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ABSTRACT 
Using methods of differcntial geometry, a discrete a.nalog of the Yang-M ilis 

cquations iu Minkowski space is constructed . The gauge transformation law in 
a discrete formulat ion is given and gauge invariance of discrete Yang-M ills equa­
tions is studied . Difference self-dual and anti-self-dual equations with respect to 
the Lorentz metric are prcsentcd . 

RESUMEN 
Las ecuaciones d iscretas análogas de Yang-Milis en el espacio de Minkowski 

son construidas uilizando métodos de gcometda dif&encia.1. La t ransformación 
indicador de ley en una form ul ación discreta es dada y un indicador de la invari­
anza de la ecuación discreta de Yang-Milis es estudiada. Ecuaciones de diferencia 
sclf-dual y anti-dual con respecto a la métrica de Lorentz son presentadas. 
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1 Introduction 

Tbe main goal of t his paper is to construct a gauge-invariant djscrete model of 
Yang-Milis equat ions in Minkowski space. Based on the formalism described in ¡1¡ by 
Oeún, we consider sorne intrinsically defined geometric discrete model. A simple ~wo­
dimensional discrete model of the classical Yang-Milis equat ions has been construclcd 
and studied in f2]. However, this discrete model is the lacking of gauge invariance. 
Sorne another approaches are proposed in [5, 6J . In [5] a gauge-invariant discrete 
a.nalog of t be Yang-Milis equations is constructed in Euclidean space R" . We try to 
define what gauge invariance is in the case of discrete models. The metbod described 
in [6] is applicable for obtaining a discrete model of the Yang-Milis equations on the 
2-dimensional sphere. 

In this paper we concerned with two problems related to discretization in Minkows­
ki space. First we must. determine a combinatoria.! pseudo-Euclidean space and define 
a discrete ana.log of the Lorentz metric. Note that in this case to define discrcte 
analogs of the differentia.I and the exterior muJtiplica.tíon can be used the resul ts of 
[5]. As in t.he continua.! case these operations do not depend on a metric. Secondly, 
given a discrete analog of the connection 1-form, a discrete covariant derivative mus! 
be defined. We always try to be as close to continua! Yang-Milis tbeory as possible. 
Nevertheless, gauge invariance of the discrete Yang-Milis equations is obtained undcr 
some additional conditions (Theorem 1). 

It is known that Yang-Mills theory can be regarded as a non-linear generalization 
of Hodge theory in t he 4-dimensional case (see [3]) . In Sect.ion 5, we construct an 
operator formally adjoint to the discrete covariant differentiation operator. Thcn wc 
show how to obtain a discrete analog of the generalizecl Laplace type operator wilh 
respect to the Lorentz metric . 

By analogy with the continua! ca.se, one of the questions to be studied is discrcle 
analogs of tbe seU-dua.I and anti-self-dual equations. In Section 6, difference self-dual 
and anti-self-dua.I equations a re presented as a system of non-linear matriJr: eq uations. 

2 P reliminaries 

Let M • = R1•3 be t he Minkowski space-time manifold . Suppose t hat M4 has tbe 
Lorent.z metric g,. ,, = diag( - + ++). Consider t he trivial bundle P = M• x SU(2). 
Let T º P be t he cot.angent bundle of P. lt is known (see [4]) that. a connection can be 
shown to arise fTom a certain l ~form w belonging to T " P , where w is required to have 
va\ues in the Lie algebra su{2). Lct (x, g), x E Af•, g E SU(2), be local coordinalcs 
of t he bundle P. Tben w is given by 

(1) 

where 
(2) 
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Here we take as a basis far su(2) the set {..\0 =~,o= 1, 2, 3}, where u 0 are the 
standard Pauli matrices. The su(2)-valued 1-form A is called t he connection fonn 
uucl the functions A~ (x), connections. 

