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ABSTRACT
Using methods of differential geometry, a discrete analog of the Yang-Mills
equations in Minkowski space is constructed. The gauge transformation law in
a discrete formulation is given and gauge invariance of discrete Yang-Mills equa-
tions is studied. Difference self-dual and anti-self-dual equations with respect to
the Lorentz metric are presented.

RESUMEN
Las ecuaciones discretas andlogas de Yang-Mills en el espacio de Minkowski
son construidas uilizando métodos de dife ial. La t i

indicador de ley en una formulacién discreta es dada y un indicador de la invari-
anza de la ecuacién discreta de Yang-Mills es estudiada. Ecuaciones de diferencia
self-dual y anti-dual con respecto a la métrica de Lorentz son presentadas.
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1 Introduction

The main goal of this paper is to construct a gauge-invariant discrete model of
Yang-Mills equations in Minkowski space. Based on the formalism described in 1] by
Dezin, we consider some intrinsically defined geometric discrete model. A simple two-
dimensional discrete model of the classical Yang-Mills equations has been constructed
and studied in [2]. However, this discrete model is the lacking of gauge invariance.
Some another approaches are proposed in (5, 6]. In [5] a gauge-invariant discrete
analog of the Yang-Mills equations is constructed in Euclidean space R". We try to
define what gauge invariance is in the case of discrete models. The method described
in [6] is applicable for obtaining a discrete model of the Yang-Mills equations on the
2-dimensional sphere.

In this paper we concerned with two problems related to discretization in Minkows-
ki space. First we must determine a bi; ial pseudo-Euclidean space and define
a discrete analog of the Lorentz metric. Note that in this case to define discrete
analogs of the differential and the exterior multiplication can be used the results of
[5]. As in the continual case these operations do not depend on a metric. Secondly,
given a discrete analog of the connection 1-form, a discrete covariant derivative must
be defined. We always try to be as close to continual Yang-Mills theory as possible.
Nevertheless, gauge invariance of the discrete Yang-Mills equations is obtained under
some additional conditions (Theorem 1).

It is known that Yang-Mills theory can be regarded as a non-linear generalization
of Hodge theory in the 4-dimensional case (see [3]). In Section 5, we construct an
operator formally adjoint to the discrete covariant differentiation operator. Then we
show how to obtain a discrete analog of the generalized Laplace type operator with
respect to the Lorentz metric.

By analogy with the continual case, one of the questions to be studied is discrete
analogs of the self-dual and anti-self-dual i In Section 6, difference self-dual
and anti-self-dual equations are presented as a system of non-linear matrix equations.

2 Preliminaries

Let M* = R"® be the Minkowski space-time manifold. Suppose that M* has the
Lorentz metric g, = diag(— + ++). Consider the trivial bundle P = M* x SU(2).
Let T* P be the cotangent bundle of P. It is known (see [4]) that a connection can be
shown to arise from a certain 1-form w belonging to T* P, where w is required to have
values in the Lie algebra su(2). Let (z,9), = € M4, g € SU(2), be local coordinates
of the bundle P. Then w is given by

w=g 'dg+g" Ag, (1)
where
A= AS(z)Nadzt. )
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Here we take as a basis for su(2) the set {\o = $%,a = 1,2,3}, where o, are the
standard Pauli matrices. The su(2)-valued 1-form A is called the connection form
and the functions A}’. (z), connections.

Let the coordinates of P change (locally) from (z, g) to (z',g'). Let us only make
a change of fibre coordinates, i.e. z = z' and ¢’ is given by

g' = hg, he SU(2). (3)
So invariance of w means that
97l dg+ g7 Ag = (¢')Mdg' + (o)1 Ay

Under the change of coordinates (3) the invariant 1-form w induces a certain transfor-
mation law for the connection form A. Taking into account the fact that
dg' = dhg + hdg and dhh™" + hdh~' = 0, we obtain

A’ = hdh™' + hAR™". (4)

In Yang-Mills theory this transformation law is called the gauge transformation law.
The curvature 2-form F can be defined as follows

F=dA+ANA. (5)

We have the tensorial law
F' = hFh~!

for the change of F under the gauge transformation (4).
Define the covariant exterior differential operator da by

dsQ=d+AAQ+ (~1)HQA A, (6)

where €2 is a su(2)-valued r-form.
Consider the equations
dyF =0, ™
dpxF =0, (8)
where  is the metric adjoint operation (Hodge star). Equations (7), (8) are called
the Yang-Mills equations [3]. Equation (7) is known as the Bianchi identity.
Let @, be su(2)-valued r-forms on M*. The "inner product” can be defined as

