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ABSTRACT

In recent work, the authors used canonical lowering and raising operators to define Appell

systems on Clifford algebras of arbitrary signature. Appell systems can be interpreted as

polynomial solutions of generalized heat equations, and in probability theory they have

been used to obtain non-central limit theorems. The natural grade-decomposition of a

Clifford algebra of arbitrary signature lends it a natural Appell system decomposition. In

the current work, canonical raising and lowering operators defined on a Clifford algebra

of arbitrary signature are used to define chains and cochains of vector spaces underlying

the Clifford algebra, to compute the associated homology and cohomology groups, and to

derive long exact sequences of underlying vector spaces. The vector spaces appearing in

the chains and cochains correspond to the Appell system decomposition of the Clifford

algebra. Using Mathematica, kernels of lowering operators ∇ and raising operators R are

explicitly computed, giving solutions to equations ∇x = 0 and Rx = 0. Connections with

quantum probability and graphical interpretations of the lowering and raising operators

are discussed.
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RESUMEN

En recientes trabajos, los autores usaron operadores canónicos de bajada y de elevación

para definir sistemas de Appell sobre algebras de Clifford de signo arbitrario. Los sistemas

de Appell pueden ser interpretados como soluciones polinomiales de ecuaciones del calor

generalizadas, y en teoŕıa de probabilidades estos han sido usados para obtener teoremas

de ĺımite no central. La natural malla-descomposición para una algebra de Clifford de

signo arbitrario presta una descomposición natural del sistema de Appel. En este trabajo,

operadores canónicos de elevación y de bajada definidos sobre una algebra de Clifford

de signo arbitrario son usados para definir cadenas y cocadenas de espacios vectoriales

de llegada de algebras de Clifford; para calcular los grupos de homoloǵıa y cohomoloǵıa

asociados; y para obtener el tamaño de las sucesiones exactas de los espacios vectoriales de

llegada. Los espacios vectoriales que aparecen en las cadenas y cocadenas corresponden a la

descomposición de sistemas de Appell de la algebra de Clifford. Usando MATHEMATICA,

son calculados expĺıcitamente los núcleos de operadores de bajada ∇ y de operadores de

elevación R dando soluciones para las ecuaciones ∇x = 0 y Rx = 0. Son discutidas

conecciones con probabilidad cuantica y interpretaciones graficas para los operadores de

bajada y de elevación.

Key words and phrases: Operator calculus, Clifford algebras, Appell systems, quantum probability,

homology, cohomology, Fock space, fermion

AMS Subj. Class.: 15A66, 60B99, 81R05

1 Introduction

In a recent work [12], the authors used canonical raising and lowering operators on Clifford algebras

of arbitrary signature to define Appell systems. For any operator A, set

Zn = {ψ : An+1ψ = 0}

for n ≥ 0. An A-Appell system is a sequence of nonzero functions

{ψ0, ψ1, . . . , ψn, . . .} satisfying the following:

1. ψn ∈ Zn, ∀n ≥ 0

2. Aψn = ψn−1, for n ≥ 1.

The system of embeddings Z0 ⊂ Z1 ⊂ Z2 ⊂ · · · is a canonical A-Appell system decomposition.

These systems can be interpreted as polynomial solutions of generalized heat equations, and

in probability theory they are also used to obtain non-central limit theorems. Analogues of Appell

systems have previously been defined on Lie groups [6], the Schrödinger algebra [5], and quantum

groups [4].
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In the current work, raising and lowering operators are used to define chains and cochains on

vector spaces underlying a Clifford algebra of arbitrary signature. The associated homology and

cohomology groups are computed, and long exact sequences of vector spaces are derived.

Kernels and images of lowering and raising operators are computed explicitly with Mathematica,

yielding solutions to equations ∇x = 0 and Rx = 0 where ∇ and R are the canonical lowering and

raising operators, respectively. Interpretations of lowering and raising operators as adjacency matrices

of directed graphs are discussed and examples are constructed.

Connections with quantum probability are also discussed. In particular, necessary and sufficient

conditions are obtained under which the matrix representation of the operator i(∇+R) is a quantum

observable.

The reader is referred to [9, Chapter 22] for details on the exterior algebra and contraction

operators appearing herein.

Definition 1.1. For fixed n ≥ 0, let V be an n-dimensional vector space having orthonormal basis

e1, . . . , en. The 2n-dimensional Clifford algebra of signature (p, q), where p+ q = n, is defined as the

associative algebra generated by the collection {ei} along with the scalar e∅ = 1 ∈ R, subject to the

following multiplication rules:

ei ej + ej ei = 0 for i 6= j, and (1.1)

ei
2 =

{
1, if 1 ≤ i ≤ p

−1, if p+ 1 ≤ i ≤ p+ q = n.
(1.2)

The Clifford algebra of signature (p, q) is denoted Cℓp,q.

Let [n] = {1, , 2, . . . , n} and denote arbitrary, canonically ordered subsets of [n] by underlined

Roman characters. The basis elements of Cℓp,q can then be indexed by these finite subsets by writing

ei =
∏

k∈i

ek. (1.3)

Arbitrary elements of Cℓp,q have the form

u =
∑

i∈2[n]

ui ei, (1.4)

where ui ∈ R for each i ∈ 2[n].

The basis elements {ei} are called blades. The grade of a blade is defined as the cardinality of its

multi-index; i.e., gr
(
ei

)
= |i|. Given an element u ∈ Cℓp,q, p+ q = n, the grade-k part of u is defined

by

〈u〉k =
∑

|i|=k

ui ei. (1.5)

Clifford algebras thereby have a natural grade decomposition. For any u ∈ Cℓp,q,

u =

n∑

k=0

〈u〉k .
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Two involutions on Cℓp,q will also be useful. The grade involution is defined by linear extension

of êi := (−1)|i|ei. Reversion is defined by linear extension of ẽi = (−1)
1
2 (|i|+1)ei.

The exterior algebra of V is denoted
∧
V and has a graded structure made explicit by writing

∧
V =

n⊕

k=0

k∧
V . There is a canonical vector space isomorphism Cℓp,q → ∧

V .

Letting Q denote the following quadratic form on V :

Q(x) = x1
2 + · · · + xp

2 − xp+1
2 − · · · − xn

2, (1.6)

the algebra Cℓp,q is also denoted by Cℓ(Q). Associate with Q the symmetric bilinear form

〈x,y〉 =
1

2
[Q(x + y) −Q(x) −Q(y)] , (1.7)

and extend to simple k-vectors in
∧k V by

〈x1 ∧ x2 ∧ · · · ∧ xk,y1 ∧ y2 ∧ · · · ∧ yk〉 = det 〈xi,yj〉 . (1.8)

This inner product extends linearly to all of
∧k

V and by orthogonality to
∧
V .

