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ABSTRACT

We reduce the construction of a weak solution of the Cauchy problem for the Navier-Stokes
system to the construction of a stochastic problem solution. Under suitable conditions we
solve the stochastic problem and prove that simultaneously we obtain a weak (generalized)
solution to the Cauchy problem for the Navier-Stokes system.

RESUMEN

Nosotros reducimos la construcciéon de una solucién débil de un problema de Cauchy
para el sistema de Navier-Stokes para la construccién de la resoluciéon de un problema
estocastico. Bajo condiciones convenientes resolvimos el problema estocastico y probamos
que simultdneamente obtenemos una solucién débil (generalizada) para el problema de
Cauchy del sistema de Navier-Stokes.
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1 Introduction

The main purpose of this article is to construct both strong and weak solutions (in certain functional
classes) of the Cauchy problem for the Navier-Stokes (N-S) system

0
a—?—i—(u,V)u:l/Au—Vp, u(0,7) = ug(z), =€ R (1.1)
divu = 0. (1.2)
Here u(t,z) € R®,x € R3,t € [0,00) is the velocity of the fluid at the position x at time ¢ and v > 0
is the viscosity coefficient. p(t,x) is a scalar field called the pressure which appears in the equation
to enforce the incompressibility condition (1.2). There exists a number of papers [1] — [4] and others
where the system (1.1), (1.2) was treated from the probabilistic point of view on the base of stochastic
models.

In particular in our previous paper [1] the system (1.1), (1.2) was reduced to a probabilistic
problem presented in the form of the following system of equations

dé(r) = —u(t — 7,&(7))dr + odw(T), (1.3)

ult,) = Bosuo(€(t)) + / Vp(t — 7, £(r))dr] (1.4)

p(t, ) = 2E[/OO N (t,x+ B(t))dt] = 23[/00 [Vl (¢ + B(t))de]. (1.5)
0 0

Here 0 = v/2v, w(t) and B(t) are independent standard Wiener processes valued in R?, Tr[Vu)? =
Zik:l ViupViu;. It was shown in [1] that if the initial value ug is a C3- function the functions
u(t,z), p(t, z) given by (1.4), (1.5) are C?T< solutions of (1.1), (1.2) for 0 < o < 1.

In the present paper we consider an alternative probabilistic system which allows to construct a
weak (distributional) solution to (1.1), (1.2). The approach developed here is based on the theory of
stochastic flows due to Kunita [5], [6] and the results due to Belopolskaya and Dalecky [7], [8].

The article is composed as follows. In section 2 we give some preliminary information concerning
different analytical approaches to the notion of a solution of the Navier-Stokes system. Here we recall
some common ways to exclude the pressure and to obtain a closed equation for the velocity, introduce
necessary functional spaces and state various notions of solutions to (1.1), (1.2). In section 3 we state
our approach and prove main results. In the last section we compare our approach and results with
the Euler-Lagrange approach to incompressible fluids developed by Constantin and Iyer [9],[10].

2 Preliminaries

Within a classical approach to the N-S system one excludes the pressure from (1.1),(1.2) and inves-
tigates the resulting nonlinear pseudo-differential equation. To this end first one can derive formally
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from (1.1),(1.2) the relation
—Ap(t,x) = FY(ta I)a (21)
where X
vt x) = Z Viu;Viug = Tr[Vu]> =V - V- u® u. (2.2)
k.j=1

Then given an R3-valued vector field u(t) over R® the operator P is defined by
Pu(t) = u(t) — VATV - u(t). (2.3)
Here and below u - v denotes the inner product in R? of the vectors u and v.

The map P called the Leray projection is a projection of the space L2 (R?) = L?(R?)? of square
integrable vector fields to the space of divergence free vector fields.

Since the formal solution of the Poisson equation (2.1) is given by
p=A""y=A"'V.V.uxu (2.4)

one can present Vp in the form
Vp=VA™'V.-V-u®u

keeping in mind that dive = 0. Substituting this expression for Vp into (1.1) one obtains the following

Cauchy problem

% =vAu—-PV - (u®u), u(0)=up. (2.5)

When (2.5) is solved then the pressure is reconstructed from the Poisson equation (2.1).

The Leray projection P is used to solve the N-S system both in numerous analytical papers (see,
e.g., [11] for references) and in papers where the N-S system is studied from the probabilistic point of
view [2],[3], [10]. In this paper we avoid the direct application of the Leray projection and construct
the solution of (1.1), (1.2) via stochastic processes associated with (1.1) and (2.1).

To give a rigorous definition of a solution for the N-S system we have to specify the required
functional spaces.

Let D = D(R3) = C° denote the space of all infinitely differentiable real valued functions on R?
with compact support equipped with the Schwartz topology and let D’ be its topological dual. Let
(o, ) = fR3 ¢(z)(x)dz denote the natural coupling between ¢ € D and ¢ € D’. If it will not lead
to misunderstandings we will use the same notation for vector fields u and v as well, that is

3
(o) = [ > hi(@)ug(a)da,
RS
k=1

Let D((0,T) x R?) = (D'((0,T) x R?))? denote the space of R3-valued vector fields h with components
hi € D and D’ denote the space dual to D(R?).

The Leray weak solution of the N-S system on [0, 7] x R3 is a vector field u(t, z) in (D'((0,T) x
R3))? such that u is locally square integrable on (0,7) x R3, satisfies div v = 0 and there is a
distribution p € D'((0,T) x R?) such that

ou

Fri vAu—V - (u®u) — Vp, }EI(I) u(t) = uo (2.6)
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holds in the sense of distributions.

