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ABSTRACT

The objective of this paper is to report on recent progress on Strichartz estimates for the
Schrödinger equation and to present the state-of-the-art. These estimates have been ob-
tained in Lebesgue spaces, Sobolev spaces and, recently, in Wiener amalgam and modu-
lation spaces. We present and compare the different technicalities. Then, we illustrate
applications to well-posedness.

RESUMEN

El objetivo de este trabajo es reportar los progresos recientes sobre estimativas de Strichartz
para la ecuación de Schrödinger y presentar el estado de arte. Estas estimativas han sido
obtenidas en espacios de Lebesgue, espacios de Sobolev, y recientemente, en espacios de
Wiener amalgamados y de modulación. Presentamos y comparamos los diferentes aspectos
técnicos envueltos. Ilustramos los resultados con aplicaciones a buena colocación.
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1 Introduction

In this note, we focus on the Cauchy problem for Schrödinger equations. To begin with, the

Cauchy problem for the free Schrödinger equation reads as follows
{

i∂tu+∆u= 0

u(0,x) = u0(x),
(1)

with t ∈ R and x ∈ R
d, d ≥ 1. In terms of the Fourier transform, we can write the solution as

follows

u(t,x) =
(
eit∆u0

)
(x) :=

ˆ

Rd

e2πix·ξe−4π2 it|ξ|2 û0(ξ)dξ, (2)

where the Fourier multiplier eit∆ is known as Schrödinger propagator. The corresponding

inhomogeneous equation is {
i∂tu+∆u= F(t,x)

u(0,x) = u0(x),
(3)

with t> 0 and x ∈R
d, d ≥ 1. By Duhamel’s principle and (2), the integral version of (3) has the

form

u(t,x) = eit∆u0(·)+

ˆ t

0
ei(t−s)∆F(s, ·)ds. (4)

The study of space-time integrability properties of the solution to (2) and (4) has been

pursued by many authors in the last thirty years. The matter of fact is given by the Strichartz

estimates, that have become a fundamental and amazing tool for the study of PDE’s. They

have been studied in the framework of different function/distribution spaces, like Lebesgue,

Sobolev, Wiener amalgam and modulation spaces and have found applications to well-posed-

ness and scattering theory for nonlinear Schrödinger equations [3, 8, 9, 11, 19, 24, 26, 36, 38,

39, 49].

In this paper we exhibit these problems. First, in Section 3, we introduce the disper-

sive estimates and show how can be carried out for these different spaces. The classical Lp

dispersive estimates read as follows

‖eit∆u0‖Lr
x
. |t|−d( 1

2−
1
r

)
‖u0‖Lr′

x
, 2≤ r ≤∞,

1

r
+

1

r′
= 1.

Section 4 is devoted to the study of Strichartz estimates. The nature of these estimates

is highlighted and the results among different kinds of spaces are compared with each others.

Historically, the Lp spaces [19, 24, 26, 39, 49] were the first to be looked at. The celebrated

homogeneous Strichartz estimates for the solution u(t,x) =
(
eit∆u0

)
(x) read

‖eit∆u0‖L
q
t Lr

x
. ‖u0‖L2

x
, (5)



CUBO
12, 3 (2010)

Strichartz Estimates ... 215

for q ≥ 2, r ≥ 2, with 2/q+d/r = d/2, (q,r,d) 6= (2,∞,2), i.e., for (q,r) Schrödinger admissible

(see Definition 4.1). Here, as usual, we set

‖F‖L
q
t Lr

x
=

(ˆ
‖F(t, ·)‖q

Lr
x

dt

)1/q

.

In the sequel, the estimates for Sobolev spaces were essentially derived from the Lebesgue

ones. Recently, several authors ([1, 2, 6, 7, 8, 44, 45]) have turned their attention to fixed

time and space-time estimates for the Schrödinger propagator between spaces widely used in

time-frequency analysis, known as Wiener amalgam spaces and modulation spaces. The first

appearance of amalgam spaces can be traced to Wiener in his development of the theory of

generalized harmonic analysis [46, 47, 48] (see [22] for more details). In this setting, Cordero

and Nicola [6, 7, 8] have discovered that the pattern to obtain dispersive and Strichartz esti-

mates is similar to that of Lebesgue spaces. The main idea is to show that the fundamental

solution K t (see (20) below) lies in the Wiener amalgam space W(Lp,Lq) (see Section 2 for

the definition) which generalizes the classical Lp space and, consequently, provides a differ-

ent information between the local and global behavior of the solutions. Beside the similar

arguments, we point out also some differences, mainly in proving the sharpness of disper-

sive estimates and Strichartz estimates. Indeed, dilation arguments in Wiener amalgam and

modulation spaces don’t work as in the classical Lp spaces.

Modulation spaces were introduced by Feitchinger in 1980 and then were also redefined

by Wang [44] using isometric decompositions. The two different definitions allow to look at the

problem in two different manners. As a result, in [45], a beautiful use of interpolation theory

on modulation spaces allows to combine the estimates obtained by means of the classical

definition in [1, 2] and the isometric definition in [44, 45], to obtain more general fixed time

estimates in this framework. In order to control the growth of singularity at t= 0, we usually

have the restriction d(1/2−1/p) É 1; cf. [5, 26]. By using the isometric decomposition in the

frequency space, as in [44, 45], one can remove the singularity at t= 0 and preserve the decay

at t=∞ in certain modulation spaces.

The Strichartz estimates can be applied, e.g., to the well-posedness of non-linear

Schrödinger equations or of linear Schrödinger equations with time-dependent potentials.

We shall show examples in the last Section 5.

Notation. We define |x|2 = x·x, for x ∈R
d, where x· y= xy is the inner product on R

d. The

space of smooth functions with compact support is denoted by C
∞
0 (Rd), the Schwartz class by

S (Rd), the space of tempered distributions by S
′(Rd). The Fourier transform is normalized to

be f̂ (ξ) = F f (ξ) =
´

f (t)e−2πitξdt. Translation and modulation operators (time and frequency

shifts) are defined, respectively, by

Tx f (t) = f (t− x) and Mξ f (t) = e2πiξt f (t).
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We have the formulas (Tx f )̂ = M−x f̂ , (Mξ f )̂ = Tξ f̂ , and MξTx = e2πixξTxMξ. The notation

A . B means A ≤ cB for a suitable constant c > 0, whereas A ≍ B means c−1 A ≤ B ≤ cA, for

some c ≥ 1. The symbol B1 ,→ B2 denotes the continuous embedding of the linear space B1

into B2.

2 Function Spaces and Preliminaries

In this section we present the function/distribution spaces we work with, and the properties

used in our study.

2.1 Lorentz spaces

([34, 35]). We recall that the Lorentz space Lp,q on R
d is defined as the space of tempered

distributions f such that

‖ f ‖∗pq =

(
q

p

ˆ ∞

0
[t1/p f ∗(t)]q dt

t

)1/q

<∞,

when 1≤ p<∞, 1≤ q <∞, and

‖ f ‖∗pq = sup
t>0

t1/p f ∗(t) <∞

when 1 ≤ p ≤∞, q =∞. Here, as usual, λ(s) = |{| f | > s}| denotes the distribution function of f

and f ∗(t) = inf{s : λ(s) ≤ t}.

