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24 Limit of the Ratios of Consecutive Terms in Fibonacci Sequence

1 Introduction

It is well-known that the Fibonacci sequence {F, }o2, is defined by the following recurrence
formula

Fuyo = Fyy + Fn,
h=1 F=1

(1)
We also call F;, the Fibonacci number. Its general term can be expressed as
U (AR = VBN
e 59 - (5
V5 2
for n € N.
The Fibonacci numbers give the number of pairs of rabbits n months after a single pair

begins breeding (and newly born bunnies are assumed to begin breeding when they are two
months old).

Define 7
s
Ty =l )
then the sequence {z,} converges, this limit
0 B o

is called Golden Ratio.

The ratios of alternate Fibonacei numbers are given by the convergents to ¢=* and
are said to measure the fraction of a turn between successive leaves on the stalk of a plant
1 for elm and linden, § for beech and hazel, 2 for oak and apple, 2 for poplar
% for willow and almond, etc.. The Fibonacci numbers are sometimes called Pine

(Phyllotax;
and rose,

1
Cone Numbers. The role of the Fibonacei numbers in botany is sometimes called Ludwig's

Law:
To prove the convergence and to solve its limit of the sequence {,}3=; is a standard

exercise or example in caleulus and mathematical analysis for graduate students.

In this paper. we will prove the convergence of the sequence {u,} and solve its

limit using six approaches, including using Weierstrass-Bolzano theorem. series method. by

definition of limit. difference equation method. matrix method. algebraic method.
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2 Proofs of Convergence and Limit
The first proof: using Weierstrass-Bolzano Theorem. It is clear that
.c.=%=1. I,.+1=:{::T=%=l+%=l+é ®)

for n € N. Since the sequence {F},}5%, is an increasing positive sequence. then 1 <z, <2
for n € N.

From (5), it follows that

frr == 1 ©
thus {a, }5<, is not monotonic. Using formula (5) again gives us
1 2wn +1
= T 7
At gty Lty 1+, ™
2an + 1 Tn — Tn—2
Tns2 e T e TR AR T T b 8
i THan  1fna (@t D@n2+1) &

Since (&g, + 1)(£n-2 + 1) > 0, then (242 — @,)(¥n — &n-2) > 0. This implies that the
sequences {wg,—1 )52, and {@2, }he, are all monotonic. In fact, by induction, we can prove
that {29, )52, is increasing and {2, }5%, is decreasing.

The subsequence {x,-1}5%, and {%,}3%, are all monotonic and bounded, so they

are all convergent
Let lim,, .o 22,,—1 = A and lim, . @2, = B. By direct calculation, from (7), we have

“ gy + 1 2/1 +1
= gk = lim ——— s
Al I a | = im e AT ©)
. 2vor+1 2B+1
= Lok lim —— = ———.
AP e T T p

On the interval [1,2], we obtain A = B = % by solving the equations (9) and (10).
Ly o

Therefore we have limy, .o &y = *5

The second proof: series method. Since 1 < a,, <2 for n € N, from (8), it follows that

_ o lwu-a
lns2 =20l = N

jL 01 Il.. — Tp-2|. (11)
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26 Limit of the Ratios of Consecutive Terms in Fibonacci Sequence
(12)

and then
(13)

|2 = warl < 7

|woksr = wap—a 7

where k € N. By properties of series with positive terms, it is deduced that the series
Yohey (@2k42 — ak) and SRe ) (wok41 — wo2k—1) arve all absolutely convergent. Since
(14)

k
@y (@2 = waony)s

Tok
=2
K
Toko1 =@y 4 Y (i1 — B2i-3), (15)
i=2

(8]

the sequences {2 }32, and {war-1}§2, converge.
The rest is same as that in the first proof.
The third proof: by definition of limit. Note that the equation x = 1+§ corresponding
t0 @ys1 = 1+ L for n € N has unique positive root ‘—'*—2‘5

By definition of limit, using the result 1 < @, < 2 for 7 € N, we have

=(1+;_M

o LS
[ 2 Tn—1 2
Ve =B 2
|LE B L= |_+\
Tay 2 2wt | |1=/5
_ VBl _ 1+ B SV T
T 2 2
then
Ve R i = :
) ekt B o o/ ‘_14\/5=( Yo st (1)
2 2 7
as 1 — . Therefore lint, .~ @ /5 0
The fourth proof: difference equation method. From Fy.s = Fy -y 4 k. we ablai
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the linear difference equation of second order with constant coefficients:
Foyo = Fnpy — F = 0. (18)
Its eigenequation is A> — A — 1 = 0, its eigenvalues are
2T o (R

1 A2

The general solution of the difference equation is
1 N
R=C (—“;‘/5) e

By the initial conditions Fy = 1 and F, = 1, we obtain

Hence
e (55 (55)]
and
a1 =4 e
TR e
as 1 — 00, (m}

The fifth proof: matrix method. It is casy to see that
: n n
B ARSI O il 1 )
Fus1 1 0 Jal 15 10! a1 168 (o) 1

Let A = (]}). then the eigenvalues of the square matrix A are A; =
'—'_,\ﬁ their corresponding eigenvectors are

for n € N.

(20)
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Taking
LbvE  1=/B
p=ll % E 21
| | (21)
then
145
PELARI= B2 : (22
0 1=v5 | | )
2

this implies

: [—‘—'5@]"_] 2 []_2 s]n—ﬂ 1_*'2\5[1-2 g1 L?@{‘_%\@ n+1
=ﬁ< ]';zﬁ]“‘[l_z 5]" 1+25[1-2 s}"_x—zs[); 5]" ) (2)
and
(24)

Thus

BT

2 2

that is g %[(1 ,2\/3) i <%5)] (26)

for n € N.

The rest is same as that in the third proof. (]
The sixth proof: algebraic method. Let us rewrite 40 = Fus1 + F, as
Fusa = pFisr = (B = pFu), (27)
that is
(28)

Fusa = (pt a) By = pakin:
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p+q=1,
pg=-1,

then we obtain solutions of (29) as follows

p= Lo

2

g=135,
p=15

— 1:y6
q=152

Therefore the recurrence formula F,, ., = F,., + F, can be rewnitten as

1+ V5 1-V5( .. 1+V5
Fra- 258 = 15 0(,"_,, 2F)
and
1-v6 145 1-v5
pgedaily, Lt (P - fr..)
From (32), we obtain
+V5 1-V5\"*!
Foya— ) F,.“=( F) )
From (33), we obtain
1-v6 1+V5\™!
e Q‘fr..+.=(—2—‘£) :

From system of the equations (34) and (35), we have

o355

Fu= %[(l +2\/5)" - (1 —2\/3)"]_

The rest is same as that in the third proof. The proof is complete.

and

29

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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