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ABSTRACT

We study the flip crossed products of the C∗-algebras by almost commuting isometries

and obtain some results on their structure, K-theory, and continuity.

RESUMEN

Estudiamos el produto flip crossed de una C∗-algebra mediante isometrias casi com-

mutando y obtenemos algunos resultados sobre su estructura, K-teoria, y continuidad.
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Introduction

Recall that the soft torus Aε of Exel [3] (for any ε ∈ [0, 2] the closed interval) is defined to be the

universal C∗-algebra generated by almost commuting two unitaries uε,1 and uε,2 in the sense that

‖uε,2uε,1 − uε,1uε,2‖ ≤ ε. Its K-theory is computed in [3] by showing that it can be represented

as a crossed product by Z and applying the Pimsner-Voiculescu six-term exact sequense for the

crossed product. It is shown by Exel [4] that there exists a continuous field of C∗-algebras on [0, 2]

with fibers the soft tori varying continuously. Furthermore, K-theory and continuity of the crossed

products of Aε by the flip (a Z2-action) are considered by Elliott, Exel and Loring [2].

On the other hand, we [8] began to study continuous fields of C∗-algebras by almost commuting

isometries and obtained some similar results (but different in some senses) on their structure, K-

theory and continuity as those by Exel. In this paper we consider those properties for the flip

crossed products of the C∗-algebras generated by almost commuting isometries.

Refer to [1], [5], and [9] for some basics in C∗-algebras and K-theory.

1 The flip crossed products by isometries

The Toeplitz algebra is defined to be the universal C∗-algebra generated by a (non-unitary) isom-

etry, and it is denoted by F, which is also the semigroup C∗-algebra C∗(N) of the semigroup N of

natural numbers. The C∗-algebra C(T) of all continuous functions on the 1-torus T is the universal

C∗-algebra generated by a unitary, which is also the group C∗-algebra C∗(Z) of the group Z of

integers. There is a canonical quotient map from F to C(T) by universality, whose kernel is iso-

morphic to the C∗-algebra K of all compact operators on a separable infinite dimensional Hilbert

space (cf. [5]).

Definition 1.1 For ε ∈ [0, 2], the soft Toeplitz tensor product denoted by F⊗ε F is defined to be

the universal C∗-algebra generated by two isometries sε,1, sε,2 such that ‖sε,2sε,1 − sε,1sε,2‖ ≤ ε

(ε-commuting). Let π : F⊗ε F→ Aε be the canonical onto ∗-homomorphism sending the isometry

generators to the unitary generators.

Remark. Refer to [8], in which super-softness is further defined and assumed, but it should be

unnecessary from the universality argument (as given below). Instead, in fact, another norm

estimate of the form ‖sε,2s
∗

ε,1 − s
∗

ε,1sε,2‖ ≤ ε (ε-∗-commuting) may be required, but we omit such

an estimate in what follows. If not assuming the estimate, F⊗εF should be replaced with C∗(N2)ε,

where C∗(N2) is the semigroup C∗-algebra of N
2 (in what follows).

Definition 1.2 The flip on F⊗ε F is the (non-unital) endomorphism σ defined by σ(sε,j) = s∗ε,j

for j = 1, 2. Since σ2 is the identity on F⊗ε F, we denote by (F⊗ε F) ⋊σ Z2 the crossed product

of F⊗ε F by the action σ of the order 2 cyclic group Z2, i.e., a flip crossed product.
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Definition 1.3 For ε ∈ [0, 2], we define Eε to be the universalC∗-algebra generated by an isometry

t1 and the elements tn+1 = unt1(u
∗)n for n ∈ N, where u is an isometry, such that ‖ut1− t1u‖ ≤ ε.

Let αε be the endomorphism of Eε defined by αε(tn) = tn+1 = utnu
∗ for n ∈ N. Let Eε ⋊αε

N

be the semigroup crossed product of Eε by the action αε of the additive semigroup N of natural

numbers.

Remark. Note that F⊗2 F (or C∗(N2)2) is isomorphic to the unital full free product F ∗C F, which

is also isomorphic to the full semigroup C∗-algebra C∗(N ∗ N) of the free semigroup N ∗ N. As in

the above remark, another estimate ‖ut∗
1
− t∗

1
u‖ ≤ ε may be required accordingly.