The Kato mild solution is a solution u to the following integral equation

u(t) = e®ug — /Ot eI=IAPY - (u @ u)(s)ds. (2.7)

Note that instead of looking for w(t, z) and p(¢,z) one may look for their Fourier images i(\) =
(2m)~ f s € —ixzy(x)dz. The Leray and Kato approaches stated in original terms and in terms of
the Fourier transformation of the Navier-Stokes system were developed in a number of papers (see,
e.g., references in the book by Lemarie-Rieusset [11]).

Below we will need as well the following functional spaces:
the space C(R?, R™) of bounded continuous functions mapping R? to R,

the space C(R3, R') = C(R?) of bounded continuous real functions f with the norm ||f]|s =
supzers|f(z)];

the space C(R?) of bounded continuous vector functions with the norm ||u||cc = sup,cps||u(x)]|,
where || - || is the norm in R3;

the space Co(R?) of continuous vector functions with compact supports; the Banach space L7 (R?)
of integrable functions f with norm || f|lq = (fs ||f(:1c)|\qu)%,

the space C¥(R?) of k-times differentiable functions with the norm ||g||cx = 2181<k 1DPg||o;
the space C*%(R3) (for a natural number k) of vector fields whose k-th derivatives are Hélder
continuous with exponent a, 0 < o < 1 with norm
lgllcxa = llgllex + [9lk+a

and
|DPg(x) — DPg(y)|
|z — y|*

[g]k+06 = Z sup
|Bl=k "YER?
Let Z denote the set of all integers, and suppose that k € Z is positive and 1 < ¢ < co. Denote
by W#4 = Wk4(R3) the set of all real functions h defined on R? such that h and all its distributional
derivatives V*h of order |a| = 3" a; < k belong to LY(R?). It is a Banach space with norm

Iy = (3 / D% h(z)|dz)’s (2.8)

|| <k
Denote by W(f’q the subspace of functions from W*4 = W*4(R3) with compact supports.

Finally we will need some spaces of locally integrable functions. Let G C R?® be a bounded
domain, p be a positive integer and f : G — R' be a Lebesgue measurable function. The set of
functions {f : [, |f(x)[Pdz < oo for all compact subsets K C G} is denoted by Lj

loc and called a

space of p- locally integrable functions. Although L7 (G) are not normed spaces they are readily
topologized. Namely a sequence {u,} converges to u in L} (G ) if {up} — v in LP(K) for each open
K having compact closure in G and ||u||pi0c = ([} [|u(z)|Pdz) P < 0.

In a natural way one can define the spaces W¥9 and LY (G) of vector fields with components

loc
in W*? and in L (G).
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3 A probabilistic approach to the Navier-Stokes system

Let us come back to the Navier-Stokes system written in the form

ou o? 3
E—F(U,V)u: 7Au—Vp, u(0,z) =up(x), z€R (3.1)

~Ap =1~ (32)
with 7 defined by (1.3).

Our main purpose in this section is to construct a diffusion process that allows us to obtain a
a weak solution to (3.1), (3.2) via its probabilistic representation. To be more precise we intend to
reduce the system (3.1), (3.2) to a certain system of stochastic equations and to construct its solution.
Then we have to verify that in this way we have constructed a weak solution of (3.1), (3.2).

As above let w(t), B(t) be standard R3-valued independent Wiener processes defined on a prob-
ability space (2, F, P). Given a bounded measurable function f(z) and a stochastic process £(t) we
denote Es . f(£(t)) = Ef(&s,(t)) the conditional expectation under the condition &(s) = x.

Given a function g(¢,z) € R3, a smooth (in z) function ¢(t,z) € R', t € (0,00),z € R? and a

constant o we consider stochastic processes £9(t) and A(t) satisfying the stochastic equations

dej(t) = g(t,&5(t))dt — odw(t), &5(0) =y € R’

t
A® =0~ [ V(o) (3.3)
0
where gbg_’t denotes the stochastic map in R® generated by the process £9(t), (bgyt(y) = &J(t). The map
¢4, R* — R is called a stochastic flow.

The processes £9(t) and A(t) are auxiliary ones. The main role in our considerations is played by
the stochastic flow ;¢ which is an inverse flow to ¢o.¢, ¥r.0(Po,(y)) = y. To construct the flow 1y o
we need the process w(#) = w(t — 0) — w(t) which is proved to be the standard Wiener process.

Here we use the results of the Kunita theory of stochastic flows [5],[6] and extend them to the
case of stochastic processes associated with nonlinear PDEs.

Actually we consider the closed system

dipy o(x) = —u(l, Yre(x))d0 + odw(0), YPii(x) =z, (3.4)
u(t.2) = Bluo(tro(a)) ~ [ Vp(r. v (0)dr], (3.5)
0
_oVp(t z) = E] / %’y(t, 2+ B()B(r)dr], (3.6)
0

where 7 is given by (1.3) and look for a solution wu(t,z), p(t, ), ¢(x) of this system under some
assumptions on the initial data ug to be specified below.