Let the coorcliuates of P change (locally) from (x, g) to (x1 , g' ). Le t. us onl y make 
a change of fibre coordina.tes, i.e. x = x 1 and 91 is given by 

g' = hg, h E SU(2). (3) 

So invariance of w means Lhat 

Under the change of coordinates (3) the invariant 1-fonn w induces a certain transfor­
mation law for the connection form A. Taking into account t he fact that 
tl [J' = dhg + hdg and dlih- 1 + l1dh - 1 =O, we obtain 

A'= hdh- 1 + hAh- 1• (4) 

In Yang-Milis theory t his transformation \aw is called the gauge transformat ion law. 
The curvature 2-fonn F can be defined as follows 

F = dA +AA A. 

We lmve the tensorial law 
F' = hF/1- 1 

far thc change of F under the gauge tra.nsformation (4). 
Define t he covariant exterior differential operator d..i by 

d,,!l = d!l +A A !l + (-1r+1n A A, 

whcre íl is a su(2)-valued r-form. 
Cousider the equations 

d..iF =O, 

d,1 •F= O, 

(5) 

(6) 

(7) 

(8) 

wbere * is the metric adjoint operation (Hodge star). Equations (7) , (8) are ca\led 
thc Yang- Milis equations [3J. Equat ion (7) is known a.s the Bianchi idcnt ity. 

Let <}_¡ , il! be 5'-u(2)-valued r-forms on M'1• The " inner product" can be defined as 

(9) 

where l.r is tlie trace opern tor. Note t.hat M~ is 11011-compact. So ali forms referring 
1 o Lhe inncr product ha ve compact support by assumption. 

Tlum t.hc adjoint operator to dA can be expressed in the form 
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where *- 1 is the inverse operation to • (u- 1 

Equation (8) we get 
1). Combining the latter with 

By virtue of (7) , t his equat ion is similar to the criterion for a scalar differential form 
to be harmonic [9]. Thus, if F is a solution of the Yang-Milis equations, then the 
following Laplace-Beltrami type equation 

(10) 

holds immediately on M 4 with respect to the Lorentz metric. 
In Minkowski space the self-dual or anti-self-dual equations can be written as 

follows 
{ll ) 

Since F is su{2)-valued, so t herefore is +F, then we must have su(2) = isu(2). How­
ever, t his condition is not satisfied for su{2) because it is not satisfied for the Lie 
algeb ra of any compact Lie groups [4]. In this case , to study the instanton prob­
lems one must choose sorne non-compact groups instead SU(2) such as SL(2 ,C) or 
GL(2,C) say. 

3 Combinatorial model of Minkowski space 

Following [IJ, Jet t he tensor product C(4) = C ® C ® C ® Cofa !-dimensional 
complex be a combinatoria! model of Euclidean space !R4 . T he 1-dimensional complex 
C is defined in t he following way. Let Cº denotes tbe real linear space of O-dimensional 
chains generated by basis elements xK (points) , K. E Z. lt is convenient to introduce 
tbe shift operators T, a in the set of indices by 

TK. = K.+ l , ª"" = K.-1. 

We denote the open interval (xK,xT .. ) by eK. One can regard the set {eK} as a set 
of basis elements of the real linear space C 1 • Suppose t hat C 1 is the space of ¡. 
dimensional chains. T hen the 1-dimensional complex (combinatoria! real line) is the 
direct sum of the introduced spaces C = Cº EE1 C 1 • The boundary operator a in C is 
given by 

The definition is extended to arbitrary chains by linearity. 
Multiplying the basis elemcnts x .. , eK in various way we obtain basis elements of 

C(4). 1f cp, Cq are chains of the indicated dimension , belonging to thc complexes being 
multiplied , then 

(l2) 

Relation (12) defines the boundary operator in C(4}. 
We suppose that the combinatoria! model of Mi nkowski space has t he same struc­

ture as C(4). We denote on ly the basis elements corresponding to the time coordinatc 
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of M '1 by X,., el(. So, for example, the 1-dimensional basis elements of C(4) can be 
writtcn as 

