A Short Note On M-Symmetric Hyperelliptic Riemann Surfaces*

Rubén A. Hidalgo

Departamento de Matemáticas,

Universidad Técnica Federico Santa María, Valparaíso, Chile

email: ruben.hidalgo@usm.cl

ABSTRACT

We provide an argument, based on Schottky groups, of a result due to B. Maskit which states a necessary and sufficient condition for the double oriented cover of a planar compact Klein surface of algebraic genus at least two to be a hyperelliptic Riemann surface.

RESUMEN

Damos un argumento, basado en grupos de Schottky, de un resultado debido a B. Maskit el cual establece una condición necesária y suficiente para el cubrimiento duplo orientado de una superficie de Klein compacta planar de genero algebrico al menos dos ser una superficie de Riemann hipereliptica.

Key words and phrases: Schottky groups, Hyperelliptic Riemann surfaces.

Math. Subj. Class.: 30F10, 30F40.

^{*}Partially supported by projects Fondecyt 1070271 and UTFSM 12.09.02 $\,$

1 Preliminaries

Let us consider a collection of (g+1) pairwise disjoint round circles on the Riemann sphere, say $C_1,...,C_{g+1}$, bounding a common domain \mathcal{D} of connectivity (g+1). If we denote by τ_j the reflection on the circle C_j , then the group $G = \langle \tau_1,...,\tau_{g+1} \rangle$ is an extended Kleinian group, isomorphic to the free product of (g+1) copies of \mathbb{Z}_2 . We say that G is a planar extended Schottky group of rank g. The region of discontinuity Ω of a planar extended Schottky group of rank g is connected (the complement of a Cantor set for $g \geq 2$) and $S = \Omega/G$ is a planar compact Klein surface of algebraic genus g, that is, holomorphically equivalent to the closure of \mathcal{D} . Quasiconformal deformation theory asserts that every planar compact Klein surface of algebraic genus g is obtained in this way.

Let $G = \langle \tau_1, ..., \tau_{g+1} \rangle$ a planar extended Schottky group of rank g. Let G^+ be its index two subgroup of orientation preserving transformations. It turns out that G^+ is a (classical) Schottky group of genus g, freely generated by the transformations $a_j = \tau_{g+1}\tau_j$, for j=1,...,g. The closed Riemann surface $S^+ = \Omega/G^+$ is the double oriented cover of the planar compact Klein surface $S = \Omega/G$. Any of the transformation in $G - G^+$ induces an anticonformal involution $\tau : S^+ \to S^+$ (that is, a real structure on S^+) so that $S = S^+/\langle \tau \rangle$. It follows that the number of ovals of τ (its connected components of fixed points) is equal to (g+1), in particular, (S^+, τ) is a M-symmetric Riemann surface. Let us denote by $\pi : S^+ \to S$ the two-fold (branched) Klein cover induced by τ and by $P : \Omega \to S^+$ the Schottky covering of S^+ induced by the Schottky group G^+ . In [4] B. Maskit proved the following result.

Theorem 1.1. Let G be a planar extended Schottky group of rank $g \geq 2$, defined by tye circles $C_1,..., C_{g+1}$. Then the Riemann surface Ω/G^+ is hyperelliptic if and only if there is a circle which is orthogonal to all C_j , j = 1,...,g+1.

The aim of this note is to provide a different proof of Theorem 1.1 relaying more on the Schottky groups spirit.

We need to recall some extra definitions. Let $\Sigma_1,...$ Σ_{g+1} be pairwise disjoint simple loops on the Riemann sphere, all of them bounding a common domain \mathcal{D} of connectivity g+1. Assume that for each j=1,...,g+1, there is a Möbius transformation of order 2, say E_j , so that E_j permutes both topological discs discs bounded by Σ_j (in particular, both fixed points of E_j belong to Σ_j). The group $K=\langle E_1,...,E_{g+1}\rangle$ is a Kleinian group, isomorphic to a free product of g+1 copies of \mathbb{Z}_2 , called a Whittaker group of rank g [3]. If Ω is the region of discontinuity of K, then Ω is connected (the complement of a Cantor set for $g\geq 2$) and $S=\Omega/K$ is an orbifold of signature (0,2g+2;2,...,2), that is, the Riemann sphere with exactly 2(g+1) conical points, all of them of conical order 2. Inside K there is exactly one index two torsion free subgroup, say $K^{(2)}$. It turns out that $K^{(2)}$ is a Schottky group of rank g, called a hyperelliptic Schottky group, which is freely generated by the transformations $E_{g+1}E_1,...,E_{g+1}E_g$. In this case, $S^{(2)}=\Omega/K^{(2)}$ turns out to

be a hyperelliptic Riemann surface, the hyperellitic involution (unique for $g \ge 2$ [2]) is induced by any of the transformations in $K - K^{(2)}$. The projection of the fixed points of $E_1, ..., E_{g+1}$ to $S^{(2)}$ provides the 2(g+1) fixed points of the hyperelliptic involution.

