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ABSTRACT

We generalize the “hamiltonian topology” on hamiltonian isotopies to an intrinsic “symplec-

tic topology” on the space of symplectic isotopies. We use it to define the group SSympeo

(M,ω) of strong symplectic homeomorphisms, which generalizes the group Hameo(M,ω) of

hamiltonian homeomorphisms introduced by Oh and Müller. The group SSympeo(M,ω)

is arcwise connected, is contained in the identity component of Sympeo(M,ω); it con-

tains Hameo(M,ω) as a normal subgroup and coincides with it when M is simply con-

nected. Finally its commutator subgroup [SSympeo(M,ω), SSympeo(M,ω)] is contained

in Hameo(M,ω).

RESUMEN

Generalizamos la “topología hamiltoniano” sobre isotopias hamiltonianas para una “to-

pología simpléctica” intrinseca en el espacio de isotopias simplécticas. Nosotros usamos

esto para definir el grupo SSympeo(M,ω) de homeomorfismos simplécticos fuertes, el qual

generaliza el grupo Hameo(M,ω) de homeomorfismos hamiltonianos introducido por Oh

y Müller. El grupo SSympeo(M,ω) es conexo por arcos, es contenido en la componente

identidad de Sympeo(H,ω); este contiene Hameo(M,ω) como un subgrupo normal y co-

incide con este cuando M es simplemente conexa. Finalmente su subgrupo conmutador

[SSympeo(M,ω), SSympeo(M,ω)] es contenido en Hameo(M,ω).
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1 Introduction

No natural metric on the group Symp(M,ω) of symplectic diffeomorphisms of a symplectic

manifold (M,ω) is known. In this paper we construct a “Hofer-like” metric, depending on

several ingredients. However, we prove that all these metrics are equivalent and hence define

a natural metric topology on Symp(M,ω) ( theorem 1’). We use this natural topology on

Symp(M,ω) to define a new group of symplectic homeomorphisms, herein called the group of

strong symplectic homeomorphisms (Theorem 2). This group may carry a Calabi invariant.

The Eliashberg-Gromov symplectic rigidity theorem says that the group Symp(M,ω) of

symplectomorphisms of a closed symplectic manifold (M,ω) is C0 closed in the group Diff∞(M)

of C∞ diffeomorphisms of M [7],[9]. This means that the “symplectic” nature of a sequence

of symplectomorphisms survives topological limits. Also Lalonde-McDuff-Polterovich have

shown in [11] that for a symplectomorphism, being “hamiltonian” is topological in nature.

These phenomenons attest that there is a C0 symplectic topology underlying the symplectic

geometry of a closed symplectic manifold (M,ω).

According to Oh-Müller ([13]), the automorphism group of the C0 symplectic topology

is the closure of the group Symp(M,ω) in the group Homeo(M) of homeomorphisms of M

endowed with the C0 topology. That group, denoted Sympeo(M,ω) has been called the group

of symplectic homeomorphisms:

Sympeo(M,ω) =: Symp(M,ω).

The C0 topology on Homeo(M) coincides with the metric topology coming from the metric

d(g,h) = max(supx∈M d0(g(x),h(x)),supx∈M d0(g−1(x),h−1(x))

where d0 is a distance on M induced by some riemannian metric [3].

On the space PHomeo(M) of continuous paths γ : [0,1] → Homeo(M), one has the dis-

tance

d(γ,µ)= supt∈[0,1]d(γ(t),µ(t)).

Consider the space PHam(M) of all isotopies ΦH = [t 7→Φ
t
H

] where Φ
t
H

is the family of

hamiltonian diffeomorphisms obtained by integration of the family of vector fields XH for a
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smooth family H(x, t) of real functions on M, i.e.

d

dt
Φ

t
H (x)= XH (Φt

H(x))

and Φ
0
H
= id.

Recall that XH is uniquely defined by the equation

i(XH)ω= dH

where i(.) is the interior product.

The set of time one maps of all hamiltonian isotopies {Φt
H

} form a group, denoted

Ham(M,ω) and called the group of hamiltonian diffeomorphisms.

Definition: The hamiltonian topology [13] on PHam(M) is the metric topology defined by the

distance

dham(ΦH ,ΦH′ )= ||H−H′
||+d(ΦH ,ΦH′ )

where

||H−H′
|| =

ˆ 1

0

osc(H−H′ )dt.

and the oscillation of a function u is

osc(u) = maxx∈M u(x)−minx∈M u(x).

Let Hameo(M,ω) denote the space of all homeomorphisms h such that there exists a

continuous path λ ∈ PHomeo(M) such that λ(0) = id, λ(1) = h and there exists a Cauchy

sequence (for the dham distance) of hamiltonian isotopies ΦHn , which C0 converges to λ ( in

the d metric).

The following is the first important theorem in the C0 symplectic topology [13]:

Theorem (Oh-Müller): The set Hameo(M,ω) is a topological group. It is a normal sub-

group of the identity component Sympeo0(M,ω) in Sympeo(M,ω). If H1(M,R) 6= 0, then

Hameo(M,ω) is strictly contained in Sympeo0(M,ω).

Remark: It is still unknown in general if the inclusion

Hameo(M,ω) ⊂ Sympeo0(M,ω)

is strict.

