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ABSTRACT 
\ ·t-ctor bundlcs constitutf.l an cxtcnsively studicd topic m algcbraic gconictry. 

Prmc1pa1 bundlcs are cmcrging ns thc natural gc11cralizat1011 o í vector bundles. 
Tln~ •~ an e.xposition on thc basic nspccts oí principal bundlcs 

Semistable principal bundles 

Lrt G be a conncctc<l algebraic group over C. t he field oí complex numbers. (See [Boj, 
[Sp] for algcbraic groups.) A left G- act ion on a complex variety Z is an a lgebraic 
lllllJ) 

satisfying the following two condit ions: 

l. v(g.«(h,z)) = l/J(gh,z) for all g,h E G and z E Z; and 

2. ~·(f', :) = :: for ali z E Z, wherc e is the identity element of G. 

l f thr nction \..' is clear from the context , then l/J(g,z) will also be denoted by gz. 
Similarly, a right act.ion of G on Z is defined by a map 

4>•ZxG-.Z 

with ~(z.r) =: and 4>(4>(z,g),h) = 4>(z ,gh). 
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Let. M be a connected smooth projective variety over C. A Principal G- bundfe 
over M is a smooth complex variety E equipped with an action of G on the right and 
an algebraic morphism 

P'E -+ M (1.1) 

sat isfying tbe folJowing three conditions 

l. the map p is smooth and surjective¡ 

2. the map p is a morphism of G- spaces, with the action of G on M bcing the 
trivial one, or in other words, G acts along the 6bers of the projection p ; 

3. the map to the fiber product over M 

Ex G ._. ExME 

defined by (z, g) i---+ (z, zg) is an isomorphism. 

Note that we do not assume E to be locally t rivial in Zariski topology. The third 
condit ion ensures t hat the action of G on E free and it acts transitively on each fiber 
of the map p. A O- bundle E over M is called trivial if it is isomorphic to M X e as 
a e spa.cP (the action of e on M X e is defined by the right action of e 011 itself). 

Let. Z be a complex variety equipped with a left action of C. For a principal 
G- bundle E over M , define a "twisted diagonal" action of G on E x Z as follows. 
The action of any g E G sends a point (x , z) E E x Z to (xg , g- 1 z) E E x Z. (See 
jGi , p. 11-1, Oéfinition 1.3.l J.) The quotient 

E(Z) '= E; z (1.2) 

is a fiber bundle over M with each fiber isomorphic to Z . This E(Z) is called t he 
rusociated bundle, associated to E Cor Z . 

Let g denote the Lie algebra of C. The group G acts on g as conjugation. For 
.i principal G- bundle E , the associatecl vector bundle E (g) (defined as in (1.2)) is 
called the ad1oint vector bundle, and it is denoted by ad(E}. 

Let p : G --t H be a homomorphism of algebraic groups. Using p, the group 
G acts on the Jeft of H . More precisely, the action of g E G sends any h E 11 to 
p(g)h E H . 

For a principal G- bundle E over M , the group H acts on the right of the a.ssociatcd 
tiber bundle E (H ) defi ned as in (1.2). The action of any h E JI sends a point 
(:: , g) E E(H ), whcrc z E E and g E H , to the point (z, gh) E E (H ). This act ion of 
H 0 11 E(H) is free and it is transitive on thc fibers of the natural projection of E (H ) 
to Al. Consequent.ly, E(H ) is a principal H- bundle over M . This construct ion of a 
principal bundle is known ns t he extension o/ structure group. Note that there is a 
morphism 

E -+ E(H ) (LJ) 
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thnt semis any z E E to (z ,e) E (Ex H )/G, where e EH is t.be identity element. 

Let H1 be a closed algebraic subgroup of G. For a principal O-bundle E, consider 
t hc quoticnt space E/H1 '=!! E(G/H¡). Let 

q' E-+ E/H1 

be tite quotienl map. Any section 

u, M-+ E(G/Hi) (1.4) 

or thc fiber bundle hru; t he property that the inverse image q- 1 (q(.M)) is a principal 
l/ 1 bundle over M. In other words, q- 1 (a(M)) C E is closed under the action of 
f/ 1 (for the action of G on E), and the restriction of the projection p (in {1.1)) to 
ti - 1(o(M)) makes it into a principal H 1- bundle over M. 

ConverseJy, if E11 1 C E is a subvariety which is closed under t he action of H1 

(for the action of G on E), and H1 acts transitively on the fibers of the projection of 
E11 1 to M , th n E11 1 is a principal H 1 bundle. F\Jrt hermore, sending any x E M to 
thc l/ 1 orbit E11 , np- 1 (x) e p- 1{x) in the right G-space p- 1(x) we get a section 
of tite fiber bundle E(G/Hi) over M. This construction of a principal H 1- bundle 
ns a suh\-atiet.y of E is known as reductio11 o/ tite stn1dure group of E. So giving a 
rrdurtion of the structure group of the G- bundle E to the subgroup H 1 is equivalent 
to giving a section of the fiber bundle E(G / H 1) over M. 

Lct C be a complex connected reductive algebraic group. Th is means that any 
finil c dimensional complex G- module V decomposes as a direct sum of irreducible 
G 111 dules . We recall that a G- module Vi is called irreducible if .there are no proper 
positive dimensional complex linear subspace of Vi left. invariant by the action of 
G. So GL(n,C), SL(n,C), Sp(n,C), SO(n,C) are sorne of the reductive groups. On 
thc other hand, the group of upper triangular n x n matrices is not reductive. The 
standard action of it on C" cannot be expressed a.s a direct sum of irreducible modules. 

