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ABSTRACT

The aim of this paper is to present some existence results of positive solutions for
elliptic equations and systems on bounded domains of RY (N > 1). The main tool is
Krasnosel’skii’s compression-expansion fixed point theorem.

RESUMEN

El objetivo de este articulo es presentar algunos resultados de existencia de soluciones
positivas para ecuaciones elipticas y sistemas sobre dominios acotados de RN (N > 1).
La principal herramienta es el teorema de punto fijo compresién-expansién de Kras-
nosel’skii.
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1 Introduction

In this paper, we are concerned with the existence of positive solutions for the elliptic boundary
value problem

—Au=M\f(z,u), in Q, (1.1)
u =20, on 012,
and for the elliptic system
—Au=ag(z,u,v), in Q,
—Av=0h(z,u,v), in 0, (1.2)
u=v=0, on 0f).

Here Q is a bounded regular domain of RY (N > 1), f: QxRy — Ry and g, h: Qx R2 — Ry
are continuous functions, and A, o and (8 are real parameters. By a positive solution of problem
(1.1) we mean a function v € C* (2, R) which satisfies (1.1) (with Aw in the sense of distributions),
and with u (z) > 0 for all z € Q. A positive solution to problem (1.2) is a vector-valued function
(u,v) € C* (Q,R?) satisfying (1.2), with u,v > 0 and u 4 v > 0 in €.

The main assumption will be a global weak Harnack inequality for nonnegative superharmonic
functions. By a superharmonic function in a domain Q@ C RY we mean a function u € C*(Q,R)
with Au < 0 in the sense of distributions, i.e.,

/ Vu-Vov >0 foreveryve Cy(Q,R) satisfying v(z) >0 on Q.
Q

We shall assume that the following global weak Harnack inequality holds:

There exists a compact set K C €2 and a number n > 0

such that u(x) > n||ullo for all x € K (1.3)

and every nonnegative superharmonic function
u € CYQ,R) with u = 0 on 9.

Here by ||ul|, we denote the sup norm in C' (Q,R), i.e., [[ullo = sup |u(z)].
z€Q

The connection between such type of inequalities and Krasnosel’skii’s compression-expansion
theorem when applied to boundary value problems was first explained in [4]. Also in [4] (see also
[1]), several comments on weak Harnack type inequalities can be found.
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By a cone in a Banach space F we mean a closed convex subset C of F such that C # {0},
A CCforall \e Ry, and CN(-C)={0}.

Our main tool in proving the existence of positive solutions to problems (1.1) and (1.2) is
Krasnosel’skii’s compression-expansion theorem [3], [2]:

Theorem 1. Let E be a Banach space, C C E a cone in E, and assume that T : C — C is
a completely continuous map such that for some numbers r and R with 0 < r < R, one of the

following conditions is satisfied:
) [[Tull < [ull for lull =7 and | Tul| = |ull for [lu] = R,

(i) [ Tull = [lull for lull = and [|Tul| < [lu]| for ull = R.
Then T has a fized point with r < |lu]| < R.

2 Existence results for Problem 1.1

In this section, F is the Banach space
Co(QR)={ue C(QR): u=0 ondQ}
endowed with norm ||.||,, and C is the cone

C={uecCy(QRy): u(z) >nlulp foralwec K}. (2.1)

In order to state our results we introduce the notation

fO = lim Sup max M and f — liminf min f (ZC, y)
y—0+ z€Q ) = y—oo zeK Yy

f, = liminfmin /(@) and fs = limsup max @ y) )

40 y—0+ z€K Yy y—oo x€Q Yy

Also, for a function h: Q — R, by h|; we mean the function h|, () = h(z) if z € K and h|j
(z) =01if z € Q\ K. For example, if 1 is the constant function 1 on €, then 1|, (z) =1ifz € K
and 1|, (z) =0for z € Q\ K.

Theorem 2. Suppose (1.3) holds. Then for each X satisfying

1 1
<AL (2.2)
Lo (=2)= 1kl foll(=A)=*1lo
there exists at least one positive solution of problem (1.1).
Proof. Let A be as in (2.2) and let € > 0 be such that
1 1
<AL . (2.3)

(f oo = lI(=2)" 1kl (fo+Oll(=2)""lo
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We know that u is a solution of problem (1.1) if and only if
u=\(=A)"'Fu

where F : C(Q,R) — C(Q,R), Fu(z) = f (x,u(z)) . Hence, a solution to problem (1.1) is a fixed
point of the operator T : C — Cy(Q, R) given by

Tu=\(—A)"'Fu.