One has Lp,q1 ,→ Lp,q2 if q1 ≤ q2, and Lp,p = Lp. Moreover, for 1 < p <∞ and 1 ≤ q ≤∞,

Lp,q is a normed space and its norm ‖ ·‖Lp,q is equivalent to the above quasi-norm ‖ ·‖∗pq.

The function |x|−α lives in Ld/α,∞, 0 <α< d but observe that this function doesn’t live in

any Lp, 1 É p É∞. We now recall the following classical Hardy-Littlewood-Sobolev fractional

integration theorem (see e.g. [33, Theorem 1, pag 119] and [34]), which will be used in the

sequel

Proposition 2.1. Let d Ê 1, 0<α< d and 1 < p< q <∞ such that

1

q
=

1

p
−

d−α

d
. (6)

Then the following estimate

|| | · |
−α

∗ f ||q . || f ||p (7)

holds for all f ∈ Lp(Rd).
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Potential and Sobolev spaces. For s ∈ R, we define the Fourier multipliers 〈∆〉s f =

F
−1((1+ | · |2)s/2 f̂ ), and |∆|s f = F

−1(| · |s f̂ ). Then, for 1 ≤ p ≤ ∞, the potential space [4] is

defined by

W
p
s = {f ∈S

′, 〈∆〉s f ∈ Lp}

with norm ‖ f ‖W
p
s
= ‖〈∆〉s f ‖Lp . The homogeneous potential space [4] is defined by

Ẇ
p
s = {f ∈S

′, |〈∆〉|s f ∈ Lp}

with norm ‖ f ‖Ẇ
p
s
= ‖|∆|s f ‖Lp .

For p = 2 the previous spaces are called Sobolev spaces H
p
s and homogeneous Sobolev

spaces Ḣ
p
s , respectively.

2.2 Wiener amalgam spaces

([12, 14, 15, 16, 17]). Let g ∈C
∞
0 be a test function that satisfies ‖g‖L2 = 1. We will refer to g

as a window function. For 1≤ p≤∞, recall the F Lp spaces, defined by

F Lp(Rd)= {f ∈S
′(Rd) : ∃h ∈ Lp(Rd), ĥ = f };

they are Banach spaces equipped with the norm

‖ f ‖FLp = ‖h‖Lp , with ĥ = f .

In the same way, for 1< p<∞, 1 ≤ q ≤∞, the Banach spaces F Lp,q are defined by

F Lp,q(Rd)= {f ∈S
′(Rd) : ∃h ∈ Lp,q(Rd), ĥ = f };

equipped with the norm

‖ f ‖FLp,q = ‖h‖Lp,q , with ĥ= f .

Let B one of the following Banach spaces: Lp,F Lp, 1 ≤ p ≤∞, F Lp,q, 1 < p <∞, 1 ≤ q ≤∞,

valued in a Banach space, or also spaces obtained from these by real or complex interpolation.

Let C be the Lp space, 1 ≤ p ≤∞, scalar-valued. For any given function f which is locally in

B (i.e. gf ∈B, ∀g ∈C
∞
0 ), we set fB(x)= ‖ f Tx g‖B.

The Wiener amalgam space W(B,C) with local component B and global component C is

defined as the space of all functions f locally in B such that fB ∈ C. Endowed with the norm

‖ f ‖W(B,C) = ‖ fB‖C , W(B,C) is a Banach space. Moreover, different choices of g ∈C
∞
0 generate

the same space and yield equivalent norms.

If B = F L1 (the Fourier algebra), the space of admissible windows for the Wiener amal-

gam spaces W(F L1,C) can be enlarged to the so-called Feichtinger algebra W(F L1,L1). Re-

call that the Schwartz class S is dense in W(F L1,L1).
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We use the following definition of mixed Wiener amalgam norms. Given a measurable

function F of the two variables (t,x) we set

‖F‖W(Lq1 ,Lq2 )tW(FLr1 ,Lr2 )x
= ‖‖F(t, ·)‖W(FLr1 ,Lr2 )x

‖W(Lq1 ,Lq2 )t
.

Observe that [6]

‖F‖W(Lq1 ,Lq2 )tW(FLr1 ,Lr2 )x
= ‖F‖

W
(
L

q1
t (W(FL

r1
x ,L

r2
x )),L

q2
t

).

The following properties of Wiener amalgam spaces will be frequently used in the sequel.

Lemma 2.1. Let Bi, Ci , i = 1,2,3, be Banach spaces such that W(Bi,Ci) are well defined.

Then,

(i) Convolution. If B1 ∗B2 ,→ B3 and C1 ∗C2 ,→C3, we have

W(B1,C1)∗W(B2,C2) ,→W(B3,C3). (8)

In particular, for every 1≤ p, q ≤∞, we have

‖ f ∗u‖W(FLp ,Lq ) ≤ ‖ f ‖W(FL∞ ,L1)‖u‖W(FLp ,Lq ). (9)

(ii) Inclusions. If B1 ,→B2 and C1 ,→C2,

W(B1,C1) ,→W(B2,C2).

Moreover, the inclusion of B1 into B2 need only hold “locally” and the inclusion of C1 into

C2 “globally”. In particular, for 1 ≤ pi , qi ≤∞, i = 1,2, we have

p1 ≥ p2 and q1 ≤ q2 =⇒W(Lp1 ,Lq1 ) ,→W(Lp2 ,Lq2 ). (10)

(iii) Complex interpolation. For 0< θ < 1, we have

[W(B1,C1),W(B2,C2)][θ] =W
(
[B1,B2][θ],[C1,C2][θ]

)
,

if C1 or C2 has absolutely continuous norm.

(iv) Duality. If B′,C′ are the topological dual spaces of the Banach spaces B,C respectively,

and the space of test functions C
∞
0 is dense in both B and C, then

W(B,C)′ =W(B′,C′). (11)

The proof of all these results can be found in ([12, 14, 15, 22]).

Finally, let us recall the following lemma [8, Lemma 6.1], that will be used in the last

Section 5.
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Lemma 2.2. Let 1 ≤ p, q,r ≤∞. If
1

p
+

1

q
=

1

r′
, (12)

then

W(F Lp′

,Lp)(Rd) ·W(F Lq′,Lq)(Rd)⊂W(F Lr,Lr′ )(Rd) (13)

with norm inequality ‖ f h‖
W(FLr ,Lr′ ) . ‖ f ‖

W(FLp′ ,Lp)‖h‖
W(FLq′ ,Lq ).

2.3 Modulation spaces

([13, 21]). Let g ∈S (Rd) be a non-zero window function and consider the so-called short-time

Fourier transform (STFT) Vg f of a function/tempered distribution f with respect to the the

window g:

Vg f (x,ξ)= 〈 f ,MξTx g〉 =

ˆ

e−2πiξy f (y)g(y− x)dy,

i.e., the Fourier transform F applied to f Tx g.

For s ∈ R, we consider the weight function 〈x〉s = (1+|x|2)s/2,x ∈ R
d. If 1 ≤ p, q ≤∞, s ∈ R,

the modulation space M
p,q
s (Rd) is defined as the closure of the Schwartz class with respect to

the norm

‖ f ‖
M

p,q
s

=

(
ˆ

Rd

(ˆ

Rd

|Vg f (x,ξ)|pdx

)q/p

〈ξ〉sqdξ

)1/q

(with obvious modifications when p=∞ or q =∞).

