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ABSTRACT

Let 0, denote the Dirac operator in R™. In this paper, we present a refinement of the
biharmonic functions and at the same time an extension of the monogenic functions by
considering the equation 0, f0, = 0. The solutions of this “sandwich” equation, which
we call inframonogenic functions, are used to obtain a new Fischer decomposition for

homogeneous polynomials in R™.

RESUMEN

Denotemos por d; el operador de Dirac en R"™. En este articulo, nosotros presentamos un
refinamiento de las funciones biarménicas y al mismo tiempo una extensién de las funciones
monogénicas considerando la ecuacién 9, f0, = 0. Las soluciones de esta ecuacion tipo
“sandwich”, las cuales llamaremos inframonogénicas, son utilizadas para obtener una nueva

descomposicién de Fischer para polinomios homogéneos en R™.
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1 Introduction

Let Ry, be the 2™-dimensional real Clifford algebra constructed over the orthonormal basis (e, . . ., ep,)
of the Euclidean space R™ (see [6]). The multiplication in Rg,, is determined by the relations
ejer + exe; = —20;, and a general element of Rg p, is of the form a = )" , asea, aa € R, where for
A={j,...,gkr C{1,...,m}, j1 < -+ < j, €a = €j, ...e;,. For the empty set (), we put ey = 1, the
latter being the identity element.

Notice that any a € Rq,,, may also be written as a = Y ;" [a]r where [a]) is the projection of a
on Ré{%. Here Ré{% denotes the subspace of k-vectors defined by

Rgfr)n = {a ERom: a= Z apes, ap € R}.
|A|=Fk

In particular, R and R(()?,)n 53] R&)n are called, respectively, the space of vectors and paravectors in

0,m

Rg,m. Observe that R™T! may be naturally identified with Rg?,)n @ Ré},)n by associating to any element
(0,1, .., Tm) € R™HL the paravector x = xg +x = xg + Z;n:l xje;.

Conjugation in Ry, is given by

a= ZaAéA, €p = (—1)
A

[Al(A[+1)
2 €A.

One easily checks that ab = ba for any a,b € Ro,m. Moreover, by means of the conjugation a norm
|a| may be defined for each a € Rg ,, by putting

af? = faalo = 3" a3
A

The Ro,,-valued solutions f(z) of 9, f(z) = 0, with 9, = >77_, ;0. being the Dirac operator, are

called left monogenic functions (see [4, 8]). The same name is used for null-solutions of the operator
Or = Oy, + 0, which is also called generalized Cauchy-Riemann operator.

In view of the non-commutativity of Rg ,, a notion of right monogenicity may be defined in a
similar way by letting act the Dirac operator or the generalized Cauchy-Riemann operator from the
right. Functions that are both left and right monogenic are called two-sided monogenic.

One can also consider the null-solutions of 8§ and 0% (k € N) which gives rise to the so-called
k-monogenic functions (see e.g. [2, 3, 15]).

It is worth pointing out that 0, and 0, factorize the Laplace operator in the sense that
m
Ay =) 02 =07, Dp=0} + Ay =0,00=0,0,.
Jj=1

Let us now introduce the main object of this paper.
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Definition 1.1. Let Q be an open set of R™ (resp. R™T). An Ry m-valued function f € C*(2) will

be called an inframonogenic function in Q if and only if it fulfills in Q) the “sandwich” equation

O0xf0r =0 (resp. 0, f0, =0).
Here we list some motivations for studying these functions.

1. If a function f is inframonogenic in 2 C R™ and takes values in R, then f is harmonic in 2.
2. The left and right monogenic functions are also inframonogenic.

3. If a function f is inframonogenic in 2 C R™, then it satisfies in {2 the overdetermined system
82 f=0= f@g. In other words, f is a two-sided 3-monogenic function.

4. Every inframonogenic function f € C*(Q) is biharmonic, i.e. it satisfies in © the equation

AZ2f =0 (see eg. [1,11, 13, 16]).

The aim of this paper is to present some simple facts about the inframonogenic functions (Section 2)
and establish a Fischer decomposition in this setting (Section 3).

2 Inframonogenic functions: simple facts
It is clear that the product of two inframonogenic functions is in general not inframonogenic, even if
one of the factors is a constant.

Proposition 2.1. Assume that f is an inframonogenic function in Q C R™ such that e; f (resp. fe;)
is also inframonogenic in ) for each j =1,...,m. Then fis of the form

f(z) = cx + M(z),

where ¢ is a constant and M a right (resp. left) monogenic function in ).