The inner product and exterior product extend to Cℓ(Q) via the canonical vector space isomor-

phism. Left contraction is defined by (cf. [9, Chapter 14])

xyy = 〈x,y〉 ∀x,y ∈ V ; (1.9)

xy(u ∧ v) = (xyu) ∧ v + û ∧ (xyv), ∀u, v ∈
∧
V,x ∈ V ; (1.10)

(u ∧ v)yw = uy(vyw), ∀u, v, w ∈
∧
V. (1.11)

In particular, left and right contraction are dual to the exterior product and satisfy the following:

〈uyv, w〉 = 〈v, ũ ∧ w〉 , (1.12)

〈uxv, w〉 = 〈u,w ∧ ṽ〉 . (1.13)

The Clifford product of x ∈ V and u ∈ ∧
V is defined in terms of exterior product and left

contraction by xu = x ∧ u + x y u. This is extended by linearity and associativity to all of
∧
V ,

resulting in an associative algebra isomorphic to Cℓp,q.

Of paramount importance, the exterior product and left contraction satisfy the following in Cℓp,q:

ej ∧ ei =
〈
ej ei

〉
|i|+1

=

{
±ei∪{j} if j /∈ i,

0 otherwise;
(1.14)

and

ejyei =
〈
ej ei

〉
|i|−1

=

{
±ei\{j} if j ∈ i,

0 otherwise.
(1.15)

In addition to the inner product described above, the following Clifford inner product will also

be convenient:

〈u, v〉2 := 〈ũv〉0 =
∑

i∈2[n]

uivi. (1.16)
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Note that 〈·, ·〉2 is the Euclidean inner product on R2n

.

In this paper, the basis blades of Cℓp,q are ordered according to

ei ≺ ej ⇔
∑

i∈i

2i−1 <
∑

j∈j

2j−1, i, j 6= ∅, i 6= j, (1.17)

e∅ ≺ ei, ∀i 6= ∅. (1.18)

For example, under ≺ the following collection is canonically ordered:

{e∅, e1, e2, e12, e3, e13, e23, e123, e4, e14, e24, e124, e34, e134, e234, e1234}.

Remark 1.1. The ordering specified by ≺ is one of the four “admissible” monomial orders in the

Grassmann algebra defined in [3] and appearing also in [1]. In those works, the ordering is referred

to as InvLex.

As a consequence of the graded structure, if A is any operator on Cℓp,q mapping terms of grade

not exceeding ℓ to terms of grade not exceeding ℓ− 1 for all 1 ≤ ℓ ≤ n, then the Clifford algebra has

a natural A-Appell system decomposition of the form Z0 ⊂ Z1 ⊂ · · · ⊂ Zn where ψℓ ∈ Zℓ ⇔ ψℓ =
ℓ∑

k=0

〈ψℓ〉k.

This natural decomposition is used in conjunction with the canonical lowering operator to define

Appell systems on Clifford algebras. The grade decomposition appears naturally in the chains and

cochains defined later.

Specific examples of Clifford algebras include the following: Cℓ0,2 is canonically isomorphic to

the algebra of quaternions; Cℓ3,0 is isomorphic to the algebra of physical space (APS) spanned by the

Pauli spin matrices [2]; Cℓn,0 is canonically isomorphic to the n-particle fermionic Fock space; and

Cℓn,n is isomorphic to the n-particle algebra of fermion creation and annihilation operators (cf. [7]).

The reader is referred to works such as [9], [11], and [10] for more background on Clifford algebras.

2 Operator calculus on Clifford algebras

Throughout the remainder of the paper, we define n := p+ q whenever a Clifford algebra of signature

(p, q) is specified.

Definition 2.1. Let Cℓp,q be a Clifford algebra of arbitrary signature. For each 1 ≤ j ≤ n, define the

jth raising operator Rj by linear extension of

Rj ei =
〈
ej ei

〉
|i|+1

= ej ∧ ei. (2.1)

Define the jth lowering operator Dj by linear extension of

Dj ei =
〈
ej ei

〉
|i|−1

= ejyei. (2.2)

Now the canonical lowering operator ∇ is defined by ∇ =

n⊕

j=1

Dj, and the canonical raising

operator R is defined by R =

n⊕

j=1

Rj.
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It is apparent (cf. [12]) that the collection {Ri}, 1 ≤ i ≤ n generates an algebra isomorphic to

the algebra of fermion creation operators, and the collection {Di}, 1 ≤ i ≤ n generates an algebra

isomorphic to the fermion annihilation operators.

Remark 2.1. Note that the jth raising and lowering operators are defined herein using left multipli-

cation by ej. This is considered more natural than the corresponding operators previously defined by

the authors in which right multiplication was used [12].

Example 2.1. In the Clifford algebra Cℓ2,2 the raising and lowering operators act according to:

D1 e{1,2,3} = e{2,3} (2.3)

R2 e{1,3} = −e{1,2,3} (2.4)

∇ e{1,2,3} = e{2,3} − e{1,3} − e{1,2} (2.5)

R e{1,2} = e{1,2,3} + e{1,2,4}. (2.6)

The following lemma details some essential properties of the raising and lowering operators. While

some of these properties were established in the earlier work [12], they are reframed here in the context

of exterior products and left contraction. Moreover, additional properties such as duality with respect

to the inner products are new. The authors credit the anonymous referee for suggesting this lemma.

Lemma 2.1. Fix nonnegative integers p, q and let n = p+ q. In Cℓp,q the operators {Dj}, {Rj}, ∇
and R satisfy the following:

(a) Rj ◦Dk +Dk ◦Rj = 0, j 6= k, 1 ≤ j, k ≤ n,

(b) Rj ◦Dj +Dj ◦Rj = ej
2, 1 ≤ j ≤ n,

(c) Rj ◦Rk = −Rk ◦Rj, j 6= k, 1 ≤ j, k ≤ n,

(d) Rj
2 := Rj ◦Rj = 0, 1 ≤ j ≤ n,

(e) Dj ◦Dk = −Dk ◦Dj, j 6= k, 1 ≤ j, k ≤ n,

(f) Dj
2 := Dj ◦Dj = 0, 1 ≤ j ≤ n,

(g) ∇2 := ∇ ◦∇ = 0,

(h) R2 := R ◦R = 0.

(i) The operators Rj and Dj are dual to each other with respect to the inner product 〈·, ·〉; i.e.,

〈Dj u,w〉 = 〈u,Rj w〉 for any u,w ∈ Cℓp,q, 1 ≤ j ≤ n.

