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ABSTRACT

We study the following initial-boundary value problem for the Korteweg-de Vries-Burgers
equation on the interval (0, 1)

Ut + Uy — Ugz + Ugae =0, T > 0,7 € (071)
u(z,0) = uo(x), = € (0,1)

(0.1)

u(0,t) = u(1,t) = u.(1,t) =0, t > 0.

We prove that if the initial data uo € L2, then there exists a unique solution u € C ([0, 00); Lz) U
)

C ((0,00) ; H') of the initial-boundary value problem (0.1). We also obtain the large time
asymptotic of solution uniformly with respect to z € (0,1) as t — co.
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RESUMEN

Estudiamos el siguiente problema de valor inicial en la frontera para la ecuacién de Korteweg-
de Vries-Burgers en el intervalo (0,1)

Ut + Uy — Uze + Uzze =0, t >0,z € (0,1)
u(z,0) = uo(z), = € (0,1) (0.1)
u(0,t) = u(1,t) = u.(1,t) =0, t > 0.

Provamos que si el dato inicial uy € L?, entonces existe una tinica solucién u € C ([O, 00); L2) U
C ((0,00) ;H") del problema de valor inicial en la frontera (0.1). También obtenemos com-
portamiento asintético de la solucién con respecto a z € (0, 1) cuando t — oo.

Key words and phrases: Dissipative Nonlinear Evolution Equation, Large Time Asymptotics,

Korteweg-de Vries-Burgers equation.

Math. Subj. Class.: 35Q35.

1 Introduction

We study the global existence and large time asymptotic behavior of solutions to the initial-
boundary value problem for the Korteweg-de Vries-Burgers equation in the interval (0, 1)

Ut + Uy — Ugy + Ugge = 0, > 0,2 € (0,1)
u(z,0) = uo(z), z € (0,1) (1.1)
u(0,t) = u(l,t) = ux(1,t) =0, t > 0.

The Korteweg-de Vries-Burgers equation (1.1) is a simple universal model equation which
appears as the first approximation in the description of the dispersive-dissipative nonlinear waves,
and has many applications in various fields of Physics, Biology and Engineering. In the case of the
Cauchy problem some estimates for the time decay rates of solutions to the Korteweg-de Vries-
Burgers type equations were found in papers [3], [4], [5] and the large time asymptotics of solutions
was obtained in [6], [11], [12]. In the case of the boundary value problem on half-line the large
time asymptotics of solutions were studied in papers [2], [7], [8],[9], [10]. As far as we know large
time asymptotic behavior for solutions of the initial-boundary value problem for the Korteweg-de
Vries-Burgers equation (1.1) on the interval was not studied previously. In this paper we consider
(1.1) in the case of the initial data belonging to L?. We note here that we do not assume the
smallness condition on the data. In the case of large initial data it is more difficult than that of
small data to obtain exact representation of large time asymptotics of solutions and there are a
few results (see, e.g. [13]). Another difficulty in the study of the boundary value problem for the
Korteweg-de Vries-Burgers equation (1.1) is that the linear operator —92 + 92 is not self-adjoint
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and we can not apply the Fourier method when we take the boundary value into account. To
avoid this difficulty we apply the Laplace transformation with respect to space variable to derive
the Green function of the resulting equation. For obtaining L? -estimates of the Green function
we use the method of papers [8] and [9].

To state the results of the present paper precisely we give some notations. Let us denote
H' = {0 € L?(0,1); llollip = ll9llpe + [l@allpe < oo}
We introduce the function A(x) € L*°(0,1)

T _ _A(—fml_f) ~ _ ’ e—¢jy ’
Aoy = - T ,A@,y)—; 95 (€),
3

e (9] (©) - (¢(9)°).

1

J

where

3
Aly) = D e (¢),
j=1

ey Z¢ (670 - (¢} ©)%).

