
CUBO A Mathematical Journal
Vol.12, No

¯ 02, (169–187). June 2010

A new solution algorithm for skip-free processes to the left

Claus Bauer

Dolby Laboratories,

San Francisco, 94103, USA

email: cb@dolby.com

ABSTRACT

This paper proposes a new solution algorithm for steady state models describing skip-free

processes to the left where each level has one phase. The computational complexity of

the algorithm is independent of the number of levels of the system. If the skip parameter

of the skip-free process is significantly smaller than the number of levels of the system,

our algorithm numerically outperforms existing algorithms for skip-free processes. The

proposed algorithm is based on a novel method for applying generalized Fibonacci series

to the solution of steady state models.

RESUMEN

Este art́ıculo propone un nuevo algoritmo solución para modelos estado-steady describi-

endo procesos libres-salto para la izquierda donde todo nivel tiene una fase. La compleji-

dad computacional del algoritmo es independiente del número de niveles del sistema. Si

el parámetro de salto de los procesos libre-salto es significativamente pequeño respecto del

número de niveles del sistema, nuestro algoritmo numérico supera algoritmos existentes

para procesos libre-salto. El algoritmo propuesto se basa en un método reciente para

aplicar series de Fibonacci generalizados para la solución de modelos-steady.

Key words and phrases: Skip-free processes, Markovian environment, stationary distribution

AMS 2000 Subj. Class.: 60J10, 60J99

170 Claus Bauer CUBO
12, 2 (2010)

1 Introduction

Skip-free processes have been widely researched as a a way to study packet based communication

systems. In particular, skip-free processes to the left have been applied to model the dynamics of

finite buffers of switches in data networks that experience the arrival of several data packets at a time

while they are only being able to forward one packet per time slot. Using a discrete time model and

common queueing theoretic terminology, a skip-free process to the left defines a state model where the

(queue) occupancy can move down by one level in a time slot, but might move up by several levels in

a time slot. The dynamics of these finite queues are commonly modeled as M/G/1/K queues where

K denotes the size of the queue. Similarly, buffers that experience only one packet arrival at a time,

but can forward more than one packet per time slot can be modeled as skip-free processes to the right.

Algorithms to solve steady state models for skip-free processes were first investigated in [14], [15]

by Neuts. In these papers, skip-free processes are considered as a subset of a more general class of

steady state models and the application of matrix-geometric methods to solve this class of steady state

models is investigated. A steady state analysis that takes explicitly into account the special structure

of skip-free processes is proposed in [13, chap. 13]. Combining methods from [5] and [6], skip-free

processes are modeled as a special case of Quasi-Birth-and-Death Processes (QBDs). Following the

terminology introduced in [13], we define a QBD process as a skip-free process where the system

can not move more than one level both downwards or upwards. Several other variations of skip-free

processes have been researched in [1], [3], [4], [20], [22], [23].

In this paper, we investigate homogeneous finite skip-free processes to the left, i.e., we assume a

finite number of levels and we assume that all levels have the same number of phases. In particular,

we assume that each level has one phase. We first give a result of primarily theoretical interest by

presenting a new way to derive a closed-form solution solution of a steady state model for skip-free

processes to the left. In a second step, we show that the structure of this closed-form solution can be

characterized by specific linear recurrent equations. We then apply the theory of general Fibonacci

sequences [19] to these linear recurrent equations,. This allows us to derive the main contribution of

this paper which is a new solution algorithm for skip-free processes to the left.

This solution algorithm has a complexity that is independent of the number of levels of the

system. Previous solution algorithms for skip-free models have complexities that also depend on the

number of levels of the system. Prior to our work, solution algorithms for steady state models that

have a complexity independent of the number of levels of the system were only known for specific

classes of QBDs [13, chap. 10.4], [7], [18]. These classes of QBDs do not contain the QBDs used to

model skip-free processes in [13, chap. 13].

Finally, we perform numerical experiments to compare the numerical complexity of our algorithm

with the numerical complexity of previously known algorithms. Our experiments show that the

complexity of our method is lower than the complexity of previous algorithm if the skip parameter is

small compared to the overall number of levels of the system. The skip parameter is defined as the

maximum number of levels that the queue occupancy can increase in a time slot.

We note - without presenting any details in this paper - that our methods can also be applied to

derive corresponding results for skip-free processes to the right.

In the next section, we provide the exact problem definition. In sec. 3 - 5, we prove and analyze

our Theorem 3.1 which gives a closed-form solution for skip-free processes to the left. In sec. 6,

we show that the obtained solution can be described by a set of linear recurrent equations. Based

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 171

on this observation, we apply the theory of generalized Fibonacci sequences to obtain a new solution

algorithm for skip-free processes to the left. In sec. 7 and 8, we compare the computational complexity

of the solution algorithm with previous techniques. We summarize our results in sec. 9.