It is shown in [8] that F⊗ε F ∼= Eε ⋊αε
N, where the map ϕ from F⊗ε F to Eε ⋊αε

N is defined

by ϕ(sε,1) = t1 and ϕ(sε,2) = u, and its inverse ψ is given by ψ(tn+1) = sn
ε,2sε,1(s

∗

ε,2)
n for n ∈ N

and n = 0 and ψ(u) = sε,2.

Proposition 1.4 For ε ∈ [0, 2], we have the following isomorphism:

(F⊗ε F) ⋊σ Z2
∼= Eε ⋊αε∗β (N ∗ Z2),

where N ∗ Z2 is the free product of N and Z2, and the action β on Eε is given by β(tn) = t∗n for

n ∈ N.

Proof. The crossed product (F ⊗ε F) ⋊σ Z2 is the universal C∗-algebra generated by isometries

sε,1, sε,2 and a unitary ρ such that ‖sε,2sε,1 − sε,1sε,2‖ ≤ ε and ρsε,jρ
∗ = sε,j (j = 1, 2) with

ρ2 = 1, while Eε ⋊αε∗β (N ∗ Z2) is the C∗-algebra generated by isometries t1, u and a unitary v

such that ‖ut1− t1u‖ ≤ ε and tn+1 = utnu
∗ = unt1(u

∗)n for n ∈ N, and vt1v
∗ = t∗

1
and vuv∗ = u∗

with v2 = 1. The isomorphism between them is given by sending sε,1, sε,2, and ρ to t1, u, and v

respectively (cf. [2]). 2

Theorem 1.5 For 0 ≤ ε < 2, we obtain the K-theory isomorphisms:

K0((F⊗ε F) ⋊σ Z2) ∼= Z
9, K1((F⊗ε F) ⋊σ Z2) ∼= 0.

Moreover, Kj((F⊗ε F) ⋊σ Z2) ∼= Kj((F⊗ F) ⋊σ Z2) for j = 0, 1.

Proof. Since F ⊗ε F ∼= Eε ⋊αε
N and αε is a corner endomorphism on Eε, note that Eε ⋊αε

N is

isomorphic to a corner of (Eε ⊗ K) ⋊ρ∧

ε
⊗id Z, i.e., p((Eε ⊗ K) ⋊ρ∧

ε
⊗id Z)p for a certain projection

p, where ρ∧ε is the dual action of the circle action on Eε ⋊αε
N and id is the identity action

on K (this is a variation of [6], and see also [7]). Hence, (Eε ⋊αε
N) ⋊σ Z2 is isomorphic to
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p((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)p⋊σ Z2. Therefore,

Kj((Eε ⋊αε
N) ⋊σ Z2) ∼= Kj(p((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)p⋊σ Z2)

∼= KZ2

j (p((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)p)

∼= KZ2

j (p((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)p⊗K)

∼= KZ2

j (((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)⊗K)

∼= Kj((Eε ⊗K) ⋊ρ∧

ε
⊗id Z ⋊ Z2),

where KZ2

j (·) is the equivariant K-theory, and note that p((Eε⊗K)⋊ρ∧

ε
⊗id Z)p is stably isomorphic

to (Eε ⊗K) ⋊ρ∧

ε
⊗id Z, and

(Eε ⊗K) ⋊ρ∧

ε
⊗id Z ⋊ Z2

∼= (Eε ⊗K) ⋊σ′

ε
∗σ⊗id (Z2 ∗ Z2)

∼= (Eε ⋊σ′

ε
∗σ (Z2 ∗ Z2))⊗K

since Z ⋊ Z2
∼= Z2 ∗ Z2, where σ′

ε(1) = ρ∧ε (1)σ(1) (cf. [2]). Set Fε = Eε ⋊σ′

ε
∗σ (Z2 ∗ Z2). There

exists the following six-term exact sequence (A) (cf. [2]):

K0(Eε) −−−−→ K0(Eε ⋊σ′

ε
Z2)⊕K0(Eε ⋊σ Z2) −−−−→ K0(Fε)

x









y

K1(Fε) ←−−−− K1(Eε ⋊σ′

ε
Z2)⊕K1(Eε ⋊σ Z2) ←−−−− K1(Eε).

