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ABSTRACT

We discuss symplectic, contact and locally conformal symplectic structures.
We show how they are connected and how they organize themselves inside the
category of Jacobi structures. An emphasis is put on the role of their automor-
phism groups since they encode the corresponding geometry in the spirit of the
Erlanger Programme. We also evoque the problems of existence and (local and
global) classification of these structures. For the background of the material dis-
cussed in this article, see [30].

1 Some basic results in Symplectic Geometry

Symplectic Geometry is the geometry of a smooth manifold M equipped with a
2-form §2 satisfying:
(1) d2 = 0, i.e Q is closed,
(2) 9 is non-degenerate.

Such a form is called a symplectic form.

Condition (2) means that the bundle map Q : T(M) — T*(M), assigning to a
veetor field X the 1-form Q(X) denoted also i(X)Q, such that Q(X)(€) = Q(X.€).
for all £, is an isomorphism.
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This implies that the dimension of M is even, say 2n. The non-degenerecy condi-
tion (2) is also equivalent to requiring that
Q"=QAQA..AQ

( n times) is everywhere non-zero. The volume form Q" fixes an orientation of M.

The couple (M, Q) of a smooth manifold M with a symplectic form Q is called a
symplectic manifold.

A smooth function f : M = IR on a symplectic manifold defines a vector field X,
called the hamiltonian vector field, by the equation:

Xy =07 (df)
iei(X;)Q = df. The system of first order differential equations
&=Xy
is called the Hamilton equations.

This naming comes from the fact that symplectic geometry started off as a setting
for Classical Mechanics, in which the equations above are the equations of the motion
of a particule in the "phase space” M.

For each smooth function f, the hamiltonian vector field X satisfies :
Lx,Q = di(Xy)Q +i(X;)dQ = d*f = 0.

Here Ly is the Lie derivative in the direction of a vector field X and we used the
Cartan formula. The equation above says that if ¢, is the local 1-parameter group of
diffeomorphisms generated by X, then ¢;Q = Q.

A diffeomorphism ¢ : M — M of a symplectic manifold (M,Q) is said to be
a symplectic diffecomorphism, or a symplectomorphism, if ¢*Q = Q. We just saw
how to get a symplectomorphism by integrating a hamiltonian vector field X, where
f: M — Ris a function with compact support. This suggests that the set Di f fo(M)
of all symplectomorphisms of (M, ) is very large. How much of Dif fq(M) we get
by integrating X ;7 We will answer this question in section 3.

It is clear that Dif fo(M) is a group, we call the group of symplectic diffeo-
morphisms of (M, ). This is the automorphism group of the symplectic geometry
of (M, ). It acts transitively on the symplectic manifold ( provided that it is con-
nected). Hence the symplectic manifold (M, Q) can be viewed as a homogeneous space
of Dif fa(M). The group Dif fa(M) has an even deaper significence: it encodes the
symplectic geometry, according to Klein’s Erlanger creed [3].

Theorem 1 (9) Let (M;,$y) and (M3, ) be two symplectic manifolds. Then there
enists a diffeomorphismn h : My = My such that h*Q; = A, for some constant A if
and only if the group Dif f,(M,) is isomorphic to the group Dif fa,(Ma).
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The first ple of a sy ifold, directly related to Classical Mechanics.
is the Euclidean spac IR*™ with the 2-form

g = dzy Adzy4y +dzy AdToyp + ... + dz, Adxa,
where (zy,....x2,) are coordinates on IR*". Clearly dQs = 0 and Q% # 0 everywhere.
The form Qs is called the "canonical” or "standard” symplectic form on IR*".

The example (IR*", Q) is the local model of any symplectic manifold. Namely.
we have the following

Theorem 2 Darbouz theorem
Each point in a symplectic manifold (M, Q) of dimension 2n has an open neigh-
borhood U, which is the domain of a local chart ¢ : U — R®™ such that ¢*Qs = QU.

This theorem says that all symplectic manifolds look alike locally. Therefore there
are no local invariants in Symplectic Geometry. However they are many global ones.
for instance the de Rham cohomology class (2] € H*(M,IR) of the symplectic form.
If M is compact, then [Q*] € H*(M,R) # 0.k = 1,..n. This is an immediate
consequence of Stokes theorem.

