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Laboratoire de Mathématiques et Applications,

Bd. Pierre et Marie Curie, Téléport 2, B.P. 30179,
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ABSTRACT

Uko and Argyros provided in [18] a Kantorovich–type theorem on the existence and

uniqueness of the solution of a generalized equation of the form f(u)+g(u) ∋ 0, where f

is a Fréchet–differentiable function, and g is a maximal monotone operator defined on a

Hilbert space. The sufficient convergence conditions are weaker than the corresponding

ones given in the literature for the Kantorovich theorem on a Hilbert space. However,

the convergence was shown to be only linear.

In this study, we show under the same conditions, the quadratic instead of the linear

convergenve of the generalized Newton iteration involved.
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RESUMEN

Uko y Argyros estudian en [18] un teorema tipo-Kantorovich en el existencia y unicidad

de la solución de una ecuación generalizada de la forma f(u) + g(u) ∋ 0, donde f es

una función Fréchet–diferenciable, y g es un operador monotono máximo definido en

un espacio de Hilbert. Las condiciones de convergencia suficientes son más débiles que

los correspondientemente dadas en la literatura para el teorema de Kantorovich en un

espacio de Hilbert. Sin embargo, la convergencia ha demostrado ser sólo lineal.

En este estudio, mostramos en las mismas condiciones, la ecuación cuadrática en lugar

de la lineal convergente de la iteración generalizada de Newton involucradas.

Keywords: Generalized equation, variational inequality, nonlinear complementarity problem,

nonlinear operator equation, Kantorovich theorem, generalized Newton’s method, center–Lipschitz

condition.
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1 Introduction

Let H be a Hilbert space, let C be a Let H be a Hilbert space, let C be a closed convex subset of H

with non–empty interior D, let f : C 7−→ H be a continuous function that is Fréchet–differentiable

on D, and let g be a non–empty maximal monotone operator defined on H ×H, fixed all through

this paper. Then there exists α ≥ 0 (the monotonicity modulus of g) such that:

[x1, y1] ∈ g and [x2, y2] ∈ g =⇒ (y2 − y1, x2 − x1) ≥ α ‖x1 − x2‖2. (1.1)

It is well known (cf. [10]) that g is closed in the sense that

[xm, ym] ∈ g, lim
m→∞

xm = x and lim
m→∞

ym = y =⇒ [x, y] ∈ g. (1.2)

In the sequel, we will regard the statements [x, y] ∈ g, g(x) ∋ y, −y + g(x) ∋ 0, and

y ∈ g(x) as synonymous. Given any u0 ∈ D and r > 0, U(u0, r) will designate the closed

ball {x ∈ H : ‖x − u0‖ ≤ r}, and U(u0, r) will designate the corresponding open ball.

We are interested in the solvability of the generalized equation:

f(u) + g(u) ∋ 0. (1.3)

Uko and Argyros provided in [18] a weak Kantorovich theorem that generalizes the Kan-

torovich theorem for generalized equations, which weakened work by Uko [16] on the Hilbert space
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version of the classical Kantorovich theorem [6, 9] for the solvability of nonlinear operator equations.

The Kantorovich theorem is a fundamental tool in nonlinear analysis for proving the existence

and uniqueness of solutions of equations arising in various fields. An important extension of

the Kantorovich theorem was obtained recently by Argyros [1], [2], who used a combination of

Lipschitz and center–Lipschitz conditions in place of the Lipschitz conditions used by Kantorovich.

In the present paper, we will formulate and prove an extension of the Kantorovich theorem for the

generalized equation (1.3). The depth and scope of this theorem is such that when we specialize

it to nonlinear operator equations we get results that are weaker than the Kantorovich theorem.

Our approach will be iterative, and the solution of problem (1.3) will be obtained as the limit of

the solutions of the generalized Newton subproblems (GNM):

f ′(um) um+1 + g(um+1) ∋ f ′(um) um − f(um), m = 0, 1, . . . . (1.4)

A well known example (cf. [11]) of a maximal monotone operator is obtained on setting

g(x) = ∂φ(x) ≡ {v ∈ H : φ(x) − φ(y) ≤ (v, x − y) ∀y ∈ H}

where, φ : H 7−→ (−∞,∞] is a proper lower semicontinuous convex function. In this case problem

(1.3) becomes the variational inequality:

f(u) + ∂φ(u) ∋ 0. (1.5)

Such problems were introduced in the early sixties by Stampacchia [15] and have found im-

portant applications in the physical and engineering sciences and in many other fields [1]–[21].