(®,0) = —m-/w B AT, (9)

where #r is the trace operator. Note that M* is non-compact. So all forms referring
to the inner product have compact support by assumption.
Then the adjoint operator to d4 can be expressed in the form

Opq =x"tdax,
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where *~! is the inverse operation to x (x+~! = 1). Combining the latter with
Equation (8) we get

0AF =0.
By virtue of (7), this equation is similar to the criterion for a scalar differential form
to be harmonic [9]. Thus, if F is a solution of the Yang-Mills equations, then the
following Laplace-Beltrami type equation

(d46a +84da)F =0 (10)

holds immediately on M* with respect to the Lorentz metric.

In Minkowski space the self-dual or anti-self-dual equations can be written as
follows

*F = FiF. (11)

Since F' is su(2)-valued, so therefore is *F', then we must have su(2) = isu(2). How-
ever, this condition is not satisfied for su(2) because it is not satisfied for the Lie
algebra of any compact Lie groups [4]. In this case, to study the instanton prob-
lems one must choose some non-compact groups instead SU(2) such as SL(2,C) or
GL(2,C) say.

3 Combinatorial model of Minkowski space

Following [1], let the tensor product C(4) = C ® C ® C ® C of a 1-dimensional
complex be a bi ial model of Euclidean space R*. The 1-dimensional complex
C is defined in the following way. Let C° denotes the real linear space of 0-dimensional
chains generated by basis elements z. (points), x € Z. It is convenient to introduce
the shift operators 7, in the set of indices by

TR=K+1, ok=Kk—1.

We denote the open interval (zx,z:x) by ex. One can regard the set {e.} as a set
of basis elements of the real linear space Cl Suppose that C! is the space of 1-
dimensional chains. Then the 1-di ( ial real line) is the
direct sum of the introduced spaces C = C° & C‘ The boundary operator @ in C' is
given by

8z, =0, Oex ='Trx— Tx.

The definition is extended to arbitrary chains by linearity.

Multiplying the basis elements z,ex in various way we obtain basis elements of
C(4). If ¢y, ¢q are chains of the indicated dimension, belonging to the complexes being
multiplied, then

(cp ® ¢g) = Bcp ® cq + (—1)Pc, ® Ocy. (12)
Relation (12) defines the boundary operator in C'(4).

We supp that the bi ial model of Minkowski space has the same struc-

ture as C'(4). We denote only the basis elements corresponding to the time coordinate
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of M* by Zy, é. So, for le, the 1-di ional basis el of C'(4) can be
written as

e} = &k, ® Tk, ®Thy ®Tk,, €} = Tk, ® €k, ® Tpy ® Ty,
e} =Tk, ®Th, ®x, OTh,, €} = Fr, ® T, S 7k, Sy, (13)

where k = (k1 ka, k3, k4) is multiindex, k; € Z, j = 1,2,3,4.

Let us now consider a dual complex to C(4). We define its as the complex of

hains K (4) with coeffici belonging to su(2) The complex K (4) has a similar
structure, namely K(4) = K ® K ® K ® K, where K is a dual complex to the 1-
dimensional complex C. Basis elements of K can be written as {z*}, {¢*}. Then an
arbitrary basis element of K (4) is given by s* = 5% ® s*2 ® s** ® 5%+, where s is
either % or ek,

As in [2], we define the pairing operation for arbitrary basis elements £, € C(4),
s € K(4) by the rule

0, ex # sk

a, €k = 8, a € su(2). (14

= ek,ask >= {
The operation (14) is linearly extended to cochains. We will call cochains forms,
emphasizing their relationship with the corresponding continual objects, differential
forms.
The coboundary operator d° is defined by

< ek, as* >=< ex,ad’s* > . (15)

The operator d° is an analog of the exterior differentiation operator.

