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ABSTRACT

Let for s € {0,1,....,m+ 1} (m > 2), ]Réi)wrl be the space of s-vectors in the Clifford al-
gebra IRg ,,+1 constructed over the quadratic vector space IR*™ " and let 7,p, ¢, € IN be
such that 0 < r < m+1,p < ¢ and r + 2¢ < m + 1. The associated linear system of
first order partial differential equations derived from the equation 9,W = 0 where W is
Rér,ﬁf)l = ?:p EBIR((JT:j_Jl) -valued and 9, is the Dirac operator in IR™*", is called a gen-
eralized Moisil-Théodoresco system of type (r,p,¢) in R™. For k € N,k > 1, MT+(m+
1; k; ]R((f;z’_z)l), denotes the space of Réf;ﬁf)l—valued homogeneous polynomials W}, of degree
k in R™T! satisfying 9, W), = 0. A characterization of W), € MT+ (m+ 15 k; ]Rg;gf)l) is

given in terms of a harmonic potential Hy,1 belonging to a subclass of ]Rér’p )

o -valued

solid harmonics of degree (k + 1) in IR"™™!. Furthermore, it is proved that each W}, €
MTH(m+ 13k RYPY) admits a primitive Wit € MTH(m+ Lk + 1, IRJ29). Special
attention is paid to the lower dimensional cases IR® and IR*. In particular, a method is
developed for constructing bases for the spaces MT(4; k; jof ’q)), r being even.

RESUMEN

Paras € {0,1,...m+ 1} (m > 2), ]R((onJr1 el espacio de los s-vectors en el algebra de Clif-

RO,m+1

ford IRg,m+1 construida sobre el espacio de vectores cuadraticos sea 1, p,q, € IN

tal que 0 < r < m+ 1,p < q. El sistema lineal asociado de ecuaciones diferenciales
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parciales de primer orden derivado de la ecuacién 9;W = 0 donde W es R((Jrﬁ_z)l =

 p @]Rér;ijl) -valuada y 9, es el operador de Dirac en IR, es llamado un sistema de
Moisil-Théodoresco generalizado de tipo (r, p, q) en R™!. Para k € N,k > 1, MT+(m +
1; k; ]R((f;z’f)l), denota el espacio de polinomios homogéneos Wy, IR(({;ﬁ’f)l- valuados de grado
k en R™ 1! satisfaciendo 0, W}, = 0. Una caracterizacion de Wy, € MT+(m+1; k; R((Jrﬁ_z)l)
es dada en términos de un potencial arménico Hy41 perteneciendo a una subclase de
armonicos consistentes Réf;ﬁ’q)-valuados de grado (k4 1) in R™'. Ademais es probado
que todo Wy, € MT(m + 1;k; ]Rg;gf)l) admite una primitiva Wy,1 € MTT(m + 1;k +
1; ]Rérnﬁf)l) Una especial atencién es dada a los casos de dimensién baja IR® y IR*. En par-
ticular, un metodo es desarrollado para construir bases para espacios M T (4; k; ]R((L’lp ’Q)), r

siendo par.

Key words and phrases: Clifford analysis; Moisil-Théodoresco systems; conjugate harmonic fun-
tions; harmonic potentials; polynomial bases
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1 Introduction
Let fv: (fo, ?) with ?: (f1, fa, f3) be a IR*-valued C;-function in some oppropriate open domain €2

of R®.
In [20] it was pointed out that the Riesz system

div f=0
(R) - (1.1)
curl f=0
and the Moisil-Théodoresco system
div f=0
vy WS (1.2)

grad fo + curl ?: 0

are examples of natural generalizations of the Cauchy-Riemann equations in the plane to Euclid-
ean space IR®.
Obviously (1.1) may be derived from (1.2) by taking fo = 0.
For the original definition of the (MT)-system (1.2) we refer to [17].
The (MT)-system (1.2) may also be obtained by making use of the algebra H of real quaternions.

Indeed, consider in IR? the operator D3 = 0y, + 70z, + kO, where (i,j,k) is the standard set of
imaginary units in H, and associate with (fo, f) the H-valued function f = fo+if1 +jfo+kfs. Then

~ -

f = (fo, f) satistying (1.2) is equivalent to f satisfying the equation (see e.g. [15])

Dsf =0 (1.3)



CUBO On homogeneous polynomial solutions of generalized
12 2 (2010, Moisil-Théodoresco systems in Euclidean space 147

In [14] solutions to (1.3) were called H-regular.
In [20] the authors studied properties of solutions to more general first order linear systems in Euclidean
space generalizing the Cauchy-Riemann equations and having the property that they are invariant
under rotations. Among such systems figures in particular the Hodge-de Rham system

dw™ =0
HdR 14
(HaR) { v 14
w" being a smooth r-form.
Putting R™™! = {z = (z¢,z) : £ = (21, ..., ;) € IR™}, let us recall that for a smooth s-form w® =
Z|A|:swf4d:c‘4(0 < s <m+1) where for A = {iy,i,...,i5} with 0 < iy < iy < ... < iy, < m,dz? =
dz't A dx™? A ... A dx's | dw® and d*w® are defined by (see [16])

dw® = Z i Dy, wida’ N da?
A =0

and (1.5)

d*w® = Z (_1)jazij wé da\i)
A

Jj=1

Notice that if in (1.4), r = 1 and w! = uedz® + uydz® + uyda! + ... + u,,dz™, then

Ouj  dui _ ;o o,
dw!' =0 61; Oz —O,Z,] —0,...,m,z7£]
R (1.6)
dwl =0 Zan*O
YT izoc'“)xi_

Obviously, (1.6) generalizes to IR the system (R) in IR? defined by (1.1).
An (m+1)-system u = (ug, U1, ..., U, satisfying (1.6) was called in [19] a system of conjugate harmonic
funtions.
More generally, introducing the differential operator D = d + d*, its action on the smooth differential
form w = Z;n:'gl w® in © ¢ R™"! open, leads to the first order system of differential equations

d*wl =0
(d+dVw=0< ¢ dw® +d*w*?=0,5=0,....m—1 (1.7)
dw™ =0

Obviously, if w = w”,0 < r < m+ 1 being fixed, the system (1.7) reduces to the Hodge-de Rham
system (1.4).
In IR?, associating with ]7: (fo, f), the form w = w® + w? with w° = fy and w? = fida! A da? +
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fadz? A dz® + f3dx® A dat, then clearly (d + d*)w = 0 is equivalent with (fo, f) satisfying (1.2).
Let us now describe how the system (1.7) may also be obtained within the framework of Clifford

analysis.
Let IR®™ %! be the real vector space IR™ 1! equipped with a quadratic form of signature (0,m+1) and
let e = (ep, €1, ..., e ) be an orthogonal basis of R"™*! Furthermore, let IRo,m+1 be the universal

Ro,m-ﬁ-l

Clifford algebra constructed over . Then IRg 1 is a linear associative but non-commutative

algebra with identity and having dimension 2™*1.
The basic multiplication rules in IRg 41 are governed by

2 _ s
e; =—1,t=0,1,....m

eiej +eje; =0,1# 54,5 =0,1,..m.

