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ABSTRACT

We consider a semilinear elliptic equation, with a right hand side nonlinearity which
may grow linearly. Throughout we assume a double resonance at infinity in the spectral
interval [A1, A2]. In this paper, we can also have resonance at zero or even double
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resonance in the order interval [Ay,, Apmt1], m > 2. Using Morse theory and in particular

critical groups, we prove two multiplicity theorems.

RESUMEN

Nosotros consideramos una ecuaciéon semilinear eliptica con una no-linealidad la cual
puede crecer linealmente. Asumimos una doble resonancia en infinito en el intervalo
espectral [A1, A2]. En este articulo, podemos también tener resonancia en cero o incluso
doble resonancia en el intervalo ordenado [A,, Am1], m > 2. Usando teoria de Morse
y en particular grupos criticos, provamos dos teoremas de mulplicidad.

Key words and phrases: Double resonance, C-condition, critical groups, critical point of moun-
tain pass-type, Poincare-Hopf formula.

Math. Subj. Class.: 35J20, 35J25.

1 Introduction

Let Z C RN be a bounded domain with a C2-boundary 9Z. We consider the following semilinear
elliptic problem:

—Azx(z) = \Mx(z) + f(2,2(z)) a.e. on Z, (1.1)
.I'|az =0. '
Here A\; > 0 is the principal eigenvalue of (=4, H3(Z)). Assume that
| llim f&e) = 0 uniformly for a.a. z € Z. (1.2)
x| —o00 T

The problem (1.1) is resonant at infinity with respect to the principal eigenvalue A\; > 0. Res-
onant problems, were first studied by Landesman-Lazer [7], who assumed a bounded nonlinearity
and introduced the well-known sufficient asymptotic solvability conditions, which carry their name
(the LL-conditions for short). We can be more general and instead of (1.2), assume only that

lim inf —f(z, z) —f(z, z)

and limsup
|z|— 00 x x

|| — o0

belong in the interval [0, A2 — A1] uniformly for a.a. z € Z, with Ao (A2 > A1) being the
second eigenvalue of (—A, H}(Z)). In this more general setting, the nonlinearity f(z,z) need
not be bounded. This more general situation was examined by Berestycki-De Figueiredo [2],
Landesman-Robinson-Rumbos [8], Nkashama [11], Robinson [13],[14], Rumbos [15] and Su [16].
From these works, Berestycki-De Figueiredo [2], Nkashama [11], Robinson [13] and Rumbos [15],
prove existence theorems in a double resonance setting (i.e. asymptotically at +oo, we have
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complete interaction of the ”slope” @ with both ends of the spectral interval [0, A\ — A;]; see

Berestycki-De Figueiredo [2] who coined the term ”double resonance” and Robinson [13]) or in a
one-sided resonance setting (i.e. the ”slope” @ is not allowed to cross Ay — A\1; see Nkashama
[11] and Rumbos [15]). Multiplicity results were proved by Landesman-Robinson-Rumbos [8] (one-

sided resonant problems) and by Robinson [14] and Su [16] (doubly resonant problems).

In this paper, we extend the work of Landesman-Robinson-Rumbos [8] and partially extend
and complement the works of Robinson [14] and Su [16], by covering cases which are not included
in their multiplicity results.

2 Mathematical background

We start by recalling some basic facts about the following weighted linear eigenvalue problem:

{ —Au(z) = dm(2)u(z) ae. on Z, }

. (2.1)
u|aZ =0, NeR.

Here m € L™®(Z)y = {m € L*>®(Z) : m(z) > 0 ae. on Z}, m # 0 (the weight function). By an
cigenvalue of (2.1), we mean a real number A, for which problem (2.1) has a nontrivial solution
u € HY(Z). Tt is well-known (see for example Gasinski-Papageorgiou [5]), that problem (2.1) (or
equivalently that (—A, H}(Z), m)), has a sequence e (m)}r>1 of distinct eigenvalues, Ai(m) >0
and Ay (m) — +o0 as k — +00. Moreover, i (m) > 0 is simple (i.e. the corresponding eigenspace
E()\1) is one-dimensional). Also we can find an orthonormal basis {un}n>1 C HY(Z)NC>(Z) for
the Hilbert space L?(Z) consisting of eigenfunctions corresponding to the eigenvalues {:\\k (m)}e>1-
Note that {u,},>1 is also an orthogonal basis for the Hilbert space HE(Z). Moreover, since by
hypothesis Z is a C2-manifold, then u,, € C%(Z) for all n > 1. For every k > 1, by E(\;) we
denote the eigenspace corresponding to the eigenvalue Xk(m). This space has the so-called ”unique
continuation property”, namely, if u € F (X;@) is such that it vanishes on a set of positive measure,
then u(z) = 0 for all z € Z. We set

We have the orthogonal direct sum decomposition

H&(Z) = Fk D ﬁkJrl.