2 Problem formulation

We consider a discrete time Markov chain Xt, t ∈ N on the two-dimensional state space {(n, i) :

0 ≤ n ≤ N, 1 ≤ i ≤ p}, which we partition as
⋃

n≥1

l(n), where l(n) = {(n, 1), (n, 2), ..., (n, p)} for

0 ≤ n ≤ N. The first coordinate n is called the level, and the second coordinate j is called the phase

of the state (n, j). In this paper, we only consider the case p = 1. We suppose that the discrete Matrix

chain is described by a transition matrix T = (Ti,j)0≤i,j≤N , where Ti,j is the transition probability

from the level i to level j. We assume T to be of the following form:

j

0 → N

T =

0

i ↓

N

















































E B2 B3 .. Bm

B0 B1 B2 .. Bm−1 Bm

B0 B1 Bm−1 Bm

B0 Bm

..

B0 Bm−1 Cm

B0 Bm−2 Cm−1

..

..

B0 B1 C2

B0 C1

















































(2.1)

Here the expressions Bj , 0 ≤ j ≤ m, E = B0 + B1, Ci =
m
∑

j=i

Bj , 1 ≤ i ≤ m are real numbers in

the open interval (0, 1). We see that the structure of the matrix T depends essentially on the skip

parameter m as the parameter defines which levels can be reached from a current level in a one-step

transition. Any level i can be reached from all stages i− j, −1 ≤ j ≤ m− 1 if m− 1 ≤ i ≤ N − 1. By

the definition of a transition matrix, we have

N
∑

j=1

Ti,j = 1, ∀i, 0 ≤ i ≤ N,

172 Claus Bauer CUBO
12, 2 (2010)

which implies that
m
∑

l=0

Bl = 1. (2.2)

Defining the steady state vector as π = (π0, .., πN), we can write the steady state equation π = πT as

π1B0 = π0(1 − E), (2.3)

πkB0 = πk−1(1 − B1) −

k
∑

l=2

πk−lBl, 2 ≤ k ≤ m − 1, (2.4)

πkB0 = πk−1(1 − B1) −

m
∑

l=2

πk−lBl, m ≤ k ≤ N − 1, (2.5)

πN (C1 − 1) = −
m−1
∑

l=1

πN−lCl+1. (2.6)

We now define new variables

C = B0, (2.7)

Am−l = 1 −

l
∑

n=0

Bn, 1 ≤ l ≤ m − 1. (2.8)

Using eqn. (2.2), we see that A1 = Bm = Cm. Using the definitions (2.7) and (2.8), we can rewrite

the eqn. (2.3) - (2.5) as follows:

π1C = π∗
0Am−1, π∗

0 = π0(1 − E)A−1
m−1 (2.9)

πkC = πk−1(Am−1 + C) +
k
∑

l=2

πk−l(Am−l − Am−(l−1)), 2 ≤ k ≤ m − 1,

(2.10)

πkC = πk−1(Am−1 + C) +

m−1
∑

l=2

πk−l(Am−l − Am−(l−1)) − πk−mA1, (2.11)

m ≤ k ≤ N − 1,

πN (C1 − 1) = −
m−1
∑

l=1

πN−lCl+1. (2.12)

3 Closed form solution of the steady state model

In this section, we give a closed form solution of the steady state model defined via the transition

matrix T in (2.1) or equivalently in (2.9) - (2.12). We show the following Theorem:

Theorem 3.1.

π∗
0 =

(

1 +

N−1
∑

k=1

∑

bl

k
E(bm−1, .., b1) + Y (C0 − 1)−1

)−1

, (3.1)

πk = π∗
0

∑

bl

k
E(bm−1, ..., b1), 1 ≤ k ≤ N − 1, (3.2)

πN = π∗
0Y (C1 − 1)−1, (3.3)

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 173

where

E(bm−1, ..., b1) = C−d

(

d

cm−1 cm−2 c1

)m−1
∏

l=1

Acl

l , (3.4)

cl = bl − 2bl−1 + bl−2, 3 ≤ l ≤ m − 1, (3.5)

c2 = b2 − 2b1, (3.6)

c1 = b1, (3.7)

d = bm−1 − bm−2. (3.8)

The summation
∑

bl

k
runs over all bl ≥ 0, 1 ≤ l ≤ m − 1 such that cl ≥ 0 for 1 ≤ l ≤ m − 1, In

this summation, the variable bm−1 only takes the fixed value bm−1 = k. Further,

Y = −

m−1
∑

l=1

Cl+1

∑

bl

N−l
E(bm−1, ..., b1). (3.9)

Remarks: We state some remarks for later use in this paper:

1. By definition,

m−1
∑

l=1

cl = d. (3.10)

2. For any fixed bl+1 over which is summed in the summation
∑

bl

k
, the number of bl over which is

summed in
∑

bl

k
is limited by

bl ≤
l

l + 1
bl+1. (3.11)

This follows from the summation condition c2 ≥ 0 and the eqn. (3.6) for l = 1. For l ≥ 2, we

apply the induction principle. Assuming that eqn. (3.11) holds for l, then by the summation

condition cl+2 ≥ 0

2bl+1 ≤ bl + bl+2 ≤
l

l + 1
bl+1 + bl+2,

which implies eqn. (3.11) for l + 1.

