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ABSTRACT

We provide an argument, based on Schottky groups, of a result due to B. Maskit which states
a necessary and sufficient condition for the double oriented cover of a planar compact Klein
surface of algebraic genus at least two to be a hyperelliptic Riemann surface.

RESUMEN

Damos un argumento, basado en grupos de Schottky, de un resultado debido a B. Maskit el
cual establece una condicién neceséria y suficiente para el cubrimiento duplo orientado de una
superficie de Klein compacta planar de genero algebrico al menos dos ser una superficie de
Riemann hipereliptica.
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1 Preliminaries

Let us consider a collection of (g + 1) pairwise disjoint round circles on the Riemann sphere, say
Ch,..., Cyy1, bounding a common domain D of connectivity (g+1). If we denote by 7; the reflection
on the circle C}, then the group G = (71, ..., 74+1) is an extended Kleinian group, isomorphic to
the free product of (g+ 1) copies of Zy. We say that G is a planar extended Schottky group of rank
g. The region of discontinuity €2 of a planar extended Schottky group of rank g is connected (the
complement of a Cantor set for g > 2) and S = Q/G is a planar compact Klein surface of algebraic
genus g, that is, holomorphically equivalent to the closure of D. Quasiconformal deformation
theory asserts that every planar compact Klein surface of algebraic genus g is obtained in this way.

Let G = (71, ..., Tg+1) a planar extended Schottky group of rank g. Let G be its index two
subgroup of orientation preserving transformations. It turns out that GV is a (classical) Schottky
group of genus g, freely generated by the transformations a; = 74417;, for j =1,...,g. The closed
Riemann surface ST = Q/G™* is the double oriented cover of the planar compact Klein surface
S =Q/G. Any of the transformation in G — G induces an anticonformal involution 7 : ST — S+
(that is, a real structure on S™) so that S = S*/(r). It follows that the number of ovals of 7 (its
connected components of fixed points) is equal to (g + 1), in particular, (ST, 7) is a M-symmetric
Riemann surface. Let us denote by 7 : ST — S the two-fold (branched) Klein cover induced by
7 and by P : Q — ST the Schottky covering of ST induced by the Schottky group GT. In [4] B.
Maskit proved the following result.

Theorem 1.1. Let G be a planar extended Schottky group of rank g > 2, defined by tye circles
Ci,..., Cys1. Then the Riemann surface Q)G is hyperelliptic if and only if there is a circle which
is orthogonal to all C;, j=1,...,9+ 1.

The aim of this note is to provide a different proof of Theorem 1.1 relaying more on the
Schottky groups spirit.

We need to recall some extra definitions. Let ¥,... ¥441 be pairwise disjoint simple loops on
the Riemann sphere, all of them bounding a common domain D of connectivity g+ 1. Assume that
for each j =1, ..., g + 1, there is a Mdbius transformation of order 2, say E;, so that E; permutes
both topological discs discs bounded by ¥; (in particular, both fixed points of E; belong to ;).
The group K = (En, ..., Eg41) is a Kleinian group, isomorphic to a free product of g + 1 copies
of Zs, called a Whittaker group of rank g [3]. If Q is the region of discontinuity of K, then  is
connected (the complement of a Cantor set for g > 2) and S = Q/K is an orbifold of signature
(0,29 +2;2,...,2), that is, the Riemann sphere with exactly 2(g 4+ 1) conical points, all of them of
conical order 2. Inside K there is exactly one index two torsion free subgroup, say K. It turns
out that K is a Schottky group of rank g, called a hyperelliptic Schottky group, which is freely
generated by the transformations Eyy1F,..., Ey41E,. In this case, S© = Q/K® turns out to
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be a hyperelliptic Riemann surface, the hyperellitic involution (unique for g > 2 [2]) is induced by

any of the transformations in K — K?). The projection of the fixed points of Fy,..., By to S
provides the 2(g + 1) fixed points of the hyperelliptic involution.

2 The Necessary Part

Let us consider a planar extended Schottky group G of rank g > 2, say generated by the reflections
T1,..., Tg+1 on a collection of (g+1) pairwise disjoint round circles on the Riemann sphere, say Ch,...,
Cy+1, bounding a common domain D of connectivity (g+ 1). Let G be the index two orientation
preserving Schottky subgroup and let ST = Q/G™, where € is the region of discontinuity of G
(the same as for GT). As before, we denote by 7 : ST — ST the real structure induced on S* by
the action of G. Let us denote by O = P(C1),...., Og41 = P(Cy41) the ovals of 7.

Let us assume ST is a hyperelliptic Riemann surface and let j : ST — ST be its hyperelliptic
involution. As the hyperelliptic involution is unique [2], j and 7 should commute, in particular,
the collection of ovals of 7 is invariant under j. The Schottky group G is defined by the ovals
O1,..., Ogt1, that is, by the normalizer (in the fundamental group) of them. It follows that the
hyperelliptic involution lifts to a conformal automorphism}'\ :Q — Qunder P: Q — ST, that
is, jP = P}. We have that ;2 € G*. As j has fixed point, we may assume that 5 also has fixed
points, in particular, j2 = I.