Here ¢,(€) are the roots of the characteristic equation —p? + p3 + & = 0, such that Re ¢;(¢) > 0,
1=1,2, and Re¢3(&) <0, for all

feDo—{éeC:Regzo,w [O%H

and ¢, € C, Re{, > 0 is the first root of the equation

3
o) (=) =0. (1.2)

By the same letter C' we denote different positive constants if it does not make confusion.

We state the main result of this paper.

Theorem 1.1. Suppose that the initial data ug € L2. Then there exists a unique solution of (1.1)
u € C ([0,00);L*) UC ((0,00) ; H')

such that the solution has the following asymptotics
u(z,t) = AN(z)e %t + O (e_(50+6)t)

for t — oo uniformly with respect to x € (0,1), where 6 > 0 is a constant satisfying the condition
such that || + 0 < |&4], where &, is the second root of (1.2), the constant A is defined by
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o0

1 - 1 -
A= / o (9) A (~€o, y)dy + / T dr / wly, 7Yy (9 ) A (—Eg, 1) dy.

Remark 1.1. By virtue of the numerical computations via program Maple we have &, = 70 and
&, = 200.

We organize our paper as follows. In Section 2 we solve the linear initial-boundary value
problem corresponding to (1.1). In Section 3 we prove the local existence of solutions to (1.1).
Section 4 is devoted to the proof of global existence of solutions to (1.1) for the case of small initial
data. We prove Theorem 1.1 in Section 5 by using the time decay estimates of solutions obtained
in Section 4.

2 Linear Problem

We consider the following linear initial-boundary value problem

ut_umm+ummm:f, t>0,1’€(0,1),
u(z,0) =ug(x), x€(0,1), (2.1)
w(0,t) = u(1,t) = ux(1,t) = 0,¢ > 0.

We define for = € (0, 1)

3
A& x) =Y e ") (€), (2.2)
j=1

where ¢,(£) are the roots of the characteristic equation —p? + p® + ¢ = 0, such that Re ¢,(£) > 0,
I =1,2, and Re¢4(&) < 0, for all

56D0={560:Re520,5¢ [0 i}}

127
Denote by
T 1
gf = @(SC) (~/O f(y)Fl(xayvt)dy +/ f(y)FQ(xvyat)dy) )
where
o) = 1,2 €10,1]
0,z ¢[0,1],
1 100 et 1 — —
T = —— es' = A —x)A d
Fl( ayvt) o i A(g’ 1) (57 1 ) (gvy) g
and
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Proposition 2.1. Let the initial data ug € L% and f € L? Then a solution u of (2.1) has the

following representation

u(x,t) = Gug + /0 Gt —7)f(r)dr.

Proof. To derive an integral representation for solutions of the problem (2.1) we suppose that there
exists a solution u(x,t) of problem (2.1), which is continued by zero outside of z < 0,z > 1

u(z,t) = O0forall z ¢ [0,1],
M u(0,t) = linol+ Mu(x,t),7=0,1,2
du(l,t) = lim_ HMu(x,t),7=0,1,2.

Also we suppose that f = 0. We denote operator

p . 1 [1 ela—p) _ 1 p

= — (g, t)dg.
[b(p, )] = —5— i (g, t)dg
We have for the Laplace transform

3

. 9271 (0,t) — e P tu(a, t 927 u(0,t) — e P tu(a, t
j=1 P =1 p
Since £ {u} is analytic for all p € C we have
L{u} =u(p,t) = Plulp,t)]. (2:3)

Applying the Laplace transform with respect to = to problem (2.1) we obtain

P [at + K(p)a(pv t) + Bl(pat) - e_pBQ(pat)] = 07 t> O,CE > 0,
w(0,t) = u(1,t) = uz(0,t) = 0,¢t > 0,

where
2y B ul0.1) o 01 u(0,h)
Bi(p,t) = p Zij—p 277-, (2.5)
j=1 p j=1 p
2 4 2
& lu(a,t 0 u(a,t
BQ(p,t) _ pQZ T j( )_pBZ x j( )
j=1 p j=1 P

