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ABSTRACT

We provide an improved compared to [5]-[7] local convergence analysis and complexity for
the interpolatory Newton method for solving equations in a Banach space setting. The re-
sults are obtained using more precise error bounds than before [5]-[7] and the same hypothe-
ses/computational cost.

RESUMEN

Nosotros entregamos aqui un anélisis de convergencia local y complejidad para el método
de interpolaciéon de Newton para resolver ecuaciones en espacios de Banach. Los resultados
mejoran los de [5]—[7] e son obtenidos usando mas precisas cotas de error y las mismas hipotesis
y costo computacional.
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1 Introduction

In this study we are concerned with the problem of approximating a simple solution « of the
equation

F(z) =0, (1.1)

where F' is an operator defined on a convex subset D of a Banach space X with values in a Banach
space Y over the real or complex fields of dimension IV,

dim(X) =dim(Y) =N, 1< N < +oc.

We consider interpolatory iteration I, for approximating x* defined as follows: Let x; be an
approximation to « and let w; be the interpolatory polynomial of degree < n — 1 such that

wP (z;) = F9(z;), j=0,1,....n—1 (n>2). (1.2)
The next approximation x}, , is a zero of w;. For n = 2 we obtain Newton’s method:
ai =a;— F'(z;) ' F(z;) (i >0). (1.3)

We approximate ;11 by applying a number of Newton iterations to w;(x) = 0. Let {z;} be the
interpolatory Newton iteration I'N,, given by:

20 = T4
Zj4+1 zzj—wg(zj)_lwi(zj), jZO,l,...,k—l (14)

ZTit1 = 2k, Kk = [log2n].

A local convergence analysis and the corresponding complexity of method (1.4) was studied
in the elegant paper by Traub and Wozniakowski [7]. Relevant works can be found in [1]-[7], and
the references there.

Here we are motivated by paper [7] and optimization considerations. In particular using more
precise estimates on the distances ||z; — «| (i > 0) we show that under the same hypotheses and
computational cost as in [5]-[7], we can provide a larger convergence radius, sharper error bounds
on the distances and consequently a finer complexity for method (1.4).

Numerical examples are introduced which compare favorably with results to the corresponding
ones in [5]-[7].

2 Local Convergence Analysis of Method (1.4)

Let I' > 0. We introduce the closed ball U = U(a,,T') = {x € X | ||x—«| < T}, and the parameters
L FU(z)

Aj = A;(T) = sup 7

zeU

F'(a) , 122) (2.1)




CUBO

An Improved Convergence And Complexity Analysis ... 151

12, 1 (2010)

provided that F) exists.

Moreover we introduce the parameter A by

A= A(D) = sup 'F’<a>2[|f;’<jclr F'()|

(2.2)

The foundation of our approach and what makes it more precise than the corresponding one in
[7] is the fact that we use (2.2) instead of (2.1) (for j = 2) to obtain upper bounds on the crucial
quantity [|w}(z) "' F'(a)]|.
Indeed, on the one hand note that
A< Ay (2.3)

holds in general and % can be arbitrarily large [1], [2]. On the other hand see (2.28), (2.46), and
Remark 2.4.

Let us set A
a = A—2 B AQ # O (24)

Note that a € [0,1].

We showed in [3] the following improvement of Theorem 2.1 in [6] and Theorem 2.1 in [5]
respectively:

Theorem 2.1. If F is twice differentiable in U, (2.2) holds and

1
AT < —
2 =21 +4a)’

z; € U, (26)

(2.5)

then the next approzimation xj,_, generated by Newton method (1.8) is well defined, and satisfies
for alli > 0:

* AQ 1
i1 = oll < g5l — o < 3l — ol (27)
and 1
T o= §F’(a)_1F'(a)(:vi —a)® + O(|lzi — af?). (2.8)

Theorem 2.2. If F' is n-times differentiable, n > 3 in U, (2.2) holds, and

nA, 1 2\" !
z 2.9
1-— aAgl" < (3) ( )
xT; € U,

then the polynomial w; has a unique zero in U* = U* (a, g) and defining xj,, as the zero of w; in
U* the following estimates hold for alli >0

Au(L+ llatyy — all/lla: = al))”
[ adsl[ary, — ol

N 1
2741 —all < < gllzs = o, (2.10)

i — o <
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and

2ty — o= T () FO) (@) (2 — a)" + O — o). (2.11)

n!