Lct Z0 e G denote the connected component oí the center of C containing the 
idcntity element. \Ve note that G is reductive if and only if Zo is isomorphic to 
a product of copies of e· and the quot ient group C/Zo is semisimple. A complex 
grou p H is semisimple if and only if the Killing form on t be Lie algebra of H is 
nondegenerat.e. 

Let M be a connected complex projective manifold of dimension d. Fix an ample 
line bundle O.u( l ) on M . The degree of any torsionfree coherent sheaf W on M will 
be dcfined as 

degrcc( W) '= l. c1(W ) A (c1(0,,(l)))d-I E Z . 

" 
Note that c1(iV)A(c1 (OM(l )))d- I E H2d(M,Q). The integral JM is the cap product 
with the oriented top homology class of M. 

Lct if' be a coherent subsheaf defined over a nonempty Za.riski open subset U e 
/W such that the complex codimension of the complement A·/ \ U is at least two. Let 
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1 : U --i- .~/ denote the inclusion map. Note that the direct image i . W' is a coherem 
sheaí on Al. The degree of W 1 is defined to be the degree of the direct image ' · H''. 

A torsionfree coherenL sheaí W over /11/ is called semistable i f for any nonzcro 
subsheaf ll" e w the partial inequality 

degree(W') degree(HI) 
---<---
rank(W1) - rank(W) 

is \"alid. lf the strict inequality 11<" is valid for subsheaves satisfying the extrn con­
dit ion that IV' is a propcr subsheaf with W/ W ' torsionfree1 theii W is called stabfe 
(see [KoJ). 

T he quotiem degree(W )/rank{W ) is caJled the sfope of W a..nd is usually denoted 
by µ( 11'). T he sheaf W is called polystable i f it is a direct sum of stable sheaves of 
same slope. In particular, any polystable sheaf is semistable. 

A. Ramanathan extended the not.ion oí (semi)stabilit.y to principa l bundles !Ratj, 
[Ra2J, 1Ra3J. We will recall t.he definit.ion. 

1\ pambolic. s11bgroup oí t he rcduct.ive group is a connect.ed Zariski closed propcr 
subgroup P C G with G / P compact.. A parabolic subgroup of G is called manmal 
if 11 ,.., nn1 propcrly <"ont.ained in anot her pa rabolic subgroup of C . A subgroup P of 
GL(1i.C) is a 1na...'<imal parabolic subgroup if and only if there is a linear subspacc 1 · e 
C" ""ith dim \ · E [1 , 11. - 1 J su ch that for the standard action of G L(n, C) on ( " llw 
:,ubgroup that. leaves \ · invariant coincides with P. So t he quotient. space GL(n,C)/ P, 
where P b a maxima t parabolic subgroup, is isomorphic to a Grassmannian. 

Let G be a connect.ed complex reduct.ive a lgebraic group. The cent.er of G will be 
denoted bv Z{G). 

Take a principal G- bundle E over X. Let. 

Ep e E lu 

be a reduction of structurc group of E to a maximal pa rabolic subgroup P e G over 
a nonl'mpty Zariski open subset. U C M with t.he codimension of t he complement 
Af \ L' being at lcast. two. We recall t ha t t.he reduction of structure group is dcfincd 
lw a "-('('"tion o U -+ Elu/P as in {IA). Let T rel denote the rclat.ivc tong<'11I. 
bundle O\'t'T Eju/ P for the projcction of Elu/ P to /\{ . So T rel is the subbundle oí the 
holomorphic tangent bundle oí Elu / P defined by the kernel of t he differentia1 oí the 
projrction oí Elu/P to M. The pull back o º T rel is a \'ect.or bundle over U. 

The G bundle E is ca llcd semistablc (respectively, stable) iíin every such sit uation 
tlt>S('ribe above, the dcgrec of t lw pull back o º T rel is nonnegat ive (respectively, strictly 
poe-1tl\·e) 

For " con!ll'<'l rd cott1pl,•x ;i]grhrair group H , lec R,. (H ) denote the unipotem 
1.1dna.I of /1 So l?,.(11) is rlu• 111aximal connect('d normal soh·able subgroup of 11 . 
T!it• 1111ot1c·111 H / R., ( 1-1 ) is n·cl1wti v1•. Sec !BoJ for t he details The quotic111 H / R,.(H ) 
1.-. c.1lh"fl lht• Lrm fr1rt11r. arul lt i:-; dPnotcd by L(J/ ). 
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lf Pis a parabolic subgroup of reductive group G , then lhe Levi factor L(P) can 
be ldcntified wilh a subgroup of P as follows. Fix a maximal torus T of G contained 
¡11 P. Lct L( P )1 e P be the maximal T invariant rcductive subgroup of P. The 
natural projeclion of P to the Levi factor L(P ) sends L (P )' isomorphically to L(P). 
Thii:; way the Lcvi factor of Pis realized as a subgroup of P. 

Thc G bundle E is called polystable if either E is stable or there is a Levi factor 
L(P) e P e G of a parabolic subgroup P and a reduction, over Al , of structurc 
~roup E1.<1•1 e E LO thc subgroup L(P) e e such that 

l. t lw l( P )- bundle El¡PJ is st.able; 

2. fo r any character \'. L( P) -1- C" with the property lhat the restri ction of 
\ to t he centcr Z(C ) of G is t rivi al, thc degree of the associated line bundle 
El( PI (C) is zero. 

Noll' that the li ne bundle E l (P)(C) is the associated bundle (as in ( l.2 )) for the action 
of L(P ) on C defi ned by the character X· 

A C L(n, C) bundle Ec t. is stable or semis table or polystable if and only if the 
\·cctor bundle of rank n associated to Ec 1.. by the standard representat.ion of GL(n , C) 
i:oi st able or scmistablc or polystablc rcspect.ively. 

n amanathau constructed the moduli space of semistable G- bundles over a Ríe· 
11\J\ll ll surface as an irredu ci ble normal projective variety (see !Ra2] and [R<.13]). See 
[F~IW] for an extcnsive study of the moduli space of semistable principal bundles 
ovcr au dliptic cun•e. 