The group Hameo(M,ω) is the topological analogue of the group Ham(M,ω) of hamilto-

nian diffeomorphisms.
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The goal of this paper is to construct a subgroup of Sympeo0(M,ω), denoted

SSympeo(M,ω) and nicknamed the group of strong symplectic homeomorphisms, contain-

ing Hameo(M,ω), that is:

Hameo(M,ω) ⊂ SSympeo(M,ω) ⊂ Sympeo0(M,ω).

Like Hameo(M,ω), the group SSympeo(M,ω) is defined using a blend of the C0 topology

and the Hofer topology on the space Iso(M,ω) of symplectic isotopies of (M,ω).

We believe that SSympeo(M,ω) is “more right” than the group Sympeo(M,ω) for the C0

symplectic topology. In particular the flux homomorphism seems to exist on SSympeo(M,ω).

This will be the object of a future paper.

The results of this paper have been announced in [1].

The C0 counter part of the C∞ contact topology is been worked out in [5], [6].

2 The Symplectic Topology on Iso(M,ω)

Let Iso(M,ω) denote the space of symplectic isotopies of a closed symplectic manifold (M,ω).

Recall that a symplectic isotopy is a smooth map Φ : M × [0,1] → M such that for all t ∈ [0,1],

φt : M → M, x 7→Φ(x, t) is a symplectic diffeomorphism and φ0 = id.

The “Lie algebra” of Symp(M,ω) is the space symp(M,ω) of symplectic vector fields, i.e

the set of vector fields X such that iXω is a closed form.

Let φt be a symplectic isotopy, then

φ̇t(x)=
dφt

dt
(φ−1

t (x))

is a smooth family of symplectic vector fields.

By the theorem of existence and uniqueness of solutions of ODE’s,

Φ ∈ Iso(M,ω) 7→ φ̇t

is a 1-1 correspondence between Iso(M,ω) and the space C∞([0,1],symp(M,ω)) of smooth

families of symplectic vector fields. Hence any distance on C∞([0,1],symp(M,ω)) gives rise

to a distance on Iso(M,ω).

An intrinsic topology on the space of symplectic vector fields.

We define a norm ||.|| on symp(M,ω) as follows: first we fix a riemannian metric g (which

may be the one we used to define d0 above, or any other riemannian metric), and a basis B =

{h1, ..,hk } of harmonic 1-forms. For Hodge theory, we refer to [14].
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Recall that the space harm1 (M, g) of harmonic 1-forms is a finite dimensional vector

space over R and its dimension is the first Betti number of M.

On harm1 (M, g), we put the following “Euclidean” norm:

for H ∈ harm1 (M, g) , H =
∑

λihi , define:

|H |B :=
∑

|λi |.

This norm is equivalent to any other norm since harm1 (M, g) is a finite dimensional

vector space. Here we choose this one for convenience in the calculations and estimates to

come later.

Given X ∈ symp(M,ω), we consider the Hodge decomposition of iXω [14] : there is a

unique harmonic 1-form HX and a unique function uX such that

iXω=HX +duX

Recall that the function uX is given by the following formula: uX = δG(i(X )ω), where δ

is the codifferential and G is the Green operator (see [14]).

This defines a decompsition of X ∈ symp(M,ω) as : X = #HX + XuX
,where #HX is de-

fined by the equation i(#HX )ω = HX and XuX
is the hamiltonian vector field with uX as

hamiltonnian.

We now define a norm ||.|| on the the vector space symp(M,ω) by:

||X || = |HX |B + osc(uX ). (1)

It is easy to see that this is a norm. Let us just verify that ||X || = 0 implies that X = 0.

Indeed |HX |B = 0 implies that iXω = duX , and osc(uX ) = 0 implies that uX is a constant,

therefore duX = 0.

Remark: This norm is not invariant by Symp(M,ω). Hence it does not define a Finsler

metric on Symp(M,ω).

The norm ||.|| defined above depends of course on the riemannian metric g and the basis

B of harmonic 1-forms. However, we have the following:

Theorem 1: All the norms ||.|| defined by equation (1) using different riemannian metrics and

different basis of harmonic 1-forms are equivalent.

Hence the topology on the space symp(M,ω) of symplectic vector fields defined by the norm

(1) is intrinsic : it is independent of the choice of the riemannian metric g and of the basis B

of harmonic 1-forms.
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For each symplectic isotopy Φ= (φt), consider the Hodge decomposition of i(φ̇t)
ω

i(φ̇t)
ω=H

Φ

t +duΦ

t

where H
Φ

t is a harmonic 1-form.

We define the length l(Φ) of the isotopy Φ= (φt) by:

l(Φ)=

ˆ 1

0

(|H Φ

t |+ osc(uΦ

t ))dt=

ˆ 1

0

||φ̇t||dt.

One also writes
ˆ 1

0

||φ̇t||dt= |||φ̇t|||.

In the expressions above, we have written |H Φ

t | for |H Φ

t |B , where B is a fixed basis of

harm1 (M, g), for a fixed riemannian metric g.

We define the distance D0(Φ,Ψ) between two symplectic isotopies Φ = (φt) and Ψ= (ψt)

by:

D0(Φ,Ψ) = |||φ̇t − ψ̇t||| :=

ˆ 1

0

(|H Φ

t −H
Ψ

t |+ osc(uΦt −uΨt ))dt.

Denote by Φ
−1 = (φ−1

t ) and by Ψ
−1 = (ψ−1

t ) the Inverse isotopies.