(j) The operators R and ∇ are dual to each other with respect to the inner product 〈·, ·〉; i.e.,

〈∇u,w〉 = 〈u,Rw〉 for all u,w ∈ Cℓp,q.

(k) The operators Rj and Dj are dual to each other with respect to the inner product 〈·, ·〉2; i.e.,

〈Dj u,w〉2 = 〈u,Rj w〉 for any u,w ∈ Cℓp,q, if and only if j ≤ p.

(l) The operators ∇ and R are dual to each other with respect to 〈·, ·〉2 only for Euclidean signatures

(n, 0) and are not dual for any other signature. That is, 〈∇u,w〉2 = 〈u,Rw〉2 for all u,w ∈ Cℓn,0.
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Proof. Let Rj , Dj, ∇, and R be as stated.

(a) First, note that (Rj ◦Dk)(ei) = Rj(ekyei) = ej∧(ekyei). Moreover, (Dk◦Rj)(ei) = Dk(ej∧ei) =

eky(ej ∧ ei) = (ekyej) ∧ ei − ej ∧ (ekyei) = −ej ∧ (ekyei) since j 6= k ⇒ ejyek = 0.

(b) Observe that (Rj ◦ Dj)(ei) = Rj(ejyei) = ej ∧ (ejyei). Then (Dj ◦ Rj)(ei) = Dj(ej ∧ ei) =

ejy(ej ∧ ei) = (ejyej) ∧ ei − ej ∧ (ejyei) = −ej ∧ (ejyei) + ej
2ei = −(Rj ◦Dj)(ei) + ej

2ei.

(c) When j 6= k,

(Rj ◦Rk)(ei) = Rj(ek ∧ ei) = ej ∧ (ek ∧ ei) = (ej ∧ ek) ∧ ei

= −(ek ∧ ej) ∧ ei = −ek ∧ (ej ∧ ei) = −(Rk ◦Rj)(ei).

(d) (Rj ◦Rj)(ei) = ej ∧ (ej ∧ ei) = (ej ∧ ej) ∧ ei = 0.

(e) When j 6= k,

(Dj ◦Dk)(ei) = Dj(ekyei) = ejy(ekyei) = (ej ∧ ek)yei

= −(ek ∧ ej)yei = −eky(ejyei) = −(Dk ◦Dj)(ei).

(f) (Dj ◦Dj)(ei) = ejy(ejyei) = (ej ∧ ej)yei = 0.

(g) This follows immediately from ∇ :=
n⊕

j=1

Dj and properties (e) and (f) above.

(h) This follows immediately from R :=

n⊕

j=1

Rj and properties (c) and (d) above.

(i) For 1 ≤ j ≤ n, (1.12) implies

〈Dj u,w〉 = 〈ejyu,w〉 = 〈u, ẽj ∧ w〉 = 〈u, ej ∧ w〉 = 〈u,Rj w〉. (2.7)

(j) This follows from (i) and the definitions of ∇ and R.

(k) Let 1 ≤ j ≤ n, and suppose u,w ∈ Cℓp,q. For multi-index i ∈ 2[n] and integer ℓ ∈ [n], let

ς(i, ℓ) := |{k ∈ i : k < ℓ}|. When j ≤ p, the action of Dj on u is

Dj u = ejy

∑

i∈2[n]

uiei =
∑

i∈2[n]

ui ejyei =
∑

{k:j∈k}

(−1)ς(k,j)ukek\{j}. (2.8)

Hence, the inner product 〈Dj u,w〉2 has the following expansion:

〈Dj u,w〉2 =
∑

{k:j∈k}

(−1)ς(k,j)ukwk\{j}. (2.9)

Similarly, with the observation that ς((k \ {j}), j) = ς(k, j),

Rj w = ej ∧
∑

i∈2[n]

wiei =
∑

i∈2[n]

ui ej ∧ ei =
∑

{k:j /∈k}

(−1)ς(k,j)wkek∪{j}

=
∑

{k:j∈k}

(−1)ς((k\{j}),j)wk\{j}ek =
∑

{k:j∈k}

(−1)ς(k,j)wk\{j}ek. (2.10)
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Whence,

〈u,Rj w〉2 =
∑

{k:j∈k}

(−1)ς(k,j)ukwk\{j} = 〈Dj u,w〉2 . (2.11)

Note that when q > 0 in the signature (p, q), p < j ≤ n implies

〈Dj u,w〉2 =
∑

{k:j∈k}

(−1)ς(k,j)+1ukwk\{j}, (2.12)

while

〈u,Rj w〉2 =
∑

{k:j∈k}

(−1)ς(k,j)ukwk\{j}. (2.13)

Therefore, Dj and Rj are dual to each other with respect to 〈·, ·〉2 in signature (p, q) if and only

if j ≤ p.

(l) Follows from (k) and the definitions of ∇ and R.

By parts (g) and (h) of Lemma 2.1, ∇ and R are nilpotent linear operators of index 2. Several

consequences follow from the standard theory of nilpotent linear operators [8, Ch. 7]. Each has

minimal polynomial m(t) = t2 and characteristic polynomial φ(t) = t2
n

. For each there exists an

ordered basis of Cℓp,q ≃
n⊕

k=0

k∧
V such that the operator’s matrix representation with respect to this

basis is triangular. This is seen explicitly in Sections 2.2 and 2.4.

Grade decompositions of Cℓp,q ≃
n⊕

k=0

k∧
V are naturally induced by the operators ∇ and R. The

decompositions expressed here are signature-independent, and they provide a theoretical context for

results involving exact sequences in Sections 2.2 and 2.4.

Define W0 = R, and for each k = 1, . . . , n, define Wk :=
∧k

V , which implies ∇(Wk) ⊂ Wk−1.

Observe that u ∈Wk and v ∈ ∇(Wk) implies 〈u, v〉 = 0; i.e., u ⊥ v. For k = 1, 2, . . . , n− 1, denote by

∇(Wk+1)⊥ the subspace of Wk complementary to ∇(Wk+1); i.e., Wk = ∇(Wk+1) ⊕∇(Wk+1)⊥.