2 The Necessary Part

Let us consider a planar extended Schottky group G of rank $g \geq 2$, say generated by the reflections $\tau_1, ..., \tau_{g+1}$ on a collection of (g+1) pairwise disjoint round circles on the Riemann sphere, say $C_1, ..., C_{g+1}$, bounding a common domain \mathcal{D} of connectivity (g+1). Let G^+ be the index two orientation preserving Schottky subgroup and let $S^+ = \Omega/G^+$, where Ω is the region of discontinuity of G (the same as for G^+). As before, we denote by $\tau: S^+ \to S^+$ the real structure induced on S^+ by the action of G. Let us denote by $\mathcal{O}_1 = P(C_1), ..., \mathcal{O}_{g+1} = P(C_{g+1})$ the ovals of τ .

Let us assume S^+ is a hyperelliptic Riemann surface and let $j: S^+ \to S^+$ be its hyperelliptic involution. As the hyperelliptic involution is unique [2], j and τ should commute, in particular, the collection of ovals of τ is invariant under j. The Schottky group G^+ is defined by the ovals $\mathcal{O}_1, \ldots, \mathcal{O}_{g+1}$, that is, by the normalizer (in the fundamental group) of them. It follows that the hyperelliptic involution lifts to a conformal automorphism $\hat{j}: \Omega \to \Omega$ under $P: \Omega \to S^+$, that is, $jP = P\hat{j}$. We have that $\hat{j}^2 \in G^+$. As j has fixed point, we may assume that \hat{j} also has fixed points, in particular, $\hat{j}^2 = I$.

It is known that Ω is of class O_{AD} ; that is, it admits no holomorphic function with finite Dirichlet norm (see [1, pg 241]). It follows from this (see [1, pg 200]) that every conformal map from Ω into the Riemann sphere is a Möbius transformation. In this way, \hat{j} is the restriction of a Möbius transformation of order two.

Lemma 2.1. Each oval has exactly two fixed points of j and each fixed point belongs to some oval. Moreover, each oval is invariant under j.

Proof. Let us denote by D_1 and D_2 the two connected components of $S^+ - \cup_{j=1}^{g+1} \mathcal{O}_j$. If one of the fixed points of j is not contained in $\cup_{j=1}^{g+1} \mathcal{O}_j$, then we should have that $j(D_1) = D_1$. But as D_1 is planar (isomorphic to the closure of \mathcal{D}) we will have that the restriction of j onto D_1 coincides with a Möbius transformation of order 2. It will follows then that j must have at most 4 fixed points on S, a contradiction. In particular, every fixed point of j is contained in some oval. Also, if the oval \mathcal{O}_k contains a fixed point of j, then we should have that $j(\mathcal{O}_k) = \mathcal{O}_k$. In that case, we have that \mathcal{O}_k should have exactly two fixed points of j. As j contains exactly 2(g+1) fixed points and we have exactly (g+1) ovals, we have that: (i) each oval has exactly two fixed points of j and (ii) each oval is invariant unde! r j.

By the previous lemma, for each $k \in \{1, ..., g+1\}$, $j(\mathcal{O}_k) = \mathcal{O}_k$. It follows that we may choose liftings $\hat{j}_1, ..., \hat{j}_{g+1}$, of the hyperelliptic involution, each one of order 2 so that $\hat{j}_k(C_k) = C_k$ and

both fixed point of \hat{j}_k are contained in C_k . Let us consider the Whittaker group

$$\widehat{G} = \langle \widehat{j}_1, ..., \widehat{j}_{g+1} \rangle,$$

and its hyperelliptic Schottky group

$$\widehat{G}^{(2)} = \langle \widehat{j}_{g+1} \widehat{j}_1, ..., \widehat{j}_{g+1} \widehat{j}_g \rangle.$$

We have, by the construction, that $G^+ = \widehat{G}^{(2)}$.

