s,y)(l[:w bt xPp xPp(s,y) %)dvn(s,y).

JO

However by 1) of Proposition [I2] it follows that

i dp +o00 .
|7 Feoer porvp om0 = | [ delsiu) T (PR s W) dvalsy)
. .

0

= fx Py * P, x).

Replacing in the equality ([B.I4]), we obtain

b bp
d dt
J f*xpp*xpp?pzj f*‘bt*‘th-

ax

2) We know that for all g € S,(R x R™) and ¢ € Sl,o(R x R™), the function
g * 1, x P, belongs to the space S, (R x R™). By Theorem [ and the relation (31]), we have

g% D %y (1 %) :”r Z(9) (1 A) (F)(pr, oN) 2P dyn(p, A,

then

J:oo g p + Dy (r, %) %”

+oo

F(ONTa || (F@) o o0)* ] dval),

r. 0
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and by the relation ([B]) and Theorem [ we get

400 -
j T ) . H Z() (1) Pua(myx) dyn (i, A)
0 p r,

= g(r,x).
O

Theorem 14. Let p, q € [1,+00] and y € R, the space %gﬁ( [0, 400l x R“) is independent of the
choice of the function ¢ in Sl,o (R x R™) and will be denoted by 2 ([0, +oco[ x R™).

Proof. Let f € L@gjg)( [0, +00[ x R™) and let € S! o(R x R™). From Lemma [[3 and the relation
B13), we have

r+oo dt
fry = f*d)t*d)t*‘pr
Jo
rpB dt
= f*d)t*d)t*lpr
Jpx
B ds
= fxdos * Pps x Py e
J X

Thus, from Minkowski’s inequality and the relations (Z7)) and 34), we get
B ds
5 00l 0 < |15 G0 00 bl
X

d
Hll’p * q’psumn ?S

PyVn

B
SN

ds
PyVn g

4
<0l 19, |1 0]

and by Holder’s inequality, it follows that

R N T (S N (OIS

x

, (3.15)

x S

B rds ) o
< Il 9], My ([ o 2

< +o0,

where q/ is the conjugate exponent of q. Now, by the relation ([BI5), we have

[ Wol| . B e dosll, L. ds
oy <l el L P
1
Lol at
L I
] Il
= b ol [ s ()
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where % is the convolution product defined on 10, 4+oco[ by the relation (8.2]). By the relation (33]),
we obtain

P — o
MESO < (0l [0l [T 1] e MESD
< +oo,
and the proof is complete if we take into account Lemma, [I3] O

Proposition 15. Let p, q € [1,+00] and v € R. The Besov space

BY 4 (10,400[ x R™) is homogeneous of degree equal to (2n+1)/p —y —2n — 1, that is for every
feB)q ( [0, +oo[ x R“) and t > 0, the distribution f; belongs to the space

B q ([O, —I—oo[XR“)and we have

2n+41

M (f) = 75 2 My (),

where :
(fe, @) = (f, tz“ﬁ@%% @ € S,(RxR").

Proof. Let ¢ € Sl,o(R x R™), we have

ft * d)P(TvX) = <ft>T(T,fx)((bp)>
1 .
= <fv W(T(T,—x)((bp))

).

However,
1 . .
W(T(r,fx)(d)p))%(&y) = T(r,fx)(d)p)(tsaty)
1 .
T T —x)(de)(s,y)
consequently,
1 .
fexdp(r,x) = (f, 2Zne T({,—%)(d)%»
= (fxd2) (r,%). (3.16)
Hence, from the relation [3.4)), we get
_2n+1
||ft*¢p||D,Vn =t ! ||f*¢%”p>'\’n’

this shows that for all p > 0, the function f¢ * ¢, belongs to LP(dvy) and we have

HHft*d)pHPVn a _ 57 qroo (Hf*d}pHDVn)q dp
pY La() 0 pY P

_ B g J*“’ <||f*¢s||p,vn)q ds

B 0 sY S

_ ) My ()]

