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ABSTRACT

Let ∂x denote the Dirac operator in R
m. In this paper, we present a refinement of the

biharmonic functions and at the same time an extension of the monogenic functions by

considering the equation ∂xf∂x = 0. The solutions of this “sandwich” equation, which

we call inframonogenic functions, are used to obtain a new Fischer decomposition for

homogeneous polynomials in R
m.

RESUMEN

Denotemos por ∂x el operador de Dirac en R
m. En este art́ıculo, nosotros presentamos un

refinamiento de las funciones biarmónicas y al mismo tiempo una extensión de las funciones

monogénicas considerando la ecuación ∂xf∂x = 0. Las soluciones de esta ecuación tipo

“sándwich”, las cuales llamaremos inframonogénicas, son utilizadas para obtener una nueva

descomposición de Fischer para polinomios homogéneos en R
m.
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1 Introduction

Let R0,m be the 2m-dimensional real Clifford algebra constructed over the orthonormal basis (e1, . . . , em)

of the Euclidean space R
m (see [6]). The multiplication in R0,m is determined by the relations

ejek + ekej = −2δjk and a general element of R0,m is of the form a =
∑

A aAeA, aA ∈ R, where for

A = {j1, . . . , jk} ⊂ {1, . . . , m}, j1 < · · · < jk, eA = ej1 . . . ejk
. For the empty set ∅, we put e∅ = 1, the

latter being the identity element.

Notice that any a ∈ R0,m may also be written as a =
∑m

k=0[a]k where [a]k is the projection of a

on R
(k)
0,m. Here R

(k)
0,m denotes the subspace of k-vectors defined by

R
(k)
0,m =

{

a ∈ R0,m : a =
∑

|A|=k

aAeA, aA ∈ R

}

.

In particular, R
(1)
0,m and R

(0)
0,m ⊕ R

(1)
0,m are called, respectively, the space of vectors and paravectors in

R0,m. Observe that R
m+1 may be naturally identified with R

(0)
0,m⊕R

(1)
0,m by associating to any element

(x0, x1, . . . , xm) ∈ R
m+1 the paravector x = x0 + x = x0 +

∑m
j=1 xjej .

Conjugation in R0,m is given by

a =
∑

A

aAeA, eA = (−1)
|A|(|A|+1)

2 eA.

One easily checks that ab = ba for any a, b ∈ R0,m. Moreover, by means of the conjugation a norm

|a| may be defined for each a ∈ R0,m by putting

|a|2 = [aa]0 =
∑

A

a2
A.

The R0,m-valued solutions f(x) of ∂xf(x) = 0, with ∂x =
∑m

j=1 ej∂xj
being the Dirac operator, are

called left monogenic functions (see [4, 8]). The same name is used for null-solutions of the operator

∂x = ∂x0 + ∂x which is also called generalized Cauchy-Riemann operator.

In view of the non-commutativity of R0,m a notion of right monogenicity may be defined in a

similar way by letting act the Dirac operator or the generalized Cauchy-Riemann operator from the

right. Functions that are both left and right monogenic are called two-sided monogenic.

One can also consider the null-solutions of ∂k
x and ∂k

x (k ∈ N) which gives rise to the so-called

k-monogenic functions (see e.g. [2, 3, 15]).

It is worth pointing out that ∂x and ∂x factorize the Laplace operator in the sense that

∆x =
m

∑

j=1

∂2
xj

= −∂2
x, ∆x = ∂2

x0
+ ∆x = ∂x∂x = ∂x∂x.

Let us now introduce the main object of this paper.
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Definition 1.1. Let Ω be an open set of R
m (resp. R

m+1). An R0,m-valued function f ∈ C2(Ω) will

be called an inframonogenic function in Ω if and only if it fulfills in Ω the “sandwich” equation

∂xf∂x = 0 (resp. ∂xf∂x = 0).

Here we list some motivations for studying these functions.

