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ABSTRACT
We study the singularities of uoluuons in BMO** of an complex vector field
L = X 41Y. Necessary and suffici are blished in the plane when

H,(E) = 0, where ¥ is the set where X,Y are linearly dependent and ,, is the
Hausdorff measure defined by ¢.

1 Introduction

Besicovitch [Be2] showed that if  C C is an open bounded set and E C § is a Borel
set of null %' ~measure (here H* stands for the s—di ional Hausdorff )
then any function u : 2 — C that is bounded and has complex derivative in Q \ E

agrees with an analytic function in Q. This result still holds if u is continuous and
the set E is o-finite with respect to #'. Kaufman [Ka] in a precise way extended
these results from the bounded and continuous cases, to functions in BMO and VMO
respectively. He proved that if u is in BMO (or VMO ) and has complex derivative
in 1\ E then u agree with a holomorphic function in Q if and only if #'(E) =0 (or E
is o-finite with respect to H' respectively). Mizuta [Mi] extended the results in [Ka]
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to u agree with an analytic function in Q. The
size of the singularity E in [Mi] is d by the Hausdorff H? determined
by a measure function ¢ (cf. [Ro]) and the function u belongs to a certain p—space
of functions. When p = oo the p—space defined in [Mi] agree with BMO¥(Q), the
bounded mean oscillation space defined by the seminorm

v = Rl =L 2
|lullsmo glé%r o(r) [m(B tlllel‘f_(/ |u(z) c|dm(z)] 1h 1l

(here B is a disk contained in Q). The space BMO¥(Q) was first defined by Spanne
[Sp]-

Let P(z, D) be a linear partial differential operator defined in an open set Q C R"
and K C Q a compact set. We say that K is a removable singularity relatively to
P(z,D) and Q, if for any distribution u which satisfy suppP(z, D)u C K, it follows
suppP(z, D)u = (. Dolzenko ([Do]) have shown in an early work that if u is Holder
continuous with exponent 0 < s—1 < 1 then a necessary and suf ficient condition to
K to be removable relatively to a open subset of the plane @ and 8 is H*(K) = 0. Later
Uy ([Uy]) proved that the result still holds when s = 1. The natural correspondence
between the (s—1)—Hdlder space and BMOY, (t) = ¢,(r) = r*, shows that the result
in [Ka] for BMO spaces extends the latter to the case when s = 1 (see Theorem 5.1, pp
213 in [To]). In [Mi] the condition H¥(K) = 0 is proved to be sufficient to a function
u complex differentiable in 2\ K agree with a analytic function in  when it belongs
to BMO? (). Thus it is also necessary at least for the cases when () = ¢,(r) = r*.
This last observation suggest that the bounded mean oscillation spaces defined by 1.1
should be the right place to study a generalization of the original problem settled by
Besicovitch. Here we extend the results of [Mi] to a arbitrary nonvanishing complex
vector field L = X +4Y and the BMO¥?(Q) spaces defined below.

A measure function ¢ is a function defined for all r > 0, monotonic increasing,
upper semicontinuous and positive for r > 0 . Let us denote by M the set of all
measure functions. When ¢ and ¢ belongs to M, we write

p~¢ if 0<Ca—llmmf— <11mSuPQ—CI < oo

0 @(r) r=0 o(r)
and
p=¢ if lim(r)/e(r) =0.

We say that ¢ and ¢ are comparable if

p<¢, or p~p, Or d<yp
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and they are monotonically comparable if the ratio ¢/¢ is monotonic. If ¢ ~ ¢ then
the Hausdorff measures H¥ and H? are also equivalent in the sense that

CyH¥(E) < H*(E) < CyH¥(E) for all Borel set E C Q

(see Theorem 41, pp 80, [Ro] for a full converse). Denote by M the set of equivalence
classes M/ ~ and denote by S the subset of M where each equivalence class has a
representative  which is monotonically comparable to @, for all 0 < s or ¢ ~ ¢, for
some § (@, is defined by ¢,(r) = r*). These concepts relative to measure functions
were borrowed from §.2 Scales of function, [RT]. Through the paper we will assume
that ¢ is representative of some class in S and most of the time we will freely assume
that it is monotonically comparable to the functions ¢, for s > 0.