To construct the solution of (3.4)- (3.6) we consider its differential prolongation. Namely, we
consider the following formal relation

dn®(0) = =Vu(0,ro(x))n"(0)do, n*(t) =1, (3.7)
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where I is the identity matrix acting in R?, and one of two formal relations for Vu(t, z)

Vult,2) = E [Vuowt,om)nf (1) - / Vip(r, wt,m:))nf(r)dr] | (3.8)
Vu(t, z) = [Vuo(wto L Ttw_t; z)) / nw(e)dw(e)dT] (3.9)

Note that to derive the second term in the right hand side of (3.9) we need a specific integration by
parts formula called the Bismut-Elworthy-Li formula [12].

Since  the system (3.3)- (3.8) is a closed system with respect to
(We.0(x),n" (t), u(t,x), p(t,x), Vu(t,z)), we aim to prove the existence and uniqueness theorem for
its solution. At the end we check that the functions (u(t, x),p(t,z)) given by (3.4)— (3.5) satisfy (3.1),
(3.2).

To construct the solution of (3.4)— (3.8) we consider a system of successive approximations and
prove their convergence.

Set

ul(t, x) = uo(x), 1/)?70(:17) =z, p(t,r)=0 (3.10)

and consider stochastic processes wf_ﬂ(gc), vector fields u*(¢, z) and scalar functions p*(¢,z) given by
the following relations

Ay = —u¥ (0,07 9)d0 + odid (), pf, =z, (3.11)
W41 00) = Blualwfalo) — [ V0 k()i (3.12)
o (1) = / " Bl (tx + B (3.13)
0
where
AR (t, ) = Tr[Vub)?(t, z)]. (3.14)

Finally, we consider 7;, 9 , VuktL(t, ) and VpkTi(t,z) defined respectively by

dnjy = —VuF(0,4F ) niydo,  mit =1, (3.15)
and ,
VL (t, 2) = E[Vuo (v (2))nf s — / V2E () ) L dr ], (3.16)
0
>
—2Vprti(t, z) :/ —E[y*(t,z + B(r))B(7)]dr. (3.17)
0 T

Note that for £k = 1 we have

g = —uo(0, Pr)d0 + odw(9), i, =z
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that is we can solve the stochastic equation (3.4) independently on (3.5)-(3.6). Then given the process
wtl)o(x) and keeping in mind the properties of the function p' that satisfies the Poisson equation

—Ap'(t,x) ="t @), (3.18)
we compute u! (¢, z) from (3.12). Next we compute Vu' (¢, z), Vp!(t,z) from (3.16), (3.17) and proceed
to k= 2.

To prove the convergence of the successive approximations obtained in this way we need to derive

some apriori estimates.

Let g(t,7) € R® be a given bounded Lipschitz continuous function on [0, 00)x R3. Set g(t, ¥ (t, z)) =
g(t) o ¥(t)(x) for any functions (¢, =) € R3).

Consider the stochastic equation

Ay} g = —g(0) o Y} ydf + odi(0), ¢, (z) == (3.19)
and define the vector fields u9 (¢, z) and Vp?(t, x) by

u?(t, ) = Eluo(¥{o(z)) —/0 Vp!(r, 9, (x))dr], (3.20)
—2p9(t,z) = /00 E[y9(t,z + B(7))]dr, (3.21)
0
where
YI(t,z) = Tr[Vgl*(t, z). (3.22)

We derive formally from (3.21) by the integration by parts formula (Bismut — Elworthy — Li
formula [12]) that

>~ 1
VIt z) = / E[L49(t, 2 + B(r))B(r))dr. (3.23)
0 T
Below we will describe the conditions on v which justify (3.23).

Condition C 3.1 Let g(t,7) € R® be a divergent free vector field depending on time and defined
on [0,T] x R® for a certain constant T > 0. We assume that g(t) belongs to C1'*(R3),0 < a < 1 for
a fixed t € [0,T] and satisfies the following estimates:

Lo lg®)lgi0e < Ng(t) for some g to be specified below, ||g(t)||c < K4(t) and
lg(t,z) — g(t,v)| < Le@)lz —yll, [IVg(t,z) — Vg(t,y)| < Lyt)]|z -yl

2. Vgl < Kg(t), [[Vg(®)]

Here K4(t), Ly(t), Ny(t) and K}(t), L}(t), N, (t) are positive continuous functions defined on an
interval [0,T] with T >0, r =m andr =q for 1 <q< 3 <3 <m < oc.

1
r,loc < Ng (t)

Set ¢9(7) = ¥ () and consider the stochastic equation

wg(T)zx—/ g(n,w(n))dﬁJr/ cdi(m), (3.24)
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with 0 < 7 <t < T. When we are interested in the particular dependence of the process 19(7) on
the parameters t, 2 we write 19(7) = { (1) or ¥9(7) = ¥ ().

Lemma 3.1 Assume that C 3.1 holds. Then there exists a unique solution ¥9(7) of (3.24) and
the following estimates

t

B () < 3Jal + 0%t — ) + (¢~ ) [ (i3] (3.29
B4 () — vty (] < [l — ylef? 20, (3.20

t
B2 (r) = 6 ()] < [ llo(r) = gi(r) e Lo CED)

hold.
Proof. The proof of the estimates of this lemma is standard and based on estimates of classical

and stochastic integrals. We only show the proof of (3.26). In view of C 3.1 we have

t
B[ ,(7) = o, (DIl < |z =y +/ Lo(m)llf o (1) = ¥ (1) [ dm
where 0 < 7 <t < T with some constant 7" to be chosen later. Finally, by Gronwall’s lemma, we get

B[ o(r) =, (D)l < ||z —yllel #+O%. 0

Along with (3.19)-(3.22) we need the equations for the mean square derivative n9(t) = Vi/{ o(x)
of the diffusion process ¢f () that satisfies (3.19), and the gradient v(t,z) = Vu9(t, z) of the function
u9(t, x) given by (3.20).