( 13) 

whcre k = (k1 , k2 , k3 , k4 ) is mu ltiindex, ki E Z, j = 1, 2, 3, 4. 
Let us now consider a d ual complex to C(4). \Ve define its as the complex of 

cochai ns K(4) with coefficients belonging to su(2) The complex K(4) has a similar 
structure, na.mely K(4 ) = J( ® }{ ® ]( ® I<, where }{ is a dual complex to the 1-
di mensional complex C. Basis elemcnts of /( can be written as {x1t}, {e"}. T hen an 
arbitrary basis element of K {4) is given by s* = s*1 ® s"2 ® s"s ® sk•, where sk> is 
either x*• or ek,. 

As in 12] , we define t he pa iring operation for arbitrary basis elements Ek E C(4), 
s" E K(4 ) by t he rule 

< Ek , a s k >= { O, Ek '#- s 1i: 
a , E 1i: = Sk , a E su(2). 

( 14) 

The operation (14) is linearly extended to cochains. \Ve will call cocha ins forms, 
cmphasizing their relat.ionship with the correspondi ng continua! objects, cli ffc rcnt ia l 
forms. 

'The coboundary operator de is defined by 

(15) 

Thc opcrator cJC is an analog of thc exterior differentiation operator. 
Let us now introduce in K (4) a multiplication which is an analog of thc exterior 

multiplication for di fferential forms. First we introduce tbe r-dimensiona l complex 
K(r), r = 1, 2, 3, in an obvious notation. Let sf P) be an arbitrary p-dimcnsional ha.s is 

element of K(r), i.e. t he fo llowing product s(Pl = s* 1 ® ... ® s*· contai us cxactly p of 

the 1-dimensional basis clements e*> and r - JJ of t he O-dimensional basis elemcnts 
xk;, k1 E Z, j = 1, ... r . It should be noted t hat thc whole requisity inform ation about 
the number and situation of "components" is contained in t he symbol (p). T hen, 
supposing that the U- mult iplication in J<{r) has been defined , we introduce it for 
ha.sis elemen of K (r + 1) by t he rule 

(sf,1 ® s") U (st,,1 ® s'' ) = Q(<,q)(sf,1 U sf,¡) ® (s" U s") , (16) 

wherc s(P1,sf9> E K(r), s"'(s1') is either x"'(x'' ) or e"'(é ') , K- , µ E Z, and the signum 

function Q(K,q) is equal to - 1 if the dimension of both elemems s"' , s(q) is odd and 
lo + l otherwise (see [t]). F'or the basis elements of I< the LJ-multiplication is defincd 
as fo llows 

x" U x"' = x" 1 e" U x"" =e" , x"' U e" =e" , ,.. E Z, 
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supposing the product to be zero in all other case. To arbitrary fo rros the 
U-multiplication can be extended linearly. Coefficients of fo rms multiply a.s matri-

Proposition l. Let r.p and 1/J be arbitmry forms of K(4). Then 

(17) 

where p is the dimension of a form r.p. 

The proof of Proposit ion 1 is totally analogous to one in [l, p.147) for t he ca.se of 
discrete forms with real coefficients. 

By definition, t he coboundary operator cf and the U- mult iplication do not depend 
on a metric . So they ha.ve t he same structure in K(4) as in the case of the combi­
natoria! Euclidean space [5]. At the same t ime, to define a discrete analog of the 
operation • we must take into account the structure of the Lorentz metric on K (4). 
In this case it is convenient to write the basis elements of t he complex K(4) in the 
fo rm ji" ® sk, where sk is a basis element of K (3) and ji" is eit her X" or e", K. E z. 