Gi vE'n any holomorphic vector bundle V on M , there is a unique filtration 

O = VoC Vi C V2C e v,_1 e \ i = v 

of cohcrent subsheaves such that each quotient V,/V,_, , 1 E p , i], is a torsionfree 
~c rnbi tablc sheaf and 11 (V. / Vi- 1) > µ.(V,+1 / V¡ ) for ali i E [l , 1- IJ. This filtration is 
known as the Han/e Narosimhan filtration or the canonical filtration (see [l<o)) . 

This property of v ctor bundles, namely the existence of a unique canonical filtra· 
rion . f'XI Pncls to principal bundles. It will be cxplai ned in the rest of this section . 

Lt•t p be the Lie algebra of a parabolic subgroup P of G. Let u(P) denote the 
nilpotcnt radical of p. So u(P} is the Lie algcbra of R,,(P ). Set 

u2 := [u(P) , u(P)] 

to be thc commutator. Since R,,(P) is a normal subgroup of P, the adjoin t action of 
P on its Lie algebra p leaves the subalgebra u(P ) invariant. The induced action of P 
0 11 u( P) le.1 \ the subalgcbra u2 invariant. So we ha\•e an induced action of Pon the 
tpmtll'nt u(P )/u1 . 

In ¡. \ .\OJ the following analog of canonical fi ltration for a G- bundle is provcd. 
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Theorem 1.1 Let E be a principal G - bundle ouer M . Then either E ¡,, semi.dable 
or there is a nonempty Zariski open subset U C M , with codim(M \U) :::, 2, anda 
unique reduction of structure group of E over U to a parabolic subgroup, say P , o/ G 
such that, denoting the reduction by Ep, the following two conditions hold: 

l . the principal L(P)- bundle obtained by extending the strocture group of the P ­
bundle Ep over U using the quotient map o/ P to L(P) is a semistable L(P) ­
bundle; 

2. /or any submodule V in the P - module u(P )/u2 , tl1e associated vector bundle 
Ep(V ) over U is of positive degree. 

If we set G = GL(n1 C), then it is straight- forwa.rd to check that the above 
theorem is equivalent to the existence, and uniqueness, of the canonical reduction oí 
the rank n vector bundle associated to E for the standard action of GL(n, C) on C11 • 

T he second condition in the above theorem can be replaced by the following equiv­
alent condition: 

For any nontrivial character x of P which can be expressed as a nonnegative 
integral combination of simple roots, the line bundle associated to Ep for x is o/ 
sfrictly positive degree. (See [AAB, p. 712, T heorem 6J.) 

The following proposition gives another equivalent formulation of t he canonical 
reduction (see (AAB, p. 706, Porposition 4]): 

Proposition 1.2 Let E be a principal O - bundle over M which is not semistable and 
P. Let Ep C E be a reduction of structure group of E to a parabolic subgroup P 
of G over a Zariski open subset U e M with codim(M \ U) ~ 2. Assume tliat the 
following three conditions are valid: 

l. the principal L(P)- bundle over U, where L(P) is the Levi factor of P , obtained 
by extending the structure group of Ep using the projection of P to L(P) is a 
semistable L(P)- bundle; 

2. if Q e G is a parabolic subgroup properly containing P and Ep e Eo C E a 
reduction of structure group of E to Q over sorne Zariski open subset U1 e U 
with codim(M \U¡} ;::: 2, then the inequality 

degree(ad(Eo)/ad(Ep)) < O 

is valid; 

3. JJmin(ad(Ep)) = O, where µmin of a vector bundle is the slope of the final 
quotient of the Harder- Narasimhan filtrotion o/ the vector bundle. 

Then the reduction Ep coincides with the canonical reduction o/ E in Thwrem 
1.1. Conver&ely, the canonical reduction in Theorem 1.1 sati.sfies all the above three 
conditioru. 

In the next section we will consider holomorphic connections on a principal bundle. 
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2 Holomorphic connections on a principal bundle 

Let E be a principal G- bundle over M, where G is any complex algebraic group. Far 
any a.na.lytic open subsct U e M, consider the inverse image p- 1(U) (the map pis 
ns in (1.1)) which is a complex manifold equipped with an action of G. So G acts on 
thc space of ali holomorphic vector fields on p- 1 (U). Let. A(U) denote the space of ali 
holomorphic vector fields on v- • (U) that are invariant under that action of G. If O is 
n holomorphic vector field on p- 1(U) left invariant by the action of G and y E p-1 (U), 
th n B(u) determines Olp- '(P(ll))· Indeed, th is is an immediate consequence ofthe fact 
that G acts t rru1sitivcly Oll the fibers of p. 

ote thnt if O is a holomorphic vector field on p- 1 (U) left invariant bY the action 
ofC and fa holomorphic function on U, thcn the holomorphic vector fie ld (Jop) .(J 

on p- 1 (U) is also left invariant by the action of G. 

Thercfore, associnti ng thc vector space A(U) to any anaJytic open subset U of M 
we gct n cohcrent anal y tic sheaf on M. By GAGA (see ISeJ) this is a coherent algebraic 
sheaf h is ca.sy to see that this coherent sheaf is locally free of rank dim G + dim M. 
lndccd , this follows from the fact that dim E = di m G + dim M. 

L<>t At(E ) denote the vector bundle over Al defined by this coherent sheaf that 
~ociatcs ...t (U) to any U. This vector bundle At(E ) was first constructed in [At2), 
ancl it is now known as Lhe Atiyalt bundle fa r E . 