Lemma 3.2 Assume that C 3.1 holds. Then the process n™9(1) = Vi (x) satisfies the
stochastic equation
(1) = =Vg(r, 47 (@)™ (r)dr,  q™9(t) = I. (3.28)
The process "9 (1) possesses the following properties.
The determinant det n8(7) is equal to 1, i. e. detn?(1) = J;» = 1 and
Ely™9(r)|| < el K% (3.29)

Eln®9(r) = n??(7)|| < Cllz —yll (3.30)
with some positive constant C depending on t, T and g.

In addition the following integration by part formula is valid

@i (r)de = [ flx)dz, feLYR). (3.31)
R3 R3

Proof. Under C 3.1 the first statement immediately follows from general results of the stochastic
differential equation theory. By direct computation one can check that J;  satisfies the linear equation

th_’T = —dZ’U g(ng)Jt,rdﬂ Jt,t = I
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and since divg = 0 we get the second statement. Besides 1/1277 , is a C! stochastic diffeomorphism
(see [5]) and hence the integration by part formula (3.31) holds. Finally (3.29) is deduced from the
inequality

t
Ell9(r)| <1+ / K2 (0)E||9(6)) 6
by the Gronwall lemma.

One can easily check that for the solution n®9(t) of (3.28) we have

t
Blly™a(r) = () < [ BIV0(0.08 () = V(6. )asel? 150 <

t
B [ YOI o@) ~ vlsw)do
and by (3.26) we derive (3.30). O
Let us state conditions on the initial data ug of the N-S system.
We say that C 3.2 holds when

i) for some 0 < o < 1 the initial vector field ug € CgT*(R?) satisfies the estimates

[uollse < Ko, [IVuollse < Kp,  ltt0llrioc < Mo, [[Vtollrioe < My

with some positive constants Ko, K}, Mo, M} and 7.
ii) ug and Vug are Lipschitz-continuous with positive Lipschitz constants Lo and L{ respectively.

Keeping in mind conditions C 3.1 and C 3.2 we derive estimates for u9(t) defined by (3.20) on
a certain time interval [0, T] and its gradient Vu9 (¢, z).

Lemma 3.3 Assume that g(t, x) satisfies C 3.1 and ug satisfies C 3.2 with r = q and r = m for
1 <q<3<3<m<oc. Then the vector field u?(t,z) given by (3.20) satisfies the estimate

[ (t)]|oe < Ko +/0 Cam K g(DIVa(T)llg.t0c + IVg(T) lm.toc)dr. (3.32)

Under the conditions of this lemma the proof of (3.32) can be easily obtained by a direct compu-
tation from (3.20) using the estimates of the Newton potential given in lemma 3.4 below.

Lemma 3.4 Let G C R® be a bounded domain and 9 € L9(G) N L™(G) for some 1 < g < 3 <
3 <m < oo and

—Ap(t,z) =~9(t,z), =z €.

Then ||[Vp?|loo < Com (17l g,t0c + 179 ]lm,10c) and
IViViplloo < CUI77 Nl t0c + [V]a)-
3. Let v9 € L"(G) for 1 <r < 0o.Then p? € W?"(R?) and the Calderon- Zygmund inequality holds

||v2pg||r,loc S Cl H'-YgHr,loc-
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The proof of these estimates for a solution of the Poisson equation can be found in the book by
Gilbarg and Trudinger ([13] Th 9.9). The probabilistic proof of some of these estimates can be found
in [4]. O

Lemma 3.5 Assume that the conditions of lemma 3.3 hold and u9(t,x) is given by (3.20). Then
the function Vu9(t,z) admits a representation of the form

Vu(t, z) :E[VUO(U’go(I))nm’g(t)—/o V2D (7, 9] () )™ () d7) (3.33)

and the estimate
Va9 () oo < edo a9 g 4

t
t 1
[ SO D0 o + 1790 sl (3:34)

holdsfor1<q<%<3<m<oo,0§t§T.

Proof. The formal differentiation of (3.20) in z justified by C 3.1, C 3.2 and the results of lemma
3.4 yields (3.33). To verify the estimate (3.34) we use the above estimates for the process n™9(t) and
the estimates of the Newton potential derivative from lemma 3.4. Hence we obtain

t
IV ()]0 < KL / K (6)d0+ (3.35)
0

t
/0 C‘JmefT Kg(e)de[HTr[VQ(T)]Q”m,loc + HTT[VQ(T)]QHIJJOC]dT]

that immediately leads to (3.34). O
Now we have to derive the estimate for the function ||Vu(t)||r.10c-

Lemma 3.6 Assume that the conditions of lemma 3.3 hold. Then for 1 < r < oo the gradient
of the function u9(t,x) given by (3.20) satisfies the estimate

t
196 Ol o0 < 2550 | [Tl +C [ 150t (3.36)
0

where 0 <t < T and C depends on r and T'.