A basis for IR 41 is given by the set (eq4 : A € {0,1,...,m},|A] = s,s =0,1,...,m+ 1) where
A={i1,...,is} with0 <4y <is < ... <is <mand eq = ¢;€;,...6;,,ep = 1 being the identity element
of IRo,m+1-

For s € {0,1,...,m+ 1} fixed the space ]Réi)wrl of s-vectors in IR 11 is defined by ]R((onJr1 =
spanyg (ea : |A| = s).

Obviously
m—+1

Ro,m+1 = Z @]Rg?THl (1.8)
s=0
Denote by [ |, the projection of IR ;1 onto ]R((fzn_kl.

For a 1-vector v and a s-vector w®, we have that vw® splits into

vw® = [vw’] 4 fow’] g,

where )
vw®],_, = 3 (vw® — (=1)° wv)
and (1.9)
s 1 s S s
[vw®], = 3 (vw® 4+ (—1)" w’v)

Introducing the Dirac operator 9, = S.i" €;0,, in IR™ "', then by (1.9) its (left) action on a
]Réi)nfl—valued smooth funtion W* in Q € IR™ "' open reads:

O W* = (0 + 0, ) W?

where

1 s
IFWe = [0, W], = 5 (0W* + (=1)° W*0,)
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and (1.10)

oW = [0, W), = % (O, — (=1)° W8,),

W#*0, meaning that J, acts from the right on W?*.
It thus follows that if the IRg 41 valued smooth function W in § is decomposed along (1.8), i.e.
W ="t W* with W* smooth and R{"), , ,-valued in €, then

o Wt=0
0 W=0<= < OfWs+9; W2 =0,5s=0,1,...m—1 (1.11)
IFW™ =0

Obviously, the systems (1.7) and (1.11) show some parallelism, which becomes fully clear if one
considers the isomorphism © between the spaces £ (Q; /\SIRmH) of smooth s-forms in 2 and the space

£ (Q; RS, +1) of smooth R, . -valued functions in Q.

Indeed, associate with w® = Z"A':S whdax? € & (Q; ASIRm+1) ,Ow® = W* = Z‘A‘:S Wiea €
& (Q; IR((fan) where for all A, W3 = wj.

Then clearly, through ©, the action of 9 and 9, on & (Q; ]R((fzn +1) as given in (1.10) corresponds,
respectively, to the action of d and d* on £ (Q; /\SlRmH).

Notice in particular that on & (Q; IRgSzn_H) ,0F2 = 0 and 9,2 = 0 whence, as 92 = —A,, A, be-
ing the Laplacian in IR™"", we have that on £ (Q; R ) Yo, +0,0F = -A,.

om+1 ) »¥Yxr Yz
In [5] smooth differential forms w satisfying (d — d*) w = 0 in  were called self-conjugate. It may be
easily verified that if W = Ow, then

(d—d)w=0<= Wo, =0. (1.12)

Now let € {0,1,...,m + 1} be fixed and let p,q € N be such that p < ¢ and r + 2¢ < m + 1.
Then by IR((JTWZi_z)l we denote the subspace of IRg 1 defined by

q
(rp,q) _ (r+25)
Ry, =D R 1
J=p

For a Réf;ﬁf)l-valued smooth function W in 2 which decomposes as W = Zq-:p W21 we have
(see also (1.11))

oy Wrte =
OW =0<= ¢ ofWrt2 4 9-Wr+20+) = 0,5 =p,....q — 1 (1.13)
oFWrta =9

The system (1.13) is called a generalized Moisil-Théodoresco system of type (r,p,q) ((GMT)-
system of type (r,p,q)). It was introduced in [1] where some general properties of solutions to this



150 Richard Delanghe CUBO
12, 2 (2010)

system have been investigated.

Of course, one could as well have considered the so-called (GMT)-system of type (r,p,q) adjoint to
(1.13) which corresponds to the equation W, = 0. By virtue of (1.12), putting w = ©~'W would
thus imply that w satisfies the equation (d — d*)w = 0.

In the case IR* we refer to [9] for the notions of the (MT)-system and its adjoint.

The aim of the underlying paper is to study the space MT™ (m +1;k; ]Rérngf)l) of ]Réf;ﬁf)l—valued
homogeneous polynomial solutions Wy, of degree k (k > 1) in IR™ ™! to the system (1.13).

The study of the space MT" (m + Lk R((Jrﬁ_z)l) is motivated by the fact that if W is a solution to
(1.13) in Q, then it is real-analytic in Q. This implies that if e.g. O € Q, then in some open ball
B (O, R) C Q,W admits a Taylor expansion

o0
1
W)=Y > —279"W(0),
=0 =k |
where as usual, for v = (70,71, .., Ym) € N1 |y = 37 vy = vl Aml, 27 = a2
and 97 = 9)°0)1...0)™.

Consequently, for each k € IN, k > 1,

Wi(z) = 3 %ﬁ@vvv(())
lyl=k '

is an element of MT(m + 1; k; ]R((J’”wii_"{)l)

The following results are obtained:

(i) Let IR, be the Clifford algebra constructed over IR™, the latter being the subspace of IR%™*!
spanned by e = (e, ea,...,e,,) and let ]RSCmH and ]RSCm be the even subalgebras of Rg ,,+1 and
Ro,m (see § 2).