We rewrite (2.4) in the form

uy + K(p)u(p,t) + Bi(p,t) — e P Ba(p,t) = ®(p, 1), (2.6)
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where some function ®(p,t) is analytic for all p € C |

1+ |e7P|

|P(p,t)] < C(t)T

Ipl>1 (2.7)

and
P[®(p,t)] = 0. (2.8)

Now we prove that under this conditions ®(p,t) = 0.To find ®(p,t) we introduce functions

1 o[>~ 1

Mzt = o— | ﬁq)(qvt)dqv
em% [0 et

Qa(z,t) = 2m-/. E@(%t)dq-

Since ®(p, t) satisfies Holder condition the functions €4 (z, ), Q2(z, £) are analytic in Re z # 0.
Denote by

Q t) = lim Q t
172(]9, ) zﬂp,chz<0 1’2(27 )’
and
Q7 t) = lim Q t).
1’2(]9’ ) z—>p,1Rez>0 1’2(27 )

for Rep = 0.Since function ®(p,t) is analytic for all p € C from estimate (2.7) we have

Q5 (p,§) =Qf (p.&) =0.

Another hand by Sokhotsky-Plemeli formula we get

e P [0 ] 1
Q5 = P— ——®(p,t)dg — =D(p,t
2 (pag) V 27_” i q—p (p7 ) q 2 (pa )
e = P [T s ndg+ e
1 pa - 27Tl 7100q_p p7 q 2 pa .

and therefore for Rep =0
2 (p:§) = 2 (p,§) =P[®(p, )] - @(p, 1) = 0.

Thus for Rep =0
O(p,t) =P[@(p,1)] =0
and therefore due to analycity ®(p,t) =0 for allp € C .

Applying the Laplace transformation to problem (2.6) with respect to time variable we write

Lo {ap,t)} = Ulp, €) as

509 = 7 (W)~ B0, + 7 Balr. ) (29)
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for p € C, K(p) = —p? + pS.

Here functions By (p, ), B, (p, &) are the Laplace transforms of Bi(p,t), B2(p,t) with respect

to time.

In order to get the integral formula for solution , we need to know the functions By (p, ),
B, (p,&) . We will find its using the analytic condition of function @ for p € C and Re £ > 0

.6 =P {in. )} (2.10)

Via (2.9) we rewrite (2.10) in the form

1

K(p)+¢
1 [l elep 1 1

= omi /| a—p K(q)+€(ﬂo(Q)—El(q,f)—l-e*pég(q,g)).

(fio(p) = Ba(p, &) + ¢ "Ba(p, ) (2.11)

Let ¢,;(&) are the roots of the characteristic equation —p? + p3 + & = 0, such that Re ¢, (&) > 0,

1=1,2,and Rep3(&) < 0, forall§ € Dy = {{ € C:Rel >0,¢ ¢ [0, %} }. Note that the functions

¢,(§) are analytic in the domain {{ € C: ¢ ¢ (—o0, 55| } . We represent p? = pr for |p| < 1 and

p? = l:i for |p| > 1, hence we get the asymptotics
P

0 — 0,Im 0 — 0,Im
@(&)—{ VE+O(€]),€ = 0.Im& > 0,1+ O(€]). € — 0,Tm¢ <0, 212)

eFYE+0(1), €] — oo,

0 — 0,Im 0 — 0,Im
@(&)—{ L+ O(&), € — 0,Im& > 0,/ +O(¢]),€ — 0,Im& <0, 213)

e S YE+0(1), ¢l — oo,
and
—VE+0([¢]), €] — 0,
—VE+0(1),[¢] = oo,
forall ¢ € C: ¢ ¢ (—00, 5] (by /€ and /€ we denote the main value of the analytic function, i.e.