The generalized Newton iterates (1.4) are obtained as solutions of mildly nonlinear generalized

equations of the form:

A z + g(z) ∋ b. (1.6)

In this study, we recover the desired quadratic convergence of the (GNM), not attained in [18]

(under the same hypotheses and computational cost).

2 Semilocal convergence analysis of (GNM)

Uko and Argyros showed in [18], and with a different approach in [2, Case 3, p. 387] the following

result on majorizing sequences for the (GNM):

Lemma 2.1. Let η, α, b, M and M0 be nonnegative constants.
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Let:

c0 > −α,

η =
b

c0 + α
,

and

0 ≤ M0 ≤ M.

Suppose:

(4 M0 + M +
√

M2 + 8 M M0) ≤ 4 (c0 + α). (2.1)

The inequality in (2.1) is strict if M0 = 0.

Then, scalar sequence {sk} (k ≥ 0) given by:

s0 = 0, s1 = η, sk+1 = sk +
M (sk − sk−1)

2

2 (1 − M0 sk)
(2.2)

is well defined, nondecreasing, bounded above by s⋆⋆, and converges to its unique least upper bound

s⋆ ∈ [0, s⋆⋆], where

s⋆⋆ =
2 η

2 − θ
, (2.3)

θ =
4 M

M +
√

M2 + 8 M0 M
(M0 6= 0). (2.4)

Moreover, the following estimates hold for all k ≥ 0:

M0 s⋆ ≤ 1, (2.5)

0 ≤ sk+1 − sk ≤
(

θ

2

)k

η, (2.6)

0 ≤ s⋆ − sk ≤
(

θ

2

)k

s⋆⋆. (2.7)

In the next result, we show that under the same sufficient convergence condition (2.1) for

(GNM), we can improve upon the linear error estimates (2.6), and (2.7), and show instead the

quadratic convergence of the majorizing sequence {sn}.

It is convenient for us to set:

L0 =
M0

c0 + α
, and L =

M

c0 + α
.
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Lemma 2.2. Assume there exist constants L0 ≥ 0, L ≥ 0, and η ≥ 0, such that:

q0 = L η ≤ 1

2
, (2.8)

where,

L =
1

8

(

L + 4 L0 +
√

L2 + 8 L0 L

)

. (2.9)

The inequality in (2.8) is strict if L0 = 0.

Then, sequence {tk} (k ≥ 0) given by

t0 = 0, t1 = η, tk+1 = tk +
L1 (tk − tk−1)

2

2 (1 − L0 tk)
(k ≥ 1), (2.10)

is well defined, nondecreasing, bounded above by t⋆⋆, and converges to its unique least upper bound

t⋆ ∈ [0, t⋆⋆], where

L1 =

{

L0 if k = 1

L if k > 1
,

t⋆⋆ =
2 η

2 − δ
, (2.11)

1 ≤ δ =
4 L

L +
√

L2 + 8 L0 L
< 2 for L0 6= 0. (2.12)

Moreover the following estimates hold:

L0 t⋆ < 1, (2.13)

0 ≤ tk+1 − tk ≤ δ

2
(tk − tk−1) ≤ · · · ≤

(

δ

2

)k

η, (k ≥ 1), (2.14)

tk+1 − tk ≤
(

δ

2

)k

(2 q0)
2

k
−1 η, (k ≥ 0), (2.15)

0 ≤ t⋆ − tk ≤
(

δ

2

)k
(2 q0)

2
k
−1 η

1 − (2 q0)2
k

, (2 q0 < 1), (k ≥ 0). (2.16)

Proof. If L0 = 0, then (2.13) holds trivially. In this case, for L > 0, an induction argument

shows that

tk+1 − tk =
2

L
(2 q0)

2
k

(k ≥ 0),

and therefore

tk+1 = t1 + (t2 − t1) + · · · + (tk+1 − tk) =
2

L

k
∑

m=0

(2 q0)
m,
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and

t⋆ = lim
k→∞

tk =
2

L

∞
∑

k=0

(2 q0)
2

k

.

Clearly, this series converges, since k ≤ 2k, 2 q0 < 1, and is bounded above by the number

2

L

∞
∑

k=0

(2 q0)
k =

4

L (2 − L η)
.

If L = 0, then in view of (2.10), 0 ≤ L0 ≤ L, we deduce: L0 = 0, and t⋆ = tk = η (k ≥ 1).

In the rest of the proof, we assume that L0 > 0.

The result until estimate (2.14) follows from Lemma 1 in [2] (see also [1], [3]).