3. The eqn. (3.11) implies that

d ≥ 1. (3.12)

4 Proof of Theorem 3.1

We first recall a well-known identity for multinomial coefficients. For any set of strictly positive

integers a1, .., ak with n =
k
∑

j=1

aj , there is

(

n

a1 a2 ... ak

)

=

k
∑

j=1

(

n − 1

a1 .. (aj − 1) ... ak

)

. (4.1)

174 Claus Bauer CUBO
12, 2 (2010)

For any integer x, 1 ≤ x ≤ m − 1 and a given set of variables b1, ..., bm−1 as defined in (3.4), we

introduce the additional variables bx
l and cx

l defined as follows:

bx
l = bl − max(0, x − (m − 1 − l)), l ≥ 1.. (4.2)

cx
l = bx

l − 2bx
l−1 + bx

l−2, 3 ≤ l ≤ m − 1, (4.3)

cx
2 = bx

2 − 2bx
1 , (4.4)

cx
1 = bx

1 , (4.5)

dx = bx
m−1 − bx

m−2. (4.6)

We now state two lemmas which we will need for the proof of Theorem 3.1.

Lemma 4.1. For 1 ≤ x ≤ m − 1,

cx
l = cl −

{

1 if l = m − x,

0 else .

}

(4.7)

dx = d − 1. (4.8)

Proof of Lemma 4.1: We prove the eqn. (4.7) by considering different ranges of the variables

l, m and x :

Range 1: For l ≥ m − x + 1, l ≥ 3,

cx
l = cl − x + m − 1 − l + 2x − 2m + 2 + 2l − 2 − x + m − 1 − l + 2 = cl.

Range 2: For l = m − x, l ≥ 2,

cx
l = cl − x + m − 1 − l + 2x − 2m + 2 + 2l − 2 = cl + x − m + l − 1 = cl − 1.

Range 3: For l = m − x = 1

cx
l = cl − 1.

Range 4: For l ≤ m − x − 1, l ≥ 1,

cx
l = cl.

We now prove the eqn. (4.8):

dx = bm−1 − x − (bm−2 − max(0, (x − 1)) = d − 1.

For later usage, we note that the eqn. (3.10), (4.7), and (4.8) imply that for 1 ≤ x ≤ m − 1, there is

m−1
∑

l=1

cx
l = dx. (4.9)

Lemma 4.2.

E(bm−1, .., b1) =

m−1
∑

x=1, cm−x 6=0

Ex(bx
m−1, ..., b

x
1)Am−xC−1.

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 175

Proof of Lemma 4.2: We first note that in the definition (3.4), if for any x there is cm−x = 0,

then

C−d

(

d

cm−1 cm−2 cm−x+1 cm−x cm−x−1.... c1

)m−1
∏

l=1

Acl

l

= C−d

(

d

cm−1 cm−2 cm−x+1 cm−x−1.... c1

) m−1
∏

l=1, l 6=m−x

Acl

l ,

i.e., we can neglect the contribution of the quantity cm−x. Now, Lemma 4.2 follows from the definition

(3.4) and the eqn. (3.12), (4.1), (4.7), and (4.8).

Proof of Theorem 3.1:

First, we prove eqn. (3.2) by induction over k. For k = 1, we see bm−1 = cm−1 = d = 1, whereas

bl = cl = 0 for l ≤ m− 2. Thus, we obtain from eqn. (3.2) that π1 = π∗
0Am−1C

−1 as required by eqn.

(2.9). For the inductive step, we now assume that eqn. (3.2) holds for πi, 1 ≤ i ≤ k − 1, and prove it

for i = k < N. In view of the eqn. (2.10) and (2.11), we see that in order to show that the eqn. (3.2)

holds for πk, it is sufficient to prove the following two equations:

πk =

min(m−1,k)
∑

x=1

πk−xAm−xC−1, (4.10)

πk−1 =

min(m−1,k−1)
∑

x=1

πk−1−xAm−xC−1. (4.11)

For the proof of the eqn. (4.10), we first consider the case m− 1 < k. Replacing the probabilities

πl, k − m + 1 ≤ l ≤ k, in eqn. (4.10) with the right hand side of eqn. (3.2), we obtain

∑

bl

k
E(bm−1, ..., b1) =

m−1
∑

x=1

Am−xC−1
∑

b̃l

k−x
E(b̃m−1, ..., b̃1).

(4.12)

Applying Lemma 4.2 to the left hand side of eqn. (4.12), we see that in order to prove eqn. (4.10) we

have to show the following identity:

m−1
∑

x=1, cm−x 6=0

Am−xC−1
∑

bl

k
E(bx

m−1, ..., b
x
1) =

m−1
∑

x=1

Am−xC−1
∑

b̃l

k−x
E(b̃m−1, ..., b̃1).

(4.13)

For the proof of eqn. (4.13), it is sufficient to prove the following two claims:

1. For each integer x, 1 ≤ x ≤ m − 1, and for each set bx
m−1, ..., b

x
1 derived via the relation (4.2)

from a set bm−1, ..., b1 over which is summed in the sum
∑

bl

k
, and for which cm−x 6= 0, there

exists a set b̃m−1, ..., b̃1 over which is summed in the sum
∑

b̃l

k−x
for which holds cx

l = c̃l for all

l, 1 ≤ l ≤ m − 1, and dx = d̃.