Proof. Let us derive the LP- estimate for Vu9(t,z) given by (3.33). To derive the estimate for
IVuI ()7 10e = Jrc IVUI(t,2)||"d2 (where K is an arbitrary compact in G) we apply first the triangle
inequality to obtain

[Vud ()||r10e < a1 + g,

where
-

ar = E[|[Vuo (i ()™ ()] ")da |
(s )

=y

a%(AAEWW@ﬁmWW%WMQ

To estimate a we apply the Holder inequality and take into account the inequality (3.29) for the
process 79 (7). Besides we recall that ¢, - (x) preserves the volume. As a result we have

ap < (/K(E[IIVuo(wi’,o(I))lQ]E[Inx’g(t)IQ])%daf))% < [Vl soceo (@40,
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To derive the estimate for ay we deduce from the Calderon-Zygmund inequality (see lemma 3.4)
and the estimate of ™9 (t) that

t T 1
ah < CT/O elo Ky(a)deK;(T)/Kva(T,.I')”Td(EdT.

Combining the above estimates for a; and ay we obtain the required estimate

VU9 () |r.t0e < €0 Ko @ [|Tug]|,. 1oc+

t
Cr [ e KO V(o) |

Finally we get
t
|wwwum£8“”@”UVWMM+C/WVMﬂMM“y
0

where C' depends on r and 7. O

Theorem 3.7 Assume that conditions C 3.1 and C 3.2 hold. Then there exists an interval
Ay =[0,T4] and functions «a(t), 5(t), k(t) bounded for t € Ay, such that, if for allt € Ay, ||g(t)||cc <
k(t) and [Vg(t)|loo < al(t), [Vg(#)|lri0ec < Br(t) then the function ||Vud(t, )| (where u9(t,x) is given
by (3.20)) satisfies the estimates

[u?Ollee < K(t), V@) < alt), Ve @) 10e < Br(t) (3.37)

forrzqandr:mand1<m<%<3<q<oo.

Proof. Analyzing the above estimates (3.35), (3.36) for the functions u9(t, ) and Vu9(t,z) we
note that to prove the required estimates it is enough to construct the solutions of the following
integral equations

t
a(s) = eld "(G)deKé + Cqm/ els O‘(e)dea(T)[nq(T) + N (7)]d, (3.38)

ne(s) = els MO 7y ]|, + C, /t el 200y (Dya(r)dr (3.39)
for r = g and r = m and Cy,,, = maz(Cy, Cy,) and S
B(s) = el- 2O, 4 ., / Ll 00 (1)3(7)dr, (3.40)
where (7) = ng(7) + nm(7), and
[Vuollg,i0c + Vo l[m,toc = 14(0) + 1m (0) = Bo.

To construct the solution of the above system of integral equations (3.40)-(3.42) we consider the
system of ODEs

(Cll—j = —az(s) — Cyma(s)B(s), «aft) = K&, (3.41)
B _(5)8(s) = Coma(s)B(s)s B(E) = Bo. (3.42)

ds
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By classical results of the ODE theory we know that there exists an interval [0, 71] depending on K¢, Na
and C, Cyy, such that the system (3.41), (3.42) has a bounded solution defined on this interval.

To prove the convergence for k — oo of functions u*(t, x), Vu*(, ) we need one more auxiliary
estimate. Actually, we have proved that u*(t) is Lipschitz-continuous with the Lipschitz constant
independent of k. It remains to prove that Vu*(t) has the same property.

Lemma 3.8 Assume that C 3.1 and C 3.2 hold. Then the function Vu9(t, z) defined in lemma
3.5 admits a representation of the form

YVl (t,x) = E[Vuo(¢io(x))n™ (t)—

t

/0 g(tl_T)Vpg(T,wf,T(:v)) / 0”9(0)di(0)dr] (3.43)

T

and satisfies the estimate
IVu (t,2) - Vs, )]l < N9 (®)lw — || ift € [0,T3]
for any x,y € G where G is a compact in R® and the positive function N{(t) depending on the

parameters in conditions C 3.1 and C 3.2 is bounded over the interval [0,T}] defined in theorem 3.7.

Proof. To derive (3.43) we compute directly the gradient of the first term in (3.20) and apply the
Bismut-Elworthy -Li formula [12] to compute the gradient of the second term in this relation. Next we
use the representation (3.43) to deduce the Lipschitz estimate for the gradient of the function u(t, x)
. As a result we have

(IVud(t, ) — Vud(t,y)|| < k1 + k2 + K3 + Ka,

where

k1(t) = Ell|Vuo(vio(x)) = Vuo (¥ o () 0™ @)]]],

ra(t) = E[[Vuo (@i (y))lllln*?(0) — 12 (0)]],

ea(t) _/OtE { IIVpg(Wf.,T(i)()t_Y)pg 790, (y ”/ |] ar.

i) = [ B [ 190t )l [ o) - nyﬂ(e)]dw(e)u} ar

One can easily check using the estimates stated in lemmas 3.3 — 3.5 that under the conditions C
3.1, C 3.2

t 1
k1(t) < LEE|0f o() - wf,0<y>|\efo K50
I — Yl el s OO0 — @y 7 — |

and

t
t 1
ka(t) < K Elln™9(t) = " (t)]| < ||z — | / K, (0)ele a0 dg — ©s|z — y]|.
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To derive the estimates for r3 and x4 we apply the inequalities ||V;V;p?|c < C(|[7]lg.10c +
Y)1,6)s IViViD9 | r10e < |79 |5 10c from lemma 3.4. This yields

i) < [ B[ 19D oD o] ar <

/t (Bl (@) = e )II?)?
0 ot—T1

g t
ol / 19 (ltor + B (Dlsa e s o104,

72 (D)llqt0e + V9 (P)]1.c) el Ka @ g <

o t—T

t
0301z~ yllo~! <supo<f<t[ﬁ(r>]x/% +f jﬂ—;ﬁr)

and

* CamI" O lasor + 1T lmtod) 1 vy — vy Py
ki) < | — (Bl (r) =9 (r)*)