Then the operator D, : H(m + 11k + 1;IR7,,,) — MTH(m + 1;k;IR{,,,,,) is surjective (Corollary
4.3). The operator D, is the conjugate of the Cauchy-Riemann operator D, = €9, in R™ where
ey = —eg and H(m + 1;k + 1; Rar)m) is the space of E{S:m—valued solid harmonics of degree k£ + 1 in
R™

Notice that in the case m = 1, ]R{;z = R ® ¢pe;IR = C (identify €pe; with the imaginary unit),
]Raf1 ~ JR and that %ﬁz = %(8960 — €pe10z, ) is nothing else but the operator 9, in R2.

Corollary 4.3 thus generalizes to IR™ 1! the classical result in complex analysis stating that each homo-
geneous holomorphic polynomial of degree k is the derivative (w.r.t. 9.) of a real-valued homogeneous
harmonic polynomial of degree k + 1.

Corollary 4.3 in fact follows from a more general result (Theorem 4.2), the proof of which relies heavily
on the existence of conjugate harmonic pairs (U, V) as treated in section 4.1 and on a refined version
of the Poincaré Lemmas for the case of r-forms with homogeneous polynomial coefficients (see section
3).
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(ii) In the case IR*, bases are constructed for the spaces MT T (4; k; ]Rgffm), r being even (see section
5). The fact that in studying (GMT)-systems of type (r, p, q), we may restrict ourselves to the case r
even has been shown in section 2.

(iii) It is proved in section 4.3 that each Wy, € MT*(m + 1;k; IR((JTWZi_z)l) admits a primitive W1 €
MTH(m+ Lk + LIRYZY), e, Wi, = Dy Wi

2 (GMT)-systems revisited

Let again IR 41 be the Clifford algebra constructed over the quadratic space IR%™ " with orthogonal
basis e = (eg, €1, ..., em) and let (e4 : |A] = s, =0,1,...,m + 1) be the standard basis of R y+1.

In (1.8), a decomposition of IRg 41 in terms of its r-vector subspaces ]Réz)nﬂ, r=0,1,...m+1, was
obtained:

m—+1
Ro,m41 = Z EBIR((JT,)HH (2.1)
r=0

The even subalgebra ]R(J)i m+1 and the odd subspace Ry ,,, 1 of Ro m+1 are defined by

IR(JJr,erl = Z @R&)nﬂ

Teven

and

Ry i1 = Z 69]]‘:{87:7)714*1'

Todd

Obviously

Ro.mt1=TRg 1 & R s (2.2)

The conjugation a — @ on IRg ;41 is defined by the basic properties

e, =—¢,1=0,1,....m

and

ab="> a,a,b € Ro,m+1

The factorization R™*! = IR x IR™ leads to the following third decomposition of IR m+1-
Restrict the quadratic form on R™™! to IR™, thus obtaining the quadratic vector space IR®™ with
orthogonal basis e = (eq, ..., € ).

Then inside IRg m+1, IR"™ generates the Clifford algebra IR, and clearly



152 Richard Delanghe CUBO
12, 2 (2010)

IRo,m+1 = IRo,m @ €IRo,m (2.3)

It thus follows that

+ _mnt = -
IRO,erl = IRO,m S eOIRo,m

and (2.4)

- - = M+
IRO,erl = IRO,m D eOIRo,m

Put M ={0,1,...,m} and ]\3[2 {1, ...,m} and consider the so-called pseudo-scalars e); = egey...em,
and 61\04 = ejea...ep, in, respectively, IRg 1 and R, p,.
If m+1 is odd, then clearly right multiplication by ej; determines an isomorphism a™ — a~epr,a™ €
Ry 41, between Ry . 14 and IRS:mH. In the case m 41 even, right multiplication by o determines

an isomorphism a= — a~eq between IRy, and IRS: m+1- Indeed, by virtue of the decomposition

(2.4), we have that, if a= € R, is written as

a” =b" +eb",b” € Rg,,.bt € Ry,

then a~e . € R{,, ; witha eo =b"eo +ebTe. whereb e. € IR{,, and bte. € Ry,
M ’ M M M M ' M ’
Now let Q ¢ R™*! be open and let W : Q — IRg m+1 be a Ci-function in 2. Then W is said to be
left monogenic in 2 if 9, W = 0 in Q where 0, = Z?;o €;0y, is the Dirac operator in R™
By virtue of (2.2), W splits into
W=W"4+Ww-

where W+ and W™ are Ra')m_H- and R, ;-valued C1-functions in €
Consequently

+ =
0 W =0 = O W™ =0 (2.5)
0.W= =0

If 9, W = 0, then the set of components of W or of W~ was called in [18] a system of conjugate

harmonic functions in €.
Taking into account the isomorphisms Ry, — ]RSTmH where a= — a~epr if m+1 is odd and
a” — a*elf[ if m+1is even, a~ € IRy, 4, it follows from (2.5) that it suffices in fact to study left

monogenic R, ;-valued functions in Q.

Now let W = Y79 W™ be a ]Rgf;z’f)l—valued left monogenic function defined in €, i.e. W
satisfies the so-called generalized Moisil-Théodoresco system of type (r,p,q) (see also (1.13)).

O-Wrt2 =
OW =0 ¢ of W2 4 o7 Wrt2UH) =0, j=p,...,q—1 (2.6)
dTWrt2a =
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then in view of the observations made, it suffices to consider functions W = Zg:p W +2i where
T is even.
However, let us point out that if W*¢ is IRés,)n y1-valued with s odd then
(i) for m+ 1 odd, W?eys is ]ROWZJZ:1 *) valued
while
(ii) for m + 1 even, W¥e o is ]R("an% ® ]R(()Tnffm—valued
Property (i) being obvious, let us prove (ii).
Write out W* as W* = Z‘A‘:S Wi5ea and put for A C {0,1,...,m} with |A| =s, A = {i1,49,...,1s}.
I 1 = == == ) “ee ] “ee o — o = o
fiy =0, then A = egep where B = {ia,...,is} C {1,...,m} and so eace = €oepe . :I:eoeM\B €

(m—s+2)
]]‘:{O,erl .