2. For each integer x, 1 ≤ x ≤ m − 1, and for each set b̃m−1, ..., b̃1 over which is summed in the

sum
∑

b̃l

k−x
, there exists a set bx

m−1, ..., b
x
1 derived via the relation (4.2) from a set bm−1, ..., b1

176 Claus Bauer CUBO
12, 2 (2010)

over which is summed in the sum
∑

bl

k, for which cm−x 6= 0, and c̃l = cx
l for all l, 1 ≤ l ≤ m− 1,

and d̃ = dx.

In order to show claim 2, we set eb̃
l = b̃l + max(0, x− (m− 1− l)). Further, we define ec̃

l and ed̃
l via eb̃

l

in the same way cl and d are defined via bl as in (4.3) - (4.6). By definition, we see that (eb̃
l)

x - defined

as in (4.2) - equals b̃l which implies that c̃l = (ec̃
l)

x and d̃l = (ed̃
l)

x. Now, in order to prove claim 2, it

remains to show that the set eb̃
m−1, ..., e

b̃
1 belongs to the summation

∑

bl

k, i.e., eb̃
m−1 = k, ec̃

m−l ≥ 0 if

l 6= x and ec̃
m−x > 0. The first claim is obvious by the definition of eb̃

m−1 = b̃m−1 + x = k − x + x = k.

We note that reversing the proof of the relation (4.7), we can show that

ec̃
l = c̃l +

{

1 l = m − x

0 else.

}

(4.14)

As c̃l ≥ 0, the eqn. (4.14) implies that ec̃
l ≥ 0, 1 ≤ l ≤ m − 1, l 6= m − x, and ec̃

m−x > 0, q.e.d.

In order to show claim 1, we have to show that the set bx
m−1, ..., b

x
1 belongs to the summation

∑

bl

k−x
. For this purpose, we have to show that bx

m−1 = k − x and cx
l ≥ 0, 1 ≤ x ≤ m − 1. The first

inequality follows from eqn. (4.2). The second relation follows from eqn. (4.7) and the fact that on

the left-hand side of eqn. (4.13) we only sum over cm−x 6= 0.

In the case m − 1 ≥ k, we argue as above and have to show that

k
∑

x=1, cm−x 6=0

Am−xC−1
∑

bl

k
E(bx

m−1, ..., b
x
1) =

k
∑

x=1

Am−xC−1
∑

b̃l

k−x
E(b̃m−1, ..., b̃1).

(4.15)

Eqn. (4.15) is shown in the same way as eqn. (4.13). Eqn. (4.11) is shown in the same way as

eqn. (4.10). Eqn. (3.3) follows from (2.12) and (3.2). Eqn. (3.1) follows from (3.2), (3.3), and the

eqn.
N
∑

i=0

πi = 1.

5 Complexity of the calculation of πk using Theorem 3.1

The inequality (3.11) gives an upper bound for the number of bl over which is summed in the sum-

mation
∑

bl

k
. Using bm−1 = k, eqn. (3.11), and the well-known relation,

N
∑

k=1

km =
1

m + 1
Nm+1 + O(Nm),

we obtain

⌊ (m−2)k
m−1 ⌋
∑

bm−2=1

⌊
(m−3)bm−2

m−2 ⌋
∑

bm−3=1

.....

⌊
b2
2 ⌋
∑

b1=1

1 =
1

(m − 1)!

m−1
∏

l=2

(

l − 1

l

)l

km−1 + O(km−2).

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 177

Thus, the complexity of the calculation of the steady state probability of π∗
0 using the relation (3.1) is

∼ 1
(m−1)!

m−1
∏

l=2

(

l−1
l

)l N−1
∑

k=1

km−1 ∼ 1
m!

m−1
∏

l=2

(

l−1
l

)l
Nm. Here, we assume that the values of the multino-

mial coefficients have been pre-computed as they do not depend on the actual values of the transition

matrix T. Once π∗
0 is calculated, the calculation of πk for any 2 ≤ k ≤ N − 1 requires O(1) steps if we

assume that the values of the sums
∑

bl

k
already determined for the calculation of π∗

0 have been stored.

The calculation of πN requires O(m) steps.

In summary, we see that the overall computational complexity of Theorem 3.1 is

∼ 1
m!

m−1
∏

l=2

(

l−1
l

)l
Nm. For m > 3 and large values of N, this complexity is too high for any prac-

tical applications. In the next section, we will show how the complexity of Theorem 3.1 can be

significantly reduced.

6 A reduction of the complexity of Theorem 3.1

In this section, we apply the theory of linear recurrence equations to Theorem 3.1. This will allows

to find a computationally very efficient way of computing the sum
∑

bl

k
E(bm−1, .., b1).