)
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which proves that the function

PrVn

p'Y

e

belongs to the space L4 (%) and that

2n+1

MY e () =t YT MY (),

On the other hand, from the relations (8:12) and (BI0), we have

Heo dp 1 Feo r x, ds

L ft*d)p*cbp(ﬂx)? WL f*(cb*d))s({,{)?
1T [ T X

= WL f*fbs*d)s({,;) S

and from the relation (3.6]), it follows

teo dp 1 X
Jo fex dp * Pp(r,x) o Wﬂﬂ*)

= ft (Tv X) .
This completes the proof. O

Proposition 16. Let p, q € [1,+00] and vy € R.
The space By q( (0,400 x R™) N &, (R x R™) is dense in By ([0,40c0[ x R™).

Proof. Let f € Y ¢(10,+00[ x R") and ¢ € S] ,(R x R™). For all t > 0, the function

(Y)X) — fx d)t(T,X) = <fvT(T,7X)(d5t)>

belongs to the space &% (R X R“) and is slowly increasing. From 1) of Proposition [8] we deduce
that the function f * ¢y * d¢ belongs to the space &, (R X R“). Thus, from derivative’s theorem it
follows that for all k € N*; the function

k

dt
fulr) = [ Frdos i
*
is infinitely differentiable on R x R™, even with respect to the first variable. On the other hand,
let P € Sl,o(R x R™), by Fubini’s theorem, we have
k
dt
frexp, = J] Ty * Py xP, T
13
And by the same way as the proof of Theorem [[4] we deduce that for all p > 0, the function
fi 1, belongs to L?(dvy ) and that the function

s ka * .q)pHp,Vn
p —py
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belongs to Lq(%). Again, by Fubini’s theorem, for all \ € Sl,o(R x R™),

+

! -1

o0 d
LRI R U ?p

and by Lemma [I3] and Theorem [[4] we obtain

+oo
J'O

d
fr x Py x P, ?p

dt

f*‘bt*‘bt*ﬂ’p*‘-l’p?

(. )<
) ¢

k

f*lbp*lbp*d)t*d)t

)

dp
P

k

dt
[ emoa &
1 t

fx.

This shows that for all k € N*| the function fx belongs to the space

B q ( [0, +ool x R“) N&, (R X R“). Moreover,

k
fux@p, = J

1
K

and by 1) of Lemma [T3] we get

JJroo
0

f* @,

Thus,

1
J’k
0

J[O,uu[k,+oo[

(f—fk) * Qo

Now using the relation (B13), we obtain

J([o 1

va

+oo
JO

Now Minkowski’s inequality leads to

(f—fk) * @

B
(=t =0l < |

B
s J Lo, 10t

dt
fr by e @p T+J

JU[E,+oo[) Nlec,B)

1([0,%9]U[%,+oo[)m[oc‘(5]

oot

for every ¢ € Sl,o(R x R™), we have

dt
f*(bt*d)t*(Pp T

dt
f*(bt*(bt*(pp T

“+o00 dt
fxbexdex@p —
k t
dt
fx e * Py *x @p T
ds

f*d)ps*d)ps*(()p Y

ds
(s) f= C')ps * C')ps *Qp ?

ds
B T T

ds

+Oo[)(8) Hf*(bpSHp,v“ s

B
< bl 10l | 2o o) ) 175 @sln,

$os * %Hm o

CUBO
13, 2 (2011)

ds
-



SEJ@BOB Homogeneous Besov Spaces associated with the spherical ... 23

Consequently;
f—fx)*@ fxd d
H( )py PHp‘vn < bl 19l J(X [)(ps) prij»"" ?S
< 1l Nl |1 2 oy [0 o, gt
< T (@Y | L]ulk,+o0l) ' ¢ (E)V t
[5 t
~ e 1y, e (o)
= Il Tl (77 1 4 T T ) P