Defining Vn := Wn and Vk := ∇(Wk+1)⊥ ⊕∇(Wk) for 1 ≤ k ≤ n− 1, one finds ∇(Vk) ⊂ Vk; i.e.,

Vk is ∇-invariant. Now ∇ has the decomposition ∇ = ∇1 ⊕∇2⊕· · ·⊕∇n, where ∇k is the restriction

of ∇ to the ∇-invariant subspace Vk. Note that Vi ⊥ Vj for 1 ≤ i 6= j ≤ n, and V has the following

decomposition into ∇-invariant subspaces:

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn. (2.14)

Similarly, for each k = 1, . . . , n − 1, R(Wk) ⊂ Wk+1. Writing Wk = R(Wk−1) ⊕ R(Wk−1)⊥,

define U1 := W1 and Uk := R(Wk−1)⊥ ⊕ R(Wk) for 2 ≤ k ≤ n. It follows that R(Uk) ⊂ Uk; i.e.,

Uk is R-invariant and R = R1 ⊕R2 ⊕ · · · ⊕ Rn, where Rk is the restriction of R to the R-invariant

subspace Uk. Finally, note that Ui ⊥ Uj for 1 ≤ i 6= j ≤ n, and V has the following decomposition

into R-invariant subspaces:

V = U1 ⊕ U2 ⊕ · · · ⊕ Un. (2.15)

Note that for 1 ≤ i ≤ n− 1, Vi ⊂Wi ∩Wi−1. Similarly, for 2 ≤ i ≤ n, Ui ⊂Wi ∩Wi+1.
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Remark 2.2. For each i = 1, 2, . . . , n, the lowering operator Di is nilpotent of index 2 by part f

of Lemma 2.1. It follows that each lowering operator induces a natural grade decomposition of Cℓp,q

as described above for the operator ∇. Similarly, each raising operator Ri induces a natural grade

decomposition of Cℓp,q as described for the operator R.

2.1 Cℓp,q and the lowering operators {Di}1≤i≤n

For 1 ≤ i ≤ n, the lowering operator Di : Cℓp,q → Cℓp,q satisfies Di ◦Di = 0 and thus leads to the

chain complex

· · · Di−−−−→ Cℓp,q
Di−−−−→ Cℓp,q

Di−−−−→ · · · . (2.16)

The cycles associated with Di are the same at each stage and are defined by

Zi = {u ∈ Cℓp,q : Di u = 0} = {u ∈ Cℓp,q :
〈
u, ej

〉
= 0 whenever i ∈ j}

= {u ∈ Cℓp,q : eiyu = 0}. (2.17)

Similarly, the boundaries associated with Di are the same at each stage and are defined by

Bi = {u ∈ Cℓp,q : u = Diw, for some w ∈ Cℓp,q}
= {u ∈ Cℓp,q :

〈
u, ej

〉
= 0 whenever i ∈ j}

= {u ∈ Cℓp,q : eiyu = 0}. (2.18)

In other words, the following condition is satisfied at each stage of the chain complex:

KerDi = ImDi, (2.19)

leading to the trivial homology group KerDi� ImDi
∼= 〈e〉 at each stage.

It follows that the image of Di is a subalgebra of dimension 2n−1 generated by the collection

{ej}j 6=i. In particular,

Cℓp,q�KerDi
∼=
{
Cℓp−1,q if 1 ≤ i ≤ p

Cℓp,q−1 if p+ 1 ≤ i ≤ p+ q.
(2.20)

The collection {Di}1≤i≤n then induces the following sequence of epimorphisms:

Cℓp,q
D1−−−−→ Cℓp−1,q

D2−−−−→ · · · Dp−−−−→ Cℓ0,q
Dp+1−−−−→ · · · Dn−−−−→ Cℓ0,0. (2.21)

2.2 Homology and the canonical lowering operator ∇

Let p, q be fixed nonnegative integers, and let ∇ be the canonical lowering operator defined on the

Clifford algebra Cℓp,q by

∇ =
n⊕

i=1

Di. (2.22)
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Let {ei}i∈2[n] denote the collection of blades spanning the algebra, and recall that the basis blades

of Cℓp,q are canonically ordered by ≺, as defined by (1.17) and (1.18).

Given this canonical ordering, the matrix representation of

∇ : Cℓp,q → Cℓp,q is defined as the 2n × 2n matrix

L(p,q)
i,j =





1 if |j| = |i| − 1 and eℓ ei = ej for some 1 ≤ ℓ ≤ n,

−1 if |j| = |i| − 1 and eℓ ei = −ej for some 1 ≤ ℓ ≤ n,

0 otherwise.

(2.23)

Here the rows and columns of L(p,q) have been labeled in one-to-one fashion by multi-indices i, j ∈ 2[n].

Using the canonical vector space isomorphism Cℓp,q
∼= R2n

via

u =
∑

i∈2[n]

ui ei ≃ ~u =
(
u∅, . . . , u{1,2,...,n}

)
, (2.24)

where the basis blades of Cℓp,q are ordered by ≺, one has

∇u ≃ ~uL(p,q). (2.25)

Define the 2n × 2n diagonal matrix Ξ with rows and columns ordered by ≺ as follows

Ξi,i := (−1)|i|. (2.26)

Note that Ξ acts as grade involution; i.e., û ≃ ~uΞ.

Lemma 2.2. Let p, q be nonnegative integers. Let 0 denote the zero matrix, and let Ξ denote the

2n × 2n matrix as defined in (2.26). Then, with respect to the canonically ordered basis of Cℓp,q, the

matrix representations of ∇ satisfy the following recurrence relations:

L(0,0) = 0; (2.27)

L(p,0) =

(
L(p−1,0) 0

Ξ L(p−1,0)

)
, p > 0; (2.28)

L(p,q) =

(
L(p,q−1) 0

−Ξ L(p,q−1)

)
, q > 0. (2.29)

Proof. In the case q = 0, it is clear from the definition of L(1,0) that

L(1,0) =

(
0 0

1 0

)
=

(
L(0,0) 0

Ξ L(0,0)

)
. (2.30)

Proceed by induction on p. By canonical ordering of basis multi-vectors, rows and columns 1 through

2p of L(p+1,0) represent the action of ∇ : Cℓp,0 → Cℓp,0 since multi-vectors containing the generator

ep+1 are all found at the end of the ordering.
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There are 2p basis multi-vectors containing ep+1, so that the matrix is partitioned into four blocks

of equal size. Thus, writing the block matrix

L(p+1,0) =

(
A B

C D

)
, (2.31)

one finds A = L(p,0). Moreover, because (i) L(p+1,0) represents a lowering operator, (ii) ep+1 is not

found in any of the first 2p multi-vectors in the basis, and (iii) columns 2p +1 through 2p+1 correspond

to images containing ep+1, it follows that B = 0.