Note that in particular Newton–Kantorovich–type convergence condition (2.8) is given in [2,

page 387, Case 3 for δ given by (2.12). The factor η is missing from the left hand side of the

inequality three lines before the end of page 387].

In order for us to show (2.15) we need the estimate:

1 −
(

δ

2

)k+1

1 − δ

2

η ≤ 1

L0

(

1 −
(

δ

2

)k−1
L

4 L

)

(k ≥ 1). (2.17)

For k = 1, (2.17) becomes
(

1 +
δ

2

)

η ≤ 4 L − L

4 L L0

or
(

1 +
2 L

L +
√

L2 + 8 L0 L

)

η ≤ 4 L0 − L +
√

L2 + 8 L0 L

L0 (4 L0 + L +
√

L2 + 8 L0 L)

In view of (2.8), it suffices to show:

L0 (4 L0 + L +
√

L2 + 8 L0 L) (3 L +
√

L2 + 8 L0 L)

(L +
√

L2 + 8 L0 L) (4 L0 − L +
√

L2 + 8 L0 L)
≤ 2 L,

which is true as equality.

Let us now assume estimate (2.17) is true for all integers smaller or equal to k. We must show

(2.17) holds for k being k + 1:
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1 −
(

δ

2

)k+2

1 − δ

2

η ≤ 1

L0

(

1 −
(

δ

2

)k
L

4 L

)

(k ≥ 1).

or
(

1 +
δ

2
+

(

δ

2

)2

+ · · · +
(

δ

2

)k+1)

η ≤ 1

L0

(

1 −
(

δ

2

)k
L

4 L

)

. (2.18)

By the induction hypothesis to show (2.18), it suffices

1

L0

(

1 −
(

δ

2

)k−1
L

4 L

)

+

(

δ

2

)k+1

η ≤ 1

L0

(

1 −
(

δ

2

)k
L

4 L

)

or
(

δ

2

)k+1

η ≤ 1

L0

((

δ

2

)k−1

−
(

δ

2

)k)

L

4 L

or

δ2 η ≤ L (2 − δ)

2 L L0

.

In view of (2.8) it suffices to show

2 L L0 δ2

L (2 − δ)
≤ 2 L,

which holds as equality by the choice of δ given by (2.12). That completes the induction for esti-

mates (2.17).

We shall show (2.15) using induction on k ≥ 0: Estimate (2.15) is true for k = 0 by (2.8),

(2.10), and (2.12). In order for us to show estimate (2.15) for k = 1, since t2 − t1 =
L (t1 − t0)

2

2 (1 − L0 t1)
,

it suffices:
L η2

2 (1 − L0 η)
≤ δ L η2

or
L

1 − L0 η
≤ 16 L L

L +
√

L2 + 8 L0 L
(η 6= 0)

or

η ≤ 1

L0

(

1 − L +
√

L2 + 8 L0 L

16 L

)

(L0 6= 0, L 6= 0).

But by (2.8)

η ≤ 4

L + 4 L0 +
√

L2 + 8 L0 L
.
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It then suffices to show

4

L + 4 L0 +
√

L2 + 8 L0 L
≤ 1

L0

(

1 − L +
√

L2 + 8 L0 L

16 L

)

or
L +

√
L2 + 8 L0 L

16 L
≤ 1 − 4 L0

L + 4 L0 +
√

L2 + 8 L0 L

or
L +

√
L2 + 8 L0 L

16 L
≤ L +

√
L2 + 8 L0 L

L + 4 L0 +
√

L2 + 8 L0 L

or

L ≥ 0,

which is true by (2.9).

Let us assume (2.18) holds for all integers smaller or equal to k. We shall show (2.18) holds

for k replaced by k + 1.

Using (2.10), and the induction hypothesis, we have in turn

tk+2 − tk+1 =
L

2 (1 − L0 tk+1)
(tk+1 − tk)2

≤ L

2 (1 − L0 tk+1)

((

δ

2

)k

(2 q0)
2

k
−1 η

)2

≤ L

2 (1 − L0 tk+1)

((

δ

2

)k−1

(2 q0)
−1 η

) ((

δ

2

)k+1

(2 q0)
2

k+1
−1 η

)

≤
(

δ

2

)k+1

(2 q0)
2

k+1
−1 η,

since,

L

2 (1 − L0 tk+1)

((

δ

2

)k−1

(2 q0)
−1 η

)

≤ 1, (k ≥ 1). (2.19)

Indeed, we can show instead of (2.19):

tk+1 ≤ 1

L0

(

1 −
(

δ

2

)k−1
L

4 L

)

,

which is true, since by (2.14), and the induction hypothesis:
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tk+1 ≤ tk +
δ

2
(tk − tk−1)

≤ t1 +
δ

2
(t1 − t0) + · · · + δ

2
(tk − tk−1)

≤ η +

(

δ

2

)

η + · · · +
(

δ

2

)k

η

=

1 −
(

δ

2

)k+1

1 − δ

2

η

≤ 1

L0

(

1 −
(

δ

2

)k−1
L

4 L

)

.