Remarks:

1. The distance D0(Φ,Ψ) 6= l(Ψ−1
Φ) unless Ψ and Φ are hamiltonian isotopies ( see propo-

sition 1).

2. l(Φ) 6= l(Φ−1) unless Φ is hamiltonian. Indeed, H
Φ

−1

t =−H
Φ

t but uΦ

t is very differerent

from uΦ
−1

t . The formula of the difference uΦ

t −uΦ
−1

t follows from propositions 3, 4 and 5.

In view of the remarks above, we define a more “symmetrical” distance D by:

D(Φ,Ψ) = (D0(Φ,Ψ)+D0(Φ−1,Ψ−1))/2

Following [13], we define the symplectic distance on Iso(M,ω) by:

dsymp(Φ,Ψ)= d(Φ,Ψ)+D(Φ,Ψ).

Definition: The symplectic topology on Iso(M,ω) is the metric topology defined by the dis-

tance dsymp.

Theorem 1’: The symplectic topology on Iso(M,ω) is canonical: it is independent of all choices

involved in its definition.
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We may also define another distance D∞ on Iso(M,ω):

D∞
0 (Φ,Ψ)= supt∈[0,1](|H

Φ

t −H
Ψ

t |)+ supt∈[0,1] osc(uΦt −uΨt ))

D∞(Φ,Ψ) = (D∞
0 (Φ,Ψ)+D∞

0 (Φ−1,Ψ−1))/2

and

d∞
symp(Φ,Ψ)= d(Φ,Ψ)+D∞(Φ,Ψ)

Proposition 1: Let Φ= (φt),Ψ= (ψt) be two hamiltonian isotopies and σt = (ψt)
−1φt then

|||σ̇t||| = |||φ̇t − ψ̇t||| =

ˆ 1

0

osc(uΦ

t −uΨt )dt

Proof: This follows immediately from the equation

σ̇t = (ψt
−1)∗(φ̇t− ψ̇t),

which is a consequence of proposition 4 stated in section 4.

Corollary: The distance dsym reduces to the hamiltonian distance dham when Φ and Ψ are

hamiltonian isotopies.

The symplectic topology reduces to the “hamiltonian topology” of [13] on paths in

Ham(M,ω).

A Hofer-like metric on Symp(M,ω)0

For any φ ∈ Symp(M,ω), define:

e0(φ)= inf (l(Φ))

where the infimum is taken over all symplectic isotopies Φ from φ to the identity. The follow-

ing result was proved in [2].

Theorem: The map e : Symp(M,ω)0 →R∪ {∞} :

e(φ)=: (e0(φ)+ e0(φ−1))/2

is a metric on the identity component Symp(M,ω)0 in the group Symp(M,ω), i.e. it satisfies

(i) e(φ)≥ 0 and e(φ)= 0 iff φ is the identity.

(ii) e(φ)= e((φ)−1)

(iii) e(φ.ψ)≤ (eφ)+ e(ψ).

The restriction to Ham(M,ω) is bounded from above by the Hofer norm.
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Recall that the Hofer norm [10] of a hamiltonian diffeomorphism φ is

||φ||H = inf (l(ΦH ))

where the infimum is taken over all hamiltonian isotopies from φ to the identity.

The Hofer-like metric above depends on the choice of a riemannian metric g and a basis

B of harmonic 1-forms. Hence it is not “natural”. However, by theorem 1, all the metrics

constructed that way are equivalent; so they define a natural topology on Symp(M,ω)0.

3 Strong Symplectic Homeomorphisms

Definition: A homeomorphism h is said to be a strong symplectic homeomorphism if there

exists a continuous path λ : [0,1] → Homeo(M) such that λ(0) = id; λ(1) = h and a sequence

Φ
n = (φn

t ) of symplectic isotopies, which converges to λ in the C0 topology (induced by the norm

d) and such that Φn is Cauchy for the metric dsymp.

We will denote by SSympeo(M,ω) the set of all strong symplectic homeomorphisms. This

set is well defined independently of any riemannian metric or any basis of harmonic 1-forms.

Clearly, if M is simply connected, the set SSympeo(M,ω) coincides with the group

Hameo(M,ω).

We denote by SSympeo(M,ω)∞ the set defined like in SSympeo(M,ω) but replacing the

norm dsymp by the norm d∞
symp.

Let P Homeo(M) be the set of continuous paths γ : [0,1] → Homeo(M) such that γ(0) =

id, and let P
∞(Harm1(M) be the space of smooth paths of harmonic 1-forms.

We have the following maps:

A1 : Iso(M,ω) →P Homeo(M),Φ 7→Φ(t)

A2 : Iso(M,ω) →P
∞(Harm1(M),Φ 7→H

Φ

t

A3 : Iso(M,ω) → C∞(M× [0,1],R),Φ 7→ uΦ

Let Q be the image of the mapping A = A1 × A2 × A3 and Q the closure of Q inside

I (M,ω) =: P Homeo(M) ×P
∞(Harm1(M)×C∞(M × [0,1],R), with the symplectic topology,

which is the C0 topology on the first factor and the metric topology from D on the second and

third factor.

Then SSympeo(M,ω) is just the image of the evaluation map of the path at t= 1 of the

image of the projection of Q on the first factor. This defines a surjective map:

a : Q → SSympeo(M,ω)
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The symplectic topology on SSympeo(M,ω) is the quotient topology induced by a.

Our main results are :

Theorem 2: The set Q is a topological group.

