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ABSTRACT
Vector bundles constitute an extensively studied topic in algebraic geometry.
Principal bundles are emerging as the natural generalization of vector bundles.
This is an exposition on the basic aspects of principal bundles

1 Semistable principal bundles
Let G be a connected algebraic group over C, the field of complex numbers. (See [Bo),
[Sp] for algebraic groups.) A left G-action on a complex variety Z is an algebraic
e YV:GxZ — Z
satisfying the following two conditions:

1. wig,w(h,z)) = ¢(gh,z) for all g,h € G and z € Z; and

2. (e, z) = =z for all z € Z, where e is the identity element of G.

If the action v is clear from the context, then (g, z) will also be denoted by gz.
Similarly, a right action of G on Z is defined by a map

$:ZxGC — Z
with o(z.e) = z and ¢(¢(z,9),h) = é(z,gh).
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140 Indranil Biswas

Let M be a connected smooth projective variety over C. A Principal G-bundle
over M is a smooth complex variety E equipped with an action of G on the right and
an algebraic morphism
p:E—M (1.1)

satisfying the following three conditions

. the map p is smooth and surjective;

the map p is a morphism of G-spaces, with the action of G on M being the
trivial one, or in other words, G acts along the fibers of the projection p;

N

. the map to the fiber product over M

w

ExG — ExyE

defined by (z,g) — (2,2g) is an isomorphism.

Note that we do not assume E to be locally trivial in Zariski topology. The third
condition ensures that the action of G on E free and it acts transitively on each fiber
of the map p. A G-bundle E over M is called trivial if it is isomorphic to M x G as
a G-space (the action of G on M x G is defined by the right action of G on itself).

Let Z be a complex variety equipped with a left action of G. For a principal
G-bundle E over M, define a “twisted diagonal” action of G on E x Z as follows.
The action of any g € G sends a point (z,2z) € E x Z to (zg,97'2) € E x Z. (See
[Gi, p. 114, Définition 1.3.1].) The quotient

ExZ
= — 1.2
E(Z) el (1.2)
is a fiber bundle over M with each fiber isomorphic to Z. This E(Z) is called the
associated bundle, associated to E for Z.

Let g denote the Lie algebra of G. The group G acts on g as conjugation. For
a principal G-bundle E, the associated vector bundle E(g) (defined as in (1.2)) is
called the adjoint vector bundle, and it is denoted by ad(E).

Let p : G — H be a homomorphism of algebraic groups. Using p, the group
G acts on the left of H. More precisely, the action of g € G sends any h € H to
plg)h € H.

For a principal G-bundle E over M, the group H acts on the right of the associated
fiber bundle E(H) defined as in (1.2). The action of any h € H sends a point
(2,9) € E(H), where z € E and g € H, to the point (z,gh) € E(H). This action of
H on E(H) is free and it is transitive on the fibers of the natural projection of E(H)
to M. Consequently, E(H) is a principal H-bundle over M. This construction of a
principal bundle is known as the exztension of structure group. Note that there is a

morphism
E — E(H) (1.3)

s )
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that sends any z € E to (z,e) € (E x H)/G, where e € H is the identity element.

Let H, be a closed algebraic subgroup of G. For a principal G-bundle E, consider
the quotient space E/H, = E(G/H,). Let

q: E — E/H,
be the quotient map. Any section
o: M — E(G/H) (1.4)

of the fiber bundle has the property that the inverse image ¢=*(c(M)) is a principal
Hy bundle over M. In other words, ¢~!(c(M)) C E is closed under the action of
H, (for the action of G on E), and the restriction of the projection p (in (1.1)) to
¢ '(o(M)) makes it into a principal H;-bundle over M.

Conversely, if Ey, C E is a subvariety which is closed under the action of H;
(for the action of G on E), and H; acts transitively on the fibers of the projection of
Ey, to M, then Ey, is a principal H, bundle. Furthermore, sending any z € M to
the H, orbit Ey, Np~'(z) C p~'(x) in the right G-space p~(z) we get a section
of the fiber bundle E(G/H,) over M. This construction of a principal H;-bundle
as a subvariety of E is known as reduction of the structure group of E. So giving a
reduction of the structure group of the G-bundle E to the subgroup H, is equivalent
to giving a section of the fiber bundle E(G/H,) over M.

Let G be a complex connected reductive algebraic group. This means that any
finite dimensional complex G-module V' decomposes as a direct sum of irreducible
(' -modules. We recall that a G-module V4 is called irreducible if there are no proper
positive dimensional complex linear subspace of ¥} left invariant by the action of
(. So GL(n,C), SL(n,C), Sp(n,C), SO(n,C) are some of the reductive groups. On
the other hand, the group of upper triangular n x n matrices is not reductive. The
standard action of it on C" cannot be expressed as a direct sum of irreducible modules.

