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ABSTRACT

We obtain a fixed point theorem for a class of operators. This result is an extension of
a similar theorem of Constantin (1994).

RESUMEN

Obtenemos un teorema de punto fijo para una clase de operadores. Este resultado es
una extensiéon de un teorema similar devido a Constantin (1994).
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Most fixed point theorems are proved either by examining the successive iterates of the oper-
ator, or by constructing an iteration scheme, such as that of Mann or Ishikawa. In this paper we
consider the situation in which the operator is used on the successive iterates of a sequence.
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In a recent paper, Constantin [3] obtained a fixed point theorem for a class of operators which

are selfmaps of a Banach space X, and which satisfy the condition
[Tz =Tyl < g(l|z =yl llo = Tz, [ly — Tyl (1)

for all z,y € X, where g : R} — Ry, g is continuous, nondecreasing in each variable, and is such
that, if h(r) := g(r,r,r), then r — h(r) is nonnegative and strictly increasing on R;.

A natural extension of (1) would be: Let A denote the set of all continuous functions
g : RS — R4, nondecreasing in each variable and such that, if h(r) := g(r,r,r,r,7), then h(r) <r
for each r > 0. Define T" from X to X satisfying

1Te =Tyl < g(lz = yll, lz = Tl lly = Tyl (2)
e =Tyl lly = Tl)

for all z,y € X, some g € A.

However, a slightly more general extension of (1) is the following. Let X be a Banach space,
g : R¥ — Ry, g continuous, nondecreasng, and satisfying g(t) < t for each ¢t > 0. Let T be a
selfmap of X satisfying

T2~ Tyl < g(M(z,y)), forall a,y€ X, (3)
where

M(z,y) := max{[lz —yl|, |z = T[], ly — Tyl|,
e =Tyl lly — Tx]})-

Theorem 1. Let A satisfy (3) and {x,} C X. Then the following are equivalent:

(i) Txp— 2, —0 as n— oo,

(i) {Txp—xn} is bounded, and {x,} converges to a point p which is the unique fized point of T.

Proof. (i) = (ii). Define y, = Ty — T, @ = sup,{||zm — znll : m > n}, and £, = sup, {||ym] :
m > n}. Then {a,} and {f,} are nonincreasing nonnegative sequences. Hence lima, = a > 0
and, from the hypotheses, limy, = 0 and {y,} is bounded.

Assume that a > 0. From (3), with m > n,

[ — 2ol < (1 TTm — ym — (Txn — yn) | < | T2 — Ty |
+ lym — ynll
< g(max{|[zm — zn |l |ymll; lynll |2m — Tl |20 — T2m||})
+28,
< g(max{an, B, Bn, n + By an + B }) + 2065
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Thus, o, < g(an+6,)+208,. Taking the limit as n — oo yields o < g(a) < a, a contradiction.

Therefore a = 0 and {z,} is Cauchy, hence convergent to some point p in X.

Since Tx,, — z,, — 0 and x,, — p, it follows that Tz,, — p. Again using (3),
1Tp — Tan|l < g(max{(lp — zull, [lp = Tpll, lynll, [Ip — Tanll, lzn — Tpll}).

Taking the limit as n — oo yields

I Tp — p|l < g(max{0, |p— Tpl[,0,0,|lp—Tpll}) = g(lp — Tpl|),

which implies that ||[p — T'p|| =0, or T'p = p.

To prove uniqueness, suppose that ¢ is also a fixed point of T. Then, from (3),

lp—all = IITp - Tq|l
< g(max{|[p — ¢||,0,0, |lp — ql|, g — pII})
=g(llp —4ql)),

which implies that p = q.
(if) = (i) Using (3),

[Txn — @pl| = [|[Ton = Tp+Tp — an|| < |Tzn — Tpl| + [Ip — zn |
< g(max{|[z, = pl|, |2n = Tzall, |[p = Tpl|,
l[zn = Tplls lp = Tzall}) + llp = 2nll-

Taking the lim sup of both sides, since {y,} is bounded, one obtains, with the identification

v = limsup ||y, ||,
v < g(max{0,~,0,0,limsup ||[p — Tzy,[|}) + 0.