If iy # 0, then {i1,...,is} C {1,...,m} and eaeo = :I:eM\A € ]R ms) ¢ ]Ro"fnf{
We may thus conclude that for s odd and W IR(S P, q) 1-valued in €, in the case (m + 1) odd, Wey, is
]Réfmg_’f )_valued where s* =m + 1 — (s +2q) and ¢* = q — p, while in the case (m + 1) even, Wesz
is ]Réf;’i’f*)—valued where s* =m —s—2¢and ¢* =q¢—p+ 1.
These properties are nicely illustrated in the cases IR® and R
In IR?, the following (r, p, q)-subspaces occur:
(i) for r even: ]R @]R((JQ% —]R(J{_’3
(ii) for r odd: IR((Jl% ® IRéSg, =1Rg;
and
IR(IB‘eM = ]R(Igeoeleg = IR3:3

In IR*, we have:
(i) for r even:

RYYY = RO o RE); REYY = RE) 0 RY)
0,0,2 0 2 4
Re; = Ry @ RE) © Ry = R,
(ii) for r odd:

1,0,1 1 _
IRE) )= IREJi@IRE)i:IROA

and obviously
R~ o 1 (0,0,2)
0)481\04 = ]1:{074818283 = ]Ro ]RO 4

3 The Poincaré Lemmas revisited

The Poincaré Lemmas on closed and co-closed differential forms in an open subset Q of IR™"! are
well-known. To our knowledge, their refined versions are less known in classical literature and so are
their statements in terms of homogeneous polynomials.

As in characterizing homogeneous polynomial solutions of (GMT)-systems of type (r,p,q), these
versions of the Poincaré Lemmas and some of their applications will play a central role (see § 4), for
convenience of the reader we restate them in full detail. Most of the proofs will be omitted since they
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may be given by following classical lines of reasoning, as e.g. worked out in [3].

Throughout this section, the following notations will be kept on. For r, k € IN with 0 < r <m+1 and
k > 1,®; and P} denote the spaces of ATIR™ ! -valued and IRéT,)n 4 1-valued homogeneous polynomials
of degree k in R™™!, i.e. o =

P(m + 1;k) @R ATR™ and Pf = P(m + 1;k) AR ]Réz)nﬂ, where P(m + 1; k) is the space of
homogeneous real-valued homogeneous polynomials of degree k in IR™ ",

Arbitrary elements of ®} and P;, will be denoted by wj, and Py .

Furthermore, the spaces kerj0} and ker,d, are defined by

kerpd = {P[ € Py : 0/ P{ =0}

and

kerpd, = {P. € Py :0, P, =0}.

3.1 The classical Poincaré Lemmas on P

In [3] it was shown that for each wj € ®F,

(E |d+dE |)wy, = (k + r)wy, (3.1)

where the operator E | is defined by

Oz, | being the contraction operator acting on a basic r-differential form de? = dx™ ANdx?? A .. A

dx', i.e.

8%, Jd:vA = Z(—l)l_ldﬁl dCCA\{il}
=1
From (3.1) it thus follows that if dwj =0 with wi =374 _, wzyAd:cA, then the element w;;.} €
i);ji given by

— 1 r 1 r | — 15
= E Jwy, = D whaQ (1) da N

k+r = o

T
Wi

is such that

wy, = dejri.

Through the isomophism © (see § 1) we have thus proved.
Lemma 3.1 (Poincaré Lemma) Let » > 1 and let k¥ € IN. Then for P € P; the following properties
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are equivalent:
(i) 9 Py =0
(ii) there exists Pj} € Py, such that Py =8 P,

It is clear that by right multiplication with the pseudo-scalar ej; an isomorphism is obtained be-
tween the spaces P;, and P;”Hfr, its inverse being given by right multiplication with eyrens, where

em = €3, = +1. As furthermore for each P} € Py, 0, (Plen) = (0. Py )enr, we have that

(85 P{)en = 8, (Plen)
and (3.2)
(8, Plenm = 8F (Pen)

Combining the relation (3.2) with Lemma 3.1 yields
Lemma 3.2 (Dual Poincaré Lemma) Let r < m + 1 and let £ € IN. Then for P} € P} the following
properties are equivalent:
(i) 97 Pr =0
(ii) there exists Pkrill € P,Zﬂ such that P} =0, Pkrill

Refined versions of the Poincaré Lemmas may now be easily deduced.

Lemma 3.3
(i) Let » > 1 and let P} € P;,. Then the following properties are equivalent:

(i.1) 97 Pr =0

(i.2) there exists P{ | € P, such that 9, P[] =0 and P} =9 P .

(ii) Let r < m+ 1 and let P € Pj. Then the following properties are equivalent:
(ii.1) 0, P =0

(ii.2) there exists P{} € P;1} such that 9} P[] =0 and P} = 0; P/}

3.2 The surjectivity of the operators 9,9 and 9]0,

Let P! € kerf 8F, ie. 87 PL = 0.

xT

By means of Lemma 3.1, there exists P,:;ll € 73,2;% such that P = 9, P,:;ll

As A, ’P,Z;; — 73,2;11 is surjective (see e.g. [10]) there exists P,;:?} € ’P,Z;; such that P,;:ll =
—A. P 5.

Put Py, =0 P/ ;. Then 9} P}, , =0.

Moreover, on the one hand
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—APL, = (07507 +0,05)(0 PLs)
= 0f0, P,

while on the other hand

—APL, = —Az(ajpg;g)
= OF(-A.P3)
A
= P

It thus follows that, given P] € kerd;, there exists P[ , € ker,0; such that P] = 0,0, P[_,.

In a similar way, it may be proved that, given P € ker;d, , there exists P, , € kery,,0, such that
Pl =0,0f P},

We thus obtain
Lemma 3.4 The differential operators

(i) 05 O : ker} 4,0y — kerj,0;

and

(ii) 90, : ker£+28;r — ker; 0

are surjective.

4 Conjugate harmonicity-Harmonic potentials-Primitives

Let the Rgm+1-valued Ci-function F' defined in some open domain £ C R™! be decomposed
following (2.3), i.e.

F=U+#eV (4.1)

where U and V' are IR, ,,-valued C;-functions in 2.
Furthermore, let 0, = Z;n:l 0., be the Dirac operator in IR™ and let D, = €0, = 0z, + €0, be
the Cauchy-Riemann operator in IR,
Notice that the conjugate D, of D, is given by D, = 0., — €00, and that D,D, =D,D, =A,.
Then the following properties are equivalent in 2:

OayU + 0,V =0

(4.2)
0,U + 0y V =0

8IF_O<:)DIF_O<:>{
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The system (4.2) clearly generalizes the classical Cauchy-Riemann system in the plane.
As left monogenic functions are real-analytic and 92 = —A,, it follows that a pair (U, V) of IRq -
valued Cj-functions in Q satisfying (4.2) is automatically a pair of IR¢ ,-valued harmonic functions
in Q. Such a pair (U, V) is called a conjugate harmonic pair in .