Among the properties of modulation spaces, we record that they are Banach spaces whose

definition is independent of the choice of the window g ∈S (Rd), M
2,2 = L2, (M p,q

s )′ =M
p′,q′

−s ,

whenever p, q <∞.

Another definition of these spaces uses the unite-cube decomposition of the frequency

space, we address interested readers to [44].

Finally we recall the behaviour of modulation spaces with respect to complex interpola-

tion (see [14, Corollary 2.3]).

Proposition 2.2. Let 1 ≤ p1, p2, q1, q2 ≤∞, with q2 <∞. If T is a linear operator such that,

for i = 1,2,

‖T f ‖Mpi ,qi ≤ Ai‖ f ‖Mpi ,qi ∀f ∈ Mpi ,qi ,

then

‖T f ‖Mp,q ≤ CA1−θ
1 Aθ

2‖ f ‖Mp,q ∀f ∈ Mp,q,

where 1/p= (1−θ)/p1 +θ/p2, 1/q = (1−θ)/q1 +θ/q2, 0< θ < 1 and C is independent of T.

We observe that definition and properties of modulation spaces refer to the case p, q Ê 1.

For the quasi-Banach case 0< p, q < 1 see, e.g., [2, 44, 45].
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2.4 T∗T method

[19, 20] The T∗T method is an abstract tool of Harmonic Analysis, discovered by Tomas in

1975. This method allows to know the continuity of a linear operator T (and thus of its adjoint

T∗), simply by the boundedness of the composition operator T∗T.

For any vector space D, we denote by D∗
a its algebraic dual, by La(D, X ) the space of

linear maps from D to some other vector space X , and by
〈
ϕ, f

〉
D

the pairing between D∗
a and

D ( f ∈ D, ϕ ∈ D∗
a), taken to be linear in f and antilinear in ϕ.

Lemma 2.3. Let H be a Hilbert space, X a Banach space, X∗ the dual of X , and D a vector

space densely contained in X . Let T ∈ La(D,H ) and T∗ ∈ La(H ,D∗
a) be its adjoint, defined

by
〈
T∗h, f

〉
D
= 〈h,T f 〉 , ∀f ∈ D, ∀h ∈H ,

where 〈,〉 is the inner product in H (antilinear in the first argument). Then the following three

conditions are equivalent.

(1) There exists a,0 É a<∞ such that for all f ∈ D

‖T f ‖H É a‖ f ‖X ; (14)

(2) Let h ∈ H . Then T∗h can be extended to a continuous linear functional on X , and there

exists a,0 É a<∞, such that for all h ∈H

‖T∗h‖X∗ É a‖h‖H . (15)

(3) Let f ∈ X . Then T∗T f can be extended to a continuous linear functional on X, and there

exists a,0 É a<∞, such that for all f ∈ D,

‖T∗T f ‖X∗ É a2
‖ f ‖X . (16)

The constant a is the same in all the three cases. If one of (all) those conditions is (are) satisfied,

the operators T and T∗T extend by continuity to bounded operators from X to H and from X

to X∗, respectively.

Proof. From the fact that D is densely contained in X , it follows that X∗ is a subspace of D∗
a .

(1)⇒ (2). Let h ∈H . Then, for all f ∈ D

|
〈
T∗h, f

〉
D | = |〈h,T f 〉 | É ||h||H ||T f ||H É a ||h||H || f ||X .

(2)⇒ (1). Let f ∈ D. Then, for all h ∈H

| 〈h,T f 〉 | = |
〈
T∗h, f

〉
D
| É ||T∗h||X∗ || f ||X É a ||h||H || f ||X
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Clearly (1) and (2) imply (3), and therefore (1) or (2) implies (3).

(3)⇒ (1). Let f ∈ D. Then

||T f ||2 = |〈T f ,T f 〉| = |
〈
T∗T f , f

〉
D
| É ||T∗T f ||X∗ || f ||X É a2

|| f ||2X .

Since D is a dense subspace of X , we see that T can be extended to a bounded linear functional

from X to H .

The following corollary is extremely useful.

Corollary 2.3. Let H , D and two triplets (X i ,Ti,ai), i = 1,2, satisfy the conditions of Lemma

2.3. Then for all choices of i, j = 1,2, R(T∗
i

T j)⊂ X∗
i

and for all f ∈ D,

‖T∗
i T j f ‖X∗

i
É aia j‖ f ‖X j

. (17)

In particular, T∗
i

T j extends by continuity to a bounded operator from X j to X∗
i
, and (17) holds

for all f ∈ X j .

Ginibre and Velo [19] applied Lemma 2.3 and Corollary 2.3 to the bounded operator

T : L1(I,H ) →H , defined by

T f =

ˆ

I

U(−t) f (t)dt, (18)

where I is an interval of R (possibly R itself) and U a unitary strongly continuous one param-

eter group in H . Then its adjoint T∗ is the operator

T∗h(t) =U(t)h

from H to L∞(I,H ), where the duality is defined by the scalar products in H and in L2(I,H ),

such that T∗T is the bounded operator from L1(I,H ) to L∞(I,H ) given by

T∗T f =

ˆ

I

U(t− t′) f (t′)dt′.

Clearly the conditions of Lemma 2.3 are satisfied with X = L1(I,H ), the operator T defined

in (18), the constant a= 1, and D any dense subspace of X .

Let us introduce the retarded operator (T∗T)R , defined by

(T∗T)R f (t) = (UR ∗t f )(t)=

ˆ

I

UR(t− t′) f (t′)dt′

where UR(t)= χ+(t)U(t) := χ[0,∞)(t)U(t).

We recall that a space X of distributions in space-time is said to be time cut-off stable

if the multiplication by the characteristic function χJ , of an interval J in time, is a bounded

operator in X with norm uniformly bounded with respect to J. The spaces under our consid-

eration are of the type X = L
q
t (I,Y ), where Y is a space of distribution in the space variable

and for which that property obviously holds.
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Lemma 2.4. Let H an Hilbert space, let I be an interval of R, let X ⊂S
′(I×R

d) be a Banach

space, let X be time cut-off stable, and let the conditions of Lemma 2.3 hold for the operator T

defined in (18). Then the operator (T∗T)R is (strictly speaking extends to) a bounded operator

from L1
t (I,H ) to X∗ and from X to L∞

t (I,H ).

Proof. We recall the proof for sake of clarity. It is enough to demonstrate the second property,

from which the first one follows by duality. Let f ∈ D. Then, for each t

‖(T∗T)R f (t)‖H = ‖Tχ+(t−·) f ‖H É asup
t

{‖χ+(t−·)‖B(X )}‖ f ‖X

≤ Ca‖ f ‖X ,

by the unitary of U, the estimate (14) of Lemma 2.3, and the time cut-off stability of X .

3 Fixed Time Estimates

In this section we study estimates for the solution u(t,x) to the Cauchy problem (1), for fixed t.

