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ABSTRACT

We consider a semilinear elliptic equation, with a right hand side nonlinearity which

may grow linearly. Throughout we assume a double resonance at infinity in the spectral

interval [λ1, λ2]. In this paper, we can also have resonance at zero or even double
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resonance in the order interval [λm, λm+1], m ≥ 2. Using Morse theory and in particular

critical groups, we prove two multiplicity theorems.

RESUMEN

Nosotros consideramos una ecuación semilinear eliptica con una no-linealidad la cual

puede crecer linealmente. Asumimos una doble resonancia en infinito en el intervalo

espectral [λ1, λ2]. En este art́ıculo, podemos también tener resonancia en cero o incluso

doble resonancia en el intervalo ordenado [λm, λm+1], m ≥ 2. Usando teoria de Morse

y en particular grupos cŕıticos, provamos dos teoremas de mulplicidad.

Key words and phrases: Double resonance, C-condition, critical groups, critical point of moun-

tain pass-type, Poincare-Hopf formula.

Math. Subj. Class.: 35J20, 35J25.

1 Introduction

Let Z ⊆ R
N be a bounded domain with a C2-boundary ∂Z. We consider the following semilinear

elliptic problem:
{

−△x(z) = λ1x(z) + f(z, x(z)) a.e. on Z,

x|∂Z = 0.

}

(1.1)

Here λ1 > 0 is the principal eigenvalue of (−△, H1

0
(Z)). Assume that

lim
|x|→∞

f(z, x)

x
= 0 uniformly for a.a. z ∈ Z. (1.2)

The problem (1.1) is resonant at infinity with respect to the principal eigenvalue λ1 > 0. Res-

onant problems, were first studied by Landesman-Lazer [7], who assumed a bounded nonlinearity

and introduced the well-known sufficient asymptotic solvability conditions, which carry their name

(the LL-conditions for short). We can be more general and instead of (1.2), assume only that

lim inf
|x|→∞

f(z, x)

x
and lim sup

|x|→∞

f(z, x)

x

belong in the interval [0, λ2 − λ1] uniformly for a.a. z ∈ Z, with λ2 (λ2 > λ1) being the

second eigenvalue of (−△, H1

0
(Z)). In this more general setting, the nonlinearity f(z, x) need

not be bounded. This more general situation was examined by Berestycki-De Figueiredo [2],

Landesman-Robinson-Rumbos [8], Nkashama [11], Robinson [13],[14], Rumbos [15] and Su [16].

From these works, Berestycki-De Figueiredo [2], Nkashama [11], Robinson [13] and Rumbos [15],

prove existence theorems in a double resonance setting (i.e. asymptotically at ±∞, we have
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complete interaction of the ”slope” f(z,x)

x
with both ends of the spectral interval [0, λ2 − λ1]; see

Berestycki-De Figueiredo [2] who coined the term ”double resonance” and Robinson [13]) or in a

one-sided resonance setting (i.e. the ”slope” f(z,x)

x
is not allowed to cross λ2 − λ1; see Nkashama

[11] and Rumbos [15]). Multiplicity results were proved by Landesman-Robinson-Rumbos [8] (one-

sided resonant problems) and by Robinson [14] and Su [16] (doubly resonant problems).

In this paper, we extend the work of Landesman-Robinson-Rumbos [8] and partially extend

and complement the works of Robinson [14] and Su [16], by covering cases which are not included

in their multiplicity results.

2 Mathematical background

We start by recalling some basic facts about the following weighted linear eigenvalue problem:
{

−△u(z) = ̂λm(z)u(z) a.e. on Z,

u|∂Z = 0, ̂λ ∈ R.

}

(2.1)

Here m ∈ L∞(Z)+ = {m ∈ L∞(Z) : m(z) ≥ 0 a.e. on Z}, m 6= 0 (the weight function). By an

eigenvalue of (2.1), we mean a real number ̂λ, for which problem (2.1) has a nontrivial solution

u ∈ H1

0
(Z). It is well-known (see for example Gasinski-Papageorgiou [5]), that problem (2.1) (or

equivalently that (−△, H1

0
(Z),m)), has a sequence {̂λk(m)}k≥1 of distinct eigenvalues, ̂λ1(m) > 0

and ̂λk(m) → +∞ as k → +∞. Moreover, ̂λ1(m) > 0 is simple (i.e. the corresponding eigenspace

E(̂λ1) is one-dimensional). Also we can find an orthonormal basis {un}n≥1 ⊆ H1

0
(Z)∩C∞(Z) for

the Hilbert space L2(Z) consisting of eigenfunctions corresponding to the eigenvalues {̂λk(m)}k≥1.

Note that {un}n≥1 is also an orthogonal basis for the Hilbert space H1

0
(Z). Moreover, since by

hypothesis ∂Z is a C2-manifold, then un ∈ C2(Z) for all n ≥ 1. For every k ≥ 1, by E(̂λk) we

denote the eigenspace corresponding to the eigenvalue ̂λk(m). This space has the so-called ”unique

continuation property”, namely, if u ∈ E(̂λk) is such that it vanishes on a set of positive measure,

then u(z) = 0 for all z ∈ Z. We set

Hk =
k

⊕
i=1

E(̂λi)

and ̂Hk+1 = ⊕
i≥k+1

E(λi) = H
⊥

k , k ≥ 1.

We have the orthogonal direct sum decomposition

H1

0
(Z) = Hk ⊕ ̂Hk+1.