Using these spaces, we can have useful variational characterizations of the eigenvalues {X;C (m) }e>1
using the Rayleigh quotient. Namely we have:

cu € Hy(Z),u#0]. (2.2)
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In (2.2) the minimum is attained on E(X;)\{0}. By u; € C2(Z), we denote the principal
eigenfunction satisfying |’ 7 muidz = 1. For k > 2, we have

SR B -../ S
Ak(m) = max —— U € Hp,u#0 (2.3)
fzmu dz
[ DElE s -
:mm[w:ueﬂk,u#o. (24)

In (2.3) (resp.(2.4)), the maximum (resp.minimum) is attained on E(:\\k) From these varia-
tional characterizations of the eigenvalues and the unique continuation property of the eigenspaces
E(A\), we see that the eigenvalues {\x(m)}r>1 have the following strict monotonicity property:

PIf my, mg € L°(Z) 4, mi(z) < ma(z) a.e. on Z and my # mo, then Xk(mg) < :\\k(ml) for all
k>1"

If m = 1, then we simply write g, for all £ > 1 and we have the full-spectrum of (—=A, H}(Z2)).

Let H be a Hilbert space and ¢ € C'(H). We say that ¢ satisfies the ” Cerami condition” (the
C-condition for short), if the following is true:”every sequence {zy},>1 € H such that |p(z, )| <
M for some M; > 0, all n > 1 and (1 + ||,|])¢'(z,) — 0 in H* as n — oo, has a strongly

convergent subsequence”.

This condition is a weakened version of the well-known Palais-Smale condition (P.S-condition
for short). Bartolo-Benci-Fortunato [1], showed that the C-condition suffices to prove a deformation
theorem and from this produce minimax expressions for the critical values of the functional ¢.

For every c € R, let

¢ ={z € X :p<c} (the sublevel set at ¢ of ),
K={z€xz:¢ (xr) =0} (the set of critical points of ¢)
and K. ={z € K : p(x) = c} (the critical points of ¢ at level ¢).

If X is a Hausdorff topological space and Y a subspace of it, for every integer n > 0, by
H,(X,Y) we denote the n'"-relative singular homology group with integer coefficients. The critical
groups of ¢ at an isolated critical point 2o € H with ¢(xg) = ¢, are defined by

Culpsx0) = Hn(" N U, (9 NU)\{20}),

where U is a neighborhood of z( such that K Np“NU = {x¢}. By the excision property of singular
homology theory, we see that the above definition of critical groups, is independent of U (see for
example Mawhin-Willem [10]).

Suppose that —oco < inf p(K). Choose ¢ < inf ¢(K). The critical groups at infinity, are defined
by
Cr(p,00) = H,(H, ¢°) for all k> 0.
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If K is finite, then the Morse-type numbers of ¢, are defined by

My, = Z rankCy (¢, ).
zeK

The Betti-type numbers of ¢, are defined by

B = rankCy (¢, 00).

By Morse theory (see Chang [4] and Mawhin-Willem [10]), we have

m

Z(_l)m—kMk > i(_l)m_kﬁk
k=0 k=0
and Y (—=1)FMi = (—1)*B.

k>0 k>0

From the first relation, we deduce that g < My for all £ > 0. Therefore, if 8; # 0 for some
k > 0, then ¢ must have a critical point « € H and the critical group C(p, x) is nontrivial. The
second relation (the equality), is known as the ”Poincare-Hopf formula”. Finally, if K = {zo},
then C (¢, 00) = Ci (g, zo) for all k > 0.

3 Multiplicity of solutions

The hypotheses on the nonlinearity f(z,z) are the following;:

H(f): f: Z xR — R is a function such that f(z,0) =0 a.e. on Z and

(i) for all z € R, z — f(z,z) is measurable;

(ii) for almost all z € Z, f(z,-) € C*(R);

(iil) |f1(z,2)] < c(L+|2]"), r < g5, > 0.

(iv) 0 < l\u\n inf @ < lim sup @ < A2 — A1 uniformly for a.a. z € Z;

(v) suppose that ||x,| — oo,

0 —_ ~
(i) if w — 1, z, = 2% +7, with 20 € E(\1) = H1, T, € Ha, then there exist 71 > 0

Hmn

and ni > 1 such that

/ f(z,20(2))28(2)dz > v, for all n > ny;
z

(ii) if Hf}” — 1, z, = 2% + 7, with 20 € E(\2), T,, € W = E(A\2)~, then there exist
v2 > 0 and n > 1 such that

/Z(f(z,:cn(z)) — (A2 = A\)xn(2))22(2)dz < —7o for all n > ny;
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(vi) if F(z,z) = fox f(z, s)ds, then there exist n € L>°(Z) and ¢ > 0, such that n(z) < 0 a.e.
on Z with strict inequality on a set of positive measure and

F(z,z) < @xz for a.a. z € Z and all |z| <.