Rows 2p + 1 through 2p+1 correspond to pre-images containing ep+1. Columns 1 through 2p

correspond to lowering these to elements of Cℓp,0. This is accomplished by squaring ep+1, which lies

at the end of each multi-vector in canonical order. Hence, |i| − 1 transpositions are required before

squaring ep+1, and ep+1
2 = 1. Hence, writing i− = i \ {p+ 1} gives L(p+1,0)

i,i− = (−1)|i|−1 = Ξi−,i−

for i ∋ p+ 1, and C = Ξ.

Entries in D correspond to the action of the lowering operator on multi-vectors containing ep+1

that leave ep+1 in place. In accordance, the action is identical to that of L(p,0).

Turning now to the case q > 0, p ≥ 0 is fixed and proof is by induction on q. The basis step

follows from the first part of the proof. In particular, write

L(p,1) =

(
A′ B′

C′ D′

)
. (2.32)

As before, rows and columns 1 through 2p of L(p,1) represent the action of ∇ : Cℓp,0 → Cℓp,0 since

multi-vectors containing the generator ep+1 are all found at the end of the ordering. Hence, one finds

A′ = L(p,0).

Rows 2p + 1 through 2p+1 correspond to pre-images containing ep+1. Columns 1 through 2p

correspond to lowering these to elements of Cℓp,0. This is accomplished by squaring ep+1, which lies

at the end of each multi-vector in canonical order. Hence, |i| − 1 transpositions are required before

squaring ep+1, and ep+1
2 = −1. Again writing i− = i \ {p+ 1} gives L(p,1)

i,i− = (−1)|i| = −Ξi−,i−

for i ∋ p+ 1, so C′ = −Ξ.

By the reasoning applied previously, B′ = 0 and D′ = L(p,0). Hence,

L(p,1) =

(
L(p,0) 0

−Ξ L(p,0)

)
,

and the basis step is complete.

Now assuming

L(p,q) =

(
L(p,q−1) 0

−Ξ L(p,q−1)

)

for some q > 0, consider

L(p,q+1) =

(
A′′ B′′

C′′ D′′

)
. (2.33)



310 René Schott and G. Stacey Staples CUBO
12, 2 (2010)

By the reasoning applied previously, B′′ = 0. Rows and columns 1 through 2p of L(p,q) represent

the action of ∇ : Cℓp,q−1 → Cℓp,q−1, so A′′ = L(p,q−1). Similarly, D′′ = L(p,q−1).

Rows 2p + 1 through 2p+1 correspond to pre-images containing ep+1. Columns 1 through 2p

correspond to lowering these to elements of Cℓp,q−1. This is accomplished by squaring ep+q, which lies

at the end of each multi-vector in canonical order. Hence, L(p,q)
i,i = (−1)|i| = −Ξi−,i− for i ∋ p+ 1,

so C′′ = Ξ.

Lemma 2.3. Let signature (p, q) be fixed. The operator Ξ satisfies the following:

Ξ2 = I, and (2.34)

ΞL(p,q) = −L(p,q)Ξ. (2.35)

Proof. As mentioned earlier, Ξ is the matrix representation of grade involution in the canonically

ordered basis. It follows immediately that Ξ is self-inverse. Each basis blade in the canonical expansion

of ∇u is of grade one less than the corresponding blade in the pre-image. Hence, ∇ û = −∇̂u.

Applying the vector space isomorphism u ≃ ~u and the representation L(p,q) ≃ ∇ completes the

proof.

Lemma 2.4.

Im∇ = Ker∇. (2.36)

Proof. Because ∇2 = 0, it is clear that Im∇ ⊆ Ker∇. The lemma is proved by showing the reverse

inclusion.

Assuming q = 0 and p > 0, Lemma 2.2 says

L(p,0) =

(
L(p−1,0) 0

Ξ L(p−1,0)

)
. (2.37)

Assuming ~x = ( ~x1, ~x2) ∈ KerL(p,0) gives

~xL(p,0) = ( ~x1L(p−1,0) + ~x2Ξ, ~x2L(p−1,0)) = (~0,~0). (2.38)

This implies ~x2Ξ = − ~x1L(p−1,0) and ~x2 ∈ KerL(p−1,0). Thus,

( ~x1, ~x2) = ( ~x1,− ~x1Ψ),

where Ψ := L(p−1,0)Ξ.

To see that ( ~x1,− ~x1Ψ) ∈ ImL(p,0), solve the equation

(~s,~t)L(p,0) = ( ~x1,− ~x1Ψ) (2.39)

for ~s and ~t. One solution is to let ~t = ~x1Ξ and choose any ~s ∈ KerL(p−1,0). Then, using Lemma 2.3,

(~s,~t)L(p,0) = (~s, ~x1Ξ)L(p,0) = (~sL(p−1,0) + ~x1, ~x1ΞL(p−1,0))

= ( ~x1, ~x1ΞL(p−1,0)) = ( ~x1,− ~x1L(p−1,0)Ξ) = ( ~x1,− ~x1Ψ). (2.40)



CUBO
12, 2 (2010)

Operator Homology and Cohomology in Clifford Algebras 311

Figure 1: The canonical lowering operator in the case n = 2.

In the case q > 0,

L(p,q) =

(
L(p,q−1) 0

−Ξ L(p,q−1)

)
. (2.41)

Whence, ~x = ( ~x1, ~x2) ∈ KerL(p,q) implies

~xL(p,q) = ( ~x1L(p,q−1) − ~x2Ξ, ~x2L(p,q−1)) = (~0,~0), (2.42)

so that ~x2Ξ = ~x1L(p,q−1) and ~x2 ∈ KerL(p,q−1).

Thus, when q = 0, (x1, x2) ∈ KerL(p,q) is of the form

( ~x1, ~x2) = ( ~x1, ~x1Ψ),

where Ψ := L(p,q−1)Ξ.

Solving the equation

(~s,~t)L(p,q) = ( ~x1, ~x1Ψ) (2.43)

for ~s and ~t will show that ( ~x1, ~x2) ∈ ImL(p,q). Letting ~t = − ~x1Ξ and

~s ∈ KerL(p,q−1), one finds

(~s,~t)L(p,q) = (~s,− ~x1Ξ)L(p,q) = (~sL(p,q−1) + ~x1,− ~x1ΞL(p,q−1))

= ( ~x1,− ~x1ΞL(p,q−1)) = ( ~x1, ~x1L(p,q−1)Ξ) = ( ~x1, ~x1Ψ). (2.44)

Hence, ImL(p,q) = KerL(p,q) for any signature (p, q). Therefore

Im∇ = Ker∇ for the canonical lowering operator on a Clifford algebra of arbitrary signature.

Example 2.2. Figure 1 depicts the structure of the canonical lowering operators over the four di-

mensional Clifford algebras.