Using these spaces, we can have useful variational characterizations of the eigenvalues {̂λk(m)}k≥1

using the Rayleigh quotient. Namely we have:

̂λ1(m) = min

[

‖Du‖2

2
∫

Z
mu2dz

: u ∈ H1

0
(Z), u 6= 0

]

. (2.2)
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In (2.2) the minimum is attained on E(̂λ1)\{0}. By u1 ∈ C2

0
(Z), we denote the principal

eigenfunction satisfying
∫

Z
mu2

1
dz = 1. For k ≥ 2, we have

̂λk(m) = max

[

‖Du‖2

2
∫

Z
mu2dz

: u ∈ Hk, u 6= 0

]

(2.3)

= min

[

‖Dû‖2

2
∫

Z
mû2dz

: û ∈ ̂Hk, û 6= 0

]

. (2.4)

In (2.3) (resp.(2.4)), the maximum (resp.minimum) is attained on E(̂λk). From these varia-

tional characterizations of the eigenvalues and the unique continuation property of the eigenspaces

E(̂λk), we see that the eigenvalues {̂λk(m)}k≥1 have the following strict monotonicity property:

”If m1,m2 ∈ L∞(Z)+, m1(z) ≤ m2(z) a.e. on Z and m1 6= m2, then ̂λk(m2) < ̂λk(m1) for all

k ≥ 1.”

If m ≡ 1, then we simply write λk for all k ≥ 1 and we have the full-spectrum of (−△, H1

0
(Z)).

Let H be a Hilbert space and ϕ ∈ C1(H). We say that ϕ satisfies the ”Cerami condition” (the

C-condition for short), if the following is true:”every sequence {xn}n≥1 ⊆ H such that |ϕ(xn)| ≤

M1 for some M1 > 0, all n ≥ 1 and (1 + ‖xn‖)ϕ
′(xn) → 0 in H∗ as n → ∞, has a strongly

convergent subsequence”.

This condition is a weakened version of the well-known Palais-Smale condition (PS-condition

for short). Bartolo-Benci-Fortunato [1], showed that the C-condition suffices to prove a deformation

theorem and from this produce minimax expressions for the critical values of the functional ϕ.

For every c ∈ R, let

ϕc = {x ∈ X : ϕ ≤ c} (the sublevel set at c of ϕ),

K = {x ∈ x : ϕ′(x) = 0} (the set of critical points of ϕ)

and Kc = {x ∈ K : ϕ(x) = c} (the critical points of ϕ at level c).

If X is a Hausdorff topological space and Y a subspace of it, for every integer n ≥ 0, by

Hn(X,Y ) we denote the nth-relative singular homology group with integer coefficients. The critical

groups of ϕ at an isolated critical point x0 ∈ H with ϕ(x0) = c, are defined by

Cn(ϕ, x0) = Hn(ϕc ∩ U, (ϕc ∩ U)\{x0}),

where U is a neighborhood of x0 such that K ∩ϕc ∩U = {x0}. By the excision property of singular

homology theory, we see that the above definition of critical groups, is independent of U (see for

example Mawhin-Willem [10]).

Suppose that −∞ < inf ϕ(K). Choose c < inf ϕ(K). The critical groups at infinity, are defined

by

Ck(ϕ,∞) = Hk(H,ϕc) for all k ≥ 0.
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If K is finite, then the Morse-type numbers of ϕ, are defined by

Mk =
∑

x∈K

rankCk(ϕ, x).

The Betti-type numbers of ϕ, are defined by

βk = rankCk(ϕ,∞).

By Morse theory (see Chang [4] and Mawhin-Willem [10]), we have

m
∑

k=0

(−1)m−kMk ≥

m
∑

k=0

(−1)m−kβk

and
∑

k≥0

(−1)kMk =
∑

k≥0

(−1)kβk.

From the first relation, we deduce that βk ≤ Mk for all k ≥ 0. Therefore, if βk 6= 0 for some

k ≥ 0, then ϕ must have a critical point x ∈ H and the critical group Ck(ϕ, x) is nontrivial. The

second relation (the equality), is known as the ”Poincare-Hopf formula”. Finally, if K = {x0},

then Ck(ϕ,∞) = Ck(ϕ, x0) for all k ≥ 0.

3 Multiplicity of solutions

The hypotheses on the nonlinearity f(z, x) are the following:

H(f): f : Z × R → R is a function such that f(z, 0) = 0 a.e. on Z and

(i) for all x ∈ R, z → f(z, x) is measurable;

(ii) for almost all z ∈ Z, f(z, ·) ∈ C1(R);

(iii) |f ′

x(z, x)| ≤ c(1 + |x|r), r < 4

N−2
, c > 0.

(iv) 0 ≤ lim inf
|x|→∞

f(z,x)

x
≤ lim sup

|x|→∞

f(z,x)

x
≤ λ2 − λ1 uniformly for a.a. z ∈ Z;

(v) suppose that ‖xn‖ → ∞,

(i) if
‖x0

n
‖

‖xn‖
→ 1, xn = x0

n + x̂n with x0

n ∈ E(λ1) = H1, x̂n ∈ ̂H2, then there exist γ1 > 0

and n1 ≥ 1 such that
∫

Z

f(z, xn(z))x0

n(z)dz ≥ γ1 for all n ≥ n1;

(ii) if
‖x0

n
‖

‖xn‖
→ 1, xn = x0

n + x̂n with x0

n ∈ E(λ2), x̂n ∈ W = E(λ2)
⊥, then there exist

γ2 > 0 and n ≥ 1 such that
∫

Z

(f(z, xn(z)) − (λ2 − λ1)xn(z))x0

n(z)dz ≤ −γ2 for all n ≥ n2;
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(vi) if F (z, x) =
∫ x

0
f(z, s)ds, then there exist η ∈ L∞(Z) and δ > 0, such that η(z) ≤ 0 a.e.

on Z with strict inequality on a set of positive measure and

F (z, x) ≤
η(z)

2
x2 for a.a. z ∈ Z and all |x| ≤ δ.

Remark 3.1. Hypothesis H(f)(iv) implies that asymptotically at ±∞, we have double resonance.

