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RESUMEN

Usando el teorema del punto fijo de Kranoselskii y el teorema de continuación de Mawhin

establecemos la existencia de soluciones periódicas de una ecuación diferencial neutral de

segundo orden con argumento de desviación multiple.

Key words and phrases: Periodic solution, Multiple deviating arguments, Neutral differen-
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1 Introduction

In this paper, we discuss the second-order neutral differential equation with multiple deviat-

ing arguments of the form

x
′′
(t)+ cx

′′
(t−τ)+a(t)x(t)+ g(t, x(t−τ1 (t)),x(t−τ2(t)) · · · ,x(t−τn(t)))= p(t), (1.1)

where |c| < 1, τ is a constant, τi(t)(i = 1,2, · · · ,n), a(t) and p(t) are real continuous functions

defined on R with positive period T and g(t,x1,x2, · · · ,xn) ∈ C(R×R×R× ·· · ×R,R) and is

T−periodic in t.

Periodic solutions for differential equations were studied in [2-4, 6-10, 12, 15] and we

note that most of the results in the literatue concern delay problems. There are only a few

papers[1, 5, 11, 13, 14] which discuss neutral problems.

For the sake of completeness, we first state Kranoselskii fixed point theorem and Mawhin’s

continuation theorem [3].

Theorem A (Kranoselskii). Suppose that Ω is a Banach space and X is a bounded, convex

and closed subset of Ω. Let U,S : X →Ω satisfy the following conditions:

(1) Ux+Sy ∈ X for any x, y ∈ X ;

(2) U is a contraction mapping;

(3) S is completely continuous.

Then U +S has a fixed point in X .

Let X and Y be two Banach space and L : DomL ⊂ X −→ Y is a linear mapping and

N : X −→ Y is a continuous mapping. The mapping L will be called a Fredholm mapping of

index zero if dimK erL = codimImL < +∞, and ImL is closed in Y. If L is a Fredholm map-

ping of index zero, there exist continuous projectors P : X −→ X and Q : Y −→ Y such that
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ImP = K erL and ImL = K erQ = Im(I −Q). It follows that L|DomL∩K erP : (I −P)X −→ ImL

has an inverse which will be denoted by KP . If Ω is an open and bounded subset of X, the

mapping N will be called L−compact on Ω if QN(Ω) is bounded and KP (I−Q)N(Ω) is com-

pact. Since ImQ is isomorphic to K erL, there exists an isomorphism J : ImQ −→ K erL.

Theorem B (Mawhin’s continuation theorem[3]). Let L be a Fredholm mapping of in-

dex zero, and let N be L−compact on Ω. Suppose

(1) for each λ ∈ (0,1) and x ∈ ∂Ω,Lx 6= λNx and

(2) for each x ∈ ∂Ω∩K er(L),QNx 6= 0 and deg(QN,Ω∩K er(L),0) 6= 0.

Then the equation Lx = Nx has at least one solution in Ω∩D(L).

2 Main Results

Now we make the following assumption on a(t):

(H1) ( π
T

)2 > M =max t∈[0,T]a(t) ≥ a(t) ≥ m = mint∈[0,T] a(t) > 0.

Our main results are the following theorems.

Theorem 2.1 Suppose (H1) holds and also assume there exists a constant K1 > 0 such that

(H2)

‖g‖0 ≤ m−3|c|M−‖p‖0 ,

where ‖g‖0 =max {t∈[0,T],|x1|≤K1 ,··· ,|xn |≤K1}|g(t,x1,x2, · · · ,xn)| and ‖p‖0 =max t∈[0,T]|p(t)|.
Then Eq.(1.1) possesses a nontrivial T−periodic solution.

Theorem 2.2 Suppose (H1) holds and also assume

(H3)

|g(t,x1,x2, · · · ,xn)| ≤ γ
∑n

i=1
|xi |.

Then Eq.(1.1) has at least one T−periodic solution as 0< γ< 1
n

[(1−|c|)m−|c|M].

In order to prove the main theorems we need some preliminaries. Set

X := {x|x ∈C2(R,R),x(t+T) = x(t),∀t ∈ R}

and x(0)(t) = x(t) and define the norm on X as follows

||x|| = max t∈[0,T]|x(t)|+max t∈[0,T]|x
′
(t)|+max t∈[0,T]|x

′′
(t)|.
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Remark 2.3 If x ∈ X , then it follows that x(i)(0)= x(i)(T)(i =0,1,2).

In order to prove our main results, we need the following Lemma [10].