Let us now introduce in K'(4) a multiplication which is an analog of the exterior
multiplication for differential forms. First we introduce the r-dimensional complex
K(r), r =1,2,3, in an obvious notation. Let s{‘w be an arbitrary p-dimensional basis
element of K (r), i.e. the following product sfp) = 35" ®...®@ s* contains exactly p of
the 1-dimensional basis elements % and r — p of the O-dimensional basis elements
ki, kj € Z, j = 1,...r. It should be noted that the whole requisity information about
the number and situation of "components” is contained in the symbol (p). Then,
supposing that the U-multiplication in K(r) has been defined, we introduce it for
basis elements of K (r + 1) by the rule

(sty) ® %) U (sf;) ® ) = Q(x, ) (s U () ® (" U ), (16)

where ’(kv)‘s(kq) € K(r), s"(s") is either z*(z*) or e"(e"), x,ut € Z, and the signum
function Q(x,q) is equal to —1 if the dimension of both elements s*, s:‘q) is odd and

to +1 otherwise (see [1]). For the basis el of K the U-multiplication is defined
as follows

SRR e H TR =" atUet=¢", Kke€eZ,
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supposing the product to be zero in all other case. To arbitrary forms the
U-multiplication can be extended linearly. Coefficients of forms multiply as matri-
ces.

Proposition 1. Let ¢ and ¢ be arbitrary forms of K(4). Then
di(pU¢) = d°pU¢ + (-1)PpUdY, (17)
where p is the dimension of a form ¢.

The proof of Proposition 1 is totally analogous to one in [1, p.147] for the case of
discrete forms with real coefficients.

By definition, the coboundary operator d° and the U-multiplication do not depend
on a metric. So they have the same structure in K'(4) as in the case of the combi-
natorial Euclidean space [5]. At the same time, to define a discrete analog of the
operation * we must take into account the structure of the Lorentz metric on K(4).
In this case it is convenient to write the basis elements of the complex K'(4) in the
form fi* ® s*, where s* is a basis element of K (3) and 7" is either z* or &, k € Z.

Then we define the operation * as follows

B ®s* Us(a" @ s%) = Qu)e" @ et @ et @ e, (18)
where Q(p) is equal to +1 if i = Z* and to —1 if g~ = &*.
Relation (18) describes the structure of the Lorentz metric in the discrete model.
4 Discrete Yang-Mills equations

The discrete analog of the connection 1-form (2) can be written as

A=

-

3 Aleh, (19)
k

=1

where sf is the 1-dimensional basis element of K (4) and A}, € su(2), k = (ki k2, k3, k4),
k; € Z.
Consider the discrete form

h= E hea®, (20)
k

where z* is the O-dimensional basis element of K'(4) and hx € SU(2). Note that
the O-form (20) does not belong to the complex K(4). But, since z* € K(4), the
U-multiplication and the coboundary operator d® are generalized on the forms (20) in
an obvious way.

Then the discrete analog of the gauge transformation (3), (4) can be written as

¢'=hUg, A'=hUdh™'+hUAUR?, (21)
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where h,h=", g are forms of the type (20). Here we denote by A~ the form whose
coefficients (matrices) are inverse to coefficients of h. If e is the O-form (20) all of
whose coefficients are unit elements of the group SU(2), then we have

hUuh™' =h"'Uh=e.

It should be noted that the O-forms defined by (20) generate a group by respect to
the U-multiplication.
Given the discrete analog of the 1-form (1) by the formula

w=g"'Udg+g'UAUg,

it is easy to proof that w is invariant (w = w') under the transformation (21) (see [5]).

Now consider the 2-form %

FI= DB SUIF/es) (22)

=1k

where F} € su(2) and ef is the 2-dimensional basis element of K(4). The 2-
dimensional basis elements of K (4) can be written as follows

ef=ctl®el @zt @zt T ef= ek @ e @2,
e=egrgriiget, =it oM,
ck=zh @ek2 @zt @e, b=k @k @ ek @ e,

where k; € Z,1=1,2,3,4.
We define the discrete analog of the curvature 2-form by the formula

F=d"A+AUA. (23)
Proposition 2. Under the gauge transformation (21) the curvature form (28) changes

as
F'=huFuh™.

Proof. The proof closely follows the proof Theorem 2 of [5]. Using (21) and (17) we
compute
d°A' = d°hUdh™" + dhUAUR™ + hUdAUR™ —hUAUdR™".
Since d°e = 0 by definition of d°, we have
d°(hUR™") =dhUR™' + hudh™' =0

and so
d*hUh™ = —hud°h~. (24)

e
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Taking into account (24), we obtain

A'UA" = (hUdh™' + hUAUR)U(RUdh™  + hUAURTY)
= —d°hUdh™ + hRUAUdh™ —d°hUAUA™* + RUAUAUR.

