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ABSTRACT
We discuss an episode in the early history of ballistics and employ elementary
caleulus to settle an old bet (at least in a simple case). Specifically, for a model
of projectile motion in which the resistive force is proportional to the velocity
an explicit formula is derived for the optimal angle of projection. This formula
involves a log-like function and gives the optimal angle in terms of a single dimen-
sionless parameter that incorporates all of the physical constants in the model.

1 Introduction

Stillman Drake ([2], p.26) relates a charming tale of a barroom wager that Niccolo
Tartaglia entered into with some military men of Verona in 1531. Tartaglia had
previously invented a simple device, which he called the gunner’s square, for gauging
the angle of inclination of a cannon. In a dispute with the Verona gunners he claimed
that the optimal firing angle for a cannon - that angle causing the ball to be cast
the farthest — was at the “sixth point” of his gunner’s square, that is, at 45° to the
horizontal. On the other hand, the Verona gunners bet that the optimal angle was
somewhat below Tartaglia's sixth mark. According to Drake, Tartaglia was vindicated
by an actual field test and won the bet. About a century later Galilei ([3], p:275)
published a proof that in a resistanceless medium the optimal firing angle is indeed
45°. A discussion of this result is now standard fare in a first course in calculus. But
the Verona gunners were dealing with real media that offer resistance to the ball's
flight, not the resistanceless Galilean model, leaving the Verona contest unsettled, at
least on a theoretical, if not on a practical, level.
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In [4] an elementary proof is given that in a medium that resists motion in pro-
portion to the velocity (an assumption that Newton ([7], p.244) called “more a math-
ematical hypothesis than a physical one”) the optimal angle is, in agreement with the
Verona gunners, less than 45°: We provide another proof of this result for the simplest
model of a resisting medium. This proof, unlike that given in [4], is a consequence of
an eaplicit representation of the sine of the optimal angle in terms of a single physical
parameter, a logarithm-like function introduced recently by D. Kalman [5], and some
elementary calculus. Instructors in honors calculus or basic analysis classes may find
the discussion we provide useful as an illustration of the ability of elementary analyt-
ical arguments to shed light on a basic physical problem with interesting historical
roots. We set the stage for our analysis by reviewing the elementary Galilean model
for a point projectile in a resistanceless medium.

2 The textbook case

Suppose a point projectile of unit mass is launched from the origin at an angle 6 to
the horizontal and with initial speed v. Assuming a lack of resistance and a vertically
acting gravitational force engendered by a uniform gravitational acceleration g, the
equations of motion of the projectile are:

&(t) =0, #(0)=wvcosh, =z(0)=0

§(t) = —g, 9(0) =vsinf, y(0)=0.
These differential equations may be routinely integrated to yield the parametric equa-
tions

y(t) = _gﬁ + (vsinf)t, 2(t) = (vcosb)t.
Eliminating the time p reveals the bolic nature of the trajectory:
= 9
yle) = 202 0052912 (s = () (1 T 22 sinﬂcosﬂz)

The range, R(6), of the projectile is then the positive z-intercept of the trajectory:
2k 2
LRIl OF o
9 9
From this one sees immediately that the optimal angle of projection, that is, the angle
producing a maximum range, is given explicitly by 6 = 45°.

In Section 4 below we show that in the case of the simplest model for a resisting
medium, while the range has no simple explicit representation, the sine of the optimal
angle of projection has an explicit representation in terms of an elementary, but non-
standard, log-like function. Furthermore, some elementary analysis involving this
log-like function, that is well within the grasp of a good calculus student. shows that
the sine of the optimal angle of projection is strictly less than 1/v/2 and hence the
optimal angle is definitely below 45°. Before treating the model for projectile flight
with resistance proportional to the velocity we first introduce the log-like function
and establish a basic fact about it.

R(6)

a8



Tartaglia's Bet 17

3 A Log-Like function

A particular branch of the log-like function L, defined below (the one that Kalman
calls “glog_", see [5]) suffices for our purposes. The ordinary (natural) logarithm
solves the equation y = e* for . The log-like function we employ is a tool for solving
zy = €%, and other “exponential-linear” equations.
For z € (—00,0) U (0, 1], let
ez
E(z) = =
Then E is a one-to-one continuous function which is strictly decreasing on each of the
intervals (—00,0) and (0,1] and

Range(E) = E((—o0,0)) U E((0,1]) = (—00,0) U [e, 0).
An explicit representation of the optimal firing angle in a linearly resisting medium

will be obtained in terms of the inverse function L = E~!. The pertinent property of
L is summarized in the statement

For each p € (—00,0)Ule, 00), the equation = = e#/? has a unique solution
z = z(p) € (0,€]. This solution is given by z(p) = eL£P).

To see why this is so, note that if p € (—00,0) U [e,00) and = € (0,€], then
z/p € (—00,0) U (0,1] and the equation

z = eslP

(-

Applying the inverse function L we obtain

is equivalent to

z = pL(p).

But then
z(p) = e2(P)/p — oL(P)

We also note that p — & = eX(?) is a one-to-one mapping of the set
{p:—=c0<p<0 or e<p<oo}

onto the set
{z:0<z<e}.