Lemma 2.4 ([10]). Suppose that M is a positive number and satisfies 0 < M < ( π
T

)2. Then

for any function ϕ defined in [0,T], the following equation





x
′′
(t)+Mx(t) =ϕ(t),

x(0)= x(T),x
′
(0)= x

′
(T)

has a unique solution

x(t) =
´ T

0
G(t,s)ϕ(s)ds,

where

G(t,s)





w(t− s), (k−1)T ≤ s≤ t≤ kT

w(T + t− s), (k−1)T ≤ t≤ s≤ kT(k ∈N),

w(t)= cosα(t− T
2

)

2αsin αT
2

and α=
p

M. Here

max t∈[0,T]

´ T

0
|G(t,s)|ds= 1

M
.

Proof of Theorem 2.1: For ∀x ∈ X , define the operators U : X −→ X and S : X −→ X respec-

tively by

(Ux)(t)=−cx(t−τ) (2.1)

and

(Sx)(t) = cx(t−τ)+
´ T

0
G(t,s)[−cx

′′
(s−τ)(M−a(s))x(s)+ p(s)

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]ds.

(2.2)

It is clear that a fixed point of U +S is a T−periodic solution of Eq.(1.1).

We are going to demonstrate that U and S satisfy the conditions of Theorem A.

Let x, y ∈ X and |x| ≤ K1, |y| ≤ K1(here K1 is as in the statement of Theorem 2.1). Now we

prove that |Ux+Sy| ≤ K1 holds.

First, we have the following equality:

´ T

0
G(t,s)x

′′
(s−τ)ds= M

´ T

0
G(t,s)x(s−τ)ds. (2.3)
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In fact, we have from Lemma 2.4

´ T

0
G(t,s)x

′′
(s−τ)ds =

´ t

0

cosα(t−s− T
2

)

2αsin Tα
2

d[x
′
(s−τ)]+

´ T

t

cosα(t−s+ T
2

)

2αsin Tα
2

d[x
′
(s−τ)]

= cosα(t−s− T
2

)

2αsin Tα
2

x
′
(s−τ)|t

0
−α
´ t

0

sinα(t−s− T
2

)

2αsin Tα
2

d[x(s−τ)]

+ cosα(t−s+ T
2

)

2αsin Tα
2

x
′
(s−τ)|Tt −α

´ T

t

sinα(t−s+ T
2

)

2αsin Tα
2

d[x(s−τ)]

=−α[
sinα(t−s− T

2
)

2αsin Tα
2

x(s−τ)|t
0
+ sinα(t−s+ T

2
)

2αsin Tα
2

x(s−τ)|Tt ]

+α2[
´ t

0

cosα(t−s− T
2

)

2αsin Tα
2

x(s−τ)ds+
´ T

t

cosα(t−s+ T
2

)

2αsin Tα
2

x(s−τ)ds]

= M
´ T

0
G(t,s)x(s−τ)ds,

(2.4)

so (2.3) holds.

From (H1), (H2) and (2.1)-(2.3), we have

|(U y)(t)+ (Sx)(t)| ≤ |(U y)(t)|+ |(Sx)(t)|

≤ 2|c|K1 +|
´ T

0
G(t,s)(M−a(s))x(s)− cx

′′
(s−τ)+ p(s)

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]ds|+ |c|K1

≤ 2|c|K1 + M−m
M

K1 + ‖g‖0

M
+|c|M||

´ T

0 G(t,s)x(s−τ)ds|

≤ 3|c|K1 + M−m
M

K1 + ‖g‖0+‖p‖0

M

≤ K1, x, y ∈ X ,

(2.5)

where ‖g‖0 and ‖p‖0 are given in (H2).

Set

K2 = ρ0[(M−m)K1+|c|K3+‖g‖0+‖p‖0]

1−2|c| , (2.6)

where ρ0 = T

2sin Tα
2

,

K3 = MK1+‖g‖0+‖p‖0

1−|c| (2.7)

and

G = {x ∈ X : |x(t)| ≤ K1, |x′
(t)| ≤ K2, |x′′

(t)| ≤ K3}.

It is clear that G is a bounded, convex and closed subset of X .