First, we recall some facts from the theory of linear recurrent equations:

Lemma 6.1. We consider a sequence of real numbers xn, n ≥ 1 defined via a set of real numbers

a1, .., an−1 and a set of strictly positive real numbers b1, .., bn−1 as follows:

xi = ai, 1 ≤ i ≤ n − 1, (6.1)

xi =

n−1
∑

k=1

bkxi−k, i ≥ n. (6.2)

Then, we have:

xn =

w
∑

u=1

fu−1
∑

v=0

cu,vn
vrn

u . (6.3)

The numbers ru, fu, and w are defined via the characteristic polynomial

yn−1 +

n−1
∑

k=1

bkyn−1−k. (6.4)

ru are the roots, fu are the multiplicities of the roots ru, and w is the number of different roots of the

characteristic polynomial (6.4). Obviously,
w
∑

u=1
fu = n − 1. The numbers cu,v are the solutions of the

(n − 1)− equations

ai =

w
∑

u=1

fu−1
∑

v=0

cu,vivri
u, 1 ≤ i ≤ n − 1. (6.5)

Proof: The proof can be found in [10].

We now apply Lemma 6.1 to the eqn. (4.12). Setting xk =
∑

bl

k
E(bm−1, .., b1) in (6.1) and

(6.2), we obtain from Lemma 6.1:

178 Claus Bauer CUBO
12, 2 (2010)

Lemma 6.2.

∑

bl

k
E(bm−1, .., b1) =

w
∑

u=1

gu−1
∑

a=0

tu,akahk
u,

Here, the numbers gu denote the respective multiplicities of the w different roots hu of the characteristic

polynomial

xm−1 −

m−1
∑

u=1

Am−uC−1xm−1−u. (6.6)

The numbers tu,h are the solutions of the (m − 1)- linear equations

∑

bl

k
E(bm−1, .., b1) =

m−1
∑

u

gu−1
∑

h=0

tu,hvhhv
u, 1 ≤ v ≤ m − 1.

We now use Lemma 6.2 to simplify Theorem 3.1 as follows:

Theorem 6.1.

π∗
0 =

(

1 +
N−1
∑

k=1

Fk + Y ∗(1 − C0)

)−1

, (6.7)

πk = π∗
0Fk, 0 ≤ k ≤ N − 1, (6.8)

πN = π∗
0Y ∗(C1 − 1)−1, (6.9)

where

Fk =

w
∑

u=1

gu−1
∑

a=0

tu,akahk
u. (6.10)

The numbers w, hu, gu, tu,h are defined as in Lemma 6.2, and

Y ∗ = −

m−1
∑

l=1

Cl+1FN−l.

Proof: The eqn. (6.7) - (6.10) follow directly from Theorem 3.1 and Lemma 6.2.

7 The complexity of Theorem 6.1

7.1 Preliminaries

In this section, we investigate the computational complexity of Theorem 6.1. We see from the formu-

lation of Theorem 6.1 that the complexity of the calculation of a steady state probability πk mainly

derives from the calculation of the sum
N−1
∑

k=1

Fk, the solution of the (m − 1) eqn. (6.5), and the cal-

culation of the roots of the characteristic polynomial (6.6). It is well-known that the solution of the

system of equations (6.5) using Gaussian elimination requires O(m3) operations. We consider the

complexity of the other two operations separately in the next two sections.

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 179

7.2 The calculation of the sum
N−1
∑

k=1

Fk

We see from eqn. (6.10) that the sum
N−1
∑

k=1

Fk can be rewritten as follows:

N−1
∑

k=1

Fk =

w
∑

u=1

gu−1
∑

a=0

tu,a

N−1
∑

k=1

kahk
u

:=

w
∑

u=1

gu−1
∑

a=0

tu,aHN−1,a,hu
, (7.1)

where

HN,q,x :=

N
∑

k=1

kqxk.

For the calculation of HN,q,x we prove the following lemma:

Lemma 7.1.

HN,q,1 =

q+1
∑

k=1

(−1)q−k+1BEq−k+1

p + 1

(

p + 1

k

)

Nk, (7.2)

HN,0,x = x
xN − 1

x − 1
, (7.3)

HN,q,x = x
(N + 1)qxN + (N + 1)q − 2

x − 1
−

x

x − 1

q−1
∑

b=0

HN,b,x

(

q

b

)

, x 6= 1, q > 1.

(7.4)

In eqn. (7.2), BEk denotes the k − th Bernoulli number [2].

Proof: The relation (7.2) is explained in [2] and the relation (7.3) is a known formula for geometric

sums. For the proof of eqn. (7.4), we will use the technique of partial summation defined in [17] as

follows: For any complex series ak, bk, M < n ≤ N, there is

∑

M<n≤N

akbk = ANbN+1 +
∑

m<k≤N

Ak(bk − bk+1), (7.5)

where

AN =
∑

M<k≤N

ak.