The canonical symplectic form §2g combines the usual inner product <.> on
IR™ and the complex structure J on R*". Recall that < U,V >= 3 ta iy if
u = (U, tim) ¥ = (U3, ) and J : R* - R*" maps (Vg....Un, Upgi.e, V2n) to
(Ung1y oos V2ny =01, -, —V,). We have J2 = —1.

IfU = Y U,8/8z, and V = Y V;d/0z;, then

As(U.V) = 3 (UiVign = UignVi =< UV >
=1

The global equivalent on a smooth manifold M of the inner product <, > on R™
is a Riemannian metric g , and the equivalent of the complex structure J on IR*"
is a bundle map J : TM = TM such that J* = —I. This bundle map is called
an almost complex structure. A very mild condition ensures that all smooth

ifolds admit ri jan metrics. H they are serious obstructions for even
dimensional manifolfds to admit almost complex structures. ( these are of homotopy
theoretical nature).

The situation in the Euclidean space generalizes to any symplectic manifold (27)

Theorem 3 On any symplectic manifold (M, ), there exist infinitely many rieman-
nian metrics g, and almost complex structures J such that g(JX,JY) = g(X,Y) and
QUX,Y) = g(X.JY) for all vector fields XY .
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Almost complex structures like in the theorem above are said to be compatible
with the symplectic form Q.

Theorem 4 The set J (2, M). of almost complezx structures compatible with a sym-
plectic form Q on M (with the pact open logy) is contractible.

Therefore, if we pick J € J(Q, M), the Chern classes ¢; € H*(M,Z) of the
complex tangent bundle (T'M, J) are independent of the choice of J. Hence the ¢; are
invariants of the symplectic manifold (M, ).

2. E les of symplecti ifolds and the probl of exi and
classification

2.1 The canonical symplectic form Qs on IR*™ is invariant under translations:
hence it descends to a symplectic form € on the torus 72" = R*"/Z*".

2.2 Any oriented surface is a symplectic manifold. The volume form is a symplectic
form in that case.

2.3 If (M,,9,),i = 1,2 are symplectic manifolds, then A 77 + A;m3Q where
7 : M x M — M is the projection on the i th factor, A; € IR, is a symplectic form
on My x M,.

2.4 Let M = T X be the cotangent space of a smooth manifold X and 7 : T* X —

X the natural projection. An element A € T*X is a couple (a,f) where a = 7(A)
and 8 € T; X For £ € T4(T" X), consider the canonical Liouville 1-form:

wx (A)(€) = O((Tam)§)-

It is easy to check that Qy = dwy is a symplectic form on M.

We thus see that to any smooth manifold M we can assign the symplectic man-
ifold (T*M. Q). Given a smooth map f : M — N, we get a smooth map f* :
T*N = T*M such that f*Qu = f*Qn. Hence we get a functor from the category
of smooth manifolds ( with smooth maps) into the category of symplectic manifolds
(with symplectic maps).

2.5 Many examples come from complex geometry: all Kaehler manifolds are sym-
plectic manifolds. Let M be a 1 ifold with lex structure J.

A Kaehler form is a closed 2-form Q2 such that Q(X,Y) = g(X,JY) for some
hermitian metric g.

It was believed for | i that a symplectic ifold is always Kaehler until
Thurston [33] produced the following example: Let H be the discrete subgroup of
symplectomorphisms of R* generated by the following diffeomorphisms:

iz 22,00, 02) = (21,72 + 1, 31,42)
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ha(zy, 22,01, 02) = (21, 22,01, 02 + 1)
hy(@1, 22,01, 02) = (21 + 1, 22,01, 12)
ha(@y, @2, p1,02) = (21,22 + Y200 + 1, y2)

The sympl form Qs d ds to a symplectic form € on the quotient M =
IR*/H. This form can not be Kaehler since one sees easily that the 3rd Betti number
of M is 3, and classical results assert that odd Betti numbers of Kaehler manifolds
must be even.

In section 4, example 4, we give an example of a natural symplectic ( in fact
Kaehler) form ¢ on the complex projective space CP™. The following embedding
theorem is due to Tischler [32], see also Gasqui [15]:

Theorem 5 Let M, Q) be a symplectic manifold, such that the cohomology class [ €
H*(M,IR) actually belongs to H*(M,Z) ( we say that Q has integral periods), then
there is an embedding e : M = CP™ for some m such that e*Qc = Q.