(1) For ∀x, y ∈G, we will show that

| d
dt

[(U y)(t)+ (Sx)(t)]| ≤ K2 (2.8)



158 Chengjun Guo, Donal O’Regan & Ravi P. Agarwal CUBO
12, 3 (2010)

and

| d2[(U y)(t)+(Sx)(t)]

dt2 | ≤ K3. (2.9)

From (2.1) we have

d
dt

[(Ux)(t)]=−cx
′
(t−τ) (2.10)

and
d2[(U x)(t)]

dt2 =−cx
′′
(t−τ). (2.11)

Also from Lemma 2.4 and (2.2) we have

d
dt

[(Sx)(t)] =
´ T

0
G t(t,s)[(M−a(s))x(s)− cx

′′
(s−τ)+ p(s)

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]ds+ cx
′′
(t−τ),

(2.12)

where

G t(t,s)





w̃(t− s), (k−1)T ≤ s≤ t≤ kT

w̃(T + t− s), (k−1)T ≤ t≤ s≤ kT(k ∈ N)

and

w̃(t) = sinα(t− T
2

)

2sin αT
2

,

since

d
dt

[(Sx)(t)] = {
´ T

0
G t(t,s)[(M−a(s))x(s)− cx

′′
(s−τ)+ p(s)

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]ds+ cx
′′
(t−τ)}

′

= {
´ t

0

cosα(t−s− T
2

)

2αsin Tα
2

[(M−a(s))x(s)− cx
′′
(s−τ)+ p(s)

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]ds+ cx
′′
(t−τ)}

′

+{
´ s

t

cosα(t−s+ T
2

)

2αsin Tα
2

[(M−a(s))x(s)− cx
′′
(s−τ)+ p(s)

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]ds+ cx
′′
(t−τ)}

′

=α{
´ t

0

cosα(t−s− T
2

)

2αsin Tα
2

[(M−a(s))x(s)− cx
′′
(s−τ)+ p(s)

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]ds+ cx
′′
(t−τ)}

+α{
´ s

t

cosα(t−s+ T
2

)

2αsin Tα
2

[(M−a(s))x(s)− cx
′′
(s−τ)+ p(s)

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]ds+ cx
′′
(t−τ)}.
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Note

´ T

0
|G t(t,s|ds≤ T

2sin αT
2

= ρ0

and

d2[(Sx)(t)]

dt2 = p(t)−a(t)x(t)− g(t, x(t−τ1 (t)),x(t−τ2(t)) · · · ,x(t−τn(t))). (2.13)

From (2.6),(2.7) and (2.10)-(2.13), we have

| d
dt

[(U y)(t)+ (Sx)(t)]| ≤ | d
dt

[(U y)(t)]|+ | d
dt

[(Sx)(t)]|

≤ 2|c|K2 +ρ0[(M−m)K1 +|c|K3 +‖g‖0 +‖p‖0]

≤ K2

(2.14)

and

| d2[(U y)(t)+(Sx)(t)]

dt2 | = |(M−a(t))x(t)− cy
′′
(t−τ)+ p(t)

−g(t,x(t−τ1 (t)),x(t−τ2(t)) · · · ,x(t−τn(t)))|

≤ (M−m)K1 +|c|K3 +‖g‖0 +‖p‖0

≤ K3.

(2.15)

From (2.5), (2.14) and (2.15), we have Ux+Sy ∈G for ∀x, y ∈G.

(2) U is a contraction mapping.

Let x, y ∈G and we from (2.1) that

‖Ux−U y‖ = max t∈[0,T]|cx(t−τ)− cy(t−τ)|+max t∈[0,T]|cx
′
(t−τ)− cy

′
(t−τ)|

+max t∈[0,T]|cx
′′
(t−τ)− cy

′′
(t−τ)|

= |c|[max t∈[0,T]|x(t−τ)− y(t−τ)|+max t∈[0,T]|x
′
(t−τ)− y

′
(t−τ)|

+max t∈[0,T]|x
′′
(t−τ)− y

′′
(t−τ)|]

= |c|‖x− y‖.

Since |c| < 1, U is a contraction mapping.

(3) S is completely continuous.

We can obtain the continuity of S from the continuity of a(t), p(t) and g(t,x(t−τ1(t)),x(t−
τ2(t)) · · · ,x(t− τn(t))) for t ∈ [0,T],x ∈ G. In fact, suppose that xk ∈ G and ‖xk − s‖ → 0 as
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k →+∞. Since G is closed convex subset of X , we have x ∈G. Then

|Sxk −Sx| = c[xk(t−τ)− x(t−τ)]+ c[xk (t−τ)− x(t−τ)]

+
´ T

0
G(t,s){(M−a(s))(xk (s)− x(s))− c[x

′′

k
(s−τ)− x

′′
(s−τ)]

−[g(s,xk(s−τ1(s)),xk(s−τ2(s)) · · · ,xk(s−τn(s)))

−g(s,x(s−τ1 (s)),x(s−τ2(s)) · · · ,x(s−τn(s)))]}ds.