» 27
Vi={¢I=1)

By Cauchy Theorem we have for all p € C

¢3(§) = { (2.14)

1 [ elen 1 1

5 | ey e )~ Bila.©) + e Ba(a,)

= m (ao(p) - §1 (p,&) + €_p§2(pa 5))
T 16) (<o) + Ba(6a €) — % Balon, )
Gip 8 0(¢P3 1(¢3; 2(93,

2
=30 5 (10(6) ~ B0y + 7 Balo,.).
j=1"i
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Using (2.11) we get

(2.15)

§2(¢3a§) =e% (—ao(%) + §1(¢3,§))
Bi(¢;,€) = Tio(¢;) + e % Ba(0,6),j = 1,2.

So we need to put in the initial-boundary value problem one boundary data in the point z = 0
and two boundary data in the point x = 1.

Let, for example, u(0,t) = u,(1,t) = u(1,t) = 0. Thus from system (2.16) we get

{ _amma(a’v 5) = e¢3(§)a (_GO((ZS?)) + awa(oa 5)(1 - ¢3) - awwa(oa 5)) (216)
aﬂ?a(ov 5)(1 - ¢j) - aﬂ?l?a(ov 5) = ao(qsg) - €7¢ja811a(aa 5)3.] = 17 27
which is equal to
em1® 11— ¢ —1 0zau(1,€) uo(¢1)
e 19, -1 0,u(0,€) | = Toles) |- (2.17)
e &) 1-—¢, -1 Dua(0,€) to(¢s)
Denote the determinant of this system by A(¢; ¢, ¢3), then it has a form
1 1 1
Ay g d3) = | e ®(® e~ ®2(8) e%s(&)
$1(£)e1 ) 9y (£)e?2 () gy (€)e?s®)
= e N (py—¢3) + e %2(d3— b)) + e % (d) — o).
in the domain & € Dy.
Since 23:1 ¢; =1 and
He) = - : #hl6) = - :
T =001 -03) 2T (02— 00)(02— 03)
1
! = — 2.18
L A A (215)
we can rewrite A(¢; ¢, ¢3) as
3
A1, 02,05) = V(€)Y e % g (2.19)

j=1
where
V(&) = (¢1 — d2) (¢ — ¢3)(¢3 —¢1)-
Since V(£) # 0 and Re¢;(¢) > 0,1 = 1,2, Re¢3(§) < 0 in domain & € Dy we easily get for
€] > 1,6 € Dy
A(¢y,¢9,03) # 0.
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By numeric computations we can check that A(¢; ¢y ¢3) # 0 for all || < G,

£e€Dy={£cC:Re{>0,£¢ [0,5]}. Therefore there exists a unique solution of the system
(2.17)

—1

Oati(1,€) . en® 1_¢ -1 R
9,1(0,§) | = / dyuo(y) | e~ 1-¢, -1 e | (2.20)
6mma(07 5) ’ €_¢3(£) 1-— ¢3 -1 e~ PsY

Since u(0,t) = ux(1,¢) = u(1,t) = 0 by (2.9) and (2.5) we have

+€(ﬁ0(p) + (p - 1)&1(0,5)) + amw(oag) - efpaawm((%g)). (221)

Taking inverse Laplace transform with respect to variable p we get

) 1 Lo
a(z,€) = @(x)/o dyw(y)%[m dpe” K(p)+¢

X(€7Y + (p = 1) (0,€)) + T (0,6) — € Piga(a, ).

By the method of residues we see that for £ € Dy

x N 1 N
i(2,6) =0(0) [ dyuo(w)Fie.9.€)+ [ dyuoly)Fale,. ) (2:22)
0 x
where
Fiw,y,§) = —¢he®s(O (7O 1 (g, — 1), (0,€) + Wrs(0,)) (2:23)
2
=3 (©e T L,(1,€)
j=1
and
FZ(xayag) = _(15/36%(5)1 ((¢3 - 1)@1(0,5) + ﬁm(o,f)) (224)
2
=30 (B (1,6) - e h O,
Jj=1

Denote A(,y) = 23:1 e Vel (€).
Substituting (2.20) into (2.23) and (2.24) and using (2.18) we get