1 | fold

We saw plenty of of sy! ctic i Yet the problem of existence
of symplectic structures on a given manifold is still unsolved. They are two cases: the

case and non pact one.

The non compact case has been settled by Gromov, using his "h-principle” :
an open manifold has a symplectic form if and only if it has an almost complex
structure [17). This is a homotopy theoretical problem. Namely the vanishing of
Wu's characteristic classes is the necessary and sufficient condition to guarantee the
existence of an almost lex structure.

On the othe hand, nothing much is known in the compact case.

The classification problem remains a mystery as well. Recently, Taubes, using a
formidable machinery ( Gromov-Witten invariants) [31], showed that all symplectic
structures on the complex projective space CP? are equivalent to the symplectic form
in example 4, in section 4. Besides this result, there is an old elegant result of Moser(
28] stating the following :

Theorem 6 Let € be a smooth family of symplectic forms on a compact manifold
M such that the cohomology classes Q] € H*(M,IR) are independent of t, then there
15 a smooth family of diffeomorphisms ¢, , with ¢g = Id and ¢} = .

This beautiful theorem is "weak” since the hypothesis that two symplectic forms
are connected by a smooth path of symplectic forms is very hard to check. There are
a few simple examples where this is true:

1. When the symplectic forms €, and Q, are C* close.
2. When 2, and Q; have the same compatible almost complex structure, in
particular if they are both Kaehler in the same complex manifold.
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3. Symplectic diffeomorphisms

The support of a diffeomorphism ¢ : M — M is the closure of the subset
{z € M|g(z) # z}. Let Diffa(M). be the subgroup of the sympl phisms
of a symplectic manifold (M,Q) with compact support. We endow the subgroup
Dif fa(M)x of Dif fa(M). formed by those transformations with support in a fixed
compact set K with the 0> compact-open topology, and topologize Dif fo(M).
as the direct limit of Dif fo(M)k. Let Gq(M) denote the identity component in
Dif fa(M)..

The structure of the group Dif fa(M), has been studied in [2]. See [3] for a full
exposition. For instance the following result was obtained:

Theorem 7 There is a surjective homomorphism S from Ga(M) to a quotient
HY(M,IR)/T of HX(M,IR) ( the de Rham cohomology with compact supports).

The Kernel of S is equal to the commutator subgroup [Ga(M),Gqa(M)].
If M s compact, then KerS = [Ga(M),Ga(M)] is a simple group.

In particular KerS is equal to the group generated by time-one flows of hamiltonian
vector fields.

The group KerS is also called the group of hamiltonian diffeomorphisms. and is
often refered to as Hamgq(M). Blements of Hamg(M) are those diffeomorphisims ¢
such that ¢ = v, where 9 is an isotopy such that there exists a smooth family of
functions f; : M = IR on M so that:

(3/0t)e(x) = Xy, (Y1 (x)) and 9hy(z) = z.

The group of hamiltonian diffeomorphisms occupied the thought of several gener-
ations of mathematicians primarly because of the Arnold conjecture [1]. This conjec-
ture has been the driving force for Symplectic Geometry in last two decades.

Arnold Conjecture.

Let & be o hamiltonian diffeomorphism of a compact symplectic manifold (M, Q).
Suppose that each fized point of ¢ is non-degenerate: i.e the graph of ¢ meets the
diagonal A = {z,2) C M x M transversally.

Then the number of fized pomts of ¢ is bounded from below by the sum of Betti
numbers b, = dimH*(M, Q).

The conjecture is motivated by considering ¢ a time one flow of a hamiltonian
vector field with hamiltonian a Morse function. The conjecture reduces to one of the
famons Morse inequalities. The proof of this conjecture for hamiltonian diffeomor-
phisins close C* to the identity is an easy consequence of Morse theory (7).

In 1982, Conley and Zehnder (14) found a proof of the Arnold conjecture for the
particular symplectic manifold (72", Q) of example 2.
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They t lated the p into a vari, | problem in infinite dimension.