Hypothesis H(f)(v) is a generalized LL-condition. Similar conditions can be found in the works

of Landesman-Robinson-Rumbos [8], Robinson [13],[14] and Su [16]. Consider a C2-function x→

F (x) which in a neighborhood of zero equals x4 − sinx2, while for |x| large (say |x| ≥ M > 0),

F (x) = c|x|
3

2 , c > 0. If f(x) = F ′(x), then f ∈ C1(R) satisfies hypothesis H(f) above. To verify

the generalized LL-condition in hypothesis H(f)(v), we use Lemma 2.1 of Su-Tang [17]. Similarly

we can consider if near the origin, F (x) = 1

2
x2 − tan−1x2 or F (x) = −cosx2. This second case is

interesting because then f(x) = 2xsinx2 and f ′(x) = 2sinx2+4x2cosx2. So f ′(0) = 0. This example,

which is covered by hypotheses H(f), illustrates that our framework of analysis incorporates also

problems with resonance at zero with respect to λ1 > 0 (double-double resonance). This is not

possible in the setting of Landesman-Robinson-Rumbos [8] (see Theorem 2 in [8]). Also such a

potential function is not covered by the multiplicity results of Robinson [14] (theorem 2) and Su

[16] (Theorem 2).

We consider the Euler functional for problem (1.1), ϕ : H1

0
(Z) → R defined by

ϕ(x) =
1

2
‖Dx‖2

2
−
λ1

2
‖x‖2

2
−

∫

Z

F (z, x(z))dz for all x ∈ H1

0
(Z).

It is well-known that ϕ ∈ C2(H1

0
(Z)) and if by 〈·, ·〉 we denote the duality brackets for the

pair (H1

0
(Z), H−1(Z) = H1

0
(Z)∗), we have

〈ϕ′(x), y〉 =

∫

Z

(Dx,Dy)RNdz − λ1

∫

Z

xydz −

∫

Z

f(z, x(z))y(z)dz

and ϕ′′(x)(u, v) =

∫

Z

(Du,Dv)RNdz − λ1

∫

Z

uvdz −

∫

Z

f ′(z, x(z))u(z)v(z)dz

for all x, y, u, v ∈ H1

0
(Z).

Proposition 3.2. If hypotheses H(f) hold then ϕ satisfies the C-condition.

Proof. Let {xn}n≥1 ⊆ H1

0
(Z) be a sequence such that

(1 + ‖xn‖)ϕ
′(xn) → 0 as n→ ∞.

We will show that {xn}n≥1 ⊆ H1

0
(Z) is bounded. We argue indirectly. Suppose that

{xn}n≥1 ⊆ H1

0
(Z) is unbounded. We may assume that ‖xn‖ → ∞. Let yn = xn

‖xn‖
, n ≥ 1.

By passing to a suitable subsequence if necessary, we may assume that

yn
w
→ y in H1

0
(Z), yn → y in L2(Z), yn(z) → y(z) a.e. on Z

and |yn(z)| ≤ k(z) a.e. on Z, for all n ≥ 1, with k ∈ L2(Z)+.
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Hypotheses H(f)(iii) and (iv), imply that

|f(z, x)| ≤ a(z) + c|x| for a.a. z ∈ Z, all x ∈ R, with a ∈ L∞(Z)+, c > 0,

⇒
|f(z, xn(z))|

‖xn‖
≤

a(z)

‖xn‖
+ c|yn(z)| for a.a. z ∈ Z, all n ≥ 1, (3.1)

⇒

{

f(·, xn(·))

‖xn‖

}

n≥1

⊆ L2(Z) is bounded.

Thus we may assume that

f(·, xn(·))

‖xn‖

w
→ h in L2(Z) as n→ ∞.

For every ε > 0 and n ≥ 1, we set

C+

ε,n = {z ∈ Z : xn(z) > 0, −ε ≤
f(z, xn(z))

xn(z)
≤ λ2 − λ1 + ε}

and C−

ε,n = {z ∈ Z : xn(z) < 0, −ε ≤
f(z, xn(z))

xn(z)
≤ λ2 − λ1 + ε}

Note that xn(z) → +∞ a.e. on {y > 0} and xn(z) → −∞ a.e. on {y < 0}. Then by virtue of

hypothesis H(f)(iv), we have

χ
C

+

ε,n
(z) → χ{y>0}(z) and χ

C
−

ε,n
(z) → χ{y<0}(z) a.e. on Z.

Using the dominated convergent theorem, we see that

‖(1 − χ
C

+

ε,n
)
f(·, xn(·))

‖xn‖
‖L2({y>0}) → 0

and ‖(1 − χ
C
−

ε,n
)
f(·, xn(·))

‖xn‖
‖L2({y<0}) → 0 as n→ ∞.

It follows that

χ
C

+

ε,n
(·)
f(·, xn(·))

‖xn‖

w
→ h in L({y > 0})

and χ
C
−

ε,n
(·)
f(·, xn(·))

‖xn‖

w
→ h in L({y < 0}) as n→ ∞.

From the definitions of the sets C+

ε,n and C−

ε,n we have

−εyn(z) ≤
f(z, xn(z))

‖xn‖
=
f(z, xn(z))

xn(z)
yn(z) ≤ (λ2 − λ1 + ε)yn(z) a.e. on C+

ε,n

and

−εyn(z) ≥
f(z, xn(z))

‖xn‖
=
f(z, xn(z))

xn(z)
yn(z) ≥ (λ2 − λ1 + ε)yn(z)a.e. on C−

ε,n.



28 Ravi P. Agarwal et al. CUBO
10, 3 (2008)

Passing to the limit as n→ ∞, using Mazur’s lemma and recalling that ε > 0 is arbitrary, we

obtain

0 ≤ h(z) ≤ (λ2 − λ1)y(z) a.e. on {y > 0} (3.2)

and 0 ≥ h(z) ≥ (λ2 − λ1)y(z) a.e. on {y < 0}. (3.3)

Moreover, from (3.1) it is clear that

h(z) = 0 a.e. on {y = 0}. (3.4)

From (3.2), (3.3) and (3.4), it follows that

h(z) = g(z)y(z) a.e. on Z,

where g ∈ L∞(Z)+, 0 ≤ g(z) ≤ λ2 − λ1 a.e. on Z.