Since multiplication on the Fourier transform side intertwines with convolution on the space

side, formula (2) can be rewritten as

u(t,x) = (K t∗u0)(x), (19)

where K t is the inverse Fourier transform of the multiplier e−4π2 it|ξ|2 , given by

K t(x)=
1

(4πit)d/2
ei|x|2 /(4t). (20)

First, we establish the estimates for Lebesgue spaces. Since eit∆ is a unitary operator,

we obtain the L2 conservation law

‖eit∆u0‖L2(Rd ) = ‖u0‖L2(Rd ). (21)

Furthermore, since K t ∈ L∞ with ‖K t‖∞ ≍ t−d/2, applying Young inequality to the fundamen-

tal solution (19) we obtain the L1 dispersive estimate

‖eit∆u0‖L∞(Rd ) . |t|−d/2
‖u0‖L1(Rd ). (22)

This shows that if the initial data u0 has a suitable integrability in space, then the evolution

will have a power-type decay in time. Using the Riesz-Thorin theorem (see, e.g., [35]), we can

interpolate (21) and (22) to obtain the important Lp fixed time estimates

‖eit∆u0‖Lr (Rd ) . |t|−d
( 1

2−
1
r

)
‖u0‖Lr′ (Rd ) (23)
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for all 2 É r É∞, with 1/r+1/r′ = 1. These estimates represent the complete range of Lp to Lq

fixed time estimates available. In this setting, the necessary conditions are usually obtained

by scaling conditions (see, for example, [39, Exercise 2.35], and [29] for the interpretation in

terms of Gaussian curvature of the characteristic manifold). The following proposition ([50,

page 45]) is an example of this technique in the case p= q′.

Proposition 3.1. Let 1É r É∞ and α ∈R such that

‖eit∆u0‖Lr (Rd ) É Ctα‖u0‖Lr′ (Rd ), (24)

for all u0 ∈ S(Rd), t 6= 0 and some C independent of t and u0. Then α =−d( 1
2 −

1
r
), r′ É r (and

thus 2 É r É∞).

Proof. We can rescale the initial data u0 by a factor λ and use (24) for

v(x) := u0(λx), λ> 0, u0 ∈S (Rd).

The corresponding solution with v(x) as initial data is u(λ2 t,λx), where u(t,x) = eit∆u0. There-

fore, by (24) and the scaling property

‖ f (λ·)‖r =λ−d/r
‖ f (·)‖r

one has

λ−d/r
‖u(λ2 t, ·)‖Lr (Rd ) É Ctαλ−d/r′

‖u0‖Lr′ (Rd ),

for all λ> 0, t 6= 0 and u0 ∈ S(Rd). Choosing t= λ−2, we obtain

‖u(1, ·)‖Lr (Rd ) É Cλ
−2α− d

r′
+

d
r ‖u0‖Lr′ (Rd ),

for all λ> 0 and u0 ∈ S(Rd). Since ‖u(1, ·)‖Lr (Rd ) and ‖u0‖Lr′ (Rd ) are two positive constants, we

have

for λ→∞, −2α−
d

r′
+

d

r
Ê 0,

for λ→ 0, −2α−
d

r′
+

d

r
É 0

and then we obtain the necessary condition for α. Moreover, since eit∆ is invariant under

translation, by [23, Theorem 1.1] we obtain r′ É r, i.e., 2 É r É∞. By standard density argu-

ment we attain the desired result.

For s ∈ R, consider the Fourier multiplier 〈∆〉s, defined by 〈∆〉s f =F
−1(〈·〉s f̂ ). Then, from

(23) and the commutativity property of Fourier multipliers, one immediately obtains the W s,r

fixed time estimates

‖eit∆u0‖Ws,r (Rd ) . |t|−d
( 1

2−
1
r

)
‖u0‖Ws,r′ (Rd) (25)
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for all s ∈ R, 2 É r É∞, 1/r+1/r′ = 1. Finally, we note that the conservation law (21) can be

rephrased in this setting as the Hs conservation law

‖eit∆u0‖Hs(Rd ) = ‖u0‖Hs(Rd ). (26)

The Schrödinger propagator does not preserve any W s,r norm other than the Hs norm.

Now, we focus on Wiener amalgam spaces. K t in (20) lives in W(F L1,L∞) ⊂ L∞, see

[1, 6, 44]. This is the finest Wiener amalgam space-norm for K t which, consequently, gives

the worst behavior in the time variable. It is also possible to improve the latter, at the expense

of a rougher x-norm, see [8]. Indeed, since K t ∈W(F Lp,L∞) with norm (see [8, Corollary 3.1])

‖K t‖W(FLp ,L∞) ≍ |t|−d/p(1+ t2)(d/2)(1/p−1/2), (27)

from the fundamental solution (19) and the convolution relations for Wiener amalgam spaces

in Lemma 2.1(i), it turns out, for 2≤ q ≤∞, the W(F Lp,Lq) dispersive estimates

‖eit∆u0‖W(FLq′ ,L∞) . |t|d(2/q−1)(1+ t2)d(1/4−1/q)
‖u0‖W(FLq ,L1). (28)

As well as for Lebesgue spaces, we can use complex interpolation between the dispersive esti-

mates (28) and the L2 conservation law (L2 =W(F L2,L2)) to obtain the following W(F Lp,Lq)

fixed time estimates, that combine [6, Theorem 3.5] and [8, Theorem 3.3].

Theorem 3.2. For 2≤ q,r,s≤∞ such that

1

s
=

1

r
+

2

q

(
1

2
−

1

r

)
,

we have

‖eit∆u0‖W(FLs′ ,Lr ) . |t|
d

(
2
q
−1

)(
1− 2

r

)
(1+ t2)

d
(

1
4−

1
q

)(
1− 2

r

)
‖u0‖W(FLs ,Lr′ ) (29)

In particular, for s= 2,

‖eit∆u0‖W(L2 ,Lr ) . (1+ t2)−
d
2

( 1
2−

1
r

)
‖u0‖W(L2 ,Lr′ ), (30)

and, for s= r,

‖eit∆u0‖W(FLr′ ,Lr ) . (|t|−2
+|t|−1)d

( 1
2−

1
r

)
‖u0‖W(FLr ,Lr′ ). (31)

Proof. Let us sketch the proof for the sake of readers. Estimate (29) follow by complex inter-

polation between estimate (28), which corresponds to r =∞, and (21), which corresponds to

r = 2.

Indeed, L2 = W(F L2,L2) = W(L2,L2). Using Lemma 2.1(iii), with θ = 2/r (observe that 0 <

2/r < 1), and 1/s′ = (1−2/r)/q′ + (2/r)/2, so that relation (29) holds, we obtain
[
W(F Lq′

,L∞),W(F L2,L2)
]

[θ]
=W

(
[F Lq′

,F L2][θ],[L
∞,L2][θ]

)
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=W(F Ls′ ,Lr)

and

[
W(F Lq,L1),W(F L2,L2)

]
[θ] =W

(
[F Lq,F L2][θ],[L

1,L2][θ]
)

=W(F Ls,Lr′ ).

This yields the desired estimate (29).

Let us compare the previous results with the classical Lp estimates. For 2 É r É ∞,

F Lr′
,→ Lr, and the inclusion relations for Wiener amalgam spaces (Lemma 2.1 (ii)) yield

W(F Lr′ ,Lr) ,→ W(Lr,Lr) = Lr and Lr′ = W(Lr′ ,Lr′ ) ,→ W(F Lr,Lr′ ). Thereby the estimate

(31) is an improvement of (23) for every fixed time t 6= 0, and also uniformly for |t| > c > 0.