Turning now to the chain complex

· · · ∇−−−−→ Cℓp,q
∇−−−−→ Cℓp,q

∇−−−−→ · · · , (2.45)

the homology group Ker∇� Im∇ is trivial at each stage.

Let Cℓ⌊k⌋p,q denote the linear span of the collection {ei}|i|≤k. This is the projection of Cℓp,q onto a

linear subspace of dimension 2n −
n−k∑

ℓ=0

(
n

ℓ

)
.

It should be clear that Cℓ⌊n⌋p,q is the vector space underlying Cℓp,q and that Cℓ⌊0⌋p,q
∼= R.
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Because Ker∇ = Im∇ at each stage, the canonical lowering operator induces the following exact

sequence:

Cℓp,q
∇−−−−→ Cℓ⌊n−1⌋

p,q
∇−−−−→ Cℓ⌊n−2⌋

p,q
∇−−−−→ · · · ∇−−−−→ R

∇−−−−→ 0. (2.46)

At each step k of the sequence, one finds the vector space homomorphism ∇ : Cℓ⌊n−k⌋
p,q →

Cℓ⌊n−k−1⌋
p,q . By rank-nullity,

Cℓ⌊n−k⌋
p,q �Ker∇ ∼= Im∇. (2.47)

As k runs from 0 to n− 1, the following vector space isomorphisms are apparent:

Cℓ⌊n−k⌋
p,q

∼= Rm, (2.48)

where

m =





2n if k = 0,

2n −
k−1∑

ℓ=0

(
n

ℓ

)
if 1 ≤ k ≤ n.

(2.49)

Theorem 2.1. At the kth step of the exact sequence (2.46), where 0 ≤ k ≤ n − 1, the vector space

homomorphism

∇ : Cℓ⌊n−k⌋
p,q → Cℓ⌊n−k−1⌋

p,q

satisfies the following condition:

Cℓ⌊n−k⌋
p,q �Ker∇ ∼= Rm, (2.50)

where

m =





2n−1 when k = 0

2n−1 −
k−1∑

ℓ=0

(
n− 1

ℓ

)
when 1 ≤ k ≤ n− 1.

(2.51)

Proof. Proof is by induction on k.

Consider the vector space homomorphism ∇ : Cℓ⌊n⌋p,q → Cℓ⌊n−1⌋
p,q . By Lemma 2.4, Im∇ = Ker∇.

Rank-nullity implies

Dim (Ker∇) + Dim (Im∇) = Dim
(
Cℓ⌊n⌋p,q

)
= 2n. (2.52)

Thus,

Dim (Ker∇) = Dim (Im∇) = 2n−1. (2.53)

Hence, when k = 0,

Cℓ⌊n−k⌋
p,q �Ker∇ ∼= R2n−1

. (2.54)

Assume Cℓ⌊n−k⌋
p,q �Ker∇ ∼= Rm, where m = 2n−1 −

k−1∑

ℓ=0

(
n− 1

ℓ

)
. Consider the homomorphism

∇ : Cℓ⌊n−(k+1)⌋
p,q → Cℓ⌊n−(k+2)⌋

p,q .
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Dim
(
Cℓ⌊n−(k+1)⌋

p,q �Ker∇
)

= Dim
(
Cℓ⌊n−(k+1)⌋

p,q

)
− Dim (Ker∇)

=

(
2n −

k∑

ℓ=0

(
n

ℓ

))
−
(

2n−1 −
k−1∑

ℓ=0

(
n− 1

ℓ

))

= 2n−1 −
k∑

ℓ=0

(
n

ℓ

)
+

k∑

ℓ=1

(
n− 1

ℓ− 1

)

= 2n−1 −
(
n

0

)
−

k∑

ℓ=1

((
n

ℓ

)
−
(
n− 1

ℓ− 1

))

= 2n−1 −
(
n

0

)
−

k∑

ℓ=1

(
n− 1

ℓ

)
= 2n−1 −

k∑

ℓ=0

(
n− 1

ℓ

)
. (2.55)

Example 2.3. For the Clifford algebra Cℓ4,0, one has the following exact sequence:

Cℓ⌊4⌋4,0
16

∇−−−−→ Cℓ⌊3⌋4,0
15

∇−−−−→ Cℓ⌊2⌋4,0
11

∇−−−−→ Cℓ⌊1⌋4,0
5

∇−−−−→ R
1

∇−−−−→ 0
0
. (2.56)

Here the number beneath each vector space indicates the dimension of the space. Observe the

appearance of binomial coefficients in the sequence of differences of dimension. The homology sequence

is

Cℓ⌊4⌋4,0�Ker∇ ∼= R8 (2.57)

Cℓ⌊3⌋4,0�Ker∇ ∼= R7 (2.58)

Cℓ⌊2⌋4,0�Ker∇ ∼= R4 (2.59)

Cℓ⌊1⌋4,0�Ker∇ ∼= R (2.60)

Cℓ⌊0⌋4,0�Ker∇ ∼= {0}. (2.61)

2.3 Cℓp,q and the raising operators {Ri}1≤i≤n

For 1 ≤ i ≤ n, the raising operator Ri : Cℓp,q → Cℓp,q satisfies Ri ◦Ri = 0 and thus leads to the chain

complex

· · · Ri−−−−→ Cℓp,q
Ri−−−−→ Cℓp,q

Ri−−−−→ · · · . (2.62)

The cycles associated with Ri are the same at each stage and are defined by

Zi = {u ∈ Cℓp,q : Ri u = 0} = {u ∈ Cℓp,q :
〈
u, ej

〉
6= 0 whenever i ∈ j}

= {u ∈ Cℓp,q : ei ∧ u 6= 0}. (2.63)
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Similarly, the boundaries associated with Ri are the same at each stage and are defined by

Bi = {u ∈ Cℓp,q : u = Ri w, for some w ∈ Cℓp,q}
= {u ∈ Cℓp,q :

〈
u, ej

〉
6= 0 whenever i ∈ j}

= {u ∈ Cℓp,q : ei ∧ u 6= 0}. (2.64)

Hence, the following condition is satisfied at each stage of the chain complex:

KerRi = ImRi, (2.65)

leading to the trivial homology group KerRi� ImRi
∼= 〈e〉 at each stage.