Let Zy € G denote the connected component of the center of G containing the
identity element. We note that G is reductive if and only if Zj is isomorphic to
a product of copies of C* and the quotient group G/Z, is semisimple. A complex
group H is semisimple if and only if the Killing form on the Lie algebra of H is
nondegenerate.

Let M be a connected complex projective manifold of dimension d. Fix an ample
line bundle O (1) on M. The degree of any torsionfree coherent sheaf W on M will
be defined as

degree(W) := /Mcl(W)/\(cl(OM(l)))“‘l €Z.

Note that ¢; (W) A(e1 (Opm(1)))?! € H?4(M,Q). The integral [,, is the cap product
with the oriented top homology class of M.

Let W' be a coherent subsheaf defined over a nonempty Zariski open subset U C
M such that the 1 ion of the 1 M\ U is at least two. Let
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¢ : U — M denote the inclusion map. Note that the direct image ¢. W' is a coherent
sheaf on M. The degree of W' is defined to be the degree of the direct image t.W'.

A torsionfree coherent sheaf W over M is called semistable if for any nonzero
subsheaf W' C W the partial inequality

degree(W’) _ degree(W)
rank(W') — rank(W)

is valid. If the strict inequality “<” is valid for subsheaves satisfying the extra con-
dition that W' is a proper subsheaf with W/W' torsionfree, then W is called stable
(see [Ko)).

The quotient degree(W)/rank(W) is called the slope of W and is usually denoted
by u(W). The sheaf W is called polystable if it is a direct sum of stable sheaves of
same slope. In particular, any polystable sheaf is semistable.

A. Ramanathan extended the notion of (semi)stability to principal bundles [Ral],
[Ra2], [Ra3]. We will recall the definition.

A parabolic subgroup of the reductive group is a connected Zariski closed proper
subgroup P C G with G/P compact. A parabolic subgroup of G is called mazimal
if it is not properly contained in another parabolic subgroup of G. A subgroup P of
GL(n,C) is a maximal parabolic subgroup if and only if there is a linear subspace V' C
C" with dim V" € [1,n — 1] such that for the standard action of GL(n,C) on C" the
subgroup that leaves V" invariant coincides with P. So the quotient space GL(n,C)/P,
where P is a maximal parabolic subgroup, is isomorphic to a Grassmannian.

Let G be a connected complex reductive algebraic group. The center of G will be
denoted by Z(G).

Take a principal G-bundle E over X. Let
Ep C Ely

be a reduction of structure group of E to a maximal parabolic subgroup P C G over
a nonempty Zariski open subset U C M with the codi ion of the c 1

M\ U being at least two. We recall that the reduction of structure group is defined
by a section ¢ : U — E|y/P as in (1.4). Let T, denote the relative tangent
bundle over E|y /P for the projection of E|y/P to M. So T, is the subbundle of the
holomorphic tangent bundle of E|y /P defined by the kernel of the differential of the
projection of E|y /P to M. The pull back o* Ty is a vector bundle over U.

The G bundle E is called semistable (respectively, stable) if in every such situation
describe above, the degree of the pull back o* Ty is nonnegative (respectively, strictly
positive)

For a connected complex algebraic group H, let R,(H) denote the unipotent
vadical of H. So R,(H) is the maximal connected normal solvable subgroup of H.
The quotient H/R,(H) is reductive. See [Bo] for the details. The quotient H/R,,(H)
is called the Levi factor, and it is denoted by L(H).

e 5
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IfPisa bolic subgroup of group G, then the Levi factor L(P) can
be identified with a subgroup of P as follows. Fix a maximal torus T of G contained
in P. Let L(P)" € P be the maximal 7 invariant reductive subgroup of P. The
natural projection of P to the Levi factor L(P) sends L(P)" isomorphically to L(P).
This way the Levi factor of P is realized as a subgroup of P.

The G-bundle E is called polystable if either E is stable or there is a Levi factor
L(P) ¢ P C G of a parabolic subgroup P and a reduction, over M, of structure
group Egp) € E to the subgroup L(P) C G such that

1. the L(P)-bundle Eyp) is stable;

2. for any character x : L(P) — C* with the property that the restriction of
\ to the center Z(G) of G is trivial, the degree of the associated line bundle
Epp)(C) is zero.

Note that the line bundle E7(p)(C) is the associated bundle (as in (1.2)) for the action
of L(P) on C defined by the character x.

A GL(n,C)-bundle Egy, is stable or semistable or polystable if and only if the
vector bundle of rank n associated to Egy, by the standard representation of GL(n, C)
is stable or semistable or polystable respectively.

