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ABSTRACT

We study the flip crossed products of the C*-algebras by almost commuting isometries
and obtain some results on their structure, K-theory, and continuity.

RESUMEN

Estudiamos el produto flip crossed de una C*-algebra mediante isometrias casi com-
mutando y obtenemos algunos resultados sobre su estructura, K-teoria, y continuidad.
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Introduction

Recall that the soft torus A. of Exel [3] (for any € € [0, 2] the closed interval) is defined to be the
universal C*-algebra generated by almost commuting two unitaries u. ; and u. 2 in the sense that
lue 2ue1 — ue1ue ]| < e. Its K-theory is computed in [3] by showing that it can be represented
as a crossed product by Z and applying the Pimsner-Voiculescu six-term exact sequense for the
crossed product. It is shown by Exel [4] that there exists a continuous field of C*-algebras on [0, 2]
with fibers the soft tori varying continuously. Furthermore, K-theory and continuity of the crossed
products of A, by the flip (a Zs-action) are considered by Elliott, Exel and Loring [2].

On the other hand, we [8] began to study continuous fields of C*-algebras by almost commuting
isometries and obtained some similar results (but different in some senses) on their structure, K-
theory and continuity as those by Exel. In this paper we consider those properties for the flip
crossed products of the C*-algebras generated by almost commuting isometries.

Refer to [1], [5], and [9] for some basics in C*-algebras and K-theory.

1 The flip crossed products by isometries

The Toeplitz algebra is defined to be the universal C*-algebra generated by a (non-unitary) isom-
etry, and it is denoted by §, which is also the semigroup C*-algebra C*(N) of the semigroup N of
natural numbers. The C*-algebra C(T) of all continuous functions on the 1-torus T is the universal
C*-algebra generated by a unitary, which is also the group C*-algebra C*(Z) of the group Z of
integers. There is a canonical quotient map from § to C(T) by universality, whose kernel is iso-
morphic to the C*-algebra K of all compact operators on a separable infinite dimensional Hilbert
space (cf. [5]).

Definition 1.1 For ¢ € [0, 2], the soft Toeplitz tensor product denoted by §F ®. §F is defined to be
the universal C*-algebra generated by two isometries s 1, Sc 2 such that |[sc25:1 — Se18¢2|| < €
(e-commuting). Let 7 : § ®. § — A, be the canonical onto #-homomorphism sending the isometry
generators to the unitary generators.

Remark. Refer to [8], in which super-softness is further defined and assumed, but it should be
unnecessary from the universality argument (as given below). Instead, in fact, another norm
estimate of the form ||sc 257 1 — 8% 52| < € (e-+-commuting) may be required, but we omit such
an estimate in what follows. If not assuming the estimate, § ®. § should be replaced with C*(N?).,
where C*(N?) is the semigroup C*-algebra of N? (in what follows).

Definition 1.2 The flip on § ®. § is the (non-unital) endomorphism o defined by o(sc,;) = st ;

for j = 1,2. Since o2 is the identity on § ®. §, we denote by (F ®:F) Xo Zo the crossed product
of §F ®. § by the action o of the order 2 cyclic group Zs, i.e., a flip crossed product.
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Definition 1.3 Fore € [0, 2], we define E. to be the universal C*-algebra generated by an isometry

t; and the elements ¢,+1; = u™t1(u*)" for n € N, where u is an isometry, such that ||ut; —tul| < e.
Let a. be the endomorphism of E. defined by ac(t,) = tn11 = ut,u* for n € N. Let E. x, N
be the semigroup crossed product of E. by the action a. of the additive semigroup N of natural
numbers.

Remark. Note that § ®2 F (or C*(N?)y) is isomorphic to the unital full free product § *c §, which
is also isomorphic to the full semigroup C*-algebra C*(N % N) of the free semigroup N« N. As in
the above remark, another estimate ||ut} — tju|| < ¢ may be required accordingly.

It is shown in [8] that § ®. § = E. X4, N, where the map ¢ from §®.§ to E. o, N is defined
by ¢(se,1) = t1 and ¢(se,2) = u, and its inverse ¢ is given by (tny1) = s 95:1(sk )" forn € N
and n =0 and ¥ (u) = s¢ 2.