Remark 3.1. Hypothesis H(f)(iv) implies that asymptotically at oo, we have double resonance.
Hypothesis H(f)(v) is a generalized LL-condition. Similar conditions can be found in the works
of Landesman-Robinson-Rumbos [8], Robinson [13],[14] and Su [16]. Consider a C?-function x —
F(z) which in a neighborhood of zero equals x* — sinx?, while for |z| large (say |z| > M > 0),
F(z) = cx|?,¢ > 0. If f(z) = F'(z), then f € CY(R) satisfies hypothesis H(f) above. To verify
the generalized LL-condition in hypothesis H(f)(v), we use Lemma 2.1 of Su-Tang [17]. Similarly
we can consider if near the origin, F(z) = %:CQ —tan"ta? or F(x) = —cosx®. This second case is
interesting because then f(z) = 2wsina® and f'(z) = 2sinx®+4x2cosx?. So f'(0) = 0. This example,
which is covered by hypotheses H(f), illustrates that our framework of analysis incorporates also
problems with resonance at zero with respect to Ay > 0 (double-double resonance). This is not
possible in the setting of Landesman-Robinson-Rumbos [8] (see Theorem 2 in [8]). Also such a
potential function is not covered by the multiplicity results of Robinson [14] (theorem 2) and Su

[16] (Theorem 2).
We consider the Euler functional for problem (1.1), ¢ : Hi(Z) — R defined by

olx) = %||Dw||§ — %HIH% —/ F(z,2(2))dz for all z € Hé(Z).
z

It is well-known that ¢ € C%(Hg(Z)) and if by (-,-) we denote the duality brackets for the
pair (H3(Z), H-Y(Z) = H}(Z)*), we have

@ @) = [ (D5 Dz = [ ayds— [ ot
and go”(x)(u,v):/Z(Du,Dv)RNdz—)\1/Zuvdz—/Zf’(z,:v(z))u(z)v(z)dz

for all z,y,u,v € H}(Z).
Proposition 3.2. If hypotheses H(f) hold then ¢ satisfies the C-condition.

Proof. Let {zy}n>1 C HY(Z) be a sequence such that

(14 [[zall)¢' (zn) — 0 as n — oco.

We will show that {z,},>1 C H}(Z) is bounded. We argue indirectly. Suppose that
{Zn}n>1 € H}(Z) is unbounded. We may assume that ||z,|| — oco. Let y, = e n = L

By passing to a suitable subsequence if necessary, we may assume that

Yn =y in Hy(Z), yn —y in L*(Z), yn(2) — y(z) a.e. on Z
and |y, (2)| < k(z) a.e. on Z, for all n > 1, with ke L*(Z),.
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Hypotheses H(f)(i7i) and (iv), imply that

|f(z,2)| <a(z) +c|z| foraa. z€ Z, allz € R, with a € L>®(Z)4+,c> 0,

:>|f(z|,;1cn|(z))| < |ax(z? + clyn(2)| for aa. z€ Z, all n>1, (3.1)
é{w} - LQ(Z) is bounded.
lzall ) o1

Thus we may assume that

f(,xn()) ih in L2

(Z) as n — oo.
0|

For every € > 0 and n > 1, we set

Ch,={2€Z:2,(2) >0, —sgng\g—)\l—i—s}
and C,, ={z€Z:z,(2) <0, —sgf(ZL(n)z))</\2—)\1+s}
’ Tn (2

Note that z,(z) — 400 a.e. on {y > 0} and z,(z) — —o0 a.e. on {y < 0}. Then by virtue of
hypothesis H(f)(iv), we have

Xct, (2) = Xqy>01(2) and xc- (2) = Xqy<o}(2) a.e. on Z.

e,mn

Using the dominated convergent theorem, we see that

11— Xc;n)wﬂm({po}) —0
fCan())
and /(1 - Xc;n)WHH({zKO}) — 0 as n — oo.

It follows that

Xe (-)M “ hoin L({y > 0})

sl
and Xcm(')w Zhin L({y <0}) as n — oc.