4.1 Conjugate harmonicity

Let the integers r, p, ¢ be as in section 2 with r even.
In this section we solve the following problem:

(P1) Given Uy, = >39_ U T a ]R((f;zm—valued homogeneous harmonic polynomial of degree k in

(r—1,p,9)

IR™*! under which conditions does there exist a IRy,

-valued homogeneous harmonic polynomial
Vi of degree k in IR™*! such that (Uy, V},) is a conjugate harmonic pair, i.e. such that

Wi, = Uy + Vi € MT*(m + 1,k RUED). (4.3)

In what follows we denote by H(m + 1;k; ]R((f;z"n) the space of ]R((f;zm—valued homogeneous
harmonic polynomials of degree k in R™%! ie. H(m + 1;k; R((Jf;z’q)) = H(m+ 1;k) @R IR((f;fi’q),
where H(m 4 1;k) is the space of solid harmonics of degree k in IR™ .

Putting Vj = ?:p VkT_1+2j, the condition (4.3), or equivalently the condition (4.2), leads to the
following systems to be satisfied

OV, T =0
Ou U™ + VT o VT =0, =p, g - 1 (4.4)
Dy Uy P29+ 8V 120 = 0

and

0L UL 10,77 ~ 0

OF U + 0, U T 4 0,V T =0 (4.5)
oF U =0

;From (4.5), it thus follows that a necessary condition on Uy, to be fulfilled is that 8 U} 727 = 0.
We now claim that the latter condition is also sufficient to ensure the existence of a ‘Z conjugate
harmonic to Uy, i.e. Wi = Uy + 8oV € MT*(m + 1;k; ]Rérnﬁf)l)
The proof may be given along the same lines worked out in [2] for the construction of conjugate
harmonic pairs in general, on the understanding that, where necessary, the arguments used should be
adapted to the case of homogeneous polynomials.
That is why we do not work it out in full detail.
A first step consists in constructing

Hop (2) = /0 N Ut )t — T (2) (4.6)
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where hyy1 € P(m;k +1) AR, ]Réf;ﬁ’q) satisfies the equation

Aghii1 (z) = 02, Un(0, 2). (4.7)

As Ay : P(m;k+ 1) — P(m; k — 1) is surjective, such g1 does exist. Even more, due to the
Fischer decomposition (see [10]) the equation (4.7) admits a unique solution of the form

Ek+1 (z) = |£|23k—1 (2)

where 5,1 € P(m;k— 1) Qg ]Réf;ﬁ’q).
It may be easily verified that Hk+1 ceHm+1;k+1; ]Réfig;q))'
Fix such a solution to (4.7) and write it out as

q
b1 (z) = Z h ().
Jj=p

A second step consists in proving the existence of h;i?q € Pm;k+1) @R R 29 such that

0,m

r—4+2 Tr+2 r4+2
Wkilq(l) = hkilq + hqu (z)

satisfies the equations

+1177 20 _
6£Wk+1 =0

(4.8)
0F 0y Wiitt = —0,,U;7%9(0, 2)

To this end first notice that, as 8£U,:+2q = 0, we have that 9,,U; 7?%(0,z) € ker;ﬁqa;. As
050y + ker, 1105 — ker T390} is surjective (see Lemma 3.4), Wy 177 € ker,T770] satisfying (4.8)
may be found.

Put h;i?q = W,::f 7 E;qu Then it may be easily checked that h;ﬁq €

Him;k + 1) o Ry,

0,m
By construction it thus follows that

Hi o (@) = Hypa (2) — B 2%(2) € Him + 15k + LIRY2Y)

with (4.9)
o Hy' 2 = 0.

Consequently Wy = D Hj,, = Uy + 2V € MTH(k;RYZY) with Uy, = 8y Hy,, = Uy, and
Vi = —0:Hyyy-
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Let Hy(m + 1;k; ]R((f;z"n) denote the space of those elements Uy € H(m + 1;k; ]R((f;z"n) such that
8£U£+2q = 0. Then we have proved

Theorem 4.1. Let U, € H(m + 1;k;]R((f;£’Q)). Then U, admits a conjugate harmonic V, €
H(m + 1k R VP?) if and only if Uy, € Ho (m + 15k R 2D,

Remarks(1) In constructing Vie conjugate harmonic to Uy, the harmonic potential H; ,; obtained
belongs to Hy(m + 1;k + 1; IR(T’p’q)) (see (4.9)).

0,m

(2) Notice that the condition on Uy in Theorem 4.1 is automatically satisfied when the (GMT)-
system of type (r,p,q) considered, r being even, is such that when m + 1 is even, r +2¢ =m + 1 or
when m + 1 is odd, r + 2¢g = m.

Indeed, let U, = ?:p U,:J“zj € H(m + 1; k; R((Jf;z’q)) be given.

If m +1 =17+ 2q, then clearly U]:-l—Zq = Ut = 0 and this since m < r +2¢ = m + 1. Conse-
quently the condition ('“)IU]:”‘Z = BzU,TH = 0 holds.

Moreover, as we then have that (’“)JCOU;”Jr1 = 0, a solution hgy; to the equation (4.6) may be

chosen having its fLZfll—term identically zero. Finally, no correction term h;’fll should then be taken.

If m = r + 2q, then 0} U; "?? = [0,U;"*%],n41 = 0 and so again the condition 9 U; ™7 = 0 is
satisfied.

Notice that the foregoing situations are clearly met when r = 0,p = 0 and ¢ = ["™2], i.e. when

2
Uy is ]Rar) m-valued.

Remark (2) implies
Proposition 4.2 (i) Let r be even. If m+1 is even and r4+2¢ = m+1 or m+1 is odd and r+2¢q = m,
then

H+(]Rm+1, k, Réf;ﬁ7‘1)) — r’_((]l%ﬂ’H*l7 k, ]Rg';le]))
(ii) He (R™ ks RE,,) = HOIR™ S ks IRE,).

