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ABSTRACT
The paper presents an explicit formula for the number of fixed points of a C™
map of a segment [a,b] C R. While the formula can be derived from the Lefschetz
fixed point theorem for general CW -complexes, the new proof is instructive and
highlights the contributions of degenerate fixed points.

1 Introduction

In 1910 Brouwer (cf. [Brol2]) proved that any continuous map f: § — S of an
n-dimensional simplex has at least one fixed point p € S, i.e., f(p) = p. This result
extends to continuous maps of any compact convex body in a finite dimensional topo-
logical vector space and has numerous applications to proving existence theorems for
diverse equations. Moreover, the fixed point theorem generalises to infinite dimen-
sional topological vector spaces. When thinking over this result, Lefschetz [Lef26)
showed a formula which expresses the number of fixed points of a map of an orientable
topological manifold through the traces of the corresponding pull-back operators on
the cohomology. Although a fixed point theorem a la Lefschetz has nowadays been
known for general CW -complexes, c¢f. [Dol72], it gives no explicit description of the
contribution of a non-interior fixed point. In [BS91] an explicit formula is obtained
for the contribution of a simple boundary fixed point. A fixed point on the boundary
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contributes to the Lefschetz number only in the case when it is attracting. The pur-
pose of the present paper is to explicitly evaluate contributions for arbitrary isolated
fixed points on the boundary. While the proof of [BS91] is an exposition of arguments
of [AB67] in the context of Boutet de Monvel’s algebra [BAM71], the present paper
uses a constructive approach elaborated in [Tar95].

To make the proof completely transparent we restrict ourselves to the case n = 1.
Let M = [a,b] be a closed interval on the real axis, and f be a smooth map of [a, b]
to itself.

2 The Neumann problem

In order to derive an integral formula for the Lefschetz number of f we need a
parametrix of the de Rham complex on [a, b]

0 — E[a,b] - £'[a,b] — 0 (2.1)

where £'[a,b] is the space of differential forms of degree 1 with C> coefficients on
[a.b).

The Neumann problem at extreme step 1 consists of finding, for a given F €
£'[a,b). a differential form u € £'[a, b] such that

dd*w = Esintll(a)b);
= 0 R 0 (¢22)
where d* is the formal adjoint for d. Note that the Neumann boundary condition
n(u) = 0 appears from the consideration of d* as the Hilbert space adjoint, cf. for
instance § 4.2 in [Tar95].
Write
F
u

Fy(z) dz,
uy (z) dz,

then the problem (2.2) becomes just the Dirichlet problem for the function uy(z),
namely
-ul = R in (a,b),
0.

w(@) = m@®) = (2:3)

The general solution of —u{ = F\ is
z
uy(z) = (A;c + B) - / (z — y)Fi(y)dy,
a
and the substitution of this expression to the boundary conditions gives
B = -aA,

Yh-y
Ay [ =L Fi)dy.
a =D
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The solution

by z
w@) =@-a) [ =LA@ - [(@- R0

is L*[a,b]-orthogonal to the space of solutions of the homogeneous problem corre-
sponding to (2.3), for this latter is zero. It follows that the Neumann operator at step
1is

b e
NF@) = [ Fw)((@-a) =2 - - ) 8 - ) dy, (24)

the integral being over y € [a, b].

3 A parametrix of the de Rham complex
Given any F € £'[a,b), set

PF(z) = d"NF(z)
b -
[ (6e-n-=Y)Fw. 31)

L}

ie, P=d"N.
Lemma 3.1 As defined in (8.1), the operator P satisfies

Pdu = u-S% forall ue€ E[a,b), 3.2)
dPF = F-8'F forall Fe€é&'ab], 3

where

b
Su = - [,
S'F = 0.

Proof. It suffices to prove only the first equality of (3.2), for the second one is
obvious. To this end, write

Pdu(z) = /:(e(z-y)—l;:z)u'(y)dv

= (w0 - o) - 12w [+ [ uta

b
= (o)~ 5 [ ua,

b-y
b-a

as desired.
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4 A formula for the Lefschetz number
By the Lefschetz number of the map f : [a,b] = [a,b] is meant
L(f) = tr (Hf)o - tr (H)x

where

(Hf)o = H°(E'[a,b]) » HO(E [a,b]),

(Hf) = HY(E[a,b]) » H'(E [a,b])
are endomorphisms of the cohomology of the de Rham complex on [a,b], induced
by the pull-back operator f¥ on differential forms. Since the cohomology is finite
dimensional at every step, the traces of these endomorphisms are well defined.