Lct Tul e TE be the relative tangcnt bundle for the project ion p. So Trc1 coincides 
with the subbu ndle of the holomorphic tangent bundle TE defined by the kernel of 
the differentia1 

dp ' TE ___, p"TM 

of the project ion p. ln other words, we have an exa.ct sequence of holomorphic vector 
bundles 

o~ Trel ~TE~ pºTM --to (2. 1) 

over E ote that is exact sequence is compatible with the action of G. In other 
words, the action of G on TE preserves the sub bundle Trel· The induced action of G 
on the quotient pºT M is clearly the t rivial action. 

The coherent sheaf on M that associates to any open subset U C M the space of 
nll G in\'ariant holomorphic sectlons of Tredp - ' (U) coincides with the coherent sheaf 
on M corresponding to the adjoint vector bundle ad(E). This fo llows from the fact 
thal the space of ali right invariant holomorphic vector fields on the algebraic group 
G is 1dentified with the Lie algcbra g. T he identification is obtained by evaluating 
any \"ector field at the identity element. 

Therefore , taking G- invariant sections for the exact sequence of vector bundles 
(2.1) "'" obtain an exact sequence of vector bundles 

O ___, ad(E) -".., At(E) ~ TM ___, O (2.2) 

over M . Thi.s is known as thc Ah11ah cxact 3et¡uence. 
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For G = GL(n ,C), the Atiyah bundle of a GL(n ,C)-bundle EcL can alternatively 
be described as follows. Let E = Ee1 .. (Cn) be the rank n vector bundle over M 
a.ssociated to Ec L far the st~ndard action or GL(n,C) on C". Let Diff~_, (E, E) be 
the holomorphic vector bundle over M defined by the first arder differential operators 
from E to E. Let 

a' Dif!~1(E,E) ---+ TM ® End(E) 

be the symbol map. Note that End(E) has a t rivial Une subbundle defined by the 
identity aut0morphism of E. So we have an exact sequence of holomorphic vector 
bundles 

O---+ End(E) ---+ a - 1 (TM ® ld) ~ TM---; O 

over M . The Atiyah bundle 

At(EcL) "a- ' (TX ® Id) e Diff~, (E, E), (2.3) 

and the above exact sequence coincides with the Atiyah exact sequence obtained in 
(2.2) (note that adjoint bundle ad(EcL) is naturally identified wit.h End(E)). 

A hofomorphic connection on a principal G- bundle E is a splitting of t he At.iyah 
exact sequence (2.2) , t hat is, a homomorphism of holomorphic vector bundles 

D 'TM---+ At(E) 

such that (dp) o D is the identity automorphism of TM , where dp as in (2.2) !At2]. 

For the t rivial G- bundle Ea = M X e over M ' we have At(Eo) :::'! TM EB M X g, 
where J\I x gis t.he t rivia l vector bundle over M wit.h g as t he fiber. Hencc the trivial 
G bundle E0 has a natura l connection , which is called the trivial conncctio1i. 

\Ve recall that t he exact sequence (2.2) was obtained from t he exact sequence 
of vector bundles (2.1) over E by taking G- invariant sections. T herefore, giving a 
holomorphic connection on E is equivalent to giving a G-equivariant. holomorphic 
splitt ing of the exact sequence (2.1 ). 

Far another such splitting D' of (2.2), t.he d ifference of the two splittings, namely 
D - D', is a holomorphic homomorphism from TM to ad(E). lndeed , this is an 
immediate consequence of the fact that. bot.h define splitlings. Conversely, for any 
holomorphic- Sf'rtion .~ of n~.1 ® ad (E), clearly 

D+ s TM ---+ At(E) 

is a split.ting of (2.2) if D is so. In othe r words, the space of a ll holomorphic connec­
tions on E is an affine space for t hc vector space Hº(M, 0~1 @ad(E)). 

Far any open subset. U1 of E, t he space of a ll holomorphic vector fields over U is 
equipped with a Lie algcbra structure defined by the Lie bracket operation . This Lic 
brackrt operation ])l"PSl'l"VE'S e iuvariant vector fields. In o t.her word, lf U' = p- 1(U) , 
whcre l' C /tf is SOll ll' op1•11 SllbSf'l, anJ S anci l. a.re tWO G invariant holomorphic 
n'CTOr fir lcls 0 11 U' ' tlw11 1 lll' l,ii• hrnckrt [s ' t] is also a e invarinnt holomorphic Vf'Ctor 
fif'lcls on l ' ' . Co11Sf'fl lll't1t l.\". 1111· s11ac·f' of illl holomorphic sections oí thc Atiyah bundle 
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At(E}\i1 O\·cr U is cquippcd wit.h a Lic algebra structure. On the other hand, the space 
of nll holomorphic vector ficlds ovcr U is also equipped with a Lie algebra structure 
clefi ned by the Lie brncket opernt ion. lt is easy to see that the homomorphism dp 
in (2.2) b compntiblc with the Lie algebra st ructure of the sections of At{E) lu and 
TU , that is, d1>(1s, t]) = /dp(s), dp(t )L where s and t are any holomorphic sections 
of At(E)I('. lndccd, this is un immediate consequence of the fact that the differential 
dp comrnut with the Lie bra.cket operat ions on E and .\/ respectively. 

inct' dp in (2 .2) is compatible with the Lie algebra structures , the Lie algebra 
!ltructurt' on thc spncc of sect ions of At (E ) induces a Lie algebra st ructure on the 
kernel of dp in (2.2) namely 0 11 the scctions of the adjoint bundle ad{E). On the 
oth r hand, the fibers of ad(E) has a natural Lie algebra structure. Indeed, ad(E) 
is the ,.e<: tor bundle associnted to E far the adjoint action of G on its Lie algebra g. 

