
CUBO A Mathematical Journal
Vol.13, No

¯ 01, (125–136). March 2011

Multiple Objective Programming Involving Differentiable
(Hp, r)-invex Functions

Xiaoling Liu, Dehui Yuan, Shengyun Yang, Guoming Lai

Department of Mathematics and Inform.,

Tech.,Hanshan Normal University,

Chaozhou, Guangdong, 521041, China.

email: ydhliu@gmail.com, ydhlxl@sohu.com

and

Chuanqing Xu

Department of Mathematics,

Beijing Armed Forced Eng. Institute,

Beijing 100072, China.

ABSTRACT

In this paper, we introduce new types of generalized convex functions which include

locally (Hp, r)-pre-invex functions and (Hp, r)-invex functions. Relationship between

these two new classes of functions are established. We also present the conditions for

optimality in differentiable mathematical programming problems where the functions

considered are (Hp, r)-invex functions introduced in this paper.

RESUMEN

Este trabajo, establece nuevos tipos de funciones convexas generalizadas que incluyen

localmente funciones (Hp, r) de pre-invex y funciones (Hp, r)-invex. La relacin entre
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estas dos nuevas clases de funciones estn establecidas. Tambin se presentan las condi-

ciones de optimalidad en diferenciables problemas de programacin matemtica, donde

las funciones consideradas en este artculo son funciones (Hp, r)-invex.

Keywords: Differentiable mathematical programming.

Mathematics Subject Classification: 90B50.

1 Introduction

Convexity plays a central role in many aspects of mathematical programming (see[22, 5, 8]) includ-

ing analysis of stability [9, 16], sufficient optimality conditions and duality [12, 15, 11]. Based on

convexity assumptions, nonlinear programming problems can be solved efficiently. There have been

many attempts to weaken the convexity assumptions in order to treat many practical problems.

Therefore, many concepts of generalized convex functions have been introduced and applied to

mathematical programming problems in the literature [1, 2, 19, 27, 28, 25]. One of these concepts,

invexity, was introduced by Hanson in [11]. Hanson has shown that invexity has a common property

in mathematical programming with convexity that Karush Kuhn Tucker conditions are sufficient

for global optimality of nonlinear programming under the invexity assumptions. Ben-Israel and

Mond [7] introduced the concept of pre-invex functions which is a special case of invexity.

Following [11] and [7], many authors have introduced concepts of generalized invexity and

pre-invexity including strictly pseudoinvex functions and quasiinvex functions [13], prepseudoinvex

and prequasiinvex functions [21] and r-pre-pseudoinvex functions [1]. The relationships between

some of these generalized invex functions were studied in [20, 21].

Recently, Antczak [3] introduced new definitions of p-invex sets and (p, r)-invex functions

which can be seen as generalization of invex functions. He also discussed nonlinear programming

problems involving the (p, r)-invexity-type functions in [2, 4].

On the other hand, Kaul et al. [14] introduced the classes of locally connected sets which

generalizes the arcwise connected sets [6] and locally star-shaped sets [10]. Based on the new

class of sets, they [14, 15] introduced a new class of functions called locally connected functions.

They [15]also defined the directional derivative (with respect to a vector function) of a real valued

function, and also defined locally P -connected functions in terms of its right differential.

Motivated by [7, 14, 1, 2, 3, 4, 15, 18], Yuan et al. introduced definition of a new class

of sets, locally Hp-invex sets, and definitions of classes of generalized convex functions called

locally (Hp, r, α)-pre-invex functions. And we give the concept of locally differentiable (Hp, r)-

invex functions, discuss the relationship between (Hp, r)-invexity and locally (Hp, r, 1)-pre-invexity.

Based on the definition of locally differentiable (Hp, r)-invexity, we have managed to deal with

nonlinear programming problems under some assumptions.

The rest of the paper is organized as follows: In Section 2, we give some preliminary concepts
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regarding locally Hp-convex sets, locally (Hp, r, α)-preinvex function, and differentiable (Hp, r)-

invex function, discuss the relationship between (Hp, r)-invexity and locally (Hp, r, 1)-pre-invexity.

In Section 3, we present the conditions for optimality in differentiable mathematical programming

problems in which the functions considered belong to the classes of functions introduced in section.

In Section 4, we present the conditions of optimality for the following nonlinear differentiable

fractional programming problems (MFP) with the same convexity assumption.

2 Differentiable (Hp, r)-invex Functions

Let Rn be the n-dimensional Euclidean space, Rn
+ = {x ∈ Rn|x > 0} and Ṙn

+ = {x ∈ Rn|x > 0}.