Theorem 3: Let (M,ω) be a closed symplectic manifold. Then SSympeo(M,ω) is an arc-

wise connected topological group (with the sympectic topology), containing Hameo(M,ω) as

a normal subgroup, and contained in the path component of the identity Sympeo0(M,ω) of

Sympeo(M,ω).

If M is simply connected, SSympeo(M,ω) = Hameo(M,ω). Finally, the commutator sub-

group [SSympeo(M,ω),SSympeo(M,ω)] of SSympeo(M,ω) is contained in Hameo(M,ω).

Conjectures:

1. Let (M,ω) be a closed symplectic manifold, then [SSympeo(M,ω),SSympeo(M,ω)] =

Hameo(M,ω).

2. The inclusion SSympeo(M,ω) ⊂ Sympeo0(M,ω) is strict.

3. The results in theorem 3 hold for SSympeo(M,ω)∞ .

Conjecture 3 is supported by a result of Muller asserting that Hameo(M,ω) coincides with

Hameo(M,ω)∞ which is defined by replacing the L(1,∞) Hofer norm by the L∞ norm [12].

Measure preserving homeomorphisms

On a symplectic 2n dimensional manifold (M,ω), we consider the measure µω defined

by the Liouville volume ωn. Let Homeo
µω

0
(M) be the identity component in the group of

homeomorphisms preserving µω. We have:

Sympeo0(M,ω)⊂ Homeo
µω

0
(M).

Oh and Müller [13] have observed that Hameo(M,ω) is a sub-group of the kernel of Fathi’s

mass-flow homomorphism [8]. This is a homomorphism θ : Homeo
µω

0
(M) → H1(M,R)/Γ, where

Γ is some sub-group of H1(M,R). Fathi proved that if the dimension of M is bigger than 2,

then K erθ is a simple group. This leaves open the following question [13]:

Is Homeo
µω

0
(S2)= Sympeo0(S2,ω) a simple group?

But Sympeo0(S2,ω) contains Hameo(S2 ,ω) as a normal subgroup. The question is to

decide if the inclusion

Hameo(S2 ,ω)⊂ Sympeo0(S2,ω)
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is strict. Since SSympeo(S2 ,ω) = Hameo(S2,ω), our conjecture 2 implies that Homeo
µω

0
(S2)=

Sympeo0(S2,ω) is not a simple group, a conjecture of [13].

Questions

1. Is SSympeo(M,ω) a normal subgroup of Sympeo0(M,ω)?

2. Is [Sympeo0(M,ω),Sympeo0(M,ω)] contained in Hameo(M,ω)?

4 Proofs of the Results

4.1 Proof of theorem 1

If B and B
′ are two basis of harm1 (M, g), then elementary linear algebra shows that |.|B

and |.|B′ are equivalent. This implies that the corresponding norms on symp(M,ω) are also

equivalent.

Let us now start our construction with a riemannian metric g and a basis B = (h1, ..hk)

of harm1 (M, g). We saw that for any X ∈ symp(M,ω),

iXω=HX +duX

and we wrote HX =
∑

λihi .

Let g′ be another riemannian metric. The g′-Hodge decomposition of iXω is:

iXω=H
′
X +du′

X

where H
′
X

is g′-harmonic.

Consider the g′-Hodge decompositions of the members hi of the basis B i.e.

hi = h′
i +dvi

where h′
i

is g′ harmonic. B
′ = (h′

1, ..h′
k
) is a basis of harm1 (M, g′). Indeed suppose that

∑

r ih
′
i
= 0 . The 1-form

∑

r i hi = d(
∑

r i vi) is g-harmonic and exact :
∑

r ihi = d(
∑

r i vi). But an

exact harmonic form must be identically zero. Therefore all r i are zero since {hi} form a basis.

Hence {h′
i
} are linearly independent.

The 1-form

H
′′
X =:

∑

λih
′
i

is a g′- harmonic form representing the cohomology class of iXω. By uniqueness, H
′
X
=H

′′
X

.

Hence

|H
′
X |B′ =

∑

|λi | = |HX |B
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Furthermore H
′
X
=

∑

λi(hi −dvi)=HX +dv where v =−
∑

λivi. Hence

iXω=H
′
X +du′

X =HX +d(v+u′
X )

By uniqueness in the g-Hodge decomposition of iXω,

uX = v+u′
X .

Denote by ||X ||g′ , resp. ||X ||g , the norm of X using the riemannian metric g′ and the basis

B
′, resp. using the riemannian metric g and the basis B. Then:

||X ||g′ = |H
′
X |B′ + osc(u′

X )= |H
′
X |B′ + osc(uX −v)

≤ |H
′
X |B′ + osc(uX )+ osc(−v)

= |HX |B + osc(uX )+ osc(v) = ||X ||g + osc(v).