4.2 Harmonic potentials

Let again r,p,q € IN be as in section 2 and let r be even.

In this section, we solve the following problem:

(P2) Let Wy € MT*(m + 1:k; IRJ2%)) be given. Find Hyq € Ha (m + Lk + 1, IRYZ?) such that
Wi = Dy Hyy1.
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To this end we first prove
Lemma 4.3 Let W), € P(m + 1;k) @ g R((Jrﬁ_z)l Then the following properties are equivalent:
(i) Wi € MTH(m + 1,k RS2

(ii) there exists Hpy1 € H(m + 1;k+1) @ ]Réf;if’q_l) such that Wy = 0, Hy.y1.
Proof. It is clear that if Hyr1 € H(m + 1,k + 1) @y ]R((f;if’q_l) then Wy, = 9,Hykyi1 €
m+1;k)® . As = —AQg, Wi € m+ 1;k; gy and so (11) — (1) 1s proved.
P(m+ k) o RO29. As 02 = —A,, Wy € MT+ Lk RYPD) and so (i) — (i) i d

Conversely, assume that Wy, € MTT(m + 1; k; ]R((Jrnzif)l) and put Wy = ‘;:p WkH'zj. As 0, W, =0,
the sequence (W, T )j—, satisfies the system (2.6), i.e.

oy W =0

X Wt L oWt g j=p g1 (4.10)

oW =0

By virtue of Lemma 3.3, the first and last equation in (4.10) imply the existence of W]::f Pl ¢
PPt and of WP € P such that f WP = 0 and W = 9, WP respec-
tively, 9y W 1797 = 0 and W] ™27 = o w20
Put Wy = Y40 Wit Then Wy € P(m+ 13 k) o ROV,

As Ag : P(m+ 1;k+2) @R R((Jf;fbii;q_l) — P(m+ 1L;k) OR IRBT;ZE"Z_I) is surjective, there ought

to exist Wy, € P(m+ L1k +2) @ REZTTY such that A, Wy, = Wy

Putting
Hypr = Wi — 0,Wp o + Wi
.. . (r+1,p,q—1) _
it is clear that Hyy1 € P(m+ Lk + 1) @ Ry, 1 and that 9, Hyxr1 = Wy.
Furthermore, as 2 = —A,, 9, W}, = 0 implies that W}, is harmonic, whence the implication (ii) —

(i) is proved.
u
Now let Hyt1 € Ho(m+1;k+1;IRS2?) be given. Then obviously Wy, = Dy Hyyr € MTH(m+

15 k; lRéf;ﬁf) ). Conversely, assume that W, € MT*(m + 1; k; Rérrgf)l) and decompose W}, following
(4.1), i.e.

Wie = Ur + eV (4.11)
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where Uy, € Hy(m + 1;k; ]R((f;z"n) and Vi € H(m + 1; k; ]Réf;l’pm).
Associate with Uy the harmonic potential H; , € Hy(m + 1;k + 1; R((Jf;z’q)) obtained in (4.9), i.e.
Wi = Uy, + Vi = DoHjf,, € MTH(m + 1k RS2 with Uy = Uy, and Vi = —9,Hf .
(From Wy, — Wi, = 2o(Vi — Vi) € MTH(m + 1,k RYZD), ie. Dy(Wy, — Wi,) = 0, it easily follows
from (4.2) that Vj, — V4 is independent of zy and that Vi, — Vi, € MT(m; k; ]Réf;l’pm).

By virtue of Lemma 4.3, there exists H;*, € H(m;k+1, Rg;z’q_l)) such that Vi, — Vi, = O H .
Put

Liyr = Hy gy + Hiy.

Then by construction Liy1 € Hy(m + 15k + 1; ]R((f;z"n) and DLy 1 = W
Summarizing we have thus proved
Theorem 4.4 Let Wy € P(m + 1;k) @ IR((JT:;E)I Then the following properties are equivalent:
(i) Wi € MTH(m + 1; kRS2

(ii) there exists Lyy1 € Hy(m + 1;k + 1;]R((f;£’q>) such that Wy = D,Lpyq ie. Dy : Hi(m +
Lk+1; ]R((f;z"n) — MT*(m +1;k; ]Rgrrzf)l) is surjective.

By virtue of Theorem 4.4 and Proposition 4.2 we obtain
Proposition 4.5(i) Let r be even. If m+1 is even and r+2¢ = m+1 or m+1 is odd and r+2¢q = m,
then

D, : HR™ b+ LRYPY) — MTHR™ S b RYEY)

is surjective.

(i1)Dy : HIR™ 5 k+ 1;IRG,,) — MTHIR™ ' kRS, 41)

is surjective.

4.3 Primitives

In this section we solve the following problem:
(P.3) Let Wy, € MT*(m + L k; RS2 be given. Find Wiy €
MTH(m+ 13k + LIRYZE) such that Wy = Dy Wiy

Notice that in [6] and [13] it was proved that for each P, € M (k), M T (k) being the space of R 1~
valued left monogenic homogeneous polynomials of degree k in IR™ ™, there exists Pry1 € Mt (k+1)
such that P, = 51Pk+1.

The specific feature in answering the problem (P.3) obviously lies in the fact that primitivation
may be realized between spaces of homogeneous polynomial solutions to a given (GMT)-system of

type (7, p,q)-
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To this end, suppose that Wy, € MT*(m + 1; k; ]Rér,zf)l)

(From Theorem 4.2, it follows that there exists Ly11 € Hi(m + 1;k + 1; IR((JT;z’q)) such that Wy =
Dy L.

By means of the construction worked out in section 4.1, we may associate with L1 an element L, , €
Ho(m+1;k+2; RS2 such that Wy, = DoLi o = Uppr +8Vier € MTH(m+ 1k + 1, IRYZY)
with U1 = Ozo Lo = Lit1 and Vi1 = =0, L5 5.

It is then easily checked that W = ﬁz(%W,j_H).

We thus have proved

Theorem 4.6 Let W), € MT"(m + 1; k;]Réf;Zf)l) be given. Then there exists Wy+1 € MTT(m +
Lk + ;RS9 such that Wy, = Dy Wi

5 The lower dimensional cases IR® and IR?

In this section we investigate the possibilities for (GMT)-systems of type (r,p, ), r being even, in R?

and IR*. In particular a method is described for constructing bases in the spaces M T (4; k; ]Réff ’q)).