Moreover, in [8] Cordero and Nicola proved that the range r ≥ 2 in (31) is sharp, and the same

for the decay t−d
( 1

2−
1
r

)
at infinity and the bound t−2d

( 1
2−

1
r

)
, when t→ 0.

Modulation spaces are new settings inherited by time-frequency analysis where the fixed

time estimates recently have been studied, see [1, 2, 44, 45]. Here, instead of using the

representation of the solution u(t,x) in (19), the solution is written in the form of Fourier

multiplier eit∆u0 as in (2), see [1, 2]. Indeed, a sufficient condition for the boundedness of a

Fourier multiplier on modulation spaces is that its symbol is in W(F L1, l∞) ([1, Lemma 8]).

Moreover, the Schrödinger symbol σ= e−it|ξ|2 lives in W(F L1, l∞) and its norm is

‖σ‖W(FL1 ,l∞) = sup
x

ˆ

Rd

|Vgσ(x,ω)|dω

≍ (1+ t2)−d/4
ˆ

Rd

e
−

π

t2+1
|ω|2

dω≍ (1+ t2)d/4,

where g(ξ) = e−π|ξ|
2
. Then, by [2, Lemma 2] (also for s = 0 [1, Corollary 18]) one has that eit∆

extends to a bounded operator on M
p,q
s , i.e., the M

p,q
s fixed time estimates

‖u(t,x)‖
M

p,q
s

. (1+|t|)d/2
‖u0‖M

p,q
s

, (32)

for all s Ê 0 and 1 É p, q É ∞. In particular, modulation space properties are preserved by

the time evolution of the Schrödinger equation, in strong contrast with the case of Lebesgue

spaces. Observe that (32), in the case s= 0, was also obtained using isometric decompositions

in [44]. Later, Wang, Zaho, Guo in [45] obtain the following fixed time estimates

‖u(t,x)‖
M

p,q
s

. (1+|t|)−d(1/2−1/p)
‖u0‖

M
p′,q
s

, (33)

for all s ∈ R, 2 É p É ∞ and 1 É q É ∞. Comparing (23) with (32) and (33), we see that the

singularity at t = 0 contained in (23) has been removed in (32) and (33) and the decay rate

in (33) when t =∞ is the same one as in (23). The estimate (33) also indicates that eit∆ is
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uniformly bounded on M
2,q. The complex interpolation between the case p = 2 in (33), and

p=∞ in (32) yields

‖u(t,x)‖
M

p,q
s

. (1+|t|)d(1/2−1/p)
‖u0‖M

p,q
s

, (34)

for all 2 É p É∞, s Ê 0. However, it is still not clear whether the growth order on time in the

right-hand side of (34) is optimal.

4 Strichartz Estimates

In many applications, especially in the study of well-posedness of PDE’s, it is useful to have

estimates for the solution both in time and space variables. In this direction, the main result

is represented by the Strichartz estimates. First, let us introduce the following definitions.

Definition 4.1. Following [26], we say that the exponent pair (q,r) is Schrödinger-admissible

if d Ê 1 and

2É q,r É∞,
1

q
=

d

2

(1

2
−

1

r

)
, (q,r,d) 6= (2,∞,2).

Definition 4.2. Following [18], we say that the exponent pair (q,r) is Schrödinger-acceptable

if

1 É q <∞, 2É r É∞,
1

q
< d

(1

2
−

1

r

)
, or (q,r) = (∞,2).

The original version of Strichartz estimates in Lp spaces, closely related to restriction

problem of Fourier transform to surfaces, was elaborated by Robert Strichartz [36] in 1977(who,

in turn, had precursors in [31, 41]). In 1995 a brilliant idea of Ginibre and Velo [20] was the

use of the T∗T Method (Lemma 2.3) to detach the couple (q,r) from (q′,r′) (see also [49]). The

study of the endpoint case (q,r) = (2,2d/(d−2)) is treated in [26], where Keel and Tao prove

the estimate also for the endpoint when d ≥ 3 (for d = 2, the endpoint is (q,r) = (2,∞) and the

estimate is false). We shall give a standard proof of the Lp Stichartz estimates in the non-

endpoint cases [10, 50] (see also [39] where the following theorem is proved using an abstract

lemma, the Christ-Kiselev Lemma, which is very useful in establishing retarded Strichartz

estimates).

Theorem 4.3. For any Schrödinger-admissible couples (q,r) and (q̃, r̃) one has the homoge-

neous Strichartz estimates

‖eit∆u0‖L
q
t Lr

x(R×Rd ) . ‖u0‖L2
x(Rd ), (35)

the dual homogeneous Strichartz estimates

∥∥∥
ˆ

R

e−is∆F(s, ·)ds
∥∥∥

L2
x(Rd )

. ‖F‖
L

q̃′

t Lr̃′
x (R×Rd )

, (36)
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and the inhomogenous (retarded) Strichartz estimates

∥∥∥
ˆ

s<t

ei(t−s)∆F(s, ·)ds
∥∥∥

L
q
t Lr

x(R×Rd )
. ‖F‖

L
q̃′

t Lr̃′
x (R×Rd )

. (37)

Proof. We shall only prove this theorem in the non-endpoint case, when q 6= 2, addressing the

interested reader to [26] for the whole study. We use the T∗T method as follows. Let (q,r) be

Schrödinger admissible and consider the linear operator T : L1
t L2

x −→ L2
x, defined as

T(F)=

ˆ

R

e−is∆F(s, ·)ds.

Its adjoint T∗ : L2
x −→ L∞

t L2
x is the Schrödinger propagator (2)

T∗(u) = eit∆u.

Applying Minkowski’s inequality, the fixed time estimate (23) and (6), we obtain the diagonal

untruncated estimates
∥∥∥
ˆ

R

ei(t−s)∆F(s, ·)ds

∥∥∥
L

q
t Lr

x(R×Rd )
É

∥∥∥
ˆ

R

‖ei(t−s)∆F(s, ·)‖Lr
x (Rd ) ds

∥∥∥
L

q
t (R)

.
∥∥∥‖F‖

Lr′
x (Rd ) ∗

1

|t|d( 1
2−

1
r )

∥∥∥
L

q
t

(R)

. ‖F‖
L

q′

t Lr′
x (R×Rd )

,

whenever 2 < q,r É ∞ are such that 2
q
+ d

r
= d

2 , and for any Schwartz function F ∈ S (R×

R
d). Then, using Lemma 2.3, one obtains the homogeneous Strichartz estimates (35) and

the corresponding dual homogeneous Strichartz estimates (36). Corollary 2.3 applied to the

previous two estimates yields the non-diagonal untruncate estimates:
∥∥∥
ˆ

R

ei(t−s)∆F(s, ·)ds

∥∥∥
L

q
t Lr

x(R×Rd )
É ‖F‖

L
q̃′

t Lr̃′
x (R×Rd )

.

By untruncated diagonal estimates one obtains the diagonal ones for the truncated operator,

noting that

∥∥∥
ˆ t

−∞

ei(t−s)∆F(s, ·)ds

∥∥∥
L

q
t Lr

x(R×Rd )
É

∥∥∥
ˆ t

−∞

‖ei(t−s)∆F(s, ·)‖Lr
x (Rd ) ds

∥∥∥
L

q
t (R)

É

∥∥∥
ˆ

R

‖ei(t−s)∆F(s, ·)‖Lr
x (Rd ) ds

∥∥∥
L

q
t (R)

. ‖F‖
L

q′

t Lr′
x (R×Rd )

.