But the decisive move came from Floer in 1985. In his paper ™ Witten complex and
Infinite Morse Theory” [20] he constructed ( under several hypothesis) a homology
theory, where the chains are free abelian groups with generators the fixed points of
the hamiltonian diffeomorphism, and then showed that this homology is isomorphic
with the ordinary singular homology. The conjecture follows (under the required
hypothesis). This homology is called days the "Floer h logy™. Several poeple
including Floer himself, Ruan-Tian, Liu-Tian, Fukaya-Ono etc.. have been working to
remove the additional hypothesis. The goal seems to be "almost ™ achieved nowadays,
although the author thinks !h(’y are still unckecked details ( herhap~ mistakes) here

and there. For a comprel p ition of Floer homol see [29).
Before we close this section on sympl(,ctomorphlsms let us menlmn that from the
work of Gromov [18], it emerged that Sympl y is topological in

nature. This can be rephrased in terms of the group of symplecwmorphmnm [27):

Theorem 8 (Eliashberg-Hofer)
Let (M,R2) be a symplectic manifold. The group Dif fa(M). is C°- open in the
group of all C= diffeomorphisms of M.

4. Contact manifolds

The odd dimensional analogue of Symplectic Geometry is Contact Geometry.
This is the geometry of an odd dimensional manifold, say of dimension 2n+1, equipped
with a 1-form a such that a A (da)" is everywhere nonzero. Such a 1-form is called
a contact form. For instance, the 1-form ag = yydzy + ... + yadz, + dz on R*"!
with coordinates (1, .., Zn,¥1, - Un, 2) i8 & contact form. If # : R*™*! - R*" is the
projection (Zy, .., Zv, Y1,y Uny2) = (Z1,.,Tn, Y1, .-, ¥n), then das = 7°Qg , where Qg
is the standard symplectic form on IR*",

There is also a Darboux theorem, asserting that, locally, all the contact forms look
like g,

Let a be a contact form on M. There exists a unique vector field ¢, called the
characteristic vector field of a, or the Reeb field, such that a(€) = 1 and i(€)da = 0.

Let a be a contact form on a smooth manifold M. The hyperplane field £ ¢ T'(M)
of kernels of a is called the contact structure defined by a. Clearly, if f: M - R
is a smooth non vanishing function on M | then fa is again a contact form with the
same kernel as a. i.e. defining the same contact structure. We may also say that the
contact structure E is the same thing as the equivalence class of contact forms where
a and o' are equivalent iff o' = fa, for some nowhere zero function. The couple
(M, E), where E = Kera, is called a contact manifold, defined by the contact form

.
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The restriction of the form da to the bundle E = kera makes it a symplectic vector
bundle ( i.e. for each z € M, da(z), restricted to E is a non-degenerate bilinear two
form). The sections I'(E) of E are called basic vector fields and the sections I'(E*)
are called semi-basic 1-forms, -and de induces an isomorphism da : I'(E) - I'(E*)
like in the symplectic case.

An automorphism of the contact structure E defined by a contact form a is a
diffeomorphism ¢ such that ¢*a = fa, for some nowhere zero function. The set of
such diffeomorphism is denoted Dif fg(M), or Dif f(M,a), and is called the group
of contact diffeomorphisms. We denote by £(M, ) the Lie algebra of vector fields on
M whose local 1-parameter groups belong to Dif fg(M), and call it the Lie algebra of
contact vector fields. We have £(M,a) = {X|Lxa = Aa} for some function A. Each
function f: M — IR on M defines a vector field, we denote by Y; by the equation:

Yy = f&+ (de) ™) ((df (€))ax — df)

where ¢ is the characteristic vector field of a. It is easy to check that Ly, a = (df(€))a.
i.e. that Yy is a contact vector field. In fact the map above from the space C*(M)
of smooth functions on M to £(M, ) is an isomorphism.

Like in the symplectic case, we see that Di f fg(M) is very large. It acts transitively
on the contact manifold, (if this manifold is connected), and also encodes the contact
geometry [10]:

Theorem 9 Let (M;, E;) be two contact connected manifolds, where E; are defined
by two contact forms a;. There exists a diffecomorphism h : My — M, such that
h*ay = fay, for some function f on M, if and only if the group Dif fp,(M,) is
1somorphic to Dif fg,(Ms)

Unfortunately, the algebraic structure of the group of contact diffeomorphisms
remains a mystery.

Contactization and symplectification: If « is a contact form on a manifold
M, then Q = d(e'a) is a symplectic manifold on M x IR, here ¢ is the projection of
M x R to R. The obtained symplectic manifold is called the symplification of the
contact manifold (M, a).