Considering the algebra isomorphism Cℓp,q�KerRi
∼= ImRi, it follows that the image of Ri is

isomorphic to the 2n−1-dimensional subalgebra generated by the collection {ej}j 6=i. In other words,

Cℓp,q�KerRi
∼=
{
Cℓp−1,q if 1 ≤ i ≤ p,

Cℓp,q−1 if p+ 1 ≤ i ≤ n.
(2.66)

The collection {Ri}1≤i≤n then induces the following sequence of monomorphisms:

Cℓ0,0
R1−−−−→ Cℓ1,0

R2−−−−→ · · · Rp+1−−−−→ Cℓp,1
Rp+2−−−−→ · · · Rn−−−−→ Cℓp,q. (2.67)

2.4 Cohomology and the canonical raising operator R

Let p and q be fixed nonnegative integers. Let R be the canonical raising operator defined on the

Clifford algebra Cℓp,q by

R =
n⊕

i=1

Ri. (2.68)

Let the basis blades of Cℓp,q be canonically ordered by ≺ as defined in (1.17). Given this canonical

ordering, define the matrix representation of

R : Cℓp,q → Cℓp,q as the 2n × 2n matrix

R(n)
i,j =





1 if |j| = |i| + 1 and eℓ ei = ej for some 1 ≤ ℓ ≤ n,

−1 if |j| = |i| + 1 and eℓ ei = −ej for some 1 ≤ ℓ ≤ n,

0 otherwise.

(2.69)

Here the rows and columns of R(n) have been labeled in one-to-one fashion by multi-indices i, j ∈ 2[n].

Remark 2.3. It is apparent from the definition that unlike the canonical lowering operator, R is

signature independent because the operator involves no squaring of basis vectors. This is illustrated

in Figure 2.

Again using the canonical vector space isomorphism (2.24), one has

Ru ≃ ~uR(n). (2.70)
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Figure 2: The canonical raising operator in the case n = 2.

Lemma 2.5. Let n = p+ q ≥ 1. Given R(n),

R(n+1) =

(
R(n) Ξ

0 R(n)

)
, (2.71)

where 0 represents the 2n × 2n zero matrix and I denotes the 2n × 2n identity matrix.

Proof. As in the proof of Lemma 2.2, R(n+1) has the form

R(n+1) =

(
A B

C D

)
. (2.72)

Entries in A correspond to the action of the raising operator restricted to Cℓp,q. Hence, A = R(n).

Similarly, entries in D correspond to the action of the raising operator on multi-vectors containing

en+1 that leave en+1 in place. Thus, D = R(n).

Rows 2n + 1 through 2n+1 correspond to pre-images containing en+1. Columns 1 through 2n

correspond to raising these to elements of Cℓp,q. Hence, C = 0.

Finally, because (i) R(n+1) represents a raising operator, (ii) en+1 is not found in any of the first

2n multi-vectors in the ordered basis, and (iii) columns 2n + 1 through 2n+1 correspond to images

containing en+1, it follows that B corresponds to the raising operator Rn+1 with domain restricted

to Cℓp,q. Hence, each blade indexed by i ∈ [n] is mapped to the corresponding blade indexed by

i+ = i ∪ {n + 1}. Since the action is left multiplication by en+1, the number of transpositions

required is |i|, contributing (−1)|i| to the sign. In particular, canonical ordering of the basis gives

Bi,i+ = (−1)|i| = Ξi,i.

Lemma 2.6.

ImR = KerR. (2.73)

Proof. Because R2 = 0, it is clear that ImR ⊆ KerR. To establish the reverse inclusion, let n ≥ 1

and consider the matrix representation R(n) ≃ R.

Let ~x = ( ~x1, ~x2) ∈ KerR(n). Then,

( ~x1, ~x2)R(n) = ( ~x1, ~x2)

(
R(n−1) Ξ

0 R(n−1)

)
= ( ~x1R(n−1), ~x1Ξ + ~x2R(n−1))

= (~0,~0). (2.74)
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This implies ~x1 ∈ KerR(n−1) and ~x1 = − ~x2R(n−1)Ξ. In other words,

( ~x1, ~x2) = (− ~x2Υ, ~x2),

where Υ = R(n−1)Ξ.

To see that ( ~x2Υ, ~x2) ∈ ImR(n), solve the equation

(~s,~t)R(n) = (− ~x2Υ, ~x2) (2.75)

for ~s and ~t. One solution is to let ~s = ~x2Ξ and choose any ~t ∈ KerR(n−1). Then,

(~s,~t)R(n) = ( ~x2Ξ,~t)R(n) = ( ~x2ΞR(n−1), ~x2 − ~tR(n−1)) = ( ~x2ΞR(n−1), ~x2)

= (− ~x2R(n−1)Ξ, ~x2) = (− ~x2Υ, ~x2). (2.76)

Hence, ImR(p,q) = KerR(p,q) for any signature (p, q), and therefore ImR = KerR for the canonical

raising operator on a Clifford algebra of arbitrary signature.

Turning now to the chain complex

· · · R−−−−→ Cℓp,q
R−−−−→ Cℓp,q

R−−−−→ · · · , (2.77)

the homology group KerR� ImR is trivial at each stage.

The canonical raising operator R induces the following exact sequence:

R
R−−−−→ Cℓ⌊1⌋p,q

R−−−−→ Cℓ⌊2⌋p,q
R−−−−→ · · · R−−−−→ Cℓ⌊n−1⌋

p,q
R−−−−→ Cℓp,q. (2.78)

Theorem 2.2. At the kth step of the exact sequence (2.46), where 0 ≤ k ≤ n − 1, the vector space

homomorphism

R : Cℓ⌊k⌋p,q → Cℓ⌊k+1⌋
p,q

satisfies the following condition:

Cℓ⌊k⌋p,q �KerR ∼= Rm, (2.79)

where

m =

k∑

ℓ=0

(
n− 1

ℓ

)
. (2.80)

Proof. The proof is by induction on k. Observe that Cℓ⌊k⌋p,q is of dimension
k∑

ℓ=0

(
n

k

)
. It is clear that

when k = 0, KerR = {0}, which is of dimension 0. Rank-nullity then implies ImR is of dimension 1.