ince the ndjoinL act ion of e on g preserves the Lie algebra structure, the fi bers of 
ad(E ) get Lic algebra structure. T his Lie algebra structure on the fi bers of ad(E) 
indun· a Lic algebra structurc on the space of sections of ad( E ). It is easy to see that 
Lhis Lie algebrn st ructure on the sections on ad(E ) coincides with the one induced 
by Lie algebra structure on the space of sections of At(E ). lf we identify g with the 
right irwariruu holomorphic vector fielcls on G. then the Lie algebra operation on g 
t·oinr id<.':i with the Lie bracket operation on the right invariant holomorphic vector 
fi t'ld'iou e 

Le1 D TM -Jo At{E ) be a bolomorp hic splitting of the Atiyah exac;t sequence 
(2.2) dcfining a holomorphic connection on the G- bundle E. The image D(T M) ní'1•d 
not be cl03ed uncler the Lie algebra structure of the space of sec;t ions of At(E) . ill 
othcr v.ords, far two section s and t of D (T M ) o,·er an open subset. U e M , thc 
Lle bracket Is , t) need not be a section of D(TM ). Since the projection dv in (2 .2) is 
rompat iblc> with the Lie algebra structu res , we conclude that js, t) is a holomorphic 
:;('( tion of ad(E) over U. 

t.:si ng the above remark , we have a holomorpl1ic homomorphism of vector bundles 
from the exterior power /\ 2 TM to ad( E ). To explai n this, fa r any point x E M and 
holomorphic tangent vectors v , w E TzM , let ü and ¡, be holomorphic vector fields de· 
fined around x wi th V(x) = v and W(x) = w. Consider the eYaluat ion [D(ti), D(W)](x) 
nt .e of the Lic bracket [D(V), D{W)], where D as befare is a holomorp hic connection 
on E h i..., st raight fa rwnrd to check that [D(ü), D(W)j(x) does not clepend on the 
d1oiret of thc vector fields V aud V (it only depends on u, u and, of course, D). 
Con't..oquently, wc ha.ve 

A:( D ) E H'(M , n¡., ® ad(E)) = H'(M, lfom (A2TM ,ad(E))) (2.4 ) 

(IC( D), v A w) = ID(v) , D(w)J(x) E ad( E), 

for any :e E l1/ aud u, w E Tz: M . This scct ion K(D) is cal led the w11mt10-e of thc 
holomorphir conncction D. So the curvatu re mea.sures the failure of the splitting D 
to hf> L1l· algebra structure prescrvi ng. 
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In parLicular, i{ IC(D) = O, then the splitting D is compatible with the Lie algebra 
structure of t he sections of TM and At(E). 1f .C(D) = O, then D is called a fiat 
connection. Note that if M .is a Riemann surface, that is, dime M = 1, then any 
holomorphic connection is automatically flat, as O~ = O. 

Let 
p:G--+H 

be a homomorphism of algebraic groups and E a principal G- bundle over M . 
Consider the map 

p' E_, E(H) 

defined in (1.3). If 11 is a G invariant vector field on p- 1(U) e E, where pis the 
project.ion of E to M and U an open subset of M , then dp(v) is a H invariant vector 
field on q- 1 (U) e E(H)i where q is the natural projection of the principal H - bundle 
E(H) to M , and dP is the differential of the above map p. Therefore, we ha.ve a 
homomorphism 

p ' At(E) _, At(E(H)) 

of Atiyah bundles. If D : T M --t At(E) is a holomorphic connection on E, then the 
composition homomorphism p o D is a holomorphic connection on the principal H­
bundle E(H ). In other words, a connection on principal bundle induces connections 
on principal bundles obtained by extension of structure group. 

Giving a holomorphic connection D on a G- bundle E is equivalent to giving a 
g- valued holornorphic one--form 

w E Hº(E, nk @o) (2.5) 

on E satisfying the following two conditions: 

l . the form w is G-equivariant far the adjoint action of G on its Lie algebra g and 
the obvious action of G on E; 

2. the rest riction of the forro w to any fiber of the projection p to M coincides with 
the holomorphic Maurer- Cartan form. 

Let 
,µ,ExG->E 

be the action of G on E. For any point z E E and any v E g, !et V := d'l/l(z , e)(O, v) E 
T:E be the image of v by the differential of 'l/J, where e E E is the identity elemem 
in C. The holomorphic Maurer- Cartan fonn on E, which is a holomorphic relative 
one--form on E with values in g (that is, a holomorphic section of Tr~I ® g), sends V 
to v. 

Gi,·en such a form w 0 11 E, the kernel of w defines a homomorphism from TM 
to At(E ) splitting the Atiyah cxact sequence. Conversely, given a splitting of the 
Atiyah exact. sequence, there is a unique one-form w on E satisfying the above two 
C'onditions and having thc propcrty that its kernel is the irnage of T M for the splitting 
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homomorphism . Therefare, giving a holomorphic connection Don E is equiva1ent to 
giving a g- vnlued holomorphic one-form on E satisJying the above two conditions. 

H E is a principal G- bund le over M admitting a holomorphic connection, t hen 
al\ the rat ional characteristic classcs o f E vanish {At2J. ln particu lar, there are no 
topo logical obstructions far E to admit a flat holomorphic connect.ion. A question 
du to At iyah asks far the converse: 

Ques tion 2. 1 Lct E be n principal G - bundle overa compact complex manifold ad­
mdtmg o holomorphic connection. Does E admit a ffat holomorphic connection ? 

In mnny specia l cases the answer to Question 2.1 is positive, but the general a nswer 
is not known. 