Consider the following exact sequence: 0→ Iε → Eε → π(Eε) = B′

ε → 0, where π is the canonical

quotient map from Eε to the quotient π(Eε) = B′

ε, where B′

ε is the universal C∗-algebra generated

by unitaries un+1 = wnv(w∗)n for n ∈ N and n = 0, where π(tn+1) = π(u)nπ(t1)π(u∗)n = un+1

with v = π(t1) and w = π(u). As shown in [8], K-theory groups of Iε are the same as those of K.

Since this quotient is invariant under the action β = σ′

ε or σ, we have the following exact sequence:

(B) : 0→ Iε ⋊β Z2 → Eε ⋊β Z2 → π(Eε) ⋊β Z2 → 0

and Iε ⋊β Z2
∼= Iε ⊗C

∗(Z2) and the group C∗-algebra C∗(Z2) is isomorphic to C
2 via the Fourier

transform.

As shown in [2], it is deduced that π(Eε)⋊β Z2 is homotopy equivalent to the crossed product

C(T) ⋊β′ Z2, where β′(z) = z−1 for z ∈ T. It follows that Kj(π(Eε) ⋊β Z2) is isomorphic to

Kj(C(T) ⋊β′ Z2). Since the points {±1} in T is fixed under the action β′, we have

0→ C0(T \ {±1}) ⋊β′ Z2 → C(T) ⋊β′ Z2 → ⊕
2C∗(Z2)→ 0,

where C0(T \ {±1}) is the C∗-algebra of all continuous functions on T \ {±1} vanishing at infinity,

and C0(T \ {±1}) ⋊β′ Z2
∼= C0(R)⊗ (C2

⋊β′ Z2) ∼= C0(R) ⊗M2(C) and C∗(Z2) ∼= C
2. Hence the

following six-term exact sequence is obtained:

0 −−−−→ K0(C(T) ⋊β′ Z2) −−−−→ Z
4

x









y

0 ←−−−− K1(C(T) ⋊β′ Z2) ←−−−− Z,
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where Kj(C0(R) ⊗ M2(C)) ∼= Kj+1(C) (mod 2) and Kj(⊕
2
C

2) ∼= ⊕4Kj(C). It follows that

K0(C(T) ⋊β′ Z2) ∼= Z
3 and K1(C(T) ⋊β′ Z2) ∼= 0 (cf. [2]).

Therefore, for the above exact sequence (B), we obtain the diagram:

Z
2 −−−−→ K0(Eε ⋊β Z2) −−−−→ Z

3

x









y

0 ←−−−− K1(Eε ⋊β Z2) ←−−−− 0,

where Kj(K ⊗ C
∗(Z2)) ∼= Kj(C

2). Hence we obtain K0(Eε ⋊β Z2) ∼= Z
5 and K1(Eε ⋊β Z2) ∼= 0.

This implies that the diagram (A) is

Z −−−−→ Z
5 ⊕ Z

5 −−−−→ K0(Fε)
x









y

K1(F0) ←−−−− 0⊕ 0 ←−−−− 0

where it is shown in [8] that K0(Eε) ∼= Z and K1(Eε) ∼= 0. It follows that K0(Fε) ∼= Z
9 and

K1(Fε) ∼= 0. It follows from this and the first part shown above that K0((F⊗ε F)⋊σ Z2) ∼= Z
9 and

K1((F⊗ε F) ⋊σ Z2) ∼= 0.

The second claim follows from the case ε = 0 and the same argument as above. Note that

F⊗ F ∼= F ⋊id N, where id is the trivial action. 2

Corollary 1.6 For 0 ≤ ε < 2, the natural onto ∗-homomorphism ϕε,0 from (F ⊗ε F) ⋊σ Z2 to

(F⊗ F) ⋊σ Z2 sending sε,j to s0,j (j = 1, 2) induces the isomorphism between their K-groups.

Proposition 1.7 There exists a continuous field of C∗-algebras on the closed interval [0, 2] such

that its fibers are (F ⊗ε F) ⋊σ Z2 for ε ∈ [0, 2], and for any a ∈ (F ⊗2 F) ⋊σ Z2, the sections

[0, 2] ∋ ε 7→ ϕε(a) ∈ (F⊗ε F) ⋊σ Z2 are continuous, where ϕε : (F⊗2 F) ⋊σ Z2 → (F⊗ε F) ⋊σ Z2 is

the natural onto ∗-homomorphism sending s2,j to sε,j (j = 0, 1).