Proposition 1.4 For ¢ € [0,2], we have the following isomorphism:
(F®eT) Xo Zo 2 B Xgip (NxZs),

where N x Zs is the free product of N and Zo, and the action 8 on E. is given by B(t,) = t& for
n € N.

Proof. The crossed product (F ®c §F) X, Zo is the universal C*-algebra generated by isometries
Se1, Se,2 and a unitary p such that |[s; 25:1 — S-18:2]] < € and psc jp* = s.; (j = 1,2) with
p? =1, while E. X4_.5 (N * Zg) is the C*-algebra generated by isometries t1, « and a unitary v
such that |Juty — tiul| < e and tp41 = utpu® = uty (u*)” for n € N, and vt1v* = ¢7 and vuv* = u*
with v2 = 1. The isomorphism between them is given by sending s. 1, sc .2, and p to t1,u, and v

respectively (cf. [2]). 0

Theorem 1.5 For 0 < e < 2, we obtain the K-theory isomorphisms:
Ko((§ ®:§) %0 L2) 2 Z°,  Ki((F ®c ) o L2) 2 0.

Moreover, K;((§ ®:F) X6 Z2) 2 K;((FRF) %o Z2) for j =0,1.

Proof. Since § ®: § = E: x4, N and a. is a corner endomorphism on E,, note that E. x,, N is
isomorphic to a corner of (E. ® K) X rgid Z, i.e., p((E: ® K) X ,rgia Z)p for a certain projection
p, where p’ is the dual action of the circle action on E. x,. N and id is the identity action
on K (this is a variation of [6], and see also [7]). Hence, (F. X, N) %, Zg is isomorphic to
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P((E: @ K) X pr@id Z)p Xo Za. Therefore,

Kj((Be Xa. N) X Za) 2 K;j(p((E: ® K) X pngid Z)p X6 L2)
=~ K7 (p((B- ® K) X ppgia Z)p)
=~ K2 (p((B: ©K) X pp0i Z)p @ K)
=~ K7 (((B: ® K) X ppgia Z) ® K)
= Ki(B: ® K) Xprgia Z % L),

where K ng (+) is the equivariant K-theory, and note that p((E£. ® K) x s gia Z)p is stably isomorphic
to (E: ® K) X ,nrgia Z, and

(Be ® K) Xpneid Z X Lo =

~

(Es ® K) ><1a'é>'=a'®id (ZZ * ZQ)

(Ea Xoé*a’ (Zg * Zg)) X K

since Z X Zo = Zy * Ly, where o.(1) = p2(1)a(1) (cf. [2]). Set F. = E. Xg1uo (Za * Z3). There
exists the following six-term exact sequence (A) (cf. [2]):

Ko(E.) —— Ko(E-: o Z3) @ Ko(EBe xg Zz) —— Ko(F:)

I |

Kl(Fs) — Kl(Es Ndé Zg)@Kl(EE A& ZQ) — Kl(Es)

Consider the following exact sequence: 0 — J. — E. — 7(FE.) = B. — 0, where 7 is the canonical
quotient map from E. to the quotient 7(E.) = B., where B, is the universal C*-algebra generated
by unitaries un4+1 = w™v(w*)™ for n € N and n = 0, where 7(tp41) = m(uw)"7w(t1)7(u*)” = Upi1
with v = 7(t1) and w = 7(u). As shown in [8], K-theory groups of J. are the same as those of K.
Since this quotient is invariant under the action 8 = o or o, we have the following exact sequence:

(B): 0—3.%XgZy— E.xgZo— w(E;)XgZy—0
and J. g Zs = J. ® C*(Zsy) and the group C*-algebra C*(Zs) is isomorphic to C? via the Fourier
transform.

As shown in [2], it is deduced that 7(E.) x5 Z2 is homotopy equivalent to the crossed product
C(T) xp Za, where 3'(2) = 27! for z € T. It follows that K;(m(E:) xg Z2) is isomorphic to
K;(C(T) xp Zs2). Since the points {£1} in T is fixed under the action 8, we have

0— Co(T \ {:l:l}) N g ZQ — O(T) A ZQ — @20*(22) — O,

where Co(T \ {£1}) is the C*-algebra of all continuous functions on T\ {£1} vanishing at infinity,
and Co(T \ {£1}) x5 Zs = Co(R) ® (C? xg Zz) = Cy(R) ® Ms(C) and C*(Zz) = C2. Hence the
following six-term exact sequence is obtained:

0 —— KQ(C(T) X 31 Zg) E— Z4

I !