3 Principal bundles on a Riemann surface 

Lct X be a connected smooth projective curve over C, or equivalently, a compact 
connected füema nn surface. Let E be a holomorphic vecto r bundle over X. The 
vector bundle E is callcd dccomposablc if there are holomorphic subbundles W 1 a nd 
W'l oí E oí positive ranks such that therc is a holomorphic isomorphism 

The vector bundle E is called indecomposable ií it is not decomposable. Every vector 
bundle can be ex prcssed as a direct sum a r indecomposable vector bundle, a nd fur­
t hermore, the decomposition is unlque up to a permutation o í the direct summands 
!At! J. 

In (2.3) we saw that the Atiyah bundle far a vector bundle E coincides with the 
subbundle of Oiff~(E, E) whose image by t he symbol ma p is TX ® Id. Recal l that a 
holomorphic connection is by definition a splitting of the At iyah exact sequence (2.2). 

Consequ ntly, a holomorphic connection on a vecto r bundle E over X is a first 
a rder holomorph ic differentia l operator 

DE Hº(X, D;ff'..- (E,íl'., ® E)) 

wh06e symbol is the identity a utomorphism of E. lt is easy to see tha t this condition 
0 11 symbol is cqu ivalent to the condit ion that D satisfies the Leibniz identity which 
says that 

D(Js) = JD (s)+/J(/) ® s 

where / is a locally defined holomorphic function on X and s is a locally defined 
holomorphic section of E. 

A holomorphic connection on E is same as a holomorphic connection on the cor­
responding princi pal GL(n,C)- bund le , where n = rank(E ). lt was noted earlier that 
any holomorphic conn ection on a Riemann suríace is automatica1ly Ra t . 
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Let. D be a holomorphic connection on E. So we have degree(E) :;::;: O. Assume 
that E ~ W1 ffi W2 , where W1 and W2 are holomorphic subbundles or E. Let. q 
denote the projection of E t~ W1 defined using the decomposition. The composition 

W¡ <--+ E -E+ n~ ® E 1!!1 n~ ® W¡ 

defines a holomorphic connection on W 1 . Consequently, degree(Wi) = O. 

Therefore, if a holomorphic vector bundle E over X admits a holomorphic con­
nection , then every indecomposable component of E is of degree zero. The converse 
is also t rue. ln e t.her words, a holomorphic vector bundle E over .X admits a holo­
morphic connection if and only if every indecomposable component of E is of degrce 
zern [At2J, [WeJ. 

Let. G be a connected reductive algebraic group over C. \Ve will describe a condi­
t ion on G- bundles that ensures the existence of a holomorphic connection. 

For convenience, in t his section by a parabolic subgroup of G we will mean what 
we defined in Sect ion 1 to be parabolic subgroup and G itself. In other words, now a 
parabolic subgroup of G need not be a proper subgroup. The Levi factor for G is G 
itself, as the unipotent radical of G is the t rivial group. 

Henceforth , we will consider the Levi factor L(P) of a parabolic subgroup Pasa 
subgroup of P . (lt was explained in Section 1 that we can do so.) 

For a parabolic subgroup P of G, Jet 

L(P ) 
Lo(P) := [L(P), L (P)J 

be the quotient by the commutator. So, Lo(P) is the maximal abelian quoticnt of 
L{P ). ~ote t ha t Lo(P } is isomorphic to a product of copies of e·. Since there are 
no nontrh·ial (multiplicative) characters on [L(P ) , L(P)], t he characters of L(P) are 
in bijective correspondence with t he characters of Lo(P ). Consequently, for a L(P) 
bundle EL¡PJ on X , t he corresponding Lo(P )- bundle EL(P¡(L 0(P)), obtained by 
extension of st ructure group, is topologically trivial if and only if for every character 

X: L(P ) ___, C" 

d('grre( EL(Pl(C)) = O, wherc EitP¡ (C) is the line bundle over X associatrd to E1, p •¡ 
for the action oí P on C that factors through X· 

Let E be a principal G- bundle over X . Let. 

Ei(P) <-;. E 

be a reduction of st ructurc group of E to the Levi factor L(P) of a parabolic subgroup 
P. Take a character 

X : L(P ) ___, C" 

of L(P). l<t 
E1 1p 1 x e 
-·-p-- = Ei¡p¡(C) 
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be the holomorphic line bundle over X , where the acl ion of P on C is x composed 
wlth th(' rnultiplication action of e· on c. 

Lcmma 3 .1 !/ the G - bundle E admib a holomorphic connection then degree(~) = 
o. 

Proo/. Let l(P ) denote the Lie algebra of L(P ). Consider t he two L (P ) modules, 
na mcly l(P ) and g, equipped with the adjo int action of L(P ). Since L(P ) is reductivc , 
the inclusion mRp 

' ' l(P) ._.. g 

of L(P)· modules ndmits a splitting. Take a splitting 

~' o -> l(P) . (3 .1) 

o,</> is l (P ) equiva.riant aud <Po l == ldi(PJ· 
Let r be the inclusion map of Ei(P) in E. Let 

w E Hº(E, ílk ® o) 

b<' a connection form, as in (2.5), on E. Thcn t he form 

~o T 0 w E Hº(Eqp¡. íl~(Pl ® l(P)) 

whcr(' ó a.s in (3.1), defines a holomorphic connection on the L(P )- bundle Ei(I'¡· 
Indced, since q, is L(P ) equiva riant, the form 4> o i·w evidently sa t.isfies both t hc 
condit1ons needed to define a holomorphic connection. 