Moreover, using Lemma 2.4, with X=L
q′

t Lr′

x and the truncated operator (T∗T)RF(t)=
´ t

0 ei(t−s)∆

F(s)ds, one obtains
∥∥∥
ˆ t

0
ei(t−s)∆F(s, ·)ds

∥∥∥
L∞

t L2
x(R×Rd )

. ‖F‖
L

q′

t Lr′
x

, (38)

for all admissible pairs (q,r). Then, by complex interpolation between this estimate and the

diagonal truncated ones above one gets the non-diagonal truncate estimates (37), for any

couple (q,r), (q̃, r̃) Schrödinger admissible.
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The estimates are known to fail at the endpoint (q,r,d) = (2,∞,2), see [28], where Smith

constructed a counterexample using the Brownian motion, although the homogeneous esti-

mates can be saved assuming spherical symmetry [27, 32, 38]. The exponents in the homoge-

neous estimates are optimal ([39, Exercise 2.42]); some additional estimates are instead avail-

able in the inhomogeneous case (see, for example, [30]). Indeed, Kato [25] proved that inho-

mogeneous estimates (37) hold true when the pairs (q,r) and (q̃, r̃) are Schrödinger acceptable

and satisfy the scaling condition 1/q+1/q̃ = d/2(1−1/r−1/r̃) in the range 1/r,1/r̃ > (d−2)/(2d).

Afterwards, for d > 2, Foschi [18] improved this result by looking for the optimal range

of Lebesgue exponents for which inhomogeneous Strichartz estimates hold (results almost

equivalent have recently obtained by Vilela [43]). Actually, this range is larger than the one

given by admissible exponents for homogeneous estimates, as was shown by the following

result [18, Proposition 24].

Proposition 4.4. If v is the solution to (3), with zero initial data and inhomogeneous term F

supported on R×R
d, then we have the estimate

‖v‖L
q
t Lr

x(R×Rd ) . ‖F‖
L

q̃′

t Lr̃′
x (R×Rd )

(39)

whenever (q,r),(q̃, r̃) are Schrödinger acceptable pairs which satisfy the scaling condition

1

q
+

1

q̃
=

d

2

(
1−

1

r
−

1

r̃

)
,

and either the conditions

1

q
+

1

q̃
< 1,

d−2

r
É

d

r̃
,

d−2

r̃
É

d

r

or the conditions

1

q
+

1

q̃
= 1,

d−2

r
<

d

r̃
,

d−2

r̃
<

d

r
,

1

r
É

1

q
,

1

r̃
É

1

q̃
.

For a discussion about the sharpness of this proposition we refer to [18], where ex-

plicit counterexamples are constructed to show the necessary conditions for inhomogeneous

Strichartz estimates.

Since the Schrödinger operator eit∆ commutes with Fourier multipliers like |∆|s or 〈∆〉s,

it is easy to obtain Strichartz estimates for potential and Sobolev spaces. In particular, if I

is an interval containing the origin and u : I ×R
d → C is the solution to the inhomogeneous

Schrödinger equation with initial data u0 ∈ Ḣs
x(Rd), given by the Duhamel formula (4), then,

applying |∆|s to both sides of the equation and using the estimate of Theorem 4.3, one obtains

‖u‖L
q
t Ẇ

s,r
x (I×Rd ) . ‖u0‖Ḣs

x(Rd )+‖F‖
L

q̃′

t Ẇ
s,r̃′
x (I×Rd )
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for all Schrödinger admissible couples (q,r) and (q̃, r̃). In particular, if one considers the

homogeneous case (i.e. F = 0), the Sobolev embedding Ẇ
s,r
x ,→ L

r1
x , 0 < s < d/2 and 1/r1 =

1/r− s/d, yields the Ḣs Stichartz estimates

‖u‖
L

q
t L

r1
x (I×Rd ) . ‖u0‖Ḣs

x(Rd ),
2

q
+

d

r1
+ s=

d

2
.

Since s> 0 one has
2

q
+

n

r1
<

n

2
,

hence, for any fixed value of s, the new Schrödinger admissible couple (q,r1) lies on a parallel

line below the corresponding case s= 0.

Strichartz estimates in Wiener amalgam spaces enable us to control the local regularity

and decay at infinity of the solution separately. For comparison, the classical estimates (35)

can be rephrased in terms of Wiener amalgam spaces as follows:

‖eit∆u0‖W(Lq ,Lq )tW(Lr ,Lr )x
. ‖u0‖L2

x
. (40)

In this framework, Cordero and Nicola perform these estimates mainly in two directions.

First, in [6], for q Ê 4 they modify the classical estimate (40) by (conveniently) moving local

regularity from the time variable to the space variable. Indeed, F Lr′ ⊂ Lr if r Ê 2, but the

bound in (31) is worse than the one in (23), as t→ 0; consequently one has

‖eit∆u0‖W(Lq/2 ,Lq )tW(FLr′ ,Lr ) . ‖u0‖L2
x
, (41)

for 4 < q É∞, 2 É r É∞, with (q,r) Schrödinger admissible. When q = 4 the same estimate

holds with the Lorentz space Lr′,2 in place of Lr′ . Dual homogeneous and retarded estimates

hold as well. Thereby, the solution averages locally in time by the Lq/2 norm, which is rougher

than the Lq norm in (35) or, equivalently, in (40), but it displays an F Lr′ behavior locally in

space, which is better than Lr. In [8] it is shown the sharpness of these Strichartz estimates,

except for the threshold q ≥ 4, which seems quite hard to obtain. Secondly, in [8], a converse

approach is performed, by showing that it is possible to move local regularity in (35) from the

space variable to the time variable. As a result, new estimates involving the Wiener amalgam

spaces W(Lp,Lq), that generalize (35), are obtained, i.e., the following [8, Theorem 1.1].

Theorem 4.5. Let 1 ≤ q1,r1 ≤∞, 2≤ q2,r2 ≤∞ such that r1 ≤ r2,

2

q1
+

d

r1
≥

d

2
, (42)

2

q2
+

d

r2
≤

d

2
, (43)
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(r1,d) 6= (∞,2), (r2,d) 6= (∞,2) and, if d ≥ 3, r1 ≤ 2d/(d−2). Assume the same for q̃1, q̃2, r̃1, r̃2.

Then, we have the homogeneous Strichartz estimates

‖eit∆u0‖W(Lq1 ,Lq2 )tW(Lr1 ,Lr2 )x
. ‖u0‖L2

x
, (44)

the dual homogeneous Strichartz estimates

‖

ˆ

e−is∆F(s)ds‖L2 . ‖F‖
W(Lq̃′1 ,Lq̃′2 )tW(Lr̃′1 ,Lr̃′2 )x

, (45)

and the retarded Strichartz estimates

‖

ˆ

s<t

ei(t−s)∆F(s)ds‖W(Lq1 ,Lq2 )tW(Lr1 ,Lr2 )x
. ‖F‖

W(Lq̃′1 ,Lq̃′2 )tW(Lr̃′1 ,Lr̃′2 )x

. (46)

This outcome is achieved by first establishing the estimates for the particular case q1 =

q̃1 =∞, r1 = r̃1 = 2, and then by complex interpolation with the classical ones (35).