Thus, by the relation [33]), we obtain

Mg:ap(fk_f) < ||d)||1y'vn H(p||1,'vn

<[ (e [ (e

L 1[1@‘];]HL‘(%]

al=

So,
lim M@ (fk —f) =0
k— 400
because
J+°° I+ @ell, oy, o at
0 tY t
and the proof is complete. O

dt
We denote by L9 (]O, +ool, LP(dvy), T) the space of measurable functions g on ]0, ool x
[0, ool x R™ such that for all t > 0, the function g(t, (.,.)) belongs to the space L?(dv,,) and the

function

t— |lg(t, (.,.)|

PyVn

belongs to L4 (%). This space is equipped with the norm

ol g, = (] oty &

La (10,400, LP (dvn), T)

n\—A

Then we have

Lemma 17. Let p,q € [1,400] and let v < (2n+ 1)/p. For all ¢ € Sl,o(R x R™), the mapping
F defined by

+o0
Flo)r,x) = J gt () * de(r) &

0

dt
is continuous from L4 (}O, +oo[, LP(dvy), T) into B 4 ( [0, +ool x R“).
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dt

<)

Proof. Let ¢ € Sl,o(R x R™) and g € Lq(]O,—I—oo[, LP(dvn),

e Let a, b be real numbers such that b > a > 0 and
FZ(O) AN =0 if p?+2AP <a® or p?+2A% > b
Let P € S, (R x R™) such that
FWA) =1 if a® <p? + 207 <b?
then from the relation (29), we deduce that for every t > 0
Pexde = b1 (3.17)

For every k € N*| the function F(g)yx defined by

Foh(rx) = | € glt (o)« dulrx) -

k

is bounded on R x R™. In fact, from the relations (27) and (B4, we deduce that for all (r,x) €
R x R™,

. dt
[Fgh(r,x)| < L ot oDy, el
3
o, dt
< H¢|p',vn J'1 tY 2 pﬂ ||g(t‘(”'))||‘p,\/n T
3
< K (y —2nt1y ¢ dt ﬁ
< 0l v 19l ot toann, ) | L (et &
< +o0.

Thus, for all k € N* the function F(g)x defines a tempered distribution on R x R™, even with
respect to the first variable. Moreover, for all h € S, (R x R"), we have

k [}
Forory = [ o [ nir ot () s il avalro] &

1 0

k

K
- J1 tY (g(t, (,,.)) * b, h) %»

and by the relation (BIT), it follows that

k
Floht) = [ 0 (ol c e vy §

k

k
= | 0 Gl ey T (3.18)

1
k
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However,

+o0
Jo ot () be s i) %

dt
1,vn T

+o0
<jo £ [lalt, () = b [Jhx e

+oo Y . dt
<| el ol el

d
— |l :

dt
1,vn T

= ¢

1
P’ vn {Lﬂi 7 [lalt, ()| [ e

P, Vn

+00 " dt
o el FUAPRITTN LSS WA

Applying the relations (31) and B8], we get

+o00
| oot o oo ned] T

0
k v ! 2k+y —2n+tl dt
<16l v, 185 W, |t w ot Gl
. +oo _2n dt
RO LY PPN PR s el TS RO

and by Holder’s inequality, we have

+o00
| oot o oo neb] §

0

1 /
- (2k —2ntl)
<ol . HQHU(]O‘M[) L7 (dwa), %){HAthmn bxll1 v, (JO g2ty =2y g @8

+oo a
~ n /dt /
M v b s (J e L
1

The last inequality together with the relation (3I8) show that for all h € S, (R x R™),
lim (F(g)k,h) exists and
k— 400

+oo dt
Jim Flohoh) = | e (ol () s gk S
Consequently, the function
+oo dt
Flaltnx) = | () = dulron)

defines an element of S;(]R x R™).