Then we define t he operation * as follows 

(18) 

where Q(µ) is equal to + l if µ" =X" and to - 1 if µ"=e•\ 
Relation (18) describes t he structure of the Lorentz metric in t he discrete modeL 

4 Discrete Yang-Milis equations 

The discrete analog of t he connect ion 1-fo rm (2) can be wri tten as 

4 

A= L L A{eJ, (19) 
j = l k 

where e~ is the 1-dimensionaJ basis element of K (4) and A{ E su{2), k = (k 1 , k2, k3 , k4), 

k1 E Z. 
Consider the discrete form 

h = ¿h .. x,, , (20) . 
where x" is t he O-dimensional bas is element of K {4) and h1c E SU(2). Note t hat 
the 0-form (20) does not belong to the complex K (4). But, since xk E K(4), the 
U-multiplicat ion and the coboundary operator de are genera1ized on the forms (20) in 
an obvious way. 

Then the discrcte analog of t.he gauge transformation (3), (4) can be written as 

g'=hUg, (21 ) 
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where h, 1i - 1, g are forms of the type (20) . Here we denote by h- 1 the form whose 
cocflk icnts (matrices) are i1wcrse to coefficicnts of h . lf e is the 0-form (20) ali of 
whose cocfficients are unit elements of t he group SU(2), then we ha\'e 

h u h- 1 = h- 1 U h =e. 

lt should be noted t hat the 0-forms defined by (20) generate a group by respect to 
thc U-multi plication . 

Gi ven thc discrcte analog of t he 1-fo rm ( 1) by the formul a 

w= g- 1 Ulfg + g- 1 U A Ug, 

it is casy w proof that w is invariant (w = w1) under t he transformation (2 1) (sec [5]). 
Now considcr the 2-form 

6 

F= LLFf< , (22) 
j :: I k 

wherc Ff E su(2) and éj is the 2-d imensional basis element of K(4). Thc 2-
dimcusional basis element.s of K(4) can be written as fo llows 

é~ = e.1: 1 ® x.1:2 ® x'h ®e.1:4 , 

E:= i .1: 1 ® e.1:2 ® x"3 ® e.1:4 , 

where k, E Z, i = 1,2, 3, 4. 

d = X11 1 ® e.1:2 @e•' ® x .1:4, 

E~ = x*1 ® x .1: , ® e.1:3 ® e.1:4, 

Wc defi ne thc discrcte analog of thc curvat ure 2-fo rm by the formula 

(23) 

Propos ition 2. Under l.hc gauge tmnsformation (21) th e curva tureforni {2S) changes 

F 1 = h U F Uh- 1• 

Proof. Thc proof closely fo llows the proof Theorem 2 of ISJ. sing (2 1) and ( 17) we 
compu te 

Sincc dce = O by defini t ion of de, wc havc 

nnd so 
(2<1) 
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Taldng into account (24), we obtain 

A' u .4' =(hu d'h-' +hu A uh-') u (h Ud'h-' +hu A uh-') 
= -dchudch- 1 +huAudch- 1 -dehuAuh- 1 +huAuAuh- 1 . 

Then we finally have 

F' = dCA' + A1 uA1 = hudcAu1i- 1 + huAuAuh- 1 

=hu (d'A +A u .4) Uh-'. • 
From the definition (23) one easily derives that the curvature form F satisfies the 

identity 
d' F +A u F - Fu A= O. (25) 

The comparison of (25) with (7) yields a discrete analog of the Bianchi identity. Define 
now the discrete analog of the exterior covariant differentiation operator by setting 

where 11 is an arbitrary r -form of 1<(4). Then ldentity (25) can be rewritten as 

In similar rnanner, we obtain the discrete analog of Equation (8) 

(26) 

Let r;i (u;1), i , j = 1,2,3,4, i ':f. j, be the shift operator acting as the operator r 
(a) by the i-th, j-th components of the multiindex k = (k 1 , k2 , k3 , k.i). Far example, 

Using t.he definition (18) we compute 

•F = L(F!31 két - F;21 kE~ + F:2,kE; - F;Hké~ + F;1 3 J:é~ - F; 12 ké:). (27) 
k 

Lemma 1. Let h be a discretc 0-form. Then we have 

•(hu!)= hU•f (28) 

for an arbitrary p-form f E K(4). 