We shall prove that the hypotheses of Theorem 1 are satisfied.

We have that the operator T satisfies
—A(Tu) = \f (z,u), in Q,
Tu =0, on Of).

Then by the global weak Harnack inequality (1.3), one has T(C) C C. Moreover, T is completely
continuous by the Arzela-Ascoli Theorem.

Furthermore, by the definition of fy, there exists an r > 0 such that
f(z,u) < (fo+eu for 0<u<randze (2.4)

Let u € C with |ufo = r. Then using (2.4), the monotonicity of operator (—A)~' and of norm
II.lo » and (2.3), we obtain

ITully = A=) Full,
< Ao+ 9llullo [[(=A) 7],
< lullo-
Hence
[Tullo < flullo for [lullo = 7. (2.5)

By the definition of ioo, there is R > r such that
flz,u) > (f —€u for u>nR andz € K.

Then, if v € C with ||ullo = R, we have

ITulle = Al[(=A)"Ful,
> Al (=A)! (FU)|KHO
> A —omlullo [[(=2)7" k],
= lullo.
Hence
[Tullo = flullo for [lull, = R. (2.6)

Inequalities (2.5) and (2.6) show that the expansion condition (i) in Theorem 1 is satisfied. Now
Theorem 1 guarantees the existence of a fixed point u of T with r < |[lul|, < R. O
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Similarly, we have the following result:

Theorem 3. Suppose (1.3) holds. Then for each X satisfying
1 1

<AL —i—vn——— (2.7)
o l(=2)= 1kl Jooll(=A)~ 1o
there exists at least one positive solution of problem (1.1).
Proof. Let A be as in (2.7) and let € > 0 be such that
1 1
<A< . (2.8)
(Lo —mll(=A)=" 1kl (foo + )II(=A)" 1o
By the definition of io’ there exists an 7 > 0 such that
fzu) > (fy—eu for 0 <u<randxeK.
If w € C and ||ullp = r, then
ITullo = [ (=2)7"Ful,
> M) (Fu)lll,
> A(fy = nllullo [[(=2)7F 1|,
= ullo-
Hence
[Tullo = fJullo for [[ully=r (2.9)

By the definition of f.., there is Ry > 0 such that
f(2,u) < (foo +€)ufor u> Ry and x € Q.
Let M be such that f (z,u) < M for all u € [0, Rg] and = € Q, and let R be such that
R>rand M < (fsx +¢)R.

If u € C with ||Jullo = R, then 0 < u (z) < (fx + €) R for all z € Q. Consequently, also using (2.8),

we obtain

ITuly = A=) Full,
< /\(foo+e)RH(—A)711HO
< R
= ullo-
Hence
[Tullo < flullo for [[ully = R. (2.10)

Inequalities (2.9) and (2.10) show that the compression condition (ii) in Theorem 1 is satisfied.
Now Theorem 1 guarantees the existence of a fixed point u of T with r < [lul|, < R. O



114 Toufik Moussaoui and Radu Precup CUBO

10, 4 (2008)

3 Existence results for Problem 1.2

In this section, we are concerned with the existence of positive solutions to the Dirichlet problem
(1.2) for elliptic systems.

Here E will be the Banach space Co(Q2,R?) := Cp(Q,R) x Cp(Q,R) endowed with the norm

(-, )llo given by
[[(w; 0)llo = [lullo + [[vllo

and the cone in F will be C x C, where C is given by (2.1).

In order to state our results in this section we introduce the notation

go = lim sup max w and g = lim inf min 9 (Ia Y, Z)
y+z—0+ z€QQ Y+=z =00 y+z—oozeK Y+ 2z
LY,z . T,Y, 2
g. = liminf min M and goo = limsup max g(zy )
20 y+z—0t z€K Y + z Ytz—o0 €0 y + 2

The limits ho, by, hoo and h, are defined similarly.

Theorem 4. Suppose (1.3) holds. In addition assume that there are numbers p,q > 0 with
1—17 + % =1 such that

1 1
<o —mm—m—m—m——M88 8
g nlI(=2)=1 gl pgoll(—A) 1o

(3.1)

and
1 1

<< ——.
hoo [(=A) 71 1 k[l qhol(=A)~11]|

Then there exists at least one positive solution (u,v) of problem (1.2).