Ramanathan constructed the moduli space of semistable G-bundles over a Rie-
mann surface as an irreducible normal projective variety (see [Ra2] and [Ra3]). See
[FMW] for an extensive study of the moduli space of semistable principal bundles
over an elliptic curve.

Given any holomorphic vector bundle V on M, there is a unique filtration
0=WchchcCchach=V

of coherent subsheaves such that each quotient V;/Vi_y, i € [1,1], is a torsionfree
semistable sheaf and pu(Vi/Vi—1) > u(Vig1/V;) for all i € [1,1 — 1]. This filtration is
known as the Harder-Narasimhan filtration or the canonical filtration (see [Ko]).

This property of vector bundles, namely the existence of a unique canonical filtra-
tion, extends to principal bundles. It will be explained in the rest of this section.

Let p be the Lie algebra of a parabolic subgroup P of G. Let u(P) denote the
uilpotent radical of p. So u(P) is the Lie algebra of R, (P). Set
u = [u(P),u(P)]

to be the commutator. Since R, (P) is a normal subgroup of P, the adjoint action of
P on its Lie algebra p leaves the subalgebra u(P) invariant. The induced action of P
on u(P) leaves the subalgebra u; invariant. So we have an induced action of P on the
quotient u(P)/u,.

In [AAB] the following analog of canonical filtration for a G-bundle is proved.
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Theorem 1.1 Let E be a principal G-bundle over M. Then either E is semistable
or there is a nonempty Zariski open subset U C M, with codim(M \U) > 2, and a
unique reduction of structure group of E over U to a parabolic subgroup, say P, of G
such that, denoting the reduction by Ep, the following two conditions hold:

1. the principal L(P)-bundle obtained by eztending the structure group of the P-

bundle Ep over U using the quotient map of P to L(P) is a semistable L(P)-
bundle;

2. for any submodule V in the P-module u(P)/us, the associated vector bundle
Ep(V) over U is of positive degree.

If we set G = GL(n,C), then it is straight-forward to check that the above
theorem is equivalent to the existence, and uniqueness, of the canonical reduction of
the rank n vector bundle associated to E for the standard action of GL(n,C) on C".

The second condition in the above theorem can be replaced by the following equiv-
alent condition:

For any nontrivial character x of P which can be ezpressed as a nonnegative
integral combination of simple roots, the line bundle associated to Ep for x is of
strictly positive degree. (See [AAB, p. 712, Theorem 6].)

The following proposition gives another equivalent formulation of the canonical
reduction (see [AAB, p. 706, Porposition 4]):

Proposition 1.2 Let E be a principal G-bundle over M which is not semistable and
P. Let Ep C E be a reduction of structure group of E to a parabolic subgroup P
of G over a Zariski open subset U C M with codim(M \U) > 2. Assume that the
following three conditions are valid:

1. the principal L(P)-bundle over U, where L(P) is the Levi factor of P, obtained

by extending the structure group of Ep using the projection of P to L(P) is a
semistable L(P)-bundle;

e

if @ C G 1s a parabolic subgroup properly containing P and Ep C Eq C E a
reduction of structure group of E to Q over some Zariski open subset Uy C U
with codim(M \ Uy) > 2, then the inequality

degree(ad(Eq)/ad(Ep)) < 0
is valid;
3. pmin(ad(Ep)) = 0, where pmin of a vector bundle is the slope of the final
quotient of the Harder-Narasimhan filtration of the vector bundle.

Then the reduction Ep coincides with the I reduction of E in Theorem
1.1. Conversely, the canonical reduction in Theorem 1.1 satisfies all the above three
conditions.

In the next section we will consider holomorphic connections on a principal bundle.
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2 Holomorphic connections on a principal bundle

Let E be a principal G-bundle over M, where G is any complex algebraic group. For
any analytic open subset U C M, consider the inverse image p~!(U) (the map p is
as in (1.1)) which is a complex manifold equipped with an action of G. So G acts on
the space of all holomorphic vector fields on p~!(U). Let A(U) denote the space of all
holomorphic vector fields on p~!(U) that are invariant under that action of G. If § is
a holomorphic vector field on p=! (U) left invariant by the action of G and y € p~'(U),
then 6(y) determines 6|,-1(,(,)). Indeed, this is an immediate consequence of the fact
that G acts transitively on the fibers of p.

Note that if 8 is a holomorphic vector field on p~*(U/) left invariant by the action
of G and f a holomorphic function on U, then the holomorphic vector field (fop) -6
on p~'(U) is also left invariant by the action of G.

Therefore, associating the vector space A(U) to any analytic open subset U of M
we get a coherent analytic sheaf on M. By GAGA (see [Se]) this is a coherent algebraic
sheaf. It is easy to see that this coherent sheaf is locally free of rank dim G + dim M.
Indeed, this follows from the fact that dim E = dim G + dim M.