It is known that Q is of class O4p; that is, it admits no holomorphic function with finite
Dirichlet norm (see [1, pg 241]). It follows from this (see [1, pg 200]) that every conformal map
from (Q into the Riemann sphere is a Mobius transformation. In this way, 5 is the restriction of a
Mobius transformation of order two.

Lemma 2.1. Each oval has exactly two fized points of j and each fized point belongs to some oval.

Moreover, each oval is invariant under j.

Proof. Let us denote by Dy and D5 the two connected components of ST — Ugii O;. If one of the
fixed points of j is not contained in Ugii Oj, then we should have that j(D;) = D;. But as D
is planar (isomorphic to the closure of D) we will have that the restriction of j onto D; coincides
with a Mobius transformation of order 2. It will follows then that j must have at most 4 fixed
points on S, a contradiction. In particular, every fixed point of j is contained in some oval. Also,
if the oval O, contains a fixed point of j, then we should have that j(Oy) = O. In that case, we
have that Oy should have exactly two fixed points of j. As j contains exactly 2(g + 1) fixed points
and we have exactly (g + 1) ovals, we have that: (i) each oval has exactly two fixed points of j and
(ii) each oval is invariant unde! r j. O

By the previous lemma, for each k € {1,...,g+ 1}, j(Ok) = Oy. It follows that we may choose
liftings }1,..., /j\ngl, of the hyperelliptic involution, each one of order 2 so that Ek(C’k) = C% and
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both fixed point of ;k are contained in Cy. Let us consider the Whittaker group

G = <jla "'a.jg+1>a
and its hyperelliptic Schottky group

~

G = (Ggs1d1, s Jg410g)-

We have, by the construction, that G+ = G2,

Lemma 2.2. }g+13k =Ty, k=1,...,9.

Proof. Let us first observe that the circles Cy, C}, = 7441(Cy) and ng(Ok) are lifting of the oval
Ok. The circles C1, C1,..., Cy, C (respectively, the circles C1, jﬁl(Cl),..., C, and 3'9+1 (Cy)) form
a standard fundamental domain for G7.

As 3’g+1 (Cx) must belong to the disc bounded by the circle Cj41 which does not contains the
circle C, we should have that 3'9+1 (Ck) should be one of the discs C1,...., C('] But as mentioned,
the only such disc which is a lifting of Oy, is exactly C}. We have that 3'9+1 (Cr) =C4.

Now, we have that the loxodromic transformations 3q+13'\;€,7_q+17'k € G send Cj onto Cj,
and each maps the exterior of Cj onto the interior of Cj. It follows that the transformation
n = TkTq-l—l-/j\.(]-l‘ljk € G keeps invariant the circle Cy and each of its bounded discs. As C}, is
contained on the region of discontinuity of G, it follows that 1 cannot be loxodromic. As G
only contains loxodromic transformations besides the identity, we should have n = I.

O

Let us recall that, if C' is a circle on the Riemann sphere and p and ¢ are any two different
points on it, then there is a unique orthogonal circle to it passing through these two given points.
The previous fact together with the fact that a circle is uniquely determined by 3 points on it and
the following lemma asserts the existence of a common orthogonal circle as desired to prove the
necessary part of the theorem.

Lemma 2.3. Let us consider two pairwise disjoint circles, say C1 and Cy. Let o; be the reflection
of C; and t; be an elliptic transformation of order 2 preserving C; whose fized points belong to C;.
Then o901 = taoty if and only if there is a circle C' such that:

(i) the fixed points of t1 and to belong to C and

(ii) C is orthogonal to both Cy and Cs.

Proof. We may normalize by a suitable M&bius transformation in order to assume that Cj is the
unit circle and Cy is the circle centered at the origin and a positive radius » > 1. In this case we
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have that oo01(2) = 722. The equality tot; = 0201 then obligates to have that the fixed points of
both ¢; and t2 on a line through 0. O

3 The Sufficiency Part

Let us assume we have (g + 1) circles, say Ci,..., Cgy1, each one of them orthogonal to a common
circle Cy. Let us denote by 71 the reflection on the circle Cy, for £ = 0,1,..,g + 1. Let us denote
by nx = 197k, for k =1, ..., g+ 1, which are elliptic transformations of order 2. Let G be the planar
extended Schottky group generated by the reflections 74,..., Tg41 and let G be the Whittaker group
generated by the involutions 71,..., ng11. It easy to see that G is the hyperelliptic subgroup of G.
It follows then that the uniformized surface by G is hyperelliptic, with hyperelliptic involution
induced by 7.
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