+oony .
o | et Dl el
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o Let @ € Sl,o(R x R™), we have

F(g) * (Pp(rﬂ() = <F(g))T(T,*X)¢)p>
= kLirJIrloo<F(g)k»T(r,fx)(bp>

= lim Fg)e @p(r,x)

i [ gl () e r oyl
- k—}IJIrloo 1? gty L., . t (pp ) t

However, the relation ([3.I3]) implies

“+o00 PR
J vwmntpn*¢t*@Anxwf§J € Jot,(,)) oy« @p(r )| &
0 px

PR Y dt
<[ e ottt e 0ally
px
PR _2n+1 dt
<l ol |75 ot (oDl
px
PR , hE
, (v —2m51) g E)w
<10 Il (€75 ol o, g, )
< +00.
Thus,
+o0 N dt
F(g) * (Pp(T»X) = t g(t)(v)) *d)t * (Pp(T»X) T
0
B v ds
= | (051 9005, 1)) % s () (3.19)
(o4

By Minkowski’s inequality, we obtain

B v ds
IFiahx @l < | (051" lllos, (1) 5 e 2 00, 5
x
B ds
< Nl ol n, | o lotos, (b, 5
< +o0
and
[F(9) * @], ., B ds
T <ol Dol | lates, ol S
[0 4
1
O p dt
= ol olly, e oSt

B

= 11lly v, ol (7205 7 *llot6 G )0,
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and by the relation ([B3]) it follows that

[F(9) * o]
P,Vn Y
H py Lq(Tp HCI)H'I,‘Vn H(p||1,’v“ t 1[%»];] L](%)HgHLq (]O,+Oo[,]_p(d\/n),%)
< +o0. (3.20)
e Let ¢ € Sl,o(R x R™), from the relation (8I9), we have
B v ds
Flg)x @p(rx) = | (ps)¥ g(ps, (.,.) * bps * @p(r,x) —=,
x
and by Fubini’s theorem, we get
B v ds
Flg) * @p * @p(r,x) = (ps)Y glps, (,.)) * bos * @p * @p(T,x) —
x
PR dt
= [ et o eprpnlnn ¢
px
Thus,
k k B
dp P dt7ydp
[P0 0o @otr 2 [ [0 ot (1 0k 0w 0alrin) T L
13 P JE Moo P
Bl o= dp7dt
P
:J' tV”t gt, (., ) * by *x @p * @p(r,%) ?}T (3.21)
3 7
However,
|7 ottt der 0p x gplrin)
B
é +o0
=[] ] st s ) o 00 @ols,u) dvals,y)
L 0 n

Again, by Fubini’s theorem, we have

|

olt, (., ) * be * @p % 0p(r,x) P

:J:OOJ “T(n—x)g(t,(-,-))(s,y) {J:Oo Gt * @p * Pp(s,y) % dva(s,y).

2|~

|

applying 2) of Lemma [I3] we obtain

+00
|7 ottt o oo ot < J 8L (0 )(5,9) bils,y) dva(s,v)

|

Rl
a %

o)) e (1 x).
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Replacing in the equality [B21)), it follows that

k Bk
d dt
[, Flo 0o @atr S = [ e gttt
* *
Hence,
+oo d
J Flg) % @p*0p — = F(g).
0 p

This shows that the function F(g) belongs to the space B 4 ( [0, +00[ X R“) and from the inequality

B20), we have

MEg(F@) < el llell .,

tﬂl[%,];] L1(%)||9HL‘1(]O,+00[, LP(dvy), 4t)

which means that the mapping F is continuous from L9 (]0, +ool, LP(dvn), %) into

BY 4 (10, +o00[ x R™). O

Theorem 18. Let p, q € [1,400] and lety € R, y < (2n+1)/p. Then the Besov space %}, q ( [0, +00[x
R“) is a Banach one.

Proof. Let ¢ € Sl,o(R x R™). We define the mapping G on the space %’g‘q([O,Jroo[ X R“) by

setting
fx Pe(r,x)

G, (rx)) = —F—-

The mapping G is continuous from %) 4 ( [0, +o0[ x R“) into L9 (]0, +oof, LP(dvn), %) and we

have

HG(f)HL‘* (]0,+oo[, LP(dva), %) - Mg:gj(f) (322)

Moreover, for all f € ) 4 ( [0, +o0o[ X R“), we have

+o00
FoB(nx) = [ € G () el T

0
_ J*mty Frdur pulrx) dt
o tY t

+o0
J fx by x Pe(r,x) ﬁ

0

and by i1) of Lemma [I3] we get
Fo G(f) =f.