From the definitions of the sets C,, and CZ,, we have

—eyn(2) < f(2|,;62|(2)) = f(i’nx(zgz))yn(z) < (A2 =X +e)yn(z) a.e. on C;fn

and

—eyn(z) 2 f(T;C:fz)) = f(Z:(zgz))yn(z) > (A2 = M +€)yn(2)ae. on C_,,.
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Passing to the limit as n — oo, using Mazur’s lemma and recalling that € > 0 is arbitrary, we
obtain

0 <h(z) < (A2 —M)y(z) a.e. on {y >0} (3.2)
and 0> h(z) > (A2 — A1)y(2) a.e. on {y < 0}.
Moreover, from (3.1) it is clear that

h(z) =0 a.e. on {y=0}. (3.4)

From (3.2), (3.3) and (3.4), it follows that
h(z) = g(2)y(z) a.e. on Z,
where g € L>(Z)4, 0 < g(z) < X2 — A1 a.e. on Z.

Recall that by (-,-) we denote the duality brackets for the pair (Hg(Z), H=1(Z)).
Let A€ L(H}(Z),H 1(Z)) be defined by

(A(z),y) = / (D, Dy)gndz for all x,y € HY(Z).
z

Also let N : L?(Z) — L2(Z) be the Nemitskii operator corresponding to the nonlinearity

f(z,x), ie.
N(z)(-) = f(-,2(-)) for all x € L*(Z).

Because of (3.1), by Krasnoselskii’s theorem, we know that N is continuous and bounded.
Moreover, exploiting the compact embedding of H}(Z) into L?(Z), we see that N is completely
continuous (hence compact too) as a map from H}(Z) into L?(Z) (see for example Gasinski-
Papageorgiou [5], pp.267-268). We have

&' (zn) = A(zy) — Mz — N(z) for all n > 1.

From the choice of the sequence {z, },>1 C H(Z), we know that

(o (xn),v)] < &, forall ve H}(Z) with &, | 0,

N n n
;»‘<A(yn)_A1yn_ (@) 3l < En forall > 1. (3.5)
[ [zl
Let v=1y, —y € HY(Z), n > 1. Then
N(x, En
Ao =) =M [ vnlon — )tz — [ T, —yps] < Zoral w21 @6)
z z llznl [
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Evidently

N(zn
/yn(yn—y)dz—>0 and / (z )(yn—y)—>0 as n — 00.
z z |lnl

So from (3.6), we infer that
(A(n), yn —y) — 0. (3.7)

We have A(y,) = A(y) in H=(Z). From (3.7) it follows that

(A(Yn)syn) — (AY),y),
= Dynll2 — [ Dyll2-

Also Dy,, = Dy in L?(Z,RY). Since the Hilbert space L?(Z, RY) has the Kadec-Klee property,
we deduce that

Dy, — Dy in L*(Z,RY) =y, —y in HYZ), ie. |y|=1, y#0.

We return to (3.5) and we pass to the limit as n — co. We obtain

(A(y) — My — gy,v) =0 for all v e HY(Z),
=A(y) =\ +g)y in H'(Z),
= — Ay(z) = (M +9(2))y(z) ae. on Z, yloz = 0. (3.8)
We distinguish three cases for problem (3.8) depending on where the function g € L>®(Z)4
stands in the interval [0, Ao — A1].

Case 1: g(z) =0 a.e. on Z.
Then from (3.8), we have

— Ay(z) = \y(z) ae. on Z, ylogz =0,
=y € E(M), y #0.

We consider the orthogonal direct sum decomposition H}(Z) = E(\1) & ﬁg, ﬁQ =E(\)*.

Then for every n > 1, we have

T, =20 +2, and 20 € BE(\), 2, € H,.

We have y,, = y° + Uy, with

.TO ~ &'\n Iy
y2:|—”€E()\1) and yn:—HeHg for all n > 1.
In

|| I
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Since y € E(A1), |ly|]| = 1, we have

nll
0|

[
— 1 as n — oo.

Recall that

}(A(xn),w - /\1/ Tpvdz —/ N(zn)vdz| < e, forall ve Hy(Z).
z z

Let v =129 € H}(Z). We have

1D =M - [ femalat )] < e
z
:>/ f(z,20(2))22(2)dz < &, (see (2.2)) for all n > 1. (3.9)
z
But by virtue of hypothesis H(f)(v)
0<m < / f(z,a( (2)dz for all n > ny. (3.10)

Comparing (3.9) and (3.10), we reach a contradiction.
Case 2: g(z) = A2 — A1 a.e. on Z.

In this case, from (3.8) we have

— Ay(z) = Aay(2) a.e. on Z, y|0Z =0,
=y € E(\2), y #0.

Now we consider the orthogonal direct sum decomposition Hi(Z) = E(\2) ® W, with W =
E()\Q)l. Then
T, =20 + 2, with 20 € E(\2), 2, € W, n > 1.