Let At(E) denote the vector bundle over M defined by this coherent sheaf that
associates A(U) to any U. This vector bundle At(E) was first constructed in [At2],
and it is now known as the Atiyah bundle for E.

Let T,y € TE be the relative tangent bundle for the projection p. So Ty coincides
with the subbundle of the holomorphic tangent bundle TE defined by the kernel of
the differential

dp: TE — p'TM
of the projection p. In other words, we have an exact sequence of holomorphic vector
bundles
O ra Tl Bty T3, 0 (2.1)
over E. Note that is exact sequence is compatible with the action of G. In other
words, the action of G on T'E preserves the subbundle Tij. The induced action of G
on the quotient p*T'M is clearly the trivial action.

The coherent sheaf on M that associates to any open subset U C M the space of
all G- invariant holomorphic sections of Trei|,-1(v) coincides with the coherent sheaf
on M corresponding to the adjoint vector bundle ad(E). This follows from the fact
that the space of all right invariant holomorphic vector fields on the algebraic group
G is identified with the Lie algebra g. The identification is obtained by evaluating
any vector field at the identity element.

Therefore, taking G-invariant sections for the exact sequence of vector bundles
(2.1) we obtain an exact sequence of vector bundles

0 — ad(E) 5 At(E) B T™M — 0 (2.2)

over M. This is known as the Atiyah ezact sequence.

e |
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For G = GL(n,C), the Atiyah bundle of a GL(n, C)-bundle Egy, can alternatively
be described as follows. Let E = EgL(C") be the rank n vector bundle over M
associated to Egp for the standard action of GL(n,C) on C". Let Diﬁ}W(E,E) be
the holomorphic vector bundle over M defined by the first order differential operators
from E to E. Let
o : Diff};(E,E) — TM ® End(E)

be the symbol map. Note that End(E) has a trivial line subbundle defined by the
identity automorphism of E. So we have an exact sequence of holomorphic vector
bundles

0 — End(E) — o '(TM®1d) 5 TM — 0

over M. The Atiyah bundle
At(EgL) = o~ '(TX ®1d) C Diffy,(E, E), (2.3)

and the above exact sequence coincides with the Atiyah exact sequence obtained in
(2.2) (note that adjoint bundle ad(Egy) is naturally identified with End(E)).

A holomorphic connection on a principal G-bundle E is a splitting of the Atiyah
exact sequence (2.2), that is, a homomorphism of holomorphic vector bundles

D : TM — At(E)

such that (dp) o D is the identity automorphism of TM, where dp as in (2.2) [At2].
For the trivial G-bundle Eq = M x G over M, we have At(Ey) = TM @ M x g,

where M x g is the trivial vector bundle over M with g as the fiber. Hence the trivial

G-bundle E; has a natural connection, which is called the trivial connection.

We recall that the exact sequence (2.2) was obtained from the exact sequence
of vector bundles (2.1) over E by taking G-invariant sections. Therefore, giving a
holomorphic connection on E is equivalent to giving a G—equivariant holomorphic
splitting of the exact sequence (2.1).

For another such splitting D' of (2.2), the difference of the two splittings, namely
D — D', is a holomorphic homomorphism from TM to ad(E). Indeed, this is an
immediate consequence of the fact that both define splittings. Conversely, for any
holomorphic section s of 2}, @ ad(E), clearly

D+s:TM — At(E)

is a splitting of (2.2) if D is so. In other words, the space of all holomorphic connec-
tions on E is an affine space for the vector space H°(M, 2}, @ ad(E)).

For any open subset U’ of E, the space of all holomorphic vector fields over U is
equipped with a Lie algebra structure defined by the Lie bracket operation. This Lie
bracket operation preserves G-invariant vector fields. In other word, if U' = p~!(U),
where ' C M is some open subset, and s and ¢ are two G-invariant holomorphic
vector fields on U’, then the Lie bracket (s, t] is also a G-invariant holomorphic vector
fields on U’. Consequently, the space of all holomorphic sections of the Atiyah bundle

e\
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At(E)| over U is equipped with a Lie algebra structure. On the other hand, the space
of all holomorphic vector fields over U is also equipped with a Lie algebra structure
defined by the Lie bracket operation. It is easy to see that the homomorphism dp
in (2.2) is compatible with the Lie algebra structure of the sections of At(E)|y and
TU, that is, dp([s,t]) = [dp(s),dp(t)], where s and ¢ are any holomorphic sections
of At(E)|y. Indeed, this is an immediate consequence of the fact that the differential
dp commutes with the Lie bracket operations on E and M respectively.