This equality shows that

G(2 4 ([0, +00l x R™)) ker (GoF—1d, (10+oo, L7 (dva), ﬁ))).
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In particular, G(%’g,q ( [0, +oo[ x R“)) is a closed subspace of L9 (]0, +oof, LP(dvn), %)

Let (fx)keny be a Cauchy sequence in %g,q([0,+m[ X R“). From the relation ([322]), the
sequence (G(fk))k is a Cauchy’s one in L9 (]0, +oo[, LP(dvn), %)
Since G (%g‘q ( [0, —I—oo[xR“)) is a closed subspace of L9 (]O, +oo[, LP
a function f in %} 4 ( [0, +ool x R“) such that

(dvn), %), then there exists

dt

)

Jim G(fi) =G(f) i L9(10, 400, LP(dvy),

Again by the relation (3:22)),

lim fy=f in %%"q([o,—l—oo[xR“).

k— +o00
O
Proposition 19. 1) Let q € [1,+00], p1, p2 € [1,400]; p1 < pa and let v1,
Y2 € R such that
n+1 n+1
7= - Y2 (3.23)
P1 P2
Then
BY1 (10, +00[ x R™) = 2)2 ([0, +0oo[ x R™).

ii) For all p € [1,+0o0],
) 1 (10,+00[ x R™) < LP(dvy,).

Proof. 1) Let p1, P2, Y1, Y2, g be real numbers satisfying the hypothesis. Let p3 be an exponent
such that

1 1 1

—— = 14— (3.24)

P P3 P2
Finally, let f € 23] ¢([0,40c0[ x R™) and ¢ € Sl,o (R x R™) such that

FZ(P) (A =0 if p?+2A2>b% or p?+2A? <a’.
Let us take P € S, (R X R“) satisfying
VLA €5 a? <p? +2A7 <b?, Z() (1) =
Then for all t > 0, we have
b x P = P

and

MY (f) = (Ew (%)qﬁ)%

P2,9d ty2 t

- (] (et

tv2 t
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By the relations (7)), B4), (323) and B24) we get

+o00 1
Y2, Hf*d)thlfvn qﬁ q
M < bl || (Feee) '

< Rbllpa v, ME (D).

This shows that the space Y] q( [0, +oo[x R™) is contained in #}2 4 ( 10, +oo[x R™) and that the
canonical injection is continuous from %Y 4([0,4oc0[ x R™) into the space Zp?2 ¢ ([0, +ool x R™).

i) Let f € %8‘] ( [0, +oo[ x R“); p € [1,+00]. From 1i) of Lemma [I3] we have

+o0 dt ; N
f= f*(bt*(th, ([)ES*YO(RXR)
0

thus,

“+o00 dt
o < | b,
< bl MO

This completes the proof. O

In the following, we shall define a discrete norm on the Besov space %) 4 ( [0, +oo[ x R“) and
we will prove that it is equivalent to the norm M?,’jg); (ONS Sl,o (R X R“). More precisely, we have

Theorem 20. Let p, q € [1,400], v € R. Let a, b be real numbers such that
0<a<b and ¢ €S, (]R{ X R“) verifying

Z(@) A =1 if a® <p?+ 2 <b2

Then the mapping NY'® defined by

1

(Z(|f*d;iky|m)q>", if 1< q < +oo;

P o kKEZ
Npa(f) =
[+ doxllp v, : _
Rt L

is a norm on the Besov space %} q ( [0, +oo[ x R“) which defines the same topology as the norm
M b € ST o(R x BY).