Since y € E(Az2), |ly|]| = 1, we have

e

— 1 as n — oo. (3.11)

We have

An7 _/\ nd_ sy 4n dgn
(A(za), ) /x /Zf(zw(Z))v(Z) d<e
for all v € Hy(Z), with €, |0



CUBO Multiple Solutions for Doubly ... 31

10, 3 (2008)

Let v = 2. Then

D313~ Ml — [ fmne)ad (21| < e
Z
118 = Ml = [ (7vzaleh) = O = Aen()a? )] < e
Z

:>/Z(f(z,:vn(z)) — (X2 = M)xn(2)22(2)dz > —¢,, (see (2.3) and (2.4)). (3.12)
But again hypothesis H(f)(v) implies

0> —np > /Z(f(z,xn(z)) ~ (A2 = M)Za(2))e(2)dz for all n > ny. (3.13)

Comparing (3.12) and (3.13) we reach a contradiction.
Case 3: 0 < g(2) < Ao — A1 ae. on Z with g 20, g # Ao — A1.
Note that
A <A +g(z) <X ae on Z

and the inequalities are strict on sets (in general different) of positive measure. Exploiting the
strict monotonicity property of the eigenvalues of (—A, H}(Z), m) on the weight function m (see
Section 2), we have

~

ML+ g) < A(M) =
and :\\2(/\1 + g) > 3\\2(/\2)

1
1.
Combining this with (2.2), we see that y = 0, a contradiction to the fact that ||y| = 1.

So in all these cases we have reached a contradiction. This means that {z,},>1 is bounded
and so we may assume (at least for a subsequence) that

T, S x in Hy(Z), x, — x in L*(Z), 2,(2) — 2(2) ae. on Z

and |z, (2)] < k(2) a.e. on Z forall n>1, with k€ L*(Z),.

Recall that
Alzy), Tn — ) — - — T — .
‘( (n),x x) /\1/ (T x)dz / f(z,20(2))(xn — x)dz| < &4

Since
/ Zp (2 — 2)dz — 0 and / f(z,20(2))(xy — 2)(2)dz — 0 as n — oo,
z z

we obtain
(A(zn),xp —x) — 0 as n — oo.

We know that A(z,,) — A(z) in H='(Z). So as before, via the Kadec-Klee property of H}(Z),
we conclude that x, — x in H}(Z). This proves that ¢ satisfies the C-condition. O



32 Ravi P. Agarwal et al. CUBO

10, 3 (2008)

In the sequel, we will need the following simple lemma:

Lemma 3.3. If 8 € L*>°(Z), B(z) < \1 a.e. on Z and the inequality is strict on a set of positive

measure, then there exists & > 0 such that
Y(z) = ||Dzxl|3 —/ B(2)x(2)%dz > & ||Dx||3 for all x € H)(Z).
z

Proof. From (2.2), we see that 1 > 0. Suppose that the lemma is not true. Exploiting the 2-
homogeneity of 1, we can find {z, },>1 € Hg(Z) such that

|Dzpll2 =1 forall n>1 and ¢(x,) | 0 as n — oo.

By Poincare’s inequality {z,}n>1 € Hg(Z) is bounded. So we may assume that

T, S x in Hy(Z), x, — x in L*(Z), 2,(2) — 2(2) ae. on Z

and |z, (2)] < k() a.e. on Z forall n>1, with k€ L*(Z),.
From the weak lower semicontinuity of the norm functional, we have
| Dz||3 < liminf || D, |3,

while from the dominated convergence theorem, we have

/Zﬁ(Z)xn(z)zdz — /Zﬁ(z)w(z)de as n — oo.
Hence

P(z) <liminfy(z,) =0, (3.14)

n—oo

Dz < / B(2)e(2)2dz < M2,
Z

D2 = M]3 (see (2.2)).

=z =0 or x=2du; with u; € E(\1).

If x =0, then ||Dz,||2 — 0, a contradiction to the fact that ||Dzy,|2 =1 for all n > 1.

If © = fwuy, then |z(z)] > 0 for all z € Z and so from the first inequality in (3.9) and the

hypothesis on 3, we have
D3 < Aull]|3,

a contradiction to (2.2). O

Using this lemma, we prove the following proposition.

Proposition 3.4. If hypotheses H(f) hold, then the origin is a local minimizer of .
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Proof. Let § > 0 be as in hypothesis H(f)(vi) and consider the closed ball

—Cfl) —
By’ = {x € 4@ : el cyz) < 0.