Lemma 2.2.
$$\hat{j}_{g+1}\hat{j}_k = \tau_{g+1}\tau_k, \ k = 1, ..., g.$$

Proof. Let us first observe that the circles C_k , $C'_k = \tau_{g+1}(C_k)$ and $\hat{j}_{g+1}(C_k)$ are lifting of the oval \mathcal{O}_k . The circles C_1 , C'_1 ,..., C_g , C'_g (respectively, the circles C_1 , $\hat{j}_{g+1}(C_1)$,..., C_g and $\hat{j}_{g+1}(C_g)$) form a standard fundamental domain for G^+ .

As $\hat{j}_{g+1}(C_k)$ must belong to the disc bounded by the circle C_{g+1} which does not contains the circle C_k , we should have that $\hat{j}_{g+1}(C_k)$ should be one of the discs C'_1, \ldots, C'_g . But as mentioned, the only such disc which is a lifting of \mathcal{O}_k is exactly C'_k . We have that $\hat{j}_{g+1}(C_k) = C'_k$.

Now, we have that the loxodromic transformations $\hat{j}_{g+1}\hat{j}_k$, $\tau_{g+1}\tau_k \in G^+$ send C_k onto C'_k and each maps the exterior of C_k onto the interior of C'_k . It follows that the transformation $\eta = \tau_k \tau_{g+1} \hat{j}_{g+1} \hat{j}_k \in G^+$ keeps invariant the circle C_k and each of its bounded discs. As C_k is contained on the region of discontinuity of G^+ , it follows that η cannot be loxodromic. As G^+ only contains loxodromic transformations besides the identity, we should have $\eta = I$.

Let us recall that, if C is a circle on the Riemann sphere and p and q are any two different points on it, then there is a unique orthogonal circle to it passing through these two given points. The previous fact together with the fact that a circle is uniquely determined by 3 points on it and the following lemma asserts the existence of a common orthogonal circle as desired to prove the necessary part of the theorem.

Lemma 2.3. Let us consider two pairwise disjoint circles, say C_1 and C_2 . Let σ_j be the reflection of C_j and t_j be an elliptic transformation of order 2 preserving C_j whose fixed points belong to C_j . Then $\sigma_2\sigma_1 = t_2t_1$ if and only if there is a circle C such that:

- (i) the fixed points of t_1 and t_2 belong to C and
- (ii) C is orthogonal to both C_1 and C_2 .

Proof. We may normalize by a suitable Möbius transformation in order to assume that C_1 is the unit circle and C_2 is the circle centered at the origin and a positive radius r > 1. In this case we

have that $\sigma_2\sigma_1(z)=r^2z$. The equality $t_2t_1=\sigma_2\sigma_1$ then obligates to have that the fixed points of both t_1 and t_2 on a line through 0.

3 The Sufficiency Part

Let us assume we have (g+1) circles, say $C_1,..., C_{g+1}$, each one of them orthogonal to a common circle C_0 . Let us denote by τ_k the reflection on the circle C_k , for k=0,1,...,g+1. Let us denote by $\eta_k=\tau_0\tau_k$, for k=1,...,g+1, which are elliptic transformations of order 2. Let G be the planar extended Schottky group generated by the reflections $\tau_1,..., \tau_{g+1}$ and let \widehat{G} be the Whittaker group generated by the involutions $\eta_1,..., \eta_{g+1}$. It easy to see that G^+ is the hyperelliptic subgroup of \widehat{G} . It follows then that the uniformized surface by G^+ is hyperelliptic, with hyperelliptic involution induced by η_0 .

Received: September 2008. Revised: January 2009.

References

- [1] Ahlfors, L. and Sario, L., *Riemann Surfaces*, Princeton University Press, Princeton NJ, 1960.
- [2] FARKAS, H. AND KRA, I., *Riemann Surfaces*, Second edition. Graduate Texts in Mathematics, **71**, Springer-Verlag, New York, 1992.
- [3] KEEN, L., On Hyperelliptic Schottky groups, Ann. Acad. Sci. Fenn. Series A.I. Mathematica, 5, 1980.
- [4] Maskit, B., Remarks on m-symmetric Riemann surfaces, Contemporary Math., 211 (1997), 433–445.