0 «—— Kl(C(T) X 31 Zg) — Z,
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where K;(Co(R) ® M3(C)) = K;+1(C) (mod 2) and K;($?C?) = @*K;(C). It follows that
Ko(C(T) % Z2) = 7% and K1(C(T) % Za) =0 (cf. [2]).

Therefore, for the above exact sequence (B), we obtain the diagram:

Z2 e KQ(EE X3 Zg) —_— Z3

I l

0 «—— Ki(E. xgZy) «— 0,
where K;(K ® C*(Z3)) = K;(C?). Hence we obtain Ko(E. xgZs) = Z° and K1(E. xgZ3) =0
This implies that the diagram (A) is

7 Il — Ky(F.)

I l

Ki(Fp) —— 080 — 0

where it is shown in [8] that Ko(E.) = Z and K;(E.) = 0. It follows that Ko(F.) = Z° and
Ki(F.) 20. It follows from this and the first part shown above that Ko((§F ®: §) X Z2) = Z° and
1((& ®s S) Ao ZQ) - O

The second claim follows from the case ¢ = 0 and the same argument as above. Note that
F®F = F xiq N, where id is the trivial action. O

Corollary 1.6 For 0 < e < 2, the natural onto *-homomorphism e from (F Q: §) X Za to
(T ®F) x5 Zs sending se,j to so; (j = 1,2) induces the isomorphism between their K-groups.

Proposition 1.7 There exists a continuous field of C*-algebras on the closed interval [0,2] such
that its fibers are (F ®: §) Xy Lo for e € [0,2], and for any a € (F Q2 §) Xy Za, the sections
[0,2] 2 e+ @(a) € (FR:F) Xy Za are continuous, where pe : (FR2F) XNy Za — (FReF) Xo L2 is
the natural onto *-homomorphism sending s ; to sc; (7 =0,1).

Proof. As shown before, (§ ®: §) Xo Za = (E; Mo, N) Xy Zy. Furthermore, this is isomorphic to
P((Ee ® K) % prgia Z)p X Zz. Hence it follows that

((Be ¥a. N) x5 Z2) @ K= (p((Ee ® K) Xprgid Z)p X Z2) @ K
p((E ® K) pr@id Z)p @ K) Xoeia Z2
(e ® K) Xprgid Z) ® K) Xoeid Z2
(Be @ K®K) X prgideid Z) Nogid L2
(E- ®K) pA®id Z) X Lo

) ol*xo®id (Z2 * ZZ)

1R IR

1%

(
(
(
(
(
(Ee

IR

It is deduced from [2] that there exists a continuous field of C*-algebras on [0, 2] such that its fibers
are (Ee ® K) %o woid (Z2 * Zg) for € € [0,2], and for any b € (Fz ® K) X4140mid (Z2 * Z2), the
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sections [0,2] 3 € — ¢(b) € (E: ®K) X0 vowid (Z2 % Zy) are continuous, where v, is the unique onto
s-homomorphism from (E; ® K) X gt wo@id (Zy % Z2) to (E: @ K) X ot xo®id (Zy % Z2). Cutting down
this continuous field by cutting down the fibers from ((E: o, N) X5 Z2) @ K to (E: Mo, N) X, Zo
by minimal projections, we obtain the desired continuous field. O

2 The flip crossed products by n isometries

The n-fold tensor product ®"§ of § is the universal C*-algebra generated by mutually commuting
and *x-commuting n isometries, while the universal C*-algebra generated by mutually commuting
n isometries is just the semigroup C*-algebra C*(N™) of the semigroup N™. The C*-algebra C(T")
of all continuous functions on the n-torus T™ is the universal C*-algebra generated by mutually
commuting n unitaries, which is also the group C*-algebra C*(Z") of the group Z™. There is a
canonical quotient map from ®"F to C(T") =2 ®™C(T) by universality,

Definition 2.1 For ¢ € [0, 2], the soft Toeplitz n-tensor product denoted by ®F is defined to be
the universal C*-algebra generated by n isometries s. ; (1 < j < n) such that ||s. xSe,; — Se,jSe k]| <
e (1 <4,k <n).