(2.16)

Using the Lebesgue dominated convergence theorem, we have from (2.12), (2.13) and (2.16)

that

limk→+∞ ‖Sxk −Sx‖ = 0.

Then S is continuous.

Next, we prove that Sx is relatively compact. It suffices to show that the family of

functions {Sx : x ∈ G} is uniformly bounded and equicontinuous on [0,T]. From (2.2), (2.12)

and(2.13), it is easy to see that {Sx : x ∈G} is uniformly bounded and equicontinuity. Since S

is continuous and is relatively compact, S is completely continuous. By Theorem A (Kranosel-

skii fixed point theorem), we have a fixed point x of U +S. That means that x is a T−periodic

solution of Eq.(1.1).

In order to prove Theorem 2.2, we need some preliminaries. Set

Z := {x|x ∈ C1(R,R),x(t+T) = x(t),∀t ∈ R}

and x(0)(t)= x(t) and define the norm on Z as follows

||x|| =max {max t∈[0,T]|x(t)|,max t∈[0,T]|x
′
(t)|},

and set

Y := {y|y ∈C(R,R), y(t+T) = y(t),∀t ∈ R}.

We define the norm on Y as follow ||y||0 =max t∈[0,T]|y(t)|. Thus both (Z, || · ||) and (Y , || · ||0) are

Banach spaces.

Remark 2.5 If x ∈ Z, then it follows that x(i)(0)= x(i)(T)(i =0,1).

Define the operators L : Z −→Y and N : Z −→Y respectively by

Lx(t) = x
′′
(t), t ∈ R, (2.17)
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and

Nx(t) =−cx
′′
(t−τ)−a(t)x(t)+ p(t)

−g(t,x(t−τ1 (t)),x(t−τ2(t)), · · · ,x(t−τn(t))), t ∈R.

(2.18)

Clearly,

K erL = {x ∈ Z : x(t) = c ∈ R} (2.19)

and

ImL = {y ∈Y :
´ T

0
y(t)dt= 0} (2.20)

is closed in Y . Thus L is a Fredholm mapping of index zero.

Let us define P : Z → Z and Q : Y →Y /Im(L) respectively by

Px(t)= 1
T

´ T

0
x(t)dt= x(0), t ∈R, (2.21)

for x = x(t) ∈ X and

Q y(t) = 1
T

´ T

0
y(t)dt, t ∈R (2.22)

for y = y(t) ∈ Y . It is easy to see that ImP = K erL and ImL = K erQ = Im(I −Q). It follows

that L|DomL∩K erP : (I−P)Z −→ ImL has an inverse which will be denoted by KP .

Let Ω be an open and bounded subset of Z, we can easily see that QN(Ω) is bounded and

KP (I−Q)N(Ω) is compact. Thus the mapping N is L−compact on Ω. That is, we have the

following result.

Lemma 2.6. Let L, N, P and Q be defined by (2.17), (2.18), (2.21) and (2.22) respectively.

Then L is a Fredholm mapping of index zero and N is L−compact on Ω, where Ω is any open

and bounded subset of Z.

In order to prove Theorem 2.2, we need the following Lemma [12].

Lemma 2.7 ([12 and Remark 2.5]). Let x(t) ∈ C(n)(R,R)∩CT . Then

||x(i)||0 ≤ 1
2

´ T

0
|x(i+1)(s)|ds, i = 1,2, · · · ,n−1,

where n≥ 2 and CT := {x|x ∈ C(R,R),x(t+T)= x(t),∀t ∈ R}.

Now, we consider the following auxiliary equation

x
′′
(t) +cλx

′′
(t−τ)+a(t)λx(t) =λp(t)

−λg(t,x(t−τ1 (t)),x(t−τ2(t)), · · · ,x(t−τn(t))),

(2.23)

where 0<λ< 1.