In this section, we give definitions of locally Hp-invex set.

Definition 1. [3] Let a1, a2 > 0, λ ∈ (0, 1) and r ∈ R. Then the weighted r-mean of a1 and a2 is

given by

Mr(a1, a2;λ) :=

{

(λar
1 + (1 − λ)ar

2)
1

r for r 6= 0,

aλ
1a1−λ

2 for r = 0.

Definition 2. [29] S ⊂ R
n is a locally Hp-invex set if and only if, for any x, u ∈ S, there exist a

maximum positive number a(x, u) ≤ 1 and a vector function Hp : S × S × [0, 1] → R
n, such that

Hp(x, u; 0) = eu, Hp(x, u;λ) ∈ Ṙ
n
+,

ln (Hp(x, u;λ)) ∈ S, ∀ 0 < λ < a(x, u) for p ∈ R.

and Hp(x, u;λ) is continuous on the interval (0, a(x, u)), where the logarithm and the exponentials

appearing in the relation are understood to be taken componentwise.

Definition 3. [29] A function f : S → R defined on a locally Hp-invex set S ⊂ R
n is said to

be locally (Hp, r)-pre-invex on S if, for any x, u ∈ S, there exists a maximum positive number

a(x, u) ≤ 1 such that

f (ln (Hp(x, u;λ))) ≤ ln
(

Mr(e
f(x), ef(u);λα)

)

,∀ 0 < λ < a(x, u) for p ∈ R

where the logarithm and the exponentials appearing on the left-hand side of the inequality are

understood to be taken componentwise. If u is fixed, then f is said to be locally (Hp, r)-pre-invex

at u. Correspondingly, if the direction of above inequality is changed to the opposite one, then f

is said to (Hp, r)-pre-incave on S or at u.

Now, we introduce the classes of differentiable (Hp, r)-invex functions. For convenience, we

assume that S be a Hp-invex set, Hp is right differentiable at 0 with respect to variable λ for

each given pair x, u ∈ S, and f : S → R is differentiable on S. The symbol H ′

p(x, u; 0+) ,

(H ′

p1(x, u; 0+), · · · , H ′

pn(x, u; 0+))T denotes the right derivative of Hp at 0 with respect to variable

λ for each given pair x, u ∈ S; ▽f(x) , (▽1f(x), . . . ,▽nf(x))
T

denotes the differential of f at x,

where ∂if(x) is partial differential of f with respect to the i-th componentwise; ▽f(u)
e

u denotes
(

▽1f(u)
e

u1
, · · · , ▽nf(u)

e
un

)T

.
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Definition 4. Let S be a Hp-invex set, Hp is right differentiable at 0 with respect to variable λ for

each given pair x, u ∈ S, and f : S → R is differentiable on S. If for all x ∈ S, one of the relations

1

r
erf(x) >

1

r
erf(u)

[

1 + r
▽f(u)

eu

T

H ′

p(x, u; 0+)

]

(>) for r 6= 0,

f(x) − f(u) > ▽f(u)
e

u

T
H ′

p(x, u; 0+) (>) for r = 0,

(2.1)

holds, then f is said to be (Hp, r)-invex (strictly (Hp, r)-invex) at u ∈ S. If the inequalities (2.1)

are satisfied at any point u ∈ S, then f is said to be (Hp, r)-invex (strictly (Hp, r)-invex) on S.

Remark 5. Any function f satisfying (2.1) is called (Hp, r)-invex (strictly (Hp, r)-invex) on S.

However, if Hp(x, u;λ) = Mp(e
η(x,u)+u, eu;λ) and a(x, u) = 1 for all x, u ∈ S, we will say that

f is (p, r)-invex (strictly (p, r)-invex) with respect to η on S; furthermore, f is r-invex (strictly

(p, r)-invex) with respect to η on S in the case p = 0 and f is invex (strictly invex) with respect

to η on S in the case p = 0 and r = 0.

Remark 6. In order to define an analogous class of (strict) (Hp, r)-incave functions on the Hp-invex

set, the direction of the inequality (2.1) in the definition of these functions should be changed to

the opposite one.

Theorem 7. Let S ⊂ R
n be a Hp-invex set, Hp is right differentiable at 0 with respect to variable

λ for each given pair x, u ∈ S, and f : S → R is differentiable on S. If f is (Hp, r, α)-pre-invex

((Hp, r, α)-pre-incave) on S and α = 1, then f is (Hp, r)-invex ((Hp, r)-incave) on S.