We can show the main local convergence theorem for method (1.4):

Theorem 2.3. If F' is n-times differentiable, n > 3 in U, (2.2) holds, and
1

0< Al < T (2.12)
where,
jy - A oA ery .
1—adsl —nA,(3)" Tt
zo €U, (2.14)

then sequence {x;} (i > 0) generated by interpolary-Newton iteration IN,, is well defined, remains
in U for all i > 0, converges to « so that the following estimates hold for all i > 0:

k
1 3/1
eiv1 = |1 —af < {5 +3 (5) }ei, (2.15)

€it+1 S cl-_,ne? (216)
where,
Cin = 1 —|— ezll An
’ e; 1 —adaej,,
* 2k _n
~ el
+ (Ag(1 + Hy)) ! <(1 + —“>e> : (2.17)
e
for
3+2
el = et —all, Hi=O0(es), 0< Hy < ==k = flog20), (2.18)
lim ¢ = Ap + 5121’2’_1 where § =0
if2F >n and § =1, if 28 = n, (2.19)
Tig1 —a=Fp(x; — )" + by + O(||zi — a||™), (2.20)
where
bi,l = FQ(.Tl — a)2, (221)
bi,j+1:F2b12,ja j:1527"'7k_17 (222)
and )
(=1 1 m0) ,
F; = F'(a)7"FY(«a) forj=2 andn. (2.23)
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The proof is similar to Theorem 3.1 in [7], but there are differences where we use (2.2) instead
of (2.1) (for i = 2).

Proof. We shall first show using induction on j > 0 that w/(z;) is invertible and z; € U.

Set
F9 () - wl(j)(x) = RV (z;2), z€U, j=0,1,2, (2.24)
where,
1/ (a) ™ R (a5 2,)| < j!(f‘)Anm—m“. (2.25)
J

We can write
wi(z) = F'(z) — R, (2; 7:)
= F'(a)[I + F'(a) " {F'(z) = F'(a)} = F'(a) ™' R} (w; ;)] (2.26)
and in view of (2.2), (2.12) and (2.24) for z € U we get in turn

1F" ()~ [w)(2) = F'()]l| < 2az]lz — ol + ndpfz — " (2.27)

J

< 2aA5T +nA,(20)" ! < )
a

<1. (2.28)

It follows from (2.28) and the Banach Lemma on invertible operators [4] that w}(z) is invertible
for all x € U, and

1

/ —1
; F < . 2.29
”wz(x) (Oé)H = 1—2@142”17—0&”—TLAHHI—ZCZ'H”*I ( )
Since the denominator in (2.13) is positive we get
nA, 0" 2\"!
z 2.30
1-— aAgl" < (3) ( )
and from Theorem 2.2 w; has a unique zero xj,; in U* and (2.10) holds.
Using (2.24) and (2.29) we get for z € U
oy (@)
’w;(%ﬂ) IT ’
- —wj ()
< Juitati) Pl | P 242
Ay + 220 A, |l — "2
T 1= 2ads|zlyy - afl = nAnflag, x|t
A MAn oT)n—2 ~
2t 7 O™ _ 4, (2.31)

T 1—aAST — nAn(%F)nil
It follows from Theorem 3.1 and (2.12) that for z; = 2; — F'(x;) " F(x;)

1
o1 — all < 5z — al. (2.32)
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Since z7,, € U*, |21 — 2, || £ T, we shall show

* 1 *
zjy1 € Dj = {:1:: lz —zi ] < §Hz3 - xi+1||} Nnu. (2.33)
Set
wi(z) = wiz) + wi(z)(@ — 2;) + Ra(w; 25), (2.34)
where,
1
Ralaiy) = [ wlly+tle — )@~ y)(1 - Dy (239
0

Note that z;4; is the solution of equation
z=H(z) =}, +w (ziy1) {Ra(z; 25) — Roz;2},,)} (2.36)

We shall show H is contractive on D;.

It follows from (2.12), (2.31) and (2.36):

1H (2) = 231 ]| < Aa(llo = 2]* + [l — 2714 %)

2+ 3a - . 1 .
< 5 Azllzj — 27 < 5”2.7' — x| (2.37)
Moreover we have
N N 1 1
[H(z) —af < ||z —af +[[H(z) — 27| < 5"'5 r=r. (2.38)

It follows by the contraction mapping principle [4], (2.37) and (2.38) that z;41 is the unique zero
of H in D;. It follows that z;4; = 2z € U, and

|ziv1 —af < |lzipr — 27 |+ |27 — af

1\" 1
< (3) 1o el + 3l —al

k
3/1 1 7
< [5(5) + 5] i ol < £lles — all (2.39)

which shows x; € U and (2.15) hold true.

Set ; = ||z — || and = 241 in (2.36). Then we get

1212(1 + %)2

_2 e _
_ 22 < As(1 + Hy)e;, 2.40
e O 2 )e; (2.40)

€1 <

where H; = O(¢;) and 0 < H; < 2£3% compare to (2.7). In view of €; = O(e;) we can set
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H; = O(e;). It follows from (2.10) and (2.40)
i1 < [[wipr — i |l + o, —all =& + |23, — o
b 2k —1 " k
< [A(L+ Hy)|™ [l — 2y )P
i Ay, 14 Cit1 er
1 —adzej,, e;
< (14 G ' An
e; 1 —adzej,,
& 8* 2k _p
+ [[12(1 + Hi)]2 - [(1 + —Jﬂ)el} )e;I = ¢ ney. (2.41)
€
In view of % and H; tending to zero we get
lim ¢, = A, + 6AZ L, (2.42)
where § = 0 if 2 > n and § = 1 otherwise. Hence, (2.16) holds.
Furthermore, we have
* * — w:/(xr ) * ~,
Zjy1 — Ty = wi(27y ) 1%(% —zi )+ O(e?)
L F(0) ] . 2 -
= Fl(a) ! T(Zy - $i+1)2 + O(ei+1e? + e?)
= Pz — o]41)* + O(&). (2.43)
Therefore, we get
* * 2
2= wipy = B (Fa- - (Falw —afyy)?)" )" + O(e")
= By (B (Fo(w —a)?)?-- ) + 0(eb). (2.44)
In view of (2.21), (2.22), and (2.44) we have
2y — i1 = by + O(e39). (2.45)
In view of (2.11) and (2.45) we deduce
Tig1 — =2 — T + x5 — =D+ Fp(r; —a)" +O(e}), (2.46)
which shows (2.20).
That completes the proof of the theorem. |