Rye = -2& E(;)S(& y)
Fa(z,y, &) A(fvy—fv)ﬁ(é,l&)(g f)(f,l—x)ﬁ(g,y)

)
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Since ¢;(§) = (|§|_7) ,1=1,2,3 for |£] < 1,€ € Dy, we have

(2.25)

Bet=nBiey) _ (S WO 00) (St e) (1e7%)
A1) Yo e g

and

Agy—z)=0(le ) (2:26)

for €] < 1,& € Dy. Due to the fact that Re¢;(€) > 0,1 = 1,2, Re¢3(§) < 0 for || > 1, £ € Dy, we
obtain for [£| > 1

1 ~ ~
— ANE 1 —x)A(E,
XED (€ YA, y)

1m0 (g4)? (14 £, 0 (L0 0))
e=tsdly (14 52, 0 (o) )

(1+ZO< —,;+¢3)y Z;))
3
_ eqbg(mfy)(bg <1+ZO( —¢i+é3)y )""ZO( ~¢;+ds)(1— w))) (2.27)
i=1

Therefore taking the asymptotics (2.12)-(2.14) into account we find that

Fy(z,y,¢) =0 (i‘%efcw(“y)) (2.28)
for £ € Do, €] > 1, z > y. Also from (2.27) we get
7 ~ A€ 1 — x) 2 B B
Fy(2,y,6) = AEy—m)— (& Z (fbfje ¢;(y—=)
(5 1 j:1
+0 (ghe” RePvHiedsr) 1 0 (cb’ ~Reg, (1-2)+Re %(ky)))

for £ € Dy, |£] > 1, y > x. Thus there exist the inverse Laplace transforms for the functions
Fy(x,y,€) and Fy(z,y, €). Taking the inverse Laplace transformation of (2.23) and (2.24) we obtain

Fl('rvyat) = Lil {Fl(f,%f)} = T 5 eft

L Ae1-2)A
o A e R LN GL

and

Pae.nt) = £ {Rite ) = o [ ae A1 -o)AEy) = ey - DAE D),

A€, 1)



CUBO

Korteweg-de Vries-Burgers Equation ...
12, 1 (2010)

51

where I'g = 9Dy, i.e.

: , o4 4 o
Ty = (—io0, —i0) U [—10, 77~ 20} U [E + 10, 10} U (40, i00) .

Since functions ﬁl(:c,y,f) are symmetric with respect to ¢; ¢, @5 using the relations ¢, (§) =
B3 (€) . D2 (&) = 01 (£), 93 (€) = b3 (Z) for all £ € Dy we can change the contour of integration I'y

to the imaginary axis (—i00,i00) to get

B 1 100 et 1 _ _
Fl(xayvt)__% 71_006 A(g’l)A(gvl_I)A(gvy)dg

and N R ) )
Fg(x,y,t):—%/_l dgegtﬂ(&l—x)A(&y&)(g ﬁ(ﬁ,y—x)&(g,l)

Therefore taking inverse Laplace transform of (2.22) with respect to £ we obtain
u(zx,t) = Guyg.
Thus by Duhamel principle Proposition is proved.
Lemma 2.2. We have the asymptotics for large time
Fi(@,y,t) = —¢~"A () A€y, ) + O (e~ Cot1)

and estimates
00 F; (2, y,t)| < Cem S {t} ™ Jm —y|?* 717"

forx,y € (0,1), x #y, t >0, where o € [0,”7“],71:0,1,3':1,2.

(2.30)

(2.31)

Proof. We consider a curve in the complex left-half plane Re€ < 0 such that Re¢, (§) = 0, it is
defined by the equation (zy)2 - (2y)3 = ¢ with y = Im ¢, (§) . Therefore there exists a contour

Co = {geC,Re§<O:Re§:O(|g|%)}

such that
Re ¢;(&) > 0,1 =1,2,Rep5(§) < 0 for all € € Cp.