Recall that by 〈·, ·〉 we denote the duality brackets for the pair (H1

0
(Z), H−1(Z)).

Let A ∈ L(H1

0
(Z), H−1(Z)) be defined by

〈A(x), y〉 =

∫

Z

(Dx,Dy)RNdz for all x, y ∈ H1

0
(Z).

Also let N : L2(Z) → L2(Z) be the Nemitskii operator corresponding to the nonlinearity

f(z, x), i.e.

N(x)(·) = f(·, x(·)) for all x ∈ L2(Z).

Because of (3.1), by Krasnoselskii’s theorem, we know that N is continuous and bounded.

Moreover, exploiting the compact embedding of H1

0
(Z) into L2(Z), we see that N is completely

continuous (hence compact too) as a map from H1

0
(Z) into L2(Z) (see for example Gasinski-

Papageorgiou [5], pp.267-268). We have

ϕ′(xn) = A(xn) − λ1xn −N(xn) for all n ≥ 1.

From the choice of the sequence {xn}n≥1 ⊆ H1

0
(Z), we know that

|〈ϕ′(xn), v〉| ≤ εn for all v ∈ H1

0
(Z) with εn ↓ 0,

⇒

∣

∣

∣

∣

〈A(yn) − λ1yn −
N(xn)

‖xn‖
, v〉

∣

∣

∣

∣

≤
εn

‖xn‖
for all n ≥ 1. (3.5)

Let v = yn − y ∈ H1

0
(Z), n ≥ 1. Then

∣

∣

∣

∣

〈A(yn), yn − y〉 − λ1

∫

Z

yn(yn − y)dz −

∫

Z

N(xn)

‖xn‖
(yn − y)dz

∣

∣

∣

∣

≤
εn

‖xn‖
for all n ≥ 1. (3.6)
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Evidently

∫

Z

yn(yn − y)dz → 0 and

∫

Z

N(xn)

‖xn‖
(yn − y) → 0 as n→ ∞.

So from (3.6), we infer that

〈A(yn), yn − y〉 → 0. (3.7)

We have A(yn)
w
→ A(y) in H−1(Z). From (3.7) it follows that

〈A(yn), yn〉 → 〈A(y), y〉,

⇒‖Dyn‖2 → ‖Dy‖2.

Also Dyn
w
→ Dy in L2(Z,RN). Since the Hilbert space L2(Z,RN) has the Kadec-Klee property,

we deduce that

Dyn → Dy in L2(Z,RN) ⇒ yn → y in H1

0
(Z), i.e. ‖y‖ = 1, y 6= 0.

We return to (3.5) and we pass to the limit as n→ ∞. We obtain

〈A(y) − λ1y − gy, v〉 = 0 for all v ∈ H1

0
(Z),

⇒A(y) = (λ1 + g)y in H−1(Z),

⇒−△y(z) = (λ1 + g(z))y(z) a.e. on Z, y|∂Z = 0. (3.8)

We distinguish three cases for problem (3.8) depending on where the function g ∈ L∞(Z)+

stands in the interval [0, λ2 − λ1].

Case 1: g(z) = 0 a.e. on Z.

Then from (3.8), we have

−△y(z) = λ1y(z) a.e. on Z, y|∂Z = 0,

⇒y ∈ E(λ1), y 6= 0.

We consider the orthogonal direct sum decomposition H1

0
(Z) = E(λ1) ⊕ ̂H2, ̂H2 = E(λ1)

⊥.

Then for every n ≥ 1, we have

xn = x0

n + x̂n and x0

n ∈ E(λ1), x̂n ∈ ̂H2.

We have yn = y0

n + ŷn, with

y0

n =
x0

n

‖xn‖
∈ E(λ1) and ŷn =

x̂n

‖xn‖
∈ ̂H2 for all n ≥ 1.
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Since y ∈ E(λ1), ‖y‖ = 1, we have

‖x0

n‖

‖xn‖
→ 1 as n→ ∞.

Recall that
∣

∣

∣

∣

〈A(xn), v〉 − λ1

∫

Z

xnvdz −

∫

Z

N(xn)vdz

∣

∣

∣

∣

≤ εn for all v ∈ H1

0
(Z).

Let v = x0

n ∈ H1

0
(Z). We have

∣

∣

∣

∣

‖Dx0

n‖
2

2
− λ1‖x

0

n‖
2

2
−

∫

Z

f(z, xn(z))x0

n(z)dz

∣

∣

∣

∣

≤ εn,

⇒

∫

Z

f(z, xn(z))x0

n(z)dz ≤ εn (see (2.2)) for all n ≥ 1. (3.9)

But by virtue of hypothesis H(f)(v)

0 < γ1 ≤

∫

Z

f(z, x(z))x0

n(z)dz for all n ≥ n1. (3.10)

Comparing (3.9) and (3.10), we reach a contradiction.

Case 2: g(z) = λ2 − λ1 a.e. on Z.

In this case, from (3.8) we have

−△y(z) = λ2y(z) a.e. on Z, y|∂Z = 0,

⇒y ∈ E(λ2), y 6= 0.

Now we consider the orthogonal direct sum decomposition H1

0
(Z) = E(λ2) ⊕W, with W =

E(λ2)
⊥. Then

xn = x0

n + x̂n with x0

n ∈ E(λ2), x̂n ∈ W, n ≥ 1.