The main result in this paper is stated for a locally integrable complex vector field
L in the plane. A complex vector fields is locally integrable if one can find for any
z € ) a relatively open neighborhood @ and a smooth function Z : O = C such that
dZ does not vanishes and dZ(L) = 0 in O. Suppose that £ the closed set where X and
Y are linearly dependent is a set of zero Hausdorff H,—measure. Then a function
u € BMO®?(Q) weakly agree with a homogeneous solution of Lu = 0 if and only if u
i differentiable outside a Borel set E C Q with H¥(E) = 0 and du(L) =0 in @\ E.
This paper is organized as follows; in Section 2 we introduce the spaces BMO{ P (1)
where 2 € R" is an open set and prove the main results. The Appendix is devoted
to show that the Cauchy transform of a finite ¢—uniform measure is in the space
BMO?*?(C). This will be needed in order to establish the necessity of the condition
described in the paragraph above as 2 € R?.

2 Removable singularities in BMO¥P spaces

Let us fix @ a representative of some class in S. Let B = B(w,r) C §2 be an arbitrary
open ball and

1
M,(u, B) = [m(B) :25/ |u(z)—c|vmn(z)]' 2.4

Let the space BMO¥?(1), p > 1, defined as the space of all functions u in L}, (R"),
such that

llullsmove = sup ¥ ()~ My (u, B) < 0o 2.5
Bca

It is well known that this seminorm turns BMO¥?(2) modulo constants into a
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Banach space. In fact, if we choose for u € BMO¥?(f) the constant c to be the mean
@,
up = —— [ u(z)dm(z 2.6
5= Is (2)dm(z)

we obtain an equivalent seminorm. Spaces like BMO??(Q) were first introduced by
Spanne in [Sp]. The spaces BMO¥'? () seems to be adequate to study the singularities
of solutions of first order differential operators related to the Hausdorff measure #,,.
Let BMO"P(92) be the space of functions in L, (?) defined as in (2.5), but restricting
the supremum to the family B of balls B = B(w,r) C Q such that distance(B,99) >
cy/nr for some large constant c. Such space is independent of the choice of ¢ (see [Jo],
Lemma 2.3 and [RR] Hilfssatz 2, pp 4). Here we are assuming that c is large enough
to implies that 25\/nB C Q if B C . Observe that ||ullgmor» < l|ullsmove-

Define the ¢, p—oscillation function of u € BMO{P(Q) at (w,r) as

loc

O(w,r) = sup p(r)~'r""' M, (u, B) where B = B(w,r) € B 2.7
B

The subspace of BMO¥?(Q) with limsup,_,, O(w,r) = 0 uniformly for w € Q will
be denoted by VMO®P(1).

We can argue as in [Cm] and [Me] to prove the following proposition;

Proposition 2.1 Let Q C R" be open and u € L';,.(Q). If r € [0, diameter(Q)] and

Jemee® (p)p=mdp < oo then each inequality (2.8), (2.9), (2.10), and(2.11) below
implies the precedent one.
lu(s) u(u)| <€ [ olp)omdp, iz, € Bla,r) C 28
0

-
|u(z) - u5| <C / @(p)p~"dp, all z € B(z,r),B(z,r) C Q 29

0

1
FB)/ [u(2) = up|dm(z) < C p(r)r'", all B(z,r) C Q 2.10
B
1 B
L;(B—)/ |u(z) - ualpdm(z)] < Cy(r)r*=", all B(z,r) C Q, 211
B

forall1 <p<oo.

Proof. The first implication is trivial. Let us prove then (2.10) = (2.9). Consider
the sequence of points wx = w + 27¥(z — w) converging to w and let

1
up, = W/;.I“(Z)Idm(:) 2.12

T T
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where V(n) = =2 is the volume of the unitary ball in R", m is the Lebesgue
LEED]

measure and By = B(w + 27%(z = w), 7)) with ry = 27%|z —w|, k=1,2,3,...
Then
|u(x) - u(w)| < |u(z) — ug,| + Iup, - u(w)| 2.13

We apply triangle inequality to the right side of the inequality in (2.13) to obtain
-1

|ug, = u(w)| £ |us, - u(w)] + Z |uByyy —us,| 2.14
k=1

and the last summand in (2.14) can be majored as follows;