Assume that Cℓ⌊k⌋p,q �KerR ∼= Rm, where m =

k∑

ℓ=0

(
n− 1

ℓ

)
for some 1 ≤ k ≤ n− 2. Consider the

homomorphism R : Cℓ⌊k+1⌋
p,q → Cℓ⌊k+2⌋

p,q .
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Then,

Dim
(
Cℓ⌊k+1⌋

p,q �KerR
)

= Dim
(
Cℓ⌊k+1⌋

p,q

)
− Dim (KerR)

= Dim
(
Cℓ⌊k+1⌋

p,q

)
− Dim

(
Cℓ⌊k⌋p,q �KerR

)

=

k+1∑

ℓ=0

(
n

ℓ

)
−

k∑

ℓ=0

(
n− 1

ℓ

)

=

k+1∑

ℓ=0

(
n

ℓ

)
−

k+1∑

ℓ=1

(
n− 1

ℓ− 1

)

=

(
n

0

)
+

k+1∑

ℓ=1

((
n

ℓ

)
−
(
n− 1

ℓ− 1

))

=

(
n

0

)
+

k+1∑

ℓ=1

(
n− 1

ℓ

)
=

k+1∑

ℓ=0

(
n− 1

ℓ

)
. (2.81)

Example 2.4. For the Clifford algebra Cℓ4,0, one has the following exact sequence:

Cℓ⌊0⌋4,0
1

R−−−−→ Cℓ⌊1⌋4,0
5

R−−−−→ Cℓ⌊2⌋4,0
11

R−−−−→ Cℓ⌊3⌋4,0
15

R−−−−→ Cℓ⌊4⌋4,0
16

. (2.82)

Here the number beneath each vector space indicates the dimension of the space. The cohomology

sequence is

Cℓ⌊0⌋4,0�KerR ∼= R (2.83)

Cℓ⌊1⌋4,0 �KerR ∼= R4 (2.84)

Cℓ⌊2⌋4,0 �KerR ∼= R7 (2.85)

Cℓ⌊3⌋4,0�KerR ∼= R8. (2.86)

Example 2.5. Consider the Clifford algebra Cℓ0,2, which is canonically isomorphic to the algebra of

quaternions.

The linear spaces of the exact sequences are given by

Cℓ0,2 = Cℓ⌊2⌋0,2 = {u : u = u0 + u1 e1 + u2 e2 + u12 e12}, (2.87)

Cℓ⌊1⌋0,2 = {u : u = u0 + u1 e1 + u2 e2}, (2.88)

Cℓ⌊0⌋0,2 = {u : u = u0} = R. (2.89)

3 Generalized lowering and raising operators

Given any nonzero vector ~λ ∈ Rn, the following define lowering and raising operators on Cℓp,q,

respectively:

∇~λ =
n∑

i=1

λi Di, (3.1)
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and

R~λ =
n∑

i=1

λi Ri. (3.2)

The structure of the matrix representations of these operators is identical to that of the canonical

lowering and raising operators as established in Lemmas 2.2 and 2.5. Thus, all properties established

for ∇ and R hold also for ∇~λ and R~λ. Note that in particular, ∇~λ and R~λ are nilpotent of index 2.

Example 3.1. The matrix representation and kernel of ∇~λ in Cℓ1,2 are computed with Mathematica:

Example 3.2. Consider Cℓ1,3, which is canonically isomorphic to the space-time algebra. Mathemat-

ica computations reveal the kernels of the generalized lowering and raising operators:



CUBO
12, 2 (2010)

Operator Homology and Cohomology in Clifford Algebras 319

3.1 Graphs associated with raising and lowering operators

The action of the canonical lowering and raising operators on blades in Cℓp,q can be depicted graphi-

cally by treating the matrix representations as graph adjacency matrices.

Vertices represent blades, and two vertices are adjacent if and only if the difference of their

respective grades is exactly one. I.e., one vertex is the image of the other under the action of the

canonical raising/lowering operator being considered.

When a graph represents the canonical lowering operator, edges run from blades of higher grade

to lower grade. Edges run the opposite direction in graph representations of the canonical raising

operator.

Two graphs are associated with each operator to make clear the sign changes induced by multi-

plication within the algebra. Figures 3 and 4 depict thes action of the canonical raising and lowering

operators, respectively, in Cℓ1,3.

3.2 Quantum Probability

While a proper treatment of quantum probability is beyond the scope of the current work, some

connections should be mentioned.

Given a Hilbert space H of dimension n < ∞, observables are Hermitian operators on H. Ob-

servables are the quantum probability analogues of random variables in classical probability. Any

observable X has the spectral resolution X =
∑

i xiE
X
i , where the xis are the distinct eigenvalues

and EX
i is the event that X takes the value xi.

Proposition 3.1. Fix n > 0, and let L~λ and R~λ denote the matrix representations of the generalized

lowering and raising operators in Cℓp,q. Then,

(
iL~λ

)†
= iR~λ, (3.3)

and hence (
iL~λ + iR~λ

)†
= iL~λ + iR~λ (3.4)

is a traceless, bounded Hermitian linear operator; i.e., iL~λ + iR~λ is a quantum observable if and only

if λ1 = · · · = λp = 0.

Proof. Let {Lj}1≤j≤n and {Rj}1≤j≤n denote the collections of lowering operators and raising opera-

tors in Cℓp,q. The proposition is proved by showing (iLj)† = iRj holds only for p+ 1 ≤ j ≤ n.

Fix 1 ≤ j ≤ n, denote iLj by (ℓk,m)k,m∈2[n] , and denote iRj by (rk,m)k,m∈2[n] . By construction

of the lowering operators, iLj is the lower triangular matrix defined by

ℓk,m =





i if es ek = em for some 1 ≤ s ≤ n

−i if es ek = −em for some 1 ≤ s ≤ n

0 otherwise.

(3.5)
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Figure 3: Action of canonical raising operator on Cℓ1,3.
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Figure 4: Action of canonical lowering operator on Cℓ1,3.
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By construction of the raising operators, iRj is the upper triangular matrix defined by

rk,m =





i if es ek = em for some 1 ≤ s ≤ n

−i if es ek = −em for some 1 ≤ s ≤ n

0 otherwise.

(3.6)

For fixedm and k, es em = ek if and only if es ek = ±em. Since the same number of transpositions

are involved in canonically ordering the multi-indices of the products in either case, the only case in

which ℓk,m = −rm,k occurs is when es
2 = −1. Hence, iLj = (iLj)† if and only if p+ 1 ≤ j ≤ n.

Note that an immediate consequence of Proposition 3.1 is that iL~λ +iR~λ is a quantum observable

in Cℓ0,n for any positive integer n.

Example 3.3. The result of Proposition 3.1 is illustrated by generating the matrix (iL~λ + iR~λ) −
(iL~λ + iR~λ)† over the 4-dimensional Clifford algebras:

Example 3.4. In Cℓ0,3,
iL + iR√

3
is a quantum observable taking values ±1 with equal probability.

This is indicated by the spectrum of the matrix representation.
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4 Mathematica

The Mathematica package “CliffMath08” underlying the examples is available online at http://

www.siue.edu/~sstaple and provides basic machinery for performing computations using Clifford

algebras. This section details the operator calculus procedures used to generate the examples.
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The following Mathematica code is useful for displaying kernels of raising and lowering operators.
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Figures 3 and 4 were generated with the Mathematica code below.
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