1. If a function f is inframonogenic in Ω ⊂ R
m and takes values in R, then f is harmonic in Ω.

2. The left and right monogenic functions are also inframonogenic.

3. If a function f is inframonogenic in Ω ⊂ R
m, then it satisfies in Ω the overdetermined system

∂3
xf = 0 = f∂3

x. In other words, f is a two-sided 3-monogenic function.

4. Every inframonogenic function f ∈ C4(Ω) is biharmonic, i.e. it satisfies in Ω the equation

∆2
xf = 0 (see e.g. [1, 11, 13, 16]).

The aim of this paper is to present some simple facts about the inframonogenic functions (Section 2)

and establish a Fischer decomposition in this setting (Section 3).

2 Inframonogenic functions: simple facts

It is clear that the product of two inframonogenic functions is in general not inframonogenic, even if

one of the factors is a constant.

Proposition 2.1. Assume that f is an inframonogenic function in Ω ⊂ R
m such that ejf (resp. fej)

is also inframonogenic in Ω for each j = 1, . . . , m. Then f is of the form

f(x) = cx + M(x),

where c is a constant and M a right (resp. left) monogenic function in Ω.

Proof. The proposition easily follows from the equalities

∂x

(

ejf(x)
)

∂x = −2∂xj
f(x)∂x − ej

(

∂xf(x)∂x

)

,

∂x

(

f(x)ej

)

∂x = −2∂xj
∂xf(x) −

(

∂xf(x)∂x

)

ej , (1)

j = 1, . . . , m. �

For a vector x and a k-vector Yk, the inner and outer product between x and Yk are defined by

(see [8])

x • Yk =

{

[xYk]k−1 for k ≥ 1

0 for k = 0
and x ∧ Yk = [xYk]k+1 .

In a similar way Yk • x and Yk ∧ x are defined. We thus have that

xYk = x • Yk + x ∧ Yk,

Ykx = Yk • x + Yk ∧ x,
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where also

x • Yk = (−1)k−1Yk • x,

x ∧ Yk = (−1)kYk ∧ x.

Let us now consider a k-vector valued function Fk which is inframonogenic in the open set Ω ⊂ R
m.

This is equivalent to say that Fk satisfies in Ω the system















∂x • (∂x • Fk) = 0

∂x ∧ (∂x • Fk) − ∂x • (∂x ∧ Fk) = 0

∂x ∧ (∂x ∧ Fk) = 0.

In particular, for m = 2 and k = 1, a vector-valued function f = f1e1 + f2e2 is inframonogenic if and

only if
{

∂x1x1f1 − ∂x2x2f1 + 2∂x1x2f2 = 0

∂x1x1f2 − ∂x2x2f2 − 2∂x1x2f1 = 0.

We now try to find particular solutions of the previous system of the form

f1(x1, x2) = α(x1) cos(nx2),

f2(x1, x2) = β(x1) sin(nx2).

It easily follows that α and β must fulfill the system

α′′ + n2α + 2nβ′ = 0

β′′ + n2β + 2nα′ = 0.

Solving this system, we get

f1(x1, x2) =
(

(c1 + c2x1) exp(nx1) + (c3 + c4x1) exp(−nx1)
)

cos(nx2), (2)

f2(x1, x2) =
(

(c3 + c4x1) exp(−nx1) − (c1 + c2x1) exp(nx1)
)

sin(nx2). (3)

Therefore, we can assert that the vector-valued function

f(x1, x2) =
(

(c1 + c2x1) exp(nx1) + (c3 + c4x1) exp(−nx1)
)

cos(nx2)e1

+
(

(c3 + c4x1) exp(−nx1) − (c1 + c2x1) exp(nx1)
)

sin(nx2)e2, cj , n ∈ R,

is inframonogenic in R
2. Note that if c1 = c3 and c2 = c4, then

f1(x1, x2) = 2(c1 + c2x1) cosh(nx1) cos(nx2),

f2(x1, x2) = −2(c1 + c2x1) sinh(nx1) sin(nx2).