1

By virtue of hypothesis H(f)(vi), for every x € E(;C“, we have
F(z,z(2)) < @1‘(2’)2 for a.a. z € Z. (3.15)

ol
Thus, for all x € B(;CU, we have

1 A
o(o) = 1Dal} = Lol - [ Flza(2)ds
Z

1 1
> §||Dx||§ ~3 /Z()\l +n(2)x(2)%dz (see (3.15))
> %HD:CH% (apply Lemma 3.3 with g = A\ + 1 € L>®(Z))

>0 = ¢(0). (3.16)

From (3.16) we see that = = 0 is a local C} (Z)-minimizer of . But then from Brezis-Nirenberg
[3], we have that z = 0 is a local H}(Z)-minimizer of ¢. O

We may assume that the origin is an isolated critical point of ¢ or otherwise we have a sequence
of nontrivial solutions for problems (1.1). Then from the description of the critical groups at an
isolated local minimizer (see Chang [4], p.33 and Mawhin-Willem [10], p.175), we have:

Corollary 3.5. If hypotheses H(f) hold, then Cy(p,0) = dx,0Z for all k > 0.

In the next proposition, we produce the first nontrivial solution for problem (1.1).

Proposition 3.6. If hypotheses H(f) hold then problem (1.1) has a nontrivial solution xo € C}(Z)

and xqg is a critical point of ¢ of mountain pass-type.

Proof. Recall that x = 0 is an isolated local minimum of ¢. So we can find py > 0 such that

<p|aBPO > 0. (3.17)

Let u; € C}(Z) be the L?(Z)-normalized principal eigenfunction of (=4, H}(Z)) and let
t > 0. For 0 < y < t, via the mean value theorem, we have

t

F(z,tu1(2)) = F(z, Boui(z)) + ; f(z, pui(2))ui(z)dp a.e. on Z. (3.18)

Integrating over Z and using Fubini’s theorem, we obtain

/ZF(z,tul(z))dz_/ZF(z,ﬁoul(z))dz—l-/zi/zf(z,uul(z))uul(z)dzdu.
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Choosing §p > 0 large, because of hypothesis H(f)(v), we have

/ f(z, pur(2))pur (2)dz > v > 0 for all p € [Bo,t]. (3.19)
z

From (3.18) and (3.19), we obtain

t

/ F(z,tui(2))dz > / F(z, Bour(z))dz + ﬂdu for [y > 0 large,
z z H
é/ F(z,tuy(2))dz > / F(z, Boui(z))dz + v1(Int — Infy). (3.20)
z z
So from (3.20) it follows that

—/ F(z,tu1(2))dz — —oc0 as t — +oo.
z

Hence
o(tuy) = — /Z F(z,tu1(2))dz — —o0 as t — 400 (see (2.2)).

Therefore for ¢t > 0 large, we have

p(tur) < ¢(0) =0< aljlglf p=c

PO

This fact together with Proposition 3.2, permit the use of the mountain pass theorem (see Bartolo-
Benci-Fortunato [1]), which gives zo € Hg(Z) such that

¢ (29) =0 and p(0) =0 < ¢ < ¢(z0). (3.21)
From (3.21), we deduce that zg # 0. From the equality in (3.21), we have

A(.’L‘o) = MZo + N(.”L‘o),
= — Axo(z) = Mzo(2) + f(z,20(2)) a.e. on Z, xglaz = 0.

Thus 2o € H}(Z) is a nontrivial solution of problem (1.1) and from regularity theory (see for
example Gasinski-Papageorgiou [5], pp.737-738), we have 2o € C3(Z). Let d = ¢(z0) and assume
without loss of generality that K is discrete (otherwise we have a whole sequence of nontrivial
solutions for problem (1.1)). Then invoking Theorem 1 of Hofer [6], we can say that zo € C}(Z)
is a critical point of ¢ which is of mountain pass-type. O

From the description of the critical groups for a critical point of a mountain pass-type (see
Chang [4], p.91 and Mawhin-Willem [10], pp.195-196), we have:

Corollary 3.7. If hypotheses H(f) hold and zo € C}(Z) is the nontrivial solution of (1.1) obtained
in Proposition 3.6, then Cy(p, o) = dk1Z for all k > 0.
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In the next proposition, we determine the critical groups of ¢ at infinity.

To do this, we will need the following slight generalization of Lemma 2.4 of Perera-Schechter
[12].

Lemma 3.8. If H is a Hilbert space, {¢i}iepo,1) is a one-parameter family of C*(H)-functions
such that ©; and ¢ are both locally Lipschitz in uw € H and there exists R > 0 such that

inf[(1 + [lul) [y ()] - £ € [0,1], [[u]| > R] > 0
and infley(u) 1 ¢t € [0,1], ||u]| < R] > —o0,

then Ci(po,00) = Ci(p1,00) for all k > 0.

Proof. Let & < inf[p;(u) : t € [0,1], |ul < R]. Let h(t;u) (t € [0,1],u € ¢f) be the flow generated
by the Cauchy problem

Oppr(h(t)

MO = = o

(h(t)) a.e. on Ry, h(0) =u.
We have

D (1)) = (@ ((0), h(1)) + (D) = O for all 10,

=¢:(h(t)) = po(u) for all ¢ > 0.