Additional properties of L and a comprehensive survey of exponential-linear equations
may be found in [5].
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4 Linearly resisted projectiles

In [4] a simple model for the motion of a point projectile of unit mass fired with a
muzzle velocity v and subject to a vertically acting constant gravitational force g and
a tangentially acting resistive force that is proportional to the velocity, with constant
of proportionality k, is investi d. The ions of motion modeling the projectile,

#(t) = —ki(t), #(0) = veosh, z(0) =0

i(t) = —g — ky(t), ¥(0) =vsind, y(0)=0

are linear and may be solved explicitly. Indeed, a single integration of each equation
yields

#(t) = (vcosf)ekt, z(0) =0

Y(t) = =% + (£ +vsinfe ™ 4(0)=0
and an additional integration produces the parametric equations

z(t) = (vcos)(l—e*t)/k

y(®) = (% +vsind)(1-e*)/k— £t

for the trajectory of the resisted projectile.
We therefore make the substitutions

and t= —%m (1 k—z)

vcosf

B Oy S
(el v cosf

in the second equation to obtain the following form of the trajectory:

= by (i TR
y-(kusec8+tan9)a:+kzln(1 ucosOI)‘

The range, R(f), is the positive z-intercept of this trajectory and hence

k k 2
In (1 = mR(ra)) =- (;sec9+ 7cano) R(8)

or equivalently

= “Czsa(l — e AOR®)) )
where A(f) = asec6 + btan6, a = k/v and b = k?/g. So unlike in the “textbook”
case, the range of the projectile in the linearly resisting medium has no simple explicit
representation but is instead characterized by the implicit relationship (1). Never-
theless, this implicit expression for the range allows the sine, s, of the optimal firing
angle to be characterized. Indeed, using the fact that the optimal angle 8° satisfies

R(6)
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R/(67) = 0 (the fact that R is differentiable on (0,7/2) is an easy consequence of the
implicit function theorem [1]), we obtain upon differentiation of (1)
O Aty —c"io (asech” tan6" + bsec? 67)R(8")e~ACIRED. (2)
a
However,‘from (1) 5
1 — e~ 4RO = ggecf*R(6") (3)
Substituting this into (2) and rearranging gives us
8 _ AW IRE) @)
s+e

where ¢ = b/a = vk/g and s = sin6*. Using this result in (3) gives

6"
RE) = (c/a) cos ;
s+c
and hence 2
A(6?)R(67) = (asech” + btan87)R(67) = C:—f:
and therefore, by (4), the sine s, of the optimal firing angle satisfies
- _exp ((1_~c2_)s) (5)
s+c s+e
where the constant ¢ = kv/g > 0 psulates all of the physical parameters of the

model.
‘We now use (5) to give an explicit representation of the sine of the optimal angle in
terms of the function L introduced in Section 3. Before proceeding with the analysis
we dispatch the special case ¢ = 1 by noticing that in this instance
1 2 1
e—1 2
and hence 6* < 45°. For 0 < ¢ # 1, we set

L8 =

e es

p=

= € (—00,0)U/(e,00) and z= e

and we observe that (5) is equivalent to

€ (0,e)

z = e*/P

Therefore, by the result of the previous section

es
s+c

== MO (6)

The definition of p gives

c=y1-¢/p
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and hence, by solving (6) for s, we get an ezplicit representation
L(p)
e
f'?(P) =mv1—E/P (7)
for the sine of the optimal firing angle in terms of the log-like function L and the

single dimensionless physical parameter p = eg?/(g> — k2v?).
Finally, we set z = (), noting that Inz = L(p), and hence

T
= B(nz) = —.
p=E(lnz) = .=

Making these substitutions in (7), we obtain

v exlng

=

si=ls(@)l=

where 0 < z < e. The rest is elementary calculus.
First we note that s(z) is always positive. A routine application of 'Hospital’s

rule (it’s a bit easier to deal with s(z)? for this) gives

lim_ 5(z) = —

im s(z) = —.

z—rem V2
(Note that  — e~ is equivalent to k — 07, representing the limiting case of motion
without resistance.) So our job is finished if we can show that s(z) is a strictly
increasing function. Readily available technology, for example a graphing calculator,
shows that this is the case. But while a picture is worth a thousand words, it is a poor
substitute for a proof. Fortunately, a simple “bootstrapping” proof shows that s(z)

is increasing. Since s(z) is positive, it is sufficient to show that E(s(z)’) is positive.
d }
A routine calculation shows that d—z(s(z)z) has the same sign as the function
f(z)=3z—-e~-(z+e€)lnz 0<z<e.
Note that f(0) = co and f(e) = 0, so if f(n) = 0 for some 7 € (0, €), then
0=f(f)=2-In€E—e/t

for some £ € (0,e). But f'(e) = 0 and hence, for some ¢ € (0, e),

1 @

0=f1¢)= ¢+ %

6@
i.e., ¢ = e for some ¢ < e, which is absurd. So s(z) is increasing for 0 < z < e and
s(z) = 1/v/2 as £ — e~ and hence s(z) < 1/V/2 for all z € (0, e)-

Therefore, the sine of the optimal angle of launch satisfies sin8* = s < 1/v/2 for
all positive values of ¢ = kv/g, confirming that the optimal firing angle is always less
than 45°. Arguing within the confines of the simple model we have investigated, the
Verona gunners may therefore be forgiven if they make a posthumous plea to Seniore
Tartaglia to pay them their due!
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5 Concluding remarks

The result derived above illustrates the use of classroom calculus to analyze an inter-
esting historical problem in projectile motion under the assumption of a particularly
simple model of resistance. The difficulties inherent in modeling resisted motion were
recognized from the very beginning of the science of dynamics. Indeed, Galileo himself
remarked that air resistance “...does not, on account of its manifold forms, submit to
fixed laws and exact descriptions”, ([3], p.252). Accurate modeling of aerodynamic
drag is still a challenge to this day. A primer on resisted motion containing much
useful infe ion for math icians can be found in [6]. The model treated in this
note is an instance of a power law (the first power) of resistance. For this law we have
proved that the optimal angle of projection is below 45°, however for certain higher
order power laws there is numerical evidence that optimal angle may be greater than
45° [8].
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