Let c= 2maxi |vi |, since v =−
∑

λivi, we get the following inequality:

osc(v) ≤ 2max(|v|) ≤ c|HX |B = c|H ′
X |B′

Therefore

||X ||g′ ≤ ||X ||g + osc(v) ≤ ||X ||g + c|HX |B ≤ ||X ||g + c(|HX |B + osc(uX ))= (c+1)||X ||g

Similarly,

||X ||g =|HX |B + osc(uX )= |HX |B + osc(u′
X +v)≤ |HX |B + osc(u′

X )+ osc(v)

=|H
′
X |B′ + osc(u′

X )+ osc(v) = ||X ||g′ + osc(v) ≤ ||X ||g′ + c|H ′
X |B′

≤ ||X ||g′ + c(|H ′
X |B′ + osc(u′

X )= (c+1)||X ||g′

Hence the metrics ||X ||g and ||X ||g are equivalent

For the purpose of the proof of the main theorem, we fix a riemannian metric g and a

basis B = (h1, ..,hk ) of harm1 (M, g). The norm of a harmonic 1-form H will be simply denoted

|H | and the norm of a symplectic vector field X will be simply denoted ||X ||.

4.2 Proof of theorem 3

We prove first that the set SSympeo(M,ω)subsetSympeo(M,ω) is closed under composition

and inverse maps.

Let hi ∈ SSympeo(M,ω) i = 1,2 and let λi be continuous paths in Homeo(M) with

λi(0) = id, λi(1) = hi and let Φ
n
i

be dsymp - Cauchy sequences of symplectic isotopies con-

verging C0 to λi . Then Φ
n
1

.(Φn
2

)−1 converges C0 to the path λ1(t)(λ2(t))−1. Here Φ
n
1

.(Φn
2

)−1(t) =

φn
1
(t).(φn

2
(t))−1.
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By definition of the distance dsymp, Φn is a dsymp - Cauchy sequence if and only if both

Φ
n and (Φn)−1 are D0 - Cauchy and d- Cauchy sequences.

Main Lemma: If Φ
n = (φn

t ) and Ψ
n
t = (ψn

t ) are dsymp - Cauchy sequences in Iso(M), so is

ρn
t =φn

t ψ
n
t .

The proof of the main lemma is very delicate; it will take most of the remaining part of

this paper. The estimates are much more involved than in the hamiltonian case, due to the

fact that the decomposition of a symplectic isotopy into a hamiltonian one and a harmonic one

does not behave nicely with respect to the product of isotopies.

It will be enough to prove that ρn
t is a D0 - Cauchy sequence. Indeed since (Φn)−1 and

(Ψn)−1 are D0 - Cauchy by assumption, the main lemma applied to their product implies that

their product is also D0 Cauchy.

Hence (Ψn)−1(Φn)−1 = (Φn
Ψ

n)−1 = (ρn
t )−1 is a D0 - Cauchy sequence. This will conclude

the proof that SSympeo(M,ω) is a group. We leave the details to the reader.

We will use the following estimate:

Proposition 2: There exists a constant E such that for any X ∈ symp(M,ω), and H ∈

harm1 (M, g)

|H (X )| =: supx∈M |H (x)(X (x))| ≤ E||X ||.|H |

Proof: Let (h1, ..,hr ) be the chosen basis for harmonic 1-forms and let E = maxi E i and E i =

supV (supx∈M |hi(x)(V (x))| where V runs over all symplectic vector fields V such that ||V || = 1.

Without loss of generality, we may suppose X 6= 0 and set V = X /||X ||. Let H =
∑

λihi .

Then H (X )= ||X ||
∑

λihi(V ). Hence

|H (X )| ≤ ||X ||
∑

|λi |supx(|hi(x)(V )(x)|)≤ ||X ||
∑

|λi |E = E||X ||.|H |.

We will also need the following standard facts:

Proposition 3: Let φ be a diffeomorphism, X a vector field and θ a differential form on a

smooth manifold M. Then

(φ−1)∗[iXφ∗θ] = iφ∗Xθ

Proposition 4: If φt,ψt are any isotopies, and if we denote by ρt = φtψt, and by φ
t
= (φ)−1

t

then

ρ̇t = φ̇t + (φt)∗ψ̇t
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and

φ̇
t
=−((φ)−1

t )∗(φ̇t)

Proposition 5: Let θt be a smooth family of closed 1-forms and φt an isotopy, then

φ∗
t θt −θt = dvt

where

vt =

ˆ t

0

(θt(φ̇s)◦φs)ds

Proof of the Main Lemma: If φt,ψt are symplectic isotopies, and if ρt =φtψt, propositions

3, 4 and 5 give:

i(ρ̇t)ω=H
Φ

t +H
Ψ

t +dK(Φ,Ψ) (I)

where K = K(Φ,Ψ) = uΦ

t + (uΨ

t )◦ (φt)
−1+vt(Φ,Ψ), and

vt(Φ,Ψ)=

ˆ t

0

(H Ψ

t (φ̇
s
)◦φ−1

s )ds. (II)

Let now φn
t ,ψn

t be Cauchy sequences of symplectic isotopies, and consider the sequence

ρn
t =φn

t ψ
n
t .