180 Claus Bauer CUBO
12, 2 (2010)

Applying (7.5) with ak = xk and bk = kq, and the formula for geometric sums as applied in (7.3), we

see

HN,q,x = (N + 1)qx
xN − 1

x − 1
+

N
∑

k=1

x
xk − 1

x − 1
(kq − (k + 1)q)

= (N + 1)qx
xN − 1

x − 1
+

x

x − 1

N
∑

k=1

xk (kq − (k + 1)q) −
x

x − 1

N
∑

k=1

(kq − (k + 1)q)

= x
(N + 1)q(xN − 1)

x − 1
−

x

x − 1

N
∑

k=1

xk

q−1
∑

b=0

kb

(

q

b

)

− x
1 − (N + 1)q

x − 1

= x
(N + 1)qxN + (N + 1)q − 2

x − 1
−

x

x − 1

q−1
∑

b=0

HN,b,x

(

q

b

)

. 2

Lemma 7.1 shows that for x 6= 1, the sum HN,q,x can be calculated recursively from the sums HN,b,x,

0 ≤ b ≤ q − 1, with a complexity of O(q). Thus, the calculation of all sums HN,b,x, 0 ≤ b ≤ q has a

complexity of O(q2). In consequence, the complexity of the calculation of the right- hand side of eqn.

(7.1) is

O

(

w
∑

u=1

g2
u

)

= O(m2),

because of
w
∑

u=1
gu = m − 1. In particular, we note that whereas the skip parameter m influences the

complexity of the calculations, the variable N in the sum
N1
∑

k=1

does not influence the complexity. The

constant N appears as an exponent in the expressions (7.2) and (7.3). However, the exponential

function is usually implemented using a Taylor expansion approximation, the complexity of which

depends on the chosen precision of the approximation, but not on the specific value to be calculated.

7.3 The calculation of the roots of the characteristic polynomial

In order to apply Theorem 6.1, one needs to find the roots of the polynomial (6.6). We recall some know

results from the theory of polynomial equations for polynomials with real coefficients. The general

solution formula for quadratic equations is well known. Also, solution formulas for real polynomials

of third and forth degree were developed by Cardano and Ferrari, respectively [12, chap. 2]. Thus, we

see that for a degree ≤ 4, the calculation of the roots of the polynomial (6.6) can be done in constant

time.

A well-known theorem from algebraic field theory due to Abel from characterizes the set of

polynomials over a general field K for which the roots can be found explicitly. We quote Abel’s

theorem [9], p. 308:

Lemma 7.2. Let K be a field, p a positive number, and fp(x) a real polynomial of degree p in the

real variable x. The equation fp(x) = 0 is solvable by radicals for all polynomials fp(x) of degree p if

p ≤ 4.

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 181

In other words, Abel’s theorem states that for polynomials of degree m > 4 no general exact

solutions exists. Thus, the solution of polynomials of higher degree requires the application of approx-

imative methods. An overview of these methods is given in [8]. Among these methods, Laguerre’s

method has been widely researched [16]. Whereas its convergent behavior is well understood, the

speed of its convergence is not well described in the literature.

Therefore, we performed numerical experiments in order to understand the computational com-

plexity of the calculation of the roots of the characteristic polynomial (6.6). For each degree m, we

evaluated 10000 polynomials of degree m, and for each polynomial we used a random generator to

generate the coefficients of the polynomial. For each polynomial, we measured the execution time

s(m) - measured in milliseconds - needed to determine all roots of the polynomial on a Pentium IV,

2.4 Ghz PC. The graph in fig. 1 shows the logarithm - to the base 10 - of s(m) as a function of the

logarithm - to the base 10 - of the degree m of the polynomial. An least mean square analysis of the

simulation data shows that log(s(m)) can be described as a linear function of log m as follows:

log(s(m)) = 1.99 log m + c

for some constant c. Thus, the execution time s(m) can be approximately described as a second order

polynomial of the polynomial degree m.

2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6

7

Logarithm of degree m of polynomial

Lo
ga

rit
hm

 o
f e

xe
cu

tio
n

tim
e

in
 m

s

Figure 1: Speed of convergence of the calculation of the roots of the characteristic polynomial

7.4 Combined complexity of Theorem 6.1

The combinations of the results of sec. (7.1) - (7.3) shows that the overall computational complexity

required to calculate a specific steady state probability πk using Theorem 6.1 is O(m3).

8 Comparison of Theorem 6.1 with previous work

In this section, we compare the computational complexity of Theorem 6.1 with known methods to

solve steady state models as defined via the transition matrix (2.1).

First, we present a well-known recursive way of solving the system described by the matrix (2.1).

182 Claus Bauer CUBO
12, 2 (2010)

Then, we follow an idea from [6] and model the Markov process defined via (2.1) as a QBD process

with u :=
⌈

N+1
m−1

⌉

levels. We discuss two known methods to solve QBD models due to Gaver et. al [5],

[13, chap. 13] and Ye and Li [21], respectively. Finally, we compare the computational complexity of

these approaches with the complexity of Theorem 6.1.

8.1 Recursive calculation

The equations (2.3) - (2.6) allow a recursive calculation of the steady state probabilities πk, 0 ≤ k ≤ N.

We see from these equations that each πk can be expressed as a linear function of all πl, 0 ≤ l ≤ k−1.

Thus, using a recursive argument each πl can be expressed as the product of π0 and a real number

kl. As
N
∑

l=0

kl = π−1
0 , we can can calculate all steady state probabilities πk. These calculations require

O(N2) calculations.