Proof. Any p-form f E K(4) can be expressed as 

1 = Lt!p)stpi• 
k 
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where J}P ) E s u(2) and sfp) is the p-dimensional basis element of K(4). By defin ition, 

we have xk u sfp) = sfp) for an arbitrary O-dimensional ha.sis element xk of 1<(4) . 
Hence, 

hUf = (~>•x') U (~J)'1 sl,1 ) = ~h,J)'1 sl,1 
Thcn we obt ain 

•(hu f) = L hkf}Pl * sfp¡ =hu L J}Pl • stP> = hu•/. • 

' ' Lemma 2. We have 
•(!Uh)= •fUh (29) 

for ari arbitrn ry 2-f orm f E K(4) if and orily if coefficien t.s o/ a 0- form h satis/y tite 
followi11g co nditions 

(30) 

/or ali i, j = l , 2, 3, 4, i 'I: j . 

P roof. Prom t be defini tion ( 16) one easily derives that in the fo rm J U h. Lwo indices 
in the coefficients h1; are shi fted and we have 

/ U h = LU~ hr, 2 k E t + Jfhr, 3 kE~ + Jlhr, 4 kE; + Jth rn ke! + Jthr:4 kE~ + J2h ,.3.,1; E~ ) . 
Siuce 

wc obtain 

*Et = -E;12k ' *E~ = é~13 k' 

•E~ = e;n k 1 *é~ = -E''Hk 

*E; = -é~1• k 1 

*E: = E? 4 .I: , 

• (JU h} = L (- Jkhr,,kE;11 k + Jfhr 13 kE;13 k - Jlhr 14 k é,~' 4 k 
k 

+fthr23kE;23 k - Jth1";i4kE;2 4 k + 1:h1";¡ • .1: ErH k). (31) 

Taking into account the relation 

we compute 

L hkXk = L hrk Xr k, 
k k 

•J U h = L (- JfhTkE;12 k + Jf hrkE;' 3 .I: - J2hr .1: E ~ 14 k 

' 
+ f2hrk E;13 k - Jfh .. 1; E-;2•k + J~h.r.1:E?4 k ), (32) 

where -r k = (rk 1 , -rk'2 1 1"k3, rk.t). 
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lnserting (31), (32) into (29), we get 

for an arbitrary k. Clearly, these relations imply (30). 
On other hand , Conditions (30) we can rewritten as follows h rk = h r,,k for all 

i,j = l , 2, 3, 4, i f. j. Substi tuting the latter into (31) and comparing (31) ancl (32), 
we obtain (29). • 

It should be noted that in the Lemmas we can taken the 0-form h either as au 
element of K (4) oras a form of the type (20). 

Conditions (30) mean that the "diagonal components" of t he 0-form h are equal 
in ali plans as shown in Fig. l. Remind that we regard h as the funct ion over thc 
points x1.; and hl:i: ~ ::::< x1;,h >= h,. . 

Fig. l. (in t he plan (k;, k;)). 

Propos it ion 3. Tlie set of 0-jornis (20) sati3fyi119 Conditions {SO) is a group tmder 
U- multiplication. 

Proof. The daim is obvious. By the definit ion (16), t he prod uct of any 0-forms is a 
0-form and ind ices in cocfficicnts do not shi ft. From this the result follows at once. • 

Theore m l. Untlcr Conclitions (SO) ll1e Yang-Milis equation (26) is gaugc invariant. 

Here gauge invariance is understood as fo llows. lf A(F ) is a solution of Equation 
(26), then A'(F') is also a solu tion of (26). 