We have:

|||ρ̇n
t − ρ̇m

t ||| =

ˆ 1

0

|H
Φ

n

t −H
Φ

m

t +H
Ψ

n

t −H
Ψ

m

t |+ osc(K(Φn ,Ψn)−K(Φm,Ψm))dt

≤

ˆ 1

0

|H
Φ

n

t −H
Φ

m

t )|dt+

ˆ 1

0

|H
Ψ

n

t −H
Ψ

m

t )|dt

+

ˆ 1

0

osc(uΦ
n

t −uΦ
m

t )dt+

ˆ 1

0

osc(uΨ
n

t )◦ (φn
t )−1

−uΨ
m

t ◦ (φm
t )−1)dt

+

ˆ 1

0

osc(vt(Φ
n,Ψn)−vt(Φ

m,Ψm)dt

= |||φ̇n
t − φ̇m

t|||+

ˆ 1

0

|H
Ψ

n

t −H
Ψ

m

t )|dt+ A+B

where

A =

ˆ 1

0

osc(uΨ
n

t )◦ (φn
t )−1

−uΨ
m

t ◦ (φm
t )−1)dt

and

B =

ˆ 1

0

osc(vt(Φ
n,Ψn)−vt(Φ

m,Ψm)dt. (III)
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We have:

A ≤

ˆ 1

0

osc(uΨ
n

t )◦ (φn
t )−1

−uΨ
m

t ◦ (φn
t )−1)dt+

ˆ 1

0

osc(uΨ
m

t )◦ (φn
t )−1

− (uΨ
m

t )◦ (φm
t )−1)dt

=

ˆ 1

0

osc(uΨ
n

t −uΨ
m

t )dt+C

where

C =

ˆ 1

0

osc(uΨ
m

t ◦ (φn
t )−1

−uΨ
m

t ◦ (φm
t )−1)dt.

Hence

|||ρ̇n
t − ρ̇m

t ||| ≤ |||φ̇n
t − φ̇m

t |||

+

ˆ 1

0

|H
Ψ

n

t −H
Ψ

m

t )|dt+

ˆ t

0

osc(uΨ
n

t −uΨ
m

t )dt+B+C

= |||φ̇n
t − φ̇m

t |||+ |||ψ̇n
t − ψ̇m

t |||+B+C

We now show that C → 0 when m,n→∞.

Sub-Lemma 1 (Reparametrization Lemma [13]): ∀ǫ≥ 0,∃m0 such that

C =

ˆ 1

0

osc(uΨ
m

t ◦ (φn
t )−1

−uΨ
m

t ◦ (φm
t )−1)dt=: ||uΨ

m

t ◦ (φn
t )−1

−uΨ
m

t ◦ (φm
t )−1)|| ≤ ǫ

if m ≥ m0 and n large enough

Remark: This is the “reparametrization lemma” of Oh-Müller [13] (lemma 3.21. (2)). For the

convenience of the reader and further references, we include their proof.

Proof: For short, we write um for uΨ
m

t and µn
t for (φn

t )−1.

First, there exists m0 large such that ||um−um0
|| ≤ ǫ/3 for m ≥ m0, since (um) is a Cauchy

sequence for the distance d(un,um)=
´ 1

0
osc(un −um)dt.

Therefore

||um ◦µn
t −um ◦µm

t ))|| ≤ ||um ◦µn
t −um0

◦µn
t ))||+ ||um0

◦µn
t −um0

◦µm
t ))||+ ||um0

◦µm
t −um ◦µm

t ))||

= ||um −um0
||+ ||um0

◦µn
t −um0

◦µm
t ))||+ ||um0

−um||

≤ (2/3)ǫ+||um0
◦µn

t −um0
◦µm

t ))|.

By uniform continuity of um0
, there exists a positive δ such that if d(µm

t ,µn
t ) ≤ δ, then

max osc((um0
◦µn

t −um0
◦µm

t ))≤ ǫ/3. Hence ||um0
◦µn

t −um0
◦µm

t ))|| ≤ ǫ/3 for n,m large. Recall

that µn
t is a d- Cauchy sequence.
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To show that ρ̇n
t is a Cauchy sequence, the only thing which is left is to show that B → 0

when n,m →∞.

Let us denote vt(Φ
n,Ψn) by vn

t , H
Ψ

n

t by H
t
n or Hn and (φn

t )−1 by µn
t .

For a function on M, we consider the norm

| f | = supx∈M | f (x)|

We have:

|vn
t −vm

t | = |

ˆ t

0

(H t
n(µ̇n

s )◦µn
s −H

t
m(µ̇m

s )◦µm
s )ds|

≤

ˆ 1

0

|((H t
n −H

t
m)(µ̇n

s ))◦µn
s |ds

+

ˆ 1

0

|H
t
m(µ̇n

s − µ̇m
s ))◦µm

s |ds

+

ˆ 1

0

|H
t
m(µ̇n

s )◦µn
s −H

t
m(µ̇n

s )◦µm
s |ds

The last integral can be estimated as follows:

ˆ 1

0

|H
t
m(µ̇n

s )◦µn
s −H

t
m(µ̇n

s )◦µm
s |ds

≤

ˆ 1

0

|H
t
m(µ̇n

s )◦µn
s −H

t
m(µ̇

n0
s )◦µn

s |ds (1)

+

ˆ 1

0

|H
t
m(µ̇

n0
s )◦µn

s −H
t
m(µ̇

n0
s )◦µm

s |ds (2)

+

ˆ 1

0

|H
t
m(µ̇

n0
s )◦µm

s −H
t
m(µ̇n

s )◦µm
s |ds (3)

for some integer n0.

Proposition 2 gives E|Hm|D0((Φn)−1,(Φn0 )−1)≤ 2E|Hm|D((Φn),(Φn0 )−1) as an upper bound

for (1) and (3).