@ m m
2supocr<B(7) |z — / 92l 47— 90,1 — 4| 2250

Here O3 = efo Ko(Mdr, s(1) = [v9(7)1,¢ and B(7) is defined in theorem 3.7. Finally, combining the
above estimates for k;, ¢ = 1,2, 3,4, we obtain

t
s(t) < O5 + @6/ 5(r) dr
0
and applying the Gronwall lemma we derive the estimate
s(t) < O5e0Vt

where ©;,7 = 5,6 depend on the parameters in conditions C 3.1 and C 3.2, 0 and T} for 0 < ¢ < T7,
where T is defined in theorem 3.7. O

The estimates of theorem 3.7 and lemma 3.8 allow to prove the uniform convergence on compacts
of the successive approximations (3.10)-(3.14) for the solutions of the system (3.4) — (3.6) in C(]0, T1],
CY(K))nC([0,T1], L™(K) N LY(K)) for 1 < ¢ < 2 <3 < m < oo and arbitrary compact K in G.
In particular, they justify the possibility to differentiate the system (3.10)-(3.14) in z for each k and
to consider the following equations

k,x x,k x,k
gy = —Vuk (0,985 do, nly =1, (3.44)
where I is the identity matrix acting in R® and

VubtL(t, z) = E[Vuo( kH( ))77t

/O O_(tl_T)Vpk“(m/fﬁT(x))/ ey du(0)dr], (3.45)

oVt ) = /O - %E[yk(t, 2 + B(r))B(r)]dr, (3.46)

where % = Tr[Vu*]2.
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Now we can prove the following assertion.

Theorem 3.9 Assume that C 3.2 holds. Then if k — oo the functions u*(t), Vu*(t,z) deter-
mined by (3.11) and (3.45) uniformly converge on compacts to limiting functions u(t), Vu(t) satisfying
(3.4) and (3.8)and u(t) € C([0, T3], C1®), Vu(t) € C([0,T1],C*),0 < a < 1 for all t € [0,T1]. Here
[0, T1] is the interval where the solution (a(t), (t)) of the system (3.41), (3.42) is bounded. In addition
the estimates || Vu(t)||oo < a(t) , [|[Vu(t)||gi0c < B(t) hold for 1 < q < 3, t € [0,T1].

Proof. By theorem 3.7 we know that the mapping

2(t7.9) = B [ua(wy(e)) — [ V090701, o))
acts in the space C»* N Ly 1oc N L joc (for a fixed ¢ € [0.73]) with 1 < ¢ < % <3< m< .
Consider the successive approximations (3.10) —(3.14) and (3.44) — (3.46), set
SE (@) = W (¢ @) — u (8 o)),
nFH(t, x) = [|[VuP Tl (t, x) — VuP(t, z)|

and

F(t) = 1" ()lloo,  mE(t) = 18" ()1 toc,
pE(E) = In*(O)lloos  CF(E) = 0" (1)

Then we obtain

Wt 2) < LY(ELI9Ey (@) — ks @i 1+
t
_ 1
Bllo@Ils =g ™ )+ [ oy BV (o))~

W @l [ fao@)lars

/0 U(tl pa) ['Vp (7, ¥ (@ ||/ b =iy lda ()] | dr. (3.47)

Recall that by lemmas 3.2, 3.3 we know that
t
sup B ho(e) =l (@) < [ [l () =~ ()l cJirels =00,
supE||nt0 —nf)’ok 1” </ Hvu uk L(r )||OodTef0 a(r)dr

+S“p/ B[V (7, 6 (1) = Vb (r, g (@) [dredi 2
T 0

and applying the estimates from theorem 3.7 we get

t
PPH(D) < elo ‘“(T)‘”[Lé/o sup Bllu*(r, 7, (2)) — o~ (7,087 (@) |ld7

t t
+ [ oy sup [ BT v (o) - Vbt @) ar+
0 z Jo '
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/t OV )V (D)lly + [V (7)Y (D)) (Bl (1) o @),
0

o\t —

3

t
| s s BIVS (o 0) = Vo (ol )P e o

To derive the estimate for the last term of the above inequality we recall (see lemma 3.1 and
lemma 3.4) that for 1 < ¢ < % the estimate

IVPE(t,2) = Vi*(t )| < [IV2pF () llsollz — gl <

Ol ()]

atoc + [V (O1clllz =yl

holds and as a result we obtain

E||[Vp"(r, ¢ - (2)) = VP (r, 057 (2)]] <
CB(r) + s(ME|[Yf () — v ()]
In addition
IVPF () = VD* () loo < Cam [ IV* () = 7* (#) g 100+
75 (E) = A (O)llmstoc] < Cama(@[ Ve () = Yk ()]l g 100+
IVu*(t) = Va1 (0) g t0c+
VU (E) = VuF () mtoe + [VUF () = VaE 1 () | toc)-

It follows from (3.47) that

n* it x) < C(t)[/o E|[Vu (7,4, (2)) = V(7,977 (@) |dr+

/0 n’C (r,z)dr] + —t_ Cl[||Vuk(7-)Vuk(T)||q+
HVuk*l(T)Vukfl(T)Hm]T(EHnI’k(T)— “h(r)2)2d

t
1 t 1
+/ ———cl- OBV (r, f (@) — VP (r, 0l (@))]P) 2 dr
0

o\t —T

By the Holder inequality we derive that for any positive f(7) € Ly o and mil +1=Tandm <2
we have for any compact G C R?