-1 -1
1 1
kg} |upyy, —um| € ol Z;_——-(Z“““’r)“ /B... |u(t) - up, |dm(t) 215

-1 3
e(27*r) 2r

= Z @ )T 2 Frp(2 ) Jp, [u() = u, |dm(z) 216

-1

e(27*r) s

<cz bR ,‘T pa 1 SCY G’ il

k:ll k=1

L pamhe r
<cy <p(pr)ldp < C/’ v(p')ldp 2.18
it BT P o P

Then (2.9) holds and it implies (2.8) trivially since the same estimate holds for the
other summand in the right side of 2.13. This proves that

|u(z) = u(w)| < C/ w(p)dp 2.19

at the Lebesgue points of u. Uniform continuity allows to redefine u on all £, pre-
serving the modulus of continuity. Note that if ¢(r) = #"~'*$ then BMO¥"! is the
homogeneous 8-Lipschitz space n

Corollary 2.2 If f:"'""'“(mxp(p)p"‘dp < oo and @(r)r=* is non decreasing for
8 >n~1 and r € (0,diameter(R2)) then
BMOY! (2) = BMOSP(Q) for all 1< p < oo,

loc

Proof. Since ¢(r)r=* is non decreasing it follows

" wlp)dp e gl 1
L < o(r)eTt
/o - (r (A

"

=(s+1-n)te(r)ri",
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Then
[u(z) = u(w)| £ C(s +1=n)2p(r)r' " 2.8
and (2.8’) implies (2.11) in a trivial way. [ ]
From now on we assume that the increasing function ¢ is doubling, it

means there exists positive constant b such that ¢(2r) < bp(r). Let £7(0O) be the
space of functions in BMO{?(0) which satisfies Lu = 0 weakly in an open set O C Q.
Let us denote

1
Np(u,B) = [W uCL (vB)-/ |u(z) — v(z)l’dm(z)] 2.20

and define the , p—mean oscillation of u relative to £P() at (w,r) as
Ap(w,r) = sup (r)~'r" ' N,(u, B) where B = B(w,r) € B 2.21
B

Let u € BMO};"(2) and G be a Borel subset of 2. Pick a denumerable covering
{B; = B(w;,7;)}jes of G of balls in B and define

Ag p(u,G) mfZA (21, 5v/mrs)p(rs) 222

where the infimum is taken over all such denumerable coverings {B; = B(wj,r;)} of
G. Since g is doubling we must have;

0
Ay(u,G) < inf 3 P Ny (u, B) < C(n, b) Ay (u, G) 2.23
i=1
where the infimum is again taken over the same coverings in (2.22).
Let L = X +1Y be a nonvanishing complex vector field and E a o—finite set with
respect to H_.. We will prove that

p(u,Q\E) =0 and limsup A,(z,r) € L'(E, H,|E) 2.24
r—0,:€ E

is a sufficient condition on u € BMOJ,”(€2) to ensures that Lu is a measure absolutely
continuous with respect to H,,|E. In particular this implies the Theorem 1 in [KW),
there L = 8 and E = (). Also it explain the dichotomy appearing in [Be2] and [Ka).
In the next theorem L = X +1iY is a nonvanishing complex vector field defined in
Q and L' is its formal adjoint. The measure function ¢ is supposed to be doubling.




=4

On BMO¥®* Singularities of Solutions of Complex Vector Fields 299

Theorem 2.3 Let 2 C R" be an open bounded subset and E C Q2 be a Borel o~ finite
measure set relative to Hy,. If u € BMOYP(Q) and A, (u, 2\ E) = 0 then there exists
a absolute constant C' such that

l /n u(z)L(z)dm(z)

where ¢ € Cy(R).

< O|Ylu= /;li::ljgp Ap(z, 1) dH,(2) 2.25

Proof. We will denote by C any constant appearing in the proof. The lim s‘\’lpAp(z, T)
o

is upper semicontinuos and bounded by llullsmog» in 2. Let us assume without loss
of generality that ||ullgmor» < 1 and that

e
/ lim sup Ay (2, r)dH,(2) < oo 2.26
E 0

Let € > 0 be given. Since A,(u,Q2\ E) = 0 it follows from 2.23 that we can find a
denumerable family {B(wj,r;)};es of ball in B such that it is a covering of of 2\ E
and
S 1 Ny(u,5v/nBy) < € 2,97
JjeJ
It follows from 2.23 that the set