Proof. The theorem will be proved only in the case f is (Hp, r, α)-pre-invex, and we just

prove that the theorem is true when r > 0 (the proof in the case when r < 0 is analogous to the

one when r > 0; only the directions of the inequalities should be changed to the opposite ones).

Firstly, we prove the theorem is true in the case when r > 0. Since f : S → R is a (Hp, r, α)-

pre-invex function and α = 1, by Definition 3, we have

erf(u)
[

erf(ln(Hp(x,u;λ)))−rf(u) − 1
]

λ−1 6 erf(x) − erf(u).

By letting λ → 0, we get the inequality

erf(x) − erf(u) > rerf(u) ▽f(u)

eu

T

H ′

p(x, u; 0+)

that is
1

r
erf(x) >

1

r
erf(u)

[

1 + r
▽f(u)

eu

T

H ′

p(x, u; 0+)

]

Now, we prove the case r = 0. By Definition 3, we have

[f(ln (Hp(x, u;λ))) − f(u)]λ−1 6 f(x) − f(u).

By letting λ → 0, we get the inequality

f(x) − f(u) >
▽f(u)

eu

T

H ′

p(x, u; 0+)

Therefore, we get the desired result. �
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3 Optimality for Multiple Objective Programming

In this section, we present the conditions for optimality in differentiable mathematical programming

problems in which the functions considered belong to the classes of functions introduced earlier in

this paper.

Consider the following form of optimization problem

(VOP)
min f(x)

g(x) 6 0, x ∈ S,

where S ⊂ R
n, f : S → R

q, g : S → R
m.

Let us denote by E the set of feasible solutions of (VOP), i.e., the set of the form E := {x ∈

S|g(x) 6 0}. From now on, we assume that Hp is right differentiable at 0 with respect to variable

λ for each given pair x, u ∈ S, fi : S → R(i = 1, · · · , q), gj : S → R(j = 1, · · · ,m) are differentiable

on S, f = (f1, · · · , fq), g = (g1, · · · , gm) and S is an Hp-invex (nonempty) set.

Definition 8. x̄ ∈ E is said to be an efficient solution for problem (VOP), if there exists no x ∈ E

such that f(x) 6 f(x̄); x̄ ∈ E is said to be a weak efficient solution for problem (VOP), if there

exists no x ∈ E such that f(x) < f(x̄);

Theorem 9. Let E be a Hp-invex set with the respect to the same Hp. Assume that x̄ ∈ S is

feasible for problem (VOP), and there exists λ ∈ R
q, µ ∈ R

m such that

∑q

i
λi▽fi(x̄) +

∑m

j=1
µj▽gj(x̄) = 0, (3.1)

∑m

j=1
µjgj(x̄) = 0, (3.2)

λ = (λ1, · · · , λq) > 0,
∑q

i
λi = 1, µ = (µ1, · · · , µm) > 0. (3.3)

If fi(i = 1, · · · , q) are strictly (Hp, r)-invex and gj(j = 1, · · · ,m) are (Hp, r)-invex at x̄ on S, then

x̄ is an efficient solution of problem (VOP).

Proof. Here we prove only the cases when r > 0 or r = 0(the proof of the case when r < 0

is similar to the one when r > 0; the only changes arise from the form of inequalities defining the

class of (Hp, r)-invex functions). Assume that x is an arbitrary feasible point for problem (VOP).

On the contrary to suppose that x̄ is not an efficient solution of problem (VOP). Thus, there exists

x ∈ E such that f(x) 6 f(x̄).

We first consider the case when r > 0. Therefore,

q
∑

i

λi

{

erfi(x) − erfi(x̄)
}

6 0.

By hypothesis, f and gi(i = 1, · · · ,m) are (Hp, r)-invex at x̄ on S; therefore, for all x ∈ S, the
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inequalities

1

r
erfi(x) >

1

r
erfi(x̄)

[

1 + r
▽fi(x̄)

ex̄

T

H ′

p(x, u; 0+)

]

, i = 1, · · · , q, (3.4)

1

r
ergj(x) >

1

r
ergj(x̄)

[

1 + r
▽gj(x̄)

ex̄

T

H ′

p(x, x̄; 0+)

]

, j = 1, · · · ,m, (3.5)

are true. Denote I(x̄) , {j|µj > 0, j = 1, · · · ,m}. By (3.2), we have gj(x̄) = 0 if j ∈ I(x̄) and