It also gives the following estimates:

ˆ 1

0

|((H t
n −H

t
m)(µ̇n

s ))◦µn
s |ds≤ E|H

t
n −H

t
m|

ˆ 1

0

||µ̇n
s )||ds

= E.|H t
n −H

t
m|.l((Φn)−1)
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and
ˆ 1

0

|(H t
m(µ̇n

s − µ̇m
s ))◦µm

s |ds≤ E.|H t
m|

ˆ 1

0

||(µ̇n
s − µ̇m

s )||ds

= E|H
t
m|D0((Φn)−1,(Φm))−1)≤ 2E|H

t
m|D(Φn,Φm).

Therefore, we get the following estimate:

|vn
t −vm

t | ≤ E.|H t
n −H

t
m|l(Φn)−1)+E|H

t
m|2(D(Φn,Φm)+2D(Φn,Φn0 ))+G

where

G =

ˆ 1

0

|H
t
m(µ̇

n0
s )◦µn

s −H
t
m(µ̇

n0
s )◦µm

s |ds

Since osc(vn
t −vm

t )≤ 2|vn
t −vm

t |, we see that

ˆ 1

0

osc(vn
t −vm

t )dt≤ 2E(l(Φn)−1)

ˆ 1

0

|H
t
n −H

t
m|dt

+E2(D(Φm,Φn)+2ED(Φn,Φn0 )

ˆ 1

0

|H
t
m|dt)+

ˆ 1

0

Gdt

We need the following facts:

Sub-Lemma 2 (Reparametrization Lemma): ∀ǫ≥ 0,∃n0 such that

L =

ˆ 1

0

Gdt=

ˆ 1

0

(

ˆ 1

0

|H
t
m(µ̇

n0
s )◦µn

s −H
t
m(µ̇

n0
s )◦µm

s |ds

)

dt≤ ǫ

for n≥ n0 and m sufficiently large.

Proposition 6: l((Φn))−1 and
´ 1

0
|H t

m|dt are bounded for every n,m.

We finish first the estimate for
´ 1

0 osc(vn
t −vm

t )dt using sub-lemma 2 and proposition 6.

Putting together all the information we gathered, we see that:

ˆ 1

0

osc(vn
t −vm

t )dt≤ 2E(l(Φn)−1)

ˆ 1

0

|H
t
n −H

t
m|dt

+E(2D(Φm,Φn))+2ED(Φn,Φn0 )(

ˆ 1

0

|H
t
m|dt)+L

≤ 2El((Φn)−1)D(Φn,Φm)+E(2D(Φm,Φn)+2ED(Φn,Φn0 )

ˆ 1

0

|H
t
m|dt+L

Therefore:
ˆ 1

0

osc(vn
t −vm

t )dt→ 0
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when n,m →∞, and n0 is chosen sufficiently large Now let n0 →∞ as well.. This finishes the

proof of the main lemma.

Proof of Sub-Lemma 2:

G =

ˆ 1

0

|H
t
m(µ̇

n0
s )◦µn

s −H
t
m(µ̇

n0
s )◦µm

s |ds

≤

ˆ 1

0

|H
t
m(µ̇

n0
s )◦µn

s −H
t
m0

(µ̇
n0
s )◦µn

s |ds

+

ˆ 1

0

|H
t
m0

(µ̇
n0
s )◦µn

s −H
t
m0

(µ̇
n0
s )◦µm

s |ds

+

ˆ 1

0

|H
t
m0

(µ̇
n0
s )◦µm

s −H
t
m(µ̇

n0
s )◦µm

s |ds

for some m0.

Exactly like in the proof of sub-lemma 1

G(t,n,m) ≤ 2E|H
t
m −H

t
m0

|.(l(Ψn0 )−1)+F

where

F =

ˆ 1

0

|H
t
m0

(µ̇
n0
s )◦µn

s −H
t
m0

(µ̇
n0
s )◦µm

s |ds

By uniform continuity of H
t
m0

(µ̇
n0
s ), F → 0 when n,m →∞ since µn

t is Cauchy.

By similar arguments as in the sub-lemma 1, G → 0 and hence L → 0 when m,n → ∞

and m0 →∞.

We have just proved that the subset SSymp(M,ω) of Symeo(M,ω) is closed under com-

position and inversion. This concludes the proof that SSympeo(M,ω) is a group.

The fact that it is arcwise connected in the ambiant topology of Homeo(M) is obvious

from the definition.

Hameo(M,ω) is a normal subgroup of SSympeo(M,ω) since it is normal in Sympeo(M,ω)

[13].

Let h, g ∈ SSympeo(M,ω) and let Φ
n,Ψn be symplectic isotopies which form Cauchy

sequences and C0 converge to h, g. By the main lemma the sequence Φ
n.Ψn.(Φn)−1(Φn)−1 is a

Cauchy sequence. It obviously converges C0 to the commutator hgh−1 g−1 ∈ SSympeo(M,ω).

It is a standard fact that Φn.Ψn.(Φn)−1(Ψn)−1 is a hamiltonian isotopy.

Indeed let φt and ψt be symplectic isotopies, and let σt =φtψtφ
−1
t ψ−1

t , then

σ̇t = X t +Yt +Zt +Ut
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with X t = φ̇t , Yt = (φt)∗ψ̇t, Zt =−(φtψtφ
−1
t )∗φ̇t, and Ut =−(σt)∗ψ̇t.

By proposition 5, i(X t+Zt)ω and i(Yt+Ut)ω are exact 1-forms. Hence σt is a hamiltonnian

isotopy.