Proof. As shown before, (F ⊗ε F) ⋊σ Z2
∼= (Eε ⋊αε

N) ⋊σ Z2. Furthermore, this is isomorphic to

p((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)p⋊σ Z2. Hence it follows that

((Eε ⋊αε
N) ⋊σ Z2)⊗K ∼= (p((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)p⋊σ Z2)⊗ K

∼= (p((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)p⊗K) ⋊σ⊗id Z2

∼= (((Eε ⊗K) ⋊ρ∧

ε
⊗id Z)⊗K) ⋊σ⊗id Z2

∼= ((Eε ⊗K⊗K) ⋊ρ∧

ε
⊗id⊗id Z) ⋊σ⊗id Z2

∼= ((Eε ⊗K) ⋊ρ∧

ε
⊗id Z) ⋊σ Z2

∼= (Eε ⊗K) ⋊σ′

ε
∗σ⊗id (Z2 ∗ Z2).

It is deduced from [2] that there exists a continuous field of C∗-algebras on [0, 2] such that its fibers

are (Eε ⊗ K) ⋊σ′

ε
∗σ⊗id (Z2 ∗ Z2) for ε ∈ [0, 2], and for any b ∈ (E2 ⊗ K) ⋊σ′

2
∗σ⊗id (Z2 ∗ Z2), the
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sections [0, 2] ∋ ε 7→ ψε(b) ∈ (Eε⊗K)⋊σ′

ε
∗σ⊗id (Z2∗Z2) are continuous, where ψε is the unique onto

∗-homomorphism from (E2 ⊗K) ⋊σ′

2
∗σ⊗id (Z2 ∗Z2) to (Eε ⊗K) ⋊σ′

ε
∗σ⊗id (Z2 ∗Z2). Cutting down

this continuous field by cutting down the fibers from ((Eε ⋊αε
N) ⋊σ Z2)⊗K to (Eε ⋊αε

N) ⋊σ Z2

by minimal projections, we obtain the desired continuous field. 2

2 The flip crossed products by n isometries

The n-fold tensor product ⊗nF of F is the universal C∗-algebra generated by mutually commuting

and ∗-commuting n isometries, while the universal C∗-algebra generated by mutually commuting

n isometries is just the semigroup C∗-algebra C∗(Nn) of the semigroup N
n. The C∗-algebra C(Tn)

of all continuous functions on the n-torus T
n is the universal C∗-algebra generated by mutually

commuting n unitaries, which is also the group C∗-algebra C∗(Zn) of the group Z
n. There is a

canonical quotient map from ⊗nF to C(Tn) ∼= ⊗nC(T) by universality,

Definition 2.1 For ε ∈ [0, 2], the soft Toeplitz n-tensor product denoted by ⊗n
ε F is defined to be

the universal C∗-algebra generated by n isometries sε,j (1 ≤ j ≤ n) such that ‖sε,ksε,j−sε,jsε,k‖ ≤

ε (1 ≤ j, k ≤ n).

Remark. Note that, in fact, the norm estimates of the form ‖sε,ks
∗

ε,j −s
∗

ε,jsε,k‖ ≤ ε may be further

required (and in what follows). If not assuming these estimates, ⊗n
ε F should be replaced with

C∗(Nn)ε in the same sense (and in what follows).

Definition 2.2 The flip on ⊗n
ε F is the (non-unital) endomorphism σ defined by σ(sε,j) = s∗ε,j for

1 ≤ j ≤ n. Since σ2 is the identity on ⊗n
ε F, we denote by (⊗n

ε F)⋊σ Z2 the crossed product of ⊗n
ε F

by the action σ of Z2.

Definition 2.3 For ε ∈ [0, 2], we define Em
ε to be the universal C∗-algebra generated by n isome-

tries t
(j)

1
(1 ≤ j ≤ m) and the partial isometries t

(j)

n+1
= unt

(j)

1
(u∗)n for n ∈ N, where u is an

isometry such that ‖ut
(j)

1
− t

(j)

1
u‖ ≤ ε and ‖t

(k)

1
t
(j)

1
− t

(j)

1
t
(k)

1
‖ ≤ ε (1 ≤ j, k ≤ m). Let αε be

the endomorphism of Em
ε defined by αε(t

(j)
n ) = t

(j)

n+1
= ut

(j)
n u∗ for n ∈ N. Let Em

ε ⋊αε
N be the

semigroup crossed product of Em
ε by the action αε of N.