Proof. By Proposition 3, thc form 1i- • satisfics Conditions (30). Using Proposition 
2 from Lemmn J and 2 wc havc 
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Now express d~\ ' * F' in terms of F,A. Applying (17) we compute 

Taking in to account (21) and (24), we obtain 

and 

Tlms, 

• 

5 The operator formally adjoint to d'A 
Let V C C(4) be some fixed "domain" of the complex C{4). We can written V ns 

íollows 
(33) 

wherc vk = e.I;¡ ® Ck2 ® Ck3 ® ek. is thc 4-dimeusional basis clemcnt of C(4). Wc 
agrce thnt in what follows thc subscripts k;, i = 1, 2, 3, 4, always ru n the set of va l u es 
indicated in (33). In this section we suppose that coeffi cients of t he discrete forms are 
vanished on C (4) \ V. Then the "inner product" for forms 4> , W E /(( 4) of tbc samc 
clcgrcc is defined by the relation 

(<l> , W)v = -tr < V,<!> U •>l' > (34) 

For the forms of different degrees the product (34) is set equa.l to zero. 
T he defin il.i.ou imita.tes correctly the continua! case (Relation (9)) . lt follows from 

{18) that fa r the basis elements e~ and €j we have et U ... et = -Vk , e ~ U •e~ = Vk for 
i = 2,3,4 , €j U •Ej = - Vk forj = l ,2,3an<l EjU*Ej = V" forj = 4,5,6. Then 
we obtain 

(A,A)v = -tr I: (-(Al)'+ (Al)'+ (AI )2 +(Al )' ) 

' 
and 

(F, F)v = - tr I: [-(F/) 2 -(Fl)'-(F1)' + (Ft}' + inl' + (F/) 2 ], 

' 
where A is an 1-form (19) and F is a 2-form (22). 

Proposition 4. Let 4> E J<(4) be an 1-Jorm and iI1 E /<( 4) be a 2-form. 1'hen we 
liaue 

(cF<I>, w)v = (<l> ,ó' w) v, 
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where 
(35) 

is the opemtor formally adjoint to de. 

Proof. From (17} and (34) we obtain 

(d'~ . " lv -tr < V, dc4> U•W" ) > 
-fr < V,dc(cl>U•W-) >-tr < V, 4> Udc• 'l' > 
-tr < 8V, 4> U •11' > -tr <V, 4> U •(•-tdc • ~) > 
-tr < 8V, 4> U •W > +(4> , . - 1dc • llt )v, 

where we used •• - 1 = l. 
Let e{, j = l, 2, 3, 4, denote the 3-dimensional basis element of C(4). Using (12) we 
derive that 

where 

av = ¿(e~N1 ,k~.i.3 ,1.:1 -eL.1:~ .k, ,k. - eZ1.TNi.1:,.i.. + ei1.L.k3,k• 
k 

e!= .f¡, 1 ® e1.:~ ®ei.3 ® ei.,. , 

e¡ = ei., @ ek~ @ X¡,3 @e,1:4 , 

Cornputing the "boundary components" of the form 4> U •llr we obtain the linear 
combinat ion of t he following products: 

<I>t ... rN, . .. J:. · Wk, ... N; . . k. and if?Í, ... o ... k . · Wk1 .. . o .. . i.4 1 i ,j = 1, 2, 3, 4, r = 1, 2, ... , 6. 

Since we have 4>L ... rN; .. ~·. = 'lrk1 •• • o ... .1:. =O for ali i,j, r by assumption , it follows that 
< av, <ti u • ilr >= o. • 

For t he 2-fonn F using (27) and t he definition of de we can rewrit ten (35) in thc 
form 

ócF = L:d(.ó.,1;,F;, ,1; + ó..1:, F;, ,1; + .Ó.,1;4 F,;1 • .1;)ef 
+(.ó.,1; 1 F;1 1.: + ó..1;,F~, 1.: + .ó..1:.F: • .1:)e~ 
+ (.ó.1.:1 F;,1.: - .ó.1.:2 F: ,,1; + ó..1:. F:.,Je~ 

+(.ó.k, F,;11 1.: - .ó.1.:2 F: ,1.: - .ó..1:, f!,.1;)e!J. 