Proof. @ From Lemma 9] there exists 1 € Sl,o (R X R“) such that

FWP) (A =0 if p?+2AP <a? or p?+2AP > b



SEJ@BOB Homogeneous Besov Spaces associated with the spherical ... 31

Then for all s € [1,2] and k € Z, we have

F($) (2851, 25sN) = F (D) (2851, 255A) F ()21, 2"N)

which leads to
WPoks = WPorg * P
and therefore, for all f € 2} 4 ( [0, +oo[ x R“)

f*ll)zks = f*d)zk *Il)zks. (325)

Then for all q € [1,4o0[

Jm (m)q dt);
0 tY t
_ 2 il dt) T
(gl ey
1
2 q
_ ||f*1b2ksH Vn qa ds
- (;ZL () s> ~

Using the relations (2.7), (84) and ([3.25), we obtain

1
[f* Poxllp v, |9 2 ds !
MUY < ] [Z( oy [ ds

kez 1
)

1_2—ay
qy

On the other hand, for ¢ = 400 and again by the relation ([B.25]), we deduce that for all k € Z and

se[1,2]

My =

al=

= ||1I)||1,'Vn ( Ng:g)(f)‘

I * Waxsllpva
(2ks)Y

Consequently, for all k € Z and t € [2F,2k+1]

[ orllpv

<427 [, T2

Hf*ll‘)th,'Vn —Y v,$
tiy < (] +2 ) ”q)”],vn Np,oo (f))

which shows that
MY () < (1427 [l v, NEE ().

e Let aj, by be two real numbers; 0 < a; < a < b < by such that
F(P)wA) =0 if > +2A% <af or u?+2A° > bi.
From Lemma [0 there exists P € Sl,o (]R X R“) such that

FW)(wA) =C, forall (wA)€T; af <p’+2A° <4bj
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where C is a positive constant. Then for all k € Z and s € [1, 2],

CF($)(2%1, 2XN) = F($)(251, 2°A) F (P) (2" s, 2€As)

SO
C.pox = dox *Poxs.
Hence, for all f € 2} 4 ([0, +oo[><R“)

Cfx d)zk = fx ’l.l)zks * d)zk (326)

and
If* doxllp v

| [+ Waxsllpva
T LA LR

<(+2Y) b1 s (2ks)Y

Integrating over [1,2] with respect to the measure %, we get for all q € [1,+o0],

(AL TR (1427 [l v.)* J (I el y ot
2ky = Cdlog2 2k tY t

which leads to 1
NY®(f) < C(logl) @ (142Y) (]l v, MY (f).

On the other hand, for g = 400 and using the relation [3:26]), we deduce that for all k € Z

[+ boxllp,ve _ (1 +2

P2 love < 2D g, My 00,

which implies that

(1 +2
NY& (f) < —=— ||d>||1 v MUY ().

This completes the proof of theorem. O

Remark 21. 1) From Theorem [[4land Theorem 20} we deduce that the Besov space %}, 4 ( [0, +o0[x
R“) is independent of the choice of the function ¢ € S, o (R X R“), when it is endowed with the

v, ¢
norm N{'g.

From Proposition [[5] and Theorem B0, we deduce the following proposition

Proposition 22. The Besov space By q ( [0, +oo[ x R“) is homogeneous in a weaker sense when
equipped with the norm Np ¢, that is there exist Cy, Cz > 0 such that for all f € %} ( [0, +oo[ x
R“) and t >0

2n+1 2n+1
P P

Crt ™5 2T NYE () SNYE(F) < Co t77 27 17Y NY&(f).

Proposition 23. Let p € [1,400] and v € R. Then for all q7, q2 € [1,400];
q1 < g2, we have the continuous embedding

B o, ([0,+00[ x R™) — Y

Y (0, +o0xR").
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Proof. Let f € A} 4, ([0,+oo[ X R“) and ¢ € S, o (R X R“). Since

Z(Hf*dmllp,vn)m < 4oo

2ky
keEZ

then,

and we have

However,

and consequently,

Received: October 2009. Revised: December 2009.
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