Since dp in (2.2) is compatible with the Lie algebra structures, the Lie algebra
structure on the space of sections of At(E) induces a Lie algebra structure on the
kernel of dp in (2.2) namely on the sections of the adjoint bundle ad(£). On the
other hand, the fibers of ad(E) has a natural Lie algebra structure. Indeed, ad(E)
is the vector bundle associated to E for the adjoint action of G on its Lie algebra g.
Since the adjoint action of G' on g preserves the Lie algebra structure, the fibers of
ad(E) get Lie algebra structure. This Lie algebra structure on the fibers of ad(E)
induce a Lie algebra structure on the space of sections of ad(E). It is easy to see that
this Lie algebra structure on the sections on ad(E) coincides with the one induced
by Lie algebra structure on the space of sections of At(E). If we identify g with the
right invariant holomorphic vector fields on G, then the Lie algebra operation on g
coincides with the Lie bracket operation on the right invariant holomorphic vector
fields on G

Let D : TM —» At(E) be a holomorphic splitting of the Atiyah exact sequence
(2.2) defining a holomorphic connection on the G-bundle E. The image D(T M) need
not be closed under the Lie algebra structure of the space of sections of At(E). In
other words, for two section s and ¢ of D(TM) over an open subset U C M, the
Lie bracket (s, t] need not be a section of D(TM). Since the projection dp in (2.2) is
compatible with the Lie algebra structures, we conclude that [s, ] is a holomorphic
section of ad(E) over U.

Using the above remark, we have a holomorphic homomorphism of vector bundles
from the exterior power /\7 TM to ad(E). To explain this, for any point z € M and
holomorphic tangent vectors v,w € T M, let 0 and ¥ be holomorphic vector fields de-
fined around z with 9(z) = v and #(z) = w. Consider the evaluation [D(?) , D(i)](z)
at x of the Lie bracket (D(d), D(1)], where D as before is a holomorphic connection
on E. It is straight-forward to check that [D(d),D(w)](z) does not depend on the
choices of the vector fields © and o (it only depends on u, v and, of course, D).
Consequently, we have

K(D) € H'(M, 03, ® ad(E)) = H°(M, Hom(A*TM, ad(E))) (2.4)
defined by
(K(D),vAw) = [D(8),D(w))(z) € ad(E),

for any r € M and v,w € T, M. This section K(D) is called the curvature of the
holomorphic connection D. So the curvature measures the failure of the splitting D
to be Lie algebra structure preserving.
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In particular, if X(D) = 0, then the splitting D is compatible with the Lie algebra
structure of the sections of TM and At(E). If K(D) = 0, then D is called a flat
connection. Note that if M is a Riemann surface, that is, dim¢ M = 1, then any
holomorphic connection is automatically flat, as 03, = 0.

Let

p:G— H

be a homomorphism of algebraic groups and E a principal G-bundle over M.

Consider the map
p: E— E(H)

defined in (1.3). If v is a G invariant vector field on p~*(U) C E, where p is the
projection of E to M and U an open subset of M, then dj(v) is a H invariant vector
field on ¢~!(U) C E(H), where q is the natural projection of the principal H-bundle
E(H) to M, and dp is the differential of the above map p. Therefore, we have a
homomorphism

p : At(E) — At(E(H))

of Atiyah bundles. If D : TM — At(E) is a holomorphic connection on E, then the
composition homomorphism g o D is a holomorphic connection on the principal H-
bundle E(H). In other words, a connection on principal bundle induces connections
on principal bundles obtained by extension of structure group.

Giving a holomorphic connection D on a G-bundle E is equivalent to giving a
g-valued holomorphic one-form

w € H(E, QL ® g) (25)

on E satisfying the following two conditions:

-

. the form w is G-equivariant for the adjoint action of G on its Lie algebra g and
the obvious action of G on E;

2. the restriction of the form w to any fiber of the projection p to M coincides with
the holomorphic Maurer-Cartan form.

Let
Yp: ExG — E

be the action of G on E. For any point z € E and any v € g, let o := dy(z,e)(0,v) €
T.E be the image of v by the differential of ¥, where e € E is the identity element
in G. The holomorphic Maurer-Cartan form on E, which is a holomorphic relative
one-form on E with values in g (that is, a holomorphic section of T}y, ® g), sends
tov

Given such a form w on E, the kernel of w defines a homomorphism from TM
to At(E) splitting the Atiyah exact Ci ly, given a splitting of the
Atiyah exact sequence, there is a unique one-form w on E satisfying the above two
conditions and having the property that its kernel is the image of TM for the splitting
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homomorphism. Therefore, giving a holomorphic ion D on E is equivalent to
giving a g-valued holomorphic one-form on E satisfying the above two conditions.

If E is a principal G-bundle over M admitting a holomorphic connection, then
all the rational characteristic classes of E vanish [At2]. In particular, there are no
topological obstructions for E to admit a flat holomorphic connection. A question
due to Atiyah asks for the converse:

Question 2.1 Let E be a principal G-bundle over a compact complex manifold ad-
mitting a holomorphic connection. Does E admit a flat holomorphic connection?