Then we finally have

F'=d°A'+ AAUA' = hUdCAUA™ + hUAU AU ™!
=hU(d°A+AUA)UR. n
From the definition (23) one easily derives that the curvature form F satisfies the
identity
d°F+ AUF - FUA=0. (25)

The comparison of (25) with (7) yields a discrete analog of the Bianchi identity. Define
now the discrete analog of the exterior covariant differentiation operator by setting

R =dQ+AUQ + (1) QU A,
where (2 is an arbitrary 7-form of K (4). Then Identity (25) can be rewritten as
d5F =0.
In similar manner, we obtain the discrete analog of Equation (8)
dy ¥ F=d*F+ AUsF —+«FUA=0. (26)

Let 735 (035), 1,5 = 1,2,3,4, 1 # j, be the shift operator acting as the operator 7
(o) by the i-th, j-th components of the multiindex k = (ki, k2, k3, k4). For example,

T2k = (Tk1, Tka, ks, k4), a3k = (ky,0ks, 0ks, ky).

Using the definition (18) we compute

+F = Z(F‘f“kff — F}, kb + Fp ek — F2 b + F2 ek — ) eb). (20)
k
Lemma 1. Let h be a discrete 0-form. Then we have
*(hU f) = hUxf (28)

for an arbitrary p-form f € K(4).

Proof. Any p-form f € K(4) can be expressed as

=20 f2eby,
k
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where f‘f") € su(2) and 3:‘)’) is the p-dimensional basis element of K (4). By definition,
we have z¥ U sf) = sf,) for an arbitrary O-dimensional basis element z* of K(4).

Hence,
hUf = (thz") <§: (p)s( )> th (")s( %
k

Then we obtain
*(hU f) = thf(’”*s(p,—hUka"):s“,,—hUx/. -
Lemma 2. We have
*(fUR) = +fUh (29)
for an arbitrary 2-form f € K(4) if and only if coefficients of a 0-form h satisfy the
following conditions
hi = hoyk (30)
foralli,j =1,2,3,4,i % j.

Proof. From the definition (16) one easily derives that in the form fUh two indices
in the coefficients hj are shifted and we have

FUR= Y (hriarel + fEhriguel + fihrykeh + fihoayieh + fEhrmynek + fEhry,ued).

k
Since
*ek = —gq1ak ek = elisk, web =gt
ek = eTuk nel =ik *ek = et
we obtain

K(fuh) = Z( Fihriaked™ + fRhrigkes™* = fEhn et

+fihragkei™ = fihre®* + flhoape"). (31)

Taking into account the relation
z hiz* = Z hexa™,
k k

we compute

thh—Z( fiheked?* + fRhokel* — fihope

+theres™ — fEhoer* + fih el "), (32)

where 7k = (rky, ko, Tk3, Thy).
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Inserting (31), (32) into (29), we get
hek = RBrigk = hrigk = hrik = Brygk = Bragk = Rrggr

for an arbitrary k. Clearly, these relations imply (30).

On other hand, Conditions (30) we can rewritten as follows h.x = hy, & for all
i,j =1,2,3,4, i # j. Substituting the latter into (31) and comparing (31) and (32),
we obtain (29). [ ]

It should be noted that in the Lemmas we can taken the O-form h either as an
element of K'(4) or as a form of the type (20).

Conditions (30) mean that the ”diagonal components” of the 0-form h are equal
in all plans as shown in Fig.1. Remind that we regard h as the function over the
points zx and hl;, =< 2k, h >= hg.

horjke hrigke
hok hye hrk
haisk hoyk

Fig. 1. (in the plan (ki, k;)).

Proposition 3. The set of 0-forms (20) satisfying Conditions (30) is a group under
U-multiplication.

Proof. The claim is obvious. By the definition (16), the product of any 0-forms is a
O-form and indices in coefficients do not shift. From this the result follows at once. ®

Theorem 1. Under Conditions (30) the Yang-Mills equation (26) is gauge invariant.

Here gauge invariance is understood as follows. If A(F) is a solution of Equation
(26), then A'(F') is also a solution of (26).
Proof. By Proposition 3, the form h~!
2 from Lemma 1 and 2 we have

satisfies Conditions (30). Using Proposition

*F'=hUsFUh™.

& mmm—
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Now express d%, * F' in terms of F, A. Applying (17) we compute
d* F' = d°hUFUR™ + hUd* * FUR™ + hUsFUdh™".
Taking into account (21) and (24), we obtain
A'UsF' = —d°hUxFUL™ + hUAU+FUA™!
and
*F'UA = hUxFUdh™" + hUxFUAUA™.