If Q is an exact symplectic form on M, ie. Q = df, then if N = M x IR,
and w: N - M, t: N - R the projections on each factor, then a@ = 7°0 + dt is a
contact form on N: this contact manifold is called the contactization of the symplectic
manifold (M, Q).

The following result, proved by Boobthy and Wa.ng [13] gives another construction
of a contact ifold out of a sympl

Theorem 10 Let (M,Q) be a symplectic manifold such that the cohomology class
[Q) € H*(M,IR) is in fact in H*(M,Z). Then M is the base of a principal circle
bundle 7 : P — M where P has a contact form a such that 7*Q = da.The character-
istic vector field of a generate the action of S* on P.

T
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" lealaf. et so 1

1. The contactization of (T"* M, dwps) gives a contact structure on T*(M) x R) ~
JY(M), the bundle of 1-jets of functions on M.

2. Martinet proved that any compact oriented 3-dimensional manifold has a con-
tact form [26].

3. Very recently, it was proved that odd dimensional tori carry contact forms [12].
A contact form on T* is well known: the 1-form f = cos(2nz)dz + sin(272)dy on R®
defines a contact form on 7°%. A contact form on T'° was known to Lutz for longtime.
The recent result generelizes Lutz constuction.

4. All odd dimensional spheres have a contact form. Let 8 = Z:’:ll zidy; — yidz;,
in coordinates (21, .., Zni1,Y1, - Yns1) of IR?™H2. The restriction a of 6 to §2n+1 is
a contact form. Its characteristic vector field is & = Y, 2:0/0y; — y:0/0x;. The
orbits of & generate an action of S* on S2"t1, The quotient space S*"*1/S1 is the
projective space CP™, and the projection = : S"*t! — CP™ is the Hopf fibration.
The kernel of do is generated by the vector field €. Moreover, da is invariant under
&, hence descends to a closed non degenerate ( i.e a symplectic) form on CP™.

The pull back of the Hopf fibration by the Tischler-Gasqui embedding (theorem
5) provides an S' principal bundle over an integral symplectic manifold. Compare
with theorem 10.

Existence and classification of contact structures

The general problem of existence of contact structures is still an open problem.
However, they are more results than in the symplectic case. For instance, Martinet’s
theorem of existence in dimension 3. Thomas and Geiges have proved several existence
theorems in higher dimensions.

As far as the classification is concerned, the only general result available is an old
result of Gray [17], reproved by Martinet [25]:

Theorem 11 Let M be a compact manifold endowed with two contact forms « and
« inducing the same orientation on M. There is a diffeomorphism h of M such that
h*a' = fa, for some positive function f if and only if there is a smooth family of
contact forms ay such that ap = a and o' = ay.

5. Locally conformal symplectic structures

The existence of a symplectic form on a smooth manifold puts strong restrictions
on the topology of the manifold. We already obseved that the problem of existence
of symplectic structures on ifold is still led. The esistence of a
non-degenerate 2-form is the same as the existence of an almost complex structure.
This is a homotopy problems and the obstructions are known ( Wu characteristic
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classes). The real difficult problem is to determine whether the non-degenerate 2-
form is closed. We may want to generahze thls last condition. One comes up with

the notion of locally conft 1 sy str

A locally conformal symplectic (lcs) form on a smooth manifold M is a
non-degenerate 2-form Q such that there exists an open cover & = (U;) and smooth
positive functions A; on U; such that

= \(Qu:)
is a symplectic form on U; . If for all i , A; = 1, the form Q is a symplectic form. Lee

[.] observed that the 1-forms {d(In);)} fit together into a closed 1-form w such that

= -wAQ. (1)

Such 1-form is uniquely determined by Q and is called the Lee form of 2.

Conversely, if a non degenerate 2-form Q satisfies (1), and ¥ = (U); is an open
cover with contractible open sets, then wy, = dinA;, for some positive function A; on
U; and \iQy, is symplectic.

We have the following "Darboux” type theorem :

Theorem 12 Each point in smooth manifold equipped with a lcs form Q has an open
neigborhood U and local coordinates (zy,..,Zn,Y1,..,Yn), with y1 # 0, such that

Qu = yl(zd-’ﬂi A dy;)

i=1

and wyy = ¥, where Q is the Lee form of Q.