In many special cases the answer to Question 2.1 is positive, but the general answer
is not known.

3 Principal bundles on a Riemann surface

Let X be a connected smooth projective curve over C, or equivalently, a compact
connected Riemann surface. Let E be a holomorphic vector bundle over X. The
vector bundle E is called decomposable if there are holomorphic subbundles W and
W, of E of positive ranks such that there is a holomorphic isomorphism

E=W oW,.

The vector bundle E is called indecomposable if it is not decomposable. Every vector
bundle can be expressed as a direct sum of indecomposable vector bundle, and fur-
thermore, the decomposition is unique up to a permutation of the direct summands
[At1]

In (2.3) we saw that the Atiyah bundle for a vector bundle E coincides with the
subbundle of Diff (B, E)) whose image by the symbol map is X ® Id. Recall that a
holomorphic connection is by definition a splitting of the Atiyah exact sequence (2.2).

Consequently, a holomorphic connection on a vector bundle E over X is a first
order holomorphic differential operator

D € H°(X, Diffy (E, Q% ® E))

whose symbol is the identity automorphism of E. It is easy to see that this condition
on symbol is equivalent to the condition that D satisfies the Leibniz identity which
says that
D(fs) = fD(s) +9(f)®s

where f is a locally defined holomorphic function on X and s is a locally defined
holomorphic section of E.

A holomorphic connection on E is same as a holomorphic connection on the cor-
responding principal GL(n, C)-bundle, where n = rank(E). It was noted earlier that
any holomorphic connection on a Riemann surface is automatically flat.

P
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Let D be a holomorphic connection on E. So we have degree(E) = 0. Assume
that E = W, @ W», where W, and W, are holomorphic subbundles of E. Le'. q
denote the projection of E to W) defined using the d it The

Wi E2 ateE S alew,

defines a hol phic ion on W,. Consequently, degree(W;) = 0.

Therefore, if a holomorphic vector bundle E over X admits a holomorphic con-
nection, then every indecomposable component of E is of degree zero. The converse
is also true. In other words, a holomorphic vector bundle E over X admits a holo-
morphic connection if and only if every indecomposable component of E is of degree
zero [At2], [We].

Let G be a connected reductive algebraic group over C. We will describe a condi-
tion on G-bundles that ensures the existence of a holomorphic connection.

For convenience, in this section by a parabolic subgroup of G we will mean what
we defined in Section 1 to be parabolic subgroup and G itself. In other words, now a
parabolic subgroup of G need not be a proper subgroup. The Levi factor for G is G
itself, as the unipotent radical of G is the trivial group.

Henceforth, we will consider the Levi factor L(P) of a parabolic subgroup P as a
subgroup of P. (It was explained in Section 1 that we can do so.)

For a parabolic subgroup P of G, let

L(P)

LoP) = ), nP]

be the quotient by the commutator. So, Lo(P) is the maximal abelian quotient of
L(P). Note that Lo(P) is isomorphic to a product of copies of C*. Since there are
no nontrivial (multiplicative) characters on [L(P), L(P)], the characters of L(P) are
in bijective correspondence with the characters of Lo(P). Consequently, for a L(P)-
bundle Ejp) on X, the corresponding Lo(P)-bundle Ejp)(Lo(P)), obtained by
extension of structure group, is topologically trivial if and only if for every character

x: L(P) — C
degree(Ey p)(C)) = 0, where Ep(p)(C) is the line bundle over X associated to Eyp)
for the action of P on C that factors through x.
Let E be a principal G-bundle over X. Let

Byp) = E

be a reduction of structure group of E to the Levi factor L(P) of a parabolic subgroup
P. Take a character

x:LP) —C
of L(P). Let

Eypy xC

(= P = Eyp)(C)
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be the holomorphic line bundle over X, where the action of P on C is x composed
with the multiplication action of C* on C.

Lemma 3.1 If the G-bundle E admits a holomorphic connection then degree(§) =
0.

Proof. Let I(P) denote the Lie algebra of L(P). Consider the two L(P) modules,
namely (P) and g, equipped with the adjoint action of L(P). Since L(P) is reductive,
the inclusion map

L:l(P) > g

of L(P)-modules admits a splitting. Take a splitti
$:9 — I(P). (3.1

So, ¢ is L(P) equivariant and ¢ o ¢ = Id;(p).
Let 7 be the inclusion map of Ef(p) in E. Let

w € HE, QL ®g)
be a connection form, as in (2.5), on E. Then the form
doT'w € HO(E,_(p), ﬂ}‘(m ®I(P))

where ¢ as in (3.1), defines a holomorphic connection on the L(P)-bundle Epp).
Indeed, since ¢ is L(P) equivariant, the form ¢ o (*w evidently satisfies both the
conditions needed to define a holomorphic connection.