Figure 1 illustrates the range of exponents for the homogeneous estimates when d ≥

3. Notice that, if q1 ≤ q2, these estimates follow immediately from (40) and the inclusion

relations of Wiener amalgam spaces. So, the issue consists in the cases q1 > q2. Since there

are no relations between the pairs (q1,r1) and (q2,r2) other than r1 ≤ r2, these estimates tell

us, in a sense, that the analysis of the local regularity of the Schrödinger propagator is quite

independent of its decay at infinity.

1

r

1

q

d−2

2d
1

2
1

1

2

1

I1

I2

2

q
+

d
r

=
d
2

Figure 1: When d ≥ 3, (44) holds for all pairs (1/q1,1/r1) ∈ I1, (1/q2,1/r2) ∈ I2, with 1/r2 ≤ 1/r1.
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In [8] it is proved that, for d ≥ 3, all the constraints on the range of exponents in Theorem

4.5 are necessary, except for r1 ≤ r2, r1 ≤ 2d/(d − 2), which is still left open. However, the

following weaker result holds [8, Proposition 5.3]:

Assume r1 > r2 and t 6= 0. Then the propagator eit∆ does not map W(Lr′1 ,Lr′2 ) continuously

into W(Lr1 ,Lr2 ).

shows that the estimates (44) for exponents r1 > r2, if true, cannot be obtained from fixed-

time estimates and orthogonality arguments. The arguments employed for the necessary

conditions differ from the classical setting of Lebesgue spaces, because the general scaling

consideration does not work directly. Indeed, the known bounds for the norm of the dilation

operator f (x) 7−→ f (λx) between Wiener amalgam spaces ([37, 40]), yield constraints which are

weaker than the desired ones. So, the necessary conditions are obtained considering families

of rescaled Gaussians as initial data, for which the action of the operator eit∆ and the involved

norms can be computed explicitly, see [8].

We end up this section with recalling Stricharz estimates for modulation spaces. The

main result in this framework is due to Wang and Hudzik [45]. They use the same arguments

as in Keel and Tao [26], who point out that the ranges of exponents (q,r) in (23) could most

likely be not optimal. In fact, Keel and Tao show that if the semigroup eit∆ satisfies the

estimate

‖eit∆u0‖Lp . (1+|t|)−d(1/2−1/p)
‖u0‖Lp′ (47)

then (35), (36) and (37) hold if one substitutes q and q̃ by any γ≥max(q,2) and γ̃Êmax(q̃,2),

respectively. Since the estimate (34) is similar to (47), they optimize (35), (36) and (37) in

the function spaces M
p,q
s to cover the exponents (γ, q) and (γ̃, q̃) satisfying γÊ max(q,2) and

γ̃Êmax(q̃,2). Since the precise formulation of these results requires the introduction of other

function spaces, we refer interested readers to [45, Section 3].

5 Applications

We start by focusing on the Cauchy problem for the nonlinear Schrödinger equation (NLS)
{

i∂tu+∆u+N(u) = 0

u(0,x) = u0(x).
(48)

The nonlinearity N considered will be either power-like

pk(u) =λ|u|2ku, k ∈N, λ ∈R

or exponential-like

eρ(u) =λ(eρ|u|
2
−1)u, λ,ρ ∈R.
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Both nonlinearities are smooth. The corresponding equations having power-like nonlineari-

ties pk are sometimes referred to as algebraic nonlinear Schrödinger equations. The sign of

the coefficient λ determines the defocusing, absent, or focusing character of the nonlinearity.

We shall study the well-posedness of (48), in different spaces. Recall that the problem

(48) is locally well-posed in e.g. Hs
x(Rd) if, for any u∗

0 ∈ Hs
x(Rd), there exists a time T > 0

and an open ball B in Hs
x(Rd) containing u∗

0 and a subset of C0
t Hs

x([T,T]×R
d) such that for

each u0 ∈ B there exists a unique solution u ∈ X to the equation (48) and the map u0 7→ u is

continuous from B (with the Hs
x topology) to X (with the C0

t Hs
x([T,T]×R

d) topology).

A fundamental tool in well-posedness theory is the contraction theorem. Let us first work

abstractly, viewing (48) as an instance of the more general

u= ulin +DN(u) (49)

where ulin := eit∆u0 is the linear solution, N is the nonlinearity and D is the Duhamel opera-

tor

DF(t,x) :=

ˆ t

0
ei(t−s)∆F(s, ·)ds.

The following abstract tool [39, Proposition 1.38] then allows us to find the desired contraction

map.

Proposition 5.1 (Abstract iteration argument). Let N , T be two Banach spaces. Let D :

N →T be a bounded linear operator with the bound

||DF||T É C0||F||N (50)

for all F ∈ N and some constant C0 > 0, and let N : S → N , with N(0) = 0, be a nonlinear

operator which is Lipschitz continuous and obeys the bounds

||N(u)−N(v)||N É
1

2C0
||u−v||T (51)

for all u,v in the ball Bǫ := {u ∈ S : ||u||T É ǫ}, for some ǫ > 0. Then, for all ulin ∈ Bǫ/2, there

exists a unique solution u ∈ Bǫ to the equation (49), with Lipschitz map ulin 7→ u with constant

at most 2. That is, we have

||u||T É 2||ulin||T (52)

Proof. Observe that for v= 0 the estimate (51) becomes

||N(u)||N É
1

2C0
||u||T (53)

(since N(0) = 0 by hypothesis). Then, fix ulin ∈Bǫ/2, and consider the map

φ(u) := ulin +DN(u).
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Using (50) and (53) one has

||φ(u)||T = ||ulin +DN(u)||T É
ǫ

2
+

C0

2C0
ǫ= ǫ

for all u ∈ Bǫ, i.e., φ maps the ball Bǫ into Bǫ. Moreover, φ is a contraction on Bǫ, indeed by

(50) and (51) one has

||φ(u)−φ(v)||T = ||DN(u)−DN(v)||T É C0||N(u)−N(v)||N

É C0
1

2C0
||u−v||T =

1

2
||u−v||T ,

for all u,v ∈ Bǫ. Then, the contraction theorem asserts that there exists a unique fixed point

u for φ and moreover the map ulin 7→ u is Lipschitz with constant at most 2, that is (52).

Proposition 5.1 is the main ingredient of the results in [1, 7, 8, 9, 39, 45].