Remark. Note that, in fact, the norm estimates of the form ||s ks? ; — 8% ;8[| < € may be further
required (and in what follows). If not assuming these estimates, ®7F should be replaced with
C*(N™). in the same sense (and in what follows).

Definition 2.2 The flip on ®7F is the (non-unital) endomorphism o defined by o(s. ;) = sk . for

€,J
1 < j < n. Since o2 is the identity on ®"F, we denote by (®1F) X, Zz the crossed product of @7F

by the action o of Zs.

Definition 2.3 For € € [0, 2], we define EI™ to be the universal C*-algebra generated by n isome-
tries tgj) (1 < j < m) and the partial isometries tg}rl = u”tgj)(u*)" for n € N, where u is an
isometry such that [lut/”) — tPu| < e and [[t{7¢9) — i) < ¢ (1 <,k < m). Let ac be
the endomorphism of EI" defined by o ( ${>) = tgj_l = utu* for n € N. Let E™ %, N be the

semigroup crossed product of EI" by the action a. of N.

Remark. Note that ®5F (or C*(N"™)2) is isomorphic to the unital full free product *g§, which is
also isomorphic to the full semigroup C*-algebra C*(x"N) of the free semigroup *"N. As in the
above remark, the additional estimates ||u(t§j))* - (tgj))*uH < e and Htgk)(tgj))* - (tgj))*tgk)ﬂ <e
may be required accordingly.

It is shown as in [8] that ®™T1F & E™ x,_N as in the case in Section 1.

Proposition 2.4 For e € [0,2], we have

(REF) %6 Lz 2 B Mo up (N * La),
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where the action 3 on EI" is given by ﬁ(t%j)) = (t%j))* forneNand1 <j<m.

Proof. This is shown as in the proof of Proposition 1.4 similarly. O

Theorem 2.5 For 0 < e < 2, we obtain (inductively)
Ko(@'18) %0 Z2) = 22774, Ky((@115) %0 Z2) 0.

Moreover, K;((@"1F) %y Zo) 2 K;((@™F) x4 Zs) for j =0,1.

Proof. Since @ T1F = E™ x4 N, note that E™ x4, N is isomorphic to a corner of (E"®K) X 51 giaZ,
ie., p((B" ® K) X,pgia Z)p for a certain projection p, where p/ is the dual action of the circle
action on EM™ x,_ N and id is the identity action on K (this is a variation of [6], and see also [7]).
Hence, (E™ Xa, N) X Zg is isomorphic to p((E" ® K) X yrgida Z)p Mo Zz. Therefore,
KG((EX %o, N) %g Zo) = Kj(p((E" @ K) X ppgia Z)p 2o ZLo)
=~ K2 (p((EP @ K) Xpp@ia Z)p)
=~ K (p((E" © K) Xppaia Z)p ® K)
= K7 (B @ K) %y 014 Z) © K)
= K;((EF @ K) Xppeia Z X L),
where p((E* ® K) X psgia Z)p is stably isomorphic to (E!" ® K) Xy gid Z, and
(E;n ® K) X pr@id Lo X g =2 (E;n & K) X prxo®id (ZQ * ZQ)
= (E;n Xphxo (Zg * Zg)) QR K

since Z x Zy = 7o x L (cf. [2]). Set F" = EI" X ynuo (Zg * Zg). There exists the following six-term
exact sequence (A)y, (cf. [2]):

Ko(E;n) —_— Ko(E;n X]Pé\ ZQ)@KO(E;TL Ao ZQ) —_— Ko(FEm)
Ky (F") e Ky(BI Xpp L) © Ky (B %o Zo) —— Ki(E).
We now have the following exact sequence:
000" X2y — E' \Zy — m(EM) xZs — 0,

where the map m is sending isometries of EI* to unitaries with the same norm estimates by
universality, and J7 is the kernel of 7, and the action of Zs is given by p or o. Furthermore, it
follows that J" x Zy = J* @ C*(Z2) and the K-theory of J7" is the same as that of K.