Since the functions (2) and (3) are harmonic in R
2 if and only if c2 = c4 = 0, we can also claim that

not every inframonogenic function is harmonic.

Here is a simple technique for constructing inframonogenic functions from two-sided monogenic

functions.
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Proposition 2.2. Let f(x) be a two-sided monogenic function in Ω ⊂ R
m. Then xf(x) and f(x)x

are inframonogenic functions in Ω.

Proof. It is easily seen that

(

xf(x)
)

∂x =

m
∑

j=1

∂xj

(

xf(x)
)

ej = x
(

f(x)∂x

)

+

m
∑

j=1

ejf(x)ej =

m
∑

j=1

ejf(x)ej .

We thus get

∂x

(

xf(x)
)

∂x = −
m

∑

j=1

ej

(

∂xf(x)
)

ej − 2f(x)∂x = 0.

In the same fashion we can prove that f(x)x is inframonogenic. �

We must remark that the functions in the previous proposition are also harmonic. This may be

proved using the following equalities

∆x

(

xf(x)
)

= 2∂xf(x) + x
(

∆xf(x)
)

, (4)

∆x

(

f(x)x
)

= 2f(x)∂x +
(

∆xf(x)
)

x, (5)

and the fact that every monogenic function is harmonic. At this point it is important to notice that

an R0,m-valued harmonic function is in general not inframonogenic. Take for instance h(x)ej , h(x)

being an R-valued harmonic function. If we assume that h(x)ej is also inframonogenic, then from (1)

it may be concluded that ∂xh(x) does not depend on xj . Clearly, this condition is not fulfilled for

every harmonic function.

We can easily characterize the functions that are both harmonic and inframonogenic. Indeed,

suppose that h(x) is a harmonic function in a star-like domain Ω ⊂ R
m. By the Almansi decomposition

(see [12, 15]), we have that h(x) admits a decomposition of the form

h(x) = f1(x) + xf2(x),

where f1(x) and f2(x) are left monogenic functions in Ω. It is easy to check that

∂xh(x) = −mf2(x) − 2Exf2(x),

Ex =
∑m

j=1 xj∂xj
being the Euler operator. Thus h(x) is also inframonogenic in Ω if and only if

mf2(x) + 2Exf2(x) is right monogenic in Ω. In particular, if h(x) is a harmonic and inframonogenic

homogeneous polynomial of degree k, then f1(x) is a left monogenic homogeneous polynomial of degree

k while f2(x) is a two-sided monogenic homogeneous polynomial of degree k − 1.

The following proposition provides alternative characterizations for the case of k-vector valued

functions.

Proposition 2.3. Suppose that Fk is a harmonic (resp. inframonogenic) k-vector valued function in

Ω ⊂ R
m such that 2k 6= m. Then Fk is also inframonogenic (resp. harmonic) if and only if one of

the following assertions is satisfied:

(i) Fk(x)x is left 3-monogenic in Ω;
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(ii) xFk(x) is right 3-monogenic in Ω;

(iii) xFk(x)x is biharmonic in Ω.

Proof. We first note that

ejeAej =

{

(−1)|A|eA for j ∈ A,

(−1)|A|+1eA for j /∈ A,

which clearly yields
∑m

j=1 ejeAej = (−1)|A|(2|A|−m)eA. It thus follows that for every k-vector valued

function Fk,
m

∑

j=1

ejFkej = (−1)k(2k − m)Fk.

Using the previous equality together with (4) and (5), we obtain

∂x∆x

(

Fk(x)x
)

= 2∂xFk(x)∂x +
(

∂x∆xFk(x)
)

x + (−1)k(2k − m)∆xFk,

∆x

(

xFk(x)
)

∂x = 2∂xFk(x)∂x + x
(

∆xFk(x)∂x

)

+ (−1)k(2k − m)∆xFk,

∆2
x

(

xFk(x)x
)

= 4
(

2∂xFk(x)∂x + (−1)k(2k − m)∆xFk +
(

∂x∆xFk(x)
)

x

+ x
(

∆xFk(x)∂x

)

)

+ x
(

∆2
xFk(x)

)

x.