By Proposition 1, the metric D coincides with the one for hamiltonian isotopies. Hence

Φ
n.Ψn.(Φn)−1(Ψn)−1 is a Cauchy sequence for dham. Therefore: [SSympeo(M,ω),

SSympeo(M,ω)] ⊂ Hameo(M,ω)]. This concludes the proof of theorem 3

Proof of Theorem 2: We now prove that SSympeo(M,ω), with the symplectic topology, is a

topological group.

In fact, we prove that Q ( see section 3) is a topological group. Recall that an element of

Q is a couple (γ,V = (H ,u)

where γ ∈ P Homeo(M), H ∈ L(1,∞)([0,1],harm1 (M,ω) , u ∈ L(0,1)([0,1]xM,R), and there ex-

ists a dsymp - Cauchy sequence of symplectic isotopies Φn(t) such that Φn(1) → γ , in the C0

topology and limn→∞ (Hn,un)= (H ,u). Here we wrote Hn for H
Φn and un for u

Φn
n .

The product and the inverse in Q are given by:

(γ,(H ,u)).(γ′,(H ′,u′))= (γγ′,(H +H
′,u+u′

◦γ+v))

(γ,(H ,u))−1
= (γ−1,(−H ,−(u◦γ+w))

where v is the limit of the Cauchy sequence vn(t) given by formula (II):

vn(t) =

ˆ 1

0

(H ′
n(σ̇n(s))◦σn(s))ds,

with σn(s) = (Φ′
n(s))−1. and w the limit of a similar sequence in which σn is replaced by Φn.

Part I. Let us first show that the inversion is continuous: let (γk,(Hk,uk)) be a sequence

converging to (γ,(H ,u)), For each k, there is a Cauchy sequence Φ
k
n of symplectic isotopies

such that Φk
n → γk as n→∞ in the C0 topology, H

k
n →Hk,uk

n → uk.

We need only to show that wk → w, that is (*)

l imn,k→∞

ˆ 1

0

|H
k
n (Φ̇k

n(s))◦Φk
n(s)−Hn(Φ̇n(s))◦Φn(s)|ds= 0.

We have the following inequalities :

||Φ̇
k
n − Φ̇n|| ≤ ||Φ̇

k
n −V k

||+ ||V k
−V ||+ ||V − Φ̇n||

and each term in the right hand of this inequality → 0 as n,k →∞.

Similarly,

|H
k
n −Hn| ≤ |H

k
n −H

k
|+ |H

k
−H |+ |H −Hn|
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and each term in the right hand of this inequality → 0 as n,k →∞.

Formula (*) follows from these inequalities and the techniques developped in this paper

(including the reparametrisation lemma). We leave the details to the reader.

Part II. Now we prove that the composition is continuous: let (γk,V k = (H k,uk)) and (γ′k,V ′k =

(H ′k,u′k)) converging to (γ,(H ,u)) and (γ′,(H ′,u′)).

By part I, if σ̇k
n →Uk and σ̇′k

n →U ′k,then by part I, Uk →U. Here we denoted by σk
n, and

σ′k
n respectively (Φk

n)−1,(Φ′k
n )−1.

We only need to prove:

1) uk ◦γk → u◦γ

2) vk → v.

The proof of (1) goes along the lines explained in this paper ( including the repara-

mareization lemma ) and the details are left tothe reader.

The proof of (2) follows from part I and uses the inequalities:

||σ̇k
n − ρ̇n|| ≤ ||σ̇k

n −Uk
||+ ||Uk

−U||+ ||U − ρ̇n||

Each of the three parts of the second member of the inequality → 0as n,k →∞. The details

are left tothe reader.

This concludes the proof of theorem 2.

Appendix: For the convenience of the reader, we give here the proofs of propositons 3, 4, and

5.

Proof of Proposition 3: Let θ be a p-form, X a vector field and φ a diffeomorphism. For any

x ∈ M and any vector fields Y1, ..Yp−1, we have:

(φ−1)∗[iXφ∗θ](x)(Y1, ...,Yp−1)= (iXφ∗θ)(φ−1(x))(Dxφ
−1(Y1(x), ...(Dxφ

−1(Yp−1(x))

= (φ∗θ)(φ−1(x))(Xφ−1(x),Dxφ
−1(Y1(x)), ...(Dxφ

−1(Yp−1(x))

= θ(φ(φ−1(x))(Dφ−1(x)φ(Xφ−1(x)),Dφ−1(x)φDxφ
−1(Y1(x)), ...Dφ−1(x)φDxφ

−1(Yp−1(x)

= θ(x)((φ∗X )x,Y1(x), ..Yp−1(x))

= (i(φ∗X )θ)(x)(Y1, ..,Yp−1)

since Dφ−1(x)φDxφ
−1 = Dx(φφ−1)= id.

Therefore (φ−1)∗[iXφ∗θ] = i(φ∗X ))θ

Proof of Proposition 4: This is just the chain rule. See [10] page 145.
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Proof of proposition 5: For a fixed t, we have

d

ds
φ∗

sθt =φ∗
s (Lφ̇s

θt),

where LX is the Lie derivative in the direction X . Since θ is closed, we have:

d

ds
φ∗

s θt =φ∗
s (diφ̇s

θt)= d(φ∗
s (θt(φ̇s))= d(θt(φ̇s)◦φs).

Hence for every u

φ∗
uθt −θt =

ˆ u

0

d

ds
φ∗

sθtds= d(

ˆ u

0

(θt(φ̇s)◦φs)ds)

Now set u= t.
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