It is deduced that w(ET*) x Zs is homotopy equivalent to C(T™) x, Z2, where 3(z;) = (zj_l)
for (z;) € T™. Since the points (£1,---,+1) € T™ are fixed under «, we have

0— Co(T™\ (£1,--- ,£1)) x Zy — C(T™) % Zy — &> C*(Zy) — 0,
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where Cy(X) is the C*-algebra of all continuous functions on a locally compact Hausdorff space X
vanishing at infinity (in what follows). Set X,,+1 = T™ \ (£1,---,%1). By considering invariant
subspaces in X,,4+1 under (3, we obtain a finite composition series {Sj};-”:l of Co(Xim+1) X Z2 such
that £0 = {O}, Sj = CQ(Xj) X Zg, and

£5/Lj-1 = @m I Gy (T \ {£1})™ 7+ % Zo,
where ,,Cy,—j+1 mean the combinations. Furthermore,
CQ((T \ {:l:l})m_‘j+1) X Zg = Co(Rm_jJrl) ® (C(Hm_‘j+1{:|:i}) X Zg)

and C(ITM 71 44}) x Zg = @M I+ (C2 % Zy) = @™+ My (C), where T\ {#1} is homeomorphic
to iRU (—%)R so that the above isomorphisms are deduced from considering orbits under 3 in this
identification. Set C'(m, j) = mCrm—jt1(m — j 4+ 1). Thus, the following six-term exact sequences
are obtained:

Ko(£j-1) —— Ko(£)) —— Kpn—jr1(8™9C)

I l

K2 (0CmIC) —— Ki(g;) «— Ki(L-1).
Now consider the case m = 2. Then
0 — Co(T2\ (£1,%1)) x Zy — C(T2) x Zy — &2 C*(Z) — 0.

Furthermore, 0— Co(Xl) NZQ — CO(XQ) ><1Z2 — Oo(XQ\Xl) NZQ — O, where XQ = T2\(:|:1, :|:1),
X1 = (T \ {£1})?, and Cp(X2 \ X1) X Zz is isomorphic to &?Co(T \ {£1}) x Zs. We have the

following six-term exact sequence:

Zz _— Ko(CO(Xg) NZQ) — 0

I l

Zz — Kl(CO(Xg) NZQ) — O,
which implies Ko(co(XQ) bl ZQ) =~ (0 and Kl(CO(XQ) X ZQ) = (. Thus,

0 —— Ko(C(T?) x Zy) —— 72’

I l

0 —— Ki(C(T?) x Zy) «— 0,
which implies Ko(C(T2) % Zy) = Z2" and K;(C(T?) x Zs) = 0. Therefore,

72 —— Ko(E% % Zy) — 7%

I !

0 «—— Ki{(E2%Zy) «—— 0.
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It follows that Ko(E2 x Zy) = Z2° 2 and K (E2 x Zs) = 0. Therefore,
7, L 7@Prrgytyr Ko(F2)
I I
Ki(F2) «——  0&0 «——— 0.
Hence, it follows that Ko(F2) = Z2'+3 and K, (F2) = 0.
Next consider the case m = 3. Then
0 — Co(T3\ (£1, £1, £1)) x Zy — C(T?) x Zy — & C*(Zs) — 0.

Furthermore, 0 — Co(Xg) X Zg — Co(X3) X Z2 — CQ(X3 \ Xg) X Zg — O, where X3 = Tg\
(£1,41,+1), and

0— Co(Xl) X Zg — CQ(XQ) X Zg — CQ(XQ\Xl) X Z2 — O,

where X7 = (T \ {£1})3. We have the following six-term exact sequence:
O E— Ko(co(XQ) NZQ) _— ZG
0 «——— Kl(co(XQ) NZQ) — Zg,
which implies Ko(Co(X2) % Zg) = Z3 and K1(Co(X2) % Zz) = 0. Furthermore,
Z3 _— Ko(CO(X3) NZQ) — 0
Z3 — Kl(CO(X3) NZQ) — O,
which implies Ko(CO(Xg) X ZQ) =~ (0 and Kl(CO(Xg) X ZQ) = 0. Thus,
0 —— Ko(C(T?) % Zy) — Z*'
0 —— Ki(C(T?) % Zy) — 0,
which implies Ko(C(T?) % Zy) = Z2* and K1 (C(T?) x Zs) = 0. Therefore,
72— Ko(E3 % Zy) —— 7%
0 —— K\(E? % Zy) — 0.
It follows that Ko(E® x Zy) = 722 and K (E? x Zs) = 0. Therefore,
Z —— 77272 Ko (F3)

| l

Ki(F3) «—— 060 — 0
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Hence, it follows that Ko(F3) = 22°+3 and K, (F3) 0.