Proof. The proposition easily follows from the equalities
az(ejf@))az = —20,,f(2)0x — €; (azf@)az)v

0z (f(2)e;) 0 = —204,0: f (x) — (9uf (2)3z) e, (1)
j=1,....,m. O
For a vector x and a k-vector Yy, the inner and outer product between z and Yj are defined by

(see [8])

Y] for k> 1
£.Yk_{[z Wy for k> and  zAYi = @il -

0 for k=0

In a similar way Y e z and Y A z are defined. We thus have that

zYp =z e Yp +x AV,
Yiz =Y,ex+Y, Az,
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where also
zeYy=
T ANY, = (—1)kY/C Nx.

Let us now consider a k-vector valued function Fj which is inframonogenic in the open set 2 C R™.

This is equivalent to say that F} satisfies in {2 the system

Oy ® (05 ® Fy;) =0
8£/\(8£0Fk)—3£0(az/\Fk) =0
Oz N (0z N Fi) =0

In particular, for m = 2 and k = 1, a vector-valued function f = fie; + faez is inframonogenic if and

8I1I1f1 - awzwgfl + 2a$1$2f2 = O

only if
{ az1m1f2 - azgmng - 2a$1$2f1 = O

We now try to find particular solutions of the previous system of the form
fi(z1,z2) = a(zr) cos(nxs),

fo(@1,m2) = B(z1) sin(nzz).

It easily follows that o and 8 must fulfill the system
o’ +nfa+2n8 =0

8" +n%B+2na’ =0.

Solving this system, we get
fi(zy,x9) = ((01 + coxp) exp(nxy) + (3 + caxr) exp(—n:z:l)) cos(nxs), (2)
fo(xy,29) = ((03 + cqx1) exp(—nxy) — (¢1 + caxq) exp(nxl)) sin(nas). (3)
Therefore, we can assert that the vector-valued function
flwr,20) = ((01 + camy) exp(nzy) + (e3 + ca21) exp(—n:vl)) cos(nxs)e;
+ ((63 + cqxr) exp(—nz1) — (€1 + coxq) exp(n:cl)) sin(nxzz)es, ¢j,n € R,

is inframonogenic in R2. Note that if ¢; = ¢3 and ¢y = ¢4, then
fi(z1,22) = 2(c1 + cax1) cosh(nxy) cos(nxs),
fa(x1,22) = —2(c1 + oz ) sinh(nzy ) sin(nas).

Since the functions (2) and (3) are harmonic in R? if and only if ¢z = ¢4 = 0, we can also claim that

not every inframonogenic function is harmonic.
Here is a simple technique for constructing inframonogenic functions from two-sided monogenic

functions.
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Proposition 2.2. Let f(z) be a two-sided monogenic function in @ C R™. Then zf(z) and f(z)x

are inframonogenic functions in €.

Proof. 1t is easily seen that

(2f ()02 =>_ 0, (af(@)e; =z(f(2)02) + Y _e;f(z)e; =D _ejf(@)e;.
Jj=1 Jj=1 j=1
We thus get
O0p (2f(2))0x = =Y ¢;(0uf(x))e; — 2f (2)0x = 0.
j=1
In the same fashion we can prove that f(x)z is inframonogenic. O

We must remark that the functions in the previous proposition are also harmonic. This may be
proved using the following equalities

Ay (zf(z)) =20, f(z) + z(Asf(2)), (4)
Ap(f(z)z) = 2f(2)0p + (Auf(2))z, (5)

and the fact that every monogenic function is harmonic. At this point it is important to notice that
an Rg n,-valued harmonic function is in general not inframonogenic. Take for instance h(z)e;, h(zx)
being an R-valued harmonic function. If we assume that h(z)e; is also inframonogenic, then from (1)
it may be concluded that dzh(z) does not depend on xz;. Clearly, this condition is not fulfilled for
every harmonic function.

We can easily characterize the functions that are both harmonic and inframonogenic. Indeed,
suppose that h(z) is a harmonic function in a star-like domain 2 C R™. By the Almansi decomposition
(see [12, 15]), we have that h(z) admits a decomposition of the form

h(z) = fi(z) + zf2(2),

where f1(z) and fa(z) are left monogenic functions in €. It is easy to check that

Och(z) = —mfa(z) — 2By f2(z),

E; = 2721 x;0,; being the Euler operator. Thus h(z) is also inframonogenic in © if and only if
mfa(z) + 2E, f2(z) is right monogenic in Q. In particular, if h(z) is a harmonic and inframonogenic
homogeneous polynomial of degree k, then fi(x) is a left monogenic homogeneous polynomial of degree
k while fo(z) is a two-sided monogenic homogeneous polynomial of degree k — 1.