Remark. Note that ⊗n
2
F (or C∗(Nn)2) is isomorphic to the unital full free product ∗n

C
F, which is

also isomorphic to the full semigroup C∗-algebra C∗(∗nN) of the free semigroup ∗nN. As in the

above remark, the additional estimates ‖u(t
(j)

1
)∗ − (t

(j)

1
)∗u‖ ≤ ε and ‖t

(k)

1
(t

(j)

1
)∗ − (t

(j)

1
)∗t

(k)

1
‖ ≤ ε

may be required accordingly.

It is shown as in [8] that ⊗m+1

ε F ∼= Em
ε ⋊αε

N as in the case in Section 1.

Proposition 2.4 For ε ∈ [0, 2], we have

(⊗m+1

ε F) ⋊σ Z2
∼= Em

ε ⋊αε∗β (N ∗ Z2),
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where the action β on Em
ε is given by β(t

(j)
n ) = (t

(j)
n )∗ for n ∈ N and 1 ≤ j ≤ m.

Proof. This is shown as in the proof of Proposition 1.4 similarly. 2

Theorem 2.5 For 0 ≤ ε < 2, we obtain (inductively)

K0((⊗
m+1

ε F) ⋊σ Z2) ∼= Z
2

m+2
+3, K1((⊗

m+1

ε F) ⋊σ Z2) ∼= 0.

Moreover, Kj((⊗
m+1

ε F) ⋊σ Z2) ∼= Kj((⊗
m+1F) ⋊σ Z2) for j = 0, 1.

Proof. Since⊗m+1

ε F ∼= Em
ε ⋊αε

N, note that Em
ε ⋊αε

N is isomorphic to a corner of (Em
ε ⊗K)⋊ρ∧

ε
⊗idZ,

i.e., p((Em
ε ⊗ K) ⋊ρ∧

ε
⊗id Z)p for a certain projection p, where ρ∧ε is the dual action of the circle

action on Em
ε ⋊αε

N and id is the identity action on K (this is a variation of [6], and see also [7]).

Hence, (Em
ε ⋊αε

N) ⋊σ Z2 is isomorphic to p((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)p⋊σ Z2. Therefore,

Kj((E
m
ε ⋊αε

N) ⋊σ Z2) ∼= Kj(p((E
m
ε ⊗K) ⋊ρ∧

ε
⊗id Z)p⋊σ Z2)

∼= KZ2

j (p((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)p)

∼= KZ2

j (p((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)p⊗K)

∼= KZ2

j (((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)⊗K)

∼= Kj((E
m
ε ⊗K) ⋊ρ∧

ε
⊗id Z ⋊ Z2),

where p((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)p is stably isomorphic to (Em

ε ⊗K) ⋊ρ∧

ε
⊗id Z, and

(Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z ⋊ Z2

∼= (Em
ε ⊗K) ⋊ρ∧

ε
∗σ⊗id (Z2 ∗ Z2)

∼= (Em
ε ⋊ρ∧

ε
∗σ (Z2 ∗ Z2))⊗K

since Z ⋊ Z2
∼= Z2 ∗Z2 (cf. [2]). Set Fm

ε = Em
ε ⋊ρ∧

ε
∗σ (Z2 ∗Z2). There exists the following six-term

exact sequence (A)m (cf. [2]):

K0(E
m
ε ) −−−−→ K0(E

m
ε ⋊ρ∧

ε
Z2)⊕K0(E

m
ε ⋊σ Z2) −−−−→ K0(F

m
ε )

x









y

K1(F
m
ε ) ←−−−− K1(E

m
ε ⋊ρ∧

ε
Z2)⊕K1(E

m
ε ⋊σ Z2) ←−−−− K1(E

m
ε ).