Since y ∈ E(λ2), ‖y‖ = 1, we have

‖x0

n‖

‖xn‖
→ 1 as n→ ∞. (3.11)

We have

|〈A(xn), v〉 − λ1

∫

Z

xnvdz −

∫

Z

f(z, xn(z))v(z)dz| ≤ εn

for all v ∈ H1

0
(Z), with εn ↓ 0.
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Let v = x0

n. Then
∣

∣

∣

∣

‖Dx0

n‖
2

2
− λ1‖x

0

n‖
2

2
−

∫

Z

f(z, xn(z))x0

n(z)dz

∣

∣

∣

∣

≤ εn,

⇒

∣

∣

∣

∣

‖Dx0

n‖
2

2
− λ2‖x

0

n‖
2

2
−

∫

Z

(f(z, xn(z)) − (λ2 − λ1)xn(z))x0

n(z)dz

∣

∣

∣

∣

≤ εn,

⇒

∫

Z

(f(z, xn(z)) − (λ2 − λ1)xn(z))x0

n(z)dz ≥ −εn (see (2.3) and (2.4)). (3.12)

But again hypothesis H(f)(v) implies

0 > −γ2 ≥

∫

Z

(f(z, xn(z)) − (λ2 − λ1)xn(z))x0

n(z)dz for all n ≥ n2. (3.13)

Comparing (3.12) and (3.13) we reach a contradiction.

Case 3: 0 ≤ g(z) ≤ λ2 − λ1 a.e. on Z with g 6= 0, g 6= λ2 − λ1.

Note that

λ1 ≤ λ1 + g(z) ≤ λ2 a.e. on Z

and the inequalities are strict on sets (in general different) of positive measure. Exploiting the

strict monotonicity property of the eigenvalues of (−△, H1

0
(Z), m) on the weight function m (see

Section 2), we have

̂λ1(λ1 + g) < ̂λ1(λ1) = 1

and ̂λ2(λ1 + g) > ̂λ2(λ2) = 1.

Combining this with (2.2), we see that y = 0, a contradiction to the fact that ‖y‖ = 1.

So in all these cases we have reached a contradiction. This means that {xn}n≥1 is bounded

and so we may assume (at least for a subsequence) that

xn
w
→ x in H1

0
(Z), xn → x in L2(Z), xn(z) → x(z) a.e. on Z

and |xn(z)| ≤ k(z) a.e. on Z for all n ≥ 1, with k ∈ L2(Z)+.

Recall that
∣

∣

∣

∣

〈A(xn), xn − x〉 − λ1

∫

Z

xn(xn − x)dz −

∫

Z

f(z, xn(z))(xn − x)dz

∣

∣

∣

∣

≤ εn.

Since ∫

Z

xn(xn − x)dz → 0 and

∫

Z

f(z, xn(z))(xn − x)(z)dz → 0 as n→ ∞,

we obtain

〈A(xn), xn − x〉 → 0 as n→ ∞.

We know that A(xn)
w
→ A(x) in H−1(Z). So as before, via the Kadec-Klee property of H1

0
(Z),

we conclude that xn → x in H1

0
(Z). This proves that ϕ satisfies the C-condition.
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In the sequel, we will need the following simple lemma:

Lemma 3.3. If β ∈ L∞(Z), β(z) ≤ λ1 a.e. on Z and the inequality is strict on a set of positive

measure, then there exists ξ1 > 0 such that

ψ(x) = ‖Dx‖2

2
−

∫

Z

β(z)x(z)2dz ≥ ξ1‖Dx‖
2

2
for all x ∈ H1

0
(Z).

Proof. From (2.2), we see that ψ ≥ 0. Suppose that the lemma is not true. Exploiting the 2-

homogeneity of ψ, we can find {xn}n≥1 ⊆ H1

0
(Z) such that

‖Dxn‖2 = 1 for all n ≥ 1 and ψ(xn) ↓ 0 as n→ ∞.

By Poincare’s inequality {xn}n≥1 ⊆ H1

0
(Z) is bounded. So we may assume that

xn
w
→ x in H1

0
(Z), xn → x in L2(Z), xn(z) → x(z) a.e. on Z

and |xn(z)| ≤ k(z) a.e. on Z for all n ≥ 1, with k ∈ L2(Z)+.

From the weak lower semicontinuity of the norm functional, we have

‖Dx‖2

2
≤ lim inf

n→∞

‖Dxn‖
2

2
,

while from the dominated convergence theorem, we have

∫

Z

β(z)xn(z)2dz →

∫

Z

β(z)x(z)2dz as n→ ∞.

Hence

ψ(x) ≤ lim inf
n→∞

ψ(xn) = 0, (3.14)

⇒‖Dx‖2

2
≤

∫

Z

β(z)x(z)2dz ≤ λ1‖x‖
2

2
,

⇒‖Dx‖2

2
= λ1‖x‖

2

2
(see (2.2)),

⇒x = 0 or x = ±u1 with u1 ∈ E(λ1).

If x = 0, then ‖Dxn‖2 → 0, a contradiction to the fact that ‖Dxn‖2 = 1 for all n ≥ 1.

If x = ±u1, then |x(z)| > 0 for all z ∈ Z and so from the first inequality in (3.9) and the

hypothesis on β, we have

‖Dx‖2

2
< λ1‖x‖

2

2
,

a contradiction to (2.2).

Using this lemma, we prove the following proposition.

Proposition 3.4. If hypotheses H(f) hold, then the origin is a local minimizer of ϕ.
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Proof. Let δ > 0 be as in hypothesis H(f)(vi) and consider the closed ball

B
C1

0

δ = {x ∈ C1

0
(Z) : ‖x‖C1

0
(Z)

≤ δ}.

By virtue of hypothesis H(f)(vi), for every x ∈ B
C1

0

δ , we have

F (z, x(z)) ≤
η(z)

2
x(z)2 for a.a. z ∈ Z. (3.15)

Thus, for all x ∈ B
C1

0

δ , we have

ϕ(x) =
1

2
‖Dx‖2

2
−
λ1

2
‖x‖2

2
−

∫

Z

F (z, x(z))dz

≥
1

2
‖Dx‖2

2
−

1

2

∫

Z

(λ1 + η(z))x(z)2dz (see (3.15))

≥
ξ1

2
‖Dx‖2

2
(apply Lemma 3.3 with g = λ1 + η ∈ L∞(Z))

≥ 0 = ϕ(0). (3.16)

From (3.16) we see that x = 0 is a local C1

0
(Z)-minimizer of ϕ. But then from Brezis-Nirenberg

[3], we have that x = 0 is a local H1

0
(Z)-minimizer of ϕ.