Remark 2.4. The less precise estimate (using (2.1) for j = 2 instead of sharper (2.2) that is

actually needed)

1F" ()™ [w)(x) = F'()]l| < 242]|z — af| + nAn|lz — 2"~

(2.47)



CUBO

156 loannis K. Argyros

12, 1 (2010)

was used in [7] instead of (2.28), together with

0< Al < (2.48)

ot —

instead of weaker (2.12).

If A = A, our results Theorem 2.1, Theorem 2.2 and Theorem 2.3 reduce to the corresponding
Theorem 2.1 in [6], Theorem 2.1 in [5] and Theorem 3.1 in [7] respectively. Otherwise our results
constitute improvements with advantages already stated in the Introduction.

We now give conditions under which I'N,, enjoys a “type of global convergence”.

Let
1 . .
F(z) =Y =F9(z; - a) (2.49)
be analytic in D = U°%(a, R), and

[F' ()" FO (a)
t!

< K1 (2.50)

fori22andRZ%.

As in [7], one way to find K is to use Cauchy’s formula

IF" () FO ()] _ M

— 2.51
! - R (2:51)
where,
M = sup ||F'(a) " F(z)|. (2.52)
zeD
Let K = max[%, %} Then
M .
& SKR<(KR)™ (2.53)
and M
— <K% 2.54
Rz - ( )

We can show:

Theorem 2.5. If (2.2) and (2.50) hold then the interpolary Newton method (1.4) converges
provided that xg € U(a,Ty,), where
(2.55)

and x,, 0 < x, < To, satisfies the equation
x nn—1) [ 2z \"'
3+2
(8+2a) (1—x)3+4(1—x)2<1—x> ]

S D [ 3¢ )]nl (2.56)
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and T, — T, where

Too > .12 (2.57)

is the positive solution of equation
T 1

(1—x)3 4 +2a° (2.58)

Proof. In view of (2.50) we have for

T
= 2.
fla) = = (2.59)
that
1F" (@) FO (@) < fD (|l = o). (2.60)
Using
. KL
Dg)= — (1>9 2.61
190 = g (22) (2:61)
we get
Kifl
AN ——— (i >2). 2.62
)< gy (22 (2.62)
It follows from (2.13) and (2.62) that
n(n—1) n—1
y (1—KKFF)3 + In—rT)? (255) 1
Aol < — = . (2.63)
] — _aKL __ _ n ( 3KT )"1 34+ 2a
(1—KI)® ~— (1—KD)Z\2(1—KT)

Letting KT = z we see that z satisfies equation (2.56). It is simple calculus to show that @ = x(n)
is an increasing function of n and ., = lim z(n) satisfies equaiton (2.58).

n—oo

Remark 2.6. If A = A, (i.e. a = 1) our Theorem 2.5 reduces to Theorem 3.2 in [7]. Otherwise it
is an improvement, since the limit of sequence z(n) in [7] is .12 which is smaller than ours implying
by (2.55) that we provide a larger radius of convergence.

In particular if R is related to %, say R = %, then

Tn Tn Too
I=—=—<—. 2.64
K ciR ~ R ( )

The rest of the results introduced in [7] are improved. In particular with the notation introduced

in [7] we have for

I €e; = Gie?fp Gl S a,

G=G(n)= (2.65)
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where A is given by (2.13), ¢ = i+ %(%)k, and K = [log2n].
II: If the total number of arithmetic operations necessary to solve a system of N linear equa-

tions is O(n?), 3 < 3, then

N+n-2

0, (Nﬁ [log 2n] + N2<
n—2

)([10g2n] - 1) for N > 2,

d(IN,) = (2.66)

(34 2a)[log 2n] + O(1), for n = 1.
Remark 2.7. If A = Ay our results reduce to the ones in [7]. Otherwise they constitute an
improvement.

We complete this study with an example to show that strict inequality can hold in (2.3):

Example 2.8. Let X =Y =R, z* = 0 and define function ¥ on U = U(0, 1) by
F(z) =¢€"—1. (2.67)
Using (2.1), (2.2), (2.4) and (2.66) we obtain

e—1 e

and
a = .632120588. (2.69)

It follows from (2.5) that our radius of convergence is given by
T'a =.112699836. (2.70)

The corresponding radius 'ty given in Theorem 2.1 in [6] or [7] is:

1
T = —— = .09196986. 2.71
™= T (271)
That is
I'rw < Ta. (272)
Received: October, 2008. Revised: January, 2009.
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