That completes the induction for estimate (2.15).

Using estimate (2.18) for j ≥ k, we obtain in turn for 2 q0 < 1:

tj+1 − tk = (tj+1 − tj) + (tj − tj−1) + · · · + (tk+1 − tk)

≤
((

δ

2

)j

(2 q0)
2

j
−1 +

(

δ

2

)j−1

(2 q0)
2

j−1
−1 + · · · +

(

δ

2

)k

(2 q0)
2

k
−1

)

η

≤
(

1 + (2 q0)
2

k

+

(

(2 q0)
2

k

)2

+ · · ·
) (

δ

2

)k

(2 q0)
2

k
−1 η

=

(

δ

2

)k
(2 q0)

2
k
−1 η

1 − (2 q0)2
k

.

(2.20)

Estimate (2.16) follows from (2.20) by letting j −→ ∞.

That completes the proof of Lemma 2.2. ♦

We need the result [18], [3],[10], [11].

Lemma 2.3. Let g be a maximal monotone operator satisfying condition (1.1), and let A be a

bounded linear operator mapping H into H. If there exists c ∈ R, such that c > −α, and

(A x, x) ≥ c ‖x‖2, ∀x ∈ H. (2.21)

Then, for any b ∈ H, the problem

A z + g(z) ∋ b

has a unique solution z ∈ H.

We now use Lemma 2.2 instead of Lemma 2.1 to improve, in particular the error estimates,

in the weak Kantorovich–type existence theorem for problem (1.3) given in [18].
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Theorem 2.1. Let g be a maximal monotone operator satisfying condition (1.1), and suppose that

there exist u0 ∈ D, and v0 ∈ H, such that

v0 ∈ g(u0), (2.22)

(f ′(u0) x, x) ≥ c0 ‖x‖2, ∀x ∈ H, (2.23)

‖f ′(x) − f ′(y)‖ ≤ M ‖x − y‖ ∀x, y ∈ D, (2.24)

‖f ′(x) − f ′(u0)‖ ≤ M0 ‖x − u0‖ ∀x ∈ D, (2.25)

‖f(u0) + v0‖ ≤ b, (2.26)

where b ≥ 0, M ≥ M0 ≥ 0 and c0 > −α.

Let

η =
b

c0 + α
,

and suppose condition (2.8), and U(u0, t
⋆) ⊆ D hold, where the t⋆ is the limit of the sequence {tm}

defined in Lemma 2.2.

Then equation (1.3) has a unique solution u in U(u0, r), where

r =
2 η

1 +
√

c0 + α − 2 M0 η
, (2.27)

and the Newton iterations generated from (GNM) converge to u, and satisfy the estimates:

‖um − um−1‖ ≤ tm − tm−1, (2.28)

‖um − u0‖ ≤ tm, (2.29)

‖u − um‖ ≤ t⋆ − tm. (2.30)

Moreover, if there exists T ≥ 0, such that:

M0 (r + T ) < 2 (c0 + α), (2.31)

then, the solution is unique in U(u0, T )∩D. This solution is also unique in the sets U(u0, t
⋆), and

U(u0, r) ∪ (D ∩ U(u0, R)), where

R =
2 (c0 + α)

M0 − r
.

Furthemore, estimates (2.14)–(2.16) hold.

Proof.

It follows from condition (2.23), and Lemma 2.2, that the first iterate u1 is defined uniquely

in (1.4). Using (1.4), (2.22), and the monotonicity condition (1.1), we obtain

α ‖u1 − u0‖2 + (v0 + f(u0) + f ′(u0) (u1 − u0), u1 − u0) ≤ 0.
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Rewriting this in the form

α ‖u1 − u0‖2 + (f ′(u0) (u1 − u0), u1 − u0) ≤ (−f(u0) − v0, u1 − u0)

and making use of (2.23) and (2.26), we see that:

‖u1 − u0‖ ≤ b

c0 + α
= η = t1 − t0. (2.32)

If M0 = 0, then r = η ≤ t⋆, and R = ∞. In this case f ′(x) = f ′(u0), for all x ∈ D, and

f(x) = f(u0) +

∫ 1

0

f ′(s x + (1 − s) u0) (x − u0) ds

= f(u0) + f ′(u0) (x − u0), ∀x ∈ D.