/K [ /0 t : \/tl__T Flra)dr] de < %t"(iﬁ“ /0 t /K (7, 2)dwdr. (3.48)

Then from (3.47) and (3.48) we have for r > 2

CHI(E) < Caf / / (Bl (r, 6F () — b= (r, 0l 2 (@) drdr ] +

tkTT t uFY T F (1) = VaF T (r, F T ()| dad T
/Ocrud +/O/K||v (r, 0 (2)) — Vb= (r, 051 (@) dacdr]
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+ / L o[V )T (@) g + IV () ()]
[

t—T1

t
1 t
E z,k _ Ik 1 2d d _|_/ ST a(6)do
/K( ™" (7) (7)II*) % dx]dr v

t—T1
/K (BIVP (r, 0 (2)) — Vo (r, 07 (@) 5 dadr.

For the function m¥(t) = ||u*(t) — u*~1(#)|,10c using the apriori estimates proved in lemmas 3.2
— 3.8 and theorem 3.9 we obtain

mE (1) < )l / /K Bl (r, 0k (2)) — o5~ (r, 071 (@) | dadr)

2—my t
T[] BTt @) Ve ok ()

Vb= (7, g (2) Vb (T (@) | dedr) 7] <

(/Otmf(”f”) (/ / BV () - f,l<x>||rdm)"+

L ([0 + o et ] .

Since u* and Vu* are proved to be uniformly bounded on [0, 7}] and

[Vut(t,-) — Vuo(-)||r10e < const < oo,

Hul(t7 ) - uO(')HT,loc < const < o0,

both for r = m and r = ¢ we obtain that there exists a bounded on [0, T3] positive function Ca(t)
such that the function x*(t) = p¥(t) + ¥ (t) + m” satisfies the estimate

[C2()]*
k!

KE(t) <

and hence limy_.o, k¥(t) = 0. Since all summands defining x*(¢) are positive we deduce that all of
them converges to 0 as k — oco. As a results we deduce that for each t € [0,71) the family u*(¢,)
converges uniformly on compacts and the limiting function u(t,-) € C** N Ly, j0c. In addition, we
can check that the limiting function Vu(t,x) is Lipschitz continuous in z. In fact, by lemma 3.8 and
theorem 3.9 for each ¢ € [0,T}], we have for any =,y € G

IVu*(t, 2) = Vu*(t, )| < s(t)]lz —yll,

where s(t) and T were defined above in lemma 3.8 and the estimate is uniform in k.

To prove the uniqueness of the solution of (3.4)-(3.6) constructed above we assume first that
there exist two solutions wui(t,x), ua(t,z) to (3.4)-(3.6) possessing the same initial data u1(0,z) =
us(0,) = uo(a).
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Computations similar to those used to prove the convergence of the family (u*(t), Vu*(t)) allow
to check that both

[Vui(t) = Vua(t)]oo =0 and  ||Vui(t) — Vua(t)|m,ioc = 0.

Finally, we know that a stochastic equation with Lipschitz coefficients has a unique solution of
the Cauchy problem. This implies the uniqueness of the solution to (3.4)-(3.6). O

Summarizing the above results we see that the following statement is valid.

Theorem 3.10 Assume that C 3.2 holds. Then there exists a unique solution 1, . (s), u(t, z), p(t, x)
of the system (3.4)-(3.6) for all t from the interval [0,T}], with Ty given by theorem 3.7 and © € K
for any compact K C G. In addition the process 1 .(s) is the Markov process in R® and u €
C([0,T1], CH*(K)) N C([0, T1], Lg,toc N Limtoc) for 1 < g < 3 <3 <m < .

Proof. First we note that as soon as we know that wu(t,z) is locally Lipschitz continuous by
classical SDE theory we know that the silution ¢ o(z) of the equation (3.4) is the Markov process in
R3. All other assertions of the theorem are already proved above.

To fulfill our program we have to check that the functions u(t, ), p(t,x) that satisfy (3.5) and
(3.6) define a weak solution of (1.5),(1.2).

Let us come back to the Kunita theory of stochastic flows [5], [6] and recall that given a dis-
tribution ug € D" and a stochastic flow 1}, one can define a stochastic flow ug o ¥}y as another
distribution satisfying (ug o 9y, h) = (uo,h o ¢g,Jo+). Here ¢f, is the inverse flow to 9. Since
any locally integrable function is a distribution, given ug and the solution ¢ o, u(t), p(t) of (3.4)-(3.6)
constructed above we consider a process A(t) € D’ of the form A(t) = ug — fot Vp*(7) o ¢f ,d7. Next
we consider the process

t
A(t) 0 4ty = g 0 o — / Vit () oy dr
0

and verify that a weak solution u(t) of (3.1) admits the representation u(t) = E[A(t)ov}o] and satisfies
(3.2).