Ex = {z € E: 27"+ < limsup Ap(z,r) < 27%} 2.28
r—0

has finite H_—measure for all k = 0,1,2,3.... For the same ¢ one can find a denumer-
able covering of E by balls B(z;,r;) C R, i € I such that for some subset I C I and
ri € ¢ we have

3 o(r) < Ho(Bx) +e27* 2.29

i€l

Let us denote by {B(wg,rx)}ken the denumerable covering covering of ) obtained
by the union of the coverings of E and 2\ E described above. We may assume that
N=Juland JNI =0 Let By = B(zx,r¢), k = 1,....,k(K) be a subcovering of
K = suppw extracted from {B(wg, k) }xen and assume rg > riyq fork =1, .. k(K) -
1. We inductively select dyadic squares S,,x € S with disjoint interiors such that,
Uy Be C UL, UM 5,y for all 1 < k <1 < k(K), m(k) < 37, and
1 T 1

2/n = dinm(ES,..k) B W 210
Now 6/5S.s € 5/nBy if 6/5 S,k N By # 0. We can also find smooth functions 1k,
k < k(K), m < m(k), such that

SUppUm € 6/5 Sk and ¥(2) = 3~ e (2) = 1 2.31

Em——
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in a neighborhood of K and ¥(z) = 0 outside a ighborhood of K. M

Imillze < Crilt and [[Lmellze < Cring 98 2.32

This is essentially contained in the basic lemmas Lemma 3.1 and Lemma 3.2 in [HP].
Let v € L2 (5y/nBx), then

k(K)

— (VL Yk — Ui L)@ ldm(z) 233

;%) /mu.'“(’) V()| (VL G~ Uioe L) () (=

k(K)
< k= 3 / ()~ (@) Y L Ume(2)|dm()+

m<m(k)

k(K)
L(:)m S0 e (2)]dm(z) <
LZCEDY /ﬁm_lum ukz!mSme e

k(K)

Ille= > > () - ve(@)xs s llue 1L Ymi (=)o +

k=1 m<m(k)
K(K)

ILv@lue D5 D Mu(z) — vk s ym i l[me(2)lue <

k=1 m<m(k)

K(K)

Cliwhe X B AT ) = o svam i+
k=1 m<m(k)
k(K)
ILp@le D 3 re/ifu(z) ‘"k(l)}Xsﬁa.||Lv] 2.34
k=1 m<m(k)

The last i lity ia a of the i lities (2.32). It follows from (2.21)-
(2.22) that (2.34) is bounded by

C[nunw S e(r)Ap(ws, 5V 1) + ILY(E) = D r30(rs) Ap (wj, 5v/ 1)

JEJ i€t

¥l > w(ra)Ap(wi, 5v/n 1) +||Lw(z)|h.wzrv(f)~\ (w,.Sﬁr)J 2.35

el
We know from (2.27) that

[l Z r{"’”’"ll[u(z) - vk (2)]XsymB, e+
JEJ

I
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el 3 ri (@) - ve()xsyms.llue <
JEJ
(I1¥ll= + diam(@)||Lyp(=)l[=) Y 7}~ Ny(u, 5v/nBy)
1€J

< ([l + diam(R)[|Ly(2)[|L=)e 2.36

The upper semicontinuity of lim sup,_,q A (z,r) implies that Ay (wy,5v/nr;) < 27k+1
for all i € Iy, if ¢ is small enough. It follows from 2.21 that

3 elr)Ap(wi, 5V 1) S 43 (ri)2” ) < d(H (Ex) +27Fe)2 (k4D

€l N
< 4/ lim sup A (z,r)dH,(z) + 27 e 2.37
)
Consequently
3 elroA(wi, 5v/a i) < c(/ limsupAp(z‘r)d‘Hw(z)+f) 2.38
el B )

A similar inequality as in (2.37) is true if we change v by ¢ where ¢(r) = ro(r),
for all r > 0. Since E, = {z € E : limsup,_,y Ap(z,r) = 0} has o—finite },—measure
and and limsup, o Ay (2,1) = 0 the same type of argument can be repeated to shows
that 37z, @(5v/n r)Ap(wy, 5y/n i) becomes arbitrarily small when € — 0 and
r<e

Putting together (2.36) and (2.38) we have

I/nu(:)L‘\h(z)dm(z)