We may assume that the origin is an isolated critical point of ϕ or otherwise we have a sequence

of nontrivial solutions for problems (1.1). Then from the description of the critical groups at an

isolated local minimizer (see Chang [4], p.33 and Mawhin-Willem [10], p.175), we have:

Corollary 3.5. If hypotheses H(f) hold, then Ck(ϕ, 0) = δk,0Z for all k ≥ 0.

In the next proposition, we produce the first nontrivial solution for problem (1.1).

Proposition 3.6. If hypotheses H(f) hold then problem (1.1) has a nontrivial solution x0 ∈ C1

0
(Z)

and x0 is a critical point of ϕ of mountain pass-type.

Proof. Recall that x = 0 is an isolated local minimum of ϕ. So we can find ρ0 > 0 such that

ϕ|∂Bρ0
> 0. (3.17)

Let u1 ∈ C1

0
(Z) be the L2(Z)-normalized principal eigenfunction of (−△, H1

0
(Z)) and let

t > 0. For 0 < β0 < t, via the mean value theorem, we have

F (z, tu1(z)) = F (z, β0u1(z)) +

∫ t

β0

f(z, µu1(z))u1(z)dµ a.e. on Z. (3.18)

Integrating over Z and using Fubini’s theorem, we obtain

∫

Z

F (z, tu1(z))dz =

∫

Z

F (z, β0u1(z))dz +

∫ t

β0

1

µ

∫

Z

f(z, µu1(z))µu1(z)dzdµ.
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Choosing β0 > 0 large, because of hypothesis H(f)(v), we have

∫

Z

f(z, µu1(z))µu1(z)dz ≥ γ1 > 0 for all µ ∈ [β0, t]. (3.19)

From (3.18) and (3.19), we obtain

∫

Z

F (z, tu1(z))dz ≥

∫

Z

F (z, β0u1(z))dz +

∫ t

β0

γ1

µ
dµ for β0 > 0 large,

⇒

∫

Z

F (z, tu1(z))dz ≥

∫

Z

F (z, β0u1(z))dz + γ1(lnt− lnβ0). (3.20)

So from (3.20) it follows that

−

∫

Z

F (z, tu1(z))dz → −∞ as t→ +∞.

Hence

ϕ(tu1) = −

∫

Z

F (z, tu1(z))dz → −∞ as t→ +∞ (see (2.2)).

Therefore for t > 0 large, we have

ϕ(tu1) < ϕ(0) = 0 < inf
∂Bρ0

ϕ = c.

This fact together with Proposition 3.2, permit the use of the mountain pass theorem (see Bartolo-

Benci-Fortunato [1]), which gives x0 ∈ H1

0
(Z) such that

ϕ′(x0) = 0 and ϕ(0) = 0 < c ≤ ϕ(x0). (3.21)

From (3.21), we deduce that x0 6= 0. From the equality in (3.21), we have

A(x0) = λ1x0 +N(x0),

⇒−△x0(z) = λ1x0(z) + f(z, x0(z)) a.e. on Z, x0|∂Z = 0.

Thus x0 ∈ H1

0
(Z) is a nontrivial solution of problem (1.1) and from regularity theory (see for

example Gasinski-Papageorgiou [5], pp.737-738), we have x0 ∈ C1

0
(Z). Let d = ϕ(x0) and assume

without loss of generality that Kd is discrete (otherwise we have a whole sequence of nontrivial

solutions for problem (1.1)). Then invoking Theorem 1 of Hofer [6], we can say that x0 ∈ C1

0
(Z)

is a critical point of ϕ which is of mountain pass-type.

From the description of the critical groups for a critical point of a mountain pass-type (see

Chang [4], p.91 and Mawhin-Willem [10], pp.195-196), we have:

Corollary 3.7. If hypotheses H(f) hold and x0 ∈ C1

0
(Z) is the nontrivial solution of (1.1) obtained

in Proposition 3.6, then Ck(ϕ, x0) = δk,1Z for all k ≥ 0.
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In the next proposition, we determine the critical groups of ϕ at infinity.

To do this, we will need the following slight generalization of Lemma 2.4 of Perera-Schechter

[12].

Lemma 3.8. If H is a Hilbert space, {ϕt}t∈[0,1] is a one-parameter family of C1(H)-functions

such that ϕ′

t and ∂tϕt are both locally Lipschitz in u ∈ H and there exists R > 0 such that

inf[(1 + ‖u‖)‖ϕ′

t(u)‖ : t ∈ [0, 1], ‖u‖ > R] > 0

and inf[ϕt(u) : t ∈ [0, 1], ‖u‖ ≤ R] > −∞,

then Ck(ϕ0,∞) = Ck(ϕ1,∞) for all k ≥ 0.

Proof. Let ξ < inf[ϕt(u) : t ∈ [0, 1], ‖u‖ ≤ R]. Let h(t;u) (t ∈ [0, 1], u ∈ ϕ
ξ
0
) be the flow generated

by the Cauchy problem

·

h(t) = −
∂tϕt(h(t))

‖ϕ′

t(h(t))‖2
ϕ′

t(h(t)) a.e. on R+, h(0) = u.

We have

d

dt
ϕt(h(t)) = 〈ϕ′

t(h(t)),
·

h(t)〉 + ∂tϕt(h(t)) = 0 for all t ≥ 0,

⇒ϕt(h(t)) = ϕ0(u) for all t ≥ 0.

Since u ∈ ϕa
0
, we have ϕt(h(t)) ≤ ξ and so ‖h(t)‖ > R for all t ≥ 0. This then by virtue of the

hypothesis of the lemma, implies that this flow exists for all t ≥ 0 (see Bartolo-Benci-Fortunato

[1]).