By the generalized Ito formula we derive

t 2
A(t) oYty = uo + / %A[u(@) 0 1y o]dO+ (3.49)
0
/ Vu(8) o g olodw(d / Vu(8) o g olu(0)do — / Vp*(6)de,
where (3.49) is considered in a weak sense. Hence for Lu = —(u, V)u + %ZAU and the test function

h € D we have

E[/R /OtL(u(T)o ;{S(:v))dT-h(x)dx} - (3.50)

E [/Ot<u(7-) o L* h)dT] = /Ot L{E[u(T 0} y)], h)dT.
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As a result we deduce from (3.49) and (3.50)
¢ ¢
u(t) = E[A(t) o i) = uo + / LEu(t) o} gldT — / Vp(r)dr.
0 0

Differentiating each term with respect to ¢ we check that the function u(t) = E[A(t) o ¢¢] solves
the Cauchy problem (1.1). As soon as the function p(t) was constructed as a solution of the Poisson
equation (3.2) we can verify that (1.2) holds as well.

To summarize the obtained results we state the following:

Theorem 3.11. Assume that C 3.2 holds. Then the functions u(t), p(t) that solve (3.5),(3.6)
satisfy (3.1)-(3.2) in a weak sense for t € [0,T1] where Ty is defined in theorem 3.9.

Remark 3.13. We have proved that under condition C 3.2 the system (3.4)-(3.6) gives rise to
a weak solution of (3.1)-(3.2). Moreover, when the initial data are smoother, say ug € C*%, a € [0, 1]
similar considerations can be applied to verify that the pair u(t, z), p(t, z) given by (3.5)-(3.6) stands
for a classical C%2-smooth solution of (3.1), (3.2).

4 Lagrangian and stochastic approach to the N-S system

The probabilistic approach developed in the previous section is in a sense an analogue of the Lagrangian
approach developed for the Euler system which coincides with (1.1), (1.2) when o = 0. The classical
Lagrangian path starting at y is governed by the Newton equation

3‘2075(?1) = Fy(t,y). (4.1)

The force F in (4.1) has the form

Fy(t,y) = =Vp(t, do1(y) = = (Vo (1)1 " Vip(t, do.t(y))] (4.2)

and the incompressibility condition yields det(V¢g +(y)) = 1. One can deduce from (4.1) that

2[892’]5,15(9) 842’]5,15(9)] _ _aQ(ta g’o,t(y)) (4.3)
8t 8t 81]1 81]1 ’ '
where _
1 0¢o.(y)
alt.y) = plt.y) = 5=~ I (4.4)
summation over repeated indices is assumed. Integrating (4.3) in time we get
aé’g +(y) (r“)q;g +(y) on(t, éo +(y))
} ) — - — T 4
S T = ug(y) — TR, (4.5)
where .
n(t,y) = / q(r,y)dr (4.6)
0
and ug(y) = Whﬂ) is the initial velocity.
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Consider the inverse diffeomorphism ¢y o = [do,:] ™!, come back to (4.4), multiply it by [Vt
and put y = 1;,5)0(1'). As a result we obtain by the chain rule the relation

() = (a0 Ve o) — [ Vet e (@.7)

Hence the Euler equations are equivalent to the system consisting of (4.7) and the relation
An(t,z) = 5o~ O_fuk (i o(x ))8% “(I)} where n is given by (4.6).

Finally due to divu = 0 one can rewrite the equation of state (4.7) in the form

u(t) = Plug(ve.0)Vibro} = P{[Vibeol uo(dhe0)}, (4.8)

where P = I — VA~!V is the Leray projector. The Euler pressure is determined up to additive
constants by

p(t,2) = 20Ty (), it 0) + 4 )

When o # 0 one can develop an analogue of the Lagrange approach as follows. Let us choose ¢g; to

be generated by the stochastic equation

depo,g = u(8, ¢o,0)d0 + odw(B), ¢o,0(y) =v, (4.9)
next set
bo.0 = [¢o.0] (4.10)
and finally obtain the closed system by choosing
u(t) = EP[(ViPr,0)(uo 0 ¥t,0)]- (4.11)

The system (4.9) — (4.11) was studied by Constantin and Iyer [9], [10]. In [14] the existence and
uniqueness of the solution to (4.9) — (4.11) was proved by the successive approximation technique.

The main result due to Constantin and Iyer reads as follows:

Theorem 4.1 Let k > 1 and ug € CFt1® be divergence free. Then there exists a time interval
[0,T] withT = T(k,, L, ||uo| k+1,) but independent of viscosity o and a pair ¢o,.(x), u(t, ) such that
u € C([0,T],Ck*12) and (u,$) satisfy (4.9)-(4.11). Further there exists U = U(k,«, L, |[uo|/k+1.0)
such that ||u(t)||lk+1,o < U for ¢t € [0,T] and u satisfies the N-S system.

Comparing the system (3.4) — (3.6) and the system (4.9) — (4.11) we can check that the process ¥ ¢
given by (4.10) has the same distribution as the solution of (3.4). At the other hand the representations
for the velocity u and the pressure p in the above systems are different. In the system (3.4) — (3.6)
we avoid using the Leray projection and use instead the probabilistic representation of the Poisson
equation. This allows us to construct both strong (classical) and weak (distributional) solutions of
the Cauchy problem for the N-S system.

At the very end we remark that the approach developed in the previous section does not allow
to construct a solution to the Euler system as a limit of the solution to (1.1), (1.2) when o goes to 0,
since the appriori estimates in lemma 3.5 and lemma 3.8 cease to be valid.
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