µj = 0 if gj(x̄) 6= 0, thus gj(x) 6 gj(x̄) for j ∈ I(x̄). Therefore, from (3.4) and (3.5), we have

er(fi(x)−fi(x̄)) > 1 + r
▽fi(x̄)

ex̄

T

H ′

p(x, u; 0+) (3.6)

r
▽gj(x̄)

ex̄

T

H ′

p(x, x̄; 0+) 6 0, j ∈ I(x̄). (3.7)

By(3.6), (3.7) and (3.3), we deduce that

(

∑m
i=1 λi▽fi(x̄)

ex̄
+

∑

j∈I(x̄) µj▽gj(x̄)

ex̄

)T

H ′

p(x, x̄; 0+) < 0. (3.8)

Notice that
∑m

j=1 µj▽gj(x̄) =
∑

j∈I(x̄) µj▽gj(x̄), by (3.8), we have

(

∑m
i=1 λi▽fi(x̄) +

∑m
j=1 µj▽gj(x̄)

ex̄

)T

H ′

p(x, x̄; 0+) < 0.

This, together with (3.1), follows a contradiction 0 < 0.

Now, we prove the theorem is true in the case when r = 0. Since f(x) 6 f(x̄), then
∑q

i λi (fi(x) − fi(x̄)) 6 0. By Definition 4, we have

fi(x) − fi(x̄) >
▽fi(x̄)

ex̄

T

H ′

p(x, x̄; 0+), i = 1, . . . , q,

gj(x) − gj(x̄) >
▽gj(x̄)

ex̄

T

H ′

p(x, x̄; 0+), j = 1, · · · ,m,

On the same line as the case when r > 0, we have the contradiction 0 < 0 again. Therefore, x̄ is

an efficient solution for problem (VOP). �

Theorem 10. Let E be a Hp-invex set with the respect to the same Hp. Assume that x̄ ∈ S is

feasible for problem (VOP), and there exists λ ∈ R
q, µ ∈ R

m such that
∑q

i
λi▽fi(x̄) +

∑m

j=1
µj▽gj(x̄) = 0, (3.9)

∑m

j=1
µjgj(x̄) = 0, (3.10)

λ = (λ1, · · · , λq) > 0,
∑q

i
λi = 1, µ = (µ1, · · · , µm) > 0. (3.11)

If fi(i = 1, · · · , q), gj(j = 1, · · · ,m) are (Hp, r)-invex at x̄ on S, then x̄ is an efficient solution of

problem (VOP).
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Proof. The theorem can be proved on simple lines as Theorem 9. �

The assumption on functions in Theorem 9 ( or Theorem 10) could also be given in another

form. It is enough to assume that the Lagrange function fi +
∑m

j=1 µjgj(i = 1, . . . ,m) are strictly

(Hp, r)-invex (or strictly (Hp, r)-invex) . And so, the following two theorems are true. Their proofs

are on the same line as Theorem 9, therefore we delete them here.

Theorem 11. Assume that x̄ ∈ S is feasible for problem (VOP), and there exists λ ∈ R
q, µ ∈ R

m

satisfying (3.1), (3.2) and (3.3). If fi +
∑m

j=1 µjgj(i = 1, . . . ,m) are strictly (Hp, r)-invex at x̄ on

S, then x̄ is an efficient solution of problem (VOP).

Theorem 12. Assume that x̄ ∈ S is feasible for problem (VOP), and there exists λ ∈ R
q, µ ∈ R

m

satisfying (3.9), (3.10) and (3.11). If fi +
∑m

j=1 µjgj(i = 1, . . . ,m) are (Hp, r)-invex at x̄ on S,

then x̄ is an efficient solution of problem (VOP).

For weak efficient solution of problem (VOP), we have the following theorems.

Theorem 13. Assume that x̄ ∈ S is feasible for problem (VOP), and there exists λ ∈ R
q, µ ∈ R

m

satisfying (3.1), (3.2) and (3.3). If fi(i = 1, · · · , q), gj(j = 1, · · · ,m) are (Hp, r)-invex at x̄ on S,

then x̄ is a weak efficient solution of problem (VOP).

Theorem 14. Assume that x̄ ∈ S is feasible for problem (VOP), and there exists λ ∈ R
q, µ ∈ R

m

satisfying (3.1), (3.2) and (3.3). If fi +
∑m

j=1 µjgj(i = 1, . . . ,m) are (Hp, r)-invex at x̄ on S, then

x̄ is a weak efficient solution of problem (VOP).