We note that a similar approach can be used to derive a closed - form solution for πk. In particular,

we consider the unconstrained random walk corresponding to (2.1) without a reflecting barrier on the

right, i.e., with an infinite number of levels. In order to define this random walk formally, we generalize

the transition probabilities Bn defined in (2.1) to

Dn =

{

Bn, if 0 ≤ n ≤ m,

0, n ∈ Z\[0, m].

}

. (8.6)

We define the transition probabilities from state i to state j of the unconstrained random walk as

pij =

{

D0 + D1, if i = j = 0,

Dj−i+1, else.

}

.

We denote by {mj : j ≥ 0} the invariant measure of this Markov chain and set m0 = 1. Then,

mj =
∑

i≥0

pijmi. Using the definition (8.6), we see

m1 =
1 − D0 − D1

D0
, D0mj+1 = mj −

j
∑

i=0

miDj−i+1 (j ≥ 1). (8.7)

The first N columns of the transition matrix defined by (8.6) are identical to the first N columns

of the transition matrix T defined in (2.1). Thus, there exists a constant K such that πj = Kmj if

j < N. There is

πN = K
m−1
∑

i=1

Cm−i+1mN−m+i + πNC1,

and

πNC1 = πN (1 − D0) = πN − D0 + D0K

N−1
∑

j=0

mj , (8.8)

which implies

K =
D0

D0

N−1
∑

i=0

mi +
m−1
∑

i=1

Cm−i+1mN−m+i

.

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 183

Let D(s) :=
∑

k≥0

skDk be the generating function of the series Dk. Using standard manipulations with

generating functions yields

M(s) :=
∑

k≥0

mksk = D0
1 − s

B(s) − s
, (8.9)

valid in the disc |s| < q, where q is the least positive solution of D(s) = s. As Dn = 0 for n > m, B(s)

is a polynomial and therefore M(s) is meromorphic function with a finite number of poles. Using a

partial fraction expansion of M(s) and picking the coefficients of sk on the right hand side of (8.9)

gives a representation of the mk. The calculation of the coefficients uses the recursive relations (8.7)

and relation (8.8). Thus, it has a complexity of O(N2).

8.2 Modeling of the Markov process as a QBD process with u :=

⌈

N+1

m−1

⌉

levels

First, we describe how the matrix T can be redefined as a block matrix that describes a QBD process.

For the sake of simplicity, we first assume that N + 1 = u(m − 1) for some integer u. Then, we can

rewrite T as defined in (2.1) as a u × u block matrix as follows:

T =







































P1,1 A0 0 0 0

A2 A1 A0 0

0 A2 A1

0

0

..

.. A1 A0 0

.. A2 A1 A0

0 0 A2 Pu,u







































, (8.10)

A0 =







































Bm+1 0 0

Bm Bm+1 0

Bm−1 Bm Bm+1

..

..

..

B5 Bm+1 0 0

B4 B5 Bm Bm+1 0

B3 B4 Bm Bm+1







































,

184 Claus Bauer CUBO
12, 2 (2010)

A1 =







































B2 B3 B4 Bm

B1 B2 B3 Bm−1

0 B1 B2 Bm−2

0 0 B1 B2 Bm−3

.. B1 B2

.. B1 B2

.. B1 B2

.. 0 B1 B2 B3

0 0 0 0 0 0 0 B1 B2







































, (8.11)

A2 =







































.. 0 B1

.. 0 0

.. 0

..

..

..

..

..

..







































,

P1,1 =







































E B3 B4 Bm

B1 B2 Bm−1

0 B1 B2 Bm−2

0 0 B1

..

..

..

..

.. B1 B2







































, (8.12)

Pu,u =







































B2 B3 B4 Bm−1 Cm−1

B1 B2 B3 Bm−2 Cm−2

0 B1 B2 Bm−3 Cm−3

0 0 B1 B2 Bm−4 Cm−4

.. B1 B2

.. B1 B2

.. B1 B2

.. 0 B1 B2 C2

0 0 0 0 0 0 0 B1 C1







































.

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 185

Table 1: Comparison of complexity of different solution algorithms

Method Complexity

Recursive calculation O(N2)

Linear level reduction O(Nm2)

Method of folding O(m3log N
m)

Theorem 6.1 O(m3)

The matrices A0, A1, A2, P1,1 and Pu,u are (m− 1)× (m− 1) matrices. In the case that N + 1 is

not an integer multiple of m − 1, i.e, N + 1 = u(m − 1) − c, 0 < c < m − 1, the presentation (8.10)

changes as follow. The matrix Pu,u is replaced by the matrix (m − 1 − c) × m matrix P ∗
n,n which

consists of the m−1−c right columns of Pn,n. Similarly, the matrix A0 in right-most column of (8.10)

is replaced by the (m − c) × m matrix A∗
0 which consists of the m − c right columns of A2.

Gaver et. al [5], [13, chap. 13] propose the linear level reduction method to solve QBD systems.

Applied to (8.10), the complexity of this solution algorithm is O(um3) = O(Nm2). Ye and Li [21]

propose the method of folding. The application of this algorithm to solve (8.10) requires O(m3log2 u) =

O(m3log2
N
m) computational steps.