Note that in fact L(f) = 1 in our special case, for H°(€ [a, b]) = C and H" (€ [a, b]) =

0.

Lemma 4.1 Suppose all fived points of the map f on [a,b] are isolated. Then

wn =ps. [ (0w - - 1=L). @

b-a
Proof. Applying the pull-back operator f* to both sides of equalities (3.2) we get
(1'P)d = - fIs?,
APy = f- s,
for f* and d commute.

Since f*P maps £'[a, b] to £[a, b) we deduce that f* and f*S are homotopic endo-
morphisms of the de Rham complex. Hence they induce the same endomorphisms of
the cohomology. i.e., Hf = H(f'S). It follows that L(f) = L(f*S).

We now observe that f15 is a trace class endomorphism of the de Rham complex.

By the alternating sum formula (cf. for instance Theorem 19.1.15 of [Hor85]) we
obtain

L(f) = Tf's®-Txfis
b
= /A"((fxl)'l(sa—(fxl)‘l\’5|)

where A stands for the diagonal map [a,b] = [a,b] x [a,b]. and K is the Schwartz
kernel of S

By assumption, the set Fix(f, [a,b]) is discrete. Since the integrand is of class
L'[a,b). we get

L(f) =

0

I K Rcor s K
|u../MMA((fx1)Ab (/an,)

where [7, is the set of all points y € [a,b] whose distance to Fix(f, [a.b]) is less than
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‘We now make use of equalities (3.2) to evaluate the integrand in the latter integral.
Namely, they imply that

dKp = —Kgo,
L = =T
away from the diagonal of [a,b] x [a,b]. It follows that
AY((f % 1)K = (F x ViK1 ) = AY(=dy(f x DPKp +da(f x DPKp)
= d(A"(/ x 1)HKP)

holds on [a, b] \ U, whence

L(f)

i L] (]
LY D)
Yy

]).v../;bd(@(f(y] =u))= lb):n)'

!

This proves the formula.

5 Fixed point theorem

The second term in the integral (4.1) is easily evaluated, hence this formula transforms
to

b
L(f) =1+ p,v./ dO(f(y) - v)-

Theorem 5.1 Let [ be a C™ map of the segment [a, b] with isolated fized points.

Then
=

+ Z n(p)

i PEFix(f,(ab))

L(f) =1+ 0(f(y) = y)

where ju(p) is the local degree of 1 — f at p.

Proof. Write a < p; < ... < pn < b for the fixed points of f that lic in the open
intorval (a,b). Since the function O(f(y) — y) is constant away from the set of fixed
points of f we get

mn-e N Phpr —¢ b—e
upn=1+ [aegw-n+y [ deuw-n+ [ deuw-n
ate k=1 e Py te

for all € > 0 small enough. Hence it follows that

€ N pu+€
L =1-6um-v[; - euw v
k=1

pL—¢€

V. iGN
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A passage to the limit when € — 0+ gives the desired formula, for the local degree of
1 - f at p is opposite to that of f — 1.
o
If a is a simple fixed point of f then the sign of (1 — f)(a+) already uniquely
determines the local degree of any smooth extension of 1 — f to a neighbourhood
of a. Namely the local degree of 1 — f at a just amounts to sign(1 — f)(a+), or
sign (1 — f'(a)). The same reasoning applies to the case where b is a simple fixed
point of f. However these arguments no longer work if a or b is not simple, for f can
be extended to a smooth function in a neighbourhood of a respectively b in diverse
manners. For this reason we need another specification of fixed points of f on the
boundary. Suppose f(a) = a. Then a is said to be an attracting fixed point of f if
(1 = f)(a+) > 0, and repulsing if (1 — f)(a+) < 0. If f(b) = b then the fixed point
b is called attracting if (1 — f)(b—) < 0, and repulsing if (1 — f)(b—) > 0. For the
attracting fixed points on the boundary we define the local degree of 1 — f to be 1,
and for the repulsing fixed points we define the local degree of 1 — f to be —1. Then
Theorem 5.1 can be reformulated in the following way.

Corollary 5.2 Let f be a C* map of the segment [a,b] with isolated fized points.
Then
L(f) = D u(p),

PEFix(f,(a,b))UFix(*)(£,8(a,b))

Fix'®)(f,8(a,b)) being the set of attracting fized points of f on the boundary.

For the smooth maps of [a,b] the fixed point theorem of Brouwer [Brol2] is an
obvious consequence of Corollary 5.2 because L(f) = 1.
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