We also consider a contour

Ci = (=& —6—ioo,—&y— 3 —i0)U (=& — 6 —i0, —i0)
U (i0, =€y — 6 +i0) U (—=Ey — 6 4 10, —Ey — 6 + i00) .

Denote
ConCy = {21,2’2},111121 >0,Imz; < 0,Rez = —fo — 5,[ =1,2.
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We now define a contour C = Cy U C3, where
Co={¢€C:Imz <Im&<Imz}.

C3=1{£€Co:Im&>Imz or Im& <Imzy}.

CUBO
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Note that the asymptotic formulas (2.12)-(2.14) are valid on the contour C. In view of them we

have (2.25)-(2.29) for € € C. Therefore changing the contour of integration to C we obtain

1 e 1 ~
x T = - e = A —x)A d
Fl( 'Y, ) o cecs A(g,l) (571 ) (gvy) g
1 1

- eft— A1 —2)A dg.
571 Jecer . AED) (3 JA(E, y)dE

Since Az +1i0,q) = Az — i0, q) we get

2mi J ey —s—i0  A(E,1)

1 —i0 1 ~ N
et A&, 1 — )A€, y)dE

1 —&o—0+i0 " 1 A A .
- _ 1—

2m +10 ¢ A(é—,l) (5’ 1') (gay) 5

_ _e—sotﬁ(—fof—55)&(—5073/).
A/(_g()al)
Also by (2.25) we have

LM e L R -y
27i —50—5+z'oe A(g,1) (&1 =), y)de
L e L R A e
27i J-, Ay Y

= 0 (e—<so+6>t) .
Taking into account (2.28) we get

L ¢ R(e1- o)A y)d
é@f e mhE

2mi

< Ce—(so+6>t/ Ot 3 +1(6o+0)~Cla—vllel’ |¢=3 g¢
£eCs
< Cef(foJrJ)ttfa |.I' _ y|2a—1

(2.32)

(2.33)

(2.34)

(2.35)

since C'[€]3 — (€, + 8) = 0 for € € C5, where a € [0, 4] . By (2.33)-(2.35) we have from (2.32)

F1 (I,y7t) = _e_fotA (_goglz :2) Al)(_f(ny) +0 (8_(£0+5)t)
—£os
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for z,y > 0,t > 1, and moreover
IFi(a,y ) < Cemo" (14 {1} o =y ")

for all z,y € (0,1), z # y, t > 0, where a € [0, 2] Thus the result of the lemma is true for the
case n = 0. Consider the case n = 1. In view of the asymptotic formulas (2.12)-(2.14) we get

A(€,1)
(ij:l o—%;(©)(1—x) (¢;¢j)) (2321 e—¢j(£)y¢;)

- ST 50y - 0(1) (2.36)

and

0.8y — ) = 0(1) (2.37)
for || < 1, £ € C3 and in the same argument as in the proof of the estimate (2.25) we get
0 5(E,1 ~ 2)A6,y)
A(¢,1)
= e U gl (1+O( C\/_U) +O( —eV/lEla- m))) (2.38)

and

&y — ) = =B D00 (140 (VW) 4 0 (- VIE0-0)) (2.39)
for all [¢] > 1, £ € C3. Hence by the similar way to (2.33)-(2.35) we get
A€o 9)0 D&y 1~ 7)
A/(_507 1)
+Ce—($o+5)t/ e—CtIE\%+t($o+5)—c\w—y\lfl% |§|—% d¢
£€Cs

|01 (z,y,t)] < e o + Ce %ot

< e ot (c Lty | — y|2“—2)

forall z,y € (0,1),  # y, t > 0, where « € [0, 1] .The function F5(z,y,t) is considered in the same
way. Lemma 2.2 is proved. O

Now we prove the local existence for the linear problem (2.1).