Therefore, the unique solution of equation (1.3) in D is u = u1. Since ‖ u1 − u0 ‖≤ η ≤ t⋆,

the conclusion of the theorem holds in this case. If η = 0, then r = t⋆ = 0, R =
2 (c0 + α)

M0

, and

the unique solution of equation (1.3) in U(u0, r) ∪ (D ∩ U(u0, R)) is u = u0.

In the rest of the proof, we assume that M0 > 0, and η > 0. In this case, it follows from (2.8)

that:

2 M0 ≤ 4 M0 + M +
√

M2 + 8 M M0

4
≤ c0 + α

η
.

Therefore, r and R are well defined.

We prove by induction that the um are well defined and conditions (2.28) and (2.29) hold for

m = 0, 1, . . . . It follows from (2.32), that the induction hypothesis is true if m = 1.

We assume that m ≥ 1, and that the induction hypothesis holds for m. Then it follows from

(2.25) and (2.29), that

‖f ′(um) − f ′(u0)‖ ≤ M0‖um − u0‖ ≤ M0 tm.

Therefore

(f ′(u0) x − f ′(um) x, x) ≤ ‖f ′(u0) − f ′(um)‖ ‖x‖2 ≤ M0 tm ‖x‖2

for all x ∈ H, which implies, because of (2.23), that:

(f ′(um) x, x) ≥ (c0 − M0 tm) ‖x‖2, ∀x ∈ H. (2.33)
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On the other hand, it follows from (1.4), that c0 −M0 tm > −α. Therefore we conclude from

Lemma 2.2, that the iterate um+1 is defined uniquely in (1.4).

It follows from (1.4) that

g(um) ∋ vm ≡ −f(um−1) − f ′(um−1) (um − um−1) (2.34)

and by using conditions (2.24) and (2.28), we see that

‖f(um) + vm‖ = ‖f(um) − f(um−1) − f ′(um−1) (um − um−1)‖

= ‖
∫ 1

0

[f ′((1 − s)um−1 + s um) − f ′(um−1)] (um − um−1) ds‖

≤ M

2
‖um − um−1‖2 ≤ M

2
(tm − tm−1)

2. (2.35)

On the other hand, it follows from (1.1), (2.34), and (1.4) that:

α‖um+1 − um‖2 + (vm + f(um) + f ′(um) (um+1 − um), um+1 − um) ≤ 0.

Rewriting this in the form

α ‖um+1 − um‖2 + (f ′(um) (um+1 − um), um+1 − um) ≤ (f(um) + vm, um − um+1)

and making use of (2.33) and (2.35), we see that

‖um+1 − um‖ ≤ M (tm − tm−1)
2

2 (c0 + α − M0 tm)
= tm+1 − tm.

Hence ‖um+1 − u0‖ ≤ ‖um+1 − um‖ + ‖um − u0‖ ≤ tm+1 − tm + tm = tm+1. It follows that

(2.28) and (2.29) also hold when m is replaced with m+1 and hence, by induction, that they hold

for all positive integral values of m.

This implies that

‖um+q − um‖ ≤
m+q
∑

k=m+1

‖uk − uk−1‖ ≤
m+q
∑

k=m+1

(tk − tk−1) = tm+q − tm.

Since {tm} is a Cauchy sequence, it follows that {um} is also a Cauchy sequence converging to

some u ∈ U(u0, t
⋆). On letting q tend to infinity we see that (2.30) holds. Since lim

m→∞

vm = −f(u)

and lim
m→∞

um = u, it follows from (2.34), and property (1.2) that u solves problem (1.3).
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To prove the uniqueness assertions, let v be any solution of problem (1.3). Then since −f(v) ∈
g(v), it follows from (1.2), (2.34), and (2.22) that:

α ‖v − u0‖2 ≤ −(v0 + f(v), v − u0)

= −(f(v) − f(u0) − f ′(u0) (v − u0), v − u0)

− (f ′(u0) (v − u0), v − u0) − (f(u0) + v0, v − u0).