As in each of the cases which occur, basic knowledge is used from the case MT(3; k; IRoi,?,)a for conve-
nience of the reader we recall in section 5.1 some properties of the latter space. For a full description

we refer to [7].
5.1. The case MT"(3;k;IRg 5)
Following (2.2), IR 3 may be decomposed as

Ro3 = Rj s @ Ry 5 (5.1)

where

+ _
IRy 5 = spang (1, e1e2, e2e0, eger)

and

IRg 5 = spang (eo, €1, €2, eoe1e2).

Notice hereby that IR(‘;3£]HI, the algebra of real quaternions.
As pointed out in section 2, right multiplication with the pseudo-sealar egejes establishes an isomor-
phism between R 5 and ]Rar,3, ie.

- _ Rt
]1:{073 = ]1:{073608182.
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Consequently

MTH(3;k; R 3) = MTF(3; k; IR 5)eqerea.

In [7], it was proved that dimg MT(3;k; ]R(J{B) = 4(k + 1) and a method was elaborated for
constructing a basis for MT¥(3; k; IR{ 3). As was also mentioned in [7], the space MT"(3; k; R{ ) is
isomorphic to the space My (H; IR), the space of H-valued homogeneous polynomial solutions of degree
k of the Fueter operator D in IR®. A method for constructing an orthormal basis for M, (H;IR) was
worked out in [4] and [11] (see also [12]).

Finally, let us recall that in IR®, the only (r,p, q)-subspace occuring for r even is the space IRS: 3 =

0,0,1
Ry,

5.2. The spaces MTT(4; k;IR((ff’q)),r even

The possible types of (GMT)-systems of type ]Réff D have been described in section 2.
In the following subsections we shall work out methods for constructing bases for the spaces
MTH (4 kR,

5.2.1 The case IRS'A
Let us first of all recall that if e = (eq, e1, e2, e3) is an orthogonal basis of R4 generating the Clifford
algebra R¢ 4, then e = (e1, €2, e3) is an orthogonal basis of R%? which generates the Clifford algebra
IRo,3 inside IRg 4. It thus follows that

Y _mt s
Ry, =Ry @eRgs

where

+ _ 1 (0,0,1)
IRg 5 = spangr (1, ezes, ezer, ere2) = Ry 3

and

— (1,0,1)
]RO73 = Span]f{(ela €2, €3, 616263) = ]RO,S

Notice hereby that ]RS:?,EH = IR @ VectH where VectH = spanyg (e2e3, eze1, e1ez) is ismorphic
to the space of pure quaternions.
Hence, an element Wy, € MTT(4; k; ]R(J{A) splits into

Wy = U + eV (5.2)

where Uy and Vj, are harmonic polynomials of degree k which are, respectively, IR{; 3 and IRy 5-
valued.
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As dimpH(4; k) = (k +1)? (see [10]), dimp H(4; k; Rg ) = 4(k + 1)2.

Now take a basis S = {S,ij) cj=1,.,k+ 1)2} of H(4; k) and consider in

H(4;k + 1) the linearly independent subset Spy; = {g,gzl ci=1,.,(k+ 1)2}, where for each
j=1,..,(k+1)? (see also (4.6),

5@ = [ s a2, @) (5.3)
whith AhY) | (2) = 8,5 (0, z).

Furthermore, put ﬁkH = §k+1 ® {1,ese3,€e3e1,e1e2}, where as usual for S € §k+1 and
A € {1,eze3,e3e1,e1e2},S @ A is denoted by SA. Then one may easily check that Ewﬁk+l is a
linearly independent subset of MT*(4; k; IRS: 4)-

Now consider again the element Wy € MT*(4;k; Ry ,) with Wy, = Uy, 4+ Vi (see also (5.2)) and
lift up Uy, € H(4;k) @ Ry to Uks1 € H(4;k + 1) @R IR{s, and this following the construction
indicated above (see (5.3)).

Putting Wk = ﬁzﬁkJrl, we have that Wk € MT+(4;k; ]RSFA) decomposes as

Wk = ﬁk + 50‘71C (5.4)

where ﬁk = (9I0[71€+1 = Uk.
Consequently Wi, — Wy, =e&o(Vi, — Vi) is EQIR(I s-valued and left monogenic. This implies that Vj, — Vj,
is independent of g and that 9, (Vi — Vi) = 0 or Vi — Vi € MT*(3;k; Ry 5).

But MT*(3;k;Rg 3) = MT*(3; k; ]1:{8:3)816283, crezey = e being the pseudo-scalar of Ry 3.
Choose a basis By, for MT*(3; k; ]R(Tﬁ) (see secton 5.1).
Coming back to

Wi = Ui +e Vi

we have that

Wi = Wk +§0(Vk — Vk)

where Wy, € spcm]R(ExﬁkH) and €eo(Vy — ‘N/k) € span]R(eoBke]&).

As for any a € ]R(J)i37 eoae]& = aeoe]& = aeps, where epr = egejeges is the pseudo-scalar of IRy 4,
we obtain that Wy, € span]R((ﬁmﬁ;H_l) U (Brew)).
It may be easily verified that (D,Hyi1) U (Brens) is linearly independent in MT(4;k; IR ,). As
follows from the construction made above, it is also a generating set for that space, whence it is a
basis for it.
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As Hyy1 contains 4(k 4 1)2 elements and By, contains 4(k + 1) elements, we have proved

Theorem 5.1
(i) dimr MTF(4;k;IRG ;) = 4(k + 1)(k + 2).
(i) (DaHpg1) U (Brenr)) is a basis for MTT(4; k; R§ ).

Remarks(1) The space M T+(4;k;]R(J£ 4) coincides with the so-called space of ]Rai 4-valued inner
spherical monogenics of degree k in IR* (see [8]). Tt is well known that as a right module over the
algebra Ry, dimp+ MT* (4 k; Ry,) = Lar)ILARS )

It follows that, as dinLLR]I%&4 =8, dimpg MT*(4; k; R ,) = 4(k+2)(k+1), thus confirming the result
obtained in Theorem 5.1 (i).