Two les forms Q, Q' on a smooth manifold M are said to be (conformally) equiv-
alent if Q' = fQ | for some positive function f on M.

A locally conformal symplectic (lcs) structure S on a smooth manifold M is an
equivalence of lcs forms. If a lcs forms Q is a representative of S, we write: Q € S.

Let w be a closed 1-form on a smooth manifold M and let AP(M) be the set of
p-forms on M. One defines an operator

d, : AP(M) — AP (M), 6 df+wAb

It is easy to see that (d.)? = 0, and hence that (A*,d,,) is a complex. Its cohomology,
which was introduced by Lichnerowizc, is denoted H;(M). We will called it the
Lichnerowicz cohomology. It is easy to see that if w is an exact 1-form, then H (M)
is isomorphic to the de Rham cohomology.




e ——
Symplectic geometry and related structures 133

The condition 2 = —w A Q means then that Q is d,-closed. Hence a locally con-
formal symplectic form is a di dy-closed 2-form. This definition matches
the definition of a symplectic form in case w is exact.

The category of locally conformal symplectic manifolds is larger than the category
of symplectic manifolds:

The cartesian productM = N x S* of a contact manifold (N, a) with the circle
S has a locally conformal symplectic form. Let Q = d,(7ja), where m; are the
projections on each factor, and w = 73 (L), where L is the length form on S*. It is easy
to see that Q is a locally conformal symplectic form. For instance $?"+1 x ! admits a
locally conformal symplectic form, and we know it does not admit a symplectic form
since H2(S?"*! x S* R) = 0.

Observe that on the compact manifold $2"+! x S!, we have the d,-exact locally
conformal symplectic form Q = d,, (7] @). We saw that a symplectic form on a compact
manifold can not be exact! In theorem 17, we characterise d,, exact locally conformal
symplectic forms.

The example above can be generalized in the following result ( see for instance (5],
(34):

Theorem 13 The total space of a flat S*-principal bundle over a contact manifold
carries a locally conformal symplectic form.

The following simple remark [6] gives a link between symplectic geometry and
locally conformal symplectic geometry:

Theorem 14 Let (M, S) be a lcs manifold, and let Q € S . Let w: M = M be the
minimum regular covering of M associated with the 1-form w. Let A : M — IR be a
positive function on M such that

m*'w = d(In)).

Then 2 = A(x°Q) is a symplectic form on M and its conformal class S depends only
on 8, i.e. is independent of the choice of 2 € S and of A.

It is well known that the group A of automorphisms of the covering M, is equal
to the group of periods of w. It is easy to see that for any 7 € A, (Ao7)/A =¢, is a
constant number, independent of the choice of A and 7 = ¢ is a group homomorphism
¢ from A to the multiplicative group IR* of positive real numbers.

Let Dif fs(M) be the group of automorphisms of a lcs structure S on a smooth
manifold M. It is clear that for any lcs Q € S, then Dif fs(M) is the set of all
diffeomorphisms ¢ of M such that ¢*Q = f4Q, where f4 is a smooth function on M.

Theorem 15 (21) The group Dif fs(M) determines the locally conformal symplec-
tic geometry.

(AT
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In local conformal symplectic geometry, we also have a version of Moser theorem
[4]
Theorem 16 Let Q, be a smooth family of les forms on a compact manifold M.
Suppose that for all t, the Lee form of Q can be written as w, = w +dfy, where f; is a
smooth family of functions, and that Q, — Qg is d,,- ezact, then there exist a smooth
family of diffeomorphisms ¢, with ¢o = id and a smooth family of functions f, such
that $; Q% = £iQ.

The Lie algebra Xs(M) of infinitesimal automorphisms of S, consists of vector
fields X on M such that LxQ = dx , where §x is a smooth function on M, and

HERSE
A short calculation shows that for such vector field X:

d(w(X)) = Lxw = —ddx.

Hence w(X) + dx is a constant I(X), and the correspondance X — [(X) is a Lie
algebra homomorphism called the extended Lee homomorphism. If M is compact
and Q is normalized so that the volume V = [, ()" = 1, then [5]:

lx:/Mw(X)(ﬂ)".

For any X € Xs(M), setting 6 = i(X)S2, we have :
d,6 = I(X)Q.