The following proposition provides alternative characterizations for the case of k-vector valued

functions.

Proposition 2.3. Suppose that Fy, is a harmonic (resp. inframonogenic) k-vector valued function in
Q C R™ such that 2k # m. Then Fy is also inframonogenic (resp. harmonic) if and only if one of
the following assertions is satisfied:

(i) Fr(x)z is left 3-monogenic in Q;
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(i) zFy(z) is right 3-monogenic in €);

(i) zFy(x)z is biharmonic in Q.

Proof. We first note that

(=1)14e, for jeA,
ejeae; =
AT (—)Mte, for ¢ A,

which clearly yields Z;n:l ejeae; = (—1)141(2|A|—m)e4. Tt thus follows that for every k-vector valued
function Fy,

Z ejFre; = (1) (2k —m)Fy.
j=1
Using the previous equality together with (4) and (5), we obtain

Ou Dy (Fir(2)z) = 20, Fi(2)05 + (0280 Fk(2))z + (—1)F (2k — m) A, Fy,
Ay (2F(2))0p = 20, Fy (1), + 2(ApFy(2)s) + (—1)F (2k — m) A, Fy,
A2 (zFr(2)z) = 4(28ng(£)8£ + (—1)*(2k — m) AL Fy + (0:A:Fi(2))z

+2(ApF(2)0,) ) + 2(A2F(2)z.
The proof now follows easily. O

Before ending the section, we would like to make two remarks. First, note that if m even, then
a m/2-vector valued function F,, (z) is inframonogenic if and only if F,,, /5(z) and F), jo(z)z are left
3-monogenic, or equivalently, F, /2(z) and zF),/2(z) are right 3-monogenic. Finally, for m odd the
previous proposition remains valid for Rg ,,-valued functions.

3 Fischer decomposition

The classical Fischer decomposition provides a decomposition of arbitrary homogeneous polynomials
in R™ in terms of harmonic homogeneous polynomials. In this section we will derive a similar decom-
position but in terms of inframonogenic homogeneous polynomials. For other generalizations of the
Fischer decomposition we refer the reader to [5, 7, 8, 9, 10, 12, 14, 17, 18].

Let P(k) (k € Np) denote the set of all Rg ,,,-valued homogeneous polynomials of degree k in R™.
It contains the important subspace I(k) consisting of all inframonogenic homogeneous polynomials of
degree k.

An an inner product may be defined in P(k) by setting

(Pr@), Q@) = [P0 Qul@)] | Pelw). Qula) € P(R),

Py(0;) is the differential operator obtained by replacing in Py(z) each variable z; by d,; and taking
conjugation.
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From the obvious equalities
[ejablo = —[ae;blo,
[a_ejb]o = —[dbej]o, a,be Roﬂn,

we easily obtain

(@Py—1(2), Qk(2))), = — (Pr-1(2), 92Qk(2)), _,
(Pe-1(z)z, Qr(2))), = — (Pi-1(2), Qu(2)dz), _,

with Py_1(z) € P(k — 1) and Qx(z) € P(k). Hence for P,_s(x) € P(k —2) and Qg (z) € P(k), we
deduce that
(2Pyo—2(2)z, Qr(2))y = (Pe-2(2), 02 Qk(2)0 ), _, - (6)

Theorem 3.1 (Fischer decomposition). For k > 2 the following decomposition holds:
P(k) =1(k) ® zP(k — 2)z.

Moreover, the subspaces (k) and zP(k — 2)x are orthogonal w.r.t. the inner product (), .

Proof. The proof of this theorem will be carried out in a similar way to that given in [8] for the
case of monogenic functions.

As P(k) = zP(k — 2)z & (zP(k — 2)z) " it is sufficient to show that
I(k) = (2P(k - 2)a)" .
Take Py(z) € (zP(k — 2)z)". Then for all Qi_2(z) € P(k — 2) it holds
(Qr—2(x), 0u Py ()0 ), , =0,

where we have used (6). In particular, for Qr_2(z) = 0, Px(z)0; we get that 0, Py(x)d;, = 0 or
Py(z) € I(k). Therefore (zP(k — 2)z)" C I(k).

Conversely, let Py(z) € I(k). Then for each Qr_2(z) € P(k — 2),
(2Qr—2(2)z, Pe(2))), = (Qr—2(), 0 Pr(2)y), , =0,

whence Py(z) € (zP(k — 2)z)". O

By recursive application of the previous theorem we get:
Corollary 3.1 (Complete Fischer decomposition). If k > 2, then

[k/2]
P(k) = P z°I(k — 25)z°.

s=0
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