The connection w' :== <Po r •w on Et(PJ induces a holomorphic connection on t he 
principal C "- bundle Et(P¡(C•) obta ined by extending the structure g roup using t he 
homomorphism \ . Sincc Et(P¡(C•) admits a. holomorphic connection a nd { is t he line 
buudle associated to Ei ¡P)(C• ) by the sta ndard action, we conclude t hat ~ admits a 
holornorphic connection. Consequent ly, degree(~) == O. This completes the proof of 

~~- . 
l t wa.. ... p ro\'ed in jAB] t ha t t hc converse of Lemma 3.1 is also valid . In othcr words, 

th<' followmg theorem is valid ([AB, p. 342, Theorem 4.l J). 

T heorem 3.2 Let G be a connected r-eductive algebrm c group over C and E a prin· 
e1110l C bundle over a compact connected Riemann $ur/aa: X . Thc principal bundle 
E adm1U a holomorphic connection i/ and only i/ / or every reduction 

E1,¡p¡ e E, 

where L(P ) u the Le111 /actor o/ Jame parabolic subgroup P , and / or every charncter 
\ o/ l (PJ. the degree o/ the Msociated line bundle (EitPI x C )/ L(P ) iJ zero. 
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lf we set G GL(n,C), then the criterion in Theorem 3.2 coincides with the 
earlier stated criterion, that is, the rank n vector bundle over X associated to E by 
the standard representation admits a holomorphic connection if and only if ali the 
indecomposable components 'are of degree zero. 

A corresponding criterion far the existence of a holomorphic connection in positive 
characteristics is established in [BS]. 

Let. P be a parabolic subgroup of the reductive group G. We can ask the follow· 
ing question: what is a necessary and condition for the existence of a holomorphic 
connection on a given principal P - bundle over X ? 

Let Ep be a principal P - bundle over X. Let Ep(L (P)) be the principal L(P)­
bundle obtained by extending the structure group using the projection of P to 
P / Ru(P) = L(P ). Now, a holomorphic connection on Ep induces a holomorphic 
connection on Ep(L(P)). Note that since L(P) is reductive, we can use the criterion 
in Theorem 3.2 to decide if Ep(L(P)) admits a holomorphic connection. 

Questjon 3.3 Assume that Ep(L(P)) admits a holomorphic connection. Does tlus 
imply that the ? - bundle Ep admits a holomorphic connection? 

4 Hermitian- Einstein connection on a principal bun­
dle 

In this section G will be a complex reductive algebraic group. We will recall the 
definition of a C00 connection (as opposed to the holomorphic connection defined in 
Section 2) on a G- bundle. 

Let E be a principal G- bundle over M . The rea1 cotangent bundle of the total 
space of E will be denoted by TRE. The rea1 tangent bundle of E will be denoted by 
TRE. Since E is a complex manifold, t he rea1 tangent bundle TR E is equipped with 
an a1most complex structure. 

A C00 connection on E is a C00 section 

satisfying lhe following two condit ions: 

l. lhe g- va1ued on form w' on E is G--equivariant for the adjoint action of G on 
iLS Lie algebra g and the obvious action of G on E; 

2. the reslriction of the form w' to any fi ber of the projection p to ¡..,¡ coincides 
with the real Maurer- Cartan form . 

A C00 ana1og of the Atiyah bundle can be defined (exactl}' as bcfore). A C00 con­
nection is a C00 splitting of the C00 Atiyah exact sequencc. Thesc constructions are 
straight- forward analog of those for the holomorphic case. 
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\VP note that a holomorphic connection on E gives a C- connection on E. Indeed, 
the real part of a form w as in (2 .5) defining a holomorphic connection on E is a C00 

connection on E. 

A C connection w' on E is called a wmplex wnnectron if the homomorphism 

F..,, : TRE---+ g 

induced by w' is compa tible wit h the almost complex structures. For any point z E E 
nnd ruiy tangent Ve<'lOr v E (TRE): 

F •• (z)(u) '= (w'(z), u) E O, 

where (-,-) is the contraction of (TRE): with its duaJ (TRE}:. The above com pat­
ibility condition rneans t hat F..,• (z) commutes with the aJmost complP.x structures of 
(Ta E ): ancl g (since gis a complex vector space, the underlying real vector spaf'e has 
an almost complcx structure which is defi ned by multiplication with A). 

A coi: connec1ion on E obtained (as above) from a holomorphic connection on 
E is clcarly a complcx connec tion. However, not ali complex con nections a ri se from 
holomorphic connections. 

For ;\ holomorphir vector bum.tic E ov<'r M , a C00 connection V' 011 E is a complP.x 
1·01111('(: tin n if and only if thc (O, 1) part of V' coincides with the Dolbeau lt operator for 
E definmg th(' holomorphic structure of the vector bundle. (The con nection operator 
\ cl t"·omposes as v1.o + V'O, l usiug the decomposition of complex one· forms 0 11 M 
ª' sum of forrns of Hoclge types (O, l ) and (O, l ). ) 

Let K (C ) C G be a ma.ximal compact subgroup of G. Let 

EK¡o¡ e E (4. 1) 

be a eco red uction of structure group of e. So, EK (G) is fibe r bundle over M and 
K{G} acts trans iti vely on t he fibers of EK(G)· Note that a C 00 reduction of structure 
group oí E to /<( G) is given by a C00 section of the fibe.r bundle E/ K ( G) o ver M. 

A C redu ction of structure group of E to the maximal compact subgroup K(G) 
is cal led a umtary structure on E. 

lf G = GL(n ,C), then J<(C) = U(n) (or a conjugate of it). It is easy to see 
thaL g1ving a C00 reduction of structure group of a principal GL(n,C)- bundle Ec;L 
Lo U(11 ) IS equiw~..lcnt. to giving a e Hermitian structure on the associated vector 
bundlt' of ra.nk n (a..ssociated to Ec;L fo r the standard action of GL(n,C) on en). 