We now have the following exact sequence:

0→ Im
ε ⋊ Z2 → Em

ε ⋊ Z2 → π(Em
ε ) ⋊ Z2 → 0,

where the map π is sending isometries of Em
ε to unitaries with the same norm estimates by

universality, and Im
ε is the kernel of π, and the action of Z2 is given by ρ∧ε or σ. Furthermore, it

follows that Im
ε ⋊ Z2

∼= Im
ε ⊗ C

∗(Z2) and the K-theory of Im
ε is the same as that of K.

It is deduced that π(Em
ε ) ⋊ Z2 is homotopy equivalent to C(Tm) ⋊σ Z2, where β(zj) = (z−1

j )

for (zj) ∈ T
m. Since the points (±1, · · · ,±1) ∈ T

m are fixed under α, we have

0→ C0(T
m \ (±1, · · · ,±1)) ⋊ Z2 → C(Tm) ⋊ Z2 → ⊕

2
m

C∗(Z2)→ 0,
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where C0(X) is the C∗-algebra of all continuous functions on a locally compact Hausdorff space X

vanishing at infinity (in what follows). Set Xm+1 = T
m \ (±1, · · · ,±1). By considering invariant

subspaces in Xm+1 under β, we obtain a finite composition series {Lj}
m
j=1

of C0(Xm+1) ⋊ Z2 such

that L0 = {0}, Lj = C0(Xj)× Z2, and

Lj/Lj−1
∼= ⊕mCm−j+1C0((T \ {±1})m−j+1) ⋊ Z2,

where mCm−j+1 mean the combinations. Furthermore,

C0((T \ {±1})m−j+1) ⋊ Z2
∼= C0(R

m−j+1)⊗ (C(Πm−j+1{±i}) ⋊ Z2)

and C(Πm−j+1{±i})⋊Z2
∼= ⊕m−j+1(C2

⋊Z2) ∼= ⊕
m−j+1M2(C), where T\{±1} is homeomorphic

to iR∪ (−i)R so that the above isomorphisms are deduced from considering orbits under β in this

identification. Set C(m, j) = mCm−j+1(m − j + 1). Thus, the following six-term exact sequences

are obtained:

K0(Lj−1) −−−−→ K0(Lj) −−−−→ Km−j+1(⊕
C(m,j)

C)
x









y

Km−j+2(⊕
C(m,j)

C) ←−−−− K1(Lj) ←−−−− K1(Lj−1).

Now consider the case m = 2. Then

0→ C0(T
2 \ (±1,±1)) ⋊ Z2 → C(T2) ⋊ Z2 → ⊕

2
2

C∗(Z2)→ 0.

Furthermore, 0→ C0(X1)⋊Z2 → C0(X2)⋊Z2 → C0(X2\X1)⋊Z2 → 0, whereX2 = T
2\(±1,±1),

X1 = (T \ {±1})2, and C0(X2 \ X1) ⋊ Z2 is isomorphic to ⊕2C0(T \ {±1}) ⋊ Z2. We have the

following six-term exact sequence:

Z
2 −−−−→ K0(C0(X2) ⋊ Z2) −−−−→ 0

x









y

Z
2 ←−−−− K1(C0(X2) ⋊ Z2) ←−−−− 0,

which implies K0(C0(X2) ⋊ Z2) ∼= 0 and K1(C0(X2) ⋊ Z2) ∼= 0. Thus,

0 −−−−→ K0(C(T2) ⋊ Z2) −−−−→ Z
2
3

x









y

0 ←−−−− K1(C(T2) ⋊ Z2) ←−−−− 0,

which implies K0(C(T2) ⋊ Z2) ∼= Z
2
3

and K1(C(T2) ⋊ Z2) ∼= 0. Therefore,

Z
2 −−−−→ K0(E

2

ε ⋊ Z2) −−−−→ Z
2
3

x









y

0 ←−−−− K1(E
2

ε ⋊ Z2) ←−−−− 0.
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It follows that K0(E
2

ε ⋊ Z2) ∼= Z
2
3
+2 and K1(E

2

ε ⋊ Z2) ∼= 0. Therefore,

Z −−−−→ Z
2
3
+2 ⊕ Z

2
3
+2 −−−−→ K0(F

2

ε )
x









y

K1(F
2

ε ) ←−−−− 0⊕ 0 ←−−−− 0.

Hence, it follows that K0(F
2

ε ) ∼= Z
2
4
+3 and K1(F

2

ε ) ∼= 0.