Here we denote by ó.k,Ff the difference F!;k-Ff, j = 1, 2, ... , 6 , and r;k = k1 .. rk, ... k.i, 
a ,k = k1 •• • a k; ... k.i, i = 1, 2,3,4. 

Lenuna 3. For any 1-form (I> E K(4) and 3-fonn 111 E K (4) the following rclation 
holds 

/.r < V, t(1 U 11' >= - tr < V, 111 U• • 4> > . (36) 
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P roof. The forms 4i and W can be expressed as 

" " 
<!> = L:L: ·~l et , <1> = ¿¿w[e~ , 

i = I k i= L k 

where 4> L Wi E su(2) and e~ is the 3-dimensional ba.sis element of K(4). 
Using (14), (16) wc compute 

t r <V, 4> U l]I >= tr L <<1>! 1 k · '11 1 - •J>!2 k • q,¡ + W!3 k • 11_.r ¡ - <I> !.1: '111), 

' 
where a;k = (k1 . .. ak¡ .. . k.1). 

On the other hand , since 

we havc 

·• 
• • iJ> = ¿¿ 1tiie/" , Tk = (T k¡ , Tk2, Tk3 1 Tk4) , 

i= l k 

t r <V, '11 U •* el> >= t r L <- '111 (Ii! 1k + t1t¡ 4'!2 k - 11_.r ¡ · <1>! 3 11 + 'i11. (P!~ d 

' 
= t.r L (-•I>!1k 'i11 + 4>; 2k 'll k - <I>!)k · *i + 4' !.,k 111 1), 

' 
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(37) 

where we used tr( 4>i '11i ) = tr( l]li cJ>U. From this t.he result fo llows at once. • 

lt should be noted that in the contimial case we have the equal ity 

tr( v> AVJ) = (- J)"tr(VJA 'f'), 

whcre i.p and 1/1 are matrix-va.l ued differential forms of degree p, q, respcctively. Un­
fo rtunately, t.his equal ity has not an exact analog in our formalism. 

T heorem 2. For any 2-form F E K(4) tl1 e f ormal adjoint operator tu d~1 fl cts us 
follows 

P roof. We will compute the operator J~1 defincd by thc relation 

( d~1 <1> , F)v = ( <1> , ó ~, F) v, 

whcre <li is an 1-form. 
Using (36) and (34) we have 

{cl~1 (f> , F )v = -tr < ll, d~1 <.I> U •F > 
= -tr < \1, dct'PU•F > - tr < ll, (.4U if> U•F + (l> U A U,. F) > 
= -tr < F, dc<J> U •F > + tr < \1, (tli U • F U• • A - 1J> U A U •F) > 
=(t/<'4>, F )v+ lr<ll, (<Ii U• • - 1 (•FU•• .4)- <l> U• · - 1 (AU•F)) > 
== ( •li , ócF)v - (<P , . - 1 (*F U•• A))i1 + (<P, .. - 1 (.'1 U ·F )) v 
= (<P, f5CF - . - 1c•FU •• A)+ . - 1(A u •F))v. • 

(38) 
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In the continua! case, if we choose the Lorentz metric, then 

fo r an arbit rary differential 1-form A. 
Hence t be Yang-Mills equation (8) can be rewritten as follows 

d * F + A /\ •F - •F /\ * *A = O. (39) 

It fol\ows that a discrete analog of Equation (39) (or (8)) can be given by 

(40) 

Comparing the latter and (38) we obtain 

Thus , if t he discrete curvature 2-form F is a solut ion of Equation (40) , thcn thc 
La.place type equation 

(d~óA. + óA,dA.)F =O 

holds immediately. This equation we call a discrete analog of Equation (10). 
It should be noted that in our discrete model t he operation • 2 = •• is equivalcnt 

to a shift wit h corresponding sign (see (37)). So, unfortunately, Ec¡uation (40) differs 
from Equation (26). T he possibility of involute (u= 1) definition of 4 is discussed 
in [8]. 