Thus,
S« F' = hudg x FUR™!. ]

5 The operator formally adjoint to d5

Let V C C(4) be some fixed "domain” of the complex C(4). We can written V as
follows

V=S"Vi,  k=(k, ks ko k), ki=1,2..N, (33)
k

where Vi = &, ® ey, ® ex, ® ey, is the 4-dimensional basis element of C'(4). We
agree that in what follows the subscripts k;, 7 = 1,2, 3,4, always run the set of values
indicated in (33). In this section we suppose that coefficients of the discrete forms are
vanished on C(4) \ V. Then the "inner product” for forms ®, ¥ € K (4) of the same
degree is defined by the relation

(@, %)y = —tr < V, U ¥ > . (34)

Tor the forms of different degrees the product (34) is set equal to zero.

The definition imitates correctly the continual case (Relation (9)). It follows from
(18) that for the basis elements e¥ and e¥ we have ef Uxef = —V*, efUxel = V¥ for
i=2,3,4, efUxek = —V* for j = 1,2,3 and e} U*e} = V* for j = 4,5,6. Then
we obtain

(4, A)y = =tr Y [—(A})? + (4]) + (4D + (41))
&

and
(B B)y = —tr >0 [(ER)? = (FR)? = (TP + (FR)* + (FE)® + (F9)7],
k
where A is an 1-form (19) and F is a 2-form (22).
Proposition 4. Let ® € K(4) be an I-form and ¥ € K(4) be a 2-form. Then we

have

(d°®, ¥)y = (2,6°)v,

el
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where
U =+"1d ¥ (35)

is the operator formally adjoint to d°.

Proof. From (17) and (34) we obtain
(d°®, %)y —tr < V,d°® U %¥) >

—tr < V,d(@Ux¥) > —tr <V,dUd x¥ >

—tr <OV, 2UT > —tr < V,@Ux(x"1d° x ¥) >

—tr <OV, UT > +(®, *1d°x ¥)y,

nnnn

where we used *+~! = 1.
Let &, j = 1,2,3,4, denote the 3-dimensional basis element of C(4). Using (12) we
derive that

s 51 = =2 52
BV = (& Ny kssks = Ehka ke = Cha,rNakaske T Eha ks ks
k
53 53 4 4
FERy ko, Nosks ~ Bk ka L ke~ By e ka,m Ny F €y ks 1))

where
L =Tk, @k, @ep, ®ek,, & = &k O Tk, @ €k ek,

o

Sage = LA
ei:eh®ek,®zk:®ek<, € = Ck, @ ek, ®eg, @ Ty, .

Computing the "boundary components” of the form & U +¥ we obtain the linear
combination of the following products:

AR PO Y L - AN JE s B il P = L 22

Since we have ‘)i‘ Neoks = Yhi0..k, = 0for all i, j,r by assumption, it follows that
<V, @U T >=0. ]

For the 2-form F using (27) and the definition of d° we can rewritten (35) in the
form
OF = Sul(Bka Fpyp + Ay Frpp + A Fy el
+(Ak,F,l,k + Ak Fy, + AkGF:.k)eg
(B F = Ak By + Ax Fp y)ef
HORF = Ak Fr = A )ef].

Here we denote by Ay, Fy the difference F?,, ~F}, j = 1,2,...,6,and 7k = ky...7k;...ky,
oik =ky...ok;.. .k, =1,2,3,4.

Lemma 3. For any I-form & € K(4) and 3-form ¥ € K (4) the following relation
holds
r<V,oU¥ >=—~tr<V,¥Uxxd > . (36)

&N
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Proof. The forms ¢ and ¥ can be expressed as

where ®}, ¥} € su(2) and & is the 3-dimensional basis element of K (4).
Using (14), (16) we compute

<V, QUE S=try (B) - Uk — B2, UF + B3, - U - @Y - ),
k

where ik = (k...ok;...kq).
On the other hand, since

4
tn‘b:ZEtﬂe:A, 7k = (Tky, Tka, Tk3, Tky), (37)

we have

3

<V, BUs+®>=try (~ Tk BL , + 082, )-8, + ) D))
k

CD (G TR TR S T SR T S
k
where we used tr(®} - ¥}) = tr(¥} - ®i). From this the result follows at once. L]

It should be noted that in the continual case we have the equality
trp At) = (=1)"tr( A ),
where ¢ and ¢ are matrix-valued differential forms of degree p, g, respectively. Un-

fortunately, this equality has not an exact analog in our formalism.