Giu•n ,, reduc tion Er.' (0 ) as in (·1.1 ) anda C 00 connection V on EK(O)• t here is 
au induC't'<I connec tion on E. Note that. E is an extension of struct,ure gmup of the 
l\"(G) bundle EK ¡G) to G {for the inclusion map of K (C) in G). In Section 2 it wa.s 
shown that a connection induces a connection on any extension of structurc group. 

Propos.ii.ion 4.J Given a tmitary stn1cture EK (GJ C E on a principal G - /lundle 
E , lllcrr u o umquc C 00 connection V on Ex(G) with the property that the C 00 

co nntrl um on E mduced by V is a complex connection . 
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A proof oí the above proposltion is given in IKN. p. 178, Theorem 10.1 J {see also 
the rema rk in [KN, p. 185]). 

For G = GL(n,C), t he. above proposition says that a holomorphic Hermitian 
vector bundle over a complex manifold has a unique connection which preserves the 
Hermitian structure as well as the (O, 1)- part of t he connection coincides with the 
Oolbeault operator defining the holomorphic structure of t he vector bundle (see [l<oJ 
for a proof far the case of vector bundles). This connect.ion on the holomorphic 
Hermitian vector bundle E is called the C'1em connection on E . 

So, given a unitary structure on a G- bundle E, Proposition •l. l gives a complex 
connection on E. A connect ion on E is called unitary if it arises t his way for some 
unitary structure on E. 

Let V be a unitary connection on a G- bund le E over M . The curvat.ure K:(V) is 
a C00 form of type (1 , 1) with values in t he adjoint. bundle ad( E). In ot.her words, 

K(\7) E c~(M; n¡¡' ® ad( E)). 

Fix a I<ahler form w E C00 (M; 0~¡1 ) on M such that t he cohomology class in 
H 2(M. IR) represented by the closed form w is a multiple of the Chern class c¡(OM ( l )), 
where OM(l ) is t he amp!e line bu11d le on 1'v/ t hat has been fixed (the degree was 
defined using it). 

Let .\ íl ~:,q -+ n~.~ l .q- i be the adjoint of the multiplication by t he Kiihler 
fon n w (see !KoJ for t he details). So, we have 

A(K(\7)) E c~(M; ad(E))' (4.2) 

t hat is, .\ (X:(\7)) is a smooth section of thc adjoint bundle. 

Let .\ C O be t.he center of the Lie a lgebra O· Note t.hat the adjoint. ;ict.ion of g E G 
on any u E J is the trivia l act ion , that is, J is fixed pointwise by the adjoint action 
of G on g. So any v E J gives a smooth section ü of the adjoint bundle ad(E). To 
explain this, recall t.hat 

E X g 
ad(E) =-e· 

So u E J defines a section V of ad( E) by sending a ny x E Al to (y, u) E E x o, where y 
i:-i a 11y poi 111 in p- 1(x) (the map pis the projection in (1.1 )). That. t he elemcnt i11 t lll' 
fi ber ad( E) .. represented by (y , v) <loes not depend on the choice of y E v- 1 (.e) is an 
immed.iate consequence of the fac t that G acts trivially on v and it acts transitivclv 
011 p - 1(7) . 

. '\ unitary connect ion 'V on a G- bundlc E over Mis caJled a llenn1tia11- Eiristern 
connect1on ií there a n elerneut v E J such t.hat 

A(K(\7) ) = ú E e (M; ad( E))' 

whe.re .\ (K('C"')) 1s df'fül('d iu (4.2). 

In {R J and IADiJ llw followi ng theorem is provcd. 
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Theorcm 4.2 1/ E admif..! o Hcrmitian- Eirutei.n connection , th en E is polystable. 

Comie,.3ely. 1/ E ¡,, polystable, thcn it has a uni.que Herm1tian- Einstein connection. 

F'or voctor buncllcs, this theorem was pr0\1ed in (Doj , !UY ]. 

Lct 

p ' •• (M, xo) -+ I<(G) 

llC' n ho momo rphism from the funda mental group to t.he ma'CimaJ compact subgroup. 
Cousiclc>r ,1/ x G, whcre M is the universal cover of 1\/ . T he g roup tr1 (M, x0 ) acts on 
¡\¡ fL'I dPCk t ransfo rmat ions, and it acts on G vla p, that is. the action of / E tr i (M , :i;o) 
1w nds g E C to p("y)g E G. The quotient 

E ·- MxG 
P . - tr 1(M ,xo) 

for thc diagonal action of tr 1 (M , x0 ) is a principal G - bundle over /11 . The projection 

of Ep to M is o btained from the na tural projection of M to M. 

Sin cE' "·e havc p(tr 1(M ,:r.0 ) ) e I<(G), the t r ivia l co nneclio n on the t rivia l G­
bundll' 1\í x C O\'er fí descends to a unita ry Aa t connectio n on EP. (Tri via l con nectiou 
w11s drfi nNi in Sec-tion 2.} Ali G' bun d les over M wit h a Aat unitary connection a ri.<w 
th b 11·n1 

lf a G" bund lr E has a flat conn ection , then a li t he ratio na1 characteristic d<.L:;ses of 
B of pos ili\'E' degrC'C' va nish [At 2). T herefore , T heorem 4 .2 has t he fo llowin g corol!a ry: 

o rollnry 4 .3 A G btmdle E over M is co11structed from a homom017Jhism /mm 
ll' 1 (M ) lo h"(G) {tilCl t rs, it admits a flat unitary cormection} i/ a11d 011/y if E is 
110/ystable and ali th e ro f1 onal chamcteristic cfo sses o/ E o/ degrees one and two vanish. 
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