Lemma 2.8. Suppose that conditions of Theorem 2.2 are satisfied. If x(t) is a T−periodic
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solution of Eq.(2.23), then there are positive constants D i(i = 0,1), which are independent of

λ, such that

||x(i)||0 ≤ D i , t ∈ [0,T], i = 0,1. (2.24)

Proof: Suppose that x(t) is a T−periodic solution of (2.23). We have from (H3) and (2.23) that

|x′′
(t)| ≤max t∈[0,T]|c||x

′′
(t)|+M||x||0 +||p||0 +γn||x||0. (2.25)

From (2.25), we have

max t∈[0,T]|x
′′
(t)| ≤ 1

1−|c| [(M+γn)||x||0 +||p||0]. (2.26)

On the other hand, from Lemma 2.4 and (2.23), we get

x(t) =
´ T

0
G̃(t,s)λ[(M−a(s))x(s)+ p(s)− cx

′′
(s−τ)

−g(s,x(s−τ1 (s)),x(s−τ2(s)), · · · ,x(s−τn(s))]ds,

(2.27)

where

G̃(t,s)





w̃(t− s), (k−1)T ≤ s≤ t≤ kT

w̃(T + t− s), (k−1)T ≤ t≤ s≤ kT(k ∈N),

(2.28)

w̃(t) = cosα1(t− T
2

)

2α1 sin
α1T

2

, (2.29)

α1 =
p
λM and

max t∈[0,T]

´ T

0
|G̃(t,s)|ds= 1

λM
. (2.30)

From (H3), (2.27) and (2.30), we have

‖x‖0 = max t∈[0,T]|
´ T

0 G̃(t,s)λ[(M−a(s))x(s)+ p(s)− cx
′′
(s−τ)

−g(s,x(s−τ1 (s)),x(s−τ2(s)), · · · ,x(s−τn(s))]ds|

≤ 1
M

[(M−m)‖x‖0 +‖p‖0 +|c|max t∈[0,T]|x
′′
(t)|+γn‖x‖0].

(2.31)

From (2.31), we have

‖x‖0 ≤
|c|max t∈[0,T]|x

′′
(t)|+‖p‖0

m−γn
. (2.32)

Thus combining (2.26) and (2.32), we see that

max t∈[0,T]|x
′′
(t)| ≤ M+m

m(1−|c|)−M|c|−γn
= ξ (2.33)

and

‖x‖0 ≤ |c|ξ+‖p‖0

m−γn
= D0. (2.34)
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Finally from Lemma 2.4, (2.33) and (2.34), we get

||x′ ||0 ≤ D1. (2.35)

The proof of Lemma 2.8 is complete.

Proof of Theorem 2.2: Suppose that x(t) is a T-periodic solution of Eq.(2.23). By Lemma

2.8, there exist positive constants D i(i = 0,1) which are independent of λ such that (2.24) is

true. Consider any positive constant D > max 0≤i≤1{D i}+‖p‖0.

Set

Ω := {x ∈ Z : ||x|| < D}.

We know that L is a Fredholm mapping of index zero and N is L-compact on Ω(see [3]).

Recall

K er(L) = {x ∈ Z : x(t) = c ∈ R}

and the norm on Z is

||x|| =max {max t∈[0,T]|x(t)|,max t∈[0,T]|x
′
(t)|}.

Then we have

x = D or x =−D for x ∈ ∂Ω∩K er(L). (2.36)

From (H3) and (2.36), we have(if D is chosen large enough)

a(t)D + g(t,D ,D, · · · ,D)−‖p‖0 > 0 for t ∈ [0,T] (2.37)

and

x
′
(t) = 0 and x

′′
(t) = 0, for t ∈ [0,T]. (2.38)

Finally from (2.18), (2.22), (2.37) and (2.38), we have

(QNx) = 1
T

´ T

0
[−cx

′′
(t−τ)−a(t)x(t)+ p(t)]dt

−g(t,x(t−τ1 (t)),x(t−τ2(t)), · · · ,x(t−τn(t)))]dt

6= 0, ∀x ∈ ∂Ω∩K er(L).

Then, for any x ∈ K erL∩∂Ω and η ∈ [0,1], we have

xH(x,η) =−ηx2 − x
T

(1−η)
´ T

0
[cx

′′
(t−τ)+a(t)x(t)− p(t)

+g(t,x(t−τ1(t)),x(t−τ2(t)), · · · ,x(t−τn(t)))dt]dt

6= 0.
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Thus

deg{QN, Ω∩K er(L),0}

= deg{− 1
T

´ T

0
[cx

′′
(t−τ)+a(t)x(t)− p(t)

+g(t,x(t−τ1 (t)),x(t−τ2(t)), · · · ,x(t−τn(t)))]dt,Ω∩K er(L),0}

= deg{−x,Ω∩K er(L),0}

6= 0.

From Lemma 2.8 for any x ∈ ∂Ω∩Dom(L) and λ ∈ (0,1) we have Lx 6= λNx. By Theorem B

(Mawhin’s continuation theorem), the equation Lx = Nx has at least a solution in Dom(L)∩Ω,

so there exists a T-periodic solution of Eq.(1.1). The proof is complete.
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