6 The discrete model of the self-dual and anti-self­
dual equations 

ln this section we will construct a difference analog of Equations (9). For this 
reaso n we take the group SL(2, C) instead SU(2). Let t he components Ff of the 
curvature form F be belonging to s1(2, C) . Combining (22) with (27) the discrele 
self-dual equation •F = iF can be written as follows 

- F;ui: = iFt, F;1,t = iF¡, -F~nt = iF2 

fo r all k = (k1, k2 ,k3,k1 ), kr E Z, r = 1,2,3, 4. From the latter we obtain 

a.nd similarly for any other components Ff, ;' = l , 2, .. , 6. 
So we have 

Ff = F:k. (H ) 

\Ve call Equat ions (41 ) diffcrencc self-dual equations. 



OiscreLe modcl of Yang- Mi lis equa tions in Minkowski spacc 

In sim il ar mrumer, we obta in the difference ant i-self-dual equa lions 

Ff =-Fj~ . 

P roposit ioo 5. For any 2-form F s11 ch tliat Ff = ±F;k we haue 

• •F = ~F. 

P roof. 
•,. F = •(±iF ) = ±i. • F = ±i2 F =~F. 

Using (23) Equat ions (4 1) can be rewrittcn as 

(42) 

• 

Ó. 11, A;;- ó.k. Ai + Ai. A~¡ k - A ;;. A ~.11 = Ó.1:, ¡A~ 11 - ó. 11 . A ~ ,1; + A~ .... A~T,l: - A; l .. A~rr k • 

where <1'T, k = (o k1 ... k¡ ... ak.1 }, i < r, r = l ,2, 3, 4 and Ak E sl(2,C) is a componen!. 
of thc coun ecLion fonn A. Similal'ly, Equa tions (42) become 

.ó.1:1 Ak - ó. 1t.. Ai + Ak · A ~. 11 - Al.· A~. k = 6.1:.A~ k - 6.i:., A~k - A~ 11 · A ~r,l: + A~ A· · A~ r,. k · 

P ropos it ioo 6. Let F E 1<(4) be a 2-form with compact support. Thcn thc fl.¡.~ c rnlc 

sc/f-dual {anti-sel/- d11al) cquatio11s have tlic 1mir¡1te so fution F = O. 

P roo f. Since Equations (4 1) (Equations (42 )) hold far ali k = (k 1 , k2 , k3, k~ ), kr E Z , 
then thc assertion is obvious. a 

Rcm nrk. In th e co ntinua/ ca.~c wc mt1st wdtc thc seff-dual and anti-sclf-dttal cr¡ua­
tio11s i11 th e fonn (11} bcccmse we have • • F = -F for the Lorentz mctric. In thc 
ca.~ c of thc discrcte modcf it is casy to check that in I<(4) we havc 

o 
**F = - LLF~J: E:j. 

j = I J: 

lt slw r1/d rio w be clear that a discrctc modcl o/ Equation {11} can be dcfin cd as follows 
•F = ± F. Then we obta in tlic fo llowing dif!ere11cc cqu ations 

Ff = :r- F!k 

/or 11ll j = l , 2, ... , 61 k= ( k1 , l..~2, k:1,k.1 ). kr E Z. 
Tli cr'Cfore, on opposile to tite continua/ case we can study these cq11 al.ions for tite 

gro 111i SU(2), i. e. for F with com]Joncnts Ff E su(2). 

Recei ve d: May 2003. Revisad: November 2003. 
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