But limsup ||p — Ta,|| < limsup(||p — n|| + ||£n — Tzn||) = v. Therefore we have v < g(v),
which implies that v = 0. O

The special case of (3) with g(t) := kt for some 0 < k < 1, and X a metric space is that of
Ciri¢ [2], which was shown in [7] to be one of the most general contractive definitions for which a
unique fixed point exists.

In order to prove that a map satisfying (3) has a fixed point, it would be necessary to show
that the orbit of some x € X is bounded, which cannot be implied from (3). However, the following
is true.

Theorem 2. Let X be a complete metric space, T a selfmap of X satisfying

d(Tz, Ty) < g(M(z,y)), for each z,y € X, (4)
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where

M (z,y) = max{d(z,y),d(z,Tz),d(y, Ty),d(z, Ty),d(y, Tx)}.

If there exists a point xo € X with bounded orbit, then T has a unique fized point in X.

Proof. For any n € N, O(x,n) := {x, Tz, T?z,...,T"z}, and §(A) denotes the diameter of a set
A. Let m,n € N;n < m. Then, from (4), with = x,

d(T"z, T"z) = d(T(T" z), T(T™ '2))

< gmax{d(T" o, T™ 'z), d(T" ‘2, T"z),d(T™ 'z, T™x),
d(T" e, T™2),d(T™ *o, T"z)}

< g(5[O(T"_1:c, n—m+1)])
< g(g(8[O(T" 22,0 — m + 2)])
< g"(0[0(x,m)]). (5)

It is well known that the hypotheses on g imply that lim ¢g"(¢) = 0 for each ¢ > 0. Since the
orbit of & = ¢ is bounded, (5) implies that {T"xz} is Cauchy, hence convergent to a point p € X.

Suppose that p # Tp. Then, from (4),

d(p,Tp) < d(p, T""'x) + d(T""'a, Tp)
<d(p,T""'z) + g(max{d(T"z, p),d(T"z, T" " z),d(p, Tp),
d(T"z,p),d(p, T" )}

Taking the limit of both sides of the above inequality as n — oo yields

d(p, Tp) < g(d(p, Tp)) < d(p, Tp),

a contradiction, and p = T'p.

Suppose that p and ¢ are fixed points of T, with p # ¢. Then, using (4),

d(p,q) = d(T'p,Tq)
< g(max({d(p,q),0,0,d(p,q),d(q,p)}
= g(d(p,q)) < d(p,q),

a contadiction. Therefore p = q. O

If T is continuous, then, even with X unbounded, Theorem 2 is a special case of Theorem 3.3
of [4]
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If one replaces M (z,y) with
m(z,y) = max{d(z,y),d(z, Tz),d(y, Ty), [d(z, Ty) + d(y, Tx)]/2},

in Theorem 2, then Theorem 2 is true without the boundedness assumption. See, e.g., Theorem
2.2 of [1].

Most of the recent papers on fixed ont theory, which do not involve fixed point iterations, deal
with four maps. For a survey of these results the reader may wish to consult [6] and the references
therein.

Let F(T) denote the fixed point set of a mapping 7. In [5] it was conjectured that F(T") =
F(T) for every map T which satisfies a contractive condition that does not include nonexpansive
maps. That conjecture was verified in [5] for many such maps. We shall now show that the same
is true for maps satisfying (4).

Theorem 3. Let X be a metric space, T a selfmap of X satisfying (4) with F(T) # (0. Then
F(T™) = F(T) for every integer n > 1.

Proof. Since F(T) # 0. F(T™) # 0. Clearly F(T) C F(T™). Suppose that p € F(T™"), for some
positive integer n. We shall assume that n > 1, since the case for n = 1 is trivial. Let i,j be
integers, 0 < i < j < n. Then, using (4),

d(T'p, Tp) < g(M(T* 'p,T7""p)) < g(5[(O(p, n)]).

Suppose that §[(O(p,n)] > 0. Then the above inequality implies that

5[(O(p,n)] < g(6[(O(p,n)]) < d[(O(p,n)],

a contradiction. Therefore §[(O(p,n)] =0, and p € F(T). O
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