First, consider the NLS (48) with N = pk, with the initial data u0 in the Sobolev space

Hs
x(Rd). To study this Cauchy problem it is convenient to introduce a single space Ss that

recaptures all the Strichartz norms at a certain regularity Hs
x(Rd) simultaneously. For sake

of simplicity, we reduce to the case s = 0 which corresponds to the case L2
x, introducing the

Strichartz space S0(I ×R
d), for any time interval I, defined as the closure of Schwartz class

S with respect to the norm

||u||
S 0(I×Rd ) := sup

A

||u||Lq
t Lr

x(I×Rd ),

where the set A is given by A := {(∞,2),(q,r)}, with (q,r) Schrödinger admissible. We de-

fine also the space N0(I ×R
d) := L

q′

t Lr′

x . Then, using Proposition 5.1 and the Lp Strichartz

estimates of Theorem 4.3 one can prove the following [39, Proposition 3.15]

Theorem 5.2 (L2
x subcritical solution). Let k be subcritical for L2

x (that is, 0 < k < 2
d

) and let

µ = ±1. Then the NLS (48) is locally well-posed in L2
x in a subcritical sense. Indeed, for any

R > 0 there exists a time T > 0 such that for all u0 in the ball BR := {u0 ∈ L2
x(Rd) : ||u0||L2

x
< R}

there exists a unique solution u in L2
x of (48) in the space S

0([−T,T]×Rd)⊂ C0
t L2

x([−T,T]×Rd).

Moreover, the map u0 7→ u, from BR to S
0([−T,T]×R

d), is Lipschitz continuous.

For results in the framework of modulation spaces we address to [2, 44, 45]. In particular,

we examine [2]. The main result, obtained only with the M
p,q
s dispersive estimates (32), is

the following.

Theorem 5.3. Assume that u0 ∈ M
p,1
s (Rd) and N ∈ {pk, eρ}. Then, there exists T = T(‖u0‖M

p,1
s

)

such that (48) has a unique solution u ∈ C0M
p,1
s ([0,T] × R

d). Moreover, if T < ∞, then

limsupt→T ‖u(t, ·)‖ =∞.
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Proof. The proof is simply an application of the abstract iteration argument. Let us write it

for the nonlinearity N = pk. We choose the spaces T := C0M
p,1
s ([0,T]×R), N := M

p,1
s , and the

Duhamel operator

D :=

ˆ t

0
ei(t−s)∆

·ds.

Then, it is sufficient to prove (50) and (51) in this setting. Then, by the Minkowsky integral

inequality, M
p,q
s dispersive estimates (32) and [2, Corollary 2] one has

∥∥∥
ˆ t

0
ei(t−τ)∆(pk(u))(τ)dτ

∥∥∥
M

p,1
s

É

ˆ t

0
‖ei(t−τ)∆(pk(u))(τ)‖

M
p,1
s

dτ

É c1TCT sup
t∈[0,T]

‖pk(u)(t)‖
M

p,1
s

É c1c2CT T‖u(t)‖2k+1
M

p,1
s

where CT = supt∈[0,T)(1+|t|)d/2. Choosing T > 0 such that c1c2CT T É C0, it follows (50) and

by

pk(u)(τ)− pk(v)(τ)=λ(u−v)|u|2k(τ)+λv(|u|2k
−|v|2k)(τ),

it follows (51).

For Wiener amalgam spaces there are no results for the NLS. In [8] there is a result

concerning linear Schrödinger equations with time-dependent potentials. Indeed, in [8] the

well-posedness is proved in L2 of the following Cauchy problem, for all d ≥ 1,

{
i∂tu+∆u= V (t,x)u, t ∈ [0,T]= IT , x ∈R

d,

u(0,x) = u0(x),
(54)

and for the class of potentials

V ∈ Lα(IT ;W(F Lp′

,Lp)x),
1

α
+

d

p
≤ 1, 1≤α<∞. d < p≤∞. (55)

Theorem 5.4. Consider the class of potentials (55). Then, for all (q,r) such that 2/q+d/r = d/2,

q > 4,r ≥ 2, the Cauchy problem (54) has a unique solution

(i) u ∈C (IT ;L2(R))∩Lq/2(IT ;W(F Lr′ ,Lr)), if d = 1;

(ii) u ∈C (IT ;L2(Rd))∩Lq/2(IT ;W(F Lr′ ,Lr))∩

∩L2(IT ;W(F L2d/(d+1),2,L2d/(d−1))),if d > 1.

Proof. It is enough to prove the case d = 1. Indeed, for d ≥ 2, condition (55) implies p > 2, so

that F Lp′

,→ Lp and the inclusion relations of Wiener amalgam spaces yield W(F Lp′

,Lp) ,→
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W(Lp,Lp) = Lp. Hence our class of potentials is a subclass of those of [6, Theorem 6.1], for

which the quoted theorem provides the desired result.

We now turn to the case d = 1. The proof follows the ones of [9, Theorem 1.1, Remark

1.3] and [6, Theorem 6.1] (see also [49]).

First of all, since the interval IT is bounded, by Hölder’s inequality and by taking p large,

we may assume 1/α+d/p= 1.

We choose a small time interval J = [0,δ] and set, for q ≥ 2, q 6= 4, r ≥ 1,

Zq/2,r = Lq/2(J;W(F Lr′ ,Lr)x).

Now, fix an admissible pair (q0,r0) with r0 arbitrarily large (hence (1/q0,1/r0) is arbitrarily

close to (1/4,0)) and set Z =C (J;L2)∩Zq0/2,r0 , with the norm ‖v‖Z =max{‖v‖C (J;L2),‖v‖Zq0/2,r0
}.

We have Z ⊂ Zq/2,r for all admissible pairs (q,r) obtained by interpolation between (∞,2) and

(q0,r0). Hence, by the arbitrary of (q0,r0) it suffices to prove that Φ defines a contraction in

Z.

Consider now the integral formulation of the Cauchy problem, namely u=Φ(v), where

Φ(v)= eit∆u0 +

ˆ t

0
ei(t−s)∆V (s)v(s)ds.

By the homogeneous and retarded Strichartz estimates in [6, Theorems 1.1, 1.2] the following

inequalities hold:

‖Φ(v)‖Zq/2,r ≤ C0‖u0‖L2 +C0‖V v‖Z(q̃/2)′ ,r̃′
, (56)

for all admissible pairs (q,r) and (q̃, r̃), q > 4, q̃ > 4.

Consider now the case 1≤α< 2. We choose ((q̃/2)′, r̃)= (α,2p/(p+2)). Since v ∈ L∞(J;L2),

applying (13) for q = 2 we get

‖V v‖
W(FLr̃ ,Lr̃′ ) . ‖V‖

W(FLp′ ,Lp )‖v‖L2 ,

whereas Hölder’s Inequality in the time-variable gives

‖V v‖Z(q̃/2)′,r̃′
. ‖V‖

Lα(J;W(FLp′ ,Lp ))‖v‖L∞(J;L2).

The estimate (56) then becomes

‖Φ(v)‖Zq/2,r ≤ C0‖u0‖L2 +C0‖V‖
Lα(J;W(FLp′ ,Lp))‖v‖L∞(J;L2). (57)

By taking (q,r) = (∞,2) or (q,r) = (q0,r0) one deduces that Φ : Z → Z (the fact that Φ(u) is

continuous in t when valued in L2
x follows from a classical limiting argument [9, Theorem 1.1,

Remark 1.3]). Also, if J is small enough, C0‖V‖Lα
t L

p
x
< 1/2, and Φ is a contraction. This gives
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a unique solution in J. By iterating this argument a finite number of times one obtains a

solution in [0,T].

The case 2≤α<∞ is similar.

This result generalizes [6, Theorem 6.1], by treating the one dimensional case as well

and allowing the potentials to belong to Wiener amalgam spaces with respect to the space

variable x. Other results on Schrödinger equations with potentials in L
p
t L

q
x can be found in

[9].
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