< € eIl + (@) Lo(e )+

leh,-/limsupA,,(z.r)de(z)+||L"1'||L-/limsupA,(z,r)dH¢(z)+5] 2.39
E r=0 E r=0

Since ¢ is arbritary and Hg(E) = 0 (with ¢(r) = re(r)), it follows that

/ u(z)L'y(z)dm(z)
n

SCllll'llh‘/;Iims;pr,,(z.r)dH‘,(z) 2.40

The Riesz representation theorem together 2.40 implies that Lu is a Radon measure.
If O is an open subset of Q then the inequality 2.40 applies for @ and O N E in the
place of (2 and E respectively. It follows that Lu(O N E) = 0 if H,(ONE) = 0. This
implies that Lu is absolutely continuous with respect to the measure Ho|E. [ ]

P
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Remark. The same argument can be applied to a partial differential operator P(z, D)
of arbitrary order. If m is the order of P(z, D) then we change the power r"~! to
™™ in 2.5 to obtain an analogous result.

We now introduce the concept of BMOY”(R) subspace tangent to BMO{"(Q) in
a point.
Definition 2.3 We will say that £7,(R) is tangent to u € BMOF () at a point
weQif

Ny(u, B(w,r)) < ro(r) 2.41

The Theorem 1 in (K] is contained by the Corollary 2.4 below. Compare also with
the results of Theorem 4.1 in [HP] for L ().

loc

Corollary 2.4 Let Q@ C R" be an open bounded subset and E C Q be the Borel set of
points where L%,() is not tangent to u € BMOY? (). Then u is a weak solution of
Lu=0mQifH (E) =0 orue VMO??(Q) and E is a set of o—finite H,—measure.

Proof. Let 0\ E be the set where £2 (1) is tangent to u. It follows from (2.41) that
for each € > 0 one can find a denumerable covering of E by balls B; in Q such that
Np(u, B(wy,ry)) < rj0(r;) with o(r;) < € and the balls {B;(w;,5~'r;)} are disjoint.
Then
oo o
inf ) rl "Ny (u, Bi) < inf Y rfo(ry) < 5volume(R)e 2.42
=1 =1

Then (2.26) and (2.42) implies that
Ap(u, 2\ E) =0 243

Now Corollary 2.4 follows from (2.43) and (2.25)in Theorem 2.3. [ ]

We say that L = X + 1Y is a locally integrable vector field in Q2 if for any point

w €  there exists a ball By = B(w,rp) C 2 and a smooth function Z defined in

By such that dZ # 0 and dZ(L) = 0. Without loss of generality we may assume that

Z{w) = 0. If u € BMOJ?(2) is differentiable at w and du(L)(w) = 0 then for some
ceG;

|u(z) = u(w) — c¢Z(z)| < ro(r) 2.44

with lim,_g0(r) = 0 and for all z € B(w,r) with r < rq. It follows easily that (2.44)
implies (2.41) at w.
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Definition 2.5 Let E be a Borel set in Q). Define by LP(Q\ E) the linear subspace of
functions u in BMO[.P(Q) whose are differentiable in Q \ E and such that du(L) =0

there.
Observe that when E is closed £P(Q2\ E) C £5,(Q2\ E)

Corollary 2.6 Let 2 C R?* be an open set and £ be the set of points in Q where X is
linearly dependent with Y. Letu € LP(Q\E),1<p < m'm{d—i%E , 2}, be given (where
dim E is the Hausdorff dimension of E). Then

i) If Ho(E) = 0 then LP(V \ E) = L2,(V) for all open subset V C Q if and only if
Hy(E) = 0.

i) If © is o~ finite relatively to H,, then VMOPP(Q) N LP(V\ E) = VMOEP(Q)n

L5(V) for all open subset V C Q if and only if E is o—finite relatively to H,.