The connection w' := ¢o7°w on Eyp) induces a holomorphic connection on the
principal C*-bundle Eyp)(C*) obtained by extending the structure group using the
homomorphism x. Since Epp)(C*) admits a holomorphic connection and £ is the line
bundle associated to £y (p)(C*) by the standard action, we conclude that £ admits a
holomorphic connection. Consequently, degree(§) = 0. This completes the proof of
the lemma L}

It was proved in [AB] that the converse of Lemma 3.1 is also valid. In other words,
the following theorem is valid ([AB, p. 342, Theorem 4.1]).

Theorem 3.2 Let G be a connected reductive algebraic group over C and E a prin-
cipal G -bundle over a compact connected Riemann surface X. The principal bundle
E admits a holomorphic connection if and only if for every reduction

Eyp) CE,

where L(P) is the Levi factor of some parabolic subgroup P, and for every character
\ of L(P), the degree of the associated line bundle (Ep(p) x C)/L(P) is zero.

| o———
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If we set G = GL(n,C), then the criterion in Theorem 3.2 coincides with the
earlier stated criterion, that is, the rank n vector bundle over X associated to E by
the standard representation admits a holomorphic connection if and only if all the
indecomposable components are of degree zero.

A corresponding criterion for the existence of a holomorphic connection in positive
characteristics is established in [BS].

Let P be a parabolic subgroup of the reductive group G. We can ask the follow-
ing question: what is a necessary and condition for the existence of a holomorphic
connection on a given principal P-bundle over X?

Let Ep be a principal P-bundle over X. Let Ep(L(P)) be the principal L(P)-
bundle obtained by extending the structure group using the projection of P to
P/Ry(P) = L(P). Now, a holomorphic connection on Ep induces a holomorphic
connection on Ep(L(P)). Note that since L(P) is reductive, we can use the criterion
in Theorem 3.2 to decide if Ep(L(P)) admits a holomorphic connection.

Question 3.3 Assume that Ep(L(P)) admits a holomorphic connection. Does this
imply that the P-bundle Ep admits a holomorphic connection?

4 Hermitian—Einstein connection on a principal bun-
dle

In this section G will be a complex reductive algebraic group. We will recall the
definition of a C> connection (as opposed to the holomorphic connection defined in
Section 2) on a G-bundle.

Let E be a principal G-bundle over M. The real cotangent bundle of the total
space of E will be denoted by Tz E. The real tangent bundle of E will be denoted by
TxE. Since E is a complex manifold, the real tangent bundle TR E is equipped with
an almost complex structure.

A C™ connection on E is a C* section

w' € C®(E;TRE ®@g g)
satisfying the following two conditions:

1. the g-valued one-form w' on E is G-equivariant for the adjoint action of G on
its Lie algebra g and the obvious action of G on E;

2. the restriction of the form w' to any fiber of the projection p to M coincides
with the real Maurer-Cartan form.

A C™ analog of the Atiyah bundle can be defined (exactly as before). A C* con-
nection is a C™ splitting of the C* Atiyah exact sequence. These constructions are
straight-forward analog of those for the holomorphic case.
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We note that a holomorphic connection on E gives a C™ connection on E. Indeed,
the real part of a form w as in (2.5) defining a holomorphic connection on E is a C*
connection on E.

A C™ connection w' on E is called a ipl if the h phism

F, :TgE — g

induced by w' is compatible with the almost complex structures. For any point z € E
and any tangent vector v € (TrE):

Fu(2)(v) := W'(2),v) € g,

where (~, =) is the contraction of (TrE). with its dual (TgE).. The above compat-
ibility condition means that F,(z) commutes with the almost complex structures of
(TRE). and g (since g is a complex vector space, the underlying real vector space has
an almost complex structure which is defined by multiplication with /=1).

A ™ connection on E obtained (as above) from a holomorphic connection on
E is clearly a complex connection. However, not all complex connections arise from
holomorphic connections.

For a holomorphic vector bundle E over M, a C* connection V on E is a complex
connection if and only if the (0, 1)-part of V coincides with the Dolbeault operator for
E defining the holomorphic structure of the vector bundle. (The connection operator
¥ decomposes as V0 4 V0! using the decomposition of complex one-forms on M
as sum of forms of Hodge types (0,1) and (0,1).)

Let K(G) € G be a maximal compact subgroup of G. Let

Bk C E (4.1)

be a € reduction of structure group of E. So, Ek(g) is fiber bundle over M and
K(G) acts transitively on the fibers of Ex ). Note that a C* reduction of structure
group of E to K(G) is given by a C™ section of the fiber bundle E/K(G) over M.