8.3 Comparison of Complexities

We see from Table 1 that the complexity of Theorem 6.1 is lower than the complexity of the recursive

calculations if m = o(N2/3). Its complexity is lower than the complexity of the linear reduction based

method if m = o(N). Theorem 6.1 also outperforms the method of folding if N is sufficiently larger

than m. However, the performance gain is only of the order (log N
m)−1, whereas Theorem 6.1 achieves

a performance gain of the order m/N compared to the linear level reduction method. We note that in

contrast to the recursive calculation, the linear level reduction approach and the folding method, the

number of computations required to calculate a specific steady state probability πk using Theorem

6.1 does not depend on the number of phases N + 1.

In summary, we see that Theorem 6.1 outperforms the other approaches presented in this section

if N is significantly larger than m. Thus, the applicability of Theorem 6.1 to the efficient solution

of Markov models for skip-free processes depends on the specific choice of the parameters N and m

describing the skip-free process.

9 Conclusions

This paper proposes a new solution algorithm for skip-free processes. The complexity of the algorithm

is independent of the number of levels of the system. In consequence, it numerically outperforms

previous algorithms if the skip parameter is small compared to the number of system levels. It is

based on a novel method for deriving a closed-form solution for skip-free processes and analyzing this

solution using Fibonacci sequences.

186 Claus Bauer CUBO
12, 2 (2010)

Received: July 2008. Revised: April 2009.

References

[1] A. Adhikari, Skip free processes. Ph.D thesis, Berkeley, 1986.

[2] C. B. Boyer, Pascal’s Formula for the Sums of Powers of the Integers. Scripta Math. 9, 237-244,

1943.

[3] P.J. Brockwell, The extinction time of a birth, death and catastrophe process and of a related

diffusion model. Advances Applied Probability, Vol. 17, 1985, 17 - 42.

[4] M.F. Chen, Single birth processes, Chinese Ann. Math. Ser. A, 20:77-82, 1999.

[5] D.P. Gaver, P.A. Jacobs and G. Latouche, Finite birth-and-death models in randomly

changing environments. Advances in Applied Probability, 16:715-731, 1984.

[6] W.K Grassmann and D.A. Stanford, Matrix analytic methods. In: Computational Probabil-

ity, WK Grassmann (Ed.), Kluwer, 2000, pp 153-202.

[7] L. Guen and A.M Makowski, Matrix-geometric solution for finite capacity queues with phase-

type distributions. Performance’87, edited by Courtois, P.J.; Latouche, G.; Amsterdam, 1987, p.

269 - 282.

[8] E. Hansen, M. Patrick and J. Rusnack, Some modifications of Laguere’s method. BIT,

17(1977), 409 -417.

[9] T. W. Hungerford, Algebra. Springer Publishing House, 1974.

[10] W.G. Kelley and A.C. Peterson, Difference equations, An introduction with applications,

Academic Press, Inc. 1991.

[11] P.A. Jacobs, D.P. Gaver and G. Latouche, Finite markov chain models skip free in one

direction. Naval Research Logistics Quarterly, 31, 1984, pp. 571-588.

[12] E. Kuntz, Algebra., Vieweg Verlag, Braunschweig, 1991.

[13] G. Latouche and V. Ramaswami, Introduction to matrix analytic methods in stochastic

modeling. Society for Industrial and Applied Mathematics, 1999.

[14] M.F. Neuts, Matrix-geometric solutions in stochastic models. An Algorithmic Approach. The

John Hopkins University Press, Baltimore, MD, 1981.

[15] M.F. Neuts, Structured stochastic matrices of M/G/1 type and their applications. Marcel

Dekker, New York, 1989.

[16] Y.V. Pan, Solving a polynomial equation : Some history and recent progress. Siam Rev., Vol.

39, No. 2, pp. 187 -220, June 1997.

[17] K. Prachar, Primzahlverteilung., Berlin, Heidelberg, New York, Springer Verlag, 1978.

CUBO
12, 2 (2010)

A new solution algorithm for skip-free processes to the left 187

[18] W.J. Stewart, On the use of numerical methods for ATM model. Modeling and performance

evaluation of ATM technology, edited by Perros, H.; Pujolle, G.; Takahashi, p. 375 - 396.

[19] D.A. Wolfram, Solving generalized Fibonacci recurrences. The Fibonacci Quarterly 36.2. May

1998, 129-45.

[20] S.J. Yan and M.F. Chen, Multidimensional Q-processes. Chin. Ann. Math. Ser. A,7:90-110,

1986

[21] J. Ye and S.Q. Li, Folding algorithm: A computational method for finite QBD processes with

level dependent transitions. IEEE Transactions on Communications., 42:625-639, 1994.

[22] J.K. Zhang, Generalized birth-death processes. Acta Mathematica Sinica, Vol. 46, 1984, 241 -

259.

[23] Y.H. Zhang, Strong ergodicity for single-birth processes. Journal of Applied Probability, Vol.

38, 2001, 207 - 277.