4 Multiple Objective Fractional Programming

In this section, we present the conditions of optimality for the following nonlinear differentiable

fractional programming problems (MFP).

(MFP) min
f(x)

g(x)
,

(

f1(x)

g1(x)
,
f2(x)

g2(x)
, · · · ,

fq(x)

gq(x)

)T

s.t. h(x) = (h1(x), h2(x), · · · , hm(x)) 6 0

x ∈ S,

where S ⊂ R
n, f : S → R

q, g : S → R
q, h : S → R

m, f = (f1, · · · , fq), g = (g1, · · · , gq),

h = (h1, · · · , hm), are differentiable on S and S is an Hp-invex (nonempty) set. Moreover, for

i = 1, . . . , q, gi(x) > 0 for all x ∈ S.

Let us denote by E the set of feasible solutions of (MFP), i.e., the set of the form E := {x ∈

S|h(x) 6 0}. We assume that Hp is right differentiable at 0 with respect to variable λ for each

given pair x, u ∈ S.

Definition 15. x̄ ∈ E is said to be an efficient solution for problem (MFP), if there exists no x ∈ E

such that f(x)
g(x) 6 f(x̄)

g(x̄) ; x̄ ∈ E is said to be a weak efficient solution for problem (MFP), if there

exists no x ∈ E such that f(x)
g(x) < f(x̄)

g(x̄) ;
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Theorem 16. Assume that x̄ ∈ S is feasible for problem (MFP), and there exists λ ∈ R
q, u ∈ R

q,

µ ∈ R
m such that

∑q

i
λi(▽fi(x̄) − ui▽gi(x̄)) +

∑m

j=1
µj▽hj(x̄) = 0, (4.1)

∑m

j=1
µjhj(x̄) = 0, (4.2)

λ = (λ1, · · · , λq) > 0,
∑q

i
λi = 1, µ = (µ1, · · · , µm) ≧ 0, (4.3)

u = (u1, · · · , uq) ≧ 0, ui = fi(x̄)/gi(x̄), i = 1, . . . , q. (4.4)

If fi−uigi(i = 1, · · · , q) are strictly (Hp, r)-invex at x̄ on S, and hj(j = 1, · · · ,m) are (Hp, r)-invex

at x̄ on S, then x̄ is an efficient solution of problem (MFP).

Proof. Similar to Theorem 9, here we prove only the cases when r > 0 or r = 0. Assume

that x is an arbitrary feasible point for problem (MFP). On the contrary to suppose that x̄ is not

an efficient solution of problem (MFP). Thus, there exists x ∈ E such that f(x)
g(x) 6 f(x̄)

g(x̄) = u.

We first consider the case when r > 0. Therefore,

q
∑

i

λi

{

er(fi(x)−uigi(x)) − 1
}

6 0.

By the convexity of fi − uigi(i = 1, · · · , q) and hj(j = 1, · · · ,m), we have

er(fi(x)−uigi(x)) − 1 > r

(

▽fi(x̄) − ui▽gi(x̄)

ex̄

)T

H ′

p(x, u; 0+), i = 1, · · · , q, (4.5)

1

r
erhj(x) >

1

r
erhj(x̄)

[

1 + r
▽hj(x̄)

ex̄

T

H ′

p(x, x̄; 0+)

]

, j = 1, · · · ,m, (4.6)

Thus, by (4.2), (4.3), (4.5) and (4.6), we deduce that

(

∑q
i=1 λi(▽fi(x̄) − ui▽gi(x̄)) +

∑m
j=1 µj▽hj(x̄)

ex̄

)T

H ′

p(x, u; 0+) < 0

Therefore, we get a contradiction 0 < 0.

Similarly, we can prove the theorem in the case when r = 0. �

Theorem 17. Assume that x̄ ∈ S is feasible for problem (MFP), and there exists λ ∈ R
q, u ∈ R

q,

µ ∈ R
m satisfying (4.1), (4.2), (4.3) and (4.4). If one of the following holds:

1) fi(i = 1, · · · , q) are strictly (Hp, r)-invex at x̄ on S, uigi(i = 1, · · · , q) are (Hp, r)-incave at

x̄ on S, and hj(j = 1, · · · ,m) are (Hp, r)-invex at x̄ on S;