Therefore, by (2.23), and the center–Lipschitz condition (2.25), we get:

(c0 + α) ‖v − u0‖ ≤ ‖f(v) − f(u0) − f ′(u0) (v − u0)‖ + ‖f(u0) + v0‖

≤ ‖
∫ 1

0

[f ′(s v + (1 − s)u0) − f ′(u0)] (v − u0) ds‖ + b

≤ M0 ‖v − u0‖
∫ 1

0

(s ‖v − u0‖ + (1 − s) ‖v − u0‖) ds + b

= M0

‖v − u0‖2

2
+ b.

By solving this quadratic inequality, we see that either

‖v − u0‖ ≤ r or ‖v − u0‖ ≥ R.

In particular case v = u, condition (2.13) implies that the condition ‖u−u0‖ ≥ R cannot hold

since ‖u − u0‖ ≤ t⋆ ≤ c0 + α

M0

< R. It follows thet ‖u − u0‖ ≥ r, and hence u ∈ U(u0, r).

If condition (2.31) holds, and v is a solution of problem (1.3) in D ∩ U(u0, r). Then, since

−f(u) ∈ g(u), and −f(v) ∈ g(v), it follows from (1.2) that:

α ‖u − v‖2 ≤ (f(v) − f(u), u − v)

= −(f(u) − f(v) − f ′(u0)(u − v), u − v) − (f ′(u0) (u − v), u − v).

If we now apply (2.23), and the center–Lipschitz condition (2.25), we see that

(c0 + α) ‖u − v‖ ≤ ‖f(u) − f(v) − f ′(u0) (u − v)‖

≤ ‖
∫ 1

0

[f ′(s u + (1 − s) v) − f ′(u0)](u − v) ds‖

≤ M0 ‖u − v‖
∫ 1

0

(s ‖u − u0‖ + (1 − s) ‖v − u0‖) ds

= M0 ‖u − v‖ ‖u − u0‖ + ‖v − u0‖
2

≤ M0 ‖u − v‖ r + T

2
.
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Therefore, it follows from (2.31) that u = v. This proves the uniqueness of the solution

in U(u0, T ) ∩ D. If we set T = t⋆, then condition (2.31) reduces to the condition M0 t⋆ <

c0 + α +
√

c0 + α − 2 M0 η, which is true by (2.8). This shows that the solution of problem (1.3)

is unique in U(u0, t
⋆) ∩ D.

Let

r0 = 0, r1 = η, rm+1 = rm +
M0 (rm − rm−1)

2

2 (c0 + α − M0 rm)
,

then, the argument employed in the proof of Lemma 2.2 shows that rm converges monotonically

to a non–negative number r, such that M0 r ≤ c0 + α. Since

2 (c0 + α) rm+1 − 2 M0 rm+1 rm = 2 (c0 + α) rm − 2 M0 rm rm−1

= · · ·
= 2 (c0 + α) r1 − 2 M0 r1 r0 = 2 η (c0 + α).

By letting m −→ ∞, we obtain that r satisfies the equation

−2 (c0 + α) r + M0 r2 + 2 η (c0 + α) = 0.

Therefore, r is given by the expression (2.27). On the other hand, it follows from (2.10), and

an easy induction argument that the inequality rm ≤ tm holds for all m. This shows that r ≤ t⋆,

and we conclude that the solution of problem (1.3) is unique in U(u0, r) ∪ (D ∩ U(u0, R)).

That completes the proof of Theorem 2.1. ♦

We complete this study with a numerical example.

Example 1. Let X = Y = R, D = (
8

9
,
10

9
), u0 = 1, and define function F on D by

F (x) = 6 x3 − 1.

Set g = 0, f(x) = F ′(u0)
−1 F (x), then we have

f ′(u0) = I, α = 0, c0 = 1, M0 = 1.9, M = 2, η = .258646.

The classical Newton–Kantorovich condition [1]–[3], [5], [6], [9]:

M η ≤ 1

2
(2.36)

is violated, since

M η = .517292 > .5.
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However, condition (2.1) becomes

3.999999528 < 4.

Condition (2.36) implies (2.1), but not necessarily vice verca unless if M = M0.

Note also that:

M0 ≤ M

holds in general, and
M

M0

can be arbitrarily large [2], [3].

We also have:

θ = δ = 1.017145084,
θ

2
= .508572542, s⋆⋆ = .526315727,

q0 = .499999941, 2 q0 = .999999882.

By comparing (2.6) with (2.15), we see that is an improvment by (2 q0)
2

k
−1 at each k–th–step.

Several special cases, and other applications can also be found in [18] (see also [1]–[17], [19],

[20]).

Received: October 2009. Revised: November 2009.
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