Theorem 2.3. Let the initial data ug € L? and f € L2. Then for any T > 0 there exists a unique
solution u € C ([0,T];L?) UC ((0,T]; H') of the linear initial-boundary value problem (2.1) such
that

sup £ 95w (t)[|p» < CA
te(0,T)

provided that
A= luollge +T7 sup 7| f(1)|p2 < o0,
te (0,7

wheren:(),l,ae(%,1),66(0,1).
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Proof. ;From Proposition and estimates of Lemma 2.2 we have

10zu @l < 7

1
2a0—1—n
/ wo(y) |z — o] dy
0

L2

t 1
[ ree=n i [ n s -y
0 0 L2
= (HuO(y)lle +T'7 sup 7 f(, t)||L2>
t€ (0,7
for n = 0,1. So we have the estimate of the theorem. Theorem 2.3 is proved. O

3 Local Existence for the Nonlinear Problem

In this section we prove the following result.

Theorem 3.1. Suppose that the initial data ug(z) € L2. Then there exists a unique solution
u(z,t) € C([0,7];L>*)uUC ((0,T]; H")

where T > 0 depends on |lugl|y: -

Proof. We prove the local existence of solutions by the contraction mapping principle. Let u(z,t)
be a solution of the following linear problem

wp + N(w) — Ugy + Ugee =0, £ > 0,2 € (0,1),
u(x,()) = ’UJO(I)’ T e (07 1)7 (31)
u(0,t) = u(l,t) = uy(1,¢) =0, t >0,

where N(w) = ww,, w is taken from the closed ball

1
H,l) = {w € C((0,7];H"); sup Zto‘”HangLz < p} ,
t€(0,T],, 29
where o, € (%,1) and satisfies the boundary condition w(0,t) = w(1,t) = wy(1,¢) = 0. The

initial-value problem (3.1) defines a mapping M by v = M(w) and we will show that M is the

1

p» using the

contraction mapping from H; into itself for a sufficiently small 7" > 0. Since w € H
estimate |w|| e < 2|w|g2 [|we|ly2 , we have

1 3
sup 17 [N@)()llg < C sup_ ¢ [w®)llEs s (O] F < Co,
te (0,7 te(0,T)

where 3 = %‘9’0‘1 < 1. Via Theorem 2.3 problem (3.1) has a unique solution u(z, t) € C ((O, T]; Hl) ,
such that

sup t||0nullL: < CA,
te(0,T)
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where

A= luollge +T7 sup 7 IN(w)(t)]l 1z -
te (0,7

Therefore we obtain the estimate

1
sup 3~ t* [ ulles < Clluolles +CT' 0% < p (3.2)
t€(0,7],,—o

_a
if T = (2(Z'p)_ﬁ = (4C? luglly2) "7 and Clugllyz < 5. Thus the mapping M transforms the
closed ball Hfl) with a center at the origin and a radius p into itself. Analogously we can estimate
the difference

1 1
(67 7 -~ 1 « U3 ~
sup S0 (- ) for < L sup 3t 7 (w— @) e
2 te(0,11 12

te(0,7T],,—o

for sufficiently small 7" > 0. Therefore the mapping M is a contraction mapping in H,l) and there
exists a unique solution u(z,t) € C ((0,T]; H') of the initial-value problem (1.1). Theorem 3.1 is
proved. O

Remark 3.1. By virtue of estimate (3.2) we see that if the initial data ug are small, i.e. the norm
luollLz: < e, where € > 0 is sufficiently small, then there exists T > 1, such that there exists a
unique solution u, which is also small: sup,c o 1 2711:0 ton]|0%u||pe < Ce.

4 Large Time Asymptotics

In this section we give sufficient conditions for global existence of solutions to the initial-boundary
value problem (1.1) with small initial data

[uollyz < e1, (4.1)
where g1 > 0 is sufficiently small.