(3.2)

Proof. Let o, 8 be as in (3.1), (3.2) and let € > 0 be such that

1 1
Sa<
(9 = I(=2)"" 1kl p (9o + )lI(=A)~ 1o
and
1 <g< 1
(boo = II(=A) " Uglly =7 7 a(ho+lI(=A)" 1l
It is easily seen that a vector-valued function (u,v) is a solution of problem (1.2) if and only
if

u = a(=A)"'G (u,v)
v = B(=A)"H (u,v)

where G, H : C(Q,R?) — C(,R),

G(u,v)(x) = g (z,u(z),v(z)), H (u,v) () =h(z,u(z),v ().
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Hence, (u,v) is a positive solution of (1.2) if it is a fixed point of the operator
T:CxC— Co([R?), T=(T1,T)

where
T1 (ua 1)) = (_A)ilG (U,’U) ) T2 (ua 1)) = ﬁ (_A)ilH (U,’U) .
We shall prove that the hypotheses of Theorem 1 are satisfied.
Clearly the operator T' = (T3, Tz) satisfies

—A(Thu) = ag(z,u,v), in Q,
A(Tov) = Bh(z,u,v), in Q,
Tiyu =Thv =0, on 0.

Then by the global weak Harnack inequality (1.3), we have T'(C x C) C C x C. Moreover, T is
completely continuous by the Arzela-Ascoli Theorem.

By the definitions of gg and hg, there exists an r > 0 with
g(x,u,v) < (go+e€)(u+v) for u,v>0,0<ut+v<randze

and
h(z,u,v) < (ho +€)(u+v) for u,v>0,0<u+v<randzcQ.

Let (u,v) € C x C with ||(u,v)||, = r. We have

1Ty (u,v)lly = O‘H(_ IG (u, v Ho
< algo+6)llu+vllo|[(=A)7'1]],
1
< —lu+vlo
D
1
<

=(llullo + llvllo)
p

1

= || (w, v)lo-

p

Then || T} (u,v) |jo < %H(u,v)”o. Similarly, we have

T (w,0)lly, = B(=A)7"H (u,v)],
< Blho+e)llu+ollo || (=) 11|,
1
< =Jlu+ollo
q
1
< (o +llvlo)

1
= —||\u,0)]o-
210l
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Thus ||T3 (u,v) |lo < %H(u, v)|lo. Combining the above two inequalities, we obtain
1 1
1T (2, 0) llo = 1T (w, v} o + 11T (1w, 0) flo < (4 )l (s v)lo = [, )llo-

Next by the definitions of g and A, there is R > 0 such that
g(z,u,v) > (g —e€)(utv) for w,v>0, u+v=nRandz €K

and
h(z,u,v) > (ho —€)(u+v) for u,v>0, u+v>nR andz € K.

Let (u,v) € C xC with ||(u,v)||, = R. Then for each x € K, u (z) > 1 ||ul|, and v () > n|jv]|, -
Hence (u+v) (z) > n(|lully + ||lv]ly) , that is (u+v) (z) > nR for all z € K. Consequently,

G (u,v) () = (g —€) (u+tv)(x) foral ze€K.

Furthermore
|71 (w,v) o = al[(=A)7'G (u,v)]],
> all(=2)7" G (u,0)[kl],
> alg —o[(=2)7" (u+0v)lkl,
> alg, =9 [|(=2)" ulkl,
> alg —emllullo][(=2)" 1gl,
= lullo.

Similarly, we have
T2 (u,v) lo = [[v]lo-

The above two inequalities give
1T (w,v) [lo = | (w, v)lfo-

Thus condition (i) in Theorem 1 is satisfied. Now Theorem 1 guarantees the existence of a fixed
point (u,v) of T with r < ||(u,v)||, < R. O
In a similar way, one can prove:

Theorem 5. Suppose (1.3) holds. In addition assume that there are numbers p,q > 0 with
% + % =1 such that

1 1
<a<
g lI(=2)" 1kl P gooll(—A) 1o
and ) X
<pB

< .
hon [[(=A)=1 1kl q hool|(—A)~11]Jo

Then there exists at least one positive solution (u,v) of problem (1.2).

Received: April 2008. Revised: April 2008.
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