Since u € ¢§, we have ¢ (h(t)) < & and so ||h(t)|| > R for all ¢ > 0. This then by virtue of the
hypothesis of the lemma, implies that this flow exists for all ¢ > 0 (see Bartolo-Benci-Fortunato

[1)).
It can be reversed, if we replace ¢; with ¢1_;. Therefore h(1) is a homeomorphism of (pg and
<p§ and so
Ci(po, 00) = Hi(H, ) = Hy(H, g5) = Ci(p1,00).

Proposition 3.9. If hypotheses H(f)(i) — (v) hold, then Ci(p,00) = dp1Z for all k > 0.
Proof. Let 0 < o < Ay — A1 and consider the following one-parameter C?-functions on the Hilbert
space H(Z) :

A +o
2

pr(x) = %HDIH% - |3 — t/Z(F(z,:zr(z)) —ox(2))dz for all x € Hy(Z).

We claim that we can find R > 0 such that

inf[(1+ [[ul)ll} ()] : t € [0,1], [Jull > R] > 0. (3.22)
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Suppose that this is not possible. Then we can find ¢, — t € [0,1] and ||u,| — oo such that

u
fle

@) (un) — 0in HY(Z) as n — co. Let y, = =1, n = 1. By passing to a suitable subsequence if

necessary, we may assume that

yn =y in HH(Z), yn —y in LX(Z), yn(z) — y(2) ae. on Z,
and |y, (2)| < k(z) fora.a. z€ Z, all n>1, with ke L*(2).

We have
/
‘(ﬁpﬂ" (uﬁl),v) <eg, forall ve HéZ), with &, | 0 (see (3.22))
U
={A(yn),v) — (A1 +0) | ypvdz —t, vdz +t,o | ypvdz| < e, (3.23)
z z x|l z

From the proof of Proposition 3.2, we know that

L h=gy in L*2)

with g € L®(Z)+, 0 < g(z) < Ay — A1 a.e. on Z. Moreover, arguing as in that proof, we can also
show that

yn —y in Hi(Z), hence |ly|| =1, ie. y#0.

So, if we pass to the limit as n — oo in (3.23), we obtain

(A(y), vy = (M —i—a)/ yvdz—i—t/ (g + o)yvdz for all v € HY(Z),
z z

=Aly) =M+ 1 —-t)o+tg)y. (3.24)

As in the proof of Proposition 3.2, we consider three distinct possibilities for the weight
function m = A\ + (1 —t)o +tg € L>®(Z)+.

Case 1: t=1and g =0.
From (3.24), we have

Aly) = M (y),
= — Ay(z) = My(z) ae. on Z, yloz =0,
=y € E(\1), y#0.

So, if u,, = ul + 4, with u2 € E(\1), U, € H, = E(A)*, n > 1, then

[

[[un]|

— 1 as n — oo. (3.25)
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We have
‘(A(un),w -+ 0)/ upvdz — tn/ N (un)vdz + tno/ upvdz| < ey
for all v € H}(Z). ’ ’ ’
Let v = ul € E(\1). We obtain
‘UMM?%M+®W&§—%éfQWM@W%@M+%ﬂW%§S%- (3.26)

Since u? € E(\1), we know that [[Dul||2 = A\i|[u’|3. Also because of (3.25) and hypothesis
H(f)(v), we have

/ f(z,un(2)ul(2)dz > v, for all n > ng.
z

Then from (3.26), we obtain

(1 —tp)o|[ul||3 + thyr < en for all n > ny,

=ty < &y forall n>ny.
Since t,, — t =1 and &, | 0, in the limit as n — oo, we obtain

O<’71§07

a contradiction.
Case 2: t=1and g = Ay — A.
From (3.24), we have

A(y) = )\an
= — Ay(z) = Ay(z) ae. on Z, yloz =0,
=y € E(X), y#0.

Now we write u, = u® + 4, with 9 € E(\2) and U, € W = E(\2)1. We have

A

— 1 as n — oo. (3.27)
Recall that

<eép

(A(up),v) — (A1 + cr)/

upvdz — tn/ N(up)vdz + tncr/ upvdz
z z z

for all v € HY(Z).
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Let v = ul € E(\2). We obtain