Theorem 4.1. Suppose that the initial data ug € L? and satisfy (4.1). Then there exists a unique
solution u of (1.1) such that

u € C([0,00);L*) UC((0,00); H').
Furthermore the solution has the following asymptotics
u(a,t) = AN(z)eSt + O (e-<5o+5>f) (4.2)

for t — oo uniformly with respect to x € (0,1), where £, > 0,6 > 0, the constant A, the function
A(x) € L™ are defined below in the proof.
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Proof. According to Theorem 3.1 and Remark 3.1 we see that after some time 7' > 1 the solution
is small in the norm H!. Therefore we can only consider the initial-boundary problem (1.1) for
t > 1 with small initial data u (z, 1) such that ||u(-,1)||g: < €2, where €2 > 0 is sufficiently small.
Let us prove that

! u(®)]lg < e (4.3)

for all ¢ > 1, with some small € > 0. By the contradiction we can find a maximal interval [1,T7]
such that the estimate
o Jlu(t) e < e (4.4)

is true for all ¢ € [1,T3] and estimate (4.3) is violated at time ¢ = T3. From (4.4) and estimates
(2.31) of Lemma 2.2 we obtain for n = 0,1

u{(,1)|

t x
o S O bl [ [ ) 102 Gt = )l dy

t 1
[ ar [ 10 F Gt = )l dy
1 x
t t ‘ 3 3 -3
< Cege %0t 4 Ce %o / efo™ lu(T)|If2 lue(T)|If2 {t =7} *dr
1
t
< Cege 0t 4 Caze{“t/ e 807 {t — T}_% dr <C (52 + 52) e~ %ot
1

for t € [1,T1]. The contradiction obtained proves (4.3). Now using the estimate (4.3) and Lemma
2.2 we prove that the solution has asymptotics (4.2) for ¢ — oo uniformly with respect to = > 0,

where B
A(_507 1- I)

A =T e

1 o'} 1
A= [CuwwB-gony+ [ ear [ utyriuy 0B (¢ n)d,
0 0 0
Indeed, due to asymptotics (2.30) of Lemma 2.2 we have
u(z,t) = AA(z)e %" + R(z, 1), (4.5)

where in view of (4.3) we have

t 1
|R(z,t)| < e~ (o)t ||u('71)|\H1+O/ e*(foJr(;)(tf‘r)dT/ luay| dy
1 0
o) 1
+e S0t |A(£C)|/ egOTdT/ [uy|
t 0
— O(e—(£0+5)t)

A(=€0,y)|dy

for all ¢ > 1, where § > 0. Theorem 4.1 is proved. O
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5 Large Initial Data

We consider the initial-boundary value problem (1.1) with any initial data ||uo||y. < C. Multiplying
equation (1.1) by u and integrating with respect to z € (0,1) we get

We have

d 1
7 HuHig + 2/ (uzuw — Ulgy + uumm) dxz = 0.
0
1

! 1
/ wugdr = —u®
0 3 o

1 1 1
1
/ Ul dr = Uty —/ uldr = —/ u?dz,
0 0 0

1
1 11
0

in view of the boundary data, hence
d, 2 Ly 2
pn lullfz +2 [ wuidr +u; (0,t) =0.
t 0

Integration with respect to ¢t > 0 yields

t
2
l[u(®)l2 + 2/0 [t (7) [l d7 < luo]lr-

for all ¢ € (0,00). We see that the norm |ju(t)||> < |luol/g for all ¢ > 0. By the standard
continuation process via Theorem 3.1 we obtain that there exists a unique global solution u €
C ((0,00) ; H') since the existence time T’ depends only on [lugl|y2 . Moreover we see that for
any € > 0 there exists a time 7" > 0 such that |lu, (T)||i2 < ¢e. By the inequality u? (z,T) =
2]01 utydy < 2||ul|g2 ||ue]|g,2 We see that the norm |[u (T')||,« , and hence the norm ||u (T')[| . , are
also small by the estimate [|u (T)||> < ||u(T)||L~. Then we consider the initial-boundary value
problem (1.1) for ¢ > T and apply Theorem 4.1 whence the result of Theorem 1.1 follows. Theorem

1.1 is proved.
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