It can be reversed, if we replace ϕt with ϕ1−t. Therefore h(1) is a homeomorphism of ϕξ
0

and

ϕ
ξ
1

and so

Ck(ϕ0,∞) = Hk(H,ϕξ
0
) ∼= Hk(H,ϕξ

1
) = Ck(ϕ1,∞).

Proposition 3.9. If hypotheses H(f)(i) → (v) hold, then Ck(ϕ,∞) = δk,1Z for all k ≥ 0.

Proof. Let 0 < σ < λ2 − λ1 and consider the following one-parameter C2-functions on the Hilbert

space H1

0
(Z) :

ϕt(x) =
1

2
‖Dx‖2

2
−
λ1 + σ

2
‖x‖2

2
− t

∫

Z

(F (z, x(z)) − σx(z))dz for all x ∈ H1

0
(Z).

We claim that we can find R > 0 such that

inf[(1 + ‖u‖)‖ϕ′

t(u)‖ : t ∈ [0, 1], ‖u‖ > R] > 0. (3.22)
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Suppose that this is not possible. Then we can find tn → t ∈ [0, 1] and ‖un‖ → ∞ such that

ϕ′

tn
(un) → 0 in H−1(Z) as n→ ∞. Let yn = un

‖un‖
, n ≥ 1. By passing to a suitable subsequence if

necessary, we may assume that

yn
w
→ y in H−1(Z), yn → y in L2(Z), yn(z) → y(z) a.e. on Z,

and |yn(z)| ≤ k(z) for a.a. z ∈ Z, all n ≥ 1, with k ∈ L2(Z).

We have

∣

∣

∣

∣

〈
ϕ′

tn
(un)

‖un‖
, v〉

∣

∣

∣

∣

≤ εn for all v ∈ H
(

0
Z), with εn ↓ 0 (see (3.22))

⇒

∣

∣

∣

∣

〈A(yn), v〉 − (λ1 + σ)

∫

Z

ynvdz − tn

∫

Z

N(un)

‖un‖
vdz + tnσ

∫

Z

ynvdz

∣

∣

∣

∣

≤ εn (3.23)

From the proof of Proposition 3.2, we know that

N(un)

‖un‖

w
→ h = gy in L2(Z)

with g ∈ L∞(Z)+, 0 ≤ g(z) ≤ λ2 − λ1 a.e. on Z. Moreover, arguing as in that proof, we can also

show that

yn → y in H1

0
(Z), hence ‖y‖ = 1, i.e. y 6= 0.

So, if we pass to the limit as n→ ∞ in (3.23), we obtain

〈A(y), v〉 = (λ1 + σ)

∫

Z

yvdz + t

∫

Z

(g + σ)yvdz for all v ∈ H1

0
(Z),

⇒A(y) = (λ1 + (1 − t)σ + tg)y. (3.24)

As in the proof of Proposition 3.2, we consider three distinct possibilities for the weight

function m = λ1 + (1 − t)σ + tg ∈ L∞(Z)+.

Case 1: t = 1 and g = 0.

From (3.24), we have

A(y) = λ1(y),

⇒−△y(z) = λ1y(z) a.e. on Z, y|∂Z = 0,

⇒y ∈ E(λ1), y 6= 0.

So, if un = u0

n + ûn with u0

n ∈ E(λ1), ûn ∈ ̂H2 = E(λ1)
⊥, n ≥ 1, then

‖u0

n‖

‖un‖
→ 1 as n→ ∞. (3.25)
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We have
∣

∣

∣

∣

〈A(un), v〉 − (λ1 + σ)

∫

Z

unvdz − tn

∫

Z

N(un)vdz + tnσ

∫

Z

unvdz

∣

∣

∣

∣

≤ εn

for all v ∈ H1

0
(Z).

Let v = u0

n ∈ E(λ1). We obtain

∣

∣

∣

∣

‖Du0

n‖
2

2
− (λ1 + σ)‖u0

n‖
2

2
− tn

∫

Z

f(z, un(z))u0

n(z)dz + tnσ‖u
0

n‖
2

2

∣

∣

∣

∣

≤ εn. (3.26)

Since u0

n ∈ E(λ1), we know that ‖Du0

n‖
2

2
= λ1‖u

0

n‖
2

2
. Also because of (3.25) and hypothesis

H(f)(v), we have
∫

Z

f(z, un(z))u0

n(z)dz ≥ γ1 for all n ≥ n1.

Then from (3.26), we obtain

(1 − tn)σ‖u0

n‖
2

2
+ tnγ1 ≤ εn for all n ≥ n1,

⇒tnγ1 ≤ εn for all n ≥ n1.

Since tn → t = 1 and εn ↓ 0, in the limit as n→ ∞, we obtain

0 < γ1 ≤ 0,

a contradiction.

Case 2: t = 1 and g = λ2 − λ1.

From (3.24), we have

A(y) = λ2y,

⇒−△y(z) = λ2y(z) a.e. on Z, y|∂Z = 0,

⇒y ∈ E(λ2), y 6= 0.

Now we write un = u0

n + ûn with u0

n ∈ E(λ2) and ûn ∈W = E(λ2)
⊥. We have

‖u0

n‖

‖un‖
→ 1 as n→ ∞. (3.27)

Recall that
∣

∣

∣

∣

〈A(un), v〉 − (λ1 + σ)

∫

Z

unvdz − tn

∫

Z

N(un)vdz + tnσ

∫

Z

unvdz

∣

∣

∣

∣

≤ εn

for all v ∈ H1

0
(Z).
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Let v = u0

n ∈ E(λ2). We obtain

∣

∣

∣

∣

‖Du0

n‖
2

2
− tnλ2‖u

0

n‖
2

2
− (1 − tn)(λ1 + σ)‖u0

n‖
2

2

− tn
∫

Z
(f(z, un(z)) − (λ2 − λ1)un(z))u0

n(z)dz

∣

∣

∣

∣

≤ εn.