Proof. The hypothesis implies that £? () is tangent to u at the points in the
complement of E. Then we may apply Corollary 2.3 to prove one of the implications
in 1) and ii). To prove the converse implication in i) we must observe that H,(Z) = 0
and #,(E) > 0 implies that H,(E \ £) > 0. It follows from Theorem 3, Ch II
in (Ca] and the results in [Be3] that we can find a compact set K C E\ £ such
that M, (K) > 0. Shrinking K if it is necessary we may assume that there exists
a function Z, defined in a neighborhood V of K such that dZ # 0 and dZ(L) =
0. Such function is a local diffeomorphism since K is away from ¥, thus we may
assume that Z is a diffeomorphism in V with Jacobian bounded below by a positive
number. The bilipschitz nature of Z in V would imply that, if B(Z(z),r) C Z(V)
then B(z, e 'r) € 27" (B(Z(2),r)) C B(z,y/ncr) C V for some positive constant
¢. Since  is doubling the pull back of BMOJP(Z(V)) by Z is BMOSP(V). Also if
0 < Hu(K) < 2 then 0 < Hy(Z(K)) < co. Theorem 1, Ch II in [Ca] assures the
existence of a ¢—uniform measure p supported by Z(K). It follows from Theorem 3.1
that the Cauchy transform C(p) is in BMOJP(C). In particular it is in BMOYP(Z(V)).
This completes the proof of i). If E is of non o —finite #,—measure the results in [Bed]
shows that one can find a function ¢ such that lim,—o@(r)¢~'(r) = 0 and E is of
non o~finite #,—-measure, thus a set of positive Hy— measure. Now we proceed
exactly as before to find a finite ¢—uniform measure x supported in a compact subset
Z(K) C C. Then C(u)oZ € BMOm’(V) € VMOPP(V). This completes the proof of
i), n
Remark. What we can say if H,(X) > 0 ? This is indeed a difficult question. If L
is analytic then int£ = (. In this case we have a complete satisfactory answer in [HT]
when @(r) = r. When 2 C R" and n > 2 it is an open question to find the extent of

P -\
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Corollary 2.5 valid when the orbits (in the sense of Sussman [Su]) defined by the real
and imaginary parts of L are two dimensional.

3 Appendix: The Cauchy Transform of an uniform
p—uniform measure

Recall that ¢ is a representative of some class in §. We will assume that the measure
function ¢ verifies the following conditions:
(i) there exists a positive constant b = b(y) such that ¢(2r) < bp(r) for all
r > O(doubling property)
(ii) @(r)r—" is non increasing in (0, 00) (condition A in [Mr])
Consider
MG (E) = inf > p(diamBy) 3.1
(B}

where { By }ren run over all e-covers of E and 0 < € < oo with elements belonging to a
family of sets F, that is E C J, Bx, diamBy < e. The family of F may be a family
of open, closed or convex sets. Since ¢ is doubling, we obtain a measure comparable
with the original Hausdorff measure.

The -Hausdorff measure H,,, defined for Borel sets E C R™ by

H,(E) = lim M5, (E) 32

When ¢(0) > 0 the measure H,, will be a multiple of H, with ¢y = 1 the zero
dimensional Hausdorfl measure which corr ds to the g . Note
that the Hausdorff measure depends only on the behavior of the function ¢ near zero.
We say that a Borel measure p in the plane is an uniform o-Hausdorff measure if and

only if there exists ¢ = ¢(u) such that
lu(B(y,r))| € ep(r) for all r < diam(suppu) and all y € suppu 33

The Theorem 3 in §II of [Ca] assures that any Borel set E C C with positive H,-
measure contains a closed set F' such that 0 < H,(F) < 0. Since R™ is o—compact we
may change closed by compact in the last statement. The Theorem 1 in §II of [Ca]
asserts that (3.3) implies u(E) < ¢H(E) and consequently an uniform o-Hausdorff
measure is absolutely continuous with respect to H,,. Also the same Theorem assures
the existence of a constant C' depending only on the dimension n such that for every
compact set K C C there is a p—uniform measure u such that u(K) > CHF(K).
When E € C is a Borel set which has no o—finite H,~measure it is proved in [Bed]

B 3 =\
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that there exists a monotone increasing function ¢, such that lim, o ¢(r)e(r)™! =0
and E € € has no o~finite Hg—measure. Combined with the previous result this
implies that there exists a ¢—uniform measure supported in some compact subset
of E. For a general account on Hausdorff measures see Rogers [Ro). Throughout
this section we will denote by M¥(E) the space of the p-uniform finite measures p
in 2 concentrated in E, that is g = u|E (recall that for an arbitrary measure p,
ulE (4) = p(ENA) for any measurable set A). It will be useful to consider the norm

B(w,
llrllme ey = |pl(E) +  sup |l(5007))

3.4
wek, r>0  P(r)

for such measures. With respect to this norm M¥(E) is a Banach space. Suppose
that E is a o-finite Borel set with respect to the H,, measure. The Cauchy transform
((p) of a finite Borel measure p € M?(C) is defined a.e. in C by

&

C(pu)(z) = /c(c —2)'dp(¢), z€C 3.