A classical basis for the right ]R{Jt 4-module M (4; k; ]RS: 4) is given by the set By of so-called Fueter
polynomials:

By ={Vy:ae N’ |a| =k}

where for a = (a1, ag, a3),

with 22 = 2" 252253,
It thus follows that
B; = {VQ, Vgéoel, Vgéoeg, Vgéoeg, Vgeleg, Vgeleg, Vgegeg, Vgeoelegeg RS ]1\]3, |Q| = k}
is a basis for the real vector space MT T (4; k; ]RS'A).
(2) By means of Theorem 4.2 and the Remark following it, we have that D, : H(4;k + 1; ]R(J{B) —
MT*(4;k; IR ) is surjective. As dimpH(4;k + 1) = 4(k + 2)? and dimp MT T (4;k; IR ,) =

4(k + 2)(k + 1), we have that dimp {Hp+1 € H(4;k + 1; ]RS%) : DyHpy1 =0}
=4(k+2).

5.2.2. The case IR((J?)l @ IR&Z

We apply the same procedure as worked out in the foregoing subsection.
Let Wy, € MT ™ (4; k; IRéi)L ® Rgﬂ) and write it out as

Wie = Ur + eV (5.5)
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where Uy, and Vj, are harmonic homogeneous polynomials of degree k in IR* which are respec-

tively, Ry ® RS} and RY') @ R{) = Ry 3-valued. As RYY = {0}, we have that Uy, is R 3-valued

with IRéQ% = spanyg (e2es, eze1, erez) = VectH.

Starting again from a basis S of H(4; k), lifting it up by means of (5.3) to Sit1 and putting
ﬁ07k+1 = §k+1 ® {eses, eseq, erea} we obviously have that ,’:Z]g+1 = §k+1 u ﬁ07k+1.

The reasoning made in the foregoing subsection then leads to

Theorem 5.2.
(i) (DeHokt1) U (Brenr) is a basis for MT(4; k; IR((fi ® IRéﬁ)

(il) dimp MT* (4 k; RG) @ RY) = (k + 1)(3k + 7).
Remark. As already mentioned, ]Rgg = {0}. From Theorem 4.2 it then follows that D, : H(4;k +
LRSS — MTH(4;k; RE) @ RYY) is surjective.

5.2.3 The case IR&Z & Ing?i

Notice that lR(()?i ® IREfi = (IRE)QBL @ Rgﬂ)eM .

We so have
Theorem 5.3
(i) (Dx(Ho r+1en)) U By is a basis for MT+(4; k; ]R((J?i ® ]Ré%i)

(il) dimp MT (4 k; R, @ R$) = (k + 1)(3k + 7).
Received: March 2009. Revised: April 2009.

References

[1] R. ABREU BrLAYA, J. BORY REYEs, R. DELANGHE AND F. SOMMEN, Generalized Moisil-
Théodoresco systems and Cauchy integral decompositions, Int. J. Math. Math. Sci., Vol. 2008,
Article ID746946, 19 pages.

[2] F. BRACKX AND R. DELANGHE, On harmonic potential fields and the structure of monogenic
funtions, Z. Anal. Anwendungen 22 (2003) 261-273. Corrigendum to: Z. Anal. Anwendungen 25
(2006) 407-410.

[3] F. BRACKX, R. DELANGHE AND F. SOMMEN, Differential forms and / or multi-vector functions,
CUBO 7 (2005) 139-170.

[4] I. CagAo, Constructive approximation by monogenic polynomials,(Ph. D-thesis, Universidade de
Aveiro, 2004).



CUBO On homogeneous polynomial solutions of generalized
12 2 (2010, Moisil-Théodoresco systems in Euclidean space 167

[5] A. CIALDEA,On the theory of self-conjugate differential forms, Atti del Seminario Matematico e
Fisico dell’ Universit di Modena 46 (1998) 595-620.

[6] R. DELANGHE, On primitives of monogenic funtions, Complex Variables and Elliptic Equations
51 (2006) 959-970.

[7] R. DELANGHE, On homogeneous polynomial solutions of the Moisil-Théodoresco system in IR,
Computational Methods and Function Theory 9 (2009) 199-212.

[8] R. DELANGHE, F. SOMMEN AND V. SOUCEK, Clifford algebra and Spinor-Valued Functions
(Kluwer, Dordrecht, 1992).

[9] A. DZHURAEV, Methods of singular equations (Longman, 1992, Harlow, 1992).

[10] G. FoLLAND, Introduction to Partial Differential Equations (Princeton Univ. Press, Princeton,
1976).

[11] K. GURLEBECK AND I. CAGAO, Monogenic primitives of monogenic functions, in : Simos, T.E.
(ed.); Tsitouras, Ch. (ed.): ICNAAM 2004, International conference on numerical analysis and
applied mathematics 2004, Chalkis, Greece, September 10-14, 2004.

[12] K. GURLEBECK, K. HABETHA AND W. SPR@SSIG, Holomorphic functions in the plane and
n-dimensional space (Birkhduser Verlag, Basel, 2007)

[13] K. GURLEBECK AND H. MALONEK, A hypercomplex derivative of monogenic functions in IR™
and its applications, Complex Variables 39 (1999) 199-228.

[14] K. GURLEBECK AND W. SPRG@ESSIG, Quatermonic Analysis and Elliptic Boundary Value Prob-
lems (Akademie-Verlag, Berlin, 1989).

[15] V. KRAVCHENKO AND M. SHAPIRO, Integral Respresentations for Spatial Models of Mathemat-
ical Physics, Pitman Research Notes in Mathematics Series 351 (Longman, Harlow, 1996).

[16] K. MAURIN, Analysis, part II (Reidel Publishing Company, Dordrecht-Boston-London, PWN-
Polish Scientific Publishers, Warszawa, 1980).

[17] GR. Moisi, AND N. THEODORESCO, Fonctions holomorphes dans I'espace, Mathematica Cluj 5
(1931) 142-159.

[18] C. NOLDER, Conjugate harmonic functions and Clifford algebras, J. Math. Anal. Appl. 302
(2005) 137-142.

[19] E. STEIN AND G. WEISS, On the theory of harmonic functions of several variables, I. The Theory
of HP-spaces, Acta Mathematica 103 (1960) 25-62.

[20] E. STEIN AND G. WEIsS, Generalization of the Cauchy-Riemann equations and representations
of the rotation group, Amer. J. Math. 90 (1968) 163-196.