Theorem 2. For any 2-form F' € K(4) the formal adjoint operator to d5 acts as
follows

S5F = w~(d°x F = +FUxx A + AUSF). (38)
Proof. We will compute the operator §§ defined by the relation
(A3, F)v = (®,05F)v,
where @ is an 1-form.
Using (36) and (34) we have

(d5®, F)y = —tr <V, d5&U*F >
—tr <V, d°@U*F > —tr <V, (AUQU*F + RUAU=F) >
=—tr <V, dOU+F > +tr <V, (PUsFU*+A - DdUAUF) >

(@%, F)y +tr <V, (BU*+~ '(tFUtt A) - BU*+-1 (AUF)) >
= (&, 6°F)y — (&, +~!(xFU*» A)y + (&, s~ (AU+F))y
=(®, 6°F — « ' (xFUxx A) + x~ ’(1Utl‘))'. L]

P =\
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In the continual case, if we choose the Lorentz metric, then
kA=A

for an arbitrary differential 1-form A.
Hence the Yang-Mills equation (8) can be rewritten as follows

dxF+ AAN*F —xFAxxA=0. (39)
It follows that a discrete analog of Equation (39) (or (8)) can be given by
Gx P =d°xF+AUxF —*FUxxA=0. (40)
Comparing the latter and (38) we obtain
S4F = +7'd5 x F.

Thus, if the discrete curvature 2-form F is a solution of Equation (40), then the
Laplace type equation

(d46% + 64d4)F =0
holds immediately. This equation we call a discrete analog of Equation (10).

It should be noted that in our discrete model the operation ** = ¥ is equivalent
to a shift with corresponding sign (see (37)). So, unfortunately, Equation (40) differs
from Equation (26). The possibility of involute (**+ = 1) definition of # is discussed
in [8].

6 The discrete model of the self-dual and anti-self-
dual equations

In this section we will construct a difference analog of Equations (9). For this
reason we take the group SL(2,C) instead SU(2). Let the components F] of the
curvature form F' be belonging to s/(2,C). Combining (22) with (27) the discrete
self-dual equation *F' = iF' can be written as follows

Fow=iFl,  -F,=iF}, Fo,=iF,
~Fouw=iFl,  Fop=iFg  —Fp,=iF}
for all k = (ky, ka2, ks, k4), kr € Z, r = 1,2,3,4. From the latter we obtain

8, aml L 206 e 5 _ _sp2 . _J2gh g
Fop = iFp . = —°F = Fy, Fop = g, 0=~y =F

and similarly for any other components F}, j = 1,2,...,6.
So we have
I s (41)

We call Equations (41) difference self-dual equations.

- 1
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In similar manner, we obtain the difference anti-self-dual equations

F} =-F}. (42)

an

Proposition 5. For any 2-form F such that F} = £F?, we have
*x F =FF.

Proof.
*» F = «(£iF) = +ix F = +i*F = ¥F. ]
Using (23) Equations (41) can be rewritten as
Ay Af =B A+ AL AT~ AL AL = D AQy = D Agp+ Ay AD - — Ay A
where orik = (oky...ki...oks), i <7, 7 =1,2,34and A} € sl(2,C) is a component
of the connection form A. Similarly, Equations (42) become

D AL — D, AL+ AL AT — AT AL = Ay AL, — Ay ATy — AL AT AT AL

Tk

Proposition 6. Let F' € K(4) be a 2-form with compact support. Then the discrete
self-dual (anti-self-dual) equations have the unique solution F = 0.

Proof. Since Equations (41) (Equations (42)) hold for all k = (ky, ka, k3, k4), ky € Z,
then the assertion is obvious. ]

Remark. In the continual case we must write the self-dual and anti-self-dual equa-
tions in the form (11) because we have x x F' = —F for the Lorentz metric. In the
case of the discrete model it is easy to check that in K(4) we have

6

k=~ sz’ks"

It should now be clear that a discrete model of Equation (11) can be defined as follows
*[" = £F. Then we obtain the following difference equations

Fj = Fiy

Jorall j =1,2,...,6, k= (ki, ko, ks, ki), kv € Z.
Therefore, on opposite to the continual case we can study these equations for the
group SU(2), i. e. for ' with components F} € su(2).
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