It can be continuously extended to the Riemman sphere € since lim. o0 C(p2)(2) = 0,
and it is differentiable at oo, where C(u)'(c0) = lim. o [ 2(¢ = 2)~'du(¢) = —pu(C).
Recall that we are considering functions ¢ satisfying the condition that r=%(r) is non
increasing (Condition (iii) above). We are assuming that ¢ belongs to a irreducible,
maximal, and strongly dense scale of functions (cf § 2. Scale of functions, (RT]). Then
the Hausdorff dimension of sets with finite #{,, measure will be equal to 2 — d, where

5 =inf {8 €[0,2]: p(r)r~*** is non increasing in [0, 00)} 3.6

The Cauchy transform C(p) of a finite measure p is always in LP1oc(C) for 1 < p <
2. One can guess that p—uniformity of a finite measure p will somehow be reflected in
the growing behavior in discs of means of its Cauchy transform. Indeed we will show
that the Cauchy transform of a finite measure g which is p—uniform is in BMOY"(C)
where ¢ is defined by

vir)= {, POt bip <o< 1

log(r—"R)V/rp(r) if § = 2(p - 1)/p where R = diam(suppp) < oo s

When & = 0 it follows from (3.1) that ¢ is non increasing and consequently ¢(r) is
constant ( because o is always increasing monotone ). The case when ¢(r) = 0 leads
us to the null measure. Let us assume without loss of generality that limy—0 (1) = 1
and let g € M¥(E) be a given measure. Since p is finite there exists a denumerable

y——
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set of points E = {wn}nen, such that

= J(Q)dH | B and Y [f(w;)] < oo.

=t

The Cauchy transform is

€0 = [ Fe)C =™ LB = 3 fuws)(wy = o) a8

=1

Integrating on a disc B = B(w,r), we obtain

[, ewerane) = [ ‘wa,)(w,—z)' [anc <

St [ S 1wl — AP <
B
=1 J=1

< 2O 1r < Ol -2otry? 39
Hence in C(p) € BMO??(C) if 1 < p < 2. The function @(r) plays the role of a
constant at the right hand side of (3.4).
We will assume in the next Theorem 3.1 that 4 € M¥(E) has compact support
when 6 = 2(p — 1)/p. The constant 6 is a constant related to ¢ and defined in (3.6).
Also we will denote B(w,2r) by 2B and set D = C\ 2B.

Theorem 3.1 Let E C Q be a Borel set and H, |E be o~ finite. Let p € M¥(E) with
1< p < min{3%,2}. Then there ezists a constant C > 0 for all B = B(w,r) C C
such that

= C(u|D)(w)|"dm(z) < C(p) ||l gy r*PuP(r) 3.10

In particular C(p) € BMOY?(C),.
Proof. Let 4 € MY(E) be a given measure. In view of (3.4) we may assume without
loss of generality that ¢ = ||js/[mv(g) for the constant ¢ in (3.3). Consider the Cauchy

transform of the measure p| C\ 2B.

C(ulC\ 2B)(w) =/C\m(<—w)"'du(<), weC 311

a0 &Y
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Let us suppose first that, 2(p - 1)/p < § < 2 and write C(x)(2) as the sum
cwe = [ =70+ [ €270 312
a8 c\2B

Hence

[, lewe)Pams) <

[B /m« — 2)'du(()

We will show that both summands in (3.13) are finite.
Let z = w + pe'’, then

Fdfﬂ(:)*-/ﬂl/m((—:)"du(()lpdm(z) 3.13

1
—2)~1 p-1 —z|~P
/Hl/m”(( ) du(()l dm(z) < |u| (C)/B/c\;m 1€ = =77d]u|()dm(2) <

2 or
-1 -p = -1 2-,
Il (C)/ m/o /0' pdpdbd|p|(C) = |u/” (C)/ g Pdul(¢) <

=P |ufP=}(C) < wr=P|ulP~1(C) 3.14

and

s

p=1 -z, p=1 1-p,
@) [ [ (¢ <lrame)auQ) < e @8) [ ([ o-rdpas o
2 5. 2r
s (28) < 5
Now we estimate the mean,

/, | Je-orao- [ e w)-‘du(orwm(z) =

P
[, (¢ tauc| an) < p@m) [ [ - st auiQane) <
L B /2B

<

PP P(r) forall z€ B 3.15

2m
2-p

i

P
[ c-ara0- [ - w)-'dn(o] dm(z) <
21BUC\28 c\2n

»
- )=l Y. bud -
+/B /ma(( z)"'dp(C) [c\m(( w) 'dn(c)‘ dm(z). 3.16

Let us apply an anal of the Minkowiski i lity (see [HLP]) to estimate the
second summand in (3.16).