Next consider the case m = 4. Then
0 — Co(T*\ (£1, 1, £1,£1)) 1 Zy — CO(T) % Zy — 02" C*(Zs) — 0.

Furthermore, 0 — Co(Xg) X Zg — Co(X4) X Z2 — CQ(X4 \ X3) X Zg — O, where X4 = T4\
(£1, 41, +1,+1), and

0— Co(Xl) X Zg — CQ(XQ) X Zg — CQ(XQ\Xl) X Z2 — O,

where X7 = (T \ {£1})*. We have the following six-term exact sequence:
Z4 _— KQ(C()(XQ) NZQ) — 0
Zl2 — Kl(CO(Xg) NZQ) — O,
which implies Ko(Co(X2) % Z2) =2 0 and K;(Co(X2) x Zg) = Z8. Furthermore,
0 —— KQ(CQ(Xg) X Zg) _— Zl2
0 —— Kl(CQ(Xg) ><1Z2) — ZS,
which implies Ko(Co(X3) % Zg) = Z* and K1(Co(X3) % Zz) = 0. Furthermore,
Z4 _— Ko(CO(X4) NZQ) — 0
Z* —— Kl(CO(X4) NZQ) — 0,
which implies Ko(co(X4) X ZQ) =~ (0 and Kl(CO(X4) X ZQ) =~ (. Thus,
0 —— Ko(C(T*) x Zy) —— 72
0 «—— K;i(C(T*) x Z3) +—— 0,
which implies Ko(C(T*) % Zy) = Z2” and K1 (C(T*) x Zs) = 0. Therefore,
72— Ko(E* % Zy) —— 7%
0 —— Ky(E*%Zy) — 0.
It follows that Ko(E* x Zy) = Z2° 2 and K (E* x Zs) = 0. Therefore,
—— P e —— Ko(F2)

l

Z
Ky(F) —— 060 — 0.
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Hence, it follows that Ko(F2) =2 Z2°+3 and K, (F4) 0.

The case for m general can be treated by the step by step argument as shown above. The
argument for K-theory is inductive in a sense that it involves essentially suspensions and direct
sums inductively. The second claim follows from considering the case € = 0 and the same argument
as above. O

Corollary 2.6 For 0 < ¢ < 2, the natural onto x-homomorphism . o from (®2”+1S) Xg Lo to
(@M F) x4 Zo sending s j to so; (1 < j < m + 1) induces the isomorphism between their
K-groups.

Proposition 2.7 There exists a continuous field of C*-algebras on the closed interval [0,2] such
that fibers are (2T 1F) X, Zs for e € [0,2], and for any a € (R5'F) x4 Za, the sections [0,2] >
£ p:(a) € (RTIF) 1, Zy are continuous, where p. : (®72”+1S) Mo Lo — (RMFTIF) X, Zo is the

natural onto *-homomorphism sending so2 j to scj (1 <j<m-+1).

Proof. As shown before, (2™1F) x4, Zy = (E™ X4, N) x4 Zy. Furthermore, this is isomorphic to
P((E ® K) Xpngid Z)p Xo Zz2. Hence it follows that

IR

((E;n X, N) NUZQ)@)K Em®K) pL®id Z)p% Zg)@K

E ® K) X pr®id Z)p ® K) No®id Zo

p(
p(
(BT @ K) X preid Z) @ K) Xogid Z2
(B @ K@ K) X pneideid Z) Xogid L2
(E" ® K) x pA®id Z) X Lo

E™ ©K) % psronia (Za * Zo).

(
(

1R IR

1

(
(
(
(
(
=(

It is deduced from [2] that there exists a continuous field of C*-algebras on [0, 2] such that fibers
are (E" ® K) Xprwowia (Z2 * Z2) for € € [0,2], and for any b € (EJ* ® K) X ppwopia (Z2 * Z2),
the sections [0,2] 3 € +— 1.(b) € (E" ® K) X prsowid (Z2 * Zz) are continuous, where 1. is the
unique onto *-homomorphism from (E3" ® K) X ppwo@id (Z2 * Z2) to (EI* @ K) X prsowid (Za * Za).
Cutting down this continuous field by cutting down the fibers from ((EI" x4, N) X, Z2) @ K to
(E? Xqo, N) X5 Zz by minimal projections, we obtain the desired continuous field. |
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