The proof now follows easily. �

Before ending the section, we would like to make two remarks. First, note that if m even, then

a m/2-vector valued function Fm/2(x) is inframonogenic if and only if Fm/2(x) and Fm/2(x)x are left

3-monogenic, or equivalently, Fm/2(x) and xFm/2(x) are right 3-monogenic. Finally, for m odd the

previous proposition remains valid for R0,m-valued functions.

3 Fischer decomposition

The classical Fischer decomposition provides a decomposition of arbitrary homogeneous polynomials

in R
m in terms of harmonic homogeneous polynomials. In this section we will derive a similar decom-

position but in terms of inframonogenic homogeneous polynomials. For other generalizations of the

Fischer decomposition we refer the reader to [5, 7, 8, 9, 10, 12, 14, 17, 18].

Let P(k) (k ∈ N0) denote the set of all R0,m-valued homogeneous polynomials of degree k in R
m.

It contains the important subspace I(k) consisting of all inframonogenic homogeneous polynomials of

degree k.

An an inner product may be defined in P(k) by setting

〈Pk(x), Qk(x)〉k =
[

Pk(∂x) Qk(x)
]

0
, Pk(x), Qk(x) ∈ P(k),

Pk(∂x) is the differential operator obtained by replacing in Pk(x) each variable xj by ∂xj
and taking

conjugation.



CUBO
12, 2 (2010)

Fischer decomposition by inframonogenic functions 195

From the obvious equalities

[eja b]0 = −[aejb]0,

[aej b]0 = −[abej]0, a, b ∈ R0,m,

we easily obtain

〈xPk−1(x), Qk(x)〉k = −
〈

Pk−1(x), ∂xQk(x)
〉

k−1
,

〈Pk−1(x)x, Qk(x)〉k = −
〈

Pk−1(x), Qk(x)∂x

〉

k−1
,

with Pk−1(x) ∈ P(k − 1) and Qk(x) ∈ P(k). Hence for Pk−2(x) ∈ P(k − 2) and Qk(x) ∈ P(k), we

deduce that

〈xPk−2(x)x, Qk(x)〉k =
〈

Pk−2(x), ∂xQk(x)∂x

〉

k−2
. (6)

Theorem 3.1 (Fischer decomposition). For k ≥ 2 the following decomposition holds:

P(k) = I(k) ⊕ xP(k − 2)x.

Moreover, the subspaces I(k) and xP(k − 2)x are orthogonal w.r.t. the inner product 〈 , 〉k.

Proof. The proof of this theorem will be carried out in a similar way to that given in [8] for the

case of monogenic functions.

As P(k) = xP(k − 2)x ⊕ (xP(k − 2)x)⊥ it is sufficient to show that

I(k) = (xP(k − 2)x)⊥ .

Take Pk(x) ∈ (xP(k − 2)x)⊥. Then for all Qk−2(x) ∈ P(k − 2) it holds

〈

Qk−2(x), ∂xPk(x)∂x

〉

k−2
= 0,

where we have used (6). In particular, for Qk−2(x) = ∂xPk(x)∂x we get that ∂xPk(x)∂x = 0 or

Pk(x) ∈ I(k). Therefore (xP(k − 2)x)⊥ ⊂ I(k).

Conversely, let Pk(x) ∈ I(k). Then for each Qk−2(x) ∈ P(k − 2),

〈xQk−2(x)x, Pk(x)〉k =
〈

Qk−2(x), ∂xPk(x)∂x

〉

k−2
= 0,

whence Pk(x) ∈ (xP(k − 2)x)⊥. �

By recursive application of the previous theorem we get:

Corollary 3.1 (Complete Fischer decomposition). If k ≥ 2, then

P(k) =

[k/2]
⊕

s=0

xs
I(k − 2s)xs.
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