A €™ reduction of structure group of E to the maximal compact subgroup K (G)
is called a unitary structure on E.

If G = GL(n,C), then K(G) = U(n) (or a conjugate of it). It is easy to see
that giving a €™ reduction of structure group of a principal GL(n, C)-bundle Egy,
to U(n) is equivalent to giving a €' Hermitian structure on the associated vector
bundle of rank n (associated to Fgy, for the standard action of GL(n,C) on C").

Given a reduction Eg () as in (4.1) and a C* connection V on Ek ), there is
an induced connection on F. Note that E is an extension of structure group of the
K(G)-bundle Ek () to G (for the inclusion map of K'(G) in G). In Section 2 it was
shown that a connection induces a connection on any extension of structure group.

Proposition 4.1 Given a unitary structure Ex(g, C E on a principal G-bundle
E, there is a uniqgue C™ connection V on Eg(g) with the property that the C*°
connection on E induced by V is a complez connection.
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A proof of the above proposition is given in [KN, p. 178, Theorem 10.1] (see also
the remark in [KN, p. 185]).

For G = GL(n,C), the above proposition says that a holomorphic Hermitian
vector bundle over a complex manifold has a unique connection which preserves the
Hermitian structure as well as the (0,1)-part of the connection coincides with the
Dolbeault operator defining the holomorphic structure of the vector bundle (see [Ko]
for a proof for the case of vector bundles). This connection on the holomorphic
Hermitian vector bundle E is called the Chern connection on E.

So, given a unitary structure on a G-bundle E, Proposition 4.1 gives a complex
connection on E. A connection on E is called unitary if it arises this way for some
unitary structure on E.

Let V be a unitary connection on a G-bundle E over M. The curvature K(V) is
a C™ form of type (1,1) with values in the adjoint bundle ad(E). In other words,

K(V) € C=(M; Q) ® ad(E)).

Fix a Kahler form w € C®(M; ﬂ;‘;) on M such that the cohomology class in
H?(M.R) represented by the closed form w is a multiple of the Chern class ¢y (Op(1)),
where Oj/(1) is the ample line bundle on M that has been fixed (the degree was
defined using it).

Let A : @} — Q’,’J""" be the adjoint of the multiplication by the Kéhler
form w (see [Ko] for the details). So, we have

A(K(V)) € C®(M; ad(B)), (4.2)

that is, A(K(V)) is a smooth section of the adjoint bundle.

Let 3 C g be the center of the Lie algebra g. Note that the adjoint action of g € G
on any v € j is the trivial action, that is, ; is fixed pointwise by the adjoint action
of G on g. So any v € } gives a smooth section o of the adjoint bundle ad(E). To
explain this, recall that
_Exg
=
Sov € ; defines a section ¥ of ad(E) by sending any z € M to (y,v) € E xg, where y
is any point in p~'(z) (the map p is the projection in (1.1)). That the element in the
fiber ad(E): represented by (y,v) does not depend on the choice of y € p~'(z) is an
immediate consequence of the fact that G acts trivially on v and it acts transitively

ad(E)

on p~(x).
A unitary connection V on a G-bundle E over M is called a Hermitian-Einstein
connection if there an element v € § such that

AK(V)) = © € C(M; ad(E)),

where A(X(V)) is defined in (4.2).
In [RS] and [ABi] the following theorem is proved.
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b,

Theorem 4.2 If E admits a Hermitian-Einstein ion, then E is poly
Conversely, if E is polystable, then it has a unique Hermitian-Einstein connection.

For vector bundles, this theorem was proved in [Do], [UY].
Let
p: m(M,z0) — K(G)
be a homomorphism from the fundamental group to the maximal compact subgroup.
(:uuxixlvr M x G, where M is the universal cover of M. The group m, (M, zo) acts on
M as deck transformations, and it acts on G via p, that is, the action of y € m (M, o)
sends g € G to p(y)g € G. The quotient
MxG

m (M, zo)
for the diagonal action of my (M, 2o) is a principal G—blmdle over M. The projection
of B, to M is obtained from the natural projection of M to M.

Since we have p(m(M,z0)) C K(G), the trivial connection on the trivial G-
bundle M x G over M descends to a unitary flat connection on E,. (Trivial connection
was defined in Section 2.) All G-bundles over M with a flat unitary connection arise
this way.

If a G- bundle F has a flat connection, then all the rational characteristic classes of
£ of positive degree vanish [At2). Therefore, Theorem 4.2 has the following corollary:

E, =

Corollary 4.3 A G-bundle E over M is constructed from a homomorphism from
mi(M) to K(G) (that is, it admits a flat unitary connection) if and only if E is
polystable and all the rational characteristic classes of E of degrees one and two vanish.
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