/.I/L_\’B(C—Z)"dﬂ(() —/;\23(( = w)-ldu(()l’m(,) <

P P W ()

[ E—
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P
lic=at' =~ W)“Idlul(()| dm(z) <

c\2B

(/C\w[/ (=== =le= w)"l’dm(z>] d|u|(<))'=

(/C\m [/u [EEBIE=2N '”))_llydm(z)] l/P-’IMI(C))”. 317

Let = = ¢ + pe'? with Arg(¢ = w) = 0. Then 2r < w and r + p < 2r +w. Now we
may dominate the integral inside the bracket in (3.17) by

[ o1 = u) ™ Padedt < [ [¢ = wP7iC - ul-2e!"dodt
B B
ot [ (4 fric w2 dodd <

wir paresin(r/w)
P|¢ - w|"‘/ / (r + 0)* o' Pdpdd 3.18
wer

aresin(r/w)

Observe that 0 < arcsin(r/w) < (r/w) < 7/2and 1 < p < 2. Then
(r+0)* 70" " (r/w) < (2r +w)*P(r +w)' P(r/w) <
2P (r + )" P + (r + w)* =P (r/w) <
2P Pw' P (1 + r/w)' P + w* =P (1 + r/w)*?P)(r/w) < cri-%

since 1 € 1+r/w < 1+ 27", Then the quantity inside the parenthesis in (3.17) is
dominated by

Cer'?® / 1¢ = w|~*/Pdju|(¢) 3.19

c\28

The function |u|(B,(w)) is monotone increasing in p and bounded by |u|(E). It
follows that
dlul(By(w) = f*dp + v

for some f* € L*([0,00]) and a measure v L dp supported on {p;} for j = 1,2,3, ..
with py # 0.
Then for values of r # p; and for all ' < § we have

[ il el = [ a8, )
c\28 2r

‘e &y
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= p-"'wue.(w»L +fp) [ 5B @) <

~Car) Pl Ban ) + [ ™ 2op(p)p™@P/7dp <

< dp
[ 2oetoet 0r 2 < 2optaryanyt =2 [~ b =

- 00
2op(ar) ar) ¢ 4300112 [ o — gt~ piar)ary e, (220)

is verified if 1 <p<2and 2(p-1)/p<d <2
Combining (3.19) and (3.20) we estimate the second summand in (3.16) as

!

Consequently

/ lc)(z) -
n
< O) Nllfye gy 7 #7(r)

for all r # py, J = 1,2,3,.... By density it is also true for all r > 0.

If§ = 2(p-1)/p, we proceed as before until we reach (3.19). Assume that
diam(suppp) < R for some R > 0 and denote by d the distance from w to suppp. If
2r > d+ R then

P
/ (¢ =2)7"du(¢) —/ « —w)"d;.l(()| dm(z) € Cr¥=PePbPeP(r).
oaB c\28

2m

—r Il (2B) + O gP(r)

[ =l o) =
c\28

otherwise
d+R
— w|~Pd| . -2
/c\ I~ ul o) = [ B )

= p~¥/*|4(B, (w))l 2p~40/% 4| (B, (w))dp <

+
i
max{2r,d} max{2r,d}
44R (o Sl et
[ 2eoho /a4 < 20p(ar) arye-rmi-2 / %<
max(2r.d) max{2r,d} P E
26p(2r) (2r) /" log ([2r] ' R) < 2ebp(r)r=2/7 log (r'R)
Then

[, = e\ 3B)w)Pam(e) < €7 i, e Ry (e
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This implies that C(11) € BMOY"?(C) and IC(w)llsmov-» < C(p)lullnew, where v(r) =
o(r) if 2(p— 1)/p < 6 < 2 and 9(r) = log(r~' R)/Pe(r) if 6 = 2(p— 1) /p ]
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