IDug 13 = tadallunlls — (1 —tn)(M + o) [Jup |13

(3.28)
—tn [7(f(z,un(2)) = (A2 = M)un(2))up (2)dz| < en.
Note that ¢, 2 + (1 — t,,)(A\1 + o) < A2 and so
0 < [[Dup i3 = (tada + (1 = tn) (A1 + o) up 13- (3.29)
In addition because of (3.27) and hypothesis H(f)(v), we have
/Z(f(z, Un(2)) — (A2 — A)un (2))ul (2)dz < —y2 < 0 for all n > ns. (3.30)
Using (3.29) and (3.30) in (3.28), we obtain
tpye < e, for all n > no.
Passing to the limit as n — oo and recalling that t,, — 1 and € | 0, we get
0 <y <0,
again a contradiction.
Case3:t#1or0<g(z) <Ay — A1 a.e. on Z with g #0 and g # Ay — \1.
From (3.24), we have
Ay) = (a +8y, y #0 with £=(1~t)o +1g € L*(2)4,
= — Ay(z) = (M +£(2))y(z) ae. on Z, ylaz =0. (3.31)
Note that since ¢ # 1 or (g # 0 and g # A2 — A1), we have
M <A +E(Z) <A aeon Z, A\ #£M +E and Ay # A\ + &
Hence from the strict monotonicity of the eigenvalues on the weight function, we infer that
MO+ <A(A) =1 and Aa(A\1 +&). (3.32)

Using (3.32) in (3.31), we infer that y = 0, a contradiction to the fact that ||y| = 1.

So in all three cases we have reached a contradiction and this means that there exists R > 0
for which (3.22) is valid.

Also it is clear, that due to hypotheses H(f)(ii), (iv), we have

inflp(u) : ¢ € 10,1], ||ul]] < R] > —oc.
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So we can apply Lemma 3.8 and have that
Cr(¢0,00) = Ci(p,00) for all k> 0. (3.33)

Note that

1 AM+o
oo(e) = 31Dal - 2

=3 llz||3 and ¢1(z) = @(x) for all z € Hy(Z).

Since 0 < o < A2 — A1, the only critical point of ¢q is u = 0. Hence
Cr (0, 0) = Ci(p,0) for all k> 0. (3.34)
Moreover, from Proposition 2.3 of Su [16], we have
C(¢0,0) = 6517 for all k > 0. (3.35)
From (3.33), (3.34) and (3.35), we conclude that

Cr(p,00) = 01 Z for all k > 0.

Now we are ready for the first multiplicity theorem.
Theorem 3.10. If hypotheses H(f) hold, then problem (1.1) has at least two nontrivial solutions
Xo, Vo € C& (7)

Proof. One nontrivial solution zo € C§(Z), exists by virtue of Proposition 3.6.

Suppose that {0, 2o} are the only critical points of ¢. Then using Corollaries 3.5, 3.7, 3.9 and
the Poincare-Hopf formula, we have

-1+ (D' = (D",

a contradiction. So there exists a third critical point vy # xg, vo # 0. Evidently vy is a solution of
(1.1) and by regularity theory, we have vy € C3(2). O

We have another multiplicity result by modifying hypothesis H(f)(vi). So the new hypotheses
on the nonlinearity f(z,x) are the following:

H(f): f: Z xR — R is a function such that f(z,0) = 0 a.e. on Z, hypotheses H(f)'(i) — (v) are
the same as hypotheses H(f)(i) — (v) respectively and

(vi) there exist m > 2 and § > 0 such that

f(z,2)

A — M < < Amt1 — A1 foraa. z€ Z and all 0< |z| <4.
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Remark 3.11. Hypotheses H(f) (iv) and (vi) imply that we can have double resonance both at

infinity and at zero. A double-double resonance situation.

Theorem 3.12. If hypotheses H(f)" hold, then problem (1.1) has at least two nontrivial solutions
To,v0 € C3(2).

Proof. Because of hypothesis H(f)'(vi) and Proposition 1.1 of Li-Perera-Su [9], we have

Ck(9,0) = 6k,dZ, (3.36)

where d =sum of multiplicities of {\;}}, = dimH,, > 2, since m > 2.

Also from Proposition 3.9, we know that
Cr(p,00) = 0p,1Z. (3.37)
So there exists a critical point g of ¢ such that

Ci(p,m0) # 0. (3.38)

Comparing this with (3.36), we infer that o # 0. Moreover, due to (3.38) z¢ is of mountain pass
type and so
Cl ((p, IQ) = 61@,12- (339)

If {0, zo } are the only critical points of ¢, then from (3.36), (3.37) and (3.39) and the Poincare-Hopf

formula, we have

D+ (=Dt = (-1,
=(-1)¥ =0, a contradiction.

So there exists a second nontrivial critical point vy of . Evidently zq, vo € Hg(Z) are nontrivial
solutions of problem (1.1). From regularity theory, we conclude that xq,vg € C3(Z). O
Remark 3.13. Theorem 3.12 above partially extends Theorem 3 of Robinson [14] and also Theorem
2 of Su [16].

Received: February 2008. Revised: April 2008.
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