(3.28)

Note that tnλ2 + (1 − tn)(λ1 + σ) < λ2 and so

0 < ‖Du0

n‖
2

2
− (tnλ2 + (1 − tn)(λ1 + σ))‖u0

n‖
2

2
. (3.29)

In addition because of (3.27) and hypothesis H(f)(v), we have

∫

Z

(f(z, un(z)) − (λ2 − λ1)un(z))u0

n(z)dz ≤ −γ2 < 0 for all n ≥ n2. (3.30)

Using (3.29) and (3.30) in (3.28), we obtain

tnγ2 ≤ εn for all n ≥ n2.

Passing to the limit as n→ ∞ and recalling that tn → 1 and ε ↓ 0, we get

0 < γ2 ≤ 0,

again a contradiction.

Case 3: t 6= 1 or 0 ≤ g(z) ≤ λ2 − λ1 a.e. on Z with g 6= 0 and g 6= λ2 − λ1.

From (3.24), we have

A(y) = (λ1 + ̂ξ)y, y 6= 0 with ̂ξ = (1 − t)σ + tg ∈ L∞(Z)+,

⇒−△y(z) = (λ1 + ̂ξ(z))y(z) a.e. on Z, y|∂Z = 0. (3.31)

Note that since t 6= 1 or (g 6= 0 and g 6= λ2 − λ1), we have

λ1 ≤ λ1 + ̂ξ(z) ≤ λ2 a.e. on Z, λ1 6= λ1 + ̂ξ and λ2 6= λ1 + ̂ξ.

Hence from the strict monotonicity of the eigenvalues on the weight function, we infer that

̂λ1(λ1 + ̂ξ) < ̂λ1(λ1) = 1 and ̂λ2(λ1 + ̂ξ). (3.32)

Using (3.32) in (3.31), we infer that y = 0, a contradiction to the fact that ‖y‖ = 1.

So in all three cases we have reached a contradiction and this means that there exists R > 0

for which (3.22) is valid.

Also it is clear, that due to hypotheses H(f)(iii), (iv), we have

inf[ϕt(u) : t ∈ [0, 1], ‖u‖ ≤ R] > −∞.
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So we can apply Lemma 3.8 and have that

Ck(ϕ0,∞) = Ck(ϕ,∞) for all k ≥ 0. (3.33)

Note that

ϕ0(x) =
1

2
‖Dx‖2

2
−
λ1 + σ

2
‖x‖2

2
and ϕ1(x) = ϕ(x) for all x ∈ H1

0
(Z).

Since 0 < σ < λ2 − λ1, the only critical point of ϕ0 is u = 0. Hence

Ck(ϕ0,∞) = Ck(ϕ, 0) for all k ≥ 0. (3.34)

Moreover, from Proposition 2.3 of Su [16], we have

Ck(ϕ0, 0) = δk,1Z for all k ≥ 0. (3.35)

From (3.33), (3.34) and (3.35), we conclude that

Ck(ϕ,∞) = δk,1Z for all k ≥ 0.

Now we are ready for the first multiplicity theorem.

Theorem 3.10. If hypotheses H(f) hold, then problem (1.1) has at least two nontrivial solutions

x0, v0 ∈ C1

0
(Z).

Proof. One nontrivial solution x0 ∈ C1

0
(Z), exists by virtue of Proposition 3.6.

Suppose that {0, x0} are the only critical points of ϕ. Then using Corollaries 3.5, 3.7, 3.9 and

the Poincare-Hopf formula, we have

(−1)0 + (−1)1 = (−1)1,

a contradiction. So there exists a third critical point v0 6= x0, v0 6= 0. Evidently v0 is a solution of

(1.1) and by regularity theory, we have v0 ∈ C1

0
(Z).

We have another multiplicity result by modifying hypothesis H(f)(vi). So the new hypotheses

on the nonlinearity f(z, x) are the following:

H(f)′: f : Z × R → R is a function such that f(z, 0) = 0 a.e. on Z, hypotheses H(f)′(i) → (v) are

the same as hypotheses H(f)(i) → (v) respectively and

(vi) there exist m ≥ 2 and δ > 0 such that

λm − λ1 ≤
f(z, x)

x
≤ λm+1 − λ1 for a.a. z ∈ Z and all 0 < |x| ≤ δ.
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Remark 3.11. Hypotheses H(f)′(iv) and (vi) imply that we can have double resonance both at

infinity and at zero. A double-double resonance situation.

Theorem 3.12. If hypotheses H(f)′ hold, then problem (1.1) has at least two nontrivial solutions

x0, v0 ∈ C1

0
(Z).

Proof. Because of hypothesis H(f)′(vi) and Proposition 1.1 of Li-Perera-Su [9], we have

Ck(ϕ, 0) = δk,dZ, (3.36)

where d =sum of multiplicities of {λk}
m
k=1

= dimHm ≥ 2, since m ≥ 2.

Also from Proposition 3.9, we know that

Ck(ϕ,∞) = δk,1Z. (3.37)

So there exists a critical point x0 of ϕ such that

C1(ϕ, x0) 6= 0. (3.38)

Comparing this with (3.36), we infer that x0 6= 0. Moreover, due to (3.38) x0 is of mountain pass

type and so

C1(ϕ, x0) = δk,1Z. (3.39)

If {0, x0} are the only critical points of ϕ, then from (3.36), (3.37) and (3.39) and the Poincare-Hopf

formula, we have

(−1)d + (−1)1 = (−1)1,

⇒(−1)d = 0, a contradiction.

So there exists a second nontrivial critical point v0 of ϕ. Evidently x0, v0 ∈ H1

0
(Z) are nontrivial

solutions of problem (1.1). From regularity theory, we conclude that x0, v0 ∈ C1

0
(Z).

Remark 3.13. Theorem 3.12 above partially extends Theorem 3 of Robinson [14] and also Theorem

2 of Su [16].

Received: February 2008. Revised: April 2008.
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