This shows that if there exists an infinitesimal automorphism X with [(X) # 0, then
Q is d,-exact. The converse is also true.

Theorem 17 A locally conformal symplectic form Q with Lee form w is d,,-exact if
and only if there exists X € Xs(M) with [(X) # 0.

Another interesting feacture of the extended Lee homomorphism is the following
fact [6]:
Theorem 18 Let X € Xs(M) and X a lift of X to the cover M, then:
Ly =1(X)Q

cally zero, the infinitesimal & -

Hence if the Lee h phism i
phisms of the local conformal symplectic structure on M lift into symplectic vector
fields for the symplectic manifold (M, Q). This implies that non d,,-exact lcs manifolds
(M, Q) behave like the symplectic manifold M, Q).

On the other hand, d-exact les manifolds are very special. We have the following
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Theorem 19 Let (M, Q) be a compact lcs manifold with Q = d_.8, where w is the Lee
form. Suppose df has constant rank. Then M is fibered over S* and the restriction
of 0 on each fiber is a contact form.

The Lee h phism can be globalized at the group level [6]:

Theorem 20 Let (M,S) ba a connected lcs manifold, @ € S with Lee form w, m :
M — M the covering associated with w, a function A : M — R such that m°w =
d(In)). e -

For each ¢ € Diffs(M)o, let ¢ : M — M be a diffeomorphism covering ¢, i.e
such that mo ¢ = ¢ om, then

e
S
is a non zero constant by, independent of the choice of A.

If ¢ is another lifting of ¢, then b = 0.b;, where o € A = c(A).
The correspondance : ¢ b is a well defined group homomorphism:

(fgom) (3)

L:Diffs(M); = R*/A
which does not depend on the choice of Q € S, i.e. is a conformal invariant.

The number b is the similitude ratio of ¢ , i.e. ¢*Q = b;Q. Hence the Kernel
G of £ 15 a normal subgroup which can be identified with a_guotient of a connected
subgroup of the group of symplectic diffeomorphisms of (M, Q).

Let ¢y be the local 1-parameter group of diffeomorphisms generated by an infinites-
imal automorphism X € Xg(M), then:

d
2 Un(eg Do = 10X) )

As a consequence if | is surjective, then L is non trivial. This in turn implies that
1§ exact.

6. Jacobi structures [24]

If ©2 is an locally conformal symplectic form on a smooth manifold M, then Q:
T(M) - T*(M), X  i(X)Qis an isomorphism. The inverse of 2 defines a section P
of A*T(M). i.e. a bivector: P(A, B) = Q((Q)~1(A),(Q)~*(B) for all A,B € T*(M).

The condition dQ2 = —w A § translates as

(i) [P.P)] = 2E A P and (ii) [[E, P]] = 0,

where E = P(w), and [[,]] is the Schouten bracket ( this is a natural extension of
the Lie derivative to skew symmetric contravariant tensor fields).

e \
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A couple (E, P) where E is a vector field and P € A%(M) is a bivector, satisfying
the equations:

([P, P]]=2EA P and [[E, P]] =0
is called a Jacobi structure.

Therefore a local conformal symplectic structure gives raise to a Jacobi structure
(P,E) on M, where P comes from an invertible bundle map from T*(M) to T(M).

A Jacobi structure (P, E) where E = 0 is called a Poisson structure. It is simply
given by a bivector P such that [[P, P]] = 0. If P is invertible, then P comes from
a symplectic form. Hence Poisson manifolds, i.e the couples (M, P) of a smooth
manifold M and a bivector P satlsfymg [[P P]] = 0, are particular cases of Jacobi
and lize sy

It is easy to check that contact manifolds also are Jacobi manifolds. Hence all the
structures presented in this expository paper are Jacobi structures. A good conclusion
of this paper is the following result of Guerida and Lichnerowiz [19] :

Theorem 21 Every Jacobi manifold (M, P) admits a generalized foliation ( in the
sense of Stefan-, Sussman) with the property that even dimensional leaves are local
conformal pls ifolds and odd di ional leaves are contact submani-

folds.

I would like to end this paper by a

Question
It is easy to define the group Dif f(M, (P, E)) of automorphisms of a Jacobi man-
ifold (M, (P, E)). Does this group determine the Jacobi structure (P, E)?
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