2) uigi(i = 1, · · · , q) are strictly (Hp, r)-incave at x̄ on S, fi(i = 1, · · · , q) and hj(j = 1, · · · ,m)

are (Hp, r)-invex at x̄ on S;

then x̄ is an efficient solution of problem (MFP).
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Proof. In the same way as Theorem 16, here we prove only 1) for the cases when r > 0, 2)

can be proved similar to 1). Assume that x is an arbitrary feasible point for problem (MFP). On

the contrary to suppose that x̄ is not an efficient solution of problem (MFP). Thus, there exists

x ∈ E such that f(x)
g(x) 6 f(x̄)

g(x̄) = u. Therefore,

q
∑

i

λi

{

erfi(x) − eruigi(x)
}

6 0. (4.7)

1) Since fi(i = 1, · · · , q) are strictly (Hp, r)-invex at x̄ on S, uigi(i = 1, · · · , q) are (Hp, r)-

incave at x̄ on S, and hj(j = 1, · · · ,m) are (Hp, r)-invex at x̄ on S, then

er(fi(x)) − er(fi(x̄)) > r

(

▽fi(x̄)

ex̄

)T

H ′

p(x, u; 0+), i = 1, · · · , q, (4.8)

er(uigi(x)) − er(uigi(x̄)) 6 r

(

ui▽gi(x̄)

ex̄

)T

H ′

p(x, u; 0+), i = 1, · · · , q, (4.9)

1

r
erhj(x) >

1

r
erhj(x̄)

[

1 + r
▽hj(x̄)

ex̄

T

H ′

p(x, x̄; 0+)

]

, j = 1, · · · ,m, (4.10)

Notice that erfi(x̄)) = er(uigi(x̄)), by (4.2)-(4.4), (4.7)-(4.10), we have

(

∑q
i=1 λi(▽fi(x̄) − ui▽gi(x̄)) +

∑m
j=1 µj▽hj(x̄)

ex̄

)T

H ′

p(x, u; 0+) < 0.

Therefore, we get a contradiction 0 < 0. �

Theorem 18. Assume that x̄ ∈ S is feasible for problem (MFP), and there exists λ ∈ R
q, u ∈ R

q,

µ ∈ R
m such that

∑q

i
λi(▽fi(x̄) − ui▽gi(x̄)) +

∑m

j=1
µj▽hj(x̄) = 0, (4.11)

∑m

j=1
µjhj(x̄) = 0, (4.12)

λ = (λ1, · · · , λq) > 0,
∑q

i
λi = 1, µ = (µ1, · · · , µm) ≧ 0, (4.13)

u = (u1, · · · , uq) ≧ 0, ui = fi(x̄)/gi(x̄), i = 1, . . . , q. (4.14)

If fi − uigi(i = 1, · · · , q) and hj(j = 1, · · · ,m) are (Hp, r)-invex at x̄ on S, then x̄ is an efficient

solution of problem (MFP).

Proof. The theorem can be proved on simple lines as Theorem 16.

Theorem 19. Assume that x̄ ∈ S is feasible for problem (MFP), and there exists λ ∈ R
q, u ∈ R

q,

µ ∈ R
m satisfying (4.11), (4.12), (4.13) and (4.14). If uigi(i = 1, · · · , q) are (Hp, r)-incave at x̄ on

S, fi(i = 1, · · · , q) and hj(j = 1, · · · ,m) are (Hp, r)-invex at x̄ on S, then x̄ is an efficient solution

of problem (MFP).
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Proof. The theorem can be proved on simple lines as Theorem 17.

Theorem 20. Assume that x̄ ∈ S is feasible for problem (MFP), and there exists λ ∈ R
q, u ∈ R

q,

µ ∈ R
m such that

∑q

i
λi(▽fi(x̄) − ui▽gi(x̄)) +

∑m

j=1
µj▽hj(x̄) = 0,

∑m

j=1
µjhj(x̄) = 0,

λ = (λ1, · · · , λq) > 0,
∑q

i
λi = 1, µ = (µ1, · · · , µm) ≧ 0,

u = (u1, · · · , uq) ≧ 0, ui = fi(x̄)/gi(x̄), i = 1, . . . , q.

If one of the following holds:

1) fi − uigi(i = 1, · · · , q) and hj(j = 1, · · · ,m) are (Hp, r)-invex at x̄ on S;

2) uigi(i = 1, · · · , q) are (Hp, r)-incave at x̄ on S, fi(i = 1, · · · , q) and hj(j = 1, · · · ,m) are

(Hp, r)-invex at x̄ on S;

then x̄ is a weak efficient solution of problem (MFP).

Proof. The theorem can be proved on simple lines as Theorem 16.

Received: September 2009. Revised: November 2009.
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