Next consider the case m = 3. Then

0→ C0(T
3 \ (±1,±1,±1)) ⋊ Z2 → C(T3) ⋊ Z2 → ⊕

2
3

C∗(Z2)→ 0.

Furthermore, 0 → C0(X2) ⋊ Z2 → C0(X3) ⋊ Z2 → C0(X3 \ X2) ⋊ Z2 → 0, where X3 = T
3 \

(±1,±1,±1), and

0→ C0(X1) ⋊ Z2 → C0(X2) ⋊ Z2 → C0(X2 \X1) ⋊ Z2 → 0,

where X1 = (T \ {±1})3. We have the following six-term exact sequence:

0 −−−−→ K0(C0(X2) ⋊ Z2) −−−−→ Z
6

x









y

0 ←−−−− K1(C0(X2) ⋊ Z2) ←−−−− Z
3,

which implies K0(C0(X2) ⋊ Z2) ∼= Z
3 and K1(C0(X2) ⋊ Z2) ∼= 0. Furthermore,

Z
3 −−−−→ K0(C0(X3) ⋊ Z2) −−−−→ 0

x









y

Z
3 ←−−−− K1(C0(X3) ⋊ Z2) ←−−−− 0,

which implies K0(C0(X3) ⋊ Z2) ∼= 0 and K1(C0(X3) ⋊ Z2) ∼= 0. Thus,

0 −−−−→ K0(C(T3) ⋊ Z2) −−−−→ Z
2
4

x









y

0 ←−−−− K1(C(T3) ⋊ Z2) ←−−−− 0,

which implies K0(C(T3) ⋊ Z2) ∼= Z
2
4

and K1(C(T2) ⋊ Z2) ∼= 0. Therefore,

Z
2 −−−−→ K0(E

3

ε ⋊ Z2) −−−−→ Z
2
4

x









y

0 ←−−−− K1(E
3

ε ⋊ Z2) ←−−−− 0.

It follows that K0(E
3

ε ⋊ Z2) ∼= Z
2
4
+2 and K1(E

3

ε ⋊ Z2) ∼= 0. Therefore,

Z −−−−→ Z
2
4
+2 ⊕ Z

2
4
+2 −−−−→ K0(F

3

ε )
x









y

K1(F
3

ε ) ←−−−− 0⊕ 0 ←−−−− 0.
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Hence, it follows that K0(F
3

ε ) ∼= Z
2
5
+3 and K1(F

3

ε ) ∼= 0.

Next consider the case m = 4. Then

0→ C0(T
4 \ (±1,±1,±1,±1)) ⋊ Z2 → C(T4) ⋊ Z2 → ⊕

2
4

C∗(Z2)→ 0.

Furthermore, 0 → C0(X3) ⋊ Z2 → C0(X4) ⋊ Z2 → C0(X4 \ X3) ⋊ Z2 → 0, where X4 = T
4 \

(±1,±1,±1,±1), and

0→ C0(X1) ⋊ Z2 → C0(X2) ⋊ Z2 → C0(X2 \X1) ⋊ Z2 → 0,

where X1 = (T \ {±1})4. We have the following six-term exact sequence:

Z
4 −−−−→ K0(C0(X2) ⋊ Z2) −−−−→ 0

x









y

Z
12 ←−−−− K1(C0(X2) ⋊ Z2) ←−−−− 0,

which implies K0(C0(X2) ⋊ Z2) ∼= 0 and K1(C0(X2) ⋊ Z2) ∼= Z
8. Furthermore,

0 −−−−→ K0(C0(X3) ⋊ Z2) −−−−→ Z
12

x









y

0 ←−−−− K1(C0(X3) ⋊ Z2) ←−−−− Z
8,

which implies K0(C0(X3) ⋊ Z2) ∼= Z
4 and K1(C0(X3) ⋊ Z2) ∼= 0. Furthermore,

Z
4 −−−−→ K0(C0(X4) ⋊ Z2) −−−−→ 0

x









y

Z
4 ←−−−− K1(C0(X4) ⋊ Z2) ←−−−− 0,

which implies K0(C0(X4) ⋊ Z2) ∼= 0 and K1(C0(X4) ⋊ Z2) ∼= 0. Thus,

0 −−−−→ K0(C(T4) ⋊ Z2) −−−−→ Z
2
5

x









y

0 ←−−−− K1(C(T4) ⋊ Z2) ←−−−− 0,

which implies K0(C(T4) ⋊ Z2) ∼= Z
2
5

and K1(C(T4) ⋊ Z2) ∼= 0. Therefore,

Z
2 −−−−→ K0(E

4

ε ⋊ Z2) −−−−→ Z
2
5

x









y

0 ←−−−− K1(E
4

ε ⋊ Z2) ←−−−− 0.

It follows that K0(E
4

ε ⋊ Z2) ∼= Z
2
5
+2 and K1(E

4

ε ⋊ Z2) ∼= 0. Therefore,

Z −−−−→ Z
2
5
+2 ⊕ Z

2
5
+2 −−−−→ K0(F

4

ε )
x









y

K1(F
4

ε ) ←−−−− 0⊕ 0 ←−−−− 0.
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Hence, it follows that K0(F
4

ε ) ∼= Z
2
6
+3 and K1(F

4

ε ) ∼= 0.

The case for m general can be treated by the step by step argument as shown above. The

argument for K-theory is inductive in a sense that it involves essentially suspensions and direct

sums inductively. The second claim follows from considering the case ε = 0 and the same argument

as above. 2

Corollary 2.6 For 0 ≤ ε < 2, the natural onto ∗-homomorphism ϕε,0 from (⊗m+1

ε F) ⋊σ Z2 to

(⊗m+1F) ⋊σ Z2 sending sε,j to s0,j (1 ≤ j ≤ m + 1) induces the isomorphism between their

K-groups.

Proposition 2.7 There exists a continuous field of C∗-algebras on the closed interval [0, 2] such

that fibers are (⊗m+1

ε F) ⋊σ Z2 for ε ∈ [0, 2], and for any a ∈ (⊗m+1

2
F) ⋊σ Z2, the sections [0, 2] ∋

ε 7→ ϕε(a) ∈ (⊗m+1

ε F) ⋊σ Z2 are continuous, where ϕε : (⊗m+1

2
F) ⋊σ Z2 → (⊗m+1

ε F) ⋊σ Z2 is the

natural onto ∗-homomorphism sending s2,j to sε,j (1 ≤ j ≤ m+ 1).

Proof. As shown before, (⊗m+1

ε F) ⋊σ Z2
∼= (Em

ε ⋊αε
N) ⋊σ Z2. Furthermore, this is isomorphic to

p((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)p⋊σ Z2. Hence it follows that

((Em
ε ⋊αε

N) ⋊σ Z2)⊗K ∼= (p((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)p⋊σ Z2)⊗K

∼= (p((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)p⊗K) ⋊σ⊗id Z2

∼= (((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z)⊗K) ⋊σ⊗id Z2

∼= ((Em
ε ⊗K⊗K) ⋊ρ∧

ε
⊗id⊗id Z) ⋊σ⊗id Z2

∼= ((Em
ε ⊗K) ⋊ρ∧

ε
⊗id Z) ⋊σ Z2

∼= (Em
ε ⊗K) ⋊ρ∧

ε
∗σ⊗id (Z2 ∗ Z2).

It is deduced from [2] that there exists a continuous field of C∗-algebras on [0, 2] such that fibers

are (Em
ε ⊗ K) ⋊ρ∧

ε
∗σ⊗id (Z2 ∗ Z2) for ε ∈ [0, 2], and for any b ∈ (Em

2
⊗ K) ⋊ρ∧

2
∗σ⊗id (Z2 ∗ Z2),

the sections [0, 2] ∋ ε 7→ ψε(b) ∈ (Em
ε ⊗ K) ⋊ρ∧

ε
∗σ⊗id (Z2 ∗ Z2) are continuous, where ψε is the

unique onto ∗-homomorphism from (Em
2
⊗K) ⋊ρ∧

2
∗σ⊗id (Z2 ∗ Z2) to (Em

ε ⊗K) ⋊ρ∧

ε
∗σ⊗id (Z2 ∗ Z2).

Cutting down this continuous field by cutting down the fibers from ((Em
ε ⋊αε

N) ⋊σ Z2) ⊗ K to

(Em
ε ⋊αε

N) ⋊σ